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Abstract

There are two types of analytical solutions of temperature/concentration in 
and heat/mass transfer through boundaries of regularly shaped 1‐D, 2‐D, and
3‐D blocks. These infinite‐series solutions with either error functions or 
exponentials exhibit highly irregular but complementary convergence at 
different dimensionless times, . In this paper, approximate solutions were 
developed by combining the error‐function‐series solutions for early times 
and the exponential‐series solutions for late times and by using time 
partitioning at the switchover time, . The combined solutions contain either 
the leading term of both series for normal‐accuracy approximations (with 
less than 0.003 relative error) or the first two terms for high‐accuracy 
approximations (with less than 10−7 relative error) for 1‐D isotropic (spheres, 
cylinders, slabs) and 2‐D/3‐D rectangular blocks (squares, cubes, rectangles, 
and rectangular parallelepipeds). This rapid and uniform convergence for 
rectangular blocks was achieved by employing the same time partitioning 
with individual dimensionless times for different directions and the product of
their combined 1‐D slab solutions. The switchover dimensionless time was 
determined to minimize the maximum approximation errors. Furthermore, 
the analytical solutions of first‐order heat/mass flux for 2‐D/3‐D rectangular 
blocks were derived for normal‐accuracy approximations. These flux 
equations contain the early‐time solution with a three‐term polynomial in  
and the late‐time solution with the limited‐term exponentials for rectangular 
blocks. The heat/mass flux equations and the combined 
temperature/concentration solutions form the ultimate kernel for fast 
simulations of multirate and multidimensional heat/mass transfer in 
porous/fractured media with millions of low‐permeability blocks of varying 
shapes and sizes. 

1 Introduction

The fundamental analytical solutions for heat conduction and solute diffusion
in regularly shaped porous‐medium blocks have been available for different 
boundary and initial conditions (Carslaw & Jaeger, 1959; Crank, 1975; Hahn 
& Ozisik, 2012; Holman, 1990). For one‐dimensional (1‐D) 
conduction/diffusion in slabs, cylinders, and spheres, the solutions of 
temperature/concentration contain an infinite series of trigonometric and 
exponential functions developed by either the method of separation of 
variables or the Laplace transformation. This exponential‐series type of 
solution converges super‐slowly for very small dimensionless times, i.e., the 



Fourier Number, , but satisfactorily for moderate and large . The second 
type of solution contains an infinite series of error functions or error‐function 
complements. This type of solution is obtained using the Laplace transform 
with the expansion in negative exponentials (Crank, 1975). The second type 
of solution converges quite rapidly for all except large . Crank (1975) 
focused on the complementary convergence properties and numerical 
evaluation of both types of series solutions separately. However, fast 
evaluation of combined solutions over the entire time domain for  is 
needed for practical numerical simulations of heat and mass transfer in 
porous and fractured media.

For 2‐D and 3‐D rectangular blocks (rectangular corners, rectangles, 
rectangular parallelepipeds, squares, cubes), the multidimensional 
temperature/concentration solutions are the product of 1‐D slab solutions in 
the different directions, as long as their initial condition can be written in 
terms of the product of 1‐D initial conditions (Carslaw & Jaeger, 1959; Crank, 
1975; Newman, 1936). The convergence of the exponential‐series solutions 
is extremely poor at small  because of the multiplication of two or three 
infinite series. One method for improving convergence is to develop 
alternative Green's functions (for the response at a location caused by a 
point source of heat at a different location) with numerical and analytical 
integration (Beck & Cole, 2007; Beck et al., 2008; Cole & Yen, 2001; 
Crittenden & Cole, 2002). The other method is the so‐called time‐partitioning
method, in which the time interval of integration is partitioned into short and 
long‐time subintervals where the Green's functions are approximated by 
their small and large‐time representations (Beck et al., 1992, 2004, 2006; 
McMasters et al., 2002; Yen et al., 2002). Both methods can have very high 
accuracy of approximation, relatively efficient calculations, and flexibility in 
handling the first, second, and third types of boundary conditions, as well as 
internal heat generation. However, both methods are complicated and may 
not meet the computational efficiency required for modeling heat and mass 
transfer in the subsurface with millions to billions of low‐permeability 
aggregates and matrix blocks, whose local boundary conditions are simple 
and homogeneous.

Following the two types of fundamental solutions of dimensionless heat/mass
transferred through block boundaries (Crank, 1975), Zhou et al. (2017) 
developed the unified‐form heat/mass flux equations to greatly simplify the 
calculations of cumulative and transient diffusive flux through boundaries of 
1‐D isotropic and 2‐D/3‐D rectangular blocks for . The flux equation 
contains the early‐time solution with a three‐term polynomial in  and the 
late‐time solution with the leading term of the infinite exponential series for 
slabs, cylinders, and spheres. The switchover dimensionless time was 
determined for each shape of these isotropic and 2‐D/3‐D anisotropic blocks 
to minimize the maximum approximation errors, which were less than 0.2%. 
For rectangular blocks, the coefficients of the polynomial depend only on 
dimensionless area‐to‐volume ratio and aspect ratios. The late‐time solutions



follow the truncated exponential series, the number of which depends on the
degree of geometric anisotropy of the blocks. The format and the coefficients
of the early‐time solutions for rectangular blocks were obtained by fitting the
exact exponential‐series solutions for different aspect ratios. However, 
rigorous mathematical derivation is needed to promote the applications of 
these flux equations to the broader heat/mass transfer community. In 
addition, for highly anisotropic rectangular blocks, uniform convergence is 
needed to make the analytical solutions practical for use in large‐scale 
numerical modeling applications.

Possibly because of the lack of the heat/mass flux equations for 2‐D and 3‐D 
blocks, only 1‐D equations have been used to couple local 
conduction/diffusion in low‐permeability aggregates and matrix blocks (slabs,
cylinders, and spheres) with global advection and dispersion in high‐
permeability channels or fractures for analytical modeling of heat/mass 
transfer in the subsurface porous or fractured media. The exact solutions 
over the entire time domain have been obtained by using the Laplace 
transform for modeling pressure propagation in aquifer‐aquitard systems and
fractured reservoirs (e.g., Cihan et al., 2011; Moench, 1984; Zhou et al., 
2009), solute and tracer transport in fractured reservoirs (e.g., Becker & 
Charbeneau, 2000; Carrera et al., 1998; Maloszewski & Zuber, 1985, 1990, 
1993; Moench, 1989, 1991, 1995; Reimus et al., 2003; Sudicky & Frind, 
1982; Tang et al., 1981; Zhou et al., 2006, 2007), and heat transfer in 
fractured reservoirs (e.g., Jung & Pruess, 2012; Lauwerier, 1955). The 
simplification of 2‐D and 3‐D aggregates and matrix blocks to 1‐D might 
produce large simulation errors for hydraulic, solute, and thermal diffusion 
(e.g., van Genuchten & Dalton, 1986). Furthermore, the moderate and large‐
time behavior of solute diffusion or back‐diffusion has often been handled by 
truncating the exponential series in the time domain (Haggerty & Gorelick, 
1995; Haggerty et al., 2000, 2001, 2004; Silva et al., 2009; Willmann et al., 
2008) or by using first‐order dual‐porosity models (Barenblatt et al., 1960; 
Brusseau et al., 1989; Coats & Smith, 1964; Guan et al., 2008; Pruess & 
Narasimhan, 1985; van Genuchten & Wierenga, 1976; Warren & Root, 1963; 
Zhou et al., 2017), without consideration of the early‐time behavior. 
Therefore, the fundamental heat/mass flux equations for 2‐D/3‐D rectangular
blocks are needed for accurate modeling of subsurface heat and mass 
transfer.

In this paper, we combine the error‐function‐series and exponential‐series 
solutions of temperature/concentration and heat/mass flux to form 
approximate solutions that are fast‐converging and continuous over the 
entire time domain. The time partitioning between the early and the late‐
time solutions using a switchover dimensionless time results in normal‐
accuracy approximations (less than 0.003 relative error) with the leading 
term of both series and high‐accuracy approximations (less than  relative 
error) with the first two terms of both series. Rapid and uniform convergence
is achieved using the optimally determined switchover time for 1‐D isotropic 



blocks. For 2‐D and 3‐D rectangular blocks, this convergence is achieved 
using the product of the combined solutions of 1‐D slab in all directions, with 
the time partitioning based on their own dimensionless time. Alternatively, 
the leading term for the early‐time solution of the combined heat/mass flux 
equations is a three‐term polynomial in  for each shape of blocks. The 
coefficients of this polynomial are either available for 1‐D isotropic blocks in 
the literature (Crank, 1975; Zhou et al., 2017) or derived for 2‐D/3‐D 
rectangular blocks in this research. For the latter, the derived coefficient only
depends on the dimensionless area‐to‐volume ratio and aspect ratios, 
showing the physical insights into the effects of block geometry on the early‐
time solutions. These combined flux equations for conduction/diffusion in 
multidimensional blocks can be easily used to couple with large‐scale 
heat/mass advection and dispersion for analytical and numerical modeling. 
This coupling will be demonstrated in two companion papers, with multirate 
(to represent effects of different block shape and size) and multidimensional 
(to represent the different sets of fractures and corresponding matrix blocks)
diffusion, for modeling pressure propagation, heat flow, and solute transport 
in the subsurface and beyond the scope of this technique report. Here, we 
present the derivation of the combined early and late‐time 
temperature/concentration and heat/mass flux equations followed by some 
illustrative example calculations.

2 Fundamental Solutions for Temperature Distributions

Heat conduction in solid blocks, heat conduction in porous‐medium blocks, 
solute diffusion in porous‐medium blocks, and solute diffusion in fluid‐filled 
blocks share the same forms of solutions of temperature/concentration when
dealing with dimensionless time and spatial variables, regardless of the 
specific definitions of the thermal/solute diffusivity ( ) and their orders of 
magnitude difference. In what follows, we focus on heat conduction and 
transfer in solid and porous‐medium blocks.

In this section, we are interested in the solutions of the temperature 
distributions in various geometrically isotropic (sphere, cylinder, slab, 
square, cube) and anisotropic (rectangle and rectangular parallelepiped) 
blocks that are assumed to be of homogeneous and isotropic thermal 
properties (e.g., thermal conductivity). For each block shape, we list the two 
standard types of solutions: an infinite error‐function series and an infinite 
exponential series, and then develop combined solutions over the entire time
domain by taking advantage of the fast convergence of both series in their 
respective time regimes.

2.1 Temperature Solutions for 1‐D Isotropic Blocks

For a 1‐D isotropic block (slab, sphere, cylinder), the block has a half‐spacing
or radius of , a uniform initial temperature of  and a constant surface 
temperature of  at . The block center at  has a no‐flow condition. Let us
introduce two dimensionless primary variables:



(1)

where  is the single spatial variable,  is the time, and  is the thermal 
diffusivity of the block. Let us also introduce two dimensionless dependent 
variables:

(2a)

(2b)

where  is the temperature,  is the dimensionless temperature, and
 is the dimensionless cumulative heat transferred through the block 

boundary at the time .  denotes the total amount of heat that has entered 
the block from its boundary at time t, and  denotes the corresponding 
quantity after infinite time.  also represents the dimensionless average 
block temperature or dimensionless cumulative heat flux, while  is the 
block average temperature.

The governing equation for heat conduction using the dimensionless 
variables can be written (Haggerty & Gorelick, 1995):

(3a)

where  denotes the dimensionality of the block, with  representing 
slab, cylinder, and sphere, respectively. The boundary conditions are

(3b)

(3c)

For equation (3), the first type of solution of temperature distribution 
contains an infinite trigonometric‐exponential series for slabs and spheres or 
an infinite Bessel‐function‐exponential series for cylinders, which can be 
obtained using the method of separation of variables (Carslaw & Jaeger, 
1959; Crank, 1975). These solutions for slab‐like, spherical, and cylindrical 
blocks are, respectively:

(4a)

(4b)

(4c)

where  and  are the Bessel function of the first kind of the zero and first‐
order, respectively, and  are the zeros of .

The second type of solution for spheres and slabs contains an infinite series 
of error functions or error‐function complements. These solutions are 
obtained using expansion in negative exponentials (Crank, 1975, p. 22) and 
can be interpreted as reflection and superposition using the basic similarity 



solution. This similarity solution for a semi‐infinite slab is  with
 as the 1‐D dimensionless coordinate starting at the fixed‐temperature 

boundary. (Note that the similarity solution is independent of the scaling of  
in  and , but the superposed solutions is dependent on such a scaling. A 
reflected front is a leading edge of diffusion that encounters a no‐flow 
boundary and stops propagating in that direction and reflects backward.) The
solution for cylinders that is obtained using the asymptotic expansion of the 
Bessel functions is complicated. The temperature solutions for slab‐like, 
spherical, and cylindrical blocks are, respectively:

(5a)

(5b)

(5c)

where ierfc() is the integral error function (Crank, 1975, p. 200). Note that 
equation (5c), does not contain terms corresponding to multiple reflections 
(Carslaw & Jaeger, 1959, p. 330). The solutions at the center ( ) of 
spherical and cylindrical blocks are, respectively, written

(5d)

(5e)

where  is the modified Bessel function of the second kind of a positive 
order of ¼.

The exponential‐series solutions in equation (4) converge satisfactorily for 
moderate and large , while the error‐function‐series solutions in equation 
(5) converge quite rapidly for all except large . Based on the 
complementary convergence behaviors of these two types of solutions, we 
proposed combining the early‐time solutions based on equation (5) and the 
late‐time solutions based on equation (4) that are continuous at the 
switchover dimensionless time for temperature ( ).  of the time 
partitioning is determined to minimize the maximum approximation errors 
throughout the entire time domain, as shown below.

The unified‐form combined temperature solutions for slabs, spheres, and 
cylinders can be written



where  and  are the sign parameters for the two error functions, 
respectively, determined by comparing with equation (5),  and  are the 
capacity ratios and rate coefficients of the late‐time temperature solutions,

 is the separated spatial solution in terms of , and  is the number of the 
leading terms used for both the early and late‐time solutions. For cylinders, 
the early‐time solution is represented by the first three terms in equation 
(5c) with =1.

Convergence behavior of both types of solutions and the combined solutions 
for slabs, spheres, and cylinders are presented in Figure 1. For slabs and 
spheres, the error‐function‐series solution with  (the first 10 terms) and 
the exponential‐series solution with  produce the exact solution over 
the time domain . For slabs, for example, the error‐function‐series 
solution with  is the exact solution (acting like in a semi‐infinite domain 
without reflections) until the temperature front reaches the point of interest. 
The arrival time at the block center with  is . The solution with 
multiple reflections with  produces the same accuracy at the block 
center at , respectively. Indeed, at  with ,

 with seven digits of significance. This indicates the error‐function‐
series solutions converge rapidly at small and moderate . The exponential‐
series solution with  is also exact for  with seven digits of 
significance. This indicates that this type of solution is suitable for 
investigating the late‐time behavior of back‐diffusion in contaminant 
transport with high accuracy (e.g., Haggerty et al., 2000, 2004). Similar 
behavior of convergence is observed for spheres (see Figures 1c and 1d). For
cylinders (see Figures 1e and 1f), only the normal‐accuracy approximation is 
shown because the exact error‐function‐series solution is not available.



Figure 1

Comparison of (left plots) convergence between the error‐function‐series and the exponential‐series 
solutions with different terms of both series, and (right plots) relative approximation errors of these 
two solutions and the combined solutions with  and 2 (relative to the exact solutions calculated 
using the exponential series with ) for (a) and (b) slab‐like, (c) and (d) spherical, and (e) and 
(f) cylindrical blocks. In all subplots, . The symbols in Figures 1b and 1d denote 
the relative approximation errors at the switchover dimensionless times.

For the combined solution for slabs, in the case of  (i.e., the leading term 
in the early and late‐time solutions), the maximum approximation errors in 
percent are 0.304, 0.102, 0.139, and 0.294 at  respectively, 
for  that is selected to minimize the maximum relative approximation 
errors (see Figure 1b). The same  is used for all  values, as  varies only 
slightly from 0.25 to 0.32 for . This accuracy is sufficient for all 
applications of heat transfer in the subsurface. When a higher accuracy is 
needed,  can lead to relative approximation errors less than  with



. This rapid and uniform convergence behavior of the combined 
solution can be attributed to the rapid convergence of the two types of 
solutions in their respective time regimes. A similar convergence behavior of 
the combined solution for spheres is also observed in Figure 1d, with  
for  and 0.24 for .

The switchover dimensionless time is 0.27 and 0.28 for slabs and 0.21 and 
0.24 for spheres for the normal and high‐accuracy approximations with  
and 2, respectively. These  values are determined to minimize the 
maximum approximation errors using both early and late‐time solutions. 
Heisler (1947) used  to control approximation errors less than 1% for 
slabs, spheres, and cylinders. Only the leading term in equation 4a was used 
to derive the late‐time solution for  and plot the results in the classic 
Heisler charts (Hahn & Ozisik, 2012; Holman, 1990), while the solution for

 was obtained by a means of an electrical analogy, rather than the 
error‐function‐series solutions in equation (5). A dimensionless time of 0.05 
was used to partition the time interval of integration for Green's functions 
into short and long‐time subintervals where the Green's functions were 
approximated by their small and large‐time representations; the time‐
partitioning method can have at least eight digit accuracy for the short‐time 
Green's functions (Beck et al., 2004, 2006; McMasters et al., 2002; Yen et al.,
2002). This method was developed to integrate the very fundamental 
Green's functions of point source to account for various boundary conditions 
and internal heat generation. Our time‐partitioning method is significantly 
simpler and takes advantage of the fast convergence of the existing two 
types of solutions in their respective time regimes; the normal and high‐
accuracy approximation can be easily achieved using  and 2, 
respectively, with uniform convergence clearly demonstrated in Figure 1.

2.2 Temperature Solutions for 2‐D and 3‐D Rectangular Blocks

For 3‐D rectangular parallelepipeds with three coordinates , we 
introduce the half‐widths , the aspect ratios , and the dimensionless area‐
to‐volume ratio :

(7a)

where A,  and  are the boundary area, volume, and minimum half‐width of 
the blocks. We introduce the dimensionless spatial variables and the 
dimensionless times

(7b)

Note that  is always written in terms of the minimum half‐width. The 
same definitions hold for 2‐D rectangular blocks.

It is well‐known that the temperature solution for a 1‐D slab, a 2‐D rectangle,
and a 3‐D rectangular parallelepiped can be written in a generalized product 
form (e.g., Crank, 1975, p. 25)



(8a)

where  is the dimensionality of the blocks (  for slabs,  for rectangles,  
for rectangular parallelepipeds), and  is the 1‐D slab temperature 
solution for the case with a unit initial temperature and zero boundary 
temperature, which is complementary to the solution in equations 4a or (5a) 
in the form .

For numerical evaluation, we first consider the 1‐D slab complementary 
solution in each direction independently, and then calculate the early and 
late‐time solutions in that direction using the time partitioning with its own 
dimensionless time ( ) and the same switchover dimensionless time  for 
slabs as follows:

We finally perform the multiplication of the calculated solutions for all the 
directions using (8a).

In equation (8), we can minimize the number of leading terms and use  or
2 for both the early and late‐time solutions in each direction. A uniform 
convergence is achieved, with  for normal‐accuracy and  for high‐
accuracy approximations, in the entire time domain, as well as in the 
multidimensions. Note that the first type of exponential‐series solution 
contains equations 8a and (8c) while the second type of error‐function‐series
solution contains equations 8a and (8b), both for  and the entire time 
domain without time partitioning.

As shown in Figures 2a and 2d, the convergence of equation (8a) with the 
complementary error‐function‐series slab solution in equation (8b) alone is 
rapid for the entire time domain as  is sufficient to reproduce the exact 
solutions for a rectangle with  and a rectangular parallelepiped with

 and . The convergence of equation (8a) with the complementary 
trigonometric‐exponential‐series solution in equation (8c) alone is very slow 
as  is needed for the time range . As shown in Figures 2b and 
2e, the leading term and the first two terms of these two types of solutions in
equations (8b) or (8c) for both example blocks produce less accurate 
approximations than for the 1‐D slab (see Figure 1b). This disparity becomes 
worse for strongly anisotropic blocks with a smaller  and a higher 
dimension. For both example blocks, the convergence of equation 8a with 
the combined complementary solutions is rapid and uniform as only  or 2 
is needed to achieve relative approximation errors less than 0.003 or (see 
Figures 2c and 2f). Again  is used for  and  is used for  for 
the slab in each direction. This convergence behavior of 2‐D and 3‐D 



rectangular blocks is very similar to that of 1‐D slab (see Figure 1b), 
indicating that there is no loss of convergence speed and approximation 
accuracy by the higher dimension. This rapid and uniform convergence for 2‐
D/3‐D rectangular blocks can be attributed to the time partitioning between 
the early and late‐time solutions using ( ) in each direction to avoid the 
effect of block anisotropy.

Figure 2

Convergence of (first row) the exact solutions with the error‐function‐series and the exponential‐series,
and (second row) the relative approximation errors of both series and of the combined solution with 
uniform convergence (third row) with the leading term ( ) and the first two terms (  for both a 
rectangle with (left)  and a rectangular parallelepiped with (right)  and .

The advantage of the combined solution in equation 8a is demonstrated by 
comparing to the alternative solution using the time partitioning, with ( , ),
between the early‐time or the late‐time solution for all directions:



where  and  are the number of leading terms for the ith direction that are
kept for the early and late‐time solutions, respectively. Following the specific 
arrangement of the  directions, we have ; this means  may 
be sufficient for normal and high‐accuracy approximations for 2‐D and 3‐D 
rectangular blocks. For the late‐time solutions, we have  because of
the effect of  on the exponentials in equation (9b). The convergence pattern
of equation (9b) is highly irregular for strongly anisotropic rectangular blocks
with . For example, for a rectangle with , ; at  for the  
direction, we have  at which the early‐time solution is extremely 
accurate with , but the late‐time solution has a relative approximation 
error of 0.21% at the block center even using . This convergence 
irregularity is caused by the irregular time partitioning at , and 
decreases with the reduction in block anisotropy. Only for squares and 
cubes, , and the alternative solution is identical to the 
combined solution in equation (8), with a uniform convergence.

3 Fundamental Cumulative and Transient Heat Flux Equations

For many applications of heat transfer, we may not be interested in the 
temperature distribution inside a block, but only interested in the heat flux 
through the boundary of the block. This heat flux can be considered as a sink
or source to large‐scale heat advection and dispersion through fracture 
networks, for example. Zhou et al. (2017) developed the unified‐form flux 
solutions, with normal‐accuracy approximations, for 1‐D isotropic blocks 
(slabs, spheres, cylinders) by combining their two types of leading‐term 
solutions with time partitioning. They extended the unified‐form solutions to 
2‐D/3‐D rectangular blocks by fitting the early‐time solution (i.e., a three‐
term polynomial in terms of ) using the exact exponential‐type solutions 
for many combinations of aspect ratios.

In this section, we first focus on both normal and high‐accuracy flux solutions
for 1‐D slab‐like and 2‐D/3‐D rectangular blocks, using the product of the 
combined 1‐D slab solutions with the time partitioning based on ( ,  in 
each direction, where  is the switchover dimensionless time for heat flux. 
This product form of flux solutions is useful in calculating the cumulative and 
transient flux because the rapid and uniform convergence is achieved 
regardless of the degree of block anisotropy. We then derive new early‐time 
solutions for 2‐D/3‐D rectangular blocks, with solution coefficients linked to 
dimensionless area‐to‐volume ratio and aspect ratios. The second, 
nonproduct form of first‐order heat flux equations with these early‐time 
solutions and late‐time exponential solutions, using the time partitioning 



based on ( , , can be easily used to couple large‐scale heat advection and 
dispersion. Both the dimensionless cumulative flux equations and the 
transient flux equations are presented.

3.1 Flux Equations With Rapid and Uniform Convergence

Similarly, for 1‐D/2‐D/3‐D temperature solutions, the cumulative flux for 1‐D 
slab‐like and 2‐D/3‐D rectangular blocks can be written as a product of the 
complementary flux ( ) of 1‐D slabs in the different directions. The two 
types of standard solutions can be written, respectively, in a generalized 
product form:

(10a)

(10b)

(10c)

Note that  shows the complementary relationship between the 
case with unit boundary temperature and zero initial temperature and the 
complementary case with zero boundary temperature and unit initial 
temperature.

The unified‐form flux equations for 1‐D/2‐D/3‐D blocks can be written with 
the combined complementary flux solutions:

(11a)

The switchover dimensionless time for slabs can be determined by 
comparing equations 5a and 10c to the semi‐infinite solution, .

The effect of the central no‐flow boundary at  on the flux is negligible for
 for slabs. Indeed,  is the arrival time of the temperature front 

(reflected by the no‐flow boundary) back to the constant‐temperature 
boundary at , with a temperature of 0.0022. This means that before the 
reflected front arrives at the constant‐temperature boundary, the slab flux 
solutions are equal to the semi‐infinite ones. At , the approximation 
error is less than 0.153%.

As shown in Figures 3a and 3b for slabs, the convergence of the exponential‐
series solution by equations 10a and 10b and of the error‐function‐series 
solution by equations 10a and 10c is not satisfactory for the early times and 



the late times, respectively. The maximum approximation error of the 
combined solution with equation (11) is 0.15%, when  is used with  
(Zhou et al., 2017). For the high‐accuracy approximation with , the first 
integral‐error‐function term on the right‐hand side of equation (11b), which is
the contributions from the first reflection, is needed as well as one additional 
exponential term in equation (11c). The switchover dimensionless time for 
slabs with  is determined to be 0.254 and the maximum relative 
approximation error is reduced dramatically to less than . This fast and 
uniform convergence of the combined solution is clearly shown in Figure 3b, 
along with the irregular convergence of the two types of fundamental 
solutions.

Figure 3

(left) Comparison of the convergence and (right) relative approximation errors of the error‐function‐
series, exponential‐series, and combined solutions for heat flux with different terms (N) for (a) and (b) 
1‐D slab and (c) and (d) 2‐D/3‐D rectangular blocks (a rectangle with  in red lines and symbols 
and a rectangular parallelepiped with  in blue lines and symbols).

Figures 3c and 3d show the convergence and the relative approximation 
error of the error‐function‐series, exponential‐series, and combined solutions 
for a rectangle with  and a rectangular parallelepiped with  and

. The error‐function‐series solution with  and the exponential‐series 
solution with  in each direction are needed to reproduce the exact 



solutions over . With  or 2, the relative error of the error‐function‐
series solutions slightly decreases from slab, while that of the exponential‐
series solutions increases dramatically for the two example blocks because 
of the block anisotropy. The relative error of the combined solutions is less 
than 0.001 for both blocks with  and  and less than  with  
and . These relative errors are even smaller than those (0.0015 and 9

) for slabs. Note that the first peak in the relative approximation errors 
of the combined solutions for each example block at  for  and 0.254 
for  corresponds to the highest relative errors at the partitioning times in 
the  direction; the second peak at  for  and 1.016 for  
corresponds to the partitioning times in the  direction.

The fast and uniform convergence of the developed flux equations in 
equation 11a is achieved using  for the first‐order normal‐accuracy 
approximations and  for the high‐accuracy approximations, regardless of 
the degree of block anisotropy. This convergence behavior can be attributed 
to the time partitioning between the early and late‐time solutions in the ith 
direction that is based on the comparison between  and  for slabs. Note 
that the upper limits of the summation for the integral‐error‐function terms 
in equation (11b) and for the exponentials in equation (11c) are  and , 
respectively.

Based on the cumulative flux equations in equation (11) with , we can 
obtain the first‐order, dimensionless transient heat flux of a single unit‐
volume block, , per unit temperature change at its boundary written:

(12a)

The first, product form of flux equations, equations (11) and (12), are very 
efficient for numerical calculations because of rapid and uniform 
convergence with  or 2. However, they may not be convenient for coupling
with global heat advection and dispersion in fracture networks because the 
Laplace transforms of equation (12) is complicated.

3.2 Flux Equations With Physical Insights

The second, nonproduct form of flux equations has the unified‐form solutions
for isotropic and anisotropic blocks (Zhou et al., 2017):



where , , , ,  are the first‐order solution coefficients,  are the 
higher‐order terms that represent multiple reflections, and  is the number of
truncated exponential terms in equations 10a and 10b. The same time‐
partitioning method with a switchover time has been used by others (e.g., 
Dykhuizen, 1990; Heisler, 1947; March et al., 2016; Zhang et al., 2011) to 
take advantage of the satisfactory convergence of different solutions in their 
respective time regimes.

For rectangles and rectangular parallelepipeds, the first‐type, exponential‐
series flux solutions (Carslaw & Jaeger, 1959; Crank, 1975; Lim & Aziz, 1995; 
Zhou et al., 2017) can be written in terms of dimensionless time :

(14)

The convergence of this exponential‐series solutions is only satisfactory for 
moderate and large  and is affected by block anisotropy with small .

The second‐type, error‐function‐series flux solutions for rectangles and 
rectangular parallelepipeds for small and moderate  are not available in the 
literature. We derive these solutions using the error‐function temperature 
solutions for 1‐D slabs (see Appendix Appendix A), which are written, 
respectively:

(15a)

(15b)

Note that only the leading error‐function term in equation (8b) is used to 
simplify the derivation of equation (15). Unlike equation 14, these solutions 
are valid only for small to moderate .

As shown by the two types of flux solutions in equations 14 and (15), the 
unified‐form cumulative flux equations, equation (13), can still hold for 2‐D 
and 3‐D rectangular blocks, without the higher‐order terms. By comparison, 
the first‐order solution coefficients of both the early‐time and the late‐time 
solutions in equation (13) for a 2‐D rectangular block can be written:

(16a)

(16b)

(16c)

Note that Zhou et al. (2017) obtained equation (16a) with  by 
fitting equation (13a) for  to the exact exponential‐series solutions in 
equation 14, calculated using the first  terms, with different values 



of aspect ratio . Both the mathematical derivation and the solution 
fitting produce almost identical results for .

The solution coefficients for a rectangular parallelepiped can be written:

(17a)

(17b)

(17c)

Note that Zhou et al. (2017) obtained equation (17a) with
 and  by fitting equation (13a) for  and

 to the exact exponential‐series solutions in equation 14, calculated using 
the first  terms, with different values of aspect ratio pair (

). Again, both methods produce very close  and  with the same forms 
of correlations with the aspect ratios.

For both 2‐D and 3‐D rectangular blocks, the number of exponential terms ( 
) needed for the late‐time solutions in equation (13b) can be determined 
practically using

(18)

where  is a cutoff, depending on the degree of anisotropy. For example,
 for , while  is needed for  to control the relative 

error below 0.5% for a rectangle with .  is needed for highly 
anisotropic rectangles with  and  is needed for a highly anisotropic
rectangular parallelepiped with . On the other hand,  is 
needed for squares and cubes. The switchover dimensionless time for flux for
slabs, squares, and cubes is 0.213, 0.215, and 0.229, respectively, while that
for both rectangles and rectangular parallelepipeds is 0.22 (see Table 1 in 
Zhou et al., (2017)).

The second, nonproduct form of dimensionless transient heat flux can be 
written from equation (13):

(19)

Regarding the physical meaning of the coefficient , we note that as derived 
in Appendix Appendix A,  represents the cumulative heat flux assuming 
the entire block surface acts like a semi‐infinite block without interference at 
block corners. ( ) depends only on the dimensionless area‐to‐volume 
ratio ( ), which is 1, , and  for a slab, a rectangle, and a 
rectangular parallelepiped, respectively. For a rectangle, the interference 
accounts for  in the cumulative heat flux, i.e., a time‐constant heat 
flux of  that is negligible at a very small  in comparison with the 



. For 1‐D slab‐like and 2‐D/3‐D rectangular blocks, the first term in equation 
(13a) is dominant at very early time (e.g., ). The measured early 
cumulative heat flux can be used to estimate coefficient  for the 
dimensionless area‐to‐volume ratio, and contains information on the 
dimensionality (e.g.,  for slab, square, and cube) of the block. 
Theoretically, the entire profile of  with respect to  has to be used to 
estimate heat transfer area per unit volume of fractured rock and the aspect 
ratios, as well as the block dimensionality and anisotropy.

In the second, nonproduct form of flux equations, equations (13) and 19, the 
convergence of the late‐time solution is irregular for highly anisotropic blocks
and truncated exponentials with  are needed. However, the physical 
insights are provided by linking the coefficients of the early‐time solution to 
the dimensionless area‐to‐volume ratio and aspect ratios, and by linking the 
rate coefficients in the late‐time solutions to the aspect ratios. This form of 
flux equations is useful in (1) inverse modeling to estimate the dimensions, 
aspect ratios, and heat transfer area of the blocks, and (2) coupling local 
heat conduction in blocks with global heat advection and dispersion through 
high‐permeability channels or fractures.

3.3 Multirate Heat Flux

For a representative porous‐medium mass that consists of k blocks of 
different shapes and different sizes, with a minimum half‐width  and volume 
fraction , we can write the dimensionless cumulative heat flux, 
similar to the single‐block case, as

(20a)

Let us examine the fracture‐matrix heat flux, , per unit volume of water‐
saturated fractured media with fracture volumetric fraction  and matrix 
fraction . It is assumed that the k blocks of different shapes and different 
sizes also have different intrinsic porosity  and thermal diffusivity . The 
total heat stored in these matrix blocks per unit volume of fractured media at
time t is

(20b)

and

(20c)

where  is the internal heat,  is the density,  is the specific heat, and 
subscripts  and  denote the grain and water, respectively.

The heat flux between surrounding fractures and these blocks per unit 
volume of fractured media is written



(20d)

4 Examples of Numerical Evaluation

4.1 Temperature Solutions

Here the approximate solutions in equations (6) and (8) developed above 
with time partitioning are used for the numerical evaluations of temperature 
distributions in a slab, a sphere, and a cylinder, and in rectangles and 
rectangular parallelepipeds with different aspect ratios (including a square 
and a cube), respectively. The three aspect ratios for rectangles are

, while the three pairs of aspect ratios for rectangular 
parallelepipeds are . The grids for calculating 
dimensionless temperature have 201 logarithmically spaced dimensionless 
times in the range  and 201 linearly spaced spatial variables .

Figure 4 shows the contours of dimensionless temperature calculated using 
the developed approximate solutions with  and high accuracy for the 
isotropic blocks over the time and space domains, and rectangular blocks 
over the spatial domain at three selected times ( ). As shown in
Figures 4a–4c, the developed approximate solutions can capture the 
dimensionless temperature for  and the arrival times at the block 
center and various locations. For example, the arrival time of  at the 
slab center is . Figures 4d–4f show the contours of dimensionless 
temperature at three different times for three rectangles with ,
respectively. At , the profile of  from the fixed‐temperature boundary 
to the temperature front looks like that for a slab, except at the rectangular 
corner. At later time, the temperature over the entire domain is affected by 
the temperature profiles in different directions. The highly anisotropic 
rectangle with  acts like a slab more than the isotropic square. Clearly, 
the aspect ratio has a significant effect on the temperature distributions. As 
shown in Figures 4g–4i, the aspect ratio in the third dimension also affects 
the temperature solution significantly at all of the three times. This indicates 
that heat conduction in 2‐D/3‐D rectangular blocks cannot be approximated 
using that in 1‐D slabs.



Figure 4

(a)–(c) Contour of dimensionless temperature ( ) over the domain (  for isotropic blocks (slab, 
cylinder, and sphere), (d)–(f)  contour over 2‐D rectangles (  at , and (g)–(i)  
contour over 3‐D rectangular parallelepipeds (  with  at . Note that the 
contour lines and their labels for the three rectangles with  1.0 (in blue lines), 0.5 (in red), and 0.2 
(in black) and the three parallelepipeds with  (1.0, 1.0) (in blue), (0.5, 0.2) (in red), and (0.2, 
0.1) (in black).

The temperature solution in 1‐D slabs, 2‐D rectangles, and 3‐D rectangular 
parallelepipeds can be easily calculated using equation (8a–c) with high 
computational efficiency and accuracy. These solutions can support the 
refinement of numerical schemes (e.g., dual‐porosity and multiple 



interacting continuum [MINC] models), without the need of high‐resolution 
numerical modeling (Cai et al., 2015; Lim & Aziz, 1995; Pruess & 
Narasimhan, 1985; Rubin, 2010).

4.2 Heat Flux Solutions

The flux equations in equation (11) and equation (13) with (16) or (17) are 
used for numerical evaluation of dimensionless cumulative flux for 1‐D slab‐
like and 2‐D/3‐D rectangular blocks with the same aspect ratios used for the 
temperature solutions. The flux equations in equations (12) and 19 with  
are used to calculate the dimensionless transient flux for the same blocks, 
along with equations (12a) and (10a, 10b) for the exponential‐series solution 
alone with . All produce the same calculated transient flux over  [

, 10]. Figure 5a shows the calculated dimensionless cumulative flux for all 
of these blocks, showing that the aspect ratios have significant effects on the
calculated flux. Figures 5b and 5c show the dimensionless transient flux that 
varies over six orders of magnitude in the dimensionless time range [ ]. 
Figure 5d shows that the maximum approximation error for a high‐
dimensional matrix block using a lower‐dimensional one is less than 1.0% 
when the extradimension has an aspect ratio less than 0.01. For the aspect 
ratio of 0.1, the maximum approximation error can be as high as 10.0%. The 
maximum approximation error is calculated for the time domain [ , 10]. 
Indeed, this relative error can be easily estimated using the flux equations 
directly. Practically, for an aspect ratio of 0.01, the corresponding dimension 
can be neglected for heat flux calculations.



Figure 5

(a) Dimensionless cumulative flux ( ), and (b) and (c) dimensionless transient flux ( ) calculated 
using the combined solutions with time partitioning for 1‐D slab‐like and 2‐D/3‐D rectangular blocks 
with different aspect ratios, and (d) relative approximation error in  for a rectangle with small  
using a slab solution and for rectangular parallelepipeds with different  and a small  using 
rectangle solutions. Note that Figure 5b is in the log‐linear scale and Figure 5c is in the log‐log scale.

4.3 The Process of Equilibration

In this application, we are interested in the process of equilibration between 
an inner matrix block (immobile zone) and its surrounding high‐permeability 
channel (mobile zone or fracture) whose outer boundary is impervious to 
hydraulic, thermal, and solute diffusion. The volumes of the immobile and 
mobile zones are denoted by  and , respectively, and their volume ratio by

. For simplification, it is assumed that both the mobile and immobile 
zones have the same properties (e.g., porosity, grain density, and specific 
heat) with the same diffusivity and the former is well‐mixed. For the thermal 
equilibrium between the mobile and immobile zones, a unit temperature 
change is introduced initially to the mobile zone, while the immobile zone is 
of initial temperature of 0. The governing equation for the dimensionless 
mobile‐zone temperature ( ) can be written

(21a)



where  is the dimensionless average temperature of the immobile zone. 
The thermal equilibration leads to time‐dependent mobile‐zone temperature,

, whose equilibrium value is . Time convolution is used to calculate the 
average immobile‐zone temperature:

(21b)

Note that  and  are the dimensionless cumulative and transient heat flux 
with fixed boundary temperature of unity that can be calculated directly 
using the flux equations in equation (11) or (13) and equation (12) or (19), 
respectively. Equation (21b) can also be written in the Laplace domain.

Figure 6 shows the time‐dependent dimensionless temperature in the mobile
and immobile zone with the volume ratio  used for the same seven 
blocks. Again, the dimensionality and aspect ratios have a significant effect 
on the dimensionless temperature in both zones.

Figure 6

The process of thermal equilibration between the mobile (upper curves) and immobile zones (lower 
curves) with their dimensionless temperatures calculated using a volume ratio of 0.1 for the same 
seven matrix blocks of different dimensions and aspect ratios.

5 Conclusions

Following the complementary convergence properties of two types of 
infinite‐series exact solutions of temperature/concentration in and heat/mass
flux through the boundary of blocks of various shapes (sphere, cylinder, slab,
square, cube, rectangle, and rectangular parallelepiped), we developed 
unified‐form approximate solutions that contain the early‐time and late‐time 
solutions whose applicability is defined by a switchover dimensionless time. 
For the temperature/concentration solutions, the time partitioning of the 
early‐time error‐function‐series solutions and the late‐time exponential‐
series solutions produces rapid and uniform convergence of the combined 
solutions using the same number of terms, with the leading term for normal‐



accuracy approximation (less than 0.3% relative error) and the first two 
terms of each series for high‐accuracy approximation (less than  relative 
error). For 2‐D/3‐D rectangular blocks, rapid and uniform convergence of the 
approximate solutions is achieved using the same time partitioning based on
the individual dimensionless time  for different spatial directions and the
product of their combined 1‐D slab solutions.

We also achieved rapid and uniform convergence of the combined heat/mass
flux equations with the early and late‐time solutions for 1‐D slab‐like and 2‐
D/3‐D rectangular blocks. In these flux equations, the product of the 
combined 1‐D slab solution for each direction using the same  time 
partitioning is used to guarantee rapid and uniform convergence for normal 
and high‐accuracy approximations. This product form of flux equations is fast
and very efficient for numerical evaluations. For the second form, we derived
the early‐time flux equations for 2‐D/3‐D rectangular blocks that are 
presented in terms of the three‐term polynomials for normal‐accuracy 
approximation; the three coefficients of the polynomials depend only on the 
dimensionless area‐to‐volume ratio and aspect ratios. To honor accepted 
physical insights into heat flux, we employ the time‐partitioning of the early 
and the late‐time solutions based on ( ) and a nonuniform convergence is
achieved as additional exponential terms for the late‐time solutions are 
needed for highly anisotropic blocks. For squares and cubes, the two forms 
of flux equations have the same convergence properties as for 1‐D slabs. The
second, nonproduct form of the flux equations with normal‐accuracy 
approximation can be directly used to couple local conduction/diffusion with 
modeling large‐scale heat/mass transfer in fractured or heterogeneous 
porous media.
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Appendix A: Derivation of the Flux Equation for Rectangles and Rectangular 
Parallelepipeds

In the following derivation of the flux equations for 2‐D (or 3‐D) rectangular 
blocks, we take advantage of the product of 1‐D (complementary) 



temperature solutions  for slabs with  (and ), with a 
unit initial temperature and zero temperature fixed at all block boundary 
surfaces (Crank, 1975, p. 25). For the heat conduction with a unit boundary 
temperature and zero initial temperature (Carslaw & Jaeger, 1959, p. 171), 
we have  and , where  and  are the heat flux for  and  
respectively. The shift of the coordinates from section 2 is used to facilitate 
the integration of heat flux over the boundary surfaces.

For a 2‐D rectangular block, following Carslaw and Jaeger (1959, p. 171), we 
have the error‐function‐based temperature solutions for the early‐time flux 
calculations considering only one quarter of the rectangle:

(A1)

The flux of heat at the point (0, ) of the rectangle edge is

(A2)

The difference between equation A2 and the heat flux for a semi‐infinite 
block with boundary at  is

(A3)

Thus, the total differential heat flux for the entire edge ( ) of the rectangle
quarter is

(A4)

Note that equation A4 is valid only for all times before the arrival of the 
temperature front at . By summing the semi‐infinite flux and the differential
flux along the two rectangular edges , and , we obtain the total 
boundary flux, :

(A5)

The first term in equation A5 is for the rectangle edges that act like a semi‐
infinite block with a length of , without interference at the rectangle 
corner. The second term is for the total differential flux that is equal for each 
edge of the rectangle quarter.

The heat flux per unit area, defined by the ratio of the total boundary flux to 
the thermal energy stored in the rectangle quarter, for the heat‐conduction 
problem in sections 2 and 3 can be written

(A6)

where  is the solid density and  is the specific heat of the solid. Following 
the definition of the dimensionless cumulative flux, we have



(A7)

For a rectangular parallelepiped, the error‐function‐based temperature 
solution for the early‐time flux calculations is

(A8)

The flux of heat at the point (0, , ) of the parallelepiped surface is

(A9)

The difference between equation A9 and the heat flux for a semi‐infinite 
block is

(A10)

Thus, the total differential heat flux for the entire plane ( ) of the 1/8 
parallelepiped is

(A11)

Note that equation A11 is valid only for all times before the arrival of the 
temperature front at . By summing the semi‐infinite flux and differential 
flux over the three block planes at , , and , we obtain the total 
boundary flux, :

(A12)

Again, the first term on the right‐hand side of equation A12 is for the 
rectangular planes that act like a semi‐infinite block with a total surface area,
without interference at the parallelepiped corner, while the last two terms 
are for the differential flux for the entire 1/8 parallelepiped.

The heat flux per unit volume, defined by the ratio of the total boundary flux 
to the thermal energy stored in the 1/8 rectangular parallelepiped, for the 
heat‐conduction problems in sections 2 and 3 can be written

(A13)

Again, following the definition of , we have

(A14)
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