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Time dependent second order Green’s function theory for neutral

excitations
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We develop a time dependent second order Green’s function theory (GF2) for calculating neutral excited states
in molecules. The equation of motion for the lesser Green’s function (GF) is derived within the adiabatic
approximation to the Kadanoff-Baym (KB) equation using the second order Born approximation for the self-
energy. In the linear response regime, we recast the time dependent KB equation into a Bethe-Salpeter-like
equation (GF2-BSE), with a kernel approximated by the second order Coulomb self-energy. We then apply
our GF2-BSE to a set of molecules and atoms and find that GF2-BSE is superior to configuration interaction
with singles (CIS) and/or time dependent Hartree-Fock (TDHF), particularly for charge transfer excitations,
and is comparable to CIS with perturbative doubles (CIS(D)) in most cases.

I. INTRODUCTION

Calculating excited states in molecules remains one of
the grand challenges for computational chemistry. Time
dependent Hartree-Fock (HF)1,2 and Time dependent
Density Functional theory (DFT)3–10 offer affordable and
simple means to calculate excited states energies, but suf-
fer from accuracy with the corresponding excitation en-
ergies deviating by up to several eVs. Other quantum
chemistry methods, such as coupled cluster (CC) with
singles and doubles within the equation-of-motion for-
malism (EOM-CCSD), are more accurate, but are lim-
ited to relatively small system sizes due to steep compu-
tational scaling.

An alternative to the above is based on many-body per-
turbation theory (MBPT) within Green’s function the-
ory. In particular, the so called “GW” approximation and
the Bethe-Salpeter equation (BSE) have been successful
in predicting charge and optical excitation, respectively,
particularly for solids.11–26 However, the application of
MBPT is often limited to simple solids with small unit
cells due to the steep computational costs. This has led
to many efforts in recent years aiming to reduce the com-
putational cost of MBPT-based techniques.27–34

The second order Green’s function (GF2) approach
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e)Electronic mail: eran.rabani@berkeley.edu

falls into this latter category. It has, however, remained
somewhat less popular than the GW/BSE approaches.
Recently, GF2 theory has experienced a renaissance35–37,
partially due to its simplicity and the inclusion of dy-
namical exchange effects. In GF2, the self-energy is de-
scribed by the second order Born approximation,38,39 re-
sulting in a class of dynamical exchange effects40–42 that
appear only at second and higher orders, and thus are of-
ten ignored in GW/BSE. On the other hand, GF2 treats
the polarization term differently than GW/BSE and its
accuracy in describing excited states in molecules is unex-
plored. The inclusion of such dynamical exchange terms
in GF2 leads to O(N5) scaling of the computational cost
where N is size of the system.

To overcome this computational bottleneck of GF2, we
have recently introduced a stochastic approach to GF2
(sGF2), based on a stochastic resolution of identity used
to decouple the 4-index Coulomb integrals.43–45 Unlike
the standard resolution of identity (RI),46–50 the number
of stochastic orbitals (playing the role of the resolution
basis) does not increase with the system size for certain
ground state properties44 and for charge excitations.45

This allows one to reduce the computational scaling of
sGF2 theory to O(N3) at the expense of introducing a
controlled statistical error in the calculated observable.
Similar stochastic approaches to electronic structure the-
ory have been developed also for other frameworks, in-
cluding GW,29,51 DFT,52–55 MP2,43,56–58 RPA,59 and
more recently have also been used to improve the per-
formance of auxiliary-field quantum Monte Carlo.60

In previous work we have used the imaginary time and
real time sGF2 theory to calculate the ground-state and
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quasi-particle properties of molecular systems and as-
sessed the accuracy of the stochastic resolution of identity
for GF2.44,45 Furthermore, we have introduced a range-
separated stochastic RI approach, where the long-range
Coulomb term was approximated by the stochastic RI
and the short-range Coulomb term was described by a
deterministic RI.61 This hybrid deterministic-stochastic
range-separated RI reduces the stochastic noise while
maintaining the O(N3) computational scaling, which al-
lows us to calculate the quasi-particle spectrum for sys-
tems containing N = 1000 electrons or more.61

In the present work, we extend the GF2 formalism to
describe neutral excitations by considering explicitly the
optical field within a time dependent nonequilibrium GF2
theory. Unlike the equilibrium case, non-equilibrium
Green’s functions depend on two times and thus are more
challenging to compute. Here, to simplify the calculation,
we first invoke an adiabatic approximation to obtain the
self-energy. We then derive within linear response theory
a Bethe-Salpeter-like equation along with the second or-
der Born approximation to describe the Bethe-Salpeter
kernel. While our long term goal is to go beyond the adia-
batic approximation and to develop a stochastic approach
to reduce the scaling of the GF2 theory for excited states
to O(N3), here we focus on assessing the accuracy of
GF2 for neutral excitations and comparing the approach
to other methods such as second-order approximation to
EOM-CCSD (EOM-CC2) and configuration interaction
with singles and perturbative doubles (CIS(D)). We note
in passing that while it is difficult to formulate a stochas-
tic version of EOM-CCSD with favorable scaling (as com-
pared to the O(N3) of a stochastic GF2), two of us are
formulating a stochastic version of EOM-CC2, which will
be comparable to GF2 in terms of scaling.

We show that at least in some simple but paradigmatic
examples, that the time dependent GF2 theory provides
a more accurate framework to predict excited states com-
pared to TDHF and configuration interaction with singles
(CIS), and is competitive with and CIS(D) and EOM-
CC2. In particular, for charge transfer states, CIS fails
to predict the correct energy, whereas sGF2 provides a
more reliable estimate of charge transfer excitations.

The manuscript is organized as follows: In Sec. II and
Sec. III, we present the formulation of the time dependent
GF2 theory in both the time and frequency domains. In
Sec. IV we test the performance of GF2 theory against
other quantum chemistry methodologies for a represen-
tative set of atoms and molecules. Finally, in Sec. V we
conclude.

II. THEORY

A. Notation

We start by defining a general electronic Hamiltonian
in second quantization form. The formulation is general
and applies to any choice of basis set. In this section we

us the notation i, j, k, l · · · to represent the indices in a
general basis. The Hamiltonian is given by

Ĥ = Ĥ0 +
∑

ij

∆ij(t)â
†
i âj , (1)

where â†i (âi) is the creation (annihilation) operator for
an electron in orbital χi(r),

Ĥ0 =
∑

ij

hij â
†
i âj +

1

2

∑

ijkl

vijkl â
†
i â

†
kâlâj (2)

is the unperturbed Hamiltonian, hij is the one-body ma-
trix element in the basis, and vijkl represents the two-
body 4-index Coulomb integral, given by

vijkl = (ij|kl) =

∫∫

χi(r1)χj(r1)χk(r2)χl(r2)

|r1 − r2|
dr1dr2.

(3)
The last term on the right hand side of Eq. (1) represents
a time dependent perturbation, which is assumed to be
one-body, suitable for describing the linear absorption
spectrum, where ∆ij(t) is the time dependent one-body
matrix element of the perturbation. In situations where
the chosen basis is not orthonormal, we also define the
overlap S with the overlap matrix elements of orbital
χi(r) and χj(r) as

Sij = (i|j) =

∫

χi(r)χj(r)dr. (4)

B. Green’s Function and Kadanoff-Baym Equations

The traditional approach to describe excited states
generated by the Hamiltonian (1) is based on solving the
many-body eigenvalue problem, H |Ψn〉 = En|Ψn〉, where
En and |Ψn〉 are the nth eigenvalue and eigenstate, re-
spectively. A complete solution within full configuration-
interaction (FCI) is prohibitive for large system sizes or
large atomic basis sets, and thus, most excited state cal-
culations are based on introducing approximations with
reduced computational scaling.

The Green’s function formalism offers a systematic way
to treat the many-body interactions in Eq. (1) using di-
agrammatic expansions. A central quantity in this ap-
proach is the single particle lesser Green’s function de-
fined as (we assume that ~ = 1)

G<
ij(t1, t2) = i〈â†j(t2)âi(t1)〉. (5)

In the above, we have used the Heisenberg representation
for the time dependent operator

â†j(t) = T ei
∫

t

0
Ĥ(t′)dt′ â†je

−i
∫

t

0
Ĥ(t′)dt′ , (6)

where T is the time-ordering operator and the expecta-
tion value is calculated within the grand-canonical en-
semble: 〈· · · 〉 = Z−1Tr

[

(· · · )e−β(Ĥ0−µN̂)
]

. Here, Z =



3

Tr
[

e−β(Ĥ0−µN̂)
]

is the grand-canonical partition func-
tion, β is the inverse temperature, µ is the chemical po-
tentials, and N̂ =

∑

i â
†
i âi is the number operator.

The equations of motion for the lesser Green’s function
follow the Kadanoff-Baym equations:38

iS∂t1G
<(t1, t2) = F [ρ(t1)]G

<(t1, t2) + I<(t1, t2), (7)

and

−i∂t2G
<(t1, t2)S = G<(t1, t2)F [ρ(t2)]− I<(t2, t1)

∗,(8)

where ρ(t) = −iG<(t, t) is the density matrix and F [ρ]
is the Fock operator with matrix elements

Fij [ρ] = hij + vHij [ρ] + vxij [ρ] + ∆ij(t). (9)

In the above, vHij [ρ] =
∑

kl vijklρkl is the matrix element
of the Hartree potential and vxij =

∑

kl vikjlρkl is the
matrix element of the exchange interaction. Finally, the
scattering integral, I<(t1, t2), appearing in Eqs. (7) and
(8) is given by:

I<(t1, t2) =

∫ t1

0

ΣR(t1, t3)G
<(t3, t2)dt3+

∫ t2

0

Σ<(t1, t3)G
A(t3, t2)dt3.

(10)

In the above equation, GA(t1, t2) = iθ(t2 −

t1)〈â
†
j(t2)âi(t1)〉 is the advanced Green’s function and

θ(t) is the Heaviside step-function. The exact form of the
retarded ( ΣR(t1, t2)) and lesser (Σ<(t1, t2)) self-energies
is difficult to obtain apart from the case of simple model
systems and thus most GF calculations are based on ap-
proximating the self-energies using different closures. In
this work we resort to the second order Born approxi-
mation to compute the self-energies and, as will become
clear below, we describe only the retarded self-energy ap-
pearing above (Langreth rules have been used38)

ΣR
ij(t1, t2) =

∑

kl iG
<
kl(t1, t2)δW

R
ikjl(t1, t2)

+ iGR
kl(t1, t2)δW

>
ikjl(t1, t2), (11)

where the retarded and greater screened Coulomb inte-
grals are given by

δWR
ikjl(t1, t2) = −i

∑

mnqp

(G<
mn(t1, t2)G

A
qp(t2, t1) +GR

mn(t1, t2)G
<
qp(t2, t1))vimpk(2vjnql − vjlqn), (12)

δW>
ikjl(t1, t2) = −i

∑

mnpq

G>
mn(t1, t2)G

<
qp(t2, t1)vimpk(2vjnql − vjlqn), (13)

and, as before, GR,A
ij (t1, t2) and G<,>

ij (t1, t2) are the re-
tarded/advanced and the lesser/greater Green’s function,
respectively.

C. The adiabatic approximation

Before we proceed, we would like to point out to an-
other challenge associated with the need to propagate
the GF and to evaluate the self-energies along two times.
In the following subsection, we will invoke the adia-
batic approximation similarly to the approach taken for
GW/BSE.62 This allows us to reduce the complexity as-
sociated with describing two-time self-energies. The idea
behind the adiabatic approximation is that the system re-
sponds instantaneously to the external driving force such
that the integral in Eq. (10) becomes local in time.

It is convenient to define the central time t and the
time difference τ

t = (t1 + t2)/2, (14)
τ = t1 − t2, (15)

and express the self-energies appearing in the scattering

integral (cf., Eq. (10)) by62

ΣR(t1, t2) ≈ Σ̃ad(t)δ(τ), (16)
Σ<(t1, t2) ≈ 0. (17)

In the above equation, Σ̃ad(t) is defined as

Σ̃ad(t) =
∫

ΣR(t1, t2)e
iωτdτ ≡ Σ̃R(t, ω). (18)

The adiabatic approximation is consistent with taking
the ω → 0 limit assuming that the plasma energy (the
main source of screening) is much higher than the neutral
excitation energy differences.63 Note that in the above
equation, Σ̃ad(t) is given in terms of a Fourier transform
of the time difference variable, τ denoted by “tilde” ( ˜· · ·).

Using the adiabatic approximation for the self-energy,
the equation of motion for the equal time Green’s func-
tion, −iG<(t1 = t, t2 = t) = ρ(t), can be simplified as

i∂tρ(t) = S−1(F [ρ(t)] + Σ̃ad(t))ρ(t)

− ρ(t)(F [ρ(t)] + Σ̃ad(t))S−1, (19)

where ρ(t) is the density matrix and Σ̃ad(t) is defined in
Eq. (18). In principle, the solution of the above equation
requires a knowledge of the retarded and lesser Green’s
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functions to obtain Σ̃ad(t) from Eq. (18). While this
seems challenging, the adiabatic limit offers a significant
simplification within the weak perturbation limit, as de-
scribed in the following section.

III. THE WEAK DRIVING LIMIT

In the limit of weak external perturbation, namely,
when ∆ij(t) → 0, we can further simplify the description
of the self-energy and recast the time dependent equa-
tion of motion for the density matrix into a Casida-like
form. In this section, we first provide a working expres-
sion to obtain the Σ̃ad(t) without solving the Kadanoff-
Baym equations for the retarded and lesser Green’s func-
tions, and then derive a Casida-like equation to describe
the neutral (excitonic) spectrum within the GF2 closure.

A. Self-energy

So far, the formalism described above makes no as-
sumption about the basis set used. However, using the
eigenvalues of Eq. (9) with ∆ij(t) = 0 leads to a sig-
nificant simplification. Thus, we now describe the cal-

culation of Σad(t) using the eigenstates (ψi) and the
eigenvalues (εi) of the Fock matrix. To obtain an ex-
pression for Σad(t) we treat the two terms appearing
on the right hand side of Eq. (11) separately, and re-
fer to the corresponding self-energies with superscripts
“ad1” and “ad2”. For Σ̃ad1

ij (t) we further use an ap-
proximation62,63 for the lesser Green’s function given by
G<

ij(t, ω) = i2πδ(ω − εi)G
<
ij(t, τ = 0). This leads to the

following expression for Σ̃ad1
ij (t) (see Appendix A for more

details)

Σ̃ad1
ij (t) ≈ i

∑

kl δW̃
R
ikjl(−εk)G

<
kl(t, τ = 0)

= −
∑

kl δW̃
R
ikjl(−εk)ρkl(t), (20)

where, as before, ρkl(t) is the kl matrix element of the
density matrix. Following similar steps for Σ̃ad2

ij (t) we
obtain (see Appendix A for more details)

Σ̃ad2
ij (t) ≈

1

2
ℜ
∑

kl

δW̃R
ikjl(0)δkl. (21)

Note that Σ̃ad2
ij (t) is time-independent. Using the zeroth

order approximation to the Green’s functions appearing
in Eq. (12), we find that

δW̃R
ikjl(ω)=

∑

mnpq

[f(εn)
1

εn − ω − εq − iη
+

1

ω + εp − εn + iη
f(εp)]δmnδpqvimpk(2vjnql − vjlqn)

=
∑

mnpq

f(εn)− f(εq)

εn − ω − εq − iη
δmnδpqvimpk(2vjnql − vjlqn) =

∑

nq

f(εn)− f(εq)

εn − ω − εq − iη
vinqk(2vjnql − vjlqn). (22)

In the above equation η is a small positive regularization
parameter, and f(εn) is the Fermi-Dirac distribution.

B. Linear response theory: GF2-BSE

For reasons that will become clear below, we denote
the initial density matrix ρ(t = 0) ≡ ρ0 and the initial

self-energy as Σad(0) ≡ ∆H . Furthermore,

i∂tρ = S−1
(

F [ρ0] + ∆H + vH [ρ]− vH [ρ0] + vx[ρ]− vx[ρ0]
)

ρ

−ρ
(

F [ρ0] + ∆H + vH [ρ]− vH [ρ0] + vx[ρ]− vx[ρ0]
)

S−1

+S−1
(

Σad(t)− Σad(t = 0)
)

ρ− ρ
(

Σad(t)− Σad(t = 0)
)

S−1,

(23)

In the applications reported below, we obtain the
quasiparticle-like correction term (∆H) from a stochastic

GF2 calculation45 and the adiabatic self-energy (Σad(t))
using the second order Born approximation. The above
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equation can be used to describe both weak and strong
driving forces, ∆(t) but can be further simplified into a
Casida-like form within linear response theory (assuming
weak driving forces). Before we describe the Casida-like
form, in the following subsection we express Σad(t) in
terms of a screened Coulomb integral and the density
matrix itself, using the second order Born approxima-
tion. This representation is essential to the applications
within linear-response theory.

In the linear response regime, the time dependent GF2
equation can be recast into the usual Casida form.64

Following the general guidelines used in time dependent
DFT or TDHF,4,10,62 the time dependent GF2 can be re-
cast into a symplectic eigenvalue problem (assuming zero
temperature and spin-restricted orbitals)

(

A B
−B −A

)(

X
Y

)

= ω

(

X
Y

)

, (24)

where A and B are matrices of size NoccNvirt×NoccNvirt

and Nocc/Nvirt is the number of occupied/virtual molec-
ular orbitals. These matrices can be expressed in terms
of the exchange KX and direct KDA correlations

A = D + 2KX −KDA

B = 2KX −KDB. (25)

The matrix elements of D, KX , and KDA are given by

Dia,jb= (ωa − ωi)δabδij ,

KX
ia,jb=

∫∫

dr1dr2
(ψi(r1))

∗ψa(r1)(ψj(r2))
∗ψb(r2)

|r1 − r2|
,

KDA
ia,jb= δW̃R

abij + vabij ,

KDB
ia,jb= δW̃R

ibaj + vibaj . (26)

Here, i, j represents occupied orbitals and a, b are unoc-
cupied orbitals. ωa is the GF2 corrected energy in the
molecular basis obtained by solving for45

ωn = εn + 〈ψn|ℜΣ̃
R(ωn)|ψn〉, (27)

where ΣR(ωn) is the self-energy obtain from a single time
GF2 calculation.45 Eqs. (24)-(26) are the main result of
this subsection and are referred to as “GF2-BSE”.

C. Computational scaling and outline of the approach

The overall computational scaling of solving Eq. (23)
for ρ(t) is determined by the computational scaling of the
self-energy, which is the most expansive part of the calcu-
lation. Formally, the scaling of the self-energy is O(N5),
where N is the size of the basis. In linear response, the
computational scaling for the GF2-BSE is O(N6), a com-
mon increase in scaling going from the time-domain to
the frequency-domain.4,62 A significant reduction in the
overall scaling to cubic (O(N3)) can be achieved using
a stochastic resolution of identity applied to the time-
domain formulation, which will be the subject of future

study. Here, we simply will assess the accuracy of the
deterministic GF2-BSE approach. Before doing so, we
outline the main steps:

1. Perform a Hartree-Fock calculation and generate
the Fock matrix (Eq. (9)).

2. Use the single-time GF2 approach45 to calculate
the self-energy appearing in Eq. (27) and obtain
the GF2 correction to the quasi-particle energies,
ωn.

3. Calculate δW̃R
ik,jl(ω = 0) using Eq. (22). For the

applications reported below we used a damping pa-
rameter (η = 0.01 a.u.), which is sufficiently small
to converge the results.

4. Calculate the matrix elements of the Eq. (24), and
solve for the eigenvalues and eigenstates.

Solving for ωn is done self-consistently both for solving
Eq. (27) and also for obtaining Σ̃R(ω). A simplification
that often is useful within the framework of GW/BSE is
to use a single-shot calculation, which amounts to replac-
ing Σ̃R(ω) with the zeroth order approximation.63 How-
ever, this may result in multiple solutions for ωn and
in such cases, we restrict the solution to the fully self-
consistent treatment.45 We denote the former approach
as G0F2-BSE and the later as GF2-BSE.

IV. APPLICATIONS TO ATOMS AND MOLECULES

In this section we compare results obtained using the
GF2-BSE approach for the low lying excited states for
a set of atoms and molecules, and compare GF2-BSE
results to excited states obtained using CIS, TDHF,
CIS(D), EOM-CCSD, and EOM-CC2 method. While
EOM-CCSD is not an exact approach for excited states,
its accuracy should be reasonable for low lying states. In
addition, we note that for two electron systems such as
He ahd H2, it is exact. We use the cc-pVDZ basis set
for all cases discussed below and assume that the EOM-
CCSD provides accurate references within this basis.

In Table I, we list several lowest singlet energy differ-
ences (compared to the corresponding EOM-CCSD sin-
glet energies) for He, Be, and Ne. Note that all calcu-
lations performed are closed-shell calculations. The sin-
glet energies may have degeneracy for these atoms, and
we simply list them all. We find that the smallest de-
viations are observed for the CIS(D) approach, with an
overall average error of ≈ 0.15 eV. EOM-CC2 results are
very similar to CIS(D) results, which is not too surpris-
ing given that both methods include electron correlation
only up to the second order. CIS and TDHF under-
estimate the excitation energies by an average of nearly
1 eV while the G0F2-BSE approach outperforms CIS and
TDHF with an average error of 0.5 eV, however, G0F2-
BSE a performs much better for the lowest singlet excita-
tion. The G0F2-BSE underestimates the excitation en-
ergies in some cases and in others it overestimates them.
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TABLE I: Difference of the lowest singlets (in eV) for
CIS, TDHF, CIS(D), EOM-CC2, and G0F2-BSE

compared to EOM-CCSD.

Atom ∆CIS ∆TDHF ∆CIS(D) ∆EOM-CC2 ∆G0F2-BSE
He -0.72 -1.09 -0.11 -0.11 -0.05

-0.82 -0.98 -0.15 -0.15 -0.67
-0.82 -0.98 -0.15 -0.15 -0.67
-0.82 -0.98 -0.15 -0.15 -0.67

Be -0.34 -0.64 -0.19 -0.20 -0.18
-0.34 -0.64 -0.19 -0.20 -0.18
-0.34 -0.64 -0.19 -0.20 -0.18

Ne -1.05 -1.19 0.14 0.17 0.77
-1.05 -1.19 0.14 0.17 0.77
-1.05 -1.19 0.14 0.17 0.77
-1.09 -1.16 0.14 0.17 0.68
-1.09 -1.16 0.14 0.17 0.68

Error 0.794 0.987 0.151 0.167 0.522

The overall better performance of G0F2-BSE with re-
spect to CIS/TDHF results from two main attributes: (a)
the inclusion of screening effects in the G0F2-BSE kernel
(missing from both CIS and TDHF) which reduces the
coupling between electrons and holes and (b) the correc-
tion of the quasi-particle energies, ωn, that are assumed
to equal the HF orbital energies in CIS/TDHF and thus
overestimate the fundamental band gap (HOMO-LUMO
gap). The error cancellation between the larger HF fun-
damental gap and the stronger Coulomb interactions give
rise to overall reasonable excitation energies using CIS
and TDHF.

In Table II, we list the lowest singlet energy differ-
ences (compared to the corresponding EOM-CCSD sin-
glet energies) for the vertical excitation of H2 molecule
within the cc-pVDZ basis. We find that for the two low-
est singlet excitations, the G0F2-BSE provides slightly
better agreement with EOM-CCSD compared to CIS,
and TDHF, and only slightly under-performs in com-
parison to CIS(D) and EOM-CC2. The agreement be-
tween CIS, TDHF, EOM-CC2, CIS(D) and G0F2-BSE
with the EOM-CCSD approach for higher excitations is
rather poor. The higher excited states have a substantial
“double-excitation” character which is described within
the EOM-CCSD more accurately than the other methods
(TDHF, CIS, and GF2-BSE do not account for double-
excitations).

The results for atoms and the smallest molecule H2

suggest that the GF2-BSE approach provides accurate
excitation energy for the lowest excited state and some-
what less so for higher excitations. The systems studied
so far support only one or two bound excited states at
energy corresponding to the vertical transitions and the
other excitations are often above the ionization threshold.
This may explain the overall better performance of the
GF2-BSE approach for the lowest excited state. Whether
this is indeed the case can be tested for larger molecules,
which may support many more bound excitations.

In Tables III and IV, we list the vertical excitation en-

TABLE II: Difference of the several lowest vertical
excitation energies (in eV) for H2 using CIS, TDHF,
CIS(D), EOM-CC2, and G0F2-BSE compared to the

EOM-CCSD approach. The equilibrium bond distance
is taken to be 0.74 Å

∆CIS ∆TDHF ∆CIS(D) ∆EOM-CC2 ∆G0F2-BSE
0.15 -0.01 0.11 0.10 0.08
0.06 -0.08 0.18 0.16 0.28
2.92 2.67 2.56 2.59 2.48
9.32 9.18 9.63 9.62 9.34
2.12 1.98 2.43 2.42 2.14

ergies for 5 different molecules obtained using the afore-
mentioned methods. To reduce the scaling and the com-
putational effort, we use the stochastic GF2 methods45 to
calculate the self-energies appearing in Eq. (27) as well as
to obtain the GF2 correction (∆H) to the quasi-particle
energies, ωn. Thus, the vertical excitation energies ob-
tained from the GF2-BSE method have an error bar re-
sulting for the use of a stochastic approach. We have used
2000 stochastic orbitals to obtain the full self-consistent
self-energy. The stochastic errors from GF2-BSE are es-
timated using 10 independent runs. Note that here we
have only used the stochastic formulation of Matsubara
and mixed time GF2 to obtain the self-energy and hence
quasi-particle energies. A full stochastic implementation
of the GF2-BSE theory will be presented and tested in
future work.

We first examine the vertical excitations LiH, HF, and
H2O, as shown in Table III. We find that for the entire
range of excitations, the GF2-BSE approach outperforms
CIS and TDHF, with an overall error that is smaller by a
factor of 3 compared to the other two methods. Compar-
ing the results obtained by the GF2-BSE with the CIS(D)
and EOM-CC2, we find that for the lower excitation en-
ergies, the two approach provide similar accuracies, while
the CIS(D) and EOM-CC2 provide a better description
of higher vertical excitations. This seems to follow the
trends found for atoms and for H2 molecules, however,
unlike the case of the smaller system, where only the
lowest singlet excitation was accurately described by the
GF2-BSE approach, in the case of larger molecules, the
GF2-BSE approach provides an accurate description for
several low singlet excitations.

Next, we examine the vertical excitations in two other
molecules, CH4 and LiF, as shown in Table IV. Regard-
ing the former molecule, we find the GF2-BSE under-
performs even in comparison to CIS and TDHF. How-
ever, comparing the binding energies calculated for the
lowest excitation (shown in parenthesis for each method),
we find that GF2-BSE agrees well with the EOM-CCSD
approach, while CIS/TDFH deviate significantly. This
suggests that the main source of error in the GF2-BSE
approach is the estimation of the fundamental gap and
indeed, we find that the GF2 underestimates the ioniza-
tion potential by more than an eV for CH4.45 The more
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∆CIS ∆TDHF ∆CIS(D) ∆EOM-CC2 ∆GF2-BSE
LiH 0.57 0.53 0.24 0.25 0.03 ± 0.04

(-0.13) (-0.09) (0.20) (0.19) (-0.08)
0.60 0.57 0.25 0.26 0.09 ± 0.04
0.60 0.57 0.25 0.26 0.11 ± 0.04
0.45 0.39 0.26 0.26 0.15 ± 0.03
0.49 0.47 0.24 0.24 -0.16 ± 0.04
0.49 0.47 0.24 0.24 -0.13 ± 0.04
0.43 0.42 0.19 0.19 -0.17 ± 0.04
0.50 0.40 0.26 0.27 0.08 ± 0.04
0.39 0.34 0.29 0.28 -0.36 ± 0.04

Error 0.500 0.462 0.248 0.249 0.142
HF 1.23 1.16 -0.20 -0.14 -0.33 ± 0.16

(0.97) (1.04) (2.40) (2.54) (-0.16)
1.23 1.16 -0.20 -0.14 -0.17± 0.15
0.83 0.68 -0.17 -0.12 -0.36± 0.11
1.67 1.60 -0.15 0.04 -0.83± 0.15
1.67 1.60 -0.5 0.04 -0.67± 0.13
1.20 1.00 0.21 0.20 -0.26± 0.11

Error 1.304 1.202 0.180 0.112 0.436
H2O 1.04 0.98 -0.10 -0.07 -0.19 ± 0.24

(1.07) (1.13) (2.21) (2.24) (-0.07)
0.76 0.69 -0.05 -0.07 0.03 ± 0.24
1.01 0.94 -0.10 -0.08 -0.22 ± 0.26
0.70 0.61 -0.06 -0.08 -0.073 ± 0.26
0.20 0.15 -0.05 -0.03 -0.63 ± 0.23
0.42 0.20 -0.10 -0.08 -0.59 ± 0.23
1.43 1.40 0.002 0.14 -0.33 ± 0.34
1.54 1.46 0.14 0.18 -0.33 ± 0.30

Error 0.888 0.804 0.074 0.093 0.308

TABLE III: Difference of the lowest singlet energy (in
eV) from CIS, TDHF, CIS(D), EOM-CC2, and

GF2-BSE against EOM-CCSD for a list of molecules.
In parenthesis, we show the difference of binding

energies calculated for the lowest excitation for each
method against EOM-CCSD.

accurate excitation energies obtained from CIS/TDHF in
CH4 seems to result from a cancellation of errors in the
estimation of the fundamental gaps (by 1.2 eV) and the
excitonic binding energy (by 1 eV).

While the overall comparison of all methods with
EOM-CCSD for LiF yields rather poor results compared
to the case of LiH, HF, and H2O, the GF2-BSE ap-
proach seems to systematically be more accurate than
CIS, TDHF, EOM-CC2, and CIS(D) for all excitations
energies. The source of deviation from the EOM-CCSD
approach for all methods can be traced to errors in es-
timating the fundamental gaps (all binding energies are
very similar), where the GF2 approach provides a more
accurate description leading to better agreement for the
excitations energies.

To better illustrate these conclusions, we plot in Fig. 2
the excited state energies listed in Table IV and III
versus the EOM-CCSD results. Note that CIS(D) and
GF2-BSE results are in much better agreement with the
EOM-CCSD results compared to CIS/TDHF (the lat-

TABLE IV: (Continue) Difference of the lowest singlet
energy (in eV) from CIS, TDHF, CIS(D), EOM-CC2,

and GF2-BSE against EOM-CCSD for the listed
molecules. In parenthesis, we show the difference of

binding energies calculated for the lowest excitation for
each method against EOM-CCSD.

∆CIS ∆TDHF ∆CIS(D) ∆EOM-CC2 ∆GF2-BSE
CH4 0.44 0.42 0.12 0.08 -1.06 ± 0.18

(0.80) (0.82) (1.11) (1.16) (-0.19)
0.44 0.42 0.12 0.08 -0.94 ± 0.17
0.44 0.42 0.12 0.08 -0.80± 0.17
0.54 0.51 0.15 0.14 -0.87± 0.18
0.53 0.51 0.15 0.14 -0.80 ± 0.18
0.53 0.51 0.15 0.14 -0.72 ± 0.18
0.52 0.49 0.12 0.11 -0.93± 0.18
0.52 0.49 0.12 0.11 -0.82± 0.17
0.44 0.37 0.04 0.07 -0.82 ± 0.17

Error 0.490 0.459 0.122 0.10 0.868
LiF 1.82 1.82 -1.42 -0.93 -0.75± 0.09

(-0.02) (-0.01) (3.23) (2.74) (0.15)
1.82 1.82 -1.42 -0.93 -0.62 ± 0.08
2.05 2.04 -1.63 -1.12 -0.93 ± 0.10
1.56 1.52 -1.07 -0.78 -0.46 ± 0.08
1.58 1.55 -1.15 -0.78 -0.39 ± 0.08
1.54 1.52 -1.18 -0.78 -0.36 ± 0.08
1.78 1.75 -1.32 -1.03 -0.65 ± 0.10
1.68 1.65 -1.43 -1.06 -0.71± 0.10
1.66 1.60 -1.26 -0.81 -0.52± 0.08

Error 1.723 1.698 1.319 0.914 0.600

ter is not shown, but provides similar results to CIS).
Overall, GF2-BSE method performs much better than
CIS/TDHF and for the lower excited state energies it
provides similar results in comparison to CIS(D).

To further analyze the GF2-BSE approach, we have
also calculated the lowest singlet excitation energy for
He dimer. For the lowest two singlets excitations, we find
that the excitation energies are independent of the dis-
tance between the two He atoms for large separation, con-
sistent with previous calculations.65 They are governed
by local excitation of each He atom. The third and forth
excitations are characterized by charge transfer between
the two He atoms and thus, show significant depends on
the separation between the two He atoms, even at large
distances. In Fig. 2 we show that for the charge transfer
state (state number 4), CIS predicts the overall correct
trend, but the magnitude of the excitation energies can
be off by an eV compared to the EOM-CCSD. Indeed,
in Ref. 65, Subotnik points out that CIS (or TDHF) has
a large bias suppressing charge transfer character. Our
G0F2-BSE method provides results for the transfer state
that is in very good agreement with EOM-CCSD results.

V. CONCLUSIONS

We have developed a time dependent second order
Green’s function theory to describe the response of a
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FIG. 1: Excitation energies of a few lowest states for a
list of molecules listed in Table IV and III. We use

EOM-CCSD results as our reference (black line). Note
that GF2-BSE results are in good agreement with

CCSD results, better than CIS and are comparable with
CIS(D) results. EOM-CC2 results (not shown) are very

similar to CIS(D) results. The circles with slashes
denote the lowest 3 singlet energies of the listed

molecules.

many-body molecular system to an external driving force.
In principle, the framework can be combined with the
stochastic resolution of identity to reduce the scaling of
to O(N3) in both the weak and strong driving fields. In
the present work, we have further introduced a linear-
response approach for weak driving fields, which allowed
us to recast the equation of motion for the time depen-
dent second order Green’s function into a frequency do-
main Casida-like equation (GF2-BSE). We find that the
approach provides more accurate vertical excitation en-
ergies compared to the CIS and TDHF and is competi-
tive with CIS(D) for a broad class of molecular systems,
particularly for charge transfer excitations. Moreover,
the GF2-BSE approach provides more accurate binding
energies compared to the other methods, suggesting that
the main source of error in the GF2-BSE approach results
from under/over estimation of the fundamental gaps, im-
plying that the approach provides a reasonably accurate
framework to describe electron-hole correlation in molec-
ular systems. Given the facile route to construct a low-
scaling sGF2 approach to neutral excitations, we believe
GF2-BSE should be the current method of choice for
binding energies in molecules. In addition, with corrected
fundamental gaps, the approach should also be competi-
tive with the most sophisticated approaches for calculat-
ing the location of low-lying excited states as well. Future
work will be devoted to a full sGF2-BSE implementation

2.0 2.5 3.0 3.5 4.0 4.5 5.0
r (Angs)
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FIG. 2: Error of S4 for He dimer using G0F2-BSE, and
CIS as compared to EOM-CCSD.

as well as the reporting of a complete benchmark set of
results for a wide range of molecular systems.
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Appendix A: Evaluation of Σ̃ad(t) and δW̃
R
ikjl(ω)

In this Appendix, we provide more details concerning
the evaluation of Σ̃ad(t) and δW̃R

ikjl(ω) appearing Sec. II
and Sec. III of the main text. The retarded self-energy
in the second order Born approximation is given by Eq.
11. We have also defined δWR

ikjl(t1, t2) and δW>
ikjl(t1, t2)

in Eq. 12. The retarded self-energy given in Eq. (11) has
two terms when Langreth rules are employed. The first
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term can be evaluated at t = 0 to give

Σ̃ad1
ij (t = 0, ω) = i

∑

kl

∫

dω1

2π
δW̃R

ikjl(ω − ω1)G
<
kl(ω1)

= i
∑

kl

∫

dω1

2π
δW̃R

ikjl(ω − ω1)2πiδ(ω1 − Ek)f(ω)δkl

= i
∑

kl

δW̃R
ikjl(ω − Ek)if(Ek)δkl. (A1)

To obtain Σ̃ad1
ij (t, ω) at any time, we replace if(Ek)δkl

by G<(t, τ = 0), such that

Σ̃ad1
ij (t, ω) = i

∑

kl

δW̃R
ikjl(ω − Ek)G

<
kl(t, τ = 0). (A2)

Similar steps can be taken for the second term in Eq. (11),

Σ̃ad2(t = 0, ω) = i
∑

kl

∫

dω1

2π
G̃R

kl(ω − ω1)δW̃
>
ikjl(ω1)

=i
∑

kl

∫ ∞

−∞

dω1

2π

1

ω − ω1 − Ek + iη
δkl2iImδW̃

R
ikjl(ω1)Θ(ω1).

(A3)

In the above, we have used the known relation for
the non-interacting GF, G̃<

mn(t = 0, ω) = i2πδ(ω −
En)f(ω)δmn, as well as the fluctuation-dissipation the-
orem at zero temperature

δW̃>
ikjl(ω1) = 2iImδW̃R

ikjl(ω1)Θ(ω1), (A4)

where Θ(ω1) is a step function. Taking the real part of
the above equation and using the Kramers-Kronig rela-
tionship, we obtain

Σ̃ad2
ij (t = 0, ω)= ℜ

∑

kl

δW̃R
ikjl(ω − Ek)Θ(ω − Ek)δkl

≈
1

2
ℜ
∑

kl

δW̃R
ikjl(0)δkl. (A5)

Similarly, we can evaluate δW̃R
ik,jl(ω) appearing in the

above equations. We first Fourier transform Eq. (12) to
obtain

δW̃R
ikjl(ω) = −i

∑

mnpq

∫

dω1

2π

(

G̃<
mn(ω)G̃

A
qp(ω − ω1)

+G̃R
mn(ω)G̃

<
qp(ω − ω1)

)

vimpk(2vjnql − vjlqn). (A6)

Using the non-interacting Green’s functions, we arrive at
the working expression for δW̃R

ikjl(ω) in Eq.22.
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