Title

A switching lemma for small restrictions and lower bounds for k-DNF resolution

Permalink

https://escholarship.org/uc/item/5g36h6rk

Journal

SIAM Journal on Computing, 33(5)
ISSN
0097-5397

Authors

Segerlind, Nate
Buss, Sam
Impagliazzo, Russell

Publication Date

2004
Peer reviewed

A SWITCHING LEMMA FOR SMALL RESTRICTIONS AND LOWER BOUNDS FOR k-DNF RESOLUTION*

NATHAN SEGERLIND ${ }^{\dagger}$, SAM BUSS ${ }^{\ddagger}$, AND RUSSELL IMPAGLIAZZO§

Abstract

We prove a new switching lemma that works for restrictions that set only a small fraction of the variables and is applicable to formulas in disjunctive normal form (DNFs) with small terms. We use this to prove lower bounds for the $\operatorname{Res}(k)$ propositional proof system, an extension of resolution which works with k-DNFs instead of clauses. We also obtain an exponential separation between depth d circuits of bottom fan-in k and depth d circuits of bottom fan-in $k+1$.

Our results for $\operatorname{Res}(k)$ are as follows: 1. The $2 n$ to n weak pigeonhole principle requires exponential size to refute in $\operatorname{Res}(k)$ for $k \leq \sqrt{\log n / \log \log n}$. 2. For each constant k, there exists a constant $w>k$ so that random w-CNFs require exponential size to refute in $\operatorname{Res}(k)$. 3. For each constant k, there are sets of clauses which have polynomial size $\operatorname{Res}(k+1)$ refutations but which require exponential size $\operatorname{Res}(k)$ refutations.

Key words. propositional proof complexity, Boolean circuit complexity, switching lemmas, lower bounds, k-DNFs, resolution, $\operatorname{Res}(k)$, circuit bottom fan-in, random restriction, Sipser functions, weak pigeonhole principles, random CNFs

AMS subject classifications. 03F20, 68Q15
DOI. 10.1137/S0097539703428555

1. Introduction. This paper studies the complexity of $\operatorname{Res}(k)$, a propositional refutation system that extends resolution by allowing k-DNFs instead of clauses [24]. The complexity of propositional proof systems has close connections to open problems in computational and circuit complexity [14, 23, 29, 6], as well as implications for the run times of satisfiability algorithms and automated theorem provers. Resolution is one of the most studied proof systems and is used as the basis for many satisfiability algorithms. Backtracking algorithms for satisfiability, such as the popular Davis-Putnam-Logeman-Loveland procedure (DPLL), that branch on a single variable provide tree-like resolution refutations on unsatisfiable formulas. General resolution proofs correspond to adding a limited form of memoization (previously refuted subproblems are saved for reuse rather than refuted again) to DPLL. Res (k) corresponds to algorithms that branch on more general conditions: the value of any function of up to k variables.

The $\operatorname{Res}(k)$ systems are also interesting as intermediates between previously studied proof systems. Resolution can be thought of as Res(1), and depth two Frege can be thought of as $\operatorname{Res}(n)$ (where n is the number of variables). The $\operatorname{Res}(k)$ systems provide a transition between these systems. Moreover, statements provable in the theory

[^0]$T_{2}^{2}(\alpha)$ (a fragment of Peano's arithmetic that allows induction only on Σ_{2}^{b} predicates) correspond to propositional statements with quasi-polynomial size $\operatorname{Res}(\operatorname{polylog}(n))$ refutations [24]. T_{2}^{2} is the weakest fragment of Peano's arithmetic known to be able to use counting arguments such as the weak pigeonhole principle [25]. On the other hand, these counting tautologies are known to require exponential-size resolution refutations. Thus, there must be a critical range for k between 1 and $\operatorname{poly} \log (n)$ where these arguments become possible in subexponential size. More generally, we can ask, When does increasing k give the $\operatorname{Res}(k)$ system more power? Is there a reason to want to branch on more complex functions in satisfiability algorithms? Does such branching give algorithms better performance in the average case?

We give partial answers to all of these questions. In particular we prove the following:

1. The $2 n$ to n weak pigeonhole principle requires size $2^{\Omega\left(n^{\epsilon}\right)}$ to refute in $\operatorname{Res}(k)$ for all $k \leq \sqrt{\log n / \log \log n}$. So having large bottom fan-in is necessary for counting arguments.
2. For each k, there exists a constant $w>k$ so that random w-CNFs require size $2^{\Omega\left(n^{\epsilon}\right)}$ to refute in $\operatorname{Res}(k)$. Therefore, extending DPLL algorithms to branch on multiple (but a constant number of) variables will not make run times subexponential on average.
3. $\operatorname{Res}(k+1)$ is exponentially more powerful than $\operatorname{Res}(k)$. We demonstrate sets of clauses that have polynomial size $\operatorname{Res}(k+1)$ refutations but require size $2^{\Omega\left(n^{\epsilon}\right)}$ to refute in $\operatorname{Res}(k)$. Therefore, increasing the complexity of branching conditions can make proofs exponentially smaller.
Our lower bounds are proved using a new kind of switching lemma. A switching lemma provides conditions under which an OR of small ANDs can be rewritten as an AND of small ORs after the application of a random restriction $[1,18,21,4]$. Our switching lemma differs from previous switching lemmas in that the random restriction is allowed to set a small number of the variables, even as few as $n^{1-\epsilon}$ out of n. The trade-off is that ORs of extremely small ANDs are transformed into ANDs of modestly small ORs. Therefore, our switching lemma cannot be iterated to prove lower bounds for proof systems of depth more than two. However, one application of our switching lemma suffices to prove lower bounds for the $\operatorname{Res}(k)$ proof systems, because each line in such a proof is of depth two with small bottom fan-in.

Our switching lemma also gives an exponential separation between depth d circuits with bottom fan-in k from depth d circuits with bottom fan-in $k+1$. This refines a previous result of Håstad [21], which states that for all d there exist $\epsilon>\delta>0$ so that there are functions on n variables, computable with polynomial size, depth d circuits of bottom fan-in n^{ϵ} but which require exponential size to compute with depth d circuits of bottom fan-in n^{δ}. Our result also refines results of Cai, Chen, and Håstad [12]. They showed that for each constant d, there exist functions computable with polynomial-size, depth $d+1$, bottom fan-in 2 circuits that require exponential size to compute with depth d circuits, and that for each constant k, there exists a function of n variables computable by depth d circuits of polynomial-size and bottom fan-in $O(\log n)$ that requires exponential size to compute with depth d circuits of bottom fan-in k.

Because resolution may be viewed as $\operatorname{Res}(1)$, our results for $\operatorname{Res}(k)$ generalize known results for resolution. The weak pigeonhole principle (for any number of pigeons) is known to require an exponential number of steps to refute in resolution $[35,20,36,11,5,15,28,30,31]$, and we generalize these lower bounds for the case
of the $c n$ to n pigeonhole principle. Resolution refutations of randomly chosen sets of clauses are also known to require exponential size $[13,5,8]$. We extend these results to general $\operatorname{Res}(k)$ systems, although as k increases, so does the width of the random CNFs for which our lower bounds apply.

Our work also extends previous research on the $\operatorname{Res}(k)$ system. The complexity of $\operatorname{Res}(k)$ refutations was first studied by Krajíček [24], who was motivated by the connection between Res(polylog(n)) and the provability of combinatorial statements in the arithmetic theory $T_{2}^{2}(\alpha)$. Atserias, Bonet, and Esteban [3] gave exponential lower bounds for $\operatorname{Res}(2)$ refutations of the $2 n$ to n weak pigeonhole principle and of random 3-CNFs. They also proved a quasi-polynomial separation between $\operatorname{Res}(2)$ and resolution; this separation was later strengthened to almost-exponential by Atserias and Bonet [2]. Esteban, Galesi, and Messner [17] showed that that there is an exponential separation between tree-like $\operatorname{Res}(k)$ and tree-like $\operatorname{Res}(k+1)$, and that general (DAG-like) $\operatorname{Res}(k)$ requires high space to refute random CNFs and the weak pigeonhole principle.

The lower bounds for $\operatorname{Res}(k)$ refutations of the weak pigeonhole principle given by Atserias, Bonet, and Esteban [3] apply only for $k=2$; our lower bound works for nonconstant k up to $\sqrt{\log n / \log \log n}$. On the other hand, Maciel, Pitassi, and Woods [25] gave quasi-polynomial-size refutations in Res(polylog(n)). Our results show that superconstant bottom fan-in is necessary for subexponential-size proofs of the weak pigeonhole principle. Indeed, after the preliminary version of this paper appeared [33], our techniques were extended by Alexander Razborov to prove that the weak pigeonhole principle requires exponential size to refute in $\operatorname{Res}(\epsilon \log n / \log \log n)$ [32].

Our lower bounds for $\operatorname{Res}(k)$ refutations of random w-CNFs are the first such lower bounds for $\operatorname{Res}(k)$ with $k \geq 3$. Atserias, Bonet, and Esteban [3] gave exponential lower bounds for random 3-CNFs in $\operatorname{Res}(2)$. We extend these results to $\operatorname{Res}(k)$, although the width w increases with k (it is $4 k^{2}+2$). At present, the $\operatorname{Res}(k)$ systems are the strongest fragments of bounded-depth Frege systems for which we know there are superpolynomial-size lower bounds for refutations of random sets of clauses.

The separation between $\operatorname{Res}(k+1)$ from $\operatorname{Res}(k)$ is the first for $k \geq 2$. The earlier work of Atserias and Bonet [2] gave a $2^{\Omega\left(2^{\log ^{\epsilon} n}\right)}$ separation of $\operatorname{Res}(2)$ from $\operatorname{Res}(1)$, and our result improves this to $2^{\Omega\left(n^{\epsilon}\right)}$.

In the time since the preliminary version of this paper appeared [33], we have extended one of our results. The original separation of $\operatorname{Res}(k+1)$ from $\operatorname{Res}(k)$ was based on clauses of width $O(\log n)$, whereas the new separation uses clauses of constant width. We include proofs for both results.
1.1. Outline of the paper. Background material, including the basics of the $\operatorname{Res}(k)$ proof system, is given in section 2 . In section 3 we prove the switching lemma. Section 4 applies the switching lemma to prove a separation between constant-depth circuits of bottom fan-in $k+1$ and constant-depth circuits of bottom fan-in k. In section 5 we prove that $\operatorname{Res}(k)$ refutations of sets of clauses whose lines are represented by short decision trees can be transformed into narrow resolution refutations. This conversion is used in combination with the switching lemma to prove lower bounds for $\operatorname{Res}(k)$ refutations. Lower bounds for $\operatorname{Res}(k)$ refutations of the weak pigeonhole principle are proved in section 6 and lower bounds for $\operatorname{Res}(k)$ refutations of random CNFs are proved in section 7. The separations between $\operatorname{Res}(k+1)$ and $\operatorname{Res}(k)$ are proved in sections 8 and 9 .
2. Background. A literal is a variable or its negation. A term is a constant 0 or 1 or a conjunction of literals. Our convention is that a term is specified as a set of literals, with 1 corresponding to the empty set and 0 to any literal and its negation. We say that a term T contains a literal l if $l \in T$, and that a term T contains a variable x if either $x \in T$ or $\neg x \in T$. We will often identify literals with terms of size one, and will write l instead of $\{l\}$. A $D N F$ is a disjunction of terms, specified as a set of terms. A $k-D N F$ is a DNF whose terms are each of size at most k. A clause is a $1-\mathrm{DNF}$, i.e., a disjunction of literals. The width of a clause C, written $w(C)$, is the number of literals appearing in C. The width of a set of clauses is the maximum width of any clause in the set. A $C N F$ is a conjunction of clauses, specified as a set of clauses. A $k-C N F$ is a CNF whose clauses are each of width at most k. Two terms t and t^{\prime} are consistent if there is no literal l with $l \in t$ and $\neg l \in t^{\prime}$.

A restriction ρ is a map from a set of variables to $\{0,1, *\}$. For a formula F, the restriction of F by $\rho, F \upharpoonright_{\rho}$ is defined as usual, simplifying only when a subexpression has become explicitly constant. For any restriction ρ, let $\operatorname{dom}(\rho)$ denote the set of variables to which ρ assigns the value 0 or 1 .

Resolution is a refutation system for propositional logic. The input to a resolution refutation is a set of clauses \mathcal{C}; a resolution refutation consists of a derivation of the empty clause from the clauses in \mathcal{C} using only the resolution inference: $\frac{A \vee x \neg x \vee B}{A \vee B}$. Notice that every line in a resolution refutation is a clause. $w_{R}(\mathcal{C})$ denotes the minimum width of a resolution refutation of \mathcal{C}; if \mathcal{C} is satisfiable, then there is no refutation and we use the convention that $w_{R}(\mathcal{C})$ is ∞.

The $\operatorname{Res}(k)$ refutation system is a generalization of resolution that can reason using k-DNFs.

DEFINITION 2.1. $\operatorname{Res}(k)$ is the refutation system whose lines are k-DNFs and whose inference rules are given below (A, B are $k-D N F ' s, 1 \leq j \leq k$, and l, l_{1}, \ldots, l_{j} are literals):

Subsumption: $\frac{A}{A \vee l}$

$$
\text { Cut: } \frac{A \vee \bigwedge_{i=1}^{j} l_{i} B \vee \bigvee_{i=1}^{j} \neg l_{i}}{A \vee B}
$$

AND-introduction: $\frac{A \vee l_{1} \cdots A \vee l_{j}}{A \vee \bigwedge_{i=1}^{j} l_{i}}$
AND-elimination: $\frac{A \vee \bigwedge_{i=1}^{j} l_{i}}{A \vee l_{i}}$

Let \mathcal{C} be a set of k-DNFs. $A \operatorname{Res}(k)$ derivation from \mathcal{C} is a sequence of k-DNFs F_{1}, \ldots, F_{m} so that each F_{i} either belongs to \mathcal{C} or follows from the preceding lines by an application of one of the inference rules. For a set of k-DNFs \mathcal{C}, a $\operatorname{Res}(k)$ refutation of \mathcal{C} is a derivation from \mathcal{C} whose final line is the empty clause. The size of a $\operatorname{Res}(k)$ refutation is the number of lines it contains. $S_{k}(\mathcal{C})$ denotes the minimum size of a $\operatorname{Res}(k)$ refutation of \mathcal{C}. If \mathcal{C} is satisfiable, then \mathcal{C} has no refutation and we use the convention that $S_{k}(\mathcal{C})$ is ∞.

We do not use the exact definition of the $\operatorname{Res}(k)$ system in our arguments; the main property we use is strong soundness: if F is inferred from F_{1}, \ldots, F_{j}, and t_{1}, \ldots, t_{j} are mutually consistent terms of F_{1}, \ldots, F_{j}, respectively, then there is a term t of F implied by $\bigwedge_{i=1}^{j} t_{i}$. In other words, any reason why F_{1}, \ldots, F_{k} are true implies a reason why F is true. This is stronger than mere soundness.

Lemma 2.2. $\operatorname{Res}(k)$ is strongly sound.
We also use the following well-known interpolation property for resolution.
Lemma 2.3. Let \mathcal{C}_{1} and \mathcal{C}_{2} be unsatisfiable sets of clauses on disjoint sets of variables. If there is a resolution refutation Γ of $\mathcal{C}_{1} \cup \mathcal{C}_{2}$, then there is a refutation Γ^{\prime}
of either \mathcal{C}_{1} or \mathcal{C}_{2}. Moreover, $w\left(\Gamma^{\prime}\right) \leq w(\Gamma)$.
2.1. The Chernoff bounds. Throughout this paper we will repeatedly make use of a simplified form of the Chernoff bounds. These formulations come from standard references on applying such bounds in algorithmics; cf. [26, 37].

Lemma 2.4. Let X_{1}, \ldots, X_{n} be independent random indicator variables. Let $\mu=E\left[\sum_{i=1}^{n} X_{i}\right]$.
$\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i}<\frac{\mu}{2}\right] \leq e^{-\mu / 8}$ and $\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i}>2 \mu\right] \leq e^{-\mu / 4}$.
2.2. Miscellaneous notation. We will use the notation $[k]=\{i \mid 1 \leq i \leq k\}$. For graphs $G=(V, E)$ and $S \subseteq V$ we will write $G-S$ to denote the induced subgraph on $V \backslash S$.
3. The switching lemma. A switching lemma is a guarantee that after the application of a randomly chosen restriction, a disjunction of small ANDs can be represented by a conjunction of small ORs, thus "switching" an OR into an AND. We use a slightly stronger variation: after the application of a random restriction, a k-DNF can be represented by a short decision tree.

Definition 3.1. A decision tree is a rooted binary tree in which every internal node is labeled with a variable, the edges leaving a node correspond to whether the variable is set to 0 or 1 , and the leaves are labeled with either 0 or 1 . Every path from the root to a leaf may be viewed as a partial assignment. For a decision tree T and $v \in\{0,1\}$, we write the set of paths (partial assignments) that lead from the root to a leaf labeled v as $\operatorname{Br}_{v}(T)$. For a partial assignment $\rho, T \upharpoonright_{\rho}$ is the decision tree obtained by deleting from T every edge whose label conflicts with ρ and contracting along each edge whose label belongs to ρ. We say that a decision tree T strongly represents a $D N F F$ if for every $\pi \in \operatorname{Br}_{0}(T)$, for all $t \in F, t \upharpoonright_{\pi}=0$ and for every $\pi \in \operatorname{Br}_{1}(T)$, there exists $t \in F, t \upharpoonright_{\pi}=1$. The representation height of $F, h(F)$, is the minimum height of a decision tree strongly representing F.

Notice that the function computed by a decision tree of height h can be computed both by an h-CNF and by an h-DNF.

Our switching lemma will exploit a trade-off based on the minimum size of a set of variables that meets each term of a k-DNF. When this quantity is small, we can build a decision tree by querying these variables and recursing on the $(k-1)$-DNFs created. When this quantity is large, the DNF has many disjoint terms and is likely to be satisfied by a random restriction.

Definition 3.2. Let F be a $D N F$, and let S be a set of variables. If every term of F contains a variable from S, then we say that S is a cover of F. The covering number of $F, c(F)$, is the minimum cardinality of a cover of F.

For example, the 3-DNF $x y z \vee \neg x \vee y w$ has covering number two.
The switching lemma is shown to hold for all distributions which satisfy certain properties. When we apply the switching lemma, we will show that the random restrictions used satisfy these properties.

ThEOREM 3.3. Let $k \geq 1$, let s_{0}, \ldots, s_{k-1} and p_{1}, \ldots, p_{k} be sequences of positive numbers, and let \mathcal{D} be a distribution on partial assignments so that for every $i \leq k$ and every i-DNF G, if $c(G)>s_{i-1}$, then $\operatorname{Pr}_{\rho \in \mathcal{D}}\left[G \upharpoonright_{\rho} \neq 1\right] \leq p_{i}$. Then for every $k-D N F$ F,

$$
\operatorname{Pr}_{\rho \in \mathcal{D}}\left[h\left(F \upharpoonright_{\rho}\right)>\sum_{i=0}^{k-1} s_{i}\right] \leq \sum_{i=1}^{k} 2^{\left(\sum_{j=i}^{k-1} s_{j}\right)} p_{i}
$$

Proof. We proceed by induction on k. First consider $k=1$. If $c(F) \leq s_{0}$, then at most s_{0} variables appear in F. We can construct a height $\leq s_{0}$ decision tree that strongly represents $F \upharpoonright_{\rho}$ by querying all of the variables of $F \upharpoonright_{\rho}$. On the other hand, if $c(F)>s_{0}$, then $\operatorname{Pr}_{\rho \in \mathcal{D}}\left[F \upharpoonright_{\rho} \neq 1\right] \leq p_{1}$. Therefore, $h\left(F \upharpoonright_{\rho}\right)$ is nonzero with probability at most $p_{1} 2^{\sum_{j=1}^{k-1} s_{j}}=p_{1}$ (because $k=1$).

For the induction step, assume that the theorem holds for all k-DNFs, let F be a $(k+1)$-DNF, and let s_{0}, \ldots, s_{k} and p_{1}, \ldots, p_{k+1} be sequences of positive numbers satisfying the hypotheses of the theorem. If $c(F)>s_{k}$, then by the conditions of the lemma, $\operatorname{Pr}_{\rho \in \mathcal{D}}\left[F \upharpoonright_{\rho} \neq 1\right] \leq p_{k+1}$. Because

$$
p_{k+1} \leq \sum_{i=1}^{k+1} 2^{\sum_{j=i}^{k} s_{j}} p_{i}
$$

we have that $h\left(F \upharpoonright_{\rho}\right)$ is nonzero with probability at most $\sum_{i=1}^{k+1} 2^{\sum_{j=i}^{k} s_{j}} p_{i}$.
Consider the case when $c(F) \leq s_{k}$. Let S be a cover of F of size at most s_{k}. Let π be any assignment to the variables in S. Because each term of F contains at least one variable from $S, F \upharpoonright_{\pi}$ is a k-DNF. By combining the induction hypothesis with the union bound, we have that

$$
\begin{aligned}
\operatorname{Pr}_{\rho \in \mathcal{D}}\left[\exists \pi \in\{0,1\}^{S} h\left(\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\pi}\right)>\sum_{i=0}^{k-1} s_{i}\right] & \leq 2^{s_{k}}\left(\sum_{i=1}^{k} 2^{\left(\sum_{j=i}^{k-1} s_{j}\right)} p_{i}\right) \\
& <\sum_{i=1}^{k+1} 2^{\left(\sum_{j=i}^{k} s_{j}\right)} p_{i} .
\end{aligned}
$$

In the event that for all $\pi \in\{0,1\}^{S}, h\left(\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\pi}\right) \leq \sum_{i=0}^{k-1} s_{i}$, we construct a decision tree for $F \upharpoonright_{\rho}$ as follows. First, query all variables in S unset by ρ, and then underneath each branch, β, simulate a decision tree of minimum height strongly representing $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}$. For each such β, let $\pi=(\rho \cup \beta) \upharpoonright_{S}$, and note that $h\left(\left(F \upharpoonright_{\rho}\right)\right.$ $\left.\upharpoonright_{\beta}\right)=h\left(\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\pi}\right)$. Therefore the height of the resulting decision tree is at most $s_{k}+\max _{\pi \in\{0,1\}^{s}} h\left(\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\pi}\right) \leq \sum_{i=0}^{k} s_{i}$.

Now we show that the decision tree constructed above strongly represents $F \upharpoonright_{\rho}$. Let π be a branch of the tree. Notice that $\pi=\beta \cup \sigma$, where β is an assignment to the variables in $S \backslash \operatorname{dom}(\rho)$ and σ is a branch of a tree that strongly represents $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}$. Consider the case that π leads to a leaf labeled 1. In this case, σ satisfies a term t^{\prime} of $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}$. We may choose a term t of F so that $t^{\prime}=\left(t \upharpoonright_{\rho \cup \beta}\right)$, and $\pi=\beta \cup \sigma$ satisfies the term $t \upharpoonright_{\rho}$ of $F \upharpoonright_{\rho}$. Now consider the case that π leads to a leaf labeled 0 . There are two cases, $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}=0$ and $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta} \neq 0$. If $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}=0$, then for every term t of $F \upharpoonright_{\rho}, t$ is inconsistent with β and hence with π. If $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta} \neq 0$, then because the subtree underneath β strongly represents $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}$, for every term t of $\left(F \upharpoonright_{\rho}\right) \upharpoonright_{\beta}, t$ is inconsistent with σ. Therefore, every term of $F \upharpoonright_{\rho}$ is inconsistent with either β or σ, and thus with $\pi=\beta \cup \sigma$.

We usually use this theorem in the following normal form for the parameters.
Corollary 3.4. Let k, s, and d be positive integers, let γ and δ be real numbers from the range $(0,1]$, and let \mathcal{D} be a distribution on partial assignments so that for every k-DNF $G, \operatorname{Pr}_{\rho \in \mathcal{D}}\left[G \upharpoonright_{\rho} \neq 1\right] \leq d 2^{-\delta(c(G))^{\gamma}}$. For every $k-D N F F$,

$$
\operatorname{Pr}_{\rho \in \mathcal{D}}\left[h\left(F \upharpoonright_{\rho}\right)>2 s\right] \leq d k 2^{-\delta^{\prime} s^{\gamma^{\prime}}}
$$

where $\delta^{\prime}=2(\delta / 4)^{k}$ and $\gamma^{\prime}=\gamma^{k}$.
Proof. Let $s_{i}=(\delta / 4)^{i}\left(s^{\gamma^{i}}\right)$ and $p_{i}=d 2^{-4 s_{i}}$. Note that $s_{i-1} / 4 \geq(\delta / 4) s_{i-1}=$ $(\delta / 4)(\delta / 4)^{i-1} s^{\gamma^{i-1}} \geq(\delta / 4)^{i} s^{\gamma^{i}}=s_{i}$. It follows that $\sum_{j=i}^{k} s_{j} \leq \sum_{j \geq i} s_{i} / 4^{j-i} \leq 2 s_{i}$. Also, for any i-DNF G, with $c(G) \geq s_{i-1}, \operatorname{Pr}_{\rho \in \mathcal{D}}\left[G \upharpoonright_{\rho} \neq 1\right] \leq d 2^{-\delta(c(G))^{\gamma}} \leq d 2^{-\delta s_{i-1}^{\gamma}}=$ $2^{-\delta(\delta / 4)^{i-1}\left(s^{\gamma^{i-1}}\right)^{\gamma}}=d 2^{-4 s_{i}}$. Thus, we can apply Theorem 3.3 with parameters $p_{1}, \ldots, p_{k}, s_{0}, \ldots, s_{k-1}$. For every k-DNF F,

$$
\begin{aligned}
\operatorname{Pr}_{\rho \in \mathcal{D}}\left[h\left(F \upharpoonright_{\rho}\right)>2 s\right] & \leq \operatorname{Pr}_{\rho \in \mathcal{D}}\left[h\left(F \upharpoonright_{\rho}\right)>\sum_{i=0}^{k-1} s_{i}\right] \leq \sum_{i=1}^{k} 2^{\left(\sum_{j=i}^{k-1} s_{j}\right)} p_{i} \\
& \leq \sum_{i=1}^{k} 2^{2 s_{i}}\left(d 2^{-4 s_{i}}\right) \leq d k 2^{-2 s_{k}}=d k 2^{-\delta^{\prime} s^{\gamma^{\prime}}}
\end{aligned}
$$

3.1. Switching with small restrictions. In this subsection, we show that small, uniform restrictions meet the conditions for the switching lemma. Using Corollary 3.4, k-DNFs can then be converted into decision trees-using restrictions that set only a polynomially small fraction of the bits. We include it here for comparison with previous switching lemmas. Later, it will be used to prove the lower bound on $\operatorname{Res}(k)$ refutations of random CNFs. More complicated distributions are used for our other results.

Definition 3.5. Let $n>0$ and $p \in[0,1]$. Define \mathcal{D}_{p} to be the family of random restrictions which arises by assigning variables $*$ with probability $1-p$, and 0,1 each with probability $\frac{p}{2}$.

Lemma 3.6. Let $i \geq 1$, let G be an $i-D N F$, and let ρ be chosen from \mathcal{D}_{p}. Then $\operatorname{Pr}\left[G \upharpoonright_{\rho} \neq 1\right] \leq e^{-\frac{c(G) p^{i}}{i 2^{i}}}$.

Proof. Because every covering set of G has size at least $c(G)$, there is a set of variable-disjoint terms of size at least $c(G) / i$ (such a set can be found by greedily choosing a maximal set of disjoint terms). Each of these variable-disjoint terms is satisfied with independent probability at least $(p / 2)^{i}$. Therefore,

$$
\operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[G \upharpoonright_{\rho} \neq 1\right] \leq\left(1-\left(\frac{p}{2}\right)^{i}\right)^{\frac{c(G)}{i}} \leq e^{-\left(\frac{p}{2}\right)^{i} \frac{c(G)}{i}}=e^{-\frac{c(G) p^{i}}{i 2^{i}}}
$$

Combining this with the switching lemma shows that a k-DNF is strongly represented by a short decision tree when restricted.

Corollary 3.7. Let $k \geq 1$ be given. There exists $\gamma>0$ so that for any $k-D N F$ $F, w>0, p \geq n^{-1 /\left(2 k^{2}\right)}, \operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[h\left(F \upharpoonright_{\rho}\right)>w\right] \leq k 2^{-\gamma w n^{-1 / 2}}$.

Proof. In the notation of Corollary 3.4, set $p=n^{-1 / 2 k^{2}}, d=1, \gamma=1, s=w / 2$, and $\delta=(\log e) \frac{p^{k}}{k 2^{k}}=(\log e) \frac{n^{-1 / 2 k}}{k 2^{k}}$. Combining Lemma 3.6 with Corollary 3.4 shows that for every k-DNF F,

$$
\operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[h\left(F \upharpoonright_{\rho}\right)>w\right] \leq k 2^{-2(w / 2)\left(\delta^{k} / 4^{k}\right)}=k 2^{-w(\log e)^{k} n^{-1 / 2} / 4^{k} k^{k} 2^{k^{2}}}
$$

Because k is fixed, we may take $\gamma=(\log e)^{k} / 4^{k} k^{k} 2^{k^{2}}$.
4. An application to circuit bottom fan-in. Our first application of the switching lemma is an exponential-size separation between depth d circuits of bottom fan-in k and depth d circuits of bottom fan-in $k+1$.

Our circuits are organized into alternating layers of AND and OR gates, with connections appearing only between adjacent levels. NOT gates may have only variables as their inputs. The output gate is said to be at level one, the gates feeding into the output gate are said to be at level two, and so forth. The depth of a circuit is the maximum depth of an AND or OR gate in the circuit. The size of a circuit is the number of AND and OR gates appearing in it. The bottom fan-in of a depth d circuit is the maximum number of inputs of a gate at level d. For more detail on the basics of constant depth circuits, consult the survey by Boppana and Sipser [10].

4.1. The functions.

Definition 4.1 (see $[34,10]$). Let integers d and m_{1}, \ldots, m_{d} be given, and let there be variables $x_{i_{1}, \ldots, i_{d}}$ for $1 \leq i_{j} \leq m_{j}$.

$$
f_{d}^{m_{1}, \ldots, m_{d}}=\bigwedge_{i_{1} \leq m_{1}} \bigvee_{i_{2} \leq m_{2}} \cdots \underbrace{}_{i_{d} \leq m_{d}} x_{i_{1}, \ldots, i_{d}}
$$

where $\odot=\bigvee$ if d is even, and $\odot=\bigwedge$ if d is odd.
The Sipser function f_{d}^{m} is $f_{d}^{m_{1}, \ldots, m_{d}}$, with $m_{1}=\sqrt{m / l o g m}, m_{2}=\cdots=m_{d-1}=$ m, and $m_{d}=\sqrt{d m \log m / 2}$.

The modified Sipser function $g_{d}^{m, k}$ is $f_{d+1}^{m_{1}, \ldots, m_{d}, k}$, with $m_{1}=\sqrt{m / l o g m}, m_{2}=$ $\cdots=m_{d-1}=m$, and $m_{d}=4 \sqrt{d m \log m / 2}$.

Notice that the function f_{d}^{m} depends on $m^{d-1} \sqrt{d / 2}$ many variables and can be computed by a circuit of depth d and size linear in the number of variables. Furthermore, we will often identify these functions with the circuits defining them.

Our result builds upon the earlier result that it is impossible to decrease the bottom fan-in of a circuit computing a Sipser function without increasing the size or the depth. Moreover, an OR of depth d, small bottom fan-in circuits requires exponential size to compute f_{d}^{m}.

ThEOREM 4.2 (see [21]). For all $d \geq 1$, there exists $\epsilon_{d}>0$ so that if a depth d, bottom fan-in k circuit with an AND gate at the output and at most S gates in levels 1 through $d-1$ computes f_{d}^{m}, then either $k \geq m^{\epsilon_{d}}$ or $S \geq 2^{m^{\epsilon_{d}}}$.

For all $d \geq 1$, there exists $\beta_{d}>0$ so that if a depth $d+1$, bottom fan-in k circuit with an OR gate at the output and at most S gates in levels 1 through d computes f_{d}^{m}, then either $S \geq 2^{m^{\beta_{d}}}$ or $k \geq m^{\beta_{d}}$.

We use the modified Sipser function $g_{d}^{m, k+1}$ to obtain the exponential separation between depth $d+1$, bottom fan-in $k+1$ and depth $d+1$, bottom fan-in k circuits. For each i_{1}, \ldots, i_{d}, we say that the variables $x_{i_{1}, \ldots, i_{d}, 1}, \ldots, x_{i_{1}, \ldots, i_{d}, k}$ come from block $\left(i_{1}, \ldots, i_{d}\right)$. Variables in the same block occur in the same bottom-level conjunction of $g_{d}^{m, k}$. Notice that the function $g_{d}^{m, k}$ has $4 m^{d-1} \sqrt{d / 2}$ many blocks and $4 k m^{d-1} \sqrt{d / 2}$ many variables. Moreover, it can be computed by a circuit of depth $d+1$, bottom fan-in k and size linear in the number of variables.
4.2. The lower bounds. We will show that depth $d+1$ circuits with bottom fan-in k require exponential size to compute $g_{d}^{m, k+1}$. In light of Theorem 4.2, it suffices to consider only circuits with an AND gate at the output level. Furthermore, we consider only the case when d is even. This ensures that all gates at depth d are OR gates. The case for odd d is dual and we simply invert the random restriction used. Each gate at depth d computes a k-DNF, and we will apply random restrictions which almost certainly collapse all of the k-DNFs to narrow CNFs and thus collapse the circuits to depth d circuits with small bottom fan-in. On the other hand, the
random restrictions will probably leave $g_{d}^{m, k+1}$ containing f_{d}^{m} as a subfunction, and thus we obtain a contradiction to Theorem 4.2.

DEFINITION 4.3. Let m, d, and k be given. Set $m_{1}=\sqrt{m / \log m}, m_{2}=\cdots=$ $m_{d-1}=m$, and $m_{d}=4 \sqrt{d m \log m / 2}$.

Let $\mathcal{B}_{d, 0}^{m, k+1}$ be the random distribution on partial assignments given by the following experiment: For each $i_{1} \leq m_{1}, \ldots, i_{d} \leq m_{d}$, with independent probability $\frac{1}{2}$ either set $x_{i_{1}, \ldots, i_{d}, j}=*$, for all $j \in[k+1]$, or uniformly choose a $0 / 1$ assignment to $\left\{x_{i_{1}, \ldots, i_{d}, j} \mid j \in[k+1]\right\}$ which sets at least one of the variables to 0 . The dual distribution, $\mathcal{B}_{d, 1}^{m, k+1}$, selects a restriction according to $\mathcal{B}_{d, 0}^{m, k+1}$ and then inverts the 0 's and 1's.

Lemma 4.4. Let $k \geq 1$ be given. There exists a constant $\gamma_{k}>0$ so that for every k-DNF F,

$$
\operatorname{Pr}_{\rho \in \mathcal{B}_{d, 0}^{m, k+1}}\left[F \upharpoonright_{\rho} \neq 1\right] \leq 2^{-\gamma_{k} c(F)}
$$

Proof. We say that two terms T and T^{\prime} are block-disjoint if no variable of T shares a block with a variable of T^{\prime}. More formally, whenever a variable $x_{i_{1}, \ldots, i_{d+1}}$ appears in T and a variable $x_{j_{1}, \ldots, j_{d+1}}$ appears in T^{\prime}, we have that $\left(i_{1}, \ldots, i_{d}\right) \neq\left(j_{1}, \ldots, j_{d}\right)$. Because each term involves at most k variables, there must be a set of $c(F) / k$ many variable-disjoint terms, and hence a set of $c(F) /(k(k+1))$ many block-disjoint terms.

We now show that each term is satisfied with probability at least $\frac{1}{6^{k}}$. Because the literals of a term come from at most k distinct blocks, the chance that every variable in the term is set to 0 or 1 is at least $\frac{1}{2^{k}}$. Conditioned on this event, the probability of satisfying the term is at least $\frac{1}{3^{k}}$. To see this, consider the chance of satisfying each literal of the term in turn, conditioned on the event of satisfying the previous literals. If a variable from that block has already been set to 0 , then clearly the probability of satisfying the current literal is $\frac{1}{2}$. If not, then suppose there are l variables in the block of the current variable that have not yet been set to a value. The probability of satisfying the current literal is at least $\left(2^{l-1}-1\right) /\left(2^{l}-1\right)$. Because there are $k+1$ variables and the term has size at most $k, l \geq 2$, and thus the probability is at least $\frac{1}{3}$.

The events of satisfying block-disjoint terms are independent; therefore we have

$$
\operatorname{Pr}_{\rho \in \mathcal{B}_{d, 0}^{m, k+1}}\left[F \upharpoonright_{\rho} \neq 1\right] \leq\left(1-\frac{1}{6^{k}}\right)^{c(F) /(k(k+1))}
$$

Set $\gamma_{k}=-\log _{2}\left(1-\frac{1}{6^{k}}\right) /(k(k+1))$.
Symmetrically, the dual result holds for k-CNFs when we apply a random restriction from $\mathcal{B}_{d, 1}^{m, k+1}$.

Lemma 4.5. Let $k \geq 1$ be given. There exists a constant ϵ_{k} so that for all d, for all w sufficiently large with respect to k, and for every depth $d+1$, bottom fan-in k circuit C of size $S \leq 2^{\epsilon_{k} w}$, when ρ is chosen from $\mathcal{B}_{d, 0}^{m, k+1}\left(\mathcal{B}_{d, 1}^{m, k+1}\right)$, with probability at least $3 / 4, C \upharpoonright_{\rho}$ is equivalent to a depth d, bottom fan-in w circuit with at most S gates in levels 1 through $d-1$.

Proof. We will solve for the particular values of ϵ_{k} and w after going through the calculations.

We consider the case when d is even; the case when d is odd is handled by using the restrictions $\mathcal{B}_{d, 1}^{m, k+1}$ instead of $\mathcal{B}_{d, 0}^{m, k+1}$. Each gate at depth d is an OR gate and its inputs are AND gates of fan-in at most k. For each gate g at depth d, we let F_{g} denote the k-DNF computed by the subcircuit at g.

Suppose that there is a partial assignment $\rho \in \mathcal{B}_{d, 0}^{m, k}$ so that for each depth d gate g of $C, h\left(F_{g} \upharpoonright_{\rho}\right)<w$. For each g at depth d, let T_{g} be the shortest decision tree representing $F_{g} \upharpoonright_{\rho}$. We can compute $C \upharpoonright_{\rho}$ with a depth d, bottom fan-in w circuit with at most S gates in levels 1 through $d-1$ by starting with C, replacing each level d gate g with the conjunction of the negated branches of $\operatorname{Br}_{0}\left(T_{g}\right)$, and then merging these conjuncts with the AND gate at depth $d-1$ to which g sends its output.

We now show that for ρ chosen according to the distribution $\mathcal{B}_{d, 0}^{m, k}$, with probability at least $\frac{3}{4}$, every depth d gate g of C has $h\left(F_{g} \upharpoonright_{\rho}\right)<w$.

Let g be a depth d gate of the circuit. By combining Lemma 4.4 with Corollary 3.4, setting $d=1, \gamma=1, s=w / 2$, and $\delta=\gamma_{k}$ shows that

$$
\operatorname{Pr}_{\rho \in \mathcal{B}_{d, 0}^{m, k}}\left[h\left(F_{g}\right)>w\right] \leq k 2^{-w \gamma_{k}^{k} / 4^{k}}
$$

Because there are at most $S=2^{\epsilon_{k} w}$ many gates at depth d, by the union bound, there exists a gate with $h\left(F_{g}\right)>w$ with probability at most $2^{w\left(\epsilon_{k}-\gamma_{k}^{k} / 4^{k}\right)+\log k}$. We simply take ϵ_{k} sufficiently small so that this probability is less than $1 / 4$.

THEOREM 4.6. For all $k \geq 1, d \geq 1$, there exists $\epsilon_{k}, \epsilon_{d}>0$ so that for every m sufficiently large, every size S, depth $d+1$, bottom fan-in k circuit for $g_{d}^{m, k+1}$ has $S \geq 2^{\epsilon_{k} m^{\epsilon_{d}}}$.

Proof. We will have to take m sufficiently large to apply Theorem 4.2 and Lemma 4.5 , and large enough for an application of the Chernoff bounds. Set $w=m^{\epsilon_{d}}$ (with ϵ_{d} from Theorem 4.2) and $S=2^{\epsilon_{k} w}$ (with ϵ_{k} from Lemma 4.5). Furthermore, we consider the case when d is even; the case when d is odd is handled by using the restrictions $\mathcal{B}_{d, 1}^{m, k+1}$ instead of $\mathcal{B}_{d, 0}^{m, k+1}$.

Suppose, for the sake of contradiction, that C is a size S, depth d, bottom fan-in k circuit computing $g_{d}^{m, k+1}$.

Fix an OR gate at depth d in $g_{d}^{m, k+1}$. When ρ is chosen from the distribution $\mathcal{B}_{d, 0}^{m, k+1}$, the expected number of blocks underneath this gate that are left unset is $2 \sqrt{d m \log m / 2}$. By the Chernoff bounds, with probability at most $e^{-\sqrt{d m \log m / 2} / 4}$ there are fewer than $\sqrt{d m \log m / 2}$ blocks left unset by ρ underneath this gate.

Because there are $m^{d-3 / 2} / \sqrt{\log m}$ many depth d gates in $g_{d}^{m, k+1}$, by the union bound, the probability that there exists a depth d gate underneath which there are fewer than $\sqrt{d m \log m / 2}$ many blocks unset is at most $\left(m^{d-3 / 2} / \sqrt{\log m}\right) e^{-\sqrt{d m \log m / 2} / 4}$. This tends to 0 as m tends to infinity.

On the other hand, by Lemma 4.5 , with probability at least $3 / 4, C \upharpoonright_{\rho}$ is equivalent to a depth d, bottom fan-in w circuit with at most S gates in levels 1 through $d-1$.

Therefore we may choose $\rho \in \mathcal{B}_{0, d}^{m, k+1}$ so that underneath each depth d gate of $g_{d}^{m, k+1}$ there are at least $\sqrt{d m \log m / 2}$ many blocks unset by ρ, and $C \upharpoonright_{\rho}$ is equivalent to a depth d, bottom fan-in w circuit with $\leq S$ gates in levels $1, \ldots, d-1$.

Because $C \upharpoonright_{\rho}$ computes $g_{d}^{m, k+1} \upharpoonright_{\rho}$, a restriction of it computes f_{d}^{m} : set some blocks to 0 and collapse the other blocks to a single variable. This gives a depth d circuit with $\leq S$ gates in levels $1, \ldots, d-1$, and bottom fan-in w that computes f_{d}^{m}, a contradiction to Theorem 4.2.
5. Decision trees and $\operatorname{Res}(\boldsymbol{k})$ refutations. All of our lower bounds for $\operatorname{Res}(k)$ refutations use the fact that when the lines of a $\operatorname{Res}(k)$ refutation can be strongly represented by short decision trees, the $\operatorname{Res}(k)$ refutation can be converted into a narrow resolution refutation.

Theorem 5.1. Let \mathcal{C} be a set of clauses of width $\leq h$. If \mathcal{C} has a $\operatorname{Res}(k)$ refutation so that for each line F of the refutation, $h(F) \leq h$, then $w_{R}(\mathcal{C}) \leq k h$.

Proof. We will use the short decision trees to construct a narrow refutation of \mathcal{C} in resolution augmented with subsumption inferences: whenever $A \subseteq B$, infer B from A. These new inferences simplify our proof, but they may be removed from the resolution refutation without increasing the size or the width.

For a line F of the $\operatorname{Res}(k)$ refutation, let T_{F} be a decision tree of minimum height that strongly represents F. Notice that for each initial clause $C \in \mathcal{C}, T_{C}$ is the tree that queries the (at most h) variables in C, stopping with a 1 if the clause becomes satisfied and stopping with a 0 if the clause becomes falsified.

For any partial assignment π let C_{π} be the clause of width $\leq h$ that contains the negation of every literal in π, i.e., the clause that says that branch π was not taken. We construct a resolution refutation of width $\leq k h$ by deriving C_{π} for each line F of the refutation and each $\pi \in \operatorname{Br}_{0}\left(T_{F}\right)$.

Notice that for $\pi \in \operatorname{Br}_{0}\left(T_{\emptyset}\right), C_{\pi}=\emptyset$, and for each $C \in \mathcal{C}$, for the unique $\pi \in$ $\operatorname{Br}_{0}\left(T_{C}\right), C_{\pi}=C$.

Let F be a line of the refutation that is inferred from previously derived formulas $F_{1}, \ldots, F_{j}, j \leq k$. Assume we have derived all $C_{\pi} \in \operatorname{Br}_{0}\left(T_{F_{i}}\right)$ for $1 \leq i \leq j$. To guide the derivation of $\left\{C_{\pi} \mid \pi \in \operatorname{Br}_{0}\left(T_{F}\right)\right\}$, we construct a decision tree that represents $\bigwedge_{i=1}^{j} F_{i}$. The tree (call it T) begins by simulating $T_{F_{1}}$ and outputting 0 on any $0-$ branch of $T_{F_{1}}$. On any 1-branch, it then simulates $T_{F_{2}}$, etc. If all j branches are $1, T$ outputs 1 ; otherwise T outputs 0 . The height of T is at most $j h \leq k h$, so the width of any such C_{π}, with $\pi \in \operatorname{Br}(T)$, is at most $k h$. The set of clauses $\left\{C_{\sigma} \mid \sigma \in \operatorname{Br}_{0}(T)\right\}$ can be derived from the previously derived clauses by subsumption inferences because every $\sigma \in \operatorname{Br}_{0}(T)$ contains some $\pi \in \bigcup_{i=1}^{j} \operatorname{Br}_{0}\left(T_{F_{i}}\right)$.

We now show that for every $\sigma \in \operatorname{Br}_{1}(T)$, there exists a $t \in F$ so that σ satisfies t. Choose $\pi_{1} \in \operatorname{Br}_{1}\left(T_{F_{1}}\right), \ldots, \pi_{j} \in \operatorname{Br}_{1}\left(T_{F_{j}}\right)$ so that $\pi_{1} \cup \cdots \cup \pi_{j}=\sigma$. Because the decision trees $T_{F_{1}}, \ldots, T_{F_{j}}$ strongly represent the k-DNFs F_{1}, \ldots, F_{j}, there exist terms $t_{1} \in F_{1}, \ldots, t_{j} \in F_{j}$ so that $\bigwedge_{i=1}^{j} t_{i}$ is satisfied by σ. By strong soundness of $\operatorname{Res}(k)$, there exists $t \in F$ so that σ satisfies t.

Let $\sigma \in \operatorname{Br}_{0}\left(T_{F}\right)$ be given. Because T_{F} strongly represents F, σ falsifies all terms of F. By the preceding paragraph, for all $\pi \in \operatorname{Br}(T)$, if π is consistent with σ, then $\pi \in \operatorname{Br}_{0}(T)$ (otherwise, σ would not falsify the term of F satisfied by π). For each node v in T, let π_{v} be the path (viewed as a partial assignment) from the root to v. Bottom-up, from the leaves to the root, we recursively derive $C_{\pi_{v}} \vee C_{\sigma}$ for each v so that π_{v} is consistent with σ. When we reach the root, we will have derived C_{σ}. If v is a leaf, then $\pi_{v} \in \operatorname{Br}_{0}(T)$ so it has already been derived. If v is labeled with a variable that appears in σ, call it x, then there is a child u of v with $\pi_{u}=\pi_{v} \cup\{x\}$. Therefore, $C_{\pi_{v}} \vee C_{\sigma}=C_{\pi_{u}} \vee C_{\sigma}$. By induction, the clause $C_{\pi_{u}} \vee C_{\sigma}$ has already been derived. If v is labeled with a variable x that does not appear in σ, then for both of the children of v, call them v_{1}, v_{2}, the paths $\pi_{v_{1}}$ and $\pi_{v_{2}}$ are consistent with σ. Moreover, $C_{\pi_{v_{1}}} \vee C_{\sigma}=x \vee C_{\pi_{v}} \vee C_{\sigma}$ and $C_{\pi_{v_{2}}} \vee C_{\sigma}=\neg x \vee C_{\pi_{v}} \vee C_{\sigma}$. Resolving these two previously derived clauses gives us $C_{\pi_{v}} \vee C_{\sigma}$.

We will use this theorem after we apply a random restriction which simultaneously collapses every line of a $\operatorname{Res}(k)$ refutation to a short decision tree. Hence, we can use a width lower bound for resolution refutations of a restricted tautology to give a size lower bound for $\operatorname{Res}(k)$ refutations of the original tautology.

Corollary 5.2. Let \mathcal{C} be a set of clauses of width $\leq h$, let Γ be a Res (k) refutation of \mathcal{C}, and let ρ be a partial assignment so that for every line F of Γ,
$h\left(F \upharpoonright_{\rho}\right) \leq h$. Then $w_{R}\left(\mathcal{C} \upharpoonright_{\rho}\right) \leq k h$.

6. Lower bounds for the weak pigeonhole principle.

Definition 6.1. The m to n pigeonhole principle, $P H P_{n}^{m}$, is the following set of clauses:

1. For each $i \in[m], \bigvee_{j \in[n]} x_{i, j}$.
2. For each $i, i^{\prime} \in[m]$ with $i \neq i^{\prime}, \neg x_{i, j} \vee \neg x_{i^{\prime}, j}$.

Theorem 6.2. For every $c>1$, there exists $\epsilon>0$ so that for all n sufficiently large, if $k \leq \sqrt{\log n / \log \log n}$, then every $\operatorname{Res}(k)$ refutation of PHP $P_{n}^{c n}$ has size at least $2^{n^{c}}$.

The idea of the proof for Theorem 6.2 is as follows: Suppose there is a small $\operatorname{Res}(k)$ refutation of the weak pigeonhole principle. Then by applying a random restriction we obtain a low-width resolution refutation of the restricted pigeonhole principle. By the well-known lower bounds on the width of resolution refutations of the pigeonhole principle, this is impossible.

In order to make the random restriction method work, we prove lower bounds for the pigeonhole principle restricted to a low degree graph. Because these principles reduce to the pigeonhole principle by setting some variables to 0 , this suffices to prove lower bounds for the pigeonhole principle. The difficulty with applying random restrictions directly to the clauses of the pigeonhole principle is that there are clauses of high width which are not satisfied with very high probability. If we were to choose a random subset of the holes and place into each hole a randomly chosen pigeon, then a clause of the form $\bigvee_{i=1}^{m} x_{i, j}$ would be satisfied with probability no better than the chance that hole j is in the random subset (this will be no better than a constant in our proof). At the heart of this problem is that each hole j appears in $c n$ distinct variables, $x_{1, j}, \ldots, x_{c n, j}$, and restricting the principle to low-degree graphs solves this.

Definition 6.3. Let $G=(U \cup V, E)$ be a bipartite graph. The pigeonhole principle of $G, \operatorname{PHP}(G)$, is the following set of clauses:

1. For each $u \in U$

$$
\bigvee_{\substack{v \in V \\\{u, v\} \in E}} x_{u, v} .
$$

2. For each $u, u^{\prime} \in[m]$, with $u \neq u^{\prime}$, and each $v \in V$ with $\{u, v\} \in E$ and $\left\{u^{\prime}, v\right\} \in E$,

$$
\neg x_{u, v} \vee \neg x_{u^{\prime}, v} .
$$

Definition 6.4. Let $G=(U \cup V, E)$ be a bipartite graph. The maximum degree of $G, \Delta(G)$, is defined to be $\max _{v \in V} \operatorname{deg} v$.

Furthermore, we assume that all $\operatorname{Res}(k)$ refutations have been put into a normal form in which no term of any DNF asks that two pigeons be mapped to the same hole. See, for example, [3].

Definition 6.5. Let $G=(U \cup V, E)$ be a bipartite graph. A term is said to be in pigeon-normal-form if it does not contain two literals $x_{u, v}$ and $x_{u^{\prime}, v}$ with $u \neq u^{\prime}$. A DNF is said to be in pigeon-normal-form if all of its terms are in pigeon-normalform and a Res(k) refutation is said to be in pigeon-normal-form if every line is in pigeon-normal-form.

Every $\operatorname{Res}(k)$ refutation of $\operatorname{PHP}(G)$ can be transformed into a refutation in pigeon-normal-form which at most doubles the number of lines in the proof. When
there is an AND-introduction inference that creates a line not in pigeon-normal-form, say

$$
\frac{\left(A \vee x_{u, v}\right)\left(A \vee x_{u^{\prime}, v}\right) \cdots\left(A \vee l_{j}\right)}{A \vee\left(x_{u, v} \wedge x_{u^{\prime}, v} \wedge \bigwedge_{i=3}^{j} l_{i}\right)}
$$

replace the inference by a derivation that cuts $A \vee x_{u^{\prime}, v}$ with $\neg x_{u, v} \vee \neg x_{u^{\prime}, v}$ to obtain $A \vee \neg x_{u, v}$. Cut this with $A \vee x_{u, v}$ to obtain A. We may proceed through the rest of the proof with A because it subsumes $A \vee x_{u, v} \wedge x_{u^{\prime}, v} \wedge \bigwedge_{i=3}^{j} l_{i}$.

6.1. Random restrictions.

Definition 6.6. For a bipartite graph $G=(U \cup V, E)$ and a real number $p \in$ $[0,1]$, let $\mathcal{M}_{p}(G)$ denote the distribution on partial assignments which arises from the following experiment:

Independently, for each $v \in V$, with probability $1-p$ choose to match v, and with probability p leave v unmatched. If v is matched, uniformly select a neighbor u of v, set $x_{u, v}$ to 1 , and for every $w \neq u$ that is a neighbor of v, set $x_{w, v}$ to 0 . Moreover, for each $v^{\prime} \neq v$, set $x_{u, v^{\prime}}=0$.

Let V_{ρ} be the set of vertices of V matched by ρ, let U_{ρ} be the set of vertices of U matched by ρ, and let $S_{\rho}=U_{\rho} \cup V_{\rho}$.

These restrictions randomly associate pigeons with holes in an injective way. While some pigeons can be associated with multiple holes, no two pigeons can be associated with the same hole. It is easy to check that for any $\rho \in \mathcal{M}_{p}(G)$, we have that $\operatorname{PHP}(G) \upharpoonright_{\rho}=\operatorname{PHP}\left(G-S_{\rho}\right)$.

Lemma 6.7. Let $p \in[0,1], i \in[k]$ be given. Let $G=(U \cup V, E)$ be a bipartite graph with $\Delta=\Delta(G)$. Let F be an i-DNF in pigeon-normal-form.

$$
\operatorname{Pr}_{\rho \in \mathcal{M}_{p}(G)}\left[F \Gamma_{\rho} \neq 1\right] \leq 2^{-\frac{(\log e)(1-p)^{i} c(F)}{i \Delta^{i+1}}} .
$$

Proof. For a term T, define the holes of T as $\operatorname{Holes}(T)=\left\{v \mid x_{u, v} \in T\right.$ or $\neg x_{u, v} \in$ $T\}$. We say that two terms T and T^{\prime} are hole-disjoint if $\operatorname{Holes}(T) \cap \operatorname{Holes}\left(T^{\prime}\right)=\emptyset$.

Because F contains at least $c(F) / i$ many variable-disjoint terms, and each hole $v \in V$ appears in at most Δ many variables, F must contain at least $c(F) / i \Delta$ many hole-disjoint terms.

The events of satisfying hole-disjoint terms are independent, and for a given term, T, the probability that $T \Gamma_{\rho}=1$ is at least $(1-p)^{i} / \Delta^{i}$. This is because with probability $(1-p)^{i}$, every hole of T is matched, and with probability at least $1 / \Delta^{i}$ the holes are matched in a way that satisfies T (here we use the fact that F is in pigeon-normalform). Therefore, we have the following inequalities:
$\operatorname{Pr}_{\rho}\left[F \upharpoonright_{\rho} \neq 1\right] \leq\left(1-(1-p)^{i} / \Delta^{i}\right)^{\frac{c(F)}{i \Delta}} \leq\left(e^{-(1-p)^{i} / \Delta^{i}}\right)^{\frac{c(F)}{i \Delta}}=2^{-\frac{(\log e)(1-p)^{i} c(F)}{i \Delta^{i+1}}}$.
6.2. Width lower bounds for resolution. For the lower bound proof to work, we need a graph G so that after the application of a random restriction ρ, with high probability, $\operatorname{PHP(G)} \upharpoonright_{\rho}$ requires high width to refute in resolution. We call such graphs robust, and in this subsection we probabilistically demonstrate robust, lowdegree graphs.

Definition 6.8. A bipartite graph G is said to be (p, w)-robust if, when ρ is selected from $\mathcal{M}_{p}(G)$, with probability at least $\frac{1}{2}, w_{R}\left(\operatorname{PHP}(G) \upharpoonright_{\rho}\right) \geq w$.

All we need for the size lower bound is the following lemma, which is proven probabilistically in section 6.2.1. Readers who believe that random graphs should be robust can skip to the proof of the lower bound.

Lemma 6.9. For all $c>1$, there exists $d>0$, so that for n sufficiently large, there exists a $(3 / 4, n / 24)$-robust graph with $\Delta(G) \leq d \log n$ on the vertex sets [cn] and [n].
6.2.1. Existence of robust graphs. As a starting point, we use a now standard lower bound of $w_{R}(P H P(G))$ in terms of the expansion of G.

Definition 6.10. For a vertex $u \in U$, let $N(u)$ be its set of neighbors. For a subset $V^{\prime} \subseteq V$, let its boundary be

$$
\partial V^{\prime}=\left\{u \in U| | N(u) \cap V^{\prime} \mid=1\right\}
$$

A bipartite graph G is an (m, n, r, f)-expander if $|V|=m,|U|=n$, and for all $V^{\prime} \subseteq V,\left|V^{\prime}\right| \leq r,\left|\partial V^{\prime}\right| \geq f\left|V^{\prime}\right|$.

THEOREM 6.11 (see [8]). If G is a bipartite graph that is an (m, n, r, f)-expander, then $w_{R}(P H P(G)) \geq r f / 2$.

Definition 6.12. Let $G_{m, n, p}$ be the distribution on bipartite graphs with vertex sets $[m]$ and $[n]$ in which every edge is included with independent probability p.

The following lemma was proven by Atserias, Bonet and Esteban [3].
Lemma 6.13 (see [3]). Let $m=c n, q=\frac{48 c \ln m}{m}, \alpha=\frac{1}{m q}$, and $f=\frac{n q}{6}$. Let G be selected according to the distribution $G_{m, n, q}$.

$$
\operatorname{Pr}_{G}[G \text { is an }(m, n, \alpha m, f) \text {-expander }] \geq \frac{2}{3}
$$

Lemma 6.14. Let $m=c n$, let $q \geq \frac{48 c \ln m}{m}$, and let G be selected according to the distribution $G_{m, n, q}$.

$$
\operatorname{Pr}_{G}\left[w_{R}(P H P(G)) \geq n / 12\right] \geq \frac{2}{3}
$$

Proof. Let $\alpha=\frac{1}{m q}$ and $f=\frac{n q}{6}$. Because $\alpha m f / 2=(1 / m q) m(n q / 6) / 2=n / 12$, an application of Theorem 6.11 shows that when G is selected according to $G_{m, n, \frac{48 c \ln m}{m}}$, with probability at least $\frac{2}{3}, w_{R}(P H P(G)) \geq n / 12$.

Now consider G selected according to $G_{m, n, q}$, with $q \geq \frac{48 c \ln m}{m}$. Whenever G_{0} is an edge-induced subgraph of $G_{1}, w_{R}\left(P H P\left(G_{1}\right)\right) \geq w_{R}\left(P H P\left(G_{0}\right)\right)$ because a refutation of $\operatorname{PHP}\left(G_{1}\right)$ can always be transformed into a refutation of $P H P\left(G_{0}\right)$ by setting some variables to 0 . Therefore, by increasing the probability of including an edge, the probability of having no small resolution refutation for $\operatorname{PHP}(G)$ only increases.

We now prove Lemma 6.9.
Proof. Set $m=c n, p=\frac{3}{4}$, and $q=\frac{192 c \ln m}{m}$. Consider the joint distribution that arises by selecting G according to $G_{m, n, q}$ and ρ according to $\mathcal{M}_{3 / 4}(G)$. We will bound the probability that the degree is too large, that too many holes are matched, and that the restricted graph is expanding.

By the Chernoff bounds, for each $v \in[n]$ the probability that v has degree in excess of $2 m q$ is at most $e^{-m q / 4}$. By the union bound, the probability that there exists some $v \in[n]$ of degree in excess of $2 m q$ is at most $n e^{-m q / 4}$. Similarly, the probability that there exists some $v \in[m]$ of degree in excess of $2 m q$ is at most $m e^{-n q / 4}$. Therefore, the probability that the maximum degree of G exceeds $2 m q$ is bounded as follows:

$$
n e^{-m q / 4}+m e^{-n q / 4}=n e^{-m 192 c \ln m / m}+m e^{-n 192 c \ln m / m}=O\left(n^{-191}\right)
$$

Remember that V_{ρ} is the set of holes matched by the restriction ρ. By the Chernoff bounds, the probability that $\left|V_{\rho}\right| \geq 2 n(1-p)=n / 2$ is at most $e^{-\frac{n(1-p)}{4}}=e^{-n / 16}$.

We now bound the probability that $G-S_{\rho}$ is an expander. First, up to renaming vertices, $G-S_{\rho}$ is distributed as $G_{m_{\rho}, n_{\rho}, q}$, with $n_{\rho}=n-\left|V_{\rho}\right|$ and $m_{\rho}=m-\left|U_{\rho}\right|$. This is because for fixed sets of vertices $V_{0} \subseteq V$ and $U_{0} \subseteq U$, when we condition on the event that $V_{\rho}=V_{0}$ and $U_{\rho}=U_{0}$, the edges $\{u, v\}$ with $u \in U \backslash U_{0}$ and $v \in V \backslash V_{0}$ are included in $G-S_{\rho}$ with independent probability q. Now, condition on the event that $\left|V_{\rho}\right| \leq n / 2$. We have that $m_{\rho}=m-\left|U_{\rho}\right| \geq m-n / 2 \geq m / 2$ and thus $q=192 c \ln m / m \geq 192 c \ln m_{\rho} / m \geq 192 c \ln m_{\rho} / 2 m_{\rho}=48 \cdot 2 c \ln m_{\rho} / m_{\rho}$. Because $\frac{m_{\rho}}{n_{\rho}} \leq \frac{c n}{n / 2}=2 c$, we can apply Lemma 6.14 and deduce that $w_{R}\left(\operatorname{PHP}\left(G-S_{\rho}\right)\right) \geq$ $n_{\rho} / 12$ with probability at least $\frac{2}{3}$. Because $n_{\rho} \geq n / 2$, with the same probability, $w_{R}\left(G-S_{\rho}\right) \geq n / 24$.

Combining the three inequalities from the preceding paragraphs shows that the probability that G contains a vertex of degree in excess of $192 c \ln m$, that V_{ρ} contains more than $n / 2$ vertices, or that $w_{R}\left(P H P\left(G-S_{\rho}\right)\right)<n / 24$ is at most

$$
\frac{1}{3}+O\left(n^{-191}\right)+e^{-n / 16}
$$

For sufficiently large n, this probability is bounded above by $\frac{1}{2}$. By averaging over the choices of the edges, there exists a bipartite graph G on vertex sets [cn] and [n] with $\Delta(G) \leq 2 m q=384 c \ln (c n)$, so that upon selection of $\rho \in \mathcal{R}_{3 / 4}(G)$, $w_{R}\left(G-S_{\rho}\right) \geq n / 24$ with probability at least $\frac{1}{2}$.
6.3. Size lower bounds for $\operatorname{Res}(\boldsymbol{k})$. To prove the size lower bounds for $\operatorname{Res}(k)$ refutations of $P H P_{n}^{c n}$ we first prove size lower bounds for the weak pigeonhole principle restricted to a robust graph, and then we reduce these principles to $P H P_{n}^{c n}$.

Lemma 6.15. For any $c>1$ and $d>0$, there exists $\epsilon>0$ so that for all n sufficiently large, if $k \leq \sqrt{\log n / \log \log n}$ and G is a $(3 / 4, n / 24)$-robust bipartite graph with vertex sets of sizes cn and n and $\Delta(G) \leq d \log n$, then $S_{k}(P H P(G)) \geq 2^{n^{\epsilon}}$.

Proof. By Lemma 6.7, for each $i \in[k]$ and every i-DNF F,

$$
\operatorname{Pr}_{\rho \in \mathcal{M}_{3 / 4}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq 2^{-\frac{(\log e)(1-3 / 4)^{i} c(F)}{i(d \log n)^{i+1}}}=2^{-\frac{(\log e) c(F)}{i \cdot 4^{i}(d \log n)^{i+1}}}
$$

In the interest of obtaining a better bound, we will not appeal to Corollary 3.4, but directly apply Theorem 3.3. We define sequences s_{0}, \ldots, s_{k} and p_{1}, \ldots, p_{k} for use in the switching lemma. Set $s_{0}=\frac{3}{4 k}(n / 24-1)$. For each $i \in[k]$, set

$$
s_{i}=\left(\frac{\log e}{2 i 4^{i}(d \log n)^{i+1}}\right) s_{i-1}
$$

For each $i \in[k]$ set $p_{i}=2^{-2 s_{i}}$. For any i-DNF F so that $c(F)>s_{i-1}$, we have the following inequality:

$$
\operatorname{Pr}_{\rho \in \mathcal{M}_{3 / 4}(G)}\left[F \upharpoonright_{\rho} \neq 1\right]<2^{-\frac{(\log e) s_{i-1}}{i \cdot 4^{i}(d \log n)^{i+1}}}=2^{-2 \frac{(\log e) s_{i-1}}{2 i 4^{i}(d \log n)^{i+1}}}=2^{-2 s_{i}}=p_{i} .
$$

It can be shown that there exists $\epsilon>0$ so that for sufficiently large $n, s_{k} \geq n^{\epsilon}$. To avoid distraction, we show this in Lemma 6.17 at the end of this subsection. Suppose that Γ is a $\operatorname{Res}(k)$ refutation of $\operatorname{PHP}(G)$ of size less than $2^{n^{\epsilon}}$.

By an application of Theorem 3.3 and the union bound, we have

$$
\begin{gathered}
\operatorname{Pr}_{\rho \in \mathcal{M}_{3 / 4}(G)}\left[\exists F \in \Gamma, h\left(\left.F\right|_{\rho}\right)>\sum_{i=0}^{k-1} s_{i}\right] \leq 2^{n^{\epsilon}} \sum_{i=1}^{k} p_{i} 2^{\sum_{j=i}^{k-1} s_{j}} \\
\leq 2^{s_{k}} \sum_{i=1}^{k} p_{i} 2^{\sum_{j=i}^{k-1} s_{j}}=\sum_{i=1}^{k} p_{i} 2^{\sum_{j=i}^{k} s_{j}} .
\end{gathered}
$$

We now bound $p_{i} 2^{\sum_{j=i}^{k} s_{j}}$ for each $i>0$. For each $i, s_{i+1}<\frac{1}{4} s_{i}$ so $\sum_{j=i}^{k-1} s_{j} \leq \frac{4}{3} s_{i}$. This gives us the following inequality:

$$
p_{i} 2^{\sum_{j=i}^{k-1} s_{j}}=2^{\sum_{j=i}^{k-1} s_{j}-2 s_{i}} \leq 2^{(4 / 3-2) s_{i}}=2^{-(2 / 3) s_{i}} \leq 2^{-(2 / 3) s_{k}} \leq 2^{-(2 / 3) n^{e}} .
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Pr}_{\rho \in \mathcal{M}_{3 / 4}(G)}\left[\exists F \in \Gamma, h\left(F \upharpoonright_{\rho}\right)>(n / 24-1) / k\right] \\
& \leq \operatorname{Pr}_{\rho \in \mathcal{M}_{3 / 4}(G)}\left[\exists F \in \Gamma, h\left(F \upharpoonright_{\rho}\right)>\sum_{i=0}^{k-1} s_{i}\right] \\
& \leq \sum_{i=1}^{k} p_{i} 2^{\sum_{j=i}^{k-1} s_{j}} \leq \sum_{i=1}^{k} 2^{-(2 / 3) n^{\epsilon}} \leq k 2^{-(2 / 3) n^{\epsilon}}=2^{\log k-(2 / 3) n^{\epsilon}}
\end{aligned}
$$

For n sufficiently large, this probability is strictly less than $\frac{1}{2}$. Because G is ($3 / 4, n / 24$)robust, for $\rho \in \mathcal{M}_{3 / 4}(G)$, with probability at least $\frac{1}{2}, w_{R}\left(\operatorname{PHP}(G) \upharpoonright_{\rho}\right) \geq n / 24$. Thus, there is a ρ so that $w_{R}\left(\operatorname{PHP}(G) \upharpoonright_{\rho}\right) \geq n / 24$ and for all $F \in \Gamma, h\left(F \upharpoonright_{\rho}\right) \leq \frac{1}{k}(n / 24-1)$. This is a contradiction, because by Corollary 5.2 , there is a resolution refutation of $\operatorname{PHP}(G) \upharpoonright_{\rho}$ of width $\leq n / 24-1$.

Theorem 6.16. For each $c>1$, there exists $\epsilon>0$ so that for all n sufficiently large, if $k \leq \sqrt{\log n / \log \log n}$, then every $\operatorname{Res}(k)$ refutation of PHP $P_{n}^{c n}$ has size at least $2^{n^{c}}$.

Proof. Apply Lemma 6.9 and choose d so that for sufficiently large n, there exists a (3/4, n/24)-robust graph G on vertex sets $c n$ and n, with $\Delta(G) \leq d \log n$. By Lemma 6.15, there exists $\epsilon>0$ so that for $k \leq \sqrt{\log n / \log \log n}, S_{k}(P H P(G)) \geq 2^{n^{c}}$. Because $P H P(G)$ can be obtained by setting some of the variables of $P H P_{n}^{c n}$ to 0 , every $\operatorname{Res}(k)$ refutation of $P H P_{n}^{c n}$ can be converted into a $\operatorname{Res}(k)$ refutation of $\operatorname{PHP}(G)$ of the same or lesser size. Therefore, all $\operatorname{Res}(k)$ refutations of $P H P_{n}^{c n}$ must have size at least $2^{n^{\epsilon}}$.

Now we prove the lower bound on the number s_{k} that we used in Lemma 6.15. The constants are not optimized.

Lemma 6.17. There exists $\epsilon>0$, so that for all n sufficiently large, with $k \leq$ $\sqrt{ } \log n / \log \log n$ and s_{0}, \ldots, s_{k} defined as in the proof of Lemma 6.15, $s_{k} \geq n^{\epsilon}$.

Proof. Unwinding the recursive definition of the s_{i} 's gives the following equality:

$$
s_{k}=\frac{1}{2^{k}}(\log e)^{k} \frac{1}{k!}\left(\frac{1}{4}\right)^{\sum_{j=1}^{k} j}\left(\frac{1}{d \log n}\right)^{\sum_{j=2}^{k+1} j} \frac{3}{4 k}(n / 24-1) .
$$

Because $k \leq \sqrt{\log n / \log \log n}$, we have that $\frac{1}{2^{k}}(\log e)^{k} \frac{1}{k!}\left(\frac{1}{4}\right)^{\sum_{j=1}^{k} j} \frac{3}{4 k}=n^{-o(1)}$.

$$
\begin{aligned}
s_{k} & =n^{-o(1)}(1 / d \log n)^{(k+2)(k+1) / 2}(n / 24-1) \\
& =n^{-o(1)} 2^{-(\log (d \log n))\left(k^{2}+3 k+2\right) / 2}(n / 24-1) .
\end{aligned}
$$

Because $k \leq \sqrt{\log n / \log \log n}$ and d is a constant, thus for n sufficiently large, $(\log (d \log n))\left(k^{2}+3 k+2\right) / 2=(\log n)(1+o(1)) / 2$. Therefore,

$$
s_{k}=n^{-o(1)} 2^{-(\log n)(1+o(1)) / 2}(n / 24-1)
$$

and there exists $\epsilon>0$ so that for all n sufficiently large, $s_{k} \geq n^{\epsilon}$.
7. Lower bounds for random CNFs. It is well known that, in some cases, randomly generated sets of clauses require exponentially large resolution refutations; see $[13,5,8]$. We extend these results by giving exponential lower bounds for the size of $\operatorname{Res}(k)$ refutations of randomly chosen sets of width $4 k^{2}+2$ clauses.

Definition 7.1. Let n, Δ, and w be given. The distribution $\mathcal{F}_{w}^{n, \Delta}$ is defined by choosing $\Delta \cdot n$ many clauses independently, with repetitions, from the set of all $\binom{n}{w} 2^{w}$ clauses of width w.

Our main result for this section is the following.
ThEOREM 7.2. For any $\epsilon \in\left[0, \frac{1}{6}\right)$, there exists $\delta>0$, so that for n sufficiently large and for $\Delta=n^{\epsilon}$,

$$
\operatorname{Pr}_{F \in \mathcal{F}_{4 k^{2}+2}^{n, \Delta}}\left[S_{k}(F) \leq 2^{n^{\delta}}\right]=o(1)
$$

The reason that our proof does not give lower bounds for refutations of random 3-CNFs in $\operatorname{Res}(k)$ is that, on one hand, we want our random restrictions to have a good chance of satisfying a fixed k-term (so we can apply the switching lemma), but on the other hand, the restrictions should have little probability of falsifying any of the initial clauses (this would make the restricted set of clauses trivial to refute). Because satisfying a k-term is equivalent to falsifying a k-clause, we can only work with initial clauses of width larger than k.

A set of clauses that, with constant probability, requires high width to refute after random restriction is called robust. Recall the distribution \mathcal{D}_{p} from Definition 3.5.

Definition 7.3. Let F be a $C N F$ in variables x_{1}, \ldots, x_{n}. We say that F is (p, r) robust if $\operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[w_{R}\left(F \upharpoonright_{\rho}\right) \geq r\right] \geq 1 / 2$.

It turns out that for sufficiently large w, a random w-CNF is almost surely robust. We state the result below and prove it in the following subsection.

LEMmA 7.4. There exists a constant c so that for any constants w and $t, w \geq$ $2 t+2$, for every n sufficiently large, and for every $\epsilon \in[0,1 / 2]$, if we set $\Delta=n^{\epsilon}$, then the following inequality holds:

$$
\operatorname{Pr}_{F \in \mathcal{F}_{w}^{n, \Delta}}\left[F \text { is not }\left(n^{-1 / t}, c n^{\frac{1-2 \epsilon}{1+2 \epsilon}}\right) \text {-robust }\right]=o(1)
$$

We now prove the size lower bound. We set bits with probability $n^{-1 / 2 k^{2}}$ so we can collapse k-DNFs but still have that most $4 k^{2}+2$ CNFs are robust. For each $k \geq 1$, let γ_{k} be the constant of corollary 3.7.

LEMMA 7.5. Let n, r, w, and k be given. For sufficiently large n, if F is an $\left(n^{-1 / 2 k^{2}}, r\right)$-robust w-CNF, then $S_{k}(F) \geq \frac{1}{4 k} 2^{\left(\gamma_{k}(r-1) / k \sqrt{n}\right)}$.

Proof. Suppose that Γ is a $\operatorname{Res}(k)$ refutation of F of size at most $\frac{1}{4 k} 2^{\left(\gamma_{k}(r-1) / k \sqrt{n}\right)}$. By Corollary 3.7, with $p=n^{-1 / 2 k^{2}}$ and $w=(r-1) / k$, we have that for every line F of $\Gamma, \operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[h\left(F \upharpoonright_{\rho}\right)>(r-1) / k\right] \leq k 2^{-\gamma_{k}(r-1) / k \sqrt{n}}$. By the union bound we have that

$$
\operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[\exists F \in \Gamma h\left(F \upharpoonright_{\rho}\right)>(r-1) / k\right] \leq|\Gamma| \cdot k \cdot 2^{-\gamma_{k}(r-1) / k \sqrt{n}}
$$

$$
\leq \frac{1}{4 k} 2^{\left(\gamma_{k}(r-1) / k \sqrt{n}\right)} \cdot k \cdot 2^{-\gamma_{k}(r-1) / k \sqrt{n}}=\frac{1}{4} .
$$

Because F is (p, r)-robust, with probability at least $\frac{1}{2}$ over choices of ρ, then $w_{R}\left(F \upharpoonright_{\rho}\right) \geq r$. Therefore, we may choose $\rho \in \mathcal{D}_{p}$ so that $w_{R}\left(F \upharpoonright_{\rho}\right) \geq r$ and for all $F \in \Gamma, h\left(F \upharpoonright_{\rho}\right) \leq(r-1) / k$. This is a contradiction because by Corollary 5.2 there should be a width $r-1$ resolution refutation of $F \upharpoonright_{\rho}$.

Combining Lemmas 7.4 and 7.5 with $t=2 k^{2}, w=4 k^{2}+2$, and $r=c n^{\frac{1-2 \epsilon}{1+2 \epsilon}}$ shows that a random $\left(4 k^{2}+2\right)-\mathrm{CNF}$ almost surely requires exponential size to refute in $\operatorname{Res}(k)$.

Corollary 7.6. There exists a constant c so that for every k, for every n sufficiently large, and for $\epsilon \in[0,1 / 2]$, if we set $\Delta=n^{\epsilon}$, then the following inequality holds:

$$
\operatorname{Pr}_{F \in \mathcal{F}_{4 k^{2}+2}^{n, \Delta}}\left[S_{k}(F) \leq 2^{\gamma_{k}\left(c n^{\frac{1-2 \epsilon}{1+2 \epsilon}}-1\right) / k \sqrt{n}}\right]=o(1) .
$$

This gives an exponential lower bound only when $\frac{1-2 \epsilon}{1+2 \epsilon}>\frac{1}{2}$. This holds exactly for $\epsilon \in\left[0, \frac{1}{6}\right)$.

THEOREM 7.7. For any $\epsilon \in\left[0, \frac{1}{6}\right)$, there exists $\delta>0$, so that for n sufficiently large and for $\Delta=n^{\epsilon}$,

$$
\operatorname{Pr}_{F \in \mathcal{F}_{4 k 2+2}^{n, \Delta}}\left[S_{k}(F) \leq 2^{n^{\delta}}\right]=o(1)
$$

7.1. Robustness of random CNFs. In this section we show that for appropriate clause densities, a random w-CNF is almost surely robust.

We begin with a width bound for resolution refutations of random 3-CNFs given by Ben-Sasson and Wigderson.

Theorem 7.8 (see [8]). There exists a constant c, so that for all n, and for all $\epsilon \in[0,1 / 2]$ with $\Delta=n^{\epsilon}$, the following inequality holds:

$$
\operatorname{Pr}_{F \in \mathcal{F}_{3}^{n, \Delta}}\left[w_{R}(F) \leq c n^{\frac{1-2 \epsilon}{1+2 \epsilon}}\right]=o(1)
$$

Lemma 7.9. There exists a constant c so that for any constants w and t with $w \geq 2 t+2$, for every n sufficiently large, and for $\epsilon \in[0,1 / 2]$, if we set $\Delta=n^{\epsilon}$ and $p=n^{-1 / t}$, then the following inequality holds:

$$
\operatorname{Pr}_{\substack{F \in \mathcal{F}_{\begin{subarray}{c}{n, \Delta \\
\rho \in \mathcal{D}_{p}} }}}\end{subarray}}\left[w_{R}\left(F \upharpoonright_{\rho}\right) \leq c n^{\frac{1-2 \epsilon}{1+2 \epsilon}}\right]=o(1)
$$

Proof. Let w, t, n, ϵ be given as above and set $\Delta=n^{\epsilon}$ and $p=n^{-1 / t}$.
Because the expected size of $\operatorname{dom}(\rho)$ is $p n$, the Chernoff bounds show that the size of $\operatorname{dom}(\rho)$ exceeds $2 p n=2 n^{1-\frac{1}{t}}$ with probability at most $e^{-n^{1-1 / t} / 4}=o(1)$.

Let C be a fixed clause of width w that contains no opposite literals. When we choose $\rho \in \mathcal{D}_{p}$, the probability that the domain of ρ contains at least $w-2$ variables of C is at most $\binom{w}{2} p^{w-2}$. Because w is a constant, this probability is $O\left(n^{-(w-2) / t}\right)$. Because $w \geq 2 t+2$, this probability is $O\left(n^{-2}\right)$. For any fixed w-CNF F on Δn many clauses, an application of the union bound shows that there is some clause with
$\geq w-2$ of its variables in the restriction with probability $O\left(\Delta n \cdot n^{-2}\right)=o(1)$. Because this calculation holds for every w-CNF of Δn many clauses, we have that

$$
\operatorname{Pr}_{\substack{F \in \mathcal{F}_{w}^{n, \Delta} \\ \rho \in \mathcal{D}_{p}}}[\exists C \in F,|\operatorname{vars}(C) \backslash \operatorname{dom}(\rho)| \leq 2]=o(1) .
$$

Fix a restriction ρ so that $\operatorname{dom}(\rho) \leq 2 n^{1-\frac{1}{t}}$ and let $n^{\prime}=n-|\operatorname{dom}(\rho)|$. Conditioned on the event that for all $i \in[\Delta],\left|\operatorname{var} s\left(C_{i}\right) \backslash \operatorname{dom}(\rho)\right| \geq 3, F \upharpoonright_{\rho}$ is subsumed by a random 3-CNF distributed as $\mathcal{F}_{3}^{n^{\prime}, \Delta}$. (To see this, consider the distribution on 3-CNFs that chooses three literals unset by ρ from each C_{i}.) Choose ϵ^{\prime} so that $n^{\epsilon}=\left(n^{\prime}\right)^{\epsilon^{\prime}}$. Adding up the conditional probabilities and applying Theorem 7.8 shows that

$$
\operatorname{Pr}_{\substack{F \in \mathcal{F}_{\begin{subarray}{c}{n, \Delta \\
\rho \in \mathcal{D}_{p}} }}}\end{subarray}}\left[w_{R}\left(F \upharpoonright_{\rho}\right) \leq c n^{\prime \frac{1-2 \epsilon^{\prime}}{1+2 \epsilon^{\prime}}}\right]=o(1) .
$$

Because $n^{\prime} \geq n-2 n^{1-1 / t}$, we may choose c^{\prime} so that

$$
\operatorname{Pr}_{\substack{F \in \mathcal{F}_{n}^{n, \Delta} \\ \rho \in \mathcal{D}_{p}}}\left[w_{R}\left(F \upharpoonright_{\rho}\right) \leq c^{\prime} n^{\frac{1-2 \epsilon}{1+2 \epsilon}}\right]=o(1) .
$$

From Lemma 7.9, an averaging argument yields the following phrasing of Lemma 7.4.

Lemma 7.10. There exists a constant c so that for any constants w and t, $w \geq 2 t+2$, for every n sufficiently large, and for $\epsilon \in[0,1 / 2]$, if we set $\Delta=n^{\epsilon}$ and let $p=n^{-1 / t}$, then the following inequality holds:

$$
\operatorname{Pr}_{F \in \mathcal{F}_{w}^{n, \Delta}}\left[\operatorname{Pr}_{\rho \in \mathcal{D}_{p}}\left[w_{R}\left(F \upharpoonright_{\rho}\right) \leq c n^{\frac{1-2 \epsilon}{1+2 \epsilon}}\right] \geq 1 / 2\right]=o(1)
$$

8. Separation between $\operatorname{Res}(\boldsymbol{k})$ and $\operatorname{Res}(\boldsymbol{k}+1)$. In this section we show that for each constant k, there is an $\epsilon_{k}>0$ and a family of unsatisfiable CNFs which have polynomial-size $\operatorname{Res}(k+1)$ refutations but which require size $2^{n^{\epsilon} k}$ to refute in $\operatorname{Res}(k)$. The unsatisfiable clauses are a variation of the graph ordering tautologies [19, 9].

Definition 8.1. Let G be an undirected graph. For each vertex u of G, let $N(u)$ denote the set of neighbors of u in G. For each ordered pair of vertices $(u, v) \in V(G)^{2}$, with $u \neq v$, let there be a propositional variable $X_{u, v}$.

The graph ordering principle for $G, G O P(G)$, is the following set of clauses:
(1) The relation X is transitive: for all $u, v, w \in V(G), X_{u, v} \wedge X_{v, w} \rightarrow X_{u, w}$.
(2) The relation X is antisymmetric: for all $u, v \in V(G)$ with $u \neq v, \neg X_{u, v} \vee$ $\neg X_{v, u}$.
(3) There is no locally X-minimal element: for every $u \in V(G), \bigvee_{v \in N(u)} X_{v, u}$. The k-fold graph ordering principle of $G, G O P^{k}(G)$, is obtained by replacing each variable $X_{u, v}$ by a conjunction of k variables, $X_{u, v}^{1}, \ldots, X_{u, v}^{k}$, and then using the distributive rule and DeMorgan's law to express this as a set of clauses.

Notice that for a graph G on n vertices with maximum degree d, the principle $G O P(G)$ consists of $O\left(n^{3}\right)$ many clauses each of width at most max $\{3, d\}$. Therefore, for any graph G on n vertices with maximum degree d, the principle $G O P^{k}(G)$ has size $O\left(n^{3} k^{d}\right)$.

It is readily shown that, for any graph G, the principle $G O P(G)$ has polynomialsize resolution refutations. Furthermore, these refutations can be transformed into $\operatorname{Res}(k+1)$ refutations of $G O P^{k+1}(G)$, as shown in Lemma 8.4. On the other hand,
we will also prove that $\operatorname{Res}(k)$ refutations of $G O P^{k+1}(G)$ require exponential size for certain graphs.

THEOREM 8.2. Let k be a positive integer. There exist constants $c>0, \epsilon_{k}>0$ and a family of graphs G on n vertices (for n sufficiently large) with maximum degree $c \log n$ so that $\operatorname{Res}(k)$ refutations of $G O P^{k+1}(G)$ require size at least $2^{\Omega\left(n^{\epsilon_{k}}\right)}$.
8.1. The upper bounds. We build $\operatorname{Res}(k)$ refutations for $G O P^{k}(G)$ from resolution refutations of $G O P(G)$.

The resolution refutation of $G O P(G)$ is a slight variation of the resolution refutation of $G T_{n}[19,9]$.

Lemma 8.3. Let G be an n vertex graph. There is a resolution refutation of $G O P(G)$ of size $O\left(n^{3}\right)$.

Proof. To construct the resolution refutation of $\operatorname{GOP}(G)$, we iteratively derive
 derived by weakening the hypotheses. We proceed in stages as l ranges from 1 up to n. At stage l, for $j=l$, we have $\bigvee_{i \in[l+l, n]} X_{i, l}$. For $j \neq l$, we resolve $\bigvee_{i \in[l+1, n]} X_{i, l}$ with the transitivity axioms $\neg X_{i, l} \vee \neg X_{l, j} \vee X_{i, j}$ to obtain $\neg X_{l, j} \vee X_{j, l} \bigvee_{\substack{i \in[l+1, n] \\ i \neq j}} X_{i, j}$. This clause is resolved with $\neg X_{l, j} \vee \neg X_{j, l}$ and $\bigvee_{\substack{i \in[l, n] \\ i \neq j}} X_{i, j}$ to obtain $\bigvee_{i=l+1}^{n} X_{i, j}$. At stage n, with $j=n$, we have derived the empty clause. This refutation clearly has size $O\left(n^{3}\right)$.

Lemma 8.4. For each k, and for every G with n vertices and degree at most $d \geq 3, G O P^{k}(G)$ has a Res (k) refutation of size $O\left(n^{3} k^{d}\right)$.

Proof. Let τ be the operation that replaces $X_{u, v}$ by $\bigwedge_{i=1}^{k} X_{u, v}^{i}$ and $\neg X_{u, v}$ by $\bigvee_{i=1}^{k} \neg X_{u, v}^{i}$.

Let Γ be the size $O\left(n^{3}\right)$ resolution refutation of $G O P(G)$ given above, and remove all of its weakening inferences. If we apply the transformation τ to the refutation, we obtain a $\operatorname{Res}(k)$ refutation of $\tau(G O P(G))$.

From the clauses of $G O P^{k}(G)$ we can derive the k-DNFs of $\tau(G O P(G))$ by a sequence of $O\left(k^{d}\right)$ many AND-introduction inferences per formula. Thus, we have a $\operatorname{Res}(k)$ refutation of $G O P^{k}(G)$ of the claimed size.
8.2. Random restrictions. In this subsection we define a distribution on partial assignments so that i-DNFs with high cover number are satisfied with high probability. The idea is to randomly color the graph with $4 k$ many colors, and then, between vertices u and v of distinct color classes, uniformly choose an assignment to $X_{u, v}^{1}, \ldots, X_{u, v}^{k+1}, X_{v, u}^{1}, \ldots, X_{v, u}^{k+1}$ which makes both $\bigwedge_{i=1}^{k+1} X_{u, v}^{i}$ and $\bigwedge_{i=1}^{k+1} X_{v, u}^{i}$ false.

DEFINITION 8.5. Let $k \geq 1$ be given. Let G be a graph. The distribution $\mathcal{P}_{k+1}(G)$ on partial assignments ρ to the variables of $G O P^{k+1}(G)$ is given by the following experiment.

For each $(u, v) \in V(G)^{2}$, let $\sigma_{\rho}^{u, v}$ be chosen uniformly among 0,1 assignments to $X_{u, v}^{1}, \ldots, X_{u, v}^{k+1}$ so that for at least one $i \in[k+1], \sigma_{\rho}^{u, v}\left(X_{u, v}^{i}\right)=0$.

Select a random coloring of $V(G)$ by $4 k$ many colors, $c_{\rho}: V(G) \rightarrow[4 k]$.
The partial assignment, ρ, is defined as

$$
\rho=\bigcup_{\substack{(u, v) \in V(G)^{2} \\ c_{\rho}(u) \neq c_{\rho}(v)}} \sigma_{\rho}^{u, v} .
$$

The auxiliary total assignment, σ_{ρ}, is defined as

$$
\sigma_{\rho}=\bigcup_{(u, v) \in V(G)^{2}} \sigma_{\rho}^{u, v}
$$

If we let B_{ρ} be the set of edges which are bichromatic under the coloring c_{ρ}, then $G O P^{k+1}(G) \upharpoonright_{\rho}$ is $G O P^{k+1}\left(G \backslash B_{\rho}\right)$. Moreover, we have the following lemma, which the reader can easily check.

Lemma 8.6. Let G be a graph. Let $\rho \in \mathcal{P}_{k+1}(G)$ be given. Let B_{ρ} be the set of edges of G that are bichromatic under $c_{\rho} . \operatorname{Let} G_{1}, \ldots, G_{m}$ be the connected components of $G \backslash B_{\rho}$.

$$
G O P^{k+1}(G) \upharpoonright_{\rho}=\bigcup_{j=1}^{m} G O P^{k+1}\left(G_{j}\right)
$$

Formulas with high cover number contain many variable-disjoint terms, but the events of satisfying these terms with $\rho \in \mathcal{P}_{k+1}(G)$ are not necessarily independent. To obtain independence, we look at the pairs of vertices involved with the literals of the terms. Remember that in the definition of $\operatorname{GOP}(G)$, there are no variables $X_{u, u}$.

Definition 8.7. Let $X_{u, v}^{i}$ be a variable of $G O P^{k+1}(G)$. The underlying pair of $X_{u, v}^{i}$ is the set $\{u, v\}$. The underlying ordered pair of $X_{u, v}^{i}$ is (u, v). Let T be a term. The set of vertex pairs of T, P_{T}, is defined as

$$
P_{T}=\{\{u, v\} \mid\{u, v\} \text { is the underlying pair of a variable in } T\} .
$$

The set of vertices of T, S_{T}, is defined as $S_{T}=\bigcup P_{T}$.
We use combinatorial sunflowers to obtain independence between the events of satisfying terms of an i-DNF with high cover number. To guarantee that such a system exists, we apply the Erdös-Rado lemma.

Definition 8.8. $A(p, l)$ sunflower is a collection of sets P_{1}, \ldots, P_{p}, each of size $\leq l$, so that there exists a set C so that $P_{i} \cap P_{j}=C$ for all $i, j \in[p], i \neq j$. The set C is called the core of the sunflower.

Theorem 8.9 (see [16, 22]). Let l be given. Let \mathcal{Z} be a family of M distinct sets, each with cardinality $\leq l . \mathcal{Z}$ contains a (p, l) sunflower where $p \geq\left(\frac{M}{l!}\right)^{\frac{1}{l}}$.

Definition 8.10. Let T_{1}, \ldots, T_{t} be terms in the variables of $G O P^{k+1}(G)$. We say that the terms are sufficiently independent if the following conditions hold:

1. For $i, j \in[t]$, if $i \neq j$, then $S_{T_{i}} \neq S_{T_{j}}$.
2. The family $\left\{S_{T_{i}} \mid 1 \leq i \leq t\right\}$ forms a sunflower with core C.
3. For each $i \in[t]$, each $\{u, v\} \in P_{T_{i}},\{u, v\} \nsubseteq C$.

Lemma 8.11. Let T_{1}, \ldots, T_{t} be a sufficiently independent set of terms. The sets $P_{T_{i}}, 1 \leq i \leq t$, are disjoint.

Proof. Let $i, j, 1 \leq i<j \leq t$, be given and let C denote the core of the sunflower. Suppose that $\{u, v\} \in P_{T_{i}} \cap P_{T_{j}}$. We then have that $\{u, v\} \subseteq S_{T_{i}} \cap S_{T_{j}}$, so $\{u, v\} \subseteq C$. Therefore, by the third property of sufficient independence, $\{u, v\} \notin$ $P_{T_{i}}$-a contradiction.

We begin the task of showing that a DNF with high cover number is likely to be satisfied by a random restriction. The quality of our bounds is most affected by the use of the sunflower lemma, and the particular constants we obtain at other points have limited impact. Therefore, to conserve space and readability, we will not optimize many of the probabilities involved.

Lemma 8.12. Let k be given. There exist constants $\beta_{k}>0$ and $c_{k}>0$ so that for every k-DNF F in the variables of $G O P^{k+1}(G), F$ contains a sufficiently independent set of size at least $\beta_{k}(c(F))^{\frac{1}{2 k}}-c_{k}$.

Proof. F contains a set of $s=c(F) / k$ many variable-disjoint terms, T_{1}, \ldots, T_{s}. It is possible that $S_{T_{m}}=S_{T_{l}}$ for some $m \neq l$. However, because all terms have size at most k, for each $i,\left|S_{T_{i}}\right| \leq 2 k$, and a set of $\leq 2 k$ many vertices can be the underlying set of fewer than $\left((k+1) 4 k^{2}\right)^{k}$ many different variable-disjoint terms (since a variable $X_{u, v}^{i}$ is determined by an ordered pair $(u, v) \in\left[S_{T}\right]^{2}$ and $\left.i \in[k+1]\right)$. Therefore, there is a subcollection of $\frac{s}{\left((k+1) 4 k^{2}\right)^{k}}$ many variable-disjoint terms whose underlying sets of vertices are distinct.

Because the underlying sets of vertices have size at most $2 k$, we can apply the sunflower lemma to find $s^{\prime}=\left(\frac{s}{\left((k+1) 4 k^{2}\right)^{k}(2 k)!}\right)^{\frac{1}{2 k}}=\left(\frac{c(F)}{k\left((k+1) 4 k^{2}\right)^{k}(2 k)!}\right)^{\frac{1}{2 k}}$ many terms whose sets of underlying vertices form an $\left(s^{\prime}, 2 k\right)$ sunflower. We rename these terms $T_{1}, \ldots, T_{s^{\prime}}$.

Let C be the core of the sunflower $S_{T_{1}}, \ldots, S_{T_{s^{\prime}}}$. Notice that $|C| \leq 2 k$. Call a variable bad if both of its underlying vertices belong to C. There are fewer than $2 k^{2}$ many unordered pairs of vertices contained in C, and each is the underlying pair of exactly $2(k+1)$ many variables. Therefore, there are fewer than $2(k+1) \cdot 2 k^{2}=4 k^{2}(k+$ 1) many variables whose underlying vertices are both in C. The terms $T_{1}, \ldots, T_{s^{\prime}}$ are variable-disjoint, so each bad variable appears in at most one term, and when we remove all terms containing a bad variable, we obtain a sufficiently independent set of terms of size $s^{\prime}-4 k^{2}(k+1)=\left(\frac{c(F)}{k(2 k)!\left((k+1) 4 k^{2}\right)^{k}}\right)^{\frac{1}{2 k}}-4 k^{2}(k+1)$.

Before we bound the probability of satisfying a DNF with high covering number, we make a few observations.

FACT 1. Let T be a term, and let $\rho \in \mathcal{P}_{k+1}(G)$ be given. $T \upharpoonright_{\rho}=1$ if and only if the following two events occur: (i) $T \upharpoonright_{\sigma_{\rho}}=1$, and (ii) for each $\{u, v\} \in P_{T}, c_{\rho}(u) \neq c_{\rho}(v)$.

For each term T in a $\operatorname{Res}(k)$ refutation of $G O P^{k+1}(G)$, because T contains at most k literals, there is a nonzero chance that it will be satisfied by σ_{ρ} when ρ is a random restriction chosen according to $\mathcal{P}_{k+1}(G)$. This is made precise in the following lemma. Recall that by construction, $\bigwedge_{i=1}^{k+1} X_{u, v}^{i} \upharpoonright_{\sigma_{\rho}}=0$, so the lemma fails for terms of size $k+1$ (as it should, since we are separating $\operatorname{Res}(k+1)$ from $\operatorname{Res}(k)$). The argument is similar to that in Lemma 4.4.

Lemma 8.13. Let T be a term of size at most k.

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[T \upharpoonright_{\sigma_{\rho}}=1\right] \geq \frac{1}{3^{k}}
$$

Proof. Order the literals of T as l_{1}, \ldots, l_{k}. For each $j, 1 \leq j \leq k$, if we condition on the event that each l_{1}, \ldots, l_{j-1} is satisfied, then the probability of l_{j} being satisfied is at least $\frac{1}{3}$. This is because in the worst case, l_{j} is a literal $X_{u, v}^{i_{j}}$ and the other literals are $X_{u, v}^{i_{1}}, \ldots, X_{u, v}^{i_{j-1}}$, and in this case, the probability that $X_{u, v}^{i_{j}}$ is satisfied by σ_{ρ} is at least $\frac{1}{3}$.

Lemma 8.14. Let G be a graph and let k be a positive integer. Let F be a $k-D N F$ which contains t sufficiently independent terms.

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq\left(1-\frac{1}{3^{k} 2^{2 k}}\right)^{t}
$$

Proof. Let T_{1}, \ldots, T_{t} be the sufficiently independent terms of F. Let C be the core
of the sunflower $S_{T_{1}}, \ldots, S_{T_{t}}$. Fix a coloring of the vertices in the core, $\chi: C \rightarrow[4 k]$. Condition on the event that $c_{\rho} \upharpoonright_{C}=\chi$.

We now lower-bound the probability that a given term T of the sufficiently independent set is satisfied. First, we bound the probability that every underlying edge of T is bichromatic. Note that by property (3) of sufficient independence, for all $\{u, v\} \in P_{T},\{u, v\} \nsubseteq C$, so it suffices to bound the probability that the vertices in $S_{T} \backslash C$ receive distinct colors not in the range of χ. Therefore, the probability that every pair in P_{T} is bichromatic, conditioned on $c_{\rho}\left\lceil_{C}=\chi\right.$, is at least $\frac{1}{2^{2 k}}$. Because T contains at most k literals, the probability that $T \upharpoonright_{\sigma_{\rho}}=1$ is at least $\frac{1}{3^{k}}$. These two events are independent, so we have $\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[T \upharpoonright_{\rho}=1 \mid c_{\rho} \upharpoonright_{C}=\chi\right] \geq \frac{1}{2^{2 k}} \frac{1}{3^{k}}$.

Now we show that (when we condition on the event that $c_{\rho} \upharpoonright_{C}=\chi$) the events $T_{i} \upharpoonright_{\rho}=1$ are totally independent. Because the terms share no underlying pairs, the events $T_{i} \upharpoonright_{\sigma_{\rho}}$ are independent of the satisfaction of other terms. The events "for each $\{u, v\} \in P_{T_{i}}, c_{\rho}(u) \neq c_{\rho}(v) "$ are independent of the satisfaction of other terms. This is because once we condition on the event $c_{\rho}\left\lceil_{C}=\chi\right.$, the probability that every pair of $P_{T_{i}}$ is bichromatic under c_{ρ} depends only on the values that c_{ρ} takes on $S_{T_{i}} \backslash C$ and, for all $i \neq j, S_{T_{i}} \cap S_{T_{j}}=C$.

Combining the results of the previous two paragraphs shows that

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1 \mid c_{\rho} \upharpoonright_{C}=\chi\right] \leq\left(1-1 / 3^{k} 2^{2 k}\right)^{t}
$$

Because this holds for all colorings $\chi: C \rightarrow[4 k]$, we have that

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq\left(1-1 / 3^{k} 2^{2 k}\right)^{t}
$$

We now have the lemma relating cover number to the probability that a restriction satisfies a k-DNF.

LEMMA 8.15. For each k there exist positive constants δ, γ, and d so that for any k-DNF F,

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq d 2^{-\delta(c(F))^{\gamma}}
$$

Proof. By Lemma 8.12, F contains a sufficiently independent set of size at least $\beta_{k}(c(F))^{\frac{1}{2 k}}-c_{k}$.

By Lemma 8.14,

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq\left(1-\frac{1}{3^{k} 2^{2 k}}\right)^{\beta_{k}(c(F))^{\frac{1}{2 k}-c_{k}}}
$$

Because k is fixed, this concludes the proof with $\delta=-\beta_{k} \log \left(1-\frac{1}{3^{k} 2^{2 k}}\right), \gamma=$ $1 / 2 k$, and $d=\left(1-\frac{1}{3^{k} 2^{2 k}}\right)^{-c_{k}}$.
8.3. Width lower bound for resolution. In this subsection we show that for each n, if G is a graph on n vertices satisfying a certain expansion-like property, then $w_{R}\left(G O P^{k+1}(G)\right)=\Omega(n)$. Combining this with a probabilistic calculation will show that there exist graphs G so that for $\rho \in \mathcal{P}_{k+1}(G)$, with probability at least $\frac{1}{2}$, $w_{R}\left(G O P^{k+1}(G) \upharpoonright_{\rho}\right)=\Omega(n)$.

The proof of the resolution width bound is similar to the one used by Bonet and Galesi for the $G T_{n}$ principles [9]. They worked with complete graphs, but we do not because the principles $G O P^{2}\left(K_{n}\right)$ have sizes in excess of 2^{n}. Fortunately, for the
proof technique to work, G need not be complete but instead must have the following property.

DEFINITION 8.16. Let G be an undirected graph on n-vertices. We say that G is ϵ-neighborly if, between every pair of disjoint sets of vertices, $A, B \subseteq V(G)$ with $|A|,|B| \geq \epsilon n$, there exists an edge joining A and B.

We now show that resolution refutations of $G O P(G)$ require large width when G is a connected, neighborly graph.

Lemma 8.17. If G is a connected graph of n vertices that is ϵ-neighborly, then every resolution refutation of $G O P(G)$ contains a clause of width $\left(\frac{1-3 \epsilon}{6}\right) n$.

Proof. We begin by defining the "measure" of a clause. A critical truth assignment, or cta, is an assignment to the variables of $\operatorname{GOP}(G)$ which forms a total order on $V(G)$. For each $v \in V(G)$, let $C_{v}:=\bigvee_{u \in N(v)} X_{u, v}$, and for each $I \subseteq V(G)$, $C_{I}:=\bigwedge_{v \in I} C_{v}$. Let C be a clause. The measure of $C, \mu(C)$, is the minimum cardinality of a set $I \subseteq V(G)$ so that for every cta α, if α satisfies C_{I}, then α satisfies C.

Notice that if a clause $A \vee B$ is the resolvent of $A \vee x$ and $B \vee \neg x$, then $\mu(A \vee B) \leq$ $\mu(A \vee x)+\mu(A \vee \neg x)$. Because of this, we say that μ is subadditive with respect to resolution. If $A \subseteq B$, then we have that $\mu(B) \leq \mu(A)$, so μ is decreasing with respect to subsumption.

We now show that $\mu(\emptyset)=n$. Suppose otherwise, and let I be a subset of $V(G)$ with $|I| \leq n-1$. Choose one vertex $v_{0} \in V(G) \backslash I$ and let α be a total order which arises by taking a depth-first search of G starting with v_{0}. Clearly α satisfies C_{I} but α does not satisfy \emptyset.

Because every clause of $\operatorname{GOP}(G)$ has measure either 0 or 1 , the empty clause has measure n, and the measure is both subadditive with respect to resolution and decreasing with respect to subsumption, there must exist a clause C so that $\frac{n}{3} \leq$ $\mu(C) \leq \frac{2 n}{3}$. Suppose for the sake of contradiction that $w(C)<\frac{n-3 \epsilon n}{6}$.

Let I be a minimal subset of $V(G)$ so that for every critical truth assignment α, if α satisfies C_{I}, then α satisfies C. Let $J=V(G) \backslash I$. Notice that $|I|,|J| \geq \frac{n}{3}$.

Let S be the set of vertices mentioned by variables of C. Clearly, $|S| \leq 2 w(C)<$ $2\left(\frac{n-3 \epsilon n}{6}\right)=\frac{n-3 \epsilon n}{3}$. Therefore, $|I \backslash S| \geq \frac{n}{3}-\frac{n-3 \epsilon n}{3}=\epsilon n$. Similarly, $|J \backslash S| \geq \epsilon n$. Because G is ϵ-neighborly, we may choose $u \in I \backslash S$ and $v \in J \backslash S$ so that $\{u, v\}$ is an edge of G.

Let α be a cta so that α satisfies $C_{I \backslash\{u\}}$, but α does not satisfy C_{u} and α does not satisfy C. Let β be the cta which arises by moving v to the front of the order given by α. For $w \in I, w \neq u, \beta$ satisfies C_{w} because every predecessor of w in α is a predecessor of w in β. For u, β satisfies C_{u} because β satisfies $X_{v, u}$. However, β does not satisfy C because α does not satisfy C and no variable mentioning u or v appears in C. Therefore, β satisfies C_{I} but β does not satisfy C-a contradiction to the choice of I.

A resolution refutation of $G O P^{k}(G), k \geq 1$, can be transformed into a resolution refutation of $G O P(G)$ by setting the appropriate variables to 1 . Applying a restriction does not increase the width of a resolution refutation, so we have the following corollary.

Corollary 8.18. If G is a connected graph of n vertices that is ϵ-neighborly, then for all $k \geq 1, w_{R}\left(G O P^{k}(G)\right) \geq\left(\frac{1-3 \epsilon}{6}\right) n$.

8.4. Robust graphs.

Definition 8.19. We say that a graph G is r-robust if for ρ selected at random by $\mathcal{P}_{k+1}(G)$, with probability at least $\frac{3}{4}, w_{R}\left(G O P(G) \upharpoonright_{\rho}\right) \geq r$.

To guarantee that the restricted principle will require high width to refute, it suffices that the graph obtained by deleting the bichromatic edges should consist of large, neighborly connected components. Random graphs of degree $\Theta(\log n)$ have this property with high probability. This is shown in the following subsection.

LEMMA 8.20. There exists a constant c so that for sufficiently large n, there exists an $\frac{n}{96 k}$-robust graph G on n vertices with degree at most $c \log n$.

The proof of this lemma is a standard probabilistic argument. The reader may skip its proof in section 8.4.1, and move directly to the proof of the lower bound in section 8.5.
8.4.1. Demonstration of robust graphs. An easy probabilistic argument shows that with very high probability, a random graph of expected degree $\Theta((1 / \epsilon) \log n)$ is almost surely ϵ-neighborly.

LEMMA 8.21. Let n and d be positive integers so that $d \leq n$ and let $p=d / n$. Let $G_{n, p}$ be the distribution on graphs on n vertices in which every edge is included with independent probability p. With probability $\leq e^{2 \epsilon n(1+\ln (1 / \epsilon))-d \epsilon^{2} n}$, a graph selected according to $G_{n, p}$ is not ϵ-neighborly.

Proof. There are fewer than $\binom{n}{\epsilon n}^{2} \leq\left(\frac{e n}{\epsilon n}\right)^{2 \epsilon n}=e^{2 \epsilon n(1+\ln (1 / \epsilon))}$ many pairs of disjoint sets of ϵn many vertices. Each such pair has a chance of at most $(1-p)^{\epsilon^{2} n^{2}}$ of being unconnected. However, $(1-p)^{\epsilon^{2} n^{2}}=\left(1-\frac{d}{n}\right)^{\epsilon^{2} n^{2}} \leq e^{-d \epsilon^{2} n}$, so by the union bound the probability is at most $e^{2 \epsilon n(1+\ln (1 / \epsilon))} e^{-d \epsilon^{2} n}=e^{2 \epsilon n(1+\ln (1 / \epsilon))-d \epsilon^{2} n}$.

We now show that a random graph will probably have each component large and neighborly if we randomly partition it into vertex-induced subgraphs.

Lemma 8.22. For all $\epsilon>0$ and all integers $k \geq 1$, there exists a constant c so that for sufficiently large n, there exists graph G with $\Delta(G) \leq 2 c \log n$ so that upon the random partition of G into $4 k$ many vertex-induced subgraphs, with probability at least $\frac{1}{2}$, each component has size at least $n / 8 k$ and is ϵ-neighborly.

Proof. Let $p=\frac{c \log n}{n}$. We will solve for the value of c at the end. Consider the following experiment: Select a graph G according to the distribution $G_{n, p}$, and independently color each vertex with one of $4 k$ colors. Then remove all bichromatic edges to form $4 k$ vertex induced-subgraphs, $G_{1}, \ldots, G_{4 k}$.

Let P be the probability that G has a vertex of degree $>2 c \log n$, or that one of the induced subgraphs has size $<\frac{n}{8 k}$, is disconnected, or is not ϵ-neighborly. We now bound this probability.

Consider the probability that G has a vertex of degree $\geq 2 c \log n$. By the Chernoff bounds, the probability of any one vertex having degree in excess of $2 p(n-1)$ is no more than $e^{-p(n-1) / 4}=e^{-c(\log n)(n-1) / 4 n}$. Therefore, the probability of there existing a vertex with degree in excess of $2 p(n-1)$ is no more than $n e^{-c(\log n)(n-1) / 4 n}$.

The Chernoff bounds also allow us to bound the probability that any of the G_{i} 's contain too few vertices. The probability that a given color class of the partition contains fewer than $\frac{1}{2} \cdot \frac{n}{4 k}=\frac{n}{8 k}$ vertices is bounded by $e^{-\frac{n}{64 k}}$.

Once we condition upon all pieces of the partition containing at least $\frac{n}{8 k}$ vertices, we can bound the probability that any induced subgraph is disconnected. Consider a fixed set of $s \geq \frac{n}{8 k}$ many vertices, and condition upon the event that those vertices receive the same color in the partition. Each edge internal to the set is included with probability $\frac{c \log n}{n}=\frac{(c s / n) \log n}{s} \geq \frac{(c / 8 k) \log s}{s}$. By a standard result on the connectivity of random graphs (cf. [27]), each color class is disconnected with probability bounded by $O\left(1 / n^{(c / 8 k)-1}\right)$.

Finally, we consider the probability that each of the components G_{i} is ϵ-neighborly. For a fixed set of $s \geq \frac{n}{8 k}$ vertices, if we condition on the event that set forms a component after partition, each internal edge is included with probability $\frac{c \log n}{n} \geq \frac{(c / 8 k) \log s}{s}$. By Lemma 8.21, that means that the component is not ϵ-neighborly with probability at most $e^{2 \epsilon s(1+\ln (1 / \epsilon))-(c / 8 k)(\log s) \epsilon^{2} s}=e^{-\Omega(n \log n)}$.

Therefore,

$$
P \leq n e^{-c(\log n)(n-1) / 4 n}+4 k e^{-\frac{n}{64 k}}+O\left(4 k / n^{(c / 8 k)-1}\right)+e^{-\Omega(n \log n)} .
$$

For a sufficiently large constant c, dependent only on k and ϵ, this is below $\frac{1}{4}$.
Therefore, by an averaging argument on the edge choices, there exists a graph G of maximum degree $\leq 2 c \log n$ so that upon random partition of its vertices into $4 k$ color classes, its induced subgraphs are each connected, of size $\geq \frac{n}{8 k}$, and ϵ-neighborly with probability $\geq \frac{3}{4}$.

We now prove Lemma 8.20.
Proof. Using Lemma 8.22, choose c so that for sufficiently large n, there exists graph G so that upon the random partition of G into $4 k$ many vertex-induced subgraphs, with probability at least $\frac{3}{4}$, each component has size at least $n / 8 k$ and is $\left(\frac{1}{6}\right)$-neighborly. Therefore we may choose $\rho \in \mathcal{P}_{k+1}(G)$ so that for each $i \in[4 k]$, $w_{R}\left(G O P^{k+1}\left(G_{i}\right)\right) \geq\left(\frac{n}{8 k}\right)\left(\frac{1-3 \frac{1}{6}}{6}\right)=\frac{n}{96 k}$ (by Corollary 8.18).

Let Γ be a resolution refutation of $G O P^{k+1}(G) \upharpoonright_{\rho}$. By Lemma 8.6, $G O P^{k+1}(G) \upharpoonright_{\rho}$ $=\bigcup_{i=1}^{4 k} G O P^{k+1}\left(G_{i}\right)$. However, for each $i, j \in[4 k], i \neq j$, we have that $G O P^{k+1}\left(G_{i}\right)$ and $\bar{G} O P^{k+1}\left(G_{j}\right)$ are variable disjoint. Therefore, by Lemma 2.3 , for some $i \in[4 k]$, there exists a resolution refutation of $G O P^{k+1}\left(G_{i}\right)$ of width at most $w(\Gamma)$. However, by the preceding paragraph, each $G O P^{k+1}\left(G_{i}\right)$ requires width $\frac{n}{96 k}$ to refute in resolution. Therefore $w(\Gamma) \geq \frac{n}{96 k}$.

8.5. The lower bound.

Theorem 8.23. Let k be given. There exist constants $c>0, \epsilon_{k}>0$ and a family of graphs G on n vertices (for n sufficiently large) with maximum degree $c \log n$ so that $\operatorname{Res}(k)$ refutations of $G O P^{k+1}(G)$ require size at least $2^{\Omega\left(n^{\epsilon} k\right)}$.

Proof. Let k be given. Apply Lemma 8.20 and choose c so that for sufficiently large n, there exists a $\frac{n}{96 k}$-robust graph G on n vertices with degree at most $c \log n$. By Lemma 8.15, there are positive constants d, δ, and γ so that for every k-DNF F $\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq d 2^{-\delta(c(F))^{\gamma}}$. By Corollary 3.4, with $s=\left(\frac{n}{96 k}-1\right) / k$, for every k-DNF F,

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[h\left(F \upharpoonright_{\rho}\right)>(n / 96 k-1) / k\right] \leq d k 2^{-2 \delta^{k}((n / 96 k-1) / k)^{\gamma^{k}} / 4^{k}} .
$$

Because d, γ, and δ depend only on k, there exists ϵ_{k} so that

$$
\operatorname{Pr}_{\rho \in \mathcal{D}}\left[h\left(F \upharpoonright_{\rho}\right)>(n / 96 k-1) / k\right] \leq \frac{1}{2} 2^{-n^{\varepsilon_{k}}} .
$$

Suppose for the sake of contradiction that Γ is a $\operatorname{Res}(k)$ refutation of $G O P^{K+1}(G)$ of size less than $2^{n^{\epsilon_{k}}}$. By the union bound, with probability at least $\frac{1}{2}$, every line F of Γ has $h\left(F \upharpoonright_{\rho}\right) \leq(n / 96 k-1) / k$. On the other hand, because G is $(n / 96 k)-$ robust, $w_{R}\left(G O P^{k+1}(G) \Gamma_{\rho}\right) \geq n / 96 k$ with probability at least $\frac{3}{4}$. So we may choose $\rho \in \mathcal{P}_{k+1}(G)$ so that $w_{R}\left(G O P^{k+1}(G) \upharpoonright_{\rho}\right) \geq n / 96 k$, and for all lines F of $\Gamma, h\left(F \upharpoonright_{\rho}\right.$ $) \leq(n / 96 k-1) / k$. By Corollary 5.2, $G O P^{k+1}(G) \upharpoonright_{\rho}$ has a resolution refutation of width at most $n / 96 k-1$. This is a contradiction.
9. Separating $\operatorname{Res}(k)$ and $\operatorname{Res}(k+1)$ with constant width clauses. The separation between $\operatorname{Res}(k+1)$ and $\operatorname{Res}(k)$ given by Theorem 8.23 uses sets of clauses whose maximum width is $\Theta(\log n)$. In this section we present a similar result which separates $\operatorname{Res}(k)$ and $\operatorname{Res}(k+1)$ using constant width clauses.

Definition 9.1. Let X_{1}, \ldots, X_{k} be propositional variables. The formula Odd $\left(X_{1}, \ldots, X_{k}\right)$ is the k-DNF expressing that the number of satisfied variables of X_{1}, \ldots, X_{k} is odd. The formula Even $\left(X_{1}, \ldots, X_{k}\right)$ is the k-DNF expressing that the number of satisfied variables of X_{1}, \ldots, X_{k} is even.

The k-parity graph ordering principle of $G, G O P^{\oplus k}(G)$, is obtained by replacing each literal $X_{u, v}$ by $\operatorname{Odd}\left(X_{u, v}^{1}, \ldots, X_{u, v}^{k}\right)$, replacing each literal $\neg X_{u, v}$ by Even $\left(X_{u, v}^{1}, \ldots, X_{u, v}^{k}\right)$, and then using the distributive rule and DeMorgan's law to express this set of $k-D N F s$ as a set of clauses.

Because every clause of $G O P(G)$ contains at $\operatorname{most} \max (d, 3)$ literals, every k-DNF in $\operatorname{GOP}(G)\left[X_{u, v} \leftarrow \operatorname{Odd}\left(X_{u, v}^{1}, \ldots, X_{u, v}^{k}\right), \neg X_{u, v} \leftarrow \operatorname{Even}\left(X_{u, v}^{1}, \ldots, X_{u, v}^{k}\right)\right]$ contains at most $d k$ variables. When such a DNF is expressed as a set of clauses using the distributive rule, the set of clauses has size at most $2^{O(d k)}$ and each clause has width at most $d k$. Therefore, $G O P^{\oplus k}(G)$ contains at most $2^{O(d k)} n^{3}$ clauses, each of width at most $d k$.

For any graph G, the polynomial-size refutations of $G O P(G)$ can be transformed into $\operatorname{Res}(k+1)$ refutations of $G O P^{\oplus(k+1)}(G)$. On the other hand, $\operatorname{Res}(k)$ refutations of $G O P^{\oplus(k+1)}(G)$ require exponential size for certain graphs.

Theorem 9.2. Let k be given. There exist constants $d>0, \epsilon_{k}>0$ and a family of graphs G on n vertices (for n sufficiently large) with maximum degree d so that $\operatorname{Res}(k)$ refutations of $G O P^{\oplus(k+1)}(G)$ require size at least $2^{\Omega\left(\epsilon_{k} n\right)}$.
9.1. The upper bounds. We build $\operatorname{Res}(k)$ refutations for $G O P^{\oplus k}(G)$ from resolution refutations of $G O P(G)$.

Definition 9.3. Let k be a positive integer and let X_{1}, \ldots, X_{n} be propositional variables. Let $X_{1}^{1}, \ldots, X_{1}^{k}, X_{2}^{1}, \ldots, X_{n}^{k}$ be new variables. Let σ be the mapping given by $\sigma\left(X_{i}\right)=\operatorname{Even}\left(X_{i}^{1}, \ldots, X_{i}^{k}\right)$ and $\sigma\left(\neg X_{i}\right)=O d d\left(X_{i}^{1}, \ldots, X_{i}^{k}\right)$. For a clause $C=\bigvee_{i} l_{i}$, let $\sigma(C)=\bigvee_{i} \sigma\left(l_{i}\right)$.

Lemma 9.4. Let k be a constant. There exists a constant c (dependent only on $k)$ so that for all clauses $A \vee X_{i}$ and $B \vee \neg X_{i}$ in the variables X_{1}, \ldots, X_{n}, there is a derivation of $\sigma(A) \vee \sigma(B)$ from $\left\{\sigma(A) \vee \sigma\left(X_{i}\right), \sigma(B) \vee \sigma\left(\neg X_{i}\right)\right\}$ of size $\leq c$.

Proof. By the completeness of $\operatorname{Res}(k)$, there is a $\operatorname{Res}(k)$ refutation of the pair of k-DNFs $\left\{\operatorname{Even}\left(X_{1}, \ldots, X_{k}\right), \operatorname{Odd}\left(X_{1}, \ldots, X_{k}\right)\right\}$. Let c be the minimum size of such a refutation. Because $\sigma\left(X_{i}\right)=\operatorname{Odd}\left(X_{i}^{1}, \ldots, X_{i}^{k}\right)$ and $\sigma\left(\neg X_{i}\right)=\operatorname{Even}\left(X_{i}^{1}, \ldots, X_{i}^{k}\right)$, there is a derivation of $\sigma(A) \vee \sigma(B)$ from $\left\{\sigma(A) \vee \sigma\left(X_{i}\right), \sigma(B) \vee \sigma\left(\neg X_{i}\right)\right\}$ of size greater than or equal to c.

Lemma 9.5. For each k, there exists a constant c so that for every G with n vertices and degree at most $d \geq 3, G O P^{\oplus k}(G)$ has a Res (k) refutation of size $2^{O(d k)} n^{3}$.

Proof. With the repeated application of AND-introduction inferences, $\sigma(G O P(G))$ can be derived from $G O P^{\oplus k}(G)$ in $2^{O(d k)} n^{3}$ many inferences. By Lemma 8.3, $G O P(G)$ has a refutation of size $O\left(n^{3}\right)$ so by Lemma 9.4, $\sigma(G O P(G))$ has a $\operatorname{Res}(k)$ refutation of size $O\left(c n^{3}\right)$. Therefore, $G O P^{\oplus k}(G)$ has a refutation of size $2^{O(d k)} n^{3}$.

9.2. Random restrictions.

Definition 9.6. Let $k \geq 1$ be given, and let G be a graph. The distribution $\mathcal{P}_{k+1}(G)$ on partial assignments ρ to the variables of $G O P^{\oplus(k+1)}(G)$ is given by the
following experiment:
For each $(u, v) \in V(G)^{2}$, choose $i \in\{1, \ldots, k+1\}$ uniformly and independently. For each $j \in\{1, \ldots, k\}, j \neq i$, set $X_{u, v}^{j}$ to 0 or 1 , uniformly and independently.

Lemma 9.7. Let k be given; let F be a $k-D N F$ in the variables of $G O P^{\oplus(k+1)}(G)$. There exist constants $\delta>0$, dependent only on k, so that $\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq$ $2^{-\delta \cdot c(F)}$

Proof. We will say that two terms T and T^{\prime} are underlying-variable-disjoint if whenever $X_{u, v}^{i} \in T$ and $X_{u^{\prime}, v^{\prime}}^{i^{\prime}} \in T^{\prime}$, we have that $(u, v) \neq\left(u^{\prime}, v^{\prime}\right)$. Because F is a k-DNF, it contains at least $c(F) / k(k+1)$ many underlying-variable-disjoint terms. Each of these terms is satisfied with independent probability at least $1 / 4^{k}$ (consider setting each variable of a term in turn, the probability that a variable is set to 0 or 1 is always greater than or equal to $1 /(k+1-(k-1))=1 / 2)$. Therefore, $\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq\left(1-1 / 4^{k}\right)^{c(F) / k(k+1)}$.

When we apply a random restriction from $\mathcal{P}_{k+1}(G)$ to $G O P^{\oplus(k+1)}(G)$, we do not necessarily obtain an instance of $G O P(G)$. It is possible that some of the edge variables will become inverted. However, inverting some variables does not affect the width required for a resolution refutation, and we may apply Lemma 8.17.

Corollary 9.8. If G is a connected graph that is ϵ-neighborly, then for all $k \geq 1$ and for all $\rho \in \mathcal{P}_{k+1}(G), G O P^{\oplus(k+1)}(G) \upharpoonright_{\rho}$ requires width $\left(\frac{1-3 \epsilon}{6}\right) n$.

9.3. The lower bound.

Theorem 9.9. Let k be given. There exist constants $d>0, \epsilon_{k}>0$ and a family of graphs G on n vertices (for n sufficiently large) with maximum degree c so that $\operatorname{Res}(k)$ refutations of $G O P^{\oplus(k+1)}(G)$ require size at least $2^{\Omega\left(\epsilon_{k} n\right)}$.

Proof. Let k be given. Set $p=15 \ln 6 / n$. Consider a random graph selected according to $G_{n, p}$; by Lemma $8.21, G$ is almost certainly $\frac{1}{6}$-neighborly, and by the Chernoff bounds, it has maximum degree $\leq 2 p n=26 \ln 6$. Let G be a graph that is both $\frac{1}{6}$-neighborly and has maximum degree $\leq 26 \ln 6$.

By Lemma 9.7, we have that for every k-DNF $F, \operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[F \upharpoonright_{\rho} \neq 1\right] \leq 2^{-\delta \cdot c(F)}$. Now apply Corollary 3.4 with $s=(n / 12-1) / k, d=1$. For every k-DNF F,

$$
\operatorname{Pr}_{\rho \in \mathcal{P}_{k+1}(G)}\left[h\left(F \upharpoonright_{\rho}\right)>(n / 12-1) / k\right] \leq k 2^{-2 \delta^{k}((n / 12-1) / k) / 4^{k}}
$$

Because k is fixed and δ depends only on k, there exists ϵ_{k} so that

$$
\operatorname{Pr}_{\rho \in \mathcal{D}}\left[h\left(F \upharpoonright_{\rho}\right)>(n / 12-1) / k\right]<2^{-\epsilon_{k} n} .
$$

Suppose for the sake of contradiction that Γ is a $\operatorname{Res}(k)$ refutation of $G O P^{\oplus(k+1)}$ (G) of size less than $2^{\epsilon_{k} n}$. By the union bound, with probability greater than 0 , every line F of Γ has $h\left(F \upharpoonright_{\rho}\right) \leq(n / 12-1) / k$. By Corollary $5.2, G O P^{k+1}(G) \upharpoonright_{\rho}$ has a resolution refutation of width at most $n / 12-1$. On the other hand, because G is $\frac{1}{6}-$ neighborly, $w_{R}(G O P(G)) \geq\left(\frac{1-3(1 / 6)}{6}\right) n=n / 12$, and therefore $w 1_{R}\left(G O P^{\oplus(k+1)}(G)\right.$ $\left.\upharpoonright_{\rho}\right) \geq w_{R}(G O P(G)) \geq n / 12-1$. This is a contradiction.
10. Conclusions and open problems. Switching with small restrictions seems to be a promising technique for analyzing the power of bottom fan-in in proof and circuit complexity. Our results could not have been obtained by switching with larger restrictions. For example, the lower bounds for random w-CNFs could not be proved using restrictions that set a constant fraction of the variables because some clause of the hypothesis would be falsified with high probability. Also, this method is relatively easy to apply because you do not have to re-prove the switching lemma for every lower
bound, but only check that the restrictions in question are likely to satisfy k-DNFs with high cover number.

However, switching with small restrictions still suffers from the limitations of random restriction method. In particular, it seems ineffective against random 3CNFs and very weak pigeonhole principles. The only techniques for understanding the refutation complexity of such CNFs seem specific to resolution [8, 7, 30, 31]. Understanding the refutation complexity of these principles in $\operatorname{Res}(k)$ is a necessary step before understanding them in more powerful systems, and the $\operatorname{Res}(k)$ systems might be simple enough for the development of new techniques.

With this in mind, we suggest the following open problems as particularly relevant: (1) Do random 3-CNFs almost surely require exponential size refutations in $\operatorname{Res}(k)$ for all k ? (2) Does there exist a family of 3-CNFs that require exponential size to refute in $\operatorname{Res}(k)$ but have (quasi-)polynomial-size proofs in $\operatorname{Res}(k+1)$? (3) Do $\operatorname{Res}(2)$ refutations of $P H P_{n}^{m}$ require size exponential in n for all m ? (4) Do there exist polynomial-size depth two Frege refutations $P H P_{n}^{2 n}$? (5) Let $0<\epsilon \leq 1 / 2$. Do there exist subexponential-size refutations for $P H P_{n}^{n+n^{1-\epsilon}}$ in $\operatorname{Res}(\operatorname{polylog}(n))$? or even in depth two Frege? (6) Does there exist a family of CNFs that require exponential-size refutations in $\operatorname{Res}(\operatorname{polylog}(n))$ but have (quasi-)polynomial-size depth two Frege refutations? (7) For given $\epsilon<\delta \leq 1$, does there exist a family of CNFs that require exponential-size refutations in $\operatorname{Res}\left(n^{\epsilon}\right)$ but have (quasi-)polynomial-size $\operatorname{Res}\left(n^{\delta}\right)$ refutations?

REFERENCES

[1] M. Ajtai, Σ_{1}^{1}-formulae on finite structures, Ann. Pure Appl. Logic, 24 (1983), pp. 1-48.
[2] A. Atserias and M. Bonet, On the automatizability of resolution and related propositional proof systems, in Proceedings of the Sixteenth International Workshop on Computer Science Logic, Lecture Notes in Comput. Sci. 2471, Springer, New York, 2002, pp. 569-583.
[3] A. Atserias, M. Bonet, and J. Esteban, Lower bounds for the weak pigeonhole principle and random formulas beyond resolution, Inform. and Comput., 176 (2002), pp. 136-152.
[4] P. Beame, A Switching Lemma Primer, tech. report, Department of Computer Science and Engineering, University of Washington, Seattle, 1994.
[5] P. Beame, R. Karp, T. Pitassi, and M. Saks, The efficiency of resolution and Davis-Putnam procedures, SIAM J. Comput., 31 (2002), pp. 1048-1075.
[6] P. Beame and T. Pitassi, Propositional proof complexity: Past, present, and future, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 65 (1998), pp. 66-89.
[7] E. Ben-Sasson, Hard examples for bounded depth Frege, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 563-572.
[8] E. Ben-Sasson and A. Wigderson, Short proofs are narrow-resolution made simple, J. ACM, 48 (2001), pp. 149-169.
[9] M. Bonet and N. Galesi, A study of proof search algorithms for resolution and polynomial calculus, in Proceedings of the Fortieth Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alimitos, CA, 1999, pp. 422-431.
[10] R. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 757-804.
[11] S. R. Buss and G. Turán, Resolution proofs of generalized pigeonhole principles, Theoret. Comput. Sci., 62 (1988), pp. 311-317.
[12] L. Cai, J. Chen, and J. HAstad, Circuit bottom fan-in and computational power, SIAM J. Comput., 27 (1998), pp. 341-355.
[13] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. ACM, 35 (1988), pp. 759-768.
[14] S. Cook and R. Reckhow, The relative efficiency of propositional proof systems, J. Symbolic Logic, 44 (1979), pp. 36-50.
[15] S. Dantchev and S. Riis, Tree resolution proofs of the weak pigeon-hole principle, in Proceedings of the Sixteenth Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 2001, pp. 69-75.
[16] P. Erdös and R. Rado, Intersection theorems for finite sets, J. London Math. Soc., 35 (1960), pp. 85-90.
[17] J. L. Esteban, N. Galesi, and J. Messner, On the complexity of resolution with bounded conjunctions, in Proceedings of the Twenty-Ninth International Colloquium on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 2380, Springer, New York, 2002, pp. 220-231.
[18] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Math. Systems Theory, 17 (1984), pp. 13-27.
[19] A. Goerdt, Unrestricted resolution versus N-resolution, Theoret. Comput. Sci., 93 (1992), pp. 159-167.
[20] A. Haken, The intractability of resolution, Theoret. Comput. Sci., 39 (1985), pp. 297-308.
[21] J. HÅstad, Almost optimal lower bounds for small depth circuits, in Advances in Computing Research, Vol. 5, JAI Press, Greenwich, CT, 1989, pp. 143-170.
[22] S. Jukna, Extremal Combinatorics: With Applications to Computer Science, Springer, New York, 2001.
[23] J. Krajíček, Bounded Arithmetic, Propositional Logic and Complexity Theory, Cambridge University Press, Cambridge, UK, 1995.
[24] J. Krajíček, On the weak pigeonhole principle, Fund. Math., 170 (2001), pp. 123-140.
[25] A. Maciel, T. Pitassi, and A. Woods, A new proof of the weak pigeonhole principle, J. Comput. System Sci., 64 (2002), pp. 843-872.
[26] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, UK, 1995.
[27] E. Palmer, Graphical Evolution: An Introduction to the Theory of Random Graphs, Wiley Interscience, Chichester, UK, 1985.
[28] T. Pitassi and R. Raz, Regular resolution lower bounds for the weak pigeonhole principle, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp. 347-355.
[29] P. Pudlák, The lengths of proofs, in Handbook of Proof Theory, S. R. Buss, ed., Elsevier North-Holland, Amsterdam, 1998, pp. 547-637.
[30] R. RAz, Resolution lower bounds for the weak pigeonhole principle, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 553-562.
[31] A. RAZBOROV, Improved resolution lower bounds for the weak functional pigeonhole principle, Theoret. Comput. Sci., 303 (2001), pp. 233-243.
[32] A. Razborov, Pseudorandom generators hard for $k-D N F$ resolution and polynomial calculus resolution. Available online from http://genesis.mi.ras.ru/~razborov/, 2003.
[33] N. Segerlind, S. Buss, and R. Impagliazzo, A switching lemma for small restrictions and lower bounds for k-DNF resolution, in Proceedings of the Forty-Third Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 2002, pp. 604-613.
[34] M. Sipser, Borel sets and circuit complexity, in Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, ACM, New York, 1983, pp. 61-69.
[35] G. Tseitin, On the complexity of derivations in propositional calculus, in Studies in Constructive Mathematics and Mathematical Logic, Part II, A. O. Slisenko, ed., 1970, pp. 115-125 (in Russian).
[36] A. Urquhart, Hard examples for resolution, J. ACM, 34 (1987), pp. 209-219.
[37] V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001.

[^0]: *Received by the editors May 28, 2003; accepted for publication (in revised form) February 24, 2004; published electronically July 20, 2004.
 http://www.siam.org/journals/sicomp/33-5/42855.html
 ${ }^{\dagger}$ School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (nsegerli@math.ias.edu). The research of this author was supported in part by NSF grants DMS0100589 and CCR-0098197.
 ${ }^{\ddagger}$ Department of Mathematics, University of California, San Diego, La Jolla, CA 92092-0112 (sbuss@ucsd.edu). The work of this author was supported in part by NSF grant DMS-0100589.
 ${ }^{\S}$ Department of Computer Science, University of California, San Diego, La Jolla, CA 92092-0112 (russell@cs.ucsd.edu). The work of this author was supported in part by NSF grant CCR-0098197 and USA-Israel BSF grant 97-00188.

