
Visual Analytics Techniques for Investigating
Large-Scale HPC Profiles and Trace Data

By

Suraj Padmanaban Kesavan
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Kwan-Liu Ma, Chair

Harsh Bhatia

Jason Lowe-Power

Committee in Charge

2023

i

Copyright © 2023 by

Suraj Padmanaban Kesavan

All rights reserved.

To my family and friends who always push me to give my absolute best.

ii

Contents

Abstract . vii

Acknowledgments . viii

1 Introduction 1

1.1 Performance Analysis and Visualization for HPC 1

1.2 Challenges to Performance Visualization 3

1.2.1 Attribution . 4

1.2.2 Scalability . 5

1.2.3 Correlation . 5

1.2.4 Velocity . 6

1.3 Content Overview . 7

2 Background 9

2.1 Application domain - Sampled Profiles 9

2.1.1 CCTs and Call Graphs . 10

2.1.2 Visualization of CCTs and Call Graphs 11

2.1.3 Visual comparison of graphs and trees. 13

2.1.4 Visual exploration of ensembles of Call Graphs. 14

2.2 Communication domain - Network Event Traces 14

2.2.1 Parallel Discrete Event Simulation (PDES) 16

2.2.2 Visualization of Network Traces from PDES 18

2.2.3 Streaming Data Visualization and Analytics 19

2.3 Hardware domain - Performance metrics 20

2.3.1 Data Movement in Heterogeneous Applications 21

2.3.2 Data Movement and Memory Visualization 22

3 Visualization of Sampled Profiles from the Application Domain 24

3.1 Domain Problem Characterization . 26

3.2 Super Graphs and Graph operations . 29

iii

3.2.1 Filtering of CCT Nodes . 30

3.2.2 Aggregation of CCT Nodes . 31

3.2.3 Splitting of CCT Nodes . 32

3.3 Visual Design of CallFlow . 34

3.3.1 Control Flow View . 34

3.3.2 Histogram View . 36

3.3.3 Correlation View . 37

3.3.4 User Interactions . 37

3.4 Case Studies . 39

3.4.1 Study 1: Load Balancing of LULESH 40

3.4.2 Study 2: Scaling Performance of Miranda 43

3.5 Potential Improvements . 45

3.6 Summary . 45

4 Ensemble Visualization of Sampled Profiles from Application Domain 46

4.1 Need for studying call graph ensembles 47

4.2 Domain Problem Characterization . 49

4.2.1 Requirements for Exploring Call Graph Ensembles 49

4.2.2 Identification of Targets and Actions 50

4.3 Ensemble SuperGraph . 52

4.3.1 Data Representation . 52

4.3.2 Construction of Ensemble GraphFrames 53

4.4 Visual Analytic Design . 55

4.4.1 Ensemble-Sankey: The Ensemble SuperGraph View 56

4.4.2 Supernode Hierarchy View . 59

4.4.3 Complementary Views . 60

4.4.4 Visual Analytic Modes . 61

4.5 Case Studies . 62

4.5.1 Study 1: Performance Variability due to Application Parameters . 62

4.5.2 Study 2: Performance Trends for a Weak Scaling Study 63

iv

4.6 Summary . 67

5 Visualization of Multivariate Network Traces from the Communication

Domain 68

5.1 Domain Problem Characterization . 69

5.2 Methods . 71

5.2.1 Time-Series Clustering . 71

5.2.2 Time-Series Dimensionality Reduction (DR) 73

5.2.3 Time-Series Segmentation with Change-Point Detection 75

5.2.4 Visualization of Communication Patterns 75

5.3 Visual Analytic System . 77

5.3.1 Visualization for Analyzing Temporal Changes 78

5.3.2 Visual Comparison of Multiple Performance Metrics 80

5.3.3 Visual Comparison of Communication Patterns 81

5.4 Case Studies . 82

5.4.1 Experiment Setup . 82

5.4.2 Analysis of PDES Performance 82

5.4.3 Proximity and Communication Patterns 84

5.4.4 Interactive Analysis . 85

5.5 Potential Improvements . 86

5.6 Summary . 87

6 Streaming Visualization of Network Traces from Communication

Domain 88

6.1 Characteristics of Streaming Performance Data 90

6.2 Data Management Module . 91

6.3 Analysis Module . 92

6.3.1 Online Change Point Detection for Multiple Time-Series 92

6.3.2 Progressive Time-Series Clustering 94

6.3.3 Progressive Time-Series Dimensionality Reduction 96

v

6.3.4 Progressive Causal Relation Analysis Methods 98

6.3.5 Performance Evaluation . 99

6.4 Interactive Visualization Module . 101

6.4.1 Performance Behavior Views . 101

6.4.2 Behavior Similarity Views . 103

6.4.3 Metric Causality View . 103

6.4.4 Communication Behavior Views 104

6.4.5 User Interactions across Views . 106

6.5 Case Studies . 106

6.5.1 Monitoring Key Changes in PDES Performance 107

6.5.2 Tracing Performance Bottlenecks 108

6.5.3 Analyzing Communication Patterns 109

6.6 Summary . 110

7 DMV - A Unified Performance Analysis Framework for tracking Data

Movement in the Hardware Domain 112

7.1 Introduction . 112

7.2 Domain Problem Characterization . 115

7.3 DMTracker — A Unified Interface for Tracking Data Movement 116

7.4 DMVis — Visual Analytic Interface . 121

7.5 Use Cases . 125

7.5.1 Case 1: GEMM on tall-and-skinny matrices 125

7.5.2 Case 2: GPT-2 model training with TorchScript 127

7.6 Overhead Evaluation . 129

7.7 Summary . 131

8 Conclusion 133

vi

Abstract

Visual Analytics Techniques for Investigating

Large-Scale HPC Profiles and Trace Data

Performance visualization is an emerging field that adapts to the growing ecosystem

of High-Performance Computing (HPC). With the continued growth in scale and

complexity of HPC systems, code developers face the challenge of optimizing performance,

requiring a detailed understanding of runtime behaviors of the system and the ability

to identify and address performance bottlenecks. To meet this challenge, various

tools have been developed to capture performance behaviors and conduct performance

analysis, but the complexity and scale of the resulting data have made visualization

systems essential for revealing and understanding key patterns that expose performance

bottlenecks. The dissertation presents novel visual analytic methods that address the

four key data challenges associated with performance analysis: Attribution, Scalability,

Correlation, and Velocity. My contributions are driven by domain experts’ requirements

to facilitate scalable interactive analysis of large-scale performance profiles and traces.

Specifically, the dissertation addresses the challenges of analyzing and correlating collected

performance data across three key domains of supercomputing — Hardware, Application,

and Communication (HAC). Overall, the dissertation addresses the challenges of analyzing

and correlating collected performance data in HAC domains, leading to a set of tools that

are expected to greatly enhance HPC experts’ ability to understand and optimize the

performance of demanding applications through interactive and scalable visual analytics.

vii

Acknowledgments

I would like to express my deepest gratitude to my dissertation advisor, Prof. Kwan-Liu

Ma, for his guidance, support, and mentorship throughout my Ph.D. journey. His

patience, wisdom, and encouragement have been invaluable to me and have helped shape

my academic and personal growth. I would also like to thank Dr. Harsh Bhatia, Dr.

Olga Pearce, Dr. Abhinav Bhatele and other research scientists from Lawrence Livermore

National Laboratory for their collaboration, guidance and support through the research.

I would also like to thank the other members of my dissertation committee for their time,

expertise, and constructive feedback that greatly improved the quality of this work.

My sincere appreciation goes to my family and friends – Mom, Dad, Advaitaa, Deepika,

Ashwin, Pranav, Somya, Karnali, Swathi, Natchan, Marissa, Agrarian coop, and soo many

others, for their unwavering love, support, and encouragement, which gave me the strength

and motivation to pursue my academic goals. I also want to thank the labmates of VIDI

at UC Davis, especially Dr. Jia-Kai Chou, Dr. Takanori Fujiwara, Dr. Oh-Hyun Kwon,

Sandra Bae, Dr. Jianping Kelvin Li, Dr. Tyson Neuroth, Dr. Shilpika, Dr. Xiaoyu Zhang,

and Keshav Dasu. The discussions with them were always engaging and serendipitously

provided me hints that led to new research ideas.

Finally, I thank all the individuals who have contributed to this work in various ways

and have made it possible, including my research collaborators, funding agencies, and

study participants.

Thank you all for being a part of this journey.

viii

Chapter 1
Introduction

1.1 Performance Analysis and Visualization for HPC
High-Performance Computing (HPC) systems enable scientists to study intricate

scientific phenomena using large-scale simulations and advance the frontiers of human

understanding in multiple disciplines: from weather forecasting [1] and earthquake

modeling [2] to molecular dynamics [3] and drug design [4]. Prominent examples of such

systems include the leadership class supercomputers deployed by the U.S. Department of

Energy, such as Oak Ridge National Laboratory’s Summit, Lawrence Livermore National

Laboratory’s Sierra, and El Capitan, which is the first Exascale machine (i.e., capable of

performing quintillion (1018) floating point operations per second) planned for 2023 [5].

The simulation codes are executed in parallel on large-scale computing resources that

distribute the compute over thousands of distributed nodes with multiple processors for

efficient computation. To maximize the amount of science per dollar and insights per

Watt, computational scientists and HPC code developers continuously strive towards

optimizing the performance of their simulation codes. Therefore, achieving efficiency while

performing extreme-scale computations becomes crucial to meeting optimal performance.

In pursuit of improved computational performance, code developers conduct

performance analysis to achieve optimal performance while consuming the least amount of

resources. Since performance issues and bottlenecks can occur among any of the domains

and at different points of application execution, code developers require a complete picture

to break down “where” and “why” performance might struggle. Therefore, programmers

are constantly required to measure, analyze, and understand the behavior of their

applications across (a) Hardware, (b) Application, and (c) Communication (HAC) domains

with great detail [6]. The hardware domain consists of network nodes and physical

1

Figure 1.1: Performance data collected across the Hardware, Application and
Communication (HAC) domains play a critical role in the task of performance
optimization.

links between them, the application domain represents the physical or simulated system

designed to solve the underlying problem, and the communication domain represents a

communication network, which captures the communication patterns of the application.

As hardware and communication networks evolve and the application’s usage patterns

change, developers must adapt their code to ensure an optimal performance. By

conducting performance analysis routinely, developers can ensure that their code is

running efficiently and providing the best possible user experience.

Multiple tools have been designed to capture performance data across the HAC

domains. A typical HPC performance analysis workflow comprises of three stages. First,

domain experts run the application along with performance monitoring tools such as

HPCToolkit [7] and Tau [8] to collect performance metrics. Next, considerable efforts

are put into data analysis to understand the underlying performance behaviors. Finally,

after studying the behaviors, one might be able to tune or tweak certain application

parameters for better performance based on the analysis results. From the hardware

perspective, supercomputers are upgraded with newer hardware approximately every few

years, requiring developers to port their application to utilize the recent updates. Second,

for each application, the software and hardware technologies continue to evolve through

2

the history of an application with new technological advancements. Finally, at exascale

the quantity and complexity of performance data grow by orders of magnitude since large

number of compute nodes work in a parallel distributed fashion, making traditional and

manual performance analysis infeasible.

Performance visualization is an effective medium for application developers to assess

the performance of the software and understand the potential causes and severity of

found bottlenecks [9]. By observing key patterns and behaviors, code developers and

HPC analysts can improve their application’s time and energy efficiency. While complex

visualizations can elucidate novel or interesting performance data, it is important to

keep in mind that the visualization has to aid the developer in accomplishing some

set of performance optimization goals. Domain experts must also incorporate different

kinds of analyses for each domain to derive fruitful insights. For example, one would be

interested in analyzing compute node performance in the hardware domain, finding the

expensive code regions from the application domain, and detecting network congestions

from the communication domain. Visual analytics further helps bridge the gap between

user knowledge and insights various statistical metrics can provide. As a result, visual

analytic frameworks are favored as they can drive performance analysis by facilitating

decisions to help develop novel optimization strategies.

This dissertation focuses on the development of three visual analytic frameworks

that enable domain experts to study and analyze performance data collected from

large-scale supercomputing applications. The frameworks incorporate automated data

analysis with interactive visual analytics. To study the performance data collected

from the HAC domains, sampled profiles and event traces are extensively studied to

detect performance bottlenecks and enable domain experts to realize avenues for further

performance improvements in their code and system design.

1.2 Challenges to Performance Visualization
Performance visualization is an essential tool for exploring and communicating trends in

the data, and its utility has well served the HPC community. As HPC technologies get

3

constantly upgraded over time, performance visualization is also required to keep evolving

to meet the demands. Due to increasing data sizes and the emergence of Big Data, the

need for massive parallelization is a primarily driving a number of visualization research

challenges. With growing demands, it stresses the need for visualization to represent,

process, and interact with data in efficient ways. This places great importance on efficient

data representation, processing, and interaction in visualization. In this work, I have

identified four key data challenges: (a) Attribution, (b) Scalability, (c) Correlation, and

(d) Velocity which form the backbone of this dissertation research.

1.2.1 Attribution

Attribution is a process by which one can explain the causes of behaviors and events.

Pinpointing execution behaviors is a critical task when it comes to performance analysis.

Experts in HPC are not strangers to performance visualization as it has been an integral

component of their workflow. However, attribution of data to relate performance

behaviors has been a challenging task due to the lack of a design process during

development. To address this increasing concern, all techniques introduced in this work

have been designed and developed using information visualization.

“Information visualization is a process of representing data in a visual and meaningful

way so that users to make hypotheses, look for patterns and exceptions, and then refine

their hypothesis.” To improve the attribution of performance behaviors, I collaborate with

domain experts from HPC, which include software developers as well as performance

analysts who assist computational scientists in optimizing their parallel computations.

Through an interactive collaboration with domain experts, including interviews and

discussions, I characterize the domain problem, identify the primary requirements,

formulate actionable tasks, and finally, design suitable interactive visualization techniques.

Through this iterative process, I was able to support HPC-critical tasks such as

exploratory (see Chapter 3), comparative (see Chapter 4 and Chapter 5), post-hoc (see

Chapter 5 and Chapter 7), and in-situ (see Chapter 6) analysis.

4

1.2.2 Scalability

With computational abilities reaching exascale computing, increasing effort is required to

understand how various software is run on such machines and optimize their performance.

As the scale of computing resources continues to grow exponentially, and along with it, the

scale of the collected performance data, it is becoming increasingly critical to create highly

scalable performance visualizations. Scalability for performance analysis can be dissected

into two levels: instance-level and ensemble-level. At the instance level, performance

behaviors must be studied across domains for a single execution. With multiple recorded

metrics and increasing available compute nodes, the scale and complexity of collected data

can over-power even the simplest of analyses. At the ensemble level, HPC developers often

explore various execution parameters, such as hardware configurations, system software

choices, and application parameters, and are interested in detecting and understanding

bottlenecks across different executions.

Exploration of large-scale performance data requires information preprocessing in

order to reduce the collected data size to processible levels. Suitable metrics must be

collected to obtain similarities and dissimilarities to reduce the visual load on the end

user. Furthermore, the degree of abstraction has to be controlled interactively in order to

browse information space at arbitrary levels of detail. To manage scalability at both

instance and ensemble levels, I design techniques and algorithms that simplify large

unstructured sampled profiles and event traces by highlighting the regions of interest to the

HPC community. Additionally, the developed frameworks provide support for sufficient

querying and aggregating capabilities to enable interactive sifting through the massive

scale data and provide an appropriate mapping between data and frame of reference.

1.2.3 Correlation

Analyzing behaviors and optimizing the performance of HPC applications requires the

collection of a multitude of performance metrics across HAC domains. As a result, HPC

datasets are a conglomeration of different quantities (e.g., metrics, attributes, metadata),

and experts are particularly interested in the correlation between any two quantities

or variables. The correlation of hardware, communication, and application domains

5

allows application developers to understand how structures in their simulated domains

correspond to real performance problems, and it also gives systems engineers a new, more

intuitive perspective on how simulations map to physical hardware.

Although it is practically impossible to obtain complete knowledge of how all of the

different quantities are related, it is necessary to have strategies to visualize multiple

quantities simultaneously or to visualize the correlations between them. To this end,

I integrate visualizations that present basic statistical measures like standard deviation,

covariance, correlation coefficient, and causality during analysis.

1.2.4 Velocity

An ongoing trend in HPC is an exponential increase in the computational throughput

of the machine, but a comparatively much smaller increase in the bandwidth to the disk

storage system. This has led to a very large disparity between the computation bandwidth

and storage bandwidth even today. For example, in Titan supercomputer at the Oak

Ridge Leadership Class Facility, there are five orders of magnitude difference between the

aggregate computational bandwidth and the peak bandwidth to the parallel file system.

Similar trends continue with the increasing influence of heterogenous architectures such as

GPU-accelerated systems to support the demanding needs of AI-powered technologies. A

widely employed solution is to translate the data analysis workflow from post-hoc (where

data collection precedes the analysis) into in situ (where data collection supplements

analysis) by using streaming data techniques. With in situ workflow, the collected

performance data is made available for analysis as the data is recorded, whereby the

analyst gets instant feedback on the experiments.

As in situ analysis workflow is an iterative process where frequent data updates and

immediate analysis plays an integral part in deriving context-relevant knowledge through

the observations made. Therefore, it is important to visualize key patterns and highlight

changes from the temporal aspect as well. To meet this end, I incorporate progressive

visualization techniques that provide situational awareness and real-time monitoring for

analyzing network event traces from large-scale simulations (see Chapter 6). Overall,

these techniques simplify the labor-intensive process within the core activities of in

6

situ analysis (i.e., data selection, preprocessing, analysis, and visualization) by allowing

experts to realize desired or undesired performance behaviors immediately. I also

develop interactive dashboards that summarize the execution timeline of deep-learning

applications. These timelines function as a real-time monitoring tool and connect the

HAC domains directly to the application execution.

1.3 Content Overview
This dissertation is organized into a 7 chapters covering the topic of performance

visualization for HAC domains.

In Chapter 2, I provide background on HPC performance data collected from the HAC

domains. From the Hardware domain, I discuss event traces collected from heterogeneous

CPU-GPU architectures that provide real-time monitoring of device utilization and

performance. From the Application domain, I cover the various representations of

sampled profiles, namely flat profiles, Calling Context Trees (CCTs), and Call Graphs.

From the Communication domain, I discuss how network traces are critical for parallel

distributed computing and provide background on communication data collected from

Parallel Discrete Event Simulations (PDES).

In Chapter 3, I introduce CallFlow, an interactive visual analytic tool that utilizes

semantic operations to explore the CCTs, representing the caller-callee relationships.

Modern scientific applications are built on top of rich frameworks and libraries that add

many layers of abstraction, increasing the depth of call sites. Large CCTs end up having

complicated caller-callee relationships, which makes identifying performance bottlenecks

challenging. Therefore, I introduce super graphs that can aggregate and split a CCT at

user-controllable levels of abstraction to gain insights into expensive call sites.

In Chapter 4, I extend CallFlow’s functionality to handle an ensemble of CCTs

and incorporate comparative analysis to study performance variability across multiple

executions. Large-scale parallel applications require experts to conduct a variety of test

runs by varying multiple configurations to identify optimal performance, resulting in large

ensembles of performance profiles. To enable comparative analysis among the ensemble

7

members, I introduce ensemble super graphs that aggregate call paths across multiple

CCTs and encode the differences between the CCTs effectively. By characterizing callpath

profiles, CallFlow bridges various gaps by elucidating data with interactive and scalable

visualizations that aid developers in accomplishing optimization goals.

In Chapter 5, I design a visual analytic framework to support data collection and

visual analysis of performance metrics recorded as event traces at different time points

of code execution. Grouping computing nodes based on the performance behaviors can

reveal bottlenecks while studying the network traffic between computing nodes. I integrate

automated analysis of multivariate performance metrics with coordinated communication

views to reveal temporal behaviors using clustering algorithms and detect change points

using time-series analysis.

In Chapter 6, I discuss strategies to reduce the high computational cost of analyzing

the entire dataset, I extend the framework to support real-time analysis and monitor

streaming data by adopting an in-situ data analysis workflow. Four online algorithms are

introduced to present intermediate analysis results to the visualization views, which get

updated real-time. These views are designed using progressive visualization techniques

to enable different forms of data attribution like active user-engagement, perception, and

comprehension of performance behaviors during analysis. By combining the network views

with the temporal behavior views, the framework correlates multiple performance metrics

and detect key communication patterns in various HPC network topologies.

In Chapter 7, I introduce DMV – Data Movement Visualized, a unified visual analytic

framework to track data movement across CPU-GPU heterogeneous interfaces. DMV

framework combines the performance data collected from HAC domains to understand

performance trade-offs of data movement in large-scale heterogeneous applications, which

has become increasingly vital with the expansive usage of GPUs for compute-intensive

operations. This chapter explores critical data access patterns and anti-patterns within

the CPU-GPU interface and demonstrates the effectiveness of the DMV framework by

investigating the GEMM kernel under memory allocation strategies and the training of

the GPT-2 model.

8

Chapter 2
Background

Understanding the performance of large-scale computations generally relies on two types

of data: the application context in which these measurements were taken as profiles, e.g.,

execution runtime, on what processor, or at what callpaths; and measurements that reflect

the performance of the hardware and communication domains as event traces, e.g., FLOP

counts, cache misses, or network stalls.

2.1 Application domain - Sampled Profiles
Diagnosing the true causes of performance bottlenecks typically requires a simultaneous

understanding of both performance metrics and the region of code attributed to

performance. Knowing the source of the performance problem lets the code developers

alter the application’s high-level algorithms and tweak them for optimized performance.

Sampled profiles are time-based profiles that estimate the percentage of time an

application spends in a particular section of code by interrupting the execution at regular

time intervals. There exist various profiling tools [7,8,10,11] that record the application’s

calling context (i.e., the call path from each profiled function to program main) and the

associated performance metrics (e.g., execution time and memory usage). Performance

counters in these tools collect data on the fly as the application executes, allowing

full-speed data collection and avoiding large profiling overheads. Statistically, the number

of samples that fall within a given function represents a reasonable estimate of a code

region’s runtime. Various types of counters have been employed to predict the power,

performance, and energy efficiency of computing systems [12].

9

Figure 2.1: The call paths (a), call tree (b), and call graph (c) of the example program. In
(a), each call path shows invocation instances of bar1() and bar2(), rooted at main().
Each node in the corresponding call tree contains three pieces of information: node name,
inclusive metric, and exclusive metric (denoted as inclusive : exclusive). Since the call
graph is constructed from the call tree, the original inclusive cost information can be
retained through edge weights.

2.1.1 CCTs and Call Graphs

Figure 2.1 (a) shows a sample of a profile comprising five call sites. In general, two kinds

of information are useful for detecting bottlenecks: contextual information (e.g., the call

path, the process ID), and performance metrics (e.g., execution time, memory usage).

And commonly, two types of metrics are employed during analysis: exclusive metrics –

the metrics belonging to a call site, and inclusive runtime – the recursively accumulated

metric consumed by a call site and all its callees. A large-scale application would have

thousands of call sites, making performance analysis challenging and time-consuming.

Flat profiles. The collected samples can be aggregated in various ways to simplify the

analysis. For example, aggregating by lines in the code across call paths creates a flat

profile. A flat profile can provide a good overview of the code regions that consume the

most resources (e.g., time) as they are usually displayed as sorted lists. However, they

lack calling contexts that inform the control flow of general-purpose functions, such as

communication or numerical routines.

Calling Context Trees. When the samples are aggregated by unique call paths, it

results in a calling context tree (CCT) [13, 14]. Each unique invocation of a function (by

call path) becomes a node in the CCT, and the path from a given node to the root of

the tree represents a distinct calling context. Metrics on each node can be inclusive or

exclusive. Figure 2.1(a) shows the call paths of the program, and Figure 2.1(b) shows the

corresponding CCT. Additionally, a node in a CCT is not limited to function invocations

10

only but can also represent loops, statements, and other code structures.

Call Graphs. Calling context trees can be aggregated in different ways to provide

information more concisely. Call graphs [15] are created by merging CCT nodes with the

same name (function name), e.g., see Figure 2.1(c). By aggregating CCTs across function

names, call graphs can significantly reduce the data’s scale and complexity. Nevertheless,

despite the simplification, call graphs of large, parallel programs can retain additional

complexity that often prohibits the experts from unraveling the profiles.

For large-scale parallel applications, an analyst might aggregate samples across all

threads or processes to create a global CCT or keep a forest of CCTs. Each node carries

separate information for each thread/process. Therefore, despite being very informative,

CCTs and call graphs pose practical analysis challenges. Modern applications are typically

built on top of rich frameworks and libraries that provide many layers of abstraction,

increasing call paths’ depth, leading to very large CCTs. Such large-scale trees are often

hard to decipher, potentially leading to oversight. Although one may want to reduce the

size and/or depth of the CCT by discarding the least important nodes, e.g., functions

with negligible timings, simple filtering of such nodes could change the topology of the

CCT, and standard approaches for analysis may not be efficient.

2.1.2 Visualization of CCTs and Call Graphs

Most analysis tools visualize CCTs as expandable trees [7,8,16,17], using which the user

can show and hide nodes as well as sort by attributes. Although useful in some cases,

such visualizations do not provide a clear understanding of the code structure, and suffer

from scalability issues.

Node-link layouts [18–24] are a popular approach for tree visualization, although

dense matrix-based representations perform better for large-scale trees [25,26]. Node-link

layouts represent entities as nodes, and relationships as edges. In the case of a CCT, the

entities are the frames in the call stack and edges represent the caller-callee relationship.

Various types of information can be shown on the node, e.g., time can be encoded as the

color of the node. Several techniques have been proposed to extend node-link layouts by

encoding additional information. For example, DeRose et al. [27] embedded a histogram

11

onto the node to show imbalances between processes, and Nguyen et al. [28] encode

runtime variation among processes to indicate the anomalies. Bohnet and Döllner [29]

identify and visualize features in the data. For large-scale parallel applications with

hundreds to thousands of function calls, visualization of all nodes using node-link layouts

becomes intractable. More recently, Xie et al. [30] employ a node-link layout to represent

the learned structural features of the CCT computed using an anomaly behavior detection

model. Burch et al. [31] use timeline- and pixel-based aggregations to visualize dynamic

graphs.

Many space-filling visualization approaches have been used to visualize large-scale

hierarchical data. Treemaps [32, 33] have been effectively used to visualize hierarchical

data by partitioning the screen space into bounding boxes that represent the tree

structure. However, treemaps under-emphasize leaf nodes and make comparisons between

subtrees difficult. Radio plots [34], where nodes are arcs stacked radially outward along the

depth of the tree, are also a candidate for tree visualization, but also suffer from scalability

issues. Since aggregation of nodes of a CCT into a call graph (or more generally, a super

graph) can introduce nodes having multiple call paths or nodes with multiple parents,

hierarchical space-filling visualization layouts are not well suited.

On the other hand, although node-link layouts are effective to present connectivity,

even for complex graphs [35–37], the edges of standard node-link layouts usually represent

only connectivity. Since the domain problem requires us to also encode the flow of

resources, most notably time spent, employing a node-link visual representation is a

premier choice in most performance tools. A flow diagram uses a flow-based metaphor

that represents how energy is transferred from one entity is transferred to another. It is

commonly used in engineering and science in the form of a Sankey diagram [38–40]. A

Sankey diagram uses a weighted, directed graph, where the width of each link represents

the amount of energy entering and leaving an entity in the system. Sankey diagrams

are not limited to visualizing energy flow; other works have extended the diagram to

show the flow of time. Ogawa et al. [41] represent the number of people participating in

the mailing list of open-source software projects each month using a Sankey diagram.

12

Wongsuphasawat et al. [42] and Wang et al. [43] aggregate similar temporal events

of patients’ diseases and symptoms. To address scalability and interactivity issues,

hpcviewer [7] employs additional strategies, such as automatic hot path extraction within

a chosen hierarchy, flattening of calling structure, and zooming interactions to expand the

relevant portion of the CCT.

2.1.3 Visual comparison of graphs and trees.

Comparison is often a key component of data analysis, especially to form and validate

hypotheses [44, 45]. Multiple comparative visualization tools support comparison

between two trees (e.g., the original Unix diff program, or specialized tools such as

TreeJuxtaposer [46], Mizbee [47], and Code flows [48]). The challenges in identifying the

differences between two trees were summarized by Graham and Kennedy [49], and later

generalized by Gleicher et al. [50], who provided a taxonomy of visualization designs to

support comparison of two trees. In general, three approaches to comparative designs

are juxtaposition (showing different objects separately) [51], superposition [52] (overlaying

multiple objects), and explicit encoding [53,54] (using an alternate visual medium to show

differences). A number of works have focused in comparing multiple trees, especially for

phylogenetic trees [55–57]. These works support various analytical tasks using juxtaposed

views combined with user interactions to highlight similarities and differences between

two trees. However, these techniques cannot scale to a large number of trees and are

designed to address the specific needs for phylogenetic trees. Recently, Barcodetree [58]

suggest using a bar-code like visualization for comparing a large number of trees. However,

their approach is primarily suited for stable and shallow trees, and cannot be used for

call graphs, which are significantly deeper. Focusing on Sankey diagrams, Vosough et

al. [59] provided a novel approach to visualizing uncertainty in flow diagrams by imposing

gradient-based fading on the boundaries of the nodes. In contrast, my design maintains

sharp bounds (node edges) but uses the color gradient to highlight the variability.

13

2.1.4 Visual exploration of ensembles of Call Graphs.

Williams et al. [60] amplified the importance of comparison, mainly for execution graphs

(where each edge represents the dependency between tasks). The authors also proposed

a visualization tool that compares only two execution graphs at any time by employing

node-encodings to show the differences in the execution graphs. To compare several call

graphs, Trevis [34] used a matrix view to visualize the pairwise similarity between graphs

using a variety of distance measures. However, not only does the similarity matrix suffer

from scalability issues, it often requires the user to perform pairwise comparisons [61] by

matching individual runs. Nevertheless, the more-general task of exploring ensembles [62]

of call graphs and study performance variability is not supported by existing tools.

Instead, experts generally visualize the different call graphs individually to understand the

general calling structure and use simple statistical measures to understand the distribution

of runtimes.

2.2 Communication domain - Network Event Traces
Application domain of large-scale parallel computations is commonly decomposed

into sub-problems to run on a cluster of interconnected computing nodes and often

require a large amount of communication. Communication protocols such the Message

Passing Interface (MPI) [63], is used for coordinate execute thousands of processes (or

threads) that exchange intermediate results as the computation progresses. To enable

fast inter-process communications, the compute nodes communicate in a distributed

fashion via a high-bandwidth low-latency network topology, some famous topologies

include fat-tree [64, 65], butterfly [66], high-radix dragonfly [67] (see Figure 2.2(a)) and

high-dimensional torus [68]. Several research works [69, 70] have demonstrated that

communication slowdown can lead to poor scalability for applications.

To analyze the behaviors and performance related to various network topologies, both

hardware and communication domains must be studied and correlated to get a complete

picture. Perfromance data is collected as event traces, which are a collection of time

stamped records of various events occuring during the execution of an application [71].

14

(a) Dragonfly Network topology (b) MPI send vs MPI recv communication bottleneck

Figure 2.2: Example of a communication-related perfromance bottleneck: Process 1 waits
in its receive cycle is blocked until the Process 0’s send call leading to a performance
bottleneck (as denoted by the right arrows).

Correct diagnosis of certain complex performance problems that arise on high end systems

requires detailed event traces, which involves writing a time stamped record for each event,

into a buffer or file for later analysis. Unfortunately, the collection of event traces presents

scalability challenges: the act of measurement perturbs the target application; and the

large volume of collected data increases the perturbation, and performance results require

a large storage for further analysis. Tremendous amounts of trace data from event traces

abstracted from HPC applications are produced at a high frequency, and must be managed

and processed efficiently in order to conduct a definitive performance analysis.

Considering the scalability challenges of event traces, one might be tempted to avoid

tracing entirely. Profiling, for example, provides summary information and therefore

exhibits better scaling behavior. However, profiles are constrained to provide accurate

diagnosis of runtime performance issues and not other issues. For example, as shown

in Figure 2.2(b), “lateness of senders” is a common performance in a message-passing

programs. This situation occurs when the receiving process waits at a blocking receive call

waiting because the sending process hasn’t yet reached the matching send call. While a

profile would indeed to show that excessive time was being spent in receive operations, the

data is not sufficient to distinguish between a late sender or some other root cause, such

as network contention that caused the message to be received late. In contrast, an event

trace captures the relative timing of events, and would show that the send operations

started late and caused the receive operations to block. Event tracing is also useful for

15

showing the causality of events, enlist all interactions between processing elements (PEs),

and reveal event patterns that accurately describe the performance problems and locations

of possible optimization.

Understanding such detailed workload characteristics from HPC applications results

in multiple metrics being recorded to distinguish the different kinds of performance

bottlenecks. Although multiple approaches and tools have been developed to characterize

event traces [72] and handle scalability [73], they do not handle the multivariate nature of

the event traces (i.e., a time-series for each recorded metric) obtained from the hardware

and communication domains. Although, a number of research work have explored various

time-series analysis methods and visualization techniques to allow users to explore both

temporal behaviors and network traffics in a dashboard with multiple coordinated views.

Simultaneous analysis of more than two variables is crucial for correlating the temporal

behaviors and identifying similarities among the computing nodes to communication

patterns.

2.2.1 Parallel Discrete Event Simulation (PDES)

To analyze the behaviors at the system and application level data, I collect the

communicated data on each computing node using Parallel Discrete-Event Simulation

(PDES) [74]. PDES is a cost-effective and useful tool for modeling by allowing the HPC

developers to answer a variety of “what-if”, ranging from studies of complex physical

phenomena to the designs of supercomputers. Rensselaer’s Optimistic Simulation System

(ROSS) [75] is an open-source PDES that simulates various network topologies at a

flit-level detail to assist HPC network designers in design space exploration. First, I

will provide the background information of PDES and its data characteristics.

To full understand the complexity of PDES, it is important to differentiate the parallel

with the sequential discrete simulation. A sequential discrete event simulation model

assumes the system being simulated only changes state at discrete points in simulated

time upon the occurrence of an event. Each event is timestamped to indicate when

a particular change occurs in the actual system. Whereas, in a parallel discrete event

simulation (PDES) model, the events occur asynchronously at irregular time intervals.

16

This lack of assumption in the PDES model not only provides flexibility with the timing

model but also preserves the fidelity of the simulation experiments. However, PDES is

difficult because the sequencing constraints that dictate the order in which computations

must be executed relative to each other is quite complex and highly data-dependent.

Therefore, a domain expert depends heavily on performance metrics to determine if their

simulations are being optimal.

To aid PDES performance analysis, the framework is designed for analyzing HPC

applications that collect multivariate time-series and communication network data for

analyzing performance from a PDES. The time-series data contains numerous performance

metrics for each computing node at a specific sampling rate, which is also used for

collecting the communication data among all the computing nodes. For the case studies, I

use the ROSS Instrumentation layer [76] to collect time series and communication network

data. The instrumentation layer provides three time-sampling modes, which allow users

to sample simulation engine and model data (1) immediately after GVT computation, (2)

at real-time sampling intervals, or (3) at virtual time sampling intervals. When sampling

data from the simulation engine, the user can collect data for numerous metrics at different

granularities (PE, KP, and LP).

PDES distributes a group of processes, called processing elements (PEs), that run

across compute nodes. PEs communicate by exchanging time-stamped event messages

that are processed to ensure the correct order of events (i.e., the future event must not

affect the past event) [74]. Ideally, these PEs should be distributed across the parallel

processor so that (a) all processors remain busy doing useful work all of the time, and

(b) inter-processor communications are minimized. In ROSS, where each PE is an MPI

process, and message passing between PEs is performed asynchronously. ROSS employs

an event rollback mechanism by developing unprocessed computations can be rolled back

to their previous state. To track the rollback behavior, ROSS uses the global virtual time

(GVT) for tracking the time in PDES, where the GVT is computed as the minimum of

all unprocessed events across all PEs in the simulation [77].

Commonly, the metrics collected are either directly related to the rollback behavior

17

(e.g., number of rollbacks) and the communication among PEs, KPs, and LPs (e.g.,

network sends) which has an effect on rollback behavior. The specific metrics used in the

visual analysis case studies are:

• Primary Rollbacks: The number of rollbacks on a KP caused by receiving an

out-of-order event.

• Secondary Rollbacks: The number of rollbacks on a KP caused by an

anti-message (i.e., a cancellation message).

• Virtual Time Difference: The difference in time between a KP’s local virtual

clock and the current GVT. The value is typically positive, but it can be negative,

indicating that the KP has not processed any events since the last GVT.

• Network Sends: Number of events sent by LPs over the network.

• Network Receives: Number of events received by LPs over the network.

2.2.2 Visualization of Network Traces from PDES

To analyze optimistic PDES, Ross et al. [76] introduced a visual analytics tool specialized

for the ROSS optimistic PDES framework [75]. This tool is designed to analyze

the simulator performance from multiple aspects, such as communication patterns and

correlations between multiple performance metrics. However, only the aggregated values

of the selected metrics are visualized for analyzing the change of the performance metrics

over time, which is insufficient to depict the temporal behaviors of different entities.

Because various temporal aspects affect the rollback behaviors and performance issues,

more advanced temporal analysis of performance metrics is required to better understand

the performance and behaviors of optimistic PDES.

Several researchers have studied techniques for temporal analysis. With an animation

based approach, Sigovan et al. [78] used an animated scatterplot to analyze the temporal

patterns in application execution. However, it is difficult to find the patterns of lengthy

performance data with analysis methods that rely on animation. The Ravel visualization

tool [72] visualizes execution traces and event histories of parallel applications using

18

logical time instead of physical time. Using logical time allows the application developers

to analyze the execution sequence from the program’s perspective. Muelder et al. [79]

introduced the behavior lines for analyzing cloud computing performance. These lines

show an overview of the behavioral similarity of multivariate time-varying performance

data. Fujiwara et al. [80] designed a visual analytics system that integrated various

advanced time-series analysis and unsupervised machine learning methods to overview

and analyze the network behaviors of large-scale parallel applications.

However, these approaches only support analysis of either time-series or network

data. Effective visual analytics methods and tools are lacking for analyzing both

multivariate time-series and communication data as well as exploring their correlations.

Instead, adapting the methods to summarize large-scale network and the temporal

analysis methods for large-scale parallel applications can facilitate effective analysis and

exploration of HPC datasets.

2.2.3 Streaming Data Visualization and Analytics

Dasgupta et al. [81] provided a comprehensive survey of streaming data visualization

and its challenges. One of the major challenges with streaming data is to show important

changes or meaningful patterns with a low cognitive load since available data is constantly

updated [81,82].

A common approach taken is the simplification of visual results (e.g., aggregation).

For example, Xu et al. [83] developed extended Marey’s graph for monitoring assembly

line performance. While Marey’s graph is originally used for train schedules, it suffers

from visual cluttering when the data gets updated frequently. To solve this issue,

the extended Marey’s graph in [83] emphasizes only the abnormal behaviors of the

assembly line (e.g., causing delays of assembly processes) by aggregating the other

behaviors. Some researchers used dimensionality reduction (DR) methods to summarize

changes in streaming multivariate data. For instance, Cheng et al. [84] used the

multidimensional-scaling (MDS) for showing an overview of similarities between temporal

behaviors in streamed data. In addition to this, they introduced the concept of sliding

MDS, which visualizes temporal changes in the similarities between selected points as

19

line paths. To detect the rating fraud in e-commerce stores, Webga and Lu [85] used

singular-value decomposition to show the dissimilarities of the rating streams. However,

when streaming data has high volume and velocity (i.e., frequent updates), the algorithms

used in the works above could not work well due to the computational cost. To handle

high volume and velocity streaming data, the completion time of algorithms used for

visual analytics should be constant and/or less than the data-collection rate even when a

total number of data points or features are increasing [86].

Recently, progressive visual analytics [87] is being actively studied [87–90] Producing

useful results with a latency restriction is a common requirement. In fact, a few studies

started to apply progressive visual analytics methods to handle streaming data. To

achieve this, a few researchers started to apply incremental algorithms [91] (updating

the result only based on new data points) or progressive algorithms [90] (providing the

approximated result within a specified time constraint). For example, Pezzotti et al. [92]

developed Approximated t-SNE (A-tSNE) as a progressive version of t-SNE [93] which is a

commonly-used non-linear DR method. They showed the usage of A-tSNE for streaming

data visualization in their case study. The work in [94] enhanced the existing incremental

principal component analysis (PCA) [95] for streaming data visualization. In addition to

the incremental calculation, their method maximizes the overlap of data points between

previous and updated PCA results to keep the user’s mental map.

2.3 Hardware domain - Performance metrics
Heterogeneous computing has been widely adopted to push the frontiers of computational

sciences towards exascale computing as we hit the practical limits of Moore’s law.

In particular, Graphics Processing Units (GPUs) have become a key technology for

accelerating the compute performance in supercomputers, including the US Department of

Energy’s ORNL’s Summit, LLNL’s Sierra, and the forthcoming exascale systems, LLNL’s

El Capitan. Since the execution model for GPUs differs from that for conventional

processors, applications need to be rewritten to exploit GPU parallelism. In this pursuit,

understanding the memory and how the devices are utilized play a critical role in helping

20

developers assess how well applications offload computation onto GPUs. In this work, I

focused on studying the performance of Nvidia GPUs since they are widely employed in

around 166 supercomputers in the world.

2.3.1 Data Movement in Heterogeneous Applications

Transfers between the host and device are the slowest link of data movement involved in

heterogeneous computing, where the host (i.e., CPU) orchestrates the computation by

distributing the computation workload to devices (i.e., CPU or GPU), executing parallel

operations. Data movement across devices includes direct transfers to/from the GPU

device, launching of GPU kernels, and between libraries supporting computations. With

limited CPU–GPU and GPU–GPU bandwidth, careful data management is imperative

to avoid unnecessary transfers. The major roadblock in the general adaptation of GPUs

is the traditional copy-then-execute programming model as the onus of maintaining

complex data structure, data transfer, and explicit data migration falls on the application

developers. Handling data movement becomes vital for large-scale scientific applications

due to multiple compute-heavy stencil computations and operations like convolution and

pooling in deep learning (DL) applications. To achieve good scalability and performance,

one must minimize unnecessary data movement. In the absence of appropriate tools

to visualize and analyze data movement, developers often strive to realize opportunities

for formulating strategies that reduce data movement overheads (e.g., page faults, false

sharing, alternating CPU/GPU transfers).

Data locality (i.e., how close data is to where it needs to be processed) across

different levels of memory hierarchy has been a significant factor in affecting application

performance [96,97]. Cicotti et al. [98] perform case studies to quantify the data movement

across all the levels of the hardware memory (e.g., node-level, system-level, center-level)

and storage system. Their studies show that data movement-related costs can significantly

increase as applications abstract heterogeneity. CUMAS [99] offers automatic overlapping

of data transfers and kernel executions, but it focuses on scheduling multiple CUDA

applications, rather than scheduling a single application’s data transfers. dCUDA [100]

is a runtime system, similar to MPI+CUDA, that overlaps computation with inter-node

21

communication in a multi-GPU environment. Ben-Nun et al. [101] introduce the DaCe

framework to enable performance optimization by defining a workflow that enforces a

separation between computation and data movement. Ivanov et al. [102] further uses the

DaCe framework to study the effects of data movement when training DL transformers.

Several frameworks like Kokkos [103, 104], RAJA [105], UMPIRE [106] have developed

programming abstractions that migrate the data between memory spaces. However,

abstraction-based frameworks still require significant programmer effort to write code

in a manner that can fully exploit and optimize resource utilization.

With the introduction of UVM, developers were able to oversubscribe the GPU

memory and make use of automatic page migration which abstracted data movement from

the developer. Several research works have studied the effects of on-demand paging in

CUDA’s UVM [107–112]. Several tools have been developed to overcome the shortcomings

of UVM management [106, 113–116]. Ausavarungnirun et al. [113] introduce a GPU

memory manager, named Mosaic that presents a strategy to initiate a bulk transfer

of all critical application data to limit the overheads involved with on-demand paging.

SwapAdvisor [114], on the other hand, plans for what and when to swap precisely

before execution to maximize computation and communication overlap. In contrast,

XUnified [115] learns a model to guide the optimal use of unified memory of GPUs for

various applications at runtime. Although increasing resource allocations (e.g., more GPU

devices) and/or enabling efficient memory management strategies can relieve programmers

from manual data migration between CPUs and GPUs, validating the performance is still

not trivial. Programmers face a multitude of tuning options, like which framework to use

and compile vs. runtime optimizations to improve performance or/and manage memory

effectively. In such scenarios, the lack of a performance visualization tool to explore GPU

memory allocation strategies makes it challenging to identify the optimal one.

2.3.2 Data Movement and Memory Visualization

Several visual analytic tools already exist to study the data movement across memory

hierarchy [117–119] and compute nodes [120, 121]. Memaxes [118] shows the overview of

memory access samples through guided interactions to correlate the performance to code

22

behaviors. Mu et al. [117] propose a visualization to identify which nodes perform the

memory accesses and detect an opportunity to reduce remote memory accesses. On the

other hand, Sigovan et al. [120] map the data traffic across different network topologies

for large-scale applications. Caches are widely employed to improve memory management

by storing frequently accessed data. Tracking the cache activity and understanding

the memory performance helps understand complex performance behaviors like memory

fragmentation (e.g., failure at reusing memory). Heapviz [122] uses a node-link diagram

to visualize the references between objects to identify the relationship between objects

and their memory addresses. Similarly, YACO [123] helps users analyze access patterns

using multiple views to display statistics related to cache performance to find data that

frequently enter and leave the cache. Moreta et al. [124] allow users to visualize the free

memory blocks during runtime by displaying the memory accesses over time. But, these

systems either focus on data movement in homogeneous architectures or only consider

one of the HAC domains during the performance analysis.

Existing GPU performance analytic tools [125, 126] commonly employ simulators to

capture and visualize a GPU architecture’s dynamic behavior of an application run.

However, the inferences deduced from such simulated systems do not always translate

to large-scale applications that demand complicated data movement strategies to exploit

the full potential. Existing tools like NVIDIA’s Nsight systems [127], and AMD’s ROC

Profiler [128] are good at reporting raw performance metrics. However, they fail to

provide insights or guide users toward when (i.e., time of occurrence) and where (i.e.,

data and code locality) performance slowdowns occur. Moreover, these tools only enable

critical-path analysis using a static visualization, with no correlation to the context in

which the events in the timeline occur. This significantly limits the user in connecting

the performance across the HAC domains. Similar to DMV , Kousha et al. [129] design a

profiler integrated with supporting visualization to track the communication in large-scale

GPU clusters. Rather, DMV links the execution timeline with the communication (i.e.,

data transfers) through animation allowing users to track individual data movement and

understand their origin (using both CCT (application) and topology (hardware)).

23

Chapter 3
Visualization of Sampled Profiles
from the Application Domain

Computation simulation codes are executed in parallel on large supercomputers with

tens of thousands of processors. To achieve faster scientific breakthroughs via the high

throughput of supercomputers, computational scientists look to optimize the performance

of simulation codes by profiling and improving the execution times of different regions in

the code. As a result, HPC experts are interested in identifying functions or code regions

that are responsible for significant fractions of the overall execution time, e.g., using

gprof [15], as well as a calling context for each function invocation (obtained by walking

up the call stack from the function), e.g., using HPCToolkit [7] to generate a calling

context tree (CCT). Call sites form the nodes of the CCT, which is rooted typically at

the program main, where the execution starts, and the path from the root to a particular

node provides the node’s calling context. A majority of existing profiling tools generate

CCTs for the whole application, including the libraries it depends upon.

However, only a small fraction of the nodes in a CCT is of interest, but such nodes can

be buried deep in the tree, and identifying them could be challenging. When analyzing the

CCTs, the functional affinities between nodes (both among siblings and across levels) carry

a deeper semantic meaning that can be significantly informative on where the performance

of simulation codes lie. For example, different call sites that are part of the same code

modules, library interfaces, and application function names may be grouped together for

a more-effective and easy-to-navigate visualization that still provides desired insights to

the user. Transformation of a CCT based on such semantic information enables analyst to

perform specific and well-defined queries, e.g., extracting hot paths enabling an automated

workflow to their analysis.

24

Effective and interactive exploration of call graphs remains a challenge as domain

experts seek easy-to-use visualization tools to understand the profiles of large-scale parallel

programs. In particular, domain experts often look forward to developing new hypotheses

using visual analytics tools combined with human intuition. Most visualization tools

currently available operate on CCTs using tree-based metaphors, such as expandable tree

layouts used for navigating file systems [7, 8, 16, 17], node-link diagrams, treemaps [130],

or icicle plots [131]. Although familiar to most users, expandable tree layouts do not

scale with the size and depth of CCTs. In contrast, other layouts also use a lot of screen

space under-emphasize leaf nodes or make comparisons across subtrees difficult. Despite

their limitations, domain experts still consider tree-based visualization to be intuitive and

well-suited for analysis as it maintains the central notion of hierarchy in the code structure.

Nevertheless, the need for an interactive visualization tool that preserves users’ intuition,

and yet can support a new set of sophisticated queries to explore large-scale CCTs remains

a challenge.

In this chapter, I introduce an open-source visual analytic tool named CallFlow1

developed to support interactive exploration of large-scale CCTs and call graphs through

a visual design process, including data and task abstractions. CallFlow was developed

in an iterative manner, with the collaborators having access to the evolving prototypes,

allowing us to refine the functionalities to best assist the experts in their inquiries.

CallFlow presents the generic notion of super graphs, which can be used to represent

sampled profiles at user-controllable levels of detail, including but not limited to CCTs

and call graphs. Using the super graph notion, I describe new abstractions of the

data using semantic filtering, aggregation, and splitting operations. CallFlow uses

a flow-based metaphor to visualize super graphs using Sankey diagrams. Instead of using

the traditional top-down layout of trees, which emphasizes the levels in the hierarchy,

execution time is used as the resource spent to encode the program execution along a given

call stack. CallFlow presents the realization of the visual encoding as an open-source

visualization tool, CallFlow (see Figure 3.1). The tool enables interactive exploration
1Released under MIT license. https://github.com/LLNL/Callflow

25

https://github.com/LLNL/Callflow

of large-scale CCTs through focus+context visualization by expanding or contracting a

super graph where desired. This work was done in collaboration with Huu Tan Nguyen

and HPC experts from Lawrence Livermore National Laboratory.

(a) Graph View gives
a high level overview

(b) Histogram View

(c) Correlation
View

(e) Mini Histogram

(d) Node details

Figure 3.1: CallFlow presents dynamically interlinked visualizations to explore calling
contexts of large-scale parallel applications. (a) The graph view visualizes the call graph
using tailored Sankey diagrams at the desired level of detail. (b) The histogram view
enables identifying runtime variations across processes, using histograms and shadow lines,
which map histogram bins to process ids. (c) The correlation view allows finding the
correlation between two attributes of interest. (d) is the tooltip that gives additional
information when hovering over a node in the graph view, and (e) gives a closeup of a
node with a mini histogram, assisting a quick determination of variability across processes.

3.1 Domain Problem Characterization
The first phase of the design study involved developing knowledge about the domain

problem. Over a period of about one year, several interviews were conducted with various

HPC experts at LLNL, who are interested in improving the performance of large-scale

parallel applications. The focus was to clearly understand their goals, as well as the

current workflow and the limitations therein.

26

A CCT can contain a host of different information, and has been used for several

automated analysis techniques, e.g., extracting hot-paths [7, 132]. However, such

automated approaches usually address only a well-defined aspect of a more-general goal

that domain experts are interested in: “finding performance bottlenecks”. In practice,

users often face less well-defined problems, e.g., an application underperforming on a

particular input or a new platform, without a clear indication of the root cause of the

problem. Through numerous discussions with experts, it became clear that although an

automated tool to pinpoint problems would be ideal, past experience has shown that the

underlying causes are so case-specific that human intuition and expertise are often key

to making progress. Consequently, the overarching goal when designing CallFlow has

been to provide a generic way of exploring CCT data to either diagnose the problems

directly or identify which existing tools may lead to new insights.

High-level overview of calling contexts. The CCTs constructed directly from

sampled profiles contain details up to individual function calls, and therefore, can create

tens to hundreds of thousands of nodes. For easy navigation and understanding of data,

experts expressed interest in a high-level overview of CCTs with filtered and/or aggregated

information. CallFlow develops the notion of super graphs to allow visualization of

aggregated calling contexts based on user-defined semantics.

Metrics-based visual profiling. Two types of performance metrics are critical for

performance analysis: inclusive vs. exclusive (see Section 1.1). Together, these metrics

signify the performance of different parts of the code and can offer significant insights into

bottlenecks and help address them. For example, if the inclusive time of a given function

significantly outweighs its exclusive time, then experts explore the performance of its

callees, whereas attention is paid to the function itself if its exclusive time is significant.

One of the goals for visual exploration of CCTs is to be able to denote both inclusive and

exclusive performance metrics.

Process-based visual profiling. When large-scale applications are deployed on

supercomputers, making effective use of the available resources is critical. Although

increasing the number of processors typically yields better performance, maximizing the

27

performance requires balancing the load on different processes. A visual representation of

the time spent by individual processes in a CCT node can help understand the balance

of load [27], as well as in detecting parts of the codes that have high exclusive costs

distributed in an inconsistent fashion.

Additionally, the experts expressed interest in finding out whether code slow down is

related to IDs of specific processes. For instance, the computation of the physical domain

in a simulation, e.g., a volume, is distributed among the processes according to a certain

regular pattern, e.g., a row-major order. Knowing which MPI processes are slow vs. fast

and identifying any patterns, e.g., every nth process being slow, allows experts to form

new hypotheses on potential root causes. Note that the experts expect such patterns

hard to generalize, as they could be domain- and data-dependent, that can reorder the

processes arbitrarily and thus completely change the observed pattern.

User-driven interactive visual analytics. Given the different types of analysis tasks

that experts are interested in, a severe limitation in their current workflow is the lack of

a comprehensive tool that allows the desired functionality in an interactive manner. For

example, HPCToolkit [7] provides two separate views for top-down (calling context) and

bottom-up (callee’s context) traversals of a given CCT, each supporting a different type

of inquiry. However, switching between views causes additional cognitive load, leading

to an analysis that is ineffective at best and incorrect in extreme cases. To easen and

accelerate the exploration process, experts expressed interest in an unified visualization

with an ability to resolve different types of queries while maintaining the user’s focus.

Finally, the experts are also interested in supporting side-by-side comparative analysis

to analyze how calling contexts vary at the process level. For such comparative analysis,

the goal is to understand two types of differences: 1) comparison of CCTs’ contexts

to understand hierarchical differences in the caller-callee relationship, and 2) per-node

comparison to analyze the differences in execution metrics.

28

3.2 Super Graphs and Graph operations
Although different profilers can have slightly varied data formats, generally, the input

data to CallFlow contains two types of information: (1) the hierarchy of function calls

in the profile, and (2) the performance metrics associated with the functions therein.

Irrespective of the source, the former type of data can be converted into a CCT or a call

graph, with its root at the first call of the application, usually, the function main.

As argued earlier, the scale and complexity of CCTs or call graphs poses significant

challenges for interactive visual exploration. In this work, we present the generic notion

of a super graph, which are created by merging nodes of CCTs. Super graphs utilize

semantic information to provide a high-level overview of the code. For example, several

nodes in a call path often belong to the same library and might have repetitive calls from

different code modules to form similar subtrees with different parent nodes. In such cases,

visualizing nodes that correspond to modules or libraries are usually more meaningful

than function-level nodes. Therefore, grouping function calls by modules provides a

semantically meaningful representation of the underlying CCT. Although the notion of

semantic representations for call graphs is not new [30], super graphs are introduced as a

more-general concept to express CCTs2 (merging no nodes), call graphs (merging by call

paths), module diagrams (merging by load module), and anything in between (e.g., see

Figure 3.2).

Formally, I denote a super graph as Gcct(V,E), where the set of nodes, V = {vi},

uniquely represent the call sites (functions in the call stack), and the directed edges,

E = {eij}, capture the caller-callee relationship between vi and vj, respectively. Each

edge eij is associated with a weight wij, which depends upon the performance metrics

of the two nodes. The performance metrics for nodes are stored as rows in pandas [133]

dataframes, which allow fast access and operations. In addition to inclusive and exclusive

metrics, cache misses, etc., the dataframe also stores meta-attributes of the nodes, such

as function name, file name, and location in source code.

Given the scope and requirements for CallFlow, I translate the domain-specific
2Although a CCT is a tree, notating it as a (super) graph allows discussing the various operations of

interest more concisely.

29

Figure 3.2: Node aggregation and splitting operations. (a) shows the original tree,
labeled as “[function_name] module_name”; (b) shows aggregation operation where nodes
from the same module are merged together. The aggregated super graph contains two
supernodes corresponding to lib1 to prevent a cycle; (c) shows a split by entry function
operation where lib5 supernode is split with respect to its entry functions, (7,8) vs. (11).

goals into more-specific graph operations: filtering, aggregating, and splitting of nodes.

3.2.1 Filtering of CCT Nodes

The first operation when processing any CCT is typically filtering out nodes unlikely

to be of interest to the user. In particular, the nodes towards the bottom of Gcct

typically represent decreasingly smaller portions of the overall run time. Since the goal of

CallFlow is performance optimization, functions that represent only a tiny fraction

of the overall time are not of much interest to the user. Also, each function could

potentially be represented thousands of times in the CCT, being called from different

contexts. Therefore, filtering Gcct by removing nodes with small inclusive runtimes could

remove a nontrivial portion of the execution. Instead, filtering the nodes based on the

total inclusive runtimes across all the instances of the corresponding function is more

meaningful. The aggregate information of the removed nodes still remains available as

part of the inclusive runtime of their ancestors. The only information that is lost is the

ability to differentiate how this filtered runtime is distributed among lower level calls.

From the experiments, I noticed that even a conservative threshold (less than 0.1%

of the root’s inclusive run time) can reduce the number of nodes in Gcct drastically (by

approximately 70–80%). A majority of nodes are filtered out because most function calls

are wrapper functions that are called by a library in the program and do not contribute to

effect in performance. Therefore, filtering is key to enable an interactive tool. The output

30

of the filtering is a smaller super graph, Gfilt. Filtering removes information from the CCT,

and thus, in principle, could impact the downstream analysis. To mitigate the information

loss, CallFlow supports repopulation of the filtered nodes, if desired. Combined with

this fail-safe operation, filtering proves to be a powerful tool for exploration of large CCTs.

3.2.2 Aggregation of CCT Nodes

Modern software abstractions have numerous intermediate call sites that are not

relevant to performance analysis. Such call sites can obscure relevant information by

spuriously increasing the height of the tree. For example, common accessor functions

in object-oriented languages or template wrappers create additional call sites with

insignificant performance metrics. In most cases, these nodes are internal to the tree

therefore, cannot be removed without removing the corresponding subtree. Instead,

these nodes should be aggregated with respect to higher-level code abstractions, such

as libraries, code modules, files, etc., which are often more intuitive to the user.

In particular, every node in the CCT belongs to a higher-level abstraction, which can

be represented as a hierarchy map, µ. Merging the nodes of Gcct (or Gfilt) recursively based

on µ until a desired level of abstraction is obtained creates the super graph, Gcfg(Vs,µ,Es,µ).

Here, the supernodes, Vs,µ = {vs
i} are aggregates of the nodes of Gcct (or Gfilt) with respect

to µ, and the superedges Es,µ connect the supernodes. For example, given a hierarchy of

a function call, module > library > filename > function, after merging, a module could

become a supernode with the remaining hierarchy stored as its subgraph.

To describe the performance metrics for supernodes, I first discuss another crucial

data component. The entry functions are the functions through which the control enters

to a particular module or library. Specifically, given a supernode, vs = {vi}, its entry

functions, vs,e are defined as the nodes whose parents do not belong to the same supernode,

i.e., vs,e = {vj} such that {vj} ∈ vs and {parent(vj)} /∈ vs. The exclusive metrics of a

supernode, vs, is the sum of those of all its components nodes {vi}. However, the inclusive

metrics of only the entry functions, {vs,e} are used to represent that of vs.

It is to be noted that although aggregation removes valuable information, such as

call paths, from the visualization, the domain experts value the ability to quickly detect

31

bottleneck functions over finding the 1-to-1 caller-callee relationship.

Aggregation of nodes could introduce cycles in the super graph when a function

belonging to a library is called multiple times along a call stack. However, cycles break

the common understanding of control flow, and are typically considered artifacts of

specific implementation patterns, most notably callback functions. Furthermore, cycles

would significantly complicate the visualization. Consequently, I prevent cycles from

forming during the aggregation, and instead preserve multiple nodes from the same

namespace level. For example, when merging the nodes by the libraries they belong

to (see Figure 3.2(b)), the supernodes lib1 and lib2 create a cycle because they call

functions in each other. For such cases, duplicate supernodes can be created for some of

the labels, e.g., lib1. Independent of the hierarchy based on which the nodes are merged,

the metrics for the supernodes can be aggregated, and the edges preserved. The resulting

super graph would represent the control flow at the selected level of detail with nodes

indicating concepts like modules and edges indicating the calling hierarchy.

Aggregation of nodes can be done easily and interactively using standard data

structures. The one potential pitfall of these operations is that preventing cycles

may result in multiple merged nodes with the same name label, i.e., from the same

module/library, which could be counter-intuitive to the user. However, experts anticipate

that most such cases arise due to the callback architecture used for performance

introspection, as CCTs are typically recorded using default callback interfaces. In a

callback pattern, one of the two nodes is associated with setting the callback, and typically

does not contribute meaningful runtime. As a result, I employ a layout that does not

support cycles, since their downsides outweigh the benefits.

3.2.3 Splitting of CCT Nodes

The super graph at a given level of refinement may be too coarse to diagnose many

performance problems. Therefore, the users are interested in resolving additional details

upon request. To this end, CallFlow supports splitting of a chosen supernode into

two or more (super)nodes, and redistribute the original flow. Although there could be

several strategies for splitting nodes, each guided by its own application-dependent use

32

case, through several discussions with domain experts, two most relevant approaches to

the semantics of the analysis were identified.

Split by entry functions is the operation that splits a supernode into “component"

(super)nodes based on what entry functions they are called by. As discussed earlier,

entry functions are generally the public API functions of a module, or a library which

the developers are familiar with. To allow users to know the API calls that consume high

resources, CallFlow allows the user to select one or multiple entry functions belonging

to a supernode, and split it into component (super)nodes such that each component

(super)node corresponds to a single entry function. Figure 3.2(c) shows the splitting of

node lib5 into two, based on entry functions (7,8) and (11), respectively.

Split by callees. Often, lower-level libraries, e.g., MPI, which are typically called by

multiple higher-level modules, consume more time than expected. In such cases, the

logical next step is to determine whether the problem exists in all contexts, i.e., in all

parent modules, or only in some of them. To support such queries, CallFlow allows

splitting a (super)node with respect to its parents. This operation allows the user to

determine where the costs for a particular (super)node come from and where the cost will

propagate to. Additionally, it informs the user about the functions or modules responsible

for high exclusive time, if any.

By determining entry functions as part of the aggregation step, both splitting

operations are easy to support. Both involve only local changes in the topology of Gcfg

and local updates to the metrics. Other splitting operations could be implemented, e.g.,

to isolate specific nodes of Gcfg or to recursively split apart two subtrees. However, the

former would require first determining which node to isolate, implying that the source of

the problem is known, and visual exploration not needed. The latter is an example of

automating certain interactions and, in practice, I have not encountered common enough

patterns to justify the additional complexity. Another potential candidate is a split

by children; however, such a split may not be possible in most cases, as a single node

could call into multiple different libraries, and thus may not be able to split accordingly.

In summary, the experts consider the chosen splitting operations sufficiently flexible to

33

support the detail-on-demand exploration of interest.

3.3 Visual Design of CallFlow
CallFlow is an interactive tool with three linked views: control flow view, histogram

view, and correlation view, (see Figure 3.1 for an overview). Together, the three views

support the queries of domain experts in an interactive manner.

3.3.1 Control Flow View

The control flow view presents an overview of the application’s control during execution.

I visualize Gcfg (or Gcct or Gfilt) using a flow-based metaphor with Sankey diagrams, where

a directed graph is laid out with respect to the amount of resource under consideration. I

treat the inclusive metric (usually, the execution time) as the resource being distributed

among supernodes. To effectively use the aspect ratio of common visual mediums (e.g.,

computer monitors), I use a horizontal Sankey layout, where the direction of the graph

goes from left to right. Thus, each supernode is encoded as a rectangular bar with its

height representing the sum of the inclusive metrics of all its entry functions. A superedge

{vs
i , vs

j}, represents the flow of inclusive metrics between the two nodes, and the thickness

(in vertical direction) of the superedge indicates the inclusive metric consumed by the

target node, vs
j.

By design, this visual encoding captures the direction of the super graph, i.e.,

the control flow can be traced easily from the root node (left) to leaf nodes (right).

Furthermore, the visual encoding not only highlights inclusive metrics directly, but also

indicates exclusive metrics easily. In particular, the exclusive metric for a given supernode

is the difference in the thickness of incoming and outgoing superedges. The exclusive

metric is indicated by empty portions towards the bottom of supernodes, where no

outgoing edges exist, e.g., the physics module in Figure 3.1. However, such differences may

be difficult to notice visually when exclusive times for nodes are small. To alleviate this

limitation, CallFlow can also use color to encode exclusive metrics. Finally, constant

widths (horizontal spans) are used for all supernodes to easily compare of the area of the

nodes and identify nodes with high costs. Thus, the user can identify nodes with high

34

inclusive and exclusive cost as bars with a large area and dark color.

Although the visual encoding described above captures the control flow of an

application, effective exploration still requires tailoring the Sankey layout of the super

graph at hand, especially considering the interactive support of splitting and aggregation

operation for large-scale super graphs. CallFlow’s graph layout is based on a key

domain-specific insight that neither the depth of a supernode nor the order of sibling

supernodes has any inherent significance. Consequently, placement of supernodes can be

varied to make the graph as readable as possible, with the only constraint being that

the left-to-right order must preserve the call stack order. The key criterion to optimize

when choosing a suitable layout is to minimize the number of edge crossings, because edge

crossings create visual clutter and can obscure information.

Horizontal positioning. Sankey visualizations place nodes in “layers”; the spacing

between layers is usually consistent, allowing for an even distribution of horizontal space.

Since a CCT is a hierarchical tree, the derived super graphs generally do not contain many

nodes in the initial layers, whereas there is also more overlap in the later layers due to the

increase in the number of nodes and edges. Therefore, even horizontal spacing leads to

ineffective use of space. Since a supernode typically appears in multiple calling contexts,

I define its level as the maximum depth among all the contexts (paths in the super graph

leading back up to the root), and use supernodes at the same levels to create “layers” in the

Sankey layout. Once levels have been computed for all supernodes in the super graph, the

horizontal position for lth layer is computed as xl = max(minx, lk · max(nl, nl−1)), where,

minx is the minimum space between adjacent levels, nl denotes the number of supernodes

in level l, and k is a scaling exponent. This approach places the layers with fewer bars

closer to each other than the layers with larger node count.

Vertical positioning. To assign vertical position to nodes, I follow the method described

by Alemasoom et al. [40]. Similar to their technique, we add dummy nodes and edges

to connect two nodes when they are in nonconsecutive levels. These intermediate nodes

simplify the layout by providing anchors to long edges, and thus, reduce edge crossings.

The height of the dummy node is equal to the flow between the original nodes it connects.

35

The approach computes an optimized layout that minimizes the weighted sum of distances

between each two connected nodes in consecutive layers. I impose an additional constraint

to this optimization by imposing a minimum vertical gap between two nodes within the

same level to allow embedding the histogram for process-specific information. Figure 3.3

demonstrates the value of such an optimization.

3.3.2 Histogram View

To enable process-based visual profiling, CallFlow provides statistical visualization

using histograms. Although common approaches often display measures such as

standard deviation, quartiles, etc., they are useful mostly when the data comes from

a known distribution. Since there is no reason to assume that run times of parallel

applications would follow a specific distribution, such measures can be misleading.

Instead, CallFlow uses histograms to show the actual distributions. The histogram

view in CallFlow shows the sampled distribution of process-based metrics for a

selected supernode. However, selecting a supernode to highlight its histogram is tedious,

particularly in the exploration phase since it forces the user to select several nodes before

identifying the one with interesting variation. CallFlow addresses this problem by also

showing a mini histogram at the top of every bar (supernode) in the control flow view

(see Figure 3.1). The mini histogram is small enough that it can be placed on every bar

without creating much visual clutter, yet big enough that the user can quickly identify

which supernode has an interesting distribution. Once an interesting distribution has been

identified, the user can select the corresponding supernode to view the larger version of

the histogram.

To assist the user explore the connection between slowdowns in MPI ranks and the

physical domain, I display the rank-to-bin mapping in the histogram view. There are two

ways in which the histogram view indicates this mapping. First, hovering over a bin in

the histogram pops up a tooltip informing the user about the ranks in the corresponding

bin. The second approach is shadow lines, which map the bins in the histogram to the

process/rank id laid out on an ordered line at the bottom of the histogram. Figure 3.1(b)

shows the shadow lines within the histogram view. Although shadow lines can create

36

visual clutter, especially for large processor counts, this is in fact a desired visualization

since it indicates that the code behaves normally. Clutter generally appears when bins

in the histogram contain a broad range of rank, an indication that the rank id is not

correlated to the observed run times. On the other hand, scenarios without clutter indicate

that certain run times are correlated to the rank id, which can be a sign of load imbalances

and inefficient algorithms.

3.3.3 Correlation View

Generally, performance bottlenecks can be observed in many metrics. For example, high

cache misses lead to higher run times, as more time is spent accessing the memory.

Analyzing many metrics individually can be cumbersome; instead, CallFlow leverages

the correlation between two metrics to identify performance bottlenecks among different

processes using a correlation view (see Figure 3.1), where each point in the scatter plot

represents a process. If there is a correlation between two metrics, I expect processing

elements to form clusters, whose size informs the extent of correlation. I also show the

best-fit line to aid the user in observing the trend of the scatter. Hovering over the best-fit

line displays useful statistical measures. The correlation aids in choosing the bins in the

histogram view that cause load imbalances among processes based on their MPI ranks,

and later compare their respective subgraphs.

3.3.4 User Interactions

The user can interact with CallFlow in several ways.

Hovering over a supernode brings a tooltip with information about the corresponding

supernode. As shown in Figure 3.1(d), the tooltip shows the name of the corresponding

module/function, its inclusive and exclusive metrics. Additionally, the calling context

of the supernode is shown: the function that calls the highlighted supernode, the entry

functions called in the supernode, and the metrics spent in those calls. For each calling

function, a small square is shown indicating which node the function belongs to. The

tooltip is useful for a quick inquiry into the functions in a module (supernode) that

consume most resources, as well as the functions that call those expensive functions.

37

Selection of a supernode indicates the user’s interest in finding more information about

the corresponding nodes. All entry functions of the supernode are enumerated, and the

histogram and the correlation views are updated to correspond to the selected supernode.

Zooming and panning are key to navigating the super graph smoothly, especially,

when it is large. Although zooming out may reduce the size of the rendered node, where

possible, the legibility of node labels is maintained by increasing the font size.

Splitting of nodes is an important target operation for CallFlow. A split by entry

function requires the user to choose a function from the list of entry functions. On the

other hand, a split by parent leads to updating the super graph by replacing the selected

supernode with its parents. In either case, the new super graph requires recomputation

of layout, which although is done in real time, could impose additional cognitive burden

on the user.

(a) Unoptimized layout (b) Optimized layout

Figure 3.3: CallFlow uses a modified version of layout optimization presented by
Alemasoom et al. [40]. With many overlapping edges in the unoptimized layout, (a) the
connectivity is harder to decipher. Using the optimized layout (b), e.g., edges connecting
mixeo and leos, and util and libmpi can be seen more clearly as compared to (a).

To mitigate this burden, I use a consistent naming scheme for supernodes to provide

a consistent context in the transition. In particular, I concatenate the names of the

(original) supernode and the (new) split supernodes separated by a hyphen. Figure 3.2(c)

shows an example of a splitting interaction based on two of its entry functions.

CallFlow also animates the transitions to make them easy to follow. Before

supernodes transition to new locations, the edges are removed to prevent the user

38

from tracking too many elements at once, thus reducing cognitive stress on the user.

Furthermore, the user is more interested in how the nodes are split and by how much.

Hiding the edges allows the user to concentrate on the nodes. The nodes are then moved

to new locations and new ones are added in the process. The layout minimizes node

movements so that unchanged nodes remain as static as possible. After nodes are in the

new locations, edges are added back in.

Comparing subgraphs within a super graph is often needed, e.g., to detect load

imbalances, where certain processes could remain idle during execution. The user can

perform a brushing action on the histogram, and the graph view is split into two, showing

the two super graphs (see Figure 3.4) associated with the two process groups. The brushed

bins constitute the processes that make up the top super graph and the non-brushed bins

make up the processes of the bottom super graph. Furthermore, CallFlow allows users

to color the node based on the difference to detect variations in their exclusive metrics.

Implementation Currently, CallFlow supports two data formats: HPCToolkit [7]

and Caliper [11] formats. CallFlow is a web-based system implemented in Javascript.

I used a client-server architecture to implement the system. The client is written using

Node.js [134], which processes and serves the data to the client. The server performs

many of the operations mentioned above which includes filtering, merging and spiting

nodes. The client is responsible for performing the layout calculation for the graph view

as well as handling user interactions.

3.4 Case Studies
Here, I present two case studies on understanding profiles of large-scale scientific

applications to show the impact of CallFlow at Lawrence Livermore National

Laboratory. Both these studies were led by the collaborators, who are computational

scientists, and work closely with application developers on performance analysis and

scaling optimization of scientific codes. These experts have extensive experience in

performance optimization of large-scale parallel applications, and have worked with other

visualization tools for performance analysis, such as HPCToolkit [7], Scalasca [16], and

39

Figure 3.4: Understanding the impact of over-decomposition on LULESH. (a) MPI-style
execution with 1 MPI rank per process: most time spent in LULESH internals,
MPI/libpsm, AMPI internals (tmp bar), and C-library. (b) With over-decomposition,
time spent in most modules reduces, but histograms of several modules show significant
load imbalance.

47s 170s

Figure 3.5: Analysis of load imbalance in
LULESH by dividing the processes based
on the time spent in LULESH internals.
The splitting shows that processes with light
load for LULESH internals (bottom view)
spend significant time in MPI/libpsm,
AMPI, and C-library, while remaining
processes (top view) spend minimal time in
these modules.

Histogram for lulesh2.0

79s44s

Figure 3.6: Impact of load balancing for
LULESH (bar heights scaled as Figure 3.4):
total runtime decreases and time spent in
libc and MPI/libpsm is reduced. The
load for LULESH internals is more evenly
distributed across processes.

Vampir [10]. The following describes the studies and summarizes some of the informal

feedback provided by the experts.

3.4.1 Study 1: Load Balancing of LULESH

LULESH [135] is a proxy application used for modeling the performance of large

hydrodynamics simulations. LULESH solves a simple Sedov blast problem with analytic

answers, but represents the numerical algorithms, data motion, and programming style

40

typical in scientific applications written in C/C++. It has been used to study the

performance of different parallel programming models. LULESH represents the numerical

algorithms, data motion, and programming style typical of scientific applications, and

is used for studying the performance of different parallel programming models and

architectures.

Here, I use CallFlow to understand the performance of LULESH when implemented

using Adaptive MPI (AMPI) [136] for solving a problem that represents multimaterial

systems. AMPI is a paradigm of MPI applications with overdecomposition, i.e., multiple

MPI ranks per process instead of the commonly used one rank per process.

Figure 3.4(a) visualizes an execution of the AMPI version of LULESH that emulates

the traditional MPI model where one MPI rank is placed on every process in the

system. By coloring the nodes based on exclusive runtime, CallFlow helps identify the

distribution of time among LULESH internals, AMPI framework, and other modules. On

average, LULESH internals and MPI/libpsm (the lower-level messaging libraries) account

for the majority of runtime, and exhibit load imbalance among processes. Surprisingly,

ampi and libc also show significant runtime.

Significant time spent in MPI/libpsm and the load imbalance across processes suggest

that AMPI’s ability to overdecompose MPI ranks and adaptively overlap computation

with communication can improve performance. To test this hypothesis, I run eight logical

MPI ranks on every process in the next experiment. This results in a reduction in the

execution time by 44% as highlighted by the difference in the height of the root module

in Figure 3.4(a) and Figure 3.4(b). The module view eases the task of identifying the

code regions that benefit from overdecomposition. Unexpectedly, the time spent in the

AMPI runtime decreases despite the fact that an eight-fold overdecomposition leads to

eight times more messages and scheduling overhead. Further, most of this improvement

appears to come from less time spent driving the communication in MPI/libpsm. Since

both AMPI and MPI/libpsm are large and complex frameworks, their respective nodes

in CallFlow abstract a large number of CCT nodes across many levels and contexts.

Therefore, arriving at these insights from a traditional CCT display would require

41

(a) 256 processor run (b) 1024 processor run

Figure 3.7: Comparison of Miranda execution on 256 and 1024 processors; height and
color of a bar represent the inclusive and exclusive time spent in the module. These
visualizations help identify the modules in which significant time is spent in the execution,
and reveal that the increase in the exclusive time spent in the libpsm module is the
primary reason for lower performance on 1024 processors.

Figure 3.8: Splitting Hypre allows identifying its components responsible for
performance-degrading communication.

substantial effort as well as an initial guess to focus on these two components. Instead,

CallFlow’s super graph view immediately highlights the most important differences in

the runtimes effectively.

Despite the reduced runtime, the histogram for most modules (see Figure 3.4(b))

appear to be heavily skewed. To explore this further, I split the processes based on the

time spent in LULESH (see Figure 3.5). The split view reveals that only the processes

with light load for LULESH internals spend a large amount of time in MPI/libpsm, ampi,

42

and libc. Discovering such a high-level correlation among different modules is difficult

using traditional CCT tools. In this case, these results inform the need for load balancing

the work done by the LULESH across processes.

Next, enabling load balancing in AMPI resulted in 30% better performance. The

resulting profile (see Figure 3.6), helps understand that the performance benefits are

driven by more evenly load for LULESH internals among processes. The view also shows

that the time spent in ampi, MPI/libpsm, and libc is reduced significantly.

3.4.2 Study 2: Scaling Performance of Miranda

Miranda [137] is a large-scale parallel code that simulates radiation hydrodynamics for

direct numerical solution or large-eddy simulation. In order to simulate large-scale

scenarios, it is desirable that Miranda exhibits good weak scaling, i.e., execution time

should not increase significantly when more processors are used to solve larger problems.

However, Miranda developers have observed poor scaling behavior for Miranda. To

investigate the causes of degraded performance, CCT profiles of Miranda at two different

process counts: 256 processes and 1024 processes, and noticed that even though the

problem size per process is kept fixed, the execution time increases by more than 30%.

Fig. 3.7(a) shows the CallFlow visualization for a Miranda execution on 256

processes. For performance experts analyzing the behavior of Miranda, who are not

familiar with Miranda, the visualization provides a high-level overview of the control flow

of Miranda, and the dependencies and relationships between different modules. It is

typically difficult to obtain such information from CCTs because hundreds of functions,

often with unfamiliar names, are used in production codes. In contrast, it is tractable for

performance experts to get familiar with program modules and commonly used external

libraries. Further, coloring the modules by exclusive time spent in them helps identify

the modules that make up most of the overall execution time. In this case, three modules

stand out: physics (Miranda’s science code), Hypre (a linear solvers library), and libpsm

(the lower-level messaging library underneath MPI). Figure 3.7 also shows a juxtaposed

comparison of profiles from 256 process and 1024 process executions. To facilitate such a

comparison, I use CallFlow’s feature to rescale the height of the root modules based on

43

MPI ranks

180s 220s

Fr
eq

ue
nc

y

Figure 3.9: Histogram for time spent in the libpsm module: the distribution is normal
and not heavily skewed; the bin-to-MPI rank connections reveal that lower-ranked MPI
processes are more likely to have higher libpsm time.

their inclusive time (which is also the total execution time) and use a common time range

for coloring the two super graphs based on the exclusive time. The contrast in the color

of the libpsm module in the two figures immediately identifies it as one of the culprits for

performance degradation. However, the visualization also reveals that most of the time

spent in the libpsm library can be traced back to the Hypre module, implying that the

cause of poor scaling of Miranda is poor scaling of the latter.

To explore the components in Hypre that are responsible for the time spent in libpsm,

the nodes are further split to reveal high-level control flow and inefficiency sources inside

the Hypre library (see Figure 3.8). The module-based split reduces the work that a domain

expert would need to do to identify that utility and struct_mv components of Hypre

invoke point-to-point communication calls in MPI that result in half of the increased

libpsm time. Similarly, the collective calls made by the struct_mv module caused the

remaining performance degradation.

When the time spent in messaging affects the performance, experts tend to analyze

the time distribution across processes to find the root causes. With CallFlow, such a

histogram for libpsm (or for any other module) can be obtained simply (see Figure 3.9).

I observed that for the Miranda execution on 1024 processes, the distribution of time

spent in libpsm is not heavily skewed and has a narrow time range, suggesting that

the increased communication volume is likely the cause of the increased time. If load

44

imbalance or system noise would have been the culprit, a more skewed time distribution

would be obtained. Finally, the bin-to-MPI rank connections shown below the histogram

reveal that lower-ranked MPI processes are more likely to spend higher time in the libpsm

module. Such an insight would have been difficult to obtain in traditional tools and can

help identify systematic-bias in the code.

3.5 Potential Improvements
Despite the initial successful use cases and positive feedback from the domain experts, I

identified several avenues for further research and development, which were incorporated

in Chapter 4. First of all, CallFlow only allows analyzing a single dataset a

time. However, simulation codes typically run under different conditions and it is

necessary to compare the performance under these conditions. Enabling CallFlow

to support multiple datasets and incorporate animation to transition between different

datasets would be the next immediate target. Second, in both case studies, I noticed

the domain experts were interested in comparing performance across MPI ranks (with

LULESH dataset(see Subsection 3.4.1)) and across runs (with Miranda dataset (see

Subsection 3.4.2)). Furthermore, experts were keen on expanding the tool to support

exploration of the performance variability, a common occurrence in the HPC field.

3.6 Summary
In this chapter, I introduce CallFlow, a visualization tool for exploring the calling

context trees (CCTs) of application codes, particularly useful for large-scale parallel

codes. Through an easy-to-understand flow-based visual metaphor in the form of

Sankey diagrams, CallFlow helps the users identify performance bottlenecks in the

code effectively, leading to potential optimizations and improved throughput. Catering

specifically to the target data an users, CallFlow customizes and enhances the layout of

Sankey diagrams, and uses multiple linked views to provide a holistic exploration of CCTs.

Through interactive operations on the underlying graph, CallFlow provides both a

high-level, system-oriented overview of CCTs and the ability to drill down to detailed

information, and enabling analysis of large-scale CCTs more accessible and explorable.

45

Chapter 4
Ensemble Visualization of Sampled
Profiles from Application Domain

Large-scale parallel applications demand a variety of deployment modes to identify

performance bugs across versions of code or understand how different application

parameters and/or initial conditions may affect the performance. Much importance

lies in detecting the performance variations and enabling domain experts to choose

the application parameters that correspond to the best-observed performance. For

example, a simulation code may utilize computing resources inefficiently, possibly due to

a suboptimal implementation, such as inefficient file I/O or unnecessary communication

between processing elements.

Experts often conduct various test runs by varying multiple configurations to

identify optimal execution parameters and configurations, resulting in large ensembles of

performance profiles. Considerable development time is spent comparing the performance

of multiple executions in pursuit of optimal performance. In particular, to identify

optimal execution parameters and configurations, experts often conduct a variety of test

runs for varying hardware configurations, system software choices, as well as application

parameters, resulting in large ensembles of call graphs. Therefore, comparing the call

graphs of several executions becomes essential to reveal the differences in both the

performance metrics and the calling structure.

As discussed in Chapter 3, visualization of the collected performance metrics along

with the calling context tree [13] helps gain insights into the execution of an application.

However, existing tools [7–9, 16, 17, 37, 138], including CallFlow, either lack support

for large ensembles of profiles or only provide primitive functionalities, e.g., juxtaposed

comparison [138], making an adequate evaluation of hundreds of profiles almost infeasible.

46

Alternative approaches, such as statistical summaries, may be used to analyze the recorded

performance metrics. Still, the lack of interactive visual analytic support severely limits

the experts’ ability to understand new, unanticipated causes of bottlenecks.

In this chapter, I will discuss how I extended the visual design of CallFlow [138]

to enable scalable performance analysis on large ensembles of profiles using the ensemble

super graph. By combining data analysis and visualization, CallFlow’s visual interface

comprising multiple interactive linked views enables the comparison of the performance

variability across ensembles. I introduce a new visual design, ensemble-Sankey, which

combines the strengths of resource-flow (Sankey) and box-plot visualization techniques,

facilitating the visualization of large ensembles of resource-flow graphs. An ensemble view

is then built upon ensemble-Sankey design, provides a complete, high-level visualization

of the ensemble. This view can be used to understand the overall distribution of the

concerned profiles as well as identify the behavior of individual runs. I introduced new

functionality to CallFlow that preserves this information, which can be revealed to the

user upon request via the supernode hierarchy view, which augments the ensemble view

by adding execution details within a selected node using icicle plots.

4.1 Need for studying call graph ensembles
Although call graphs provide an accurate and reduced representation of calling contexts,

their visual analysis is nevertheless severely constrained by their scale, especially for

large applications with calls to multiple libraries that may lead to hundreds of call sites.

To simplify the visual analysis, CallFlow [138] introduced a super graph, created by

aggregating the nodes of a call graph based on tool- or user-defined semantic attributes,

e.g., the library name, module name, or file name. Supernodes (the nodes in a super

graph) represent collected call sites with a shared semantic attribute. For example, the

supernode lib3 in Figure 4.1 combines the call sites bar and baz that are part of the

same library.

Although super graphs are useful for exploring large-scale call graphs, the semantic

aggregation leads to loss of detailed information within a supernode, e.g., the calling

47

context and the performance metrics of the functions within a given library.

Large profile collections that contain a lot of individual, but related, datasets with

slightly different characteristics are called ensembles. The individual datasets being part

of an ensemble are called the ensemble members. In Chapter 3, I visualized individual

call graphs using Sankey diagrams [139] to indicate both the flow and distribution of

resources of interest, e.g., execution runtime, in a single call graph. CallFlow maps the

chosen metric to Sankey nodes using color, which helps identify the resource consumption

of modules and/or call sites. As in typical Sankey layouts, the edges encode the amount

of resource being transferred as vertical thickness. The user may use graph operations,

such as filtering and aggregation, to visualize call graph at desired details and explore

the data interactively with respect to the metric of choice. However, such encodings and

interactions are suitable only for the case of single call graphs and cannot be applied

to ensembles. For example, a single color mapped to a Sankey node cannot capture

the variation across ensembles and the intuition of resource transferred for edges is

uniquely defined only for individual call graphs. Furthermore, comparison tasks cannot be

main
30:0

foo
20:0

bar
10:0

thud
5:5

bar
15:15

155 10

20 10

qux
10:10

(a) Calling Context

Tree

main
30:0

foo
20:0

bar
25:15

qux
10:10

10

5 15

10

20

thud
5:5

(b) Call Graph

LIB1[main]
30:0

LIB2[foo]
20:0

LIB3[bar,thud]
30:20

LIB4[qux]
10:10

20

20

10

10

(c) Super Graph

Figure 4.1: Performance profiles of applications are captured as their calling contexts,
which represent call sites (functions) and their callees all the way up to main, along with
performance metrics, e.g., runtimes. CCTs (a) and call graphs (b) are simplifications
of calling contexts created by aggregating call sites representing the same function. A
super graph (c) introduces additional simplification through semantic aggregation, e.g.,
based on the libraries they belong to. The nodes are labeled by the function/library name
and inclusive:exclusive runtimes, and colors represent the nodes by library. Each edge is
labeled with the amount of “resource” (exclusive runtime) flowing through.

48

performed realistically, since the user needs to perform pairwise comparison via juxtaposed

visualization — a limitation that quickly becomes prohibitive.

Another use case for studying ensemble members is to detect performance variability

among experiments or jobs submitted to large supercomputers. It is common to hear

science users complain about performance variability within a single job from one time

step to another and across equivalent jobs run over a period of time. This performance

variability creates practical issues such as making performance debugging difficult and

estimating the runtime of a job more challenging. The reasons for such runtime differences

could range from network congestion to the variation in the input parameters set to

the jobs. Therefore, domain experts were also interested in exploring an ensemble for

performance variability and understand if the cause can be attributed to a library.

4.2 Domain Problem Characterization
Similar to Chapter 3, I tackle the characterization through close collaboration with domain

experts. In particular, I focus on enabling exploration of the performance variability

captured across large ensembles of call graphs. I identified five specific requirements for a

new visualization tool.

4.2.1 Requirements for Exploring Call Graph Ensembles

R1. Compare two call graphs (i.e., a diff view). In many cases, the users

are interested in comparing the performance of two executions. Such a comparison

must highlight faster/slower portions of a given execution to enable easy identification

of performance bottlenecks.

R2. Visualize performance variability within several call graphs. Working with

more than two graphs, users are interested in identifying the performance variability

within a single function or a single module (in general, a single supernode). Whereas

simpler statistics, such as mean, median, and variance, are easy to compute already, the

users are instead looking for a visual depiction of the entire distribution to allow them to

understand the overall trend as well as identify outliers.

R3. Accommodate ensembles of “reasonably different” call graphs. Whereas the

49

tool is not expected to summarize ensembles of profiles of different applications, the visual

exploration must accommodate “reasonable differences” in the topology of call graphs of

a single application, e.g., differences in call paths due to application parameters or MPI

implementations.

R4. Visualize additional fine-grained details on demand. Although a simplified

visual layout is essential for the complete ensemble additional details, e.g., about the

module subtree and variance across processes, should be available to the user on demand.

R5. Interactive exploration and graph operations. The users desire the above

functionality as well as the existing [138] graph filtering and splitting operations are

interactive and scalable to ensembles of several hundred call graphs.

To understand the scope and requirements of this work in the context of the existing

functionality of CallFlow, the new design solves a significantly different and more

complex problem, in addition to while retaining the features of the previous version. Most

prominently, I introduce two new analytic modes: ensemble mode, which visualizes the

performance variation across multiple call graphs, and diff mode, which directly compares

two call graphs or a selected call graph against the ensemble. To enable these analyses,

I develop new visual encodings that are built on top of the Sankey layouts, which I call

ensemble Sankey. Furthermore, the tool is also capable of interactively revealing the

additional details on demand using the supernode hierarchy view. Finally, adding to the

histogram view, which allows exploration of performance slowdown/speedups among MPI

ranks with the physical domain, I also helps explore the variation in the observed runtime

distribution using boxplots views.

4.2.2 Identification of Targets and Actions

Comparison targets are data entities integral to the comparison task, i.e., the specific

data elements being compared. Here, I identify four comparison targets. Whereas the

first three targets are explicit, T4 is an implicit target because it is not known from the

data itself, but rather is based on analysis of the ensemble [140]. Here, comparing explicit

targets is challenging because the comparison with respect to call graphs is difficult, and

50

the ensembles pose scalability issues. On the other hand, the challenge with implicit

targets is that they tackle unknown elements that requires user knowledge to interpret

the differences.

T1. Calling contexts are an overarching target for the comparative visualization. Any

optimization efforts usually focus on identifying parts of the applications that must be

improved, for which, understanding the entire calling context of the application is essential

to visualize. Furthermore, different execution modes (e.g., MPI libraries and application

parameters) may lead to slight differences in the calling contexts. Understanding such

differences is also important to reason about the variability in the performance within

ensembles.

T2. Performance variability across runs. Production codes with high run-to-run

variability may cause unpredictable slowdowns and diminish the reproducibility of

successful experiments. Highlighting such variability, at both module (summarized) and

call site (detailed) levels, is one of the most critical comparison targets in this work.

T3. Performance variability across MPI ranks. For MPI-enabled applications,

the overall performance degrades when the runtime is less uniform across resources [141],

e.g., due to load imbalance. Identifying heavily over- or under-utilized resources from the

runtime distribution is important to design codes that can achieve peak performance.

T4. Execution parameters. In many cases, an application’s performance may be

correlated with certain execution parameters [142]. Therefore, identifying the parameters

with more significance can help understand explored multiple optimization strategies

simultaneously.

Comparison actions are visualization tasks needed to understand the relationships

between and within comparison targets. Formulation of actions influences the visual

encoding and the user interactions that link individual visual components. Visualization

of ensembles of call graphs broadly require six actions.

A1. Compare calling contexts across runs. Due to potential differences in calling

contexts of the different executions (T1), it is essential to highlight any differences, i.e.,

51

missing nodes/edges in the graph.

A2. Compare performance variability across runs. Displaying the aggregated

performance from individual executions is not a scalable approach considering the effort

from the user, and the corresponding visualization complexity. Instead, the recorded

performance (T1) and calling contexts (T2) must be summarized not only within a single

execution, but also across multiple call graphs.

A3. Compare performance variability across MPI ranks. Summary statistics

(e.g., mean runtime) across MPI ranks (T3) is not sufficient to analyze runtime

distribution across resources because the distribution is not expected to be normal. To

aid the exploration, complete distributions are essential to visualize.

A4. Compare call graphs across levels of detail. Although comparisons across super

graphs (semantically aggregated call graphs) is useful, when experts typically identify

problem areas, they are interested in looking at selected regions in more detail. Therefore,

it is important to manage fine-level details and visualize them upon request.

A5. Compare two call graphs. Differences between two call graphs can exist

structurally (T1), as runtime variations (T2, T3), and/or in execution parameters (T4).

Simple, visual representations of such differences is of value to the user.

A6. Compare a selected run with an ensemble. Comparison tasks often require a

baseline to compare against. For all of the targets (T1–T4), it is important to compare a

selected run with the ensemble behavior. An important constraint to consider is that the

constructed baseline must match the expert’s understanding of the overall calling context,

despite minor differences in the individual ensemble members.

4.3 Ensemble SuperGraph
4.3.1 Data Representation

To efficiently represent the data, the given sampled profiles are converted into

GraphFrames using Hatchet [143], an open-source profile analysis tool. A

GraphFrame (Gcfg) is a Hatchet construct that consists of two data structures: a directed

acyclic graph (G) that represents the CCT or call graph, and a Pandas [144] DataFrame

52

(D) that stores the associated performance metrics. Hatchet represents the collected

performance metrics into individual columns of D and establishes a consistent indexing

scheme to link the call site in G to its performance data in D, which not only enables

combining data operations with graph operations, but also improves the scalability of

various analytic tasks.

Each call site in G is associated with semantic information from the source code, e.g.,

load module, file name, line number, obtained either automatically via the profiler or

through explicit user annotations. This semantic data is extracted from G and stored as

additional columns in D for fast access. Furthermore, the performance metrics recorded on

each call site typically contains metrics from multiple processing units (e.g., MPI ranks).

Fast access to the data frame is facilitated through hierarchically multi-indexing D, where

the indices are module, function name, and MPI rank, respectively. This multi-index

representation also facilitates easy integration of higher-order statistical summaries (e.g.,

variations across runs, and variations among ranks) over different levels of details (e.g.,

modules, call sites, or anywhere in between).

4.3.2 Construction of Ensemble GraphFrames

A GraphFrame (Gcfg) is the key data source for CallFlow. In the case of ensembles of

profiles, each representing the performance of an application under different executions,

the different Gi’s are stored individually. Generally, meta information about the

different executions are available, e.g., machine architecture and/or environment (i.e.,

the number of cores or processes, maximum available bandwidth, and load capacity of

the supercomputer), or application parameters. These execution parameters are also

stored as additional indexed columns in the corresponding Di. In order to support the

comparison target and actions described above, it is required to have a consistent and

scalable approach to store, access, and update Gi’s.

To this end, I describe how to concisely represent the entire ensemble as a single

ensemble GraphFrame. Given user-defined options as configuration files, two unification

steps are performed during preprocessing.

Step 1. First, I unify all dataframes (Di’s) and concatenate them into an ensemble

53

main
[30,40,30]:[0,0,0]

foo
[20,5,5]:[0,0,0]

bar
[10,Ø,Ø]:[10,Ø,Ø]

bar
[15,Ø,Ø]:[15,Ø,Ø]

[15,Ø,Ø][5,	5,	5]

qux
[Ø,35,25]:[Ø,10,15]

bar
[Ø,Ø,10]:[Ø,Ø,10]

baz
[5,5,5]:[5,5,5]

bar
[Ø,25,Ø]:[Ø,25,Ø]

[Ø,35,25]

[Ø,Ø,10][Ø,25,Ø]

[20,5,5]

GcctE

[10,Ø,Ø]

main
[30,40,30]:[0,0,0]

foo
[20,5,5]:[0,0,0]

baz
[5,5,5]:[5,5,5]

qux
[Ø,35,25]:[Ø,10,15]

bar
[25,25,10]:[25,25,10]

[Ø,35,25]
[10,Ø,Ø]

[15,Ø,Ø] [Ø,25,10]

[20,5,5]

[5,	5,	5]

GcgE(a)

(b) (d)

(c)

[20,5,5]

LIB1(main)
[30,40,30]:[0,0,0]

LIB3(bar,baz)
[30,30,15]:[30,30,15]

LIB4(qux)
[Ø,35,25]:[Ø,10,15]

[Ø,35,25]

[10,Ø,Ø]

[20,5,5]

LIB2(foo)
[20,5,5]:[0,0,0]

GsgE

[Ø,25,10]

main
30:0

foo
20:0

bar
10:10

bar
15:15

baz
5:5

Gcct1

20 10

5 15

Gcct2
main
40:0

foo
5:0

baz
5:5

qux
35:10

bar
25:25

5

5

35

25

main
30:0

foo
5:0

baz
5:5

qux
25:15

bar
10:10

Gcct3

5 25

105

Figure 4.2: Construction of ensemble super graph from 3 given graph frames shown in (a).
(b) First, the ensemble CCT, is constructed to include all unique calling contexts across
each CCT. The performance metrics for corresponding call sites (nodes in the graph) are
concatenated into associated vectors, where missing nodes in any given CCT are denoted
with ∅ in the vector. (c) Next, ensemble CCT is converted into an ensemble call graph,
by grouping call sites representing the same function into a single node. The associated
metric vectors are element-wise added. (d) Finally, semantic information, e.g., library
names, are used to group call sites to create the ensemble super graph.

dataframe (DE) by performing a unify operation, where we add column “runName” to

tag the call sites belonging to individual runs and aggregate the required information.

The “runName” column becomes the primary index of the multi-indexed hierarchy

of DE. However, for several hundred large dataframes, DE can become prohibitively

large, incurring large cost for data operations. To improve the processing time for data

operations, I abstract the information stored in DE at two levels of detail (A4), with

respect to module and name, where the data is grouped based on the module/library

and the name of the call site, respectively. Both levels of detail are stored as separate

files using the HDF5 [145] data model, a community standard format used for storing

hierarchical-structured datasets. HDF5 allows attaching semantic information (i.e.,

library and call site names) as “attributes” that group data together for faster lookup.

54

Step 2. Next, I unify all calling contexts (Gi’s) to construct an ensemble CCT

(GcctE). This unify operation aggregates each call site’s performance metrics and merges

the calling contexts that share the same caller-callee relationship across Gi’s. A call site

from Gi is considered equivalent to a call site from Gj if they have the same calling contexts.

The corresponding performance metrics are also aggregated and stored as vectors. In

Figure 4.2(a), I demonstrate the unify operation using three “reasonably different” Gi’s

(R3) comprising 5 call sites belonging to 4 libraries. Although the are minor differences

in the graph (e.g., missing nodes), the unify operation accounts for such inconsistencies

by assigning a null value (∅) to the missing nodes in any Gi. For example, whereas the

calling contexts of thud remain consistent across the three CCTs, the contexts of bar

and qux differ across the runs. The resulting GcctE (see Figure 4.2(b)) represents a super

set of the given Gi’s, preserves all calling contexts, and merges the nodes with identical

contexts.

Next, GcctE is converted into an ensemble call graph, (GcgE), according to the usual

definition, i.e., call sites with the same function name are merged (see Figure 4.2(c)).

The associated vectors are element-wise added to summarize the performance runtime on

each call site. Finally, if needed, the call sites are filtered by inclusive/exclusive runtime

using user-defined thresholds, and grouped with the available semantic information, to

construct the ensemble super graph, (GsgE), which is a module-level super graph. Finally,

I combine DE with dgse to construct the ensemble GraphFrame, (GsgE). The ensemble

GraphFrame captures all equivalence relationships among call graphs using nodes and the

edges store the subtle differences in the performance and calling structure. The aggregated

GsgE can now be used as the baseline super graph to compare against the ensemble (A3).

4.4 Visual Analytic Design
To build an effective tool supporting visual comparisons, we closely follow the design

considerations proposed by Gleicher [140]. Here, I detail the approach to the design

of CallFlow to support the domain requirements. The improved visual interface of

CallFlow (see Figure 4.3) comprises of five inter-linked views and three analytic modes.

55

(a)(b) (c)

(d)

(e) (f)

Figure 4.3: CallFlow enables scalable visual analytics of ensembles of call graphs using
a novel visual design, ensemble-Sankey (a), and several linked views (b–f), which provide
additional, fine-detail information (e.g., hierarchy within a node of the Sankey), as well
as statistical descriptions of the data (e.g., run time distributions). Through interactions
with visual elements as well as UI-based options, the tool allows thorough exploration of
the ensemble data, serving a wide variety of application-specific requirements.

4.4.1 Ensemble-Sankey: The Ensemble SuperGraph View

In this work, I expand on the visual design of CallFlow to support visualization of

ensembles of super graphs, and create a novel visual encoding – the ensemble-Sankey. Our

decision to preserve and enhance the Sankey layout emanates from the effectiveness of

the existing design. In particular, the resource flow conveyed by Sankey layout provides

an excellent way to represent calling contexts and associated performance metrics, as

it matches experts’ intuition about the internal representation of the application flow.

Furthermore, perceptual simplicity is vital for the comparison task, as the user has to

build the proficiency to “spot the differences” in an ensemble of runs. However, using

the existing encoding of nodes and edges are not directly usable for the ensemble, since

only a single graph may be visualized. Instead, I develop new node and edge encodings

to concisely represent an ensemble in our ensemble-Sankey design.

Ensemble Nodes. In the (standard) Sankey diagram, each node in the graph is

visualized as a rectangular bar, whose height corresponds to the “resource of interest”. In

56

0 10 20 30

×105
28

1100

200

310

990

880

760

650

540

420

85

Ex
cl

us
iv

e
R

un
tim

e

Num. of runs

Figure 4.4: Given an ensemble of super nodes, the histogram of the performance metric
(e.g., runtime) is mapped to a Sankey node as an ensemble gradient.

the case of ensembles, however, there are many graphs, each with a different resource flow.

Given the requirements of visualizing the variability within the ensemble members (R2)

and maintaining the same interpretation of “resource flow” (for R1 and R4), the height of

the rectangular bar is used to represent the full range of values. In particular, the height of

a given supernode in the ensemble-Sankey is scaled proportional to the maximum inclusive

metric across all executions. This encoding preserves the notion of resource flow from one

module in the call graph to another and provides visual elements of consistent shape and

size that encode the “ensemble supernodes” such that the “standard supernodes” of any

given ensemble members are simply subsets. The width of the rectangle is computed in

the same manner as done by CallFlow [138].

Ensemble Gradients. In order to visualize the distribution of a chosen metric across

the ensemble, we use the color channel to encode the distribution and overlay on the node.

We compute the histogram of the chosen metric and map it vertically to the height of the

supernode (as shown in Figure 4.4). Since the true histogram may contain sharp spikes

(we do not necessarily expect to find a smooth distribution), we use smooth gradient

fading to ensure all peaks are highlighted. Although we could directly compute a density

57

estimate (e.g., using KDE) instead of a histogram to generate a smoother distribution,

such techniques introduce additional parameters (i.e., kernel width), which are typically

harder to interpret and may miss features regardless due to an unsuitable choice. Instead,

we use histograms (with a customizable bin count) and use linear gradients to smooth

the distribution. In this way, the resulting ensemble gradient shows the full distribution

of the selected metric across runs. The default choice of color for the distribution is

a single-hue white–red colormap. The colors are mapped consistently across all nodes

to allow evaluation of distributions not just within a single supernode, but also across

supernodes (A2).

Borders and Text Guides. With the inclusive metric mapped to the height and

gradient of the rectangle, we are also interested in highlighting the exclusive metric.

To this end, we draw colormapped border on the node. As above, we use the maximum

exclusive metric across all executions, as it can help identify exceptionally slow runs.

Although the default border coloring is the (maximum) exclusive metric, the user can

interactively avail other options, such as color by (maximum) inclusive metric. Additional

runtime information can be revealed by toggling the text-guides, which mark the bins of the

histogram and also display the minimum and maximum runtimes of the executions among

the ensemble. The user can further refine the exploration by clicking on the text-guides,

which updates the visualization to the subset of the ensemble in the corresponding bin.

Ensemble Edges. In the (standard) Sankey layout, the edges encode the flow of the

resource; the vertical thickness of edges is proportional to the inclusive metric consumed

by the target node (i.e., the resource being transferred to a target node). Whereas this

metaphor is straightforward to interpret for a single super graph, it cannot be enforced

for the superedges of an ensemble-Sankey because of the aggregation (max) performed for

each supernode. In particular, since the maximum values of child nodes (for a given node)

may be from different runs, the sum of all outgoing resources is not necessarily equal to the

height of the node (minus the exclusive time). As such, there is no unique mapping that

can be defined for the height of a superedge. For example, consider Figure 4.2(d), where

the aggregated metrics for each supernode is the maximum of the corresponding vector,

58

implying the values of the nodes corresponding to LIB1, LIB2, LIB3, and LIB4 to be

40, 20, 30, and 35, respectively. However, the aggregated (max) metrics for the outgoing

edges from LIB1 are 20, 10, and 35, respectively, which sum to 65. Such scenarios are

common in profiles with high performance variability from different libraries. To present

a consistent encoding and interpretation of superedges, we instead scale the two ends of

a superedge proportional to the respective nodes, thereby, smoothly varying the height

of the superedge (from left to right). In addition to a neat visualization, this encoding

facilitates visualizing a superedge with respect to both its source and destination.

4.4.2 Supernode Hierarchy View

When scanning the ensemble gradients, the user is typically limited to exploring the

ensemble distribution for the revealed supernodes only. Although graph operations, such

as splitting, can reveal additional interesting nodes but the overall context is changed

(since the split graph is different). For example, splitting a supernode by its entry

functions would reveal all the entry functions belonging to a supernode, but if there are

multiple entry functions, the Sankey layout may change significantly. Through discussions

with potential users, we instead choose to visualize the additional details separately,

in particular, as a supernode hierarchy using an icicle plot, similar to the flamegraph

visualizations [131, 146]. Although a hybrid approach like nodetrix [147], which presents

the global structure using node-link diagram and presents the internal structure using

a matrix representation, could be adopted, users considered the adjacency matrix to be

difficult to interpret for topological operations (i.e., splitting), because the adjacency

matrix does not present the continuity perceived through sequence of links (in Sankey

diagram) and hierarchy (in icicle plots).

Icicle plot places the call sites of the selected library based on their depth inside

the supernode hierarchy from top to bottom. Each call site in the supernode hierarchy

is visualized as horizontal rectangular bars. As with the ensemble-Sankey, ensemble

gradients and runtime borders are used to encode the ensemble distribution and the

runtime distribution for the call site, respectively. Additionally, when a target run is

selected, the supernode hierarchy view also enables the comparison of multiple calling

59

contexts (A1), as the nodes with ∅ have no ensemble gradients that fill the rectangular

bar, allowing the user to identify the missing call sites easily. Furthermore, call sites of

interest from the supernode hierarchy can be selected by clicking to reveal all call sites in

the module’s context. Revealing a call site’s calling context in the ensemble-Sankey helps

compare the runtimes to identify performance slowdowns among call sites.

4.4.3 Complementary Views

Call site correspondence view (see Figure 4.3(c)) lets us focus on process-level

distribution, and also scan call site information based on data and graph properties.

To explore variations across multiple target metrics, we utilize a boxplot to study the

different runtime ranges occupied by the observed runtime distribution for each call site

(A3). Boxplots use quartiles of the distribution to indicate the spread of data, and can

also reveal outliers. In this view, we enumerate the call sites that are not present in the

ensemble view, and highlight the median, the interquartile range (IQR = Q3−Q1), as

well as outliers (above and below 1.5× the IQR). Additional information is also provided

as text labels (e.g., minimum, median, and maximum runtime).

Metric correlation view. In order to compare inclusive and exclusive metrics for a

given call site, we produce a scatterplot that captures the correlation between the two

(Figure 4.3(c)). For ensembles, each “dot” in the scatter plot represents a callsite for a

single run, making it possible to study such correlations across ensemble members, e.g.,

by comparing a target run to the ensemble, as shown in the figure. The scatter plot itself

is also interactive, as hovering over a dot highlights call site by their names for the user

to compare the runtime metrics (A1).

Runtime distribution view. To assess the distribution of runtime, we show histograms

for the chosen metric (inclusive or exclusive) for a selected supernode in three modes: (1)

call site mode, which shows the distribution of runtime metric with respect to individual

call sites (i.e., the vertical axis is the number of call sites with a given range (bin) of

runtime, as shown in Figure 4.3(e)); (2) call graph mode, which shows the distribution

with respect to the call graphs (i.e., the vertical axis is the number of call graphs with

60

a given range (bin) of runtime); and (3) MPI rank mode, which shows the distribution

with respect to the MPI ranks (i.e., the vertical axis is the number of MPI ranks with a

given range (bin) of runtime). These distributions are important to explore for a complete

understanding of the chosen supernode in an ensemble, with or without a target run.

Parameter projection view (Figure 4.3(f)) is an experimental feature in tool that aims

to explore correlations between execution parameters by projecting them onto a 2-D space

using multidimensional scaling [148].

4.4.4 Visual Analytic Modes

Ensemble summary mode is the default analytic mode when studying an ensemble of

runs.

Target-ensemble comparison mode is triggered when the user selects a particular

execution from the ensemble to study in detail from “Select Target run”, which lists

all ensemble members. This operation allows the user to compare a selected run’s

performance with the ensemble (A6) across all 6 views. Then, the visual elements

belonging to the selected target run are revealed in green throughout the system (see

Figure 4.3) – for consistent context, the elements corresponding to the ensemble are

shown in gray. In particular, the target superedges are overlaid on top of the ensemble

edges to compare the proportion of inclusive runtime that calling contexts (T1). The

target-lines (i.e., green colored lines) place the selected run in the distribution for each

supernodes (T2). Boxplots are revealed on top of the ensemble boxplot to compare the

process runtimes of the target run vs. ensemble.

Target-target difference mode. During comparative analysis, the user might find two

executions that exhibit a variation in the ensemble distribution, or appear an outlier from

the projection view. To allow the user study the differences between two supergraphs,

we compute a diff call graph that subtracts the mean runtime across the corresponding

supernodes. The resulting diff view is visualized as a Sankey diagram and is colored with

a green-red colormap, where hues of red and green colors represent negative and positive

values, or performance slowdown and speedup, respectively.

61

4.5 Case Studies
To demonstrate and validate the visual analytics design, I present two case studies

illustrating its value in HPC.

4.5.1 Study 1: Performance Variability due to Application
Parameters

First, I study the performance of a single-process C++ library, AMM [149], which

creates adaptive representations on-the-fly for streaming volumetric data. AMM is

currently under development and the code developers are keenly interested in improving

its performance for various application parameters. Among others, a key parameter that

affects the performance is the type of data stream (i.e., ordering of data, such as row-major

and wavelet transform subband order) [150]. With the general goal of obtaining insights

into the performance variability of AMM as well as identifying any potential optimization

opportunities, experts explore 18 profiles (captured through Caliper [11]) that represent

three different data streams with other parametric variations (e.g., data sizes). Figure 4.3

shows the CallFlow visualization for the given ensemble.

Although AMM does not use MPI and therefore the corresponding profiles cannot

fully leverage the functionality of CallFlow, they make an excellent case study due to

high performance variability. Indeed, the ensemble view (Figure 4.3) highlights the high

variability in the distributions of runtimes across different run modes (A2). AMM makes

use of several recursive functions, and despite different recursion depths, the call graphs

of the different runs are very similar. Given the application parameters explored here,

code developers expected high variation across runs but very similar patterns of variations

across modules and call sites. Instead, to the surprise of code developers, the distribution

patterns (shown by ensemble gradients) vary significantly across different modules (A1).

This behavior hints at problems with recursive functions (e.g., potential memory leaks)

— a potential improvement in the code that developers are currently exploring.

Through more detailed analysis of the ensemble, e.g., using the supernode hierarchy

view and call site correspondence view, it was noted that several get_* functions

in modules AMTree and Octree consume significant run time (A3). Through

62

(a) Target-Ensemble view (b) Diff view (64-cores − 27-cores)(c) Diff view (216-core − 125-cores)

Figure 4.5: Study of LULESH’s performance profiles. (a) The ensemble-gradients and
target-guides highlight the target run’s runtime in contrast with the ensemble (the target
run is 216-cores). (b) and (c) visualize pairwise differences of the runtimes between 2
runs using a green-red colormap. Hues of red color highlight regions of code that cause
a performance slowdown between the two profiles (e.g., CalcForce and CalcLagrange in
(b), and MPI in (c)), and green hues highlight the performance speedup (e.g., MPI in
(b), and CalcForce and CalcLagrange in (c)).

discussions with developers, it was learnt that these functions make use of the default

std::unordered_map, and the problem appears to be due to unnecessary hash collisions

in the map. Developers are currently experimenting with customizing the usage (e.g.,

different hash and different bucket counts) as well as a custom data structure to improve

performance.

Overall, AMM code developers were very impressed with CallFlow’s capability

to easily and concisely describe the performance variability and help identify potential

bottlenecks. In general, performance profiling and optimization is an ongoing process, and

with the availability of the tool, developers will reevaluate the forthcoming development

versions of their code.

4.5.2 Study 2: Performance Trends for a Weak Scaling Study

Large-scale parallel applications are designed to scale to several hundreds to thousands of

computational nodes and/or utilize several cores per node. Application developers and

HPC experts are often interested in scaling studies of such applications to understand

63

whether the codes are leveraging parallelism (e.g., via MPI) effectively. Previously, a

typical workflow for such use-cases would be the user generating static charts (e.g., bar

plots) to determine the changes in the overall run time, perhaps at the module level or

call site level. Usually, the level of granularity is scripted in to generate the plot, and then

analysis performed, possible across levels of detail. Nevertheless, the lack of an automated

UI-based visualization imposes high time-to-insight, even for an expert user.

Here, I are given an ensemble of multiprocess performance profiles to study weak

scaling of an application across eight execution parameters: 1, 8, 27, 64, 125, 216, 343,

and 512 processes. In particular, the application is LULESH [151], a Lagrangian shock

hydrodynamics mini-application that uses both MPI and OpenMP to achieve parallelism.

Recently, a similar case study was conducted by Bhatele et al. [143] to study run-to-run

performance differences for identifying the most time-consuming regions of the code. I

used a similar collection of profiles and showcase the advantages of visual analytics for

such exploration using CallFlow.

Exploratory overview using ensemble-Sankey. The given profiles are converted

into an ensemble super graph, which is shown to the user using the ensemble-Sankey

layout (see Figure 4.5(a)). Here, GsgE contains 33 call sites, which we group into six

modules. Immediately, the user is conveyed the overall flow of the resource (runtime) that

establishes the context as the user can identify the expected calling pattern. The ensemble

gradients on the different modules of the visualization describe the complete distribution,

as compared to a summary, e.g., the mean value. The interactivity of CallFlow allows

the user to select different ensemble members as target runs (A4) — a functionality

particularly appreciated by the users because it allows comparing data in the backdrop

of a consistent context, e.g., it is straightforward to compare the “thickness” of the green

(target) edges against the gray (ensemble) edges, in Figure 4.5(a). Thus far, an initial

exploration of the data using the ensemble-view provides a good understanding of the

collected profiles — not only qualitative but also quantitative (due to the associated

labels and colormaps). Overall, although this is a small ensemble, the gradient patterns

largely indicate a reasonably good weak scaling.

64

CalcForce

CalcForceForNodes

CalcVolumeForceForElems

CalcHourglassControlForElems

CalcFBHourglassForceForElems

MPI

MPI... MPI... MPI... MPI... MPI... MPI... MPI... MPI...

(a)

(b) (c)

Figure 4.6: LULESH profiles comprising of 8 runs using graph splitting operations and
text labels reveal out-of-order runtimes (with respect to the scaling of resources). Further
investigation through a sequence of splits as well as through (b) and (c) supernode
hierarchy views lead to the problematic call sites: CalcHourGlassControlforElems and
MPI_Allreduce.

Pairwise comparison of profiles. Users are often also interested in comparing pairs

of profiles within a larger ensemble, e.g., a median profile vs. a slow profile. This is

specifically true for the given data set as a curious behavior is observed: two pairs of

executions appear out of order in the ensemble-Sankey (labeled later in Figure 4.6).

Although the analysis tool Hatchet can compute the diff between two profiles, the

resulting information is displayed using a color-mapped text-based tree visualization

(similar to linux’s tree command) [143, Fig. 11].

Visualization of differences using colored text, however, imposes additional perceptual

complexity due to a lack of contrast among the colormapped values with respect to the

background. Such visualization also suffers from scalability issues and is static with no

opportunity for interactive analysis. Instead, the diff view provided by CallFlow can

reproduce such analysis through a more-effective visual medium (see Figure 4.5(b) and

Figure 4.5(c)). The result highlights not only the modules that are slower (with respect

65

to the diff order) but also communicates the relative degree of performance degradation

easily (A5). For example, when scaling from 27 to 64 cores per node (Figure 4.5(b)),

CalcForce (1.39 × 107 for 64 cores, and 1.31 × 107 for 27 cores) becomes about 5%

more slower than CalcLagrange. On the other hand, the MPI module now takes longer

when scaled from 125 to 216 cores (Figure 4.5(c)). By encoding the pairwise differences

onto the ensemble graph, the visualization not only readily highlights the faster/slower

modules, but also allows the opportunity to interactively request more information, e.g.,

through additional views and/or graph splitting operations. Furthermore, even though

the diff view compares only two graphs, changing the pair through CallFlow UI allows

visualizing the various pairwise differences within a consistent context (i.e., the same

ensemble graph), irrespective of any fine-detail changes in the underlying CCT.

Comparing run-to-run slowdowns. Toward the ultimate goal of identifying call

sites that exhibit inconsistent and/or unexpected runtime behavior, further exploration

is needed. Here, by toggling the text guides (using the click interaction), the runs

corresponding to the different bins in the ensemble gradient are listed along with the

bin value representing the gradient (see Figure 4.5(a)). The text guides reveal two cases

of out-of-order runtimes (with respect to increasing core count) for MPI and CalcForce

Figure 4.7: CallFlow provides a scalable visual design that can accommodate large
ensembles. Here, a case study with 100 profiles is shown.

66

libraries (A5). One way to highlight such differences is using the diff view (Figure 4.5).

Here, the ensemble view is further refined to use the interactive split graph operation (also

available in CallFlow v1.0 [138]) to reveal the nodes inside these two modules (A1).

Indeed, the text labels in the figure help identify the culprit call site hierarchies, [MPI

→ MPI_Allreduce] and [CalcForce → CalcForceForNodes → CalcVolumeForceForElems

→ CalcHourGlassControlForElems]. A key advantage of using my framework is the

immediate availability of alternate views, e.g., split ensemble view, supernode hierarchy

view, and the call site view (all shown in Figure 4.5). In particular, the supernode

hierarchy view (Figure 4.5(c)) reasserts the upward propagation of this behavior (A1).

Finally, I look at the summarized distribution of the respective call sites. Even though the

box plots highlight the outliers (with respect to the interquartile range), by design, they

are incapable of capturing this anomalous behavior in the data (out-of-order runtimes)

(A2, A3).

4.6 Summary
In this chapter, I described how CallFlow was extended to create a scalable, interactive

visual analytic tool to study ensembles of call graphs. Working closely with domain

experts, I identify the specific problems faced in the analysis of collections of performance

profiles, and map them to concrete comparative visualization tasks using the framework

of Gleicher et al. [140]. I develop a scalable visual encoding, ensemble-Sankey, to describe

the ensemble along with several other linked visualizations. Our visual design itself is

arbitrarily scalable in size of the ensemble, since I enocde the distributions of runtimes

for each supernode. In general, getting an overall context of the ensemble is integral to

studying performance profiles. It was noted that the new encoding, the ensemble-Sankey,

not only provides a new way of exploring the distributions of interest, but is also

remarkably straightforward and intuitive. Supplementary linked views help tie in the

various pieces of information to put together a cohesive story about the profiles that the

user wishes to understand.

67

Chapter 5
Visualization of Multivariate
Network Traces from the
Communication Domain

Analyzing performance behaviors and optimizing HPC applications require programmers

to collect various performance metrics from each computing node at different time points

as well as the communication events among the nodes. Typically, HPC applications run on

a cluster of interconnected computing nodes, a communication protocol, such the Message

Passing Interface [63], is often used for coordinate for parallel and distributed computing.

To analyze the behaviors and performance of HPC applications, system or application

level data need to be collected on each computing node with the communication data

among the nodes. Therefore, the collected dataset contains multivariate time-series and

communication network data, which makes data analysis and exploration challenging.

A common technique to explore such large-scale multivariate data is to employ

automated analytical methods based on statistical methods and unsupervised learning.

However, characterizing the analysis results for HPC datasets is often a challenge as

end-users often fail to derive insights, especially for large-scale data. To effectively

explore and analyze HPC datasets, visual analytics techniques that combined interactive

visualization and machine learning methods are required. Multiple approaches

and tools have been developed for analyzing the performance of HPC applications.

However, conventional visualization methods and tools are insufficient for analyzing both

multivariate time-series and communication network data as well as correlating them for

performance analysis. In particular, Fujiwara et. al [73] developed a visual analytics

system for analyzing Dragonfly [67] networks. They applied various time-series analysis

68

methods and visualization techniques to allow users to explore both temporal behaviors

and network traffics in a dashboard with multiple coordinated views. However, their

system lacks support for correlating the temporal behaviors and identifying similarity of

the computing nodes to communication patterns, which is often needed for performance

optimization of HPC applications. In addition, the visual analytics methods need to

be generalized and extended to provide sufficient support for analyzing large-scale HPC

systems and applications.

In this chapter, I present a visual analytics framework for effectively analyzing HPC

datasets using automated time-series analysis methods to reveal temporal behaviors

and identify important time intervals for potential performance issues. For correlating

multiple performance metrics with communication patterns over time, I visualize the

communication patterns for important time intervals along with the time-series clustering

results. In addition to closely coupling these analysis and visualization methods, the

framework also supports interactive visualizations for exploring HPC datasets. To

demonstrate the applicability and usefulness of the framework, I use it to develop a visual

analytics system for analyzing parallel discrete-event simulation (PDES) [152], which

is a cost-effective tool for modeling and evaluating scientific phenomena and complex

systems. Through several case studies, I show that the data analytics and visualization

methods incorporated by the framework can effectively analyze and correlate multivariate

time-series and communication network data. Finally, the work in Chapter 5 and

Chapter 6 was done in collaboration with Takanori Fujiwara, Kelvin Jianping Li, and

HPC experts from Argonne National Laboratory and Rensselaer Polytechnic Institute.

5.1 Domain Problem Characterization
Our goal is to design a visual analytics framework that helps real-time analysis of

streaming performance metrics and communication data. Simultaneously analyzing both

performance metrics and communications is critical because the communications heavily

affect the performance, and vice versa. For example, a communication bottleneck in a

network of compute nodes could be due to a large number of packets transferred between

69

certain compute nodes leading to excessive wait times for the next computation. To

understand such specific analysis needs, we work in collaboration with HPC experts and

enumerate the design requirements of the visual analytics framework.

The design process followed a user-centered approach consisting of several discussions

where I presented a prototype to the experts to probe further requirements, and modified

the visualization framework, accordingly. Below I describe the design requirements

(R1–R5) developed during these discussions. These requirements comprehend analysis

tasks of both active monitoring [81] (R1, R2, and R4) and situational awareness [81]

(R1–R5).

R1: Detect key changes that deviate from a baseline behavior. Because

large-scale simulations are often long-running applications, it becomes impractical to

review performance metrics for changes constantly. Hence, it is critical to automatically

find when and where a change occurs in the behavior to narrow down the search space.

R2: Enhance the interpretability to identify performance behavior patterns.

As discussed in Section 6.1, the collected data contains time-series data continuously

arriving from multiple processes. A common challenge the analyst faces with streaming

data is that different factors that affect the perception of the user (e.g., velocity, volume

and variety of data). From the streaming data, finding similar and dissimilar behaviors

from many processes in real-time is extremely challenging because of its high-volume and

high-velocity. Therefore, we need to provide a functionality that helps the analyst identify

the behavior patterns.

R3: Derive causal relations among different performance metrics. A behavior

change (e.g., excessive wait times) can trigger an undesired effect (e.g., low data receives).

Therefore, the analyst would want to identify the causal relations among the multiple

performance metrics. Since it is difficult to monitor several metrics (e.g., five metrics)

all at once, we aim to support the analysis of causal relations between metrics that

significantly affect the performance.

R4: Provide visualizations for analyzing communication patterns together

with performance behaviors. As mentioned in Section 6.1, analyzing the performance

70

data from both hardware and communication domains and relating these domains are

important. Thus, the framework should provide visualizations that help the analyst relate

the performance behaviors to the communication patterns.

R5: Enable users to analyze the data interactively. Due to the complexity of

HPC performance data, there are various aspects that the analyst wants to analyze while

cooperating with his/her domain knowledge. The analytical process may proceed and

change according to discovered patterns or findings. Therefore, it is essential to provide

interaction methods that can be used during analysis.

5.2 Methods
The multivariate time-series and communication network data are first preprocessed and

indexed for efficient analysis. Time-series clustering is used to classify each process in a

HPC application based on their changes of performance metrics over time, and change

point detection algorithms help identify the most important time intervals. To analyze

communication patterns, we can filter and aggregate the communication network data

based on these time intervals to generate multiple views of the network for identifying

bottlenecks. Combining these network views with the temporal behaviors views can help

correlate among different performance metrics and communication patterns. An overview

of the framework is shown in Figure 5.1.

Multivariate
Time-Series Data

Communication
Network Data

Time-Series
Classifications

Data
Preprocessing

Important Time
Intervals

Communication
Patterns

Interact

Temporal
Behavior Views

Communication Network
Views

Proximity
ViewsVisualizeAnalyze

Figure 5.1: Overview of the visual analytics framework for analyzing HPC applications
and systems.

5.2.1 Time-Series Clustering

Analyzing the temporal behaviors of HPC applications is useful for identifying bottlenecks

and optimizing performance. By applying time-series clustering techniques, we can easily

71

identify the subgroups among the computing nodes at different granularities.

In my approach, I employ the multiple time-series clustering methods [153] and

similarity measures used in [80]. In particular, we use the Hartigan-Wong method [154]

as a k-means clustering, the partitioning around medoids (PAM) as a k-medoids

clustering [155], and the complete-linkage clustering as a hierarchical clustering method.

k-means clustering is the fastest method among these options, with time complexity of

O(nk) (where n is a number of observations, and k is a number of cluster centers).

However, it requires observations of l-dimensional vectors as inputs. Thus, we treat each

time-series as one observation and each processor’s metric value as an element of the

vector. Also, to avoid the initial centroid dependency, the system runs k-means clustering

multiple times (ten as a default) with different initial centroid seeds, and then selects the

best result. While k-means clustering uses observations as inputs, the other two clustering

methods use dissimilarity between each observation as their inputs. Even though their

complexity (O(n2)) is worse than k-means, these clustering methods are useful for analysis

since (1) they are more robust to noise and outliers [156], and (2) other similarity measures

developed for the time-series analysis can be easily applied.

To effectively perform time-series clustering, we use three similarity measures:

traditional Euclidean distance, Dynamic Time Warping (DTW) [157], and Time Warp

Edit Distance (TWED) [158]. Since DTW and TWED are the elastic similarity measures,

we use them to perform flexible matching in the time-series data. In comparison to

Euclidean distance which is the simplest and fastest way (complexity of O(l)) to calculate

dissimilarity of each time-series, DTW and TWED (complexity of O(l2)) have performed

better for classification of time-series data according to the recent research [159].

Figure 5.2(a) and Figure 5.2(b) show examples of visualizations without any clustering

and with PAM with Euclidean distance as the similarity measure, respectively. The

cluster labels are encoded with line colors, as shown in Figure 5.2. In Figure 5.2(b),

we can clearly see the different patterns of performance behaviors. Refer to the works

of [80, 159] for more details about each similarity measure and the differences between

these three measures.

72

(a) Without clustering

(b) PAM with Euclidean distance

Figure 5.2: Visualized results of the number of secondary rollbacks without and with
clustering. Colors represent the clustering labels where the lines belong to. (a) Without
clustering, it is difficult to find important patterns. (b) Using PAM clustering with
Euclidean distance as the similarity measure, we can easily find the patterns. For example,
the pink lines show that the corresponding simulation entities’ number of secondary
rollbacks have high fluctuations.

5.2.2 Time-Series Dimensionality Reduction (DR)

Because time-series clustering methods can only reveal certain temporal patterns, it

might fail to inform some important patterns which are derived from a small set of

the entities (e.g., sub-clusters and outliers). DR methods can supplement time-series

clustering because they depict more detailed similarities between each entity.

We leverage classical Multi-Dimensional Scaling (MDS) [160] and t-Distributed

Stochastic Neighbor Embedding (t-SNE) [93]. For calculating a similarity between each

time-series, we use the same similarity measures used with the time-series clustering.

By using these DR methods, we can notice entities with similar behaviors being close

together. While the classical MDS is a linear DR method and good for looking at the

global structure of the multi-dimensional data, t-SNE is a nonlinear DR method and

useful to visualize the local structure of the data. Because t-SNE often requires a longer

73

(a) The number of secondary rollbacks (b) MDS (c) t-SNE

(d) After selection of (a) (e) MDS (f) t-SNE

Figure 5.3: Examples of time-series DR. (a) shows the number of secondary rollbacks
clustered with PAM with Euclidean distances. (b) and (c) are results after dimensionality
reduction with MDS and t-SNE, respectively. When compared to the clustering result in
(a), we can find clusters of smaller size in MDS and t-SNE, as indicated with green circles
and arrows in (b) and (c). (d), (e), and (f) show the small clusters selected from (b) or
(c). When compared with MDS in (b), t-SNE in (c) finds more small clusters (e.g., cyan
clusters in (b) are separated in four small clusters in (c)).

calculation time, to apply t-SNE more interactively, we use Barnes-Hut t-SNE [161] (while

the complexity of the original t-SNE is O(n2), this implementation has only O(n log n)

complexity). t-SNE has the perplexity as a tuning parameter, which controls a balance of

the effects from local and global structures of the data [93]. While a large perplexity will

preserve more of the distance relationship in the global structure, a small perplexity will

focus on preserving the distance relationship between a small number of neighborhoods

In most applications, the perplexity is set between 5 and 50 [93]. We set the default value

to be 30, and the user can change the value based on the analysis.

Examples of visualizations with different DR methods are shown in Figure 5.3. These

examples show that DR-based visualization helps find subgroups and outliers within the

clusters of time-series.

74

Figure 5.4: An example of segmentation for the temporal performance metric. The
E-Divisive detects five segments (from A to E) from multiple lines.

5.2.3 Time-Series Segmentation with Change-Point Detection

With time-series clustering and DR, we can quickly analyze temporal patterns in

performance metrics. Remaining required analysis is to understand the effect of

communication patterns on the performance [76]. However, exploring and comparing

communication data one-by-one at each time is a time-consuming task. To help effectively

compare communication data across time, we want to obtain a temporal summary of the

changes in communication data. We achieve this by segmenting time-series data and

summarizing each segmentation with visual aggregates (e.g., sums or mean values). This

idea is inspired by the temporal summary images (TSIs) [162], which is designed for

generating narrative visualizations by summarizing the time-series data.

To segment time-series data, we can use the change point detection, which is

developed for time-series analysis [163]. We use the E-Divisive method [164] because

it can detect multiple change points for a set of time-series in a reasonable amount

of time. Figure 5.4 shows an example of segmentation with the E-Divisive method.

Combining time-series segmentation with visualization for communication data (discussed

in the Subsection 5.2.4), we provide a visual summary of changes in communication

patterns in the system, described in Section 5.3.

5.2.4 Visualization of Communication Patterns

For parallel and distributed computing applications, exploring the communication pattern

between the processes is essential. In the framework, we use the hierarchical circular

visualization techniques for visual analysis of the communication patterns. As shown

75

Figure 5.5: Hierarchical circular visualizations for showing communication patterns
between entities as well as a correlation between performance metrics. While the color
of the ribbons shows a value of the selected communication metric, the color of the rings
can be used to encode clustering results (a) or metric values (b).

in Figure 5.5, in a hierarchical circular visualization, lines or ribbons at the center

represents the communications (e.g., network sends, network receives, the sum of these, or

the maximum value of these) between entities, while different performance metrics (e.g.,

primary and secondary rollbacks) can be stacked on the circumferences (or rings) to show

their correlation to the communication patterns. Hierarchical aggregation is used to group

the entities for organizing the circular visualization, so load balancing and distributions

can be easily observed.

In addition to the communication patterns and performance metrics of the computing

nodes, I also encode the time-series clustering results in the circular hierarchical

visualization. Figure 5.5(a) provides an example that we visualize both the time-series

clustering results (encoded with color) and performance metrics (encoded with the

size of the bars). Comparing with Figure 5.5(b) where I only show the performance

metrics, Figure 5.5(a) allows us to correlate time-series clustering results along with the

communication patterns, understanding how computing nodes with different temporal

behaviors communicate with each other. This allows application programmers to gain

76

Figure 5.6: The analytical flow of using the system. Each step involves one or more views.

insights on how to assign and map processes on the network to optimize performance and

remove bottlenecks.

The selected communication metric is encoded with a blue-to-red colormap.

In Figure 5.5(a), the colors of the circular bar charts are used to denote KP’s cluster

labels obtained with the time-series clustering method described in Subsection 5.2.1 and

the heights of the circular bar charts are used to show the values of performance metrics.

Alternatively, circular heatmaps can be used instead of circular bar charts to use color or

opacity to represent the performance metrics of the KPs, as shown in Figure 5.5(b). As

shown in these two examples, communication hot paths (shown in red lines or ribbons)

and the workload distributions are clearly revealed.

5.3 Visual Analytic System
Based on the framework, I have developed a visual analytics system for analyzing the

performance and behaviors of the ROSS PDES engine. The design of my system and

user interface is based on a similar approach used in the previous work for analyzing

network performance in supercomputers [80]. My system clearly shows temporal behaviors

of the performance metrics (e.g., primary, secondary rollbacks, network sends, etc) by

coupling with unsupervised machine learning methods. Also, the system supports visual

comparisons of not only temporal behaviors of multiple performance metrics but also

communication patterns between the simulation entities (e.g., PEs and KPs) across

multiple time intervals.

77

Figure 5.7: The user interface of the system, which contains four components: (a) the
behavior overview, (b1, b2) the behavior detailed views, (c1, c2) the behavior similarity
views, and (d) the communication network views. This example shows the secondary
and primary rollback behaviors obtained in Subsection 5.4.2. (a) shows an overview (the
mean in this example) of the number of secondary rollbacks over time. (b1) and (b2)
show details of temporal changes of the numbers of secondary and primary rollbacks in
the selected time range in (a), respectively. (c1) and (c2) show the similarity of each
time-series shown in (b1) and (b2), by using the DR method. In (d), summaries of the
metrics and communications of each simulation entity in the selected time ranges.

5.3.1 Visualization for Analyzing Temporal Changes

The first principal component of the system is to visualize the temporal changes in the

simulation entities/’ performance metrics. As shown in Figure 7.1, the analysis starts

with an overview of the temporal changes in the behavior overview Figure 5.7(a). From

this overview, the user selects a time range and metrics of interest, and then reviews the

details of the performance behavior in the behavior detailed view Figure 5.7(b1) and the

behavior similarity view Figure 5.7(c1).

5.3.1.1 Statistical Summary of Performance Behaviors

To help the user find a performance metric and a time range of his/her interest, I provide

a statistical summary of a selected performance metric for each time point across time in

78

the behavior overview Figure 5.7(a). The selected time metric (e.g., GVT, virtual time,

or real time) is encoded in x-coordinates. As for y-coordinates, from the collected dataset,

the user can select a performance metric (e.g., primary rollbacks and network sends) and

a statistical measure (e.g., the maximum value, mean value, or standard deviation) as

values for the y-direction. For example, in Figure 5.7(a), GVT and the mean of secondary

rollbacks of all KPs are selected for x- and y-coordinates, respectively. This view is also

used for a time range selection with a single range selector placed at the bottom to show

more detailed information in the other views. For instance, in Figure 5.7(a), the time

range where the mean of the number of secondary rollbacks is increasing is selected.

5.3.1.2 Detailed Visualization of Performance Behaviors

The performance behavior of each computing node or process in the selected time range

from the behavior overview is visualized in the behavior detailed view, as shown in the

Figure 5.7(b1). Similarly with the behavior overview, x- and y-coordinates represent the

selected time and performance metric values, respectively. For example, in Figure 5.7(b1),

the number of secondary rollbacks for each KP/’s is visualized. Because many polylines

would be drawn (e.g., 256 polylines in Figure 5.7(b1)), without adequate visual support,

finding interesting patterns from these polylines is difficult. To address this, the system

allows users to select a clustering method described in Subsection 5.2.1, with the number

of clusters and a similarity measure from the settings, placed on the left-hand side of the

behavior detailed views. I select categorical colors, each of which has enough saturation to

recognize the differences of each color line with a narrow width. Furthermore, the behavior

detailed view and similarity view share the color scheme to correspond the time-series with

the clustering results.

5.3.1.3 Visualization of Similarities

While the behavior detailed view Figure 5.7(b1) shows behaviors of performance metrics

for each simulation entity, it is difficult to convey the dissimilarity of each behavior

in detail. By using DR methods, I visualize the dissimilarity of the behaviors in the

behavior similarity view, as shown in Figure 5.7(c1). The clustering methods, described

in subsubsection 5.3.1.2, are effective for grouping the behaviors in a macro sense;

79

however, it would not be enough to find the patterns that occurred in the small set

of simulation entities (e.g., outliers and anomaly behaviors). Also, while the hierarchical

clustering method can inform the potential subgroups within each cluster if I visualize its

clustering dendrogram, k-means and k-medoids clustering cannot provide the subgroup

information. The DR-based visualization can help find these patterns (outliers, anomalies,

and subgroups). The behavior similarity view in Figure 5.7(c1) shows a result obtained

by applying the DR for the behaviors visualized in the corresponding behavior detailed

view Figure 5.7(b1).

5.3.2 Visual Comparison of Multiple Performance Metrics

In Subsection 5.3.1, I describe how the system help the user analyze the temporal behavior

in one selected performance metric. In addition to this univariate time-series analysis,

understanding the relationships between multiple performance metrics is necessary to

know how I can achieve better PDES performance. For example, to understand the

rollbacks, I need to know why rollbacks happened (i.e., the cause of the rollbacks) and

what occurs after the rollbacks (i.e., the effect of the rollbacks).

The system can be useful for visually comparing between the temporal behaviors

of multiple performance metrics, shown in Figure 5.7 where the detailed performance

behaviors (b1 and b2) and their similarities (c1 and c2) are presented together. To make

the comparison between two different metrics easier, the same color that represents the

cluster label is used for the corresponding simulation entities (i.e., lines in (b1) and (b2)

or points in (c1) and (c2)). The user can select which behavior detailed view will be

used for clustering using the settings panel, placed on the left-hand side of the behavior

detailed views. Additionally, if the user wants to cluster the network behaviors based on

multiple metrics (e.g., the numbers of primary and secondary rollbacks), the clustering

methods and similarity measures described in subsubsection 5.3.1.2 can be used to support

multivariate time-series data. In this case, the system processes all metrics on a scale

between 0 and 1.

Moreover, to support comparison within a subset of the simulation entities, the system

provides multiple selection methods. First, the user can apply filtering to the metric

80

value for each view from the settings. Second, the user can select which clusters to

visualize in the view from a context menu, which will be displayed with a right-mouse

click. Additionally, in the behavior detailed views, the system provides a freeform selection

that selects intersected lines with the freeform drawn by the user. An example of the

freeform selection can be seen in Figure 5.9. For the behavior similarity views, a lasso

selection is available to select a subset of points. After these selections, the user can filter

out the unselected lines or points. The filtered out simulation entities in one view will

also be filtered out from the other views at the same time.

5.3.3 Visual Comparison of Communication Patterns

While all the views described above depict the performance behaviors from their

time-varying aspects, I visualize a summary of temporal changes in communication

patterns as the last system component.

By obtaining time segments with the change-point detection method describe in

Subsection 5.2.3, the system visualizes the summaries of behaviors. For each time segment,

I calculate mean values for each metric (e.g., network receives and primary rollbacks) for

each processor (e.g., PE, KP, and LP), then depict them with the circular visualization

method described in Subsection 5.2.4. The user can also adjust these time segments based

on their observations or background information. Figure 5.7(d) shows an example of the

visualized result. The circular visualization results are placed from the left in the order of

the five segments (indicated with the alphabets from A to E), as shown in Figure 5.7(b2).

This example shows the network receives between PEs as ribbons drawn in the center.

Also, the KPs/’ primary rollbacks and secondary rollbacks are visualized in the inner and

outer rings, respectively. To allow the user to compare the changes in each metric across

time, for each metric, the range of the height or the heatmap used in the rings is shared

across different segments. The user also can filter out the ribbons based on the metric

value from the blue setting menu placed on the top left of the view.

81

5.4 Case Studies
To demonstrate the effectiveness of the data analytics and visualization methods, we use

the visual analytics system to evaluate the efficiency of ROSS. ROSS can run a large-scale

PDES that processes up to billions of events. Interactive analysis and visualization of

the instrumented data are necessary for understanding performance issues and removing

bottlenecks in order to achieve the highest possible efficiency. Here, we first provide

details about the setup of the experiments, then we present three cases for showing the

effectiveness of the methods for analyzing various factors that affect the performance of

ROSS in simulating next-generation supercomputers.

5.4.1 Experiment Setup

For the experiments, we use ROSS with the Dragonfly [67] network simulation model

provided by the CODES simulation framework [165]. The Dragonfly configuration

that we use models a system similar to the Theta Cray XC supercomputer [166] at

Argonne National Laboratory with 864 routers and 3,456 compute nodes. Each router is

represented by a single LP that handles all router functionality, while each compute node

is represented by two LPs—one for generating the workload and one handling packet send

and receive functionality. This setup results in a total of 7,776 LPs. The workload replayed

over the Dragonfly network is an MPI trace from the DoE Design Forward program of

the Algebraic Multigrid (AMG) solver for unstructured mesh physics packages with 1,728

MPI ranks [167].

5.4.2 Analysis of PDES Performance

In this case study, we use the visual analytics system to analyze a ROSS simulation

with 16 PEs, with each MPI rank associated to a PE with 16 KPs. The result is

shown in Figure 5.7. The result provides summaries of the simulation as well as useful

insights for identifying and removing performance bottlenecks. The behavior detailed

views(Figure 5.7(b1) and (b2)) show the secondary and primary rollbacks, respectively.

Change point detection is performed to automatically select the five salient time intervals

(A to E). For each of these five time intervals, the system automatically generates a

82

Figure 5.8: DR and clustering results (a) are visualized in communication view (b) to
analyze the similarities of the KPs in each PE.

hierarchical circular visualization to show the communication patterns between PEs.

Also, the numbers of primary and second rollbacks of the KPs across the PEs as the

inner and outer rings of the circular visualization, respectively. The colors in the circular

visualizations show the clusters of KPs from the time-series clustering results. This allows

us to see the distributions of KPs with different similarities among the PEs.

From the behavior detailed views(Figure 5.7(b1) and (b2)), we can see that the

numbers of both primary and secondary rollbacks rise and fall in time interval A, generate

two peaks in time interval B, stay low in time interval C, generate two more peaks in time

interval D, and then drop to very low in the final time interval. In Figure 5.7(d), the

communication patterns for each of these five time intervals are visualized. We can see

that the number of communication events increases as the number of rollbacks increases,

and the number of communication events between PE 7 and PE 8 is significantly higher

in all the time intervals with a high number of rollbacks (A, B, and D). This suggests that

the communication between PE 7 and PE 8 might have caused many of the secondary

rollbacks, which indicates this is a potential performance bottleneck.

83

(a) Before selection (b) After selection

Figure 5.9: Visual comparison of the network sends (a1) and network receives (a2) with
the behavior detailed views. PAM clustering with Euclidean distance is applied based on
both network receives and sends. In (a), the entities which have high network sends are
selected with the freeform selection, as indicated with a blue-curved line. In (b), only
the selected entities/’ network sends (b1) and network receives (b2) are visualized in the
behavior detailed views.

5.4.3 Proximity and Communication Patterns

For parallel and distributed computing, assigning processes with very different behaviors

to the same computing node might result in performance degradation. In order for PDES

to achieve good efficiency, the KPs in the same PE should have similar behaviors to reduce

the number of rollbacks. In addition, the KPs that are communicating intensively should

have similar behaviors as well, otherwise they can cause rollbacks to each other. With

the time-series clustering results providing a measure of similarity for each KP over time,

encoding this information in the hierarchical circular visualization allow users to visually

correlate the communication patterns to the temporal behaviors based on similarity, which

can provide more insights for optimizing performance. Figure 5.8 shows the two views

from Figure 5.7 for informing users the similarity among the KPs and the communication

view with color encoding the classification of the KPs, respectively. As the hierarchical

circular visualization shows, the KPs in each PE have similar temporal behavior, which

indicate a good assignment and mapping of KPs to the PEs. However, there are also many

communication events occurred between KPs in different clusters, which can increase the

number of rollbacks.

While the classification provided by the time-series clustering method only shows

a fixed number of clusters (e.g. three clusters in this case), the behavior detail view

84

(Figure 5.8(a) can reveal the similarity within each cluster. As we can see here, the

KPs in the yellow cluster have relatively low similarity when comparing to the other two

clusters. We can also see from the hierarchical circular visualization that PE 8 have

higher number of rollbacks than PE 0 and 7, and having intense communication with

PE8 within the same cluster can also cause performance bottlenecks. This case study

demonstrates the usefulness of the visual analytics framework that includes time-series

clustering result in the hierarchical circular visualization for visually correlating between

temporal performance behaviors and communication patterns.

5.4.4 Interactive Analysis

Analyzing the time-series data of PDES simulations can help understand and correlate the

performance behaviors over time, which can gain useful insights for removing bottlenecks

and improving performance. My time-series clustering methods and the user interface of

the visual analytics system provide effective ways to analyze, compare, and correlate the

temporal behavior of PDES. To analyze the temporal behaviors of the simulation with 16

PEs, we can compare two performance metrics over time. Figure 5.9(a) shows time-series

clustering (PAM with Euclidean distance) results for the number of network sends and

receives over time, with each line representing a KP. The line charts show the peaks of

the network sends and receives occur in the middle and near the end of the simulation.

The colors of the lines are based on the time-series clustering results of the first selected

metric (network sends), showing the subgroups of KPs with similar temporal behaviors.

Users can select any two different performance metrics for comparison and analysis. In

addition, the system also supports data filtering for interactive visual analysis of details on

demand, which allows a better correlation of performance metrics and temporal behaviors.

From Figure 5.9(a1), we can select a subset of KPs with a large number of network sends

(yellow lines) and show these in Figure 5.9(b1). Figure 5.9(b2) shows the number of

network receives for those selected KPs. We can see that KPs with a large amount of

network sends in most of the simulation time have very few network receives.

Encoding time-series clustering results in the hierarchical circular visualizations also

helps users to make selections for interactive analysis. As we see from the result in

85

Figure 5.8, the KPs in the yellow cluster have more intense communication and relatively

low similarity comparing to other clusters. Base on this result, we can make select the

yellow cluster on the behavior views (line charts) to further investigate and verify our

findings. By allowing interactive analysis of different aspects of PDES or other parallel

and distributed applications, more insights for optimizing performance can be provided

to the users. More important, the analysis and visualization methods in the framework

can support users to make selection to better facilitate interactive visual analysis.

5.5 Potential Improvements
Our visual analytics framework is designed for reasoning and interpreting multivariate

time-series and communication data collected from HPC applications. As the current

effort is just an initial step to develop a full framework for building visual analytics system

to analyze HPC datasets, several possible extensions can be added to the framework.

In addition to interactive visualizations, progressive visual analytics can be used to

support analysis of large HPC datasets. Progressive visual analytics provides useful

intermediate results within a reasonable latency even when the computational cost to

complete entire calculations is too high. An advantage of using progressive visual analytics

is that we can support the analysis and visualization of streaming data [92], which can

be used to enable real-time monitoring and analysis. However, converting the existing

workflow for streaming data is challenging, especially for multivariate time-series data.

One of the major challenges is how we show important changes or meaningful patterns

with a low visual cognitive load since available data is constantly updated [82]. To address

such issues, I can use Approximated-tSNE [92] instead of Barnes-Hut t-SNE [161] for

dimensionality reduction, and incremental time-series clustering methods [168] instead

of conventional k-means clustering. However, PCA-based approaches still suffer from

significant false alarms, as they are highly sensitive to changes in any features. The

actual projection of points in DR view using incremental PCA methods is highly sensitive

to changes in features (e.g., indeterminant sign flipping [90, 169]), thereby causing a lot

of visual changes at every time step.

86

Furthermore, we also plan to leverage in situ techniques [170] for performing data

analysis on the computing nodes running the HPC applications. For example, we can

perform in situ data processing and visualization within the PDES process. With

in situ data processing, the simulation only needs to stream the analysis results to

the visualization system, which can significantly reduce the requirement of network

bandwidth. For example, we can perform progressive change point detection [171] in

situ and send only the data associated with important time intervals instead of logging

data for every time step during the simulation. As PDES already leverages distributed

computing, combining in situ data processing and progressive analytics can be a scalable

solution for real-time monitoring and visualization of the large-scale PDES.

5.6 Summary
In this chapter, I present a visual analytics framework designed to effectively analyze

the communication in large-scale HPC applications. The framework utilizes automated

time-series analysis methods to reveal temporal behaviors and identify crucial time

intervals for potential performance issues. By visualizing communication patterns

and time-series clustering results, multiple performance metrics can be correlated with

communication patterns over time. The framework not only integrates analysis and

visualization methods but also supports interactive visualizations for exploring HPC

datasets. To demonstrate the applicability and usefulness of the framework, a visual

analytics system was developed for analyzing parallel discrete-event simulation (PDES),

a tool used for modeling and evaluating scientific phenomena and complex systems.

Through several case studies, it has been shown that the data analytics and visualization

methods incorporated in the framework effectively analyze and correlate multivariate

time-series and communication network data. Overall, the visual analytics framework

presents a comprehensive approach to exploring large-scale multivariate data and offers

insights into performance behaviors and communication patterns. Further research and

development in this area will be crucial for advancing the field of HPC and improving the

efficiency and effectiveness of HPC applications.

87

Chapter 6
Streaming Visualization of Network
Traces from Communication Domain

An ongoing trend in HPC is an exponential increase of the computational throughput,

but the bandwidth and capacity of disk storage systems has increased at a much more

moderate rate [172, 173]. This has lead to a growing divergence between the amount

of data that is generated from computation and the amount of that data that can be

captured on the storage system for post-hoc analysis. Like mentioned earlier, existing

supercomputers like ORNL’s Summit have far more computational abilities in comparison

to the storage.

With computational abilities reaching exascale computing (i.e., capable of performing

1018 FLOPS in the near future), adopting in-situ workflows [170, 174] has become

popular. In-situ workflows integrate visualization into the simulation pipeline to steer

the simulation by executing real-time performance analysis. In particular, computational

steering method provide the experts a complete understanding the state of running

HPC programs and performing interactive control over the programs. Therefore,

performance visualization tools not only have to handle streams of real-time performance

data but also implement visualizations that can help the analyst comprehend their

underlying behaviors. However, existing performance analysis techniques are constrained

by several challenges. First, from streaming data, a performance analyst needs to

catch important patterns, changes, or anomalies in real-time (active monitoring [81])

without missing them. Furthermore, the analyst often wants to identify causal relations

of an occurred phenomena (situation awareness [81]). Because streaming performance

data is continuously changing with high-volume and high-variety properties, without

any algorithmic and visual supports, conducting the above analysis is almost infeasible.

88

While existing visual analytic systems [73, 175] aim to support the analysis of dynamic

performance data, support for real-time analysis is lacking.

To address the above challenges, I introduce a visual analytics framework for analyzing

streaming performance data [176]. I first identify the key analysis requirements through

extensive exchange with HPC experts. The requirements include revealing temporal

patterns from multivariate streaming data and correlate these temporal patterns to their

network behaviors. To handle streaming data and fulfill the experts’ requirements, the

framework comprises (1) data management, (2) analysis, and (3) interactive visualization

modules.

To support the analysis and visualization of streaming performance data, I contribute

a data management module for efficiently combining and processing data streams at

interactive speed (e.g., 1 second [90]). Our data management module is also designed

to be run as a subsystem in remote HPC or simulation systems to enable in-situ data

processing and interactive visualizations. It collects both multivariate time-series and

network communication data, performs user-specified analytical processing, and delivers

the results as data streams to the analysis and interactive visualization modules.

As for the analysis module, I design a set of algorithms for visually analyzing

multivariate streaming data in real-time. In particular, I apply change point detection

to identify key changes, time-series clustering and dimensionality reduction to reveal

both common and outlier behaviors, and causal relation analysis to identify metrics’

co-influences. A major challenge to develop these analysis methods is the constraint of

the computation time. As new data keeps coming in, the computation must be fast

enough to provide up-to-date results. To achieve this, I design the algorithms in either an

online or a progressive manner. Online (or incremental) methods [177] calculate the new

result by using the result from data already obtained as the base and then updating it

according to the newly obtained data. Therefore, if applicable, online methods are suitable

for streaming data analysis. On the other hand, progressive methods [87] provide useful

intermediate results for data analysis within a reasonable latency when the computational

cost to complete an entire calculation is too high. While many progressive methods

89

internally utilize online algorithms to generate the intermediate results, they may use a

different approach, such as reducing computation with approximation [92].

Another challenge is that the results from the analysis may keep causing drastic

changes in the visualization content, such as node positions obtained from dimensionality

reduction. Showing such results may disrupt the analyst’s mental map. Therefore, in

this work, I consider mental map preservation while designing the analysis methods.

The interactive visualization module is for the analyst to interpret the results from the

analysis module. The module provides a fully interactive interface to help relate the

temporal behaviors from the historical context with the intermediate results to make

critical observations. Additionally, I provide visual summaries for indicating when and

what causes a particular performance bottleneck. Finally, I demonstrate the efficiency

and effectiveness of the framework with performance evaluation and a multi-faceted case

study analyzing the data collected from a parallel-discrete event simulator.

6.1 Characteristics of Streaming Performance Data
In this section, I describe the characteristics of streaming HPC performance data. These

requirements lead to the design of the framework which can translate unsupervised

machine learning techniques to work in a progressive setting and discuss the design of

the interactive visual interface to facilitate analysis of large streaming HPC data.

Analysis of performance bottlenecks in HPC can be categorized into three key domains

according to the HAC model [6] as follows: (a) Hardware, (b) Application, and (c)

Communication domains. The hardware domain consists of network nodes and physical

links between them; the application domain represents the physical or simulated system

designed to solve the underlying problem; the communication domain represents a

communication network, which captures the communication patterns of the application.

Since there exists a large number of visualizations that enable data analysis on the

application domain using both post-hoc [178] and in-situ [170, 174] based workflows, we

especially focus on the data derived from the hardware and communication domains.

Performance counters and other measurement devices on modern microprocessors

90

Data integration
(Sec. 4.1)

Analytical
processing
(Sec. 4.2)

Progressive and
interactive

visualization
(Sec. 4.3)

In-situ data
processing
(Sec. 4.1)

In-situ data
processing

Compute node

Compute node

…

stream

Backend server Web browser clientHPC system

str
ea

m

stream

request

Figure 6.1: The overview of pipeline of the visual analytics framework. Data management
module (green) joins and indexes the time-series and communication data collected from
the HPC system, and then passes them to the analysis module (orange) for analytical
processing. The results are then streamed to the interactive visualization module (purple)
for rendering. Also, the analysis results can be updated based on interactions (e.g.,
changing algorithms/’ parameters).

record various metrics from the hardware domain at a uniform sampling rate. The

recorded data can be represented as a d-dimensional vector, where d is the number of

measured metrics. Let n be the number of entities (e.g., compute nodes, network routers,

or MPI processes mapped to CPU cores) which provide d measured metrics. The resulting

streaming data can be represented as the third-order tensor object of shape n × d × t,

where t is the number of samples recorded and is continuously growing with time.

Additionally, in general, n entities communicate with each other to run the parallel

applications. The communication data can be represented as a weighted graph where

nodes correspond to the entities, and links represent the amounts of communications

(e.g., message packet sizes) between the entities. Because communication bottlenecks

often cause the performance bottlenecks, analyzing the performance metrics with the

communication data can help the analyst in locating performance issues.

6.2 Data Management Module
For performance analysis using streaming data, the data management module is designed

to leverage with the in-situ data processing and manage data flows in a server-client

architecture, as shown in Figure 6.1. Our framework follows the co-processing model for

91

in-situ data processing described in [170]. HPC applications or parallel simulations that

adopt this model can be seamlessly integrated into the framework for real-time analysis

and visualization. To collect performance data from HPC systems, the data management

module uses agent programs that can be installed in multiple compute nodes. Since the

performance data on each compute node can be very large, directly collecting the raw data

and streaming to the backend server of the visual analytics system requires high network

bandwidth. Our data management leverages in-situ data processing techniques [170] for

only collecting the data we needed for real-time analysis and monitoring. The minimum

data granularity and resolution can be specified for in-situ processing of the time-series

and communication data. Common data transformations, such as sampling, filtering,

and aggregation, can be specified in the in-situ data processing. The results of in-situ

data processing are streamed to the backend server, where the data management module

performs data integration and indexing to allow the analysis module to perform analytical

processing on the results effectively. The analytical processing results are then streamed

to the web browser for rendering visualizations. The use of in-situ data processing greatly

reduces network bandwidth, and thus allows the visual analytics framework to effectively

facilitate real-time analysis and monitoring of streaming performance data.

6.3 Analysis Module
To support the design requirements, the analysis module provides several automatic

analysis methods. The difficulty in applying the algorithms to streaming data is that

the computation time should be shorter than a time span of the data update. Thus,

instead of using traditional offline algorithms, we introduce methods using an online or

progressive approach. Additionally, to make it easier to follow changes in the analysis

results, we also provide algorithms to keep visual consistency between the previous and

updated results.

6.3.1 Online Change Point Detection for Multiple Time-Series

To address R1, we design an online change point detection (CPD) method. As discussed

in Section 6.1, for each metric, data obtained from HPC systems consist of n multiple

92

(a) Original streamed time-series (b) With the ordinary PCA

(c) With incremental PCA (IPCA) (d) With IPCA and sign adjustment

Figure 6.2: The comparison of change points detected with the different approaches. In
(a), each y-coordinate represents the number of secondary rollback in each entity. The
color of each polyline represents the cluster ID obtained with the method described in
Subsection 6.3.2. In (b), (c), and (d), the resultant single time-series with each approach
are shown with the gray polylines. The detected change points are also indicated with
the red vertical lines (in (a), we show the same change points with (d)).

time-series [79,80,175] (e.g., message packets sent from each router). However, the existing

online CPD methods are designed to identify change points for a single time-series. To

apply CPD on multiple time-series data, we employ a similar approach to [179]. Before

using CPD, to obtain a single time-series, their method reduces multiple values to a

representative value for each newly obtained time point with PCA.

While the approach in [179] applies the ordinary PCA [180], we use incremental PCA

(IPCA) of Ross et al. [95]. By using IPCA, we can incrementally update the PCA model

when we obtain a new time point and then use this updated model for generating the

representative value. This approach can capture the important information from multiple

time-series with consideration of the variance in the past observations. Figure 6.2(a),

Figure 6.2(b), and Figure 6.2(c) show the original streamed data comprising of 256

time-series, the result with the ordinary, and the result with IPCA, respectively. While

Figure 6.2(b) does not summarize any useful patterns from the original data, we can see

93

that Figure 6.2(c) tends to summarize the blue lines since these lines have higher variances

over time compared with the others.

However, (incremental) PCA causes an arbitrary sign flipping for each principal

component (PC), as discussed in [90,94,169,181].

The arbitrary sign flipping may cause or hide the drastic changes in a PC value, and

thus a CPD method may misjudge the flipping as the change point or overlook the change

point. To solve this issue, we generate coherent signs based on the cosine similarity of

the PCs of the previous and current results. If the cosine similarity is smaller than zero,

these PCs have opposite directions from each other, and thus, we flip the sign of the

updated PCA’s PC. Figure 6.2(c), and Figure 6.2(d) show the results without and with

the sign adjustment, respectively. While the first peak in Figure 6.2(a), as indicated with

the purple arrow, is appeared as the negative peak in Figure 6.2(c), Figure 6.2(d) shows

the corresponding peak in the same direction as in Figure 6.2(a).

The remaining process of the algorithm is applying an online CPD method that is

designed to detect changes on a single streamed time-series. We choose the method

developed by Bodenaham and Adams [182] because, unlike most of the others [171], their

approach requires only one parameter. Minimizing the number of required parameters

is important, especially for streaming data, since parameter tuning is extremely difficult

while the data is continuously changing and users are often unaware of the characteristics

of the data (e.g., trend, patterns, and cycles) in advance. The required parameter in [182]

is called the significance level α (0 ≤ α ≤ 1), which controls a time-window width referred

for CPD. As α increases, the detector becomes more sensitive and also tends to generate

more false detections [182]. We set a default value of α = 0.01. Figure 6.2(a) shows the

result with my method. We can see that my method detects changes corresponding to

the starts and ends of the high peaks.

6.3.2 Progressive Time-Series Clustering

To support R2, we introduce a progressive time-series clustering method for streaming

data where a fixed number of entities (e.g., routers) keep obtaining values (e.g., message

packets sent) for each new time point (i.e., with the notations in Section 6.1, the fixed n

94

(a) Without cluster ID reassignment

(b) With cluster ID reassignment

Figure 6.3: The results of progressive time-series clustering (a) with and (b) without the
cluster ID reassignments. We plot the number of secondary callbacks for 256 entities with
15 (left), 16 (center), and 17 (right) time points. We set 50 ms as a required latency for
this example and 147, 147, and 141 of 256 entities are processed to obtain the clusters
with 15, 16, and 17 time points, respectively.

and the increasing t for each metric). While many online clustering methods have been

developed [171], these methods are suited for streaming data only when a new entity will

be fed with a fixed number of metrics (i.e., the increasing n with the fixed d) [171, 183].

Therefore, we cannot directly apply the existing methods to cluster entities/’ behaviors.

Instead, we develop a progressive clustering method for streaming data to obtain the

reasonable results with low latency. Similar to [90], my method internally utilizes the

incremental update mechanism used in online clustering. We employ mini-batch k-means

clustering [184] which is a variation of k-means clustering. Unlike the ordinary k-means

clustering, mini-batch k-means can incrementally update the clustering result with the

new subset (or mini-batch) of entities. When n entities’ values for a new time point

arrive, we keep updating the clustering results with m selected entities (m ≪ n) until the

specified latency or finishing to process all the data points. Then, we obtain the final k

cluster centers and then assign each entity to a cluster that has the closest center. Since

95

it might not be able to process all n entities within the specified latency, the processing

order would affect the clustering result. In order to select a wide variety of entities, the

algorithm randomly selects m entities from each of k-clusters which are calculated from the

previous data points. Figure 6.3 shows the clustering results of the progressive clustering

with a latency of 50 ms. We can easily note that three clusters indicated with the orange,

green, blue colors have different behaviors. We can easily note that the clustering results

produce similar results with the ordinary k-means clustering with a latency of less than

50 msec.

Another issue in applying a clustering method to streaming performance data is the

consistency in the assigned cluster IDs between the previous and updated results. As

shown in Figure 6.3(a), most of the clustering methods including mini-batch k-means

clustering generate the arbitrary order of cluster IDs for each execution. This causes a

critical issue in the user ’s mental map preservation because the polyline colors would be

changed every time when each entity obtains a value for a new time point. To solve this

issue, the algorithm reassigns cluster IDs in the updated clustering results based on the

relative frequency of previous cluster IDs which were assigned to each updated cluster

ID/’s entities. Similar to the progressive clustering as described above, we incrementally

calculate the relative frequency by checking a randomly picked-out entity from each

updated cluster ID to provide the result within the specified latency. Afterward, the

algorithm sorts the relative frequency among all the updated cluster IDs and then reassigns

the updated cluster ID to the previous cluster ID from which has the highest relative

frequency. Figure 6.3(a) and Figure 6.3(b) show visualized results without and with the

cluster ID reassignment, respectively. We can see that the method reduces unnecessary

color changes between the previous and updated results.

6.3.3 Progressive Time-Series Dimensionality Reduction

To further support R2, we introduce progressive time-series dimensionality reduction

(DR). DR methods can visualize (dis)similarities of temporal behaviors among entities as

spatial proximities in a lower-dimensional plot (typically 2D). DR methods supplement

analyzing temporal behaviors with clustering methods because DR results can help

96

(a) Without the Procrustes transformation

(b) With the Procrustes transformation

Figure 6.4: The results of progressive time-series DR (a) with and (b) without the
Procrustes transformation. The same time-series and cluster IDs shown in Figure 6.3(b)
are used. In this example, we set 1 ms as a required latency and 132, 130, and 138 of 256
entities are processed for the left, center, and right results, respectively.

reveal small clusters (e.g., subclusters) and outliers (e.g., entities which have abnormal

behaviors), which are difficult to be found when using only clustering methods. However,

similar to the situation of time-series clustering, the existing online DR methods (e.g.,

[92,94,95]) are not designed to update a lower-dimensional representation when new values

arrive.

Therefore, we again adopt the incremental update used in incremental DR methods

to obtain reasonable results within a required latency. We employ IPCA [95]. To obtain

principal components (PCs), we keep updating the IPCA result with m selected entities

until the specified latency or finishing to process all the entities. Afterward, we project

all entities/’ time-series into a 2D plot with the first and second PCs. We use the same

processing order as Subsection 6.3.2. Subsection 6.3.2(b) shows results obtained with the

method. From Subsection 6.3.2(b), we can easily discern a subcluster and an outlier from

the main clusters.

97

As discussed in [94], (incremental) PCA also has an issue in the user/’s mental map

preservation because PCA generates arbitrary sign flipping and rotations. An example of

this issue is shown in Subsection 6.3.2(a). We apply the Procrustes transformation [185]

used in [94] to provide consistent plots between previous and updated results. The

Procrustes transformation tries to find the best overlap between two sets of positions (i.e.,

the previous and updated PCA results in the case) by using a combination of translation,

uniform scaling, rotation, and reflection. Subsection 6.3.2(b) shows visualized results

with the Procrustes transformation. In Subsection 6.3.2(b), we can see that flips of data

points/’ positions along y-direction in Subsection 6.3.2(a) are resolved.

6.3.4 Progressive Causal Relation Analysis Methods

To support R3, we introduce progressive causal relation analysis methods. We support

three methods: Granger causality test [186], impulse response function (IR) [186], and

forecast error variance decomposition (VD) [186]. Based on the definition of Granger

causality, we can judge a time series Xt causes another time series Yt... if present Y can

be predicted better by using past values of X than by not doing so [187]. Granger causality

test evaluates a statistical hypothesis test where one time-series has this Granger causality

from/to another time-series. Similar to the other statistical tests, Granger causality test

provides whether there exists Granger causality between two time-series with p-value.

However, with Granger causality test, we cannot measure how much one time-series affects

another time-series. IR and VD can provide such quantitative information. IR describes

how much a shock to a variable of interest at a certain moment affects the other variables

at subsequent time points. On the other hand, VD provides the contribution of a shock

to a variable of interest at a certain moment to the variance of the forecast error of other

variables. An example of the result of Granger causality test, IR, and VR can be found

in Subsection 6.4.3.

All of these three analysis methods can be used after fitting one multivariate time-series

to a vector autoregression (VAR) model [186]. However, there are two challenges in

applying VAR model fitting to streaming performance data. One problem is that because

HPC performance data consists of multiple entities, there are multiple time-series for each

98

variable (i.e., metric), and thus, we cannot directly fit to a VAR model. To solve this

problem, we use IPCA with the sign adjustment described in Subsection 6.3.1.

Another problem is the high computational cost of VAR fitting: O(t2) (t is the number

of time points). However, no incremental algorithm is available for VAR model fitting.

To provide a result within around a specified latency, we adaptively control the numbers

of time points used in VAR model fitting. Our progressive VAR fitting starts with s time

points (s ≪ t, we set s = 10 as a default), which are randomly selected from t time

points. We then obtain the result with s time points in tc completion time. Let tl be the

user-specified latency. Because the computational cost of VAR fit is O(t2), from the first

calculation with s time points, we can roughly estimate how many time points we can fit

to a VAR model within remaining time tr (i.e., tr = tl − tc). This estimation calculated

with s
√

tr/tc. We update s with s
√

tr/tc. Then, the updated s is used for the next VAR

fitting. These steps will be continued until tr ≤ 0 or obtaining a VAR model using all t

time points.

Also, when we obtain a new time point, we can expect that the number of time points

which can be processed will be similar to the last s in the previous progressive VAR fitting.

Therefore, we start by using this s in progressive VAR fitting when obtaining a new time

point. If the completion time tc in the previous VAR fitting with the last s is larger than

the required latency tl, my method updates s with s
√

tl/tc and uses this updated s for

the next VAR fitting.

6.3.5 Performance Evaluation

While the qualities of results with the methods depend on the existing methods used

as the bases (e.g., IPCA), we evaluate computational performance for each method to

provide reference information of the handleable data size. We use an iMac (Retina 5K,

27-inch, Late 2014) with 4 GHz Intel Core i7, 16 GB 1,600 MHz DDR3.

For the online CPD method, the computational cost differs based on the number

of time-series (i.e., n entities) which we will reduce to the representative time-series

with IPCA. Therefore, we measure the completion time for each different n (from 100

to 100,000), as shown in Table 6.1(a). The computation of the progressive time-series

99

Table 6.1: The performance evaluation results ((b)-(d): processed in 1 s).

(a) Online CPD

n completion time
100 0.01 ms

1,000 0.05 ms
10,000 0.46 ms

100,000 6.23 ms

(b) Progressive Clustering

t # of entities
100 5,392

1,000 4,921
10,000 3,074

100,000 562
(c) Progressive DR

t # of entities
100 10,000

1,000 10,000
10,000 2,396

100,000 118

(d) Progressive VAR fitting

d # of time points
10 10,000

100 833
1,000 35

clustering depends on the number of iterations in the k-means algorithm, the number

of clusters to form, and the data length for each time-series (i.e., t time points). We

use fixed numbers of 100 and 3 for the numbers of iterations and clusters, respectively.

Then, with different t values from 100 to 100,000, we measure the number of time-series

the algorithm processed from 10,000 time-series in one second. The result is shown in

Table 6.1(b). Similarly, as shown in Table 6.1(c), we evaluate the method with different

t values because its computation depends on the value of t. Lastly, for the progressive

VAR fitting, the number of time points can be processed is different based on the number

of measured metrics (i.e., d metrics). Thus, as shown in Table 6.1(d), we measure the

number of time points processed from 10,000 time points with multiple numbers of d.

From the results in Table 6.1, we can see that the online CPD is fast even when n

is large (e.g., 6.23 ms for n = 100, 000). With a setting of 1 s latency, the clustering

and DR methods processed large numbers of entities up until t = 10, 000. This could

be a reasonable amount of processed entities when we want to analyze several or tens

of thousand entities. Also, the VAR fitting processed more than 800 time points even

when d = 100. The quality of the results with the progressive algorithms depends on

how much of the input data would be processed. Thus, we should consider the balance of

required latency and the size of input data based on available computational resources.

The performance results above can help us decide the granularity level of entities to be

analyzed (e.g., compute node or CPU core level), the width of the time window, and the

100

Figure 6.5: The user interface of the prototype system consisting of multiple views: (a1,
a2) the performance behavior views, (b1, b2) histories of performance behaviors, (c1,
c2) behavior similarity views, (d) metric causality view, and (e1, e2, e3) communication
behavior views. (f) and (g) are the drop-down lists for settings and the button for pausing
and resuming streaming updates, respectively.

number of performance metrics collected.

6.4 Interactive Visualization Module
This module provides a user interface, as shown in Figure 5.7, which comprises multiple

views to fulfill all the design requirements.

6.4.1 Performance Behavior Views

To fulfill R1, R2, and R3, the performance behavior views, as shown in Figure 6.5(a1,

a2), provide visualizations with the change points (refer to Subsection 6.3.1) and clusters

obtained (refer to Subsection 6.3.2) in the analysis module. Using polylines, each

performance behavior view presents the temporal changes of a performance metric for

all the entities. Since the collected data comprises information from n entities, each view

shows n polylines for each selected metric. x- and y-coordinates represent a time point

and a metric value respectively. From the drop-down lists displayed by clicking the icon

in the top left (Figure 6.5(f)), the analyst can select two metrics from d collected metrics

101

for the top (a1) and bottom (a2) views. For example, in Figure 6.5, as indicated by the

y-axis labels, ‘Sec. Rb.’ (i.e., Secondary Rollback) and ‘Net. Send.’ (i.e., Network sends)

are selected. We provide two views to support the comparison of performance behaviors

for two different metrics, especially to review the causal relations (R3), as described in

Subsection 6.4.3.

The online CPD described in Subsection 6.3.1 is continuously applied to the time-series

shown in the top view as a default. The analyst also can apply the CPD to the bottom view

by selecting from the drop-down list in Figure 6.5(f). When a change point is detected,

the corresponding time point (i.e., x-coordinate) is indicated with teal vertical lines in the

corresponding view. For example, four change points are detected in Subsection 6.4.3.

Similarly, the progressive clustering described in Subsection 6.3.2 is applied to the

top view as a default. The metric to perform clustering and the number of clusters

can be modified from the drop-down lists in Figure 6.5(f). Obtained cluster IDs are

encoded as the colors of polylines. The categorical colors are chosen to provide sufficient

contrast for distinguishing the clusters. A legend for the cluster IDs are shown in

the top of Figure 6.5(a1). The number in each parenthesis represents the number of

entities belonging to each cluster (e.g., Cluster-0 contains 16 entities). Also, to make

the comparison between two different metrics easier using the top and bottom views, the

same colors that represent the cluster IDs are used for the corresponding entities. For

example, in Figure 6.5, the bottom view is colored based on the cluster IDs computed for

the top view. We can see that green lines (i.e., Cluster-0) in both top and bottom views

have high ‘Sec. Rb.’ and ’Net. Send.’ values in many time points.

Since the data stream continuously feeds data for a new time point, visualizing all the

fed time points consumes the visual space and, as a result, it becomes challenging to covey

the detailed changes. Therefore, as new data arrive, we slide each view’s time window for

the visualization. Also, to provide the historical context with the past time points from

the start of the simulation, as shown in Figure 6.5(b1, b2), the summary behavior placed

at the bottom of each view shows the average value across entities for each time point.

102

6.4.2 Behavior Similarity Views

As discussed in Subsection 6.3.3, providing DR results along with cluster IDs can

supplement analyzing temporal behaviors, such as finding outliers (R2). We apply the

method described in Subsection 6.3.3 to multiple time-series shown in each performance

behavior view (Figure 6.5(a1) and (a2)). Then, the behavior similarity views visualize

the corresponding DR results (i.e., Figure 6.5(c1) and (c2) show the result from (a1) and

(a2), respectively). In addition, to easily relate with the clustering results, we color the

points with the corresponding colors used for encoding the cluster IDs in the performance

behavior views. For example, all polylines and points shown in (a1, a2, c1, c2) are colored

based on the clustering IDs obtained in (a1). From (c1), We can see that each entity’s

behavior of ‘Sec. Rb.’ is clearly separated into three clusters. However, in (c2), Cluster-0

(green) has four outliers as shown around the center. This can further be validated using

the bottom behavior view (a2). The four green lines have much higher values when

compared with the other green lines.

6.4.3 Metric Causality View

The metric causality view (Figure 6.5(d)) provides the results from the causality analysis

described in Subsection 6.3.4 between the performance metrics (R3). This view can help

the analyst determine which metrics share causal relationships with the chosen metric of

interest for the top performance behavior view (Figure 6.5(a1)). Using Granger causality,

we can derive two kinds of causal relationships: (1) from-causality: effects from other

metrics on the metric of interest, and (2) to-causality: effect of metric of interest on

other metrics. We display the from-causality results by default because the analyst often

wants to review a metric which conveys the performance decrements first and then to

identify which metrics likely cause it. However, the analyst can change to the to-causality

results from the settings in Figure 6.5(f). We inform metrics of which p-value for Granger

causality test is less than the user-defined value (the default is 0.05) with the yellow

background. Also, we display the results of IR and VD. The metrics can be sorted based

on the values for IR and VD by clicking the column title. Causality analysis results are

useful for the analyst to decide the second metric to be shown in the bottom performance

103

behavior view (Figure 6.5(a2)). For example, in Figure 6.5, because we can see that

‘Net. Send’ has Granger causality and the highest IR value, we select and visualize its

behavior in (a2).

6.4.4 Communication Behavior Views

The communication behavior views shown in Figure 6.5(e1, e2, e3) visualize the

communication patterns between the entities (R4). I use an adjacency-matrix based

visualization to show communications which can be represented as a weighted graph (refer

to Section 6.1). Using the adjacency-matrix can provide flexibility to support any type

of network topologies. While reviewing communications at the latest time point is not

enough to grasp the changes in communication patterns, looking through communications

at all the time points is not realistic in the streaming setting. Therefore, the module

supports three different views to provide a summary of communication patterns and their

changes. The details of each view are described below.

Live communication view (Figure 6.5(e1)) visualizes communications among entities

during the sampling interval at the latest time point. While each row and each column

of the matrix corresponds to one entity with the user-defined order, each cell’s color

represents the number of communications between the corresponding row and column. I

use a gray sequential colormap (darker gray denotes higher communication). Additionally,

to inform the cluster information of each entity, the cluster ID corresponding to each

row/column is encoded as colored rectangles on the top and left sides of the adjacency

matrix. For example, in Figure 6.5(e1), the entities in the green cluster placed at the first

several rows and columns cause many communications within the entities in the same

cluster.

To provide better scalability, this view can cooperate with the hierarchical information

of entities, which often can be seen in HPC systems. For example, many HPC systems

consist of multiple racks, compute nodes, CPUs, and cores. These have hierarchical

relationships (e.g., a compute node contains multiple CPUs). The analyst can choose

the granularity of entities (i.e., the level of hierarchy) to be shown in this view. When

the lower granularity is selected instead of the original granularity, each cell shows the

104

average amount of communications within and among the groups of entities. For example,

in Figure 6.5(e1), because many entities (128 entities) will make the available space for

each cell small, we select one lower granularity consisting of 8 groups (i.e., each group

contains 16 entities. This view also allows the analyst to show the communications with

one higher granularity level by double-clicking the grouped cell.

Base communication view (Figure 6.5(e2)) visualizes the communication matrix

at the user-selected time point. I use the same visualization methods as for the live

communication view. The analyst can select the time point using a brown draggable

vertical line placed on the summary behavior view.

Diff communication view (Figure 6.5(e3)) shows communications at multiple time

points which are essential to understand the changes in communications. I use the change

points identified by CPD as such essential time points because each change point shows

significant changes from the previous time points. I order each matrix corresponding to

each change point along the horizontal direction from left to right. Also, I indicate the

corresponding change point with the numerical labels placed in Figure 6.5(a1, b1, e3).

To allow the analyst to compare the communications at each change point with the

one at the selected time point for the base communication view (Figure 6.5(e2)), each

matrix’s cell shows the difference in the amount of communication between the selected

time and each change point. As shown in the colormap placed in Figure 6.5(e3), the

differences are encoded using a red-blue divergent colormap where the darker red and

blue represent higher positive and negative values, respectively. The comparison with the

selected base communications provides the flexibility in the analysis. For example, when

the analyst selects a time point which has no communications (e.g., the start time point),

the diff communication view visualizes the amounts of communications as they are. On

the other hand, when the analyst selects one of the change points as a base, the view

shows how the communications are changed from the selected change point. This helps

understand which entities’ communications affect the changes in the metric visualized in

the performance behavior views.

105

6.4.5 User Interactions across Views

In addition to the interactions in each view, I provide several interactions that are linked

to multiple views.

Pausing and resuming streaming updates. Since the visualization module updates

its views as the analysis module sends new results, the updates occur at data collection rate

at which the performance data is collected from the simulation. To provide a mechanism

that allows the analyst to interact with the visualized results even when the data collection

rate is high, I provide a pause button (Figure 6.5(g)) to pause the views from updating.

Also, after pausing, the button is toggled to a resume button. When the resume button

is clicked, the views return back to the current state of the simulation.

Selecting a time point of interest. As described in Subsection 6.4.4, the analyst

can select a time point of interest in the summary of performance behavior shown

in Figure 6.5(b1). Selecting a time point immediately updates the base and diff

communication views.

Selecting entities of interest. Although a set of views can reveal overall patterns in

performance and communication behaviors, the user would be interested in to analyze a

subset of entities (e.g., a subcluster appeared in the behavior similarity views) in more

detail. Therefore, I provide fundamental linking-and-brushing interactions. For example,

the behavior similarity views support lasso selection to choose entities of interest. Once

selected, the polylines in the performance behavior views belonging to the selected entities

are highlighted by coloring the rest with gray and low opacity.

6.5 Case Studies
For demonstrating the applicability and effectiveness of the framework, I analyze the

streaming data from parallel discrete-event simulation (PDES) along with the domain

experts. In particular, I show that the visual analytics system can be used to effectively

identify performance problems, investigate the source of the problem, and develop insights

for improving performance. Besides, I collected feedback from the domain experts, which

confirmed the usefulness of the framework and provided further design considerations.

106

PDES is used for studying complicated scientific phenomenon and systems. PDES

typically runs on HPC systems for a long period using many compute nodes, and thus,

simulations with low efficiency cost significant energy and time. Therefore, it is crucial

to optimize performance and relieve bottlenecks. For distributed and parallel computing,

PDES distributes a group of processes, called processing elements (PEs), that run across

compute nodes. PEs communicate by exchanging time-stamped event messages that are

processed to ensure the correct order of events (i.e., the future event must not affect

the past event) [74]. As PDES, I use the Rensselaer’s Optimistic Simulation System

(ROSS) [75], an open-source discrete-event simulator. ROSS uses optimistic parallel

event scheduling, where each PE contains a group of logical processes (LPs) that can

independently process events to avoid frequent global synchronization with other PEs.

Also, ROSS introduces kernel processes (KPs) for managing a shared processed event list

for a collection of LPs mapped to a single PE, which has been demonstrated to process

up to billions of events [188, 189]. When a KP rolls back, it must roll back all its LPs to

the same point in virtual time. Therefore, having too many LPs mapped to a KP can

result in performance degradation due to unnecessary rollbacks of other LPs in the same

KP. Furthermore, the performance of ROSS depends on the model being simulated and

the associated workload, which makes it difficult to investigate performance bottlenecks.

I set up the ROSS with the Dragonfly network [67] simulation model provided by

the CODES [188]. The simulated Dragonfly network is similar to the network used by

Theta Cray XC supercomputer at Argonne National Laboratory with 864 routers. The

simulations are run with 8 to 16 PEs, where each PE has 16 KPs, with up to 16,384 LPs.

6.5.1 Monitoring Key Changes in PDES Performance

Because PDES uses a large number of entities in a complex structure, identifying the

causes and sources of performance problems is difficult. With the visual analytics

framework, we can effectively monitor the changes in the key metrics in real time, and

analyze which computing entity is causing performance problems.

Since the efficiency of optimistic PDES depends on the number of rollbacks (including

both primary and secondary rollbacks), we start to monitor each KP’s ‘Sec. Rb.’ and

107

‘Prim. Rb.’ with the performance behavior views. We set the number of clusters to be

3, and the cluster IDs are calculated based on ‘Sec. Rb.’. From monitoring the causality

results, as shown in Figure 5.7(d), we notice that ‘Net. Send.’ has the Granger causality

to ‘Sec. Rb.’ and has a large IR value. Hence, we update the second metric to ‘Net. Send’

and continue to study the influence of ‘Net. Send’ on ‘Sec. Rb.’.

After the online CPD proceeded with several GVT intervals, we can see the first change

point 1⃝ (refer to Figure 5.7(a1)). 1⃝ clearly shows that the ‘Sec. Rb.’ has drastically

increased (Cluster-2 with the orange-colored polylines). This alerts us that we should

closely monitor the rollback behaviors because the efficiency of the simulation can be

significantly decreased if the number of secondary rollbacks stays high. Figure 5.7(a1)

and (a2) show the result after the simulation is run for 75 GVT intervals. The online

CPD detected four change points (1⃝, 2⃝, 3⃝, and 4⃝). While the metric causality view

shows the detailed behaviors of each entity, the summary behavior view shows the trends

of the PDES as a whole. As shown in (Figure 5.7(b1)), the average of secondary rollbacks

have a peak at the start of the simulation close to 1⃝, then reduces between 1⃝ and 2⃝,

and increases again from 2⃝ to 3⃝, and maintains the values till 4⃝. The summary view

with CPD allows us to confirm the existence of performance problems in the simulations

as the secondary rollbacks periodically increase at different points.

6.5.2 Tracing Performance Bottlenecks

If we can confirm the existence of performance problems, we can stop the simulation to

prevent wasting time and energy by running the long and problematic PDES. Thus, we

move on to the identification of the source of the problems, and the system can be used

to trace the performance issues and bottlenecks. As shown in Figure 5.7(a1, a2), we

can see that some of green-colored polylines (i.e., Cluster-0) continue to show relatively

high values in both ‘Sec. Rb.’ and ‘Net. Sends’. Thus, we further investigate the green

cluster. By associating the behavior similarity view (Figure 5.7(c1)) to the performance

behavior view (Figure 5.7(a1)), we realize that all the KPs belonging to the green cluster

have a high similarity with each other for their rollback behavior. However, as shown in

Figure 5.7(c2), for their ‘Net. Send.’, they are separated into one major cluster at the top

108

Figure 6.6: Detailed analysis of performance bottlenecks.

left and one small cluster that has four KPs at the right bottom. We can expect that these

four KPs have dissimilar behaviors from the others. To further analyze their behaviors,

we select the four entities with the lasso selection. The result is shown in Figure 6.6.

From the performance behavior views (a1, a2), we can discern that these four KPs cause

large numbers of network sends and, as an influence, they also cause large numbers of

secondary rollbacks.

6.5.3 Analyzing Communication Patterns

After identifying the source of the performance problem, insights for removing the

bottlenecks and optimizing the performance can be extracted from our visual analysis

results. Since a LP that communicates with other LPs that have high number of rollbacks

can increase its own chances to have rollbacks, a better control on the communication

109

events can reduce the number of rollbacks and improve efficiency. Therefore, we analyze

the rollback behaviors with the communication patterns in the live communication view,

as shown in Figure 6.6(c1, c2). (Figure 6.6(c1)) shows the communication between PEs

or KPs with arrangements in rows and columns of the matrix based on their ranks. At

default, the communications between the PEs are shown. We can see the cluster IDs of the

KPs shown at the top and left of the matrix indicate that all the KPs in the green cluster

(including the four KPs) belong to PE0. Also, we can see that KPs in the green cluster

dominantly communicate with KPs within the same cluster. To further drill down to the

KP level, we click on the matrix cell belonging to PE0 (Figure 6.6(c2)) and identify that

all KPs, including the four KPs, generate many communications only within themselves

(e.g., KP0 communicates to KP0). This indicates that LPs managed by these KPs have

high communications with each other. Since these KPs has high number of rollbacks, they

may cause other KPs communicating with them to have higher chances to have rollbacks.

To avoid these rollbacks, the mapping from LPs to KPs should be changed to alleviate

the unbalanced communications.

The case studies above show that the visual analytics framework can tackle the

challenges of real-time performance monitoring and analysis of PDES. With effective

supports for analyzing the streaming PDES data in real-time, the framework helps the

analyst identify the time points and locations (e.g., PEs and KPs) that performance issues

occurred. Once such a performance issue is realized, the analyst can stop the simulation

to save energy and time. The analysis results also provide hints to the cause of the

performance issues, allowing PDES developers to debug or optimize performance.

6.6 Summary
In this chapter, I develop a progressive visual analytic framework that helps gain

insights on streaming performance data in real-time using algorithmic and visual analytics

supports. I discuss the challenges arising from the increasing computational throughput

of High-Performance Computing (HPC) systems compared to the more moderate growth

in storage capacity. As a result, there is a growing disparity between the amount of data

110

generated by computations and the data that can be stored for analysis. To overcome this,

the use of in-situ workflows, which integrate visualization into the simulation pipeline,

have become popular. These workflows emphasize the need for real-time performance

analysis. The framework consists of three main modules: data management, analysis, and

interactive visualization. The data management module efficiently processes and combines

data streams in real-time. It collects multivariate time-series and network communication

data, performs analytical processing, and delivers the results as data streams to the other

modules. The analysis module includes algorithms for real-time analysis of multivariate

streaming data. Techniques such as change point detection, time-series clustering,

dimensionality reduction, and causal relation analysis are employed to reveal temporal

patterns and identify metrics’ co-influences. The algorithms are designed to handle the

high-speed data flow and provide up-to-date results. The framework’s efficiency and

effectiveness are demonstrated through performance evaluations and a comprehensive

case study analyzing data from a parallel-discrete event simulator (PDES).

111

Chapter 7
DMV - A Unified Performance
Analysis Framework for tracking
Data Movement in the Hardware
Domain

7.1 Introduction
With the end of Moore’s law [190] and the increased flexibility of hardware

accelerators [191] — e.g., Graphics Processing Units (GPUs) and Field-Programmable

Gate Arrays (FPGAs) — the future of computing is rapidly transitioning towards

the use of heterogeneous architectures [192, 193]. Today, heterogeneous computing is

adopted extensively to push the frontiers of computational sciences in both the scale and

complexity. In the current HPC landscape, large-scale supercomputers (161 of the current

Top 500 [5]) increasingly rely on collaborative execution models [194], where computation

is largely offloaded to accelerators (GPUs or FPGAs), whereas the CPUs manage

non-portable computations, network communication, and workload distribution. Despite

providing unprecedented capabilities to solve large and complex scientific computing

problems [193, 195, 196], heterogenous architectures also introduce new challenges in

effectively utilizing the available computing resources [197].

A significant roadblock in the widespread adoption of heterogeneous computing

(in particular, GPUs) is the copy-then-execute programming model, where the onus

of maintaining the often-complex data structure, data transfer, and explicit data

migration falls on the application developers. With present-day accelerators constrained

by memory (e.g., 16 GB for NVIDIA’s V100 GPU), leveraging the host’s memory

112

(usually plenty) as an extension becomes a promising solution yet a challenging task.

Especially with increased applications of large deep learning (DL) models, training

DL models on GPU-accelerated systems becomes increasingly difficult as models no

longer fit in a single GPU’s memory [198]. With limited bandwidth for CPU–GPU

communication (~32GB/s with PCIe), but better GPU–GPU bandwidth (~300GB/s

with NvLink2)1, careful compute orchestration and data management are imperative.

Inefficient data management and movement can lead to unnecessary GPU idle times

or lowered CPU/GPU utilization [97, 114], ultimately creating performance bottlenecks

and mitigating the promised gains of accelerators. Broadly, data movement comprises

direct transfers to/from the GPU device, and between libraries supporting computations.

Therefore, it is critical to analyze and understand data movement (e.g., CPU-GPU and

GPU-GPU transfers) such that software applications are made to optimally utilize the

heterogeneous execution model efficiently.

To harness the potential of GPU-accelerated HPC systems, developers utilize

performance analysis to comprehend, explore, and optimize the data movement strategies.

This is crucial because the performance of data-driven applications are becoming

increasingly dependent on fast memory access, which can only be improved through

efficient data locality mechanisms. Typically, developers perform runtime analysis by

gathering performance metrics through profiling and tracing tools [11,127,128,199]. The

collected performance metrics (e.g., execution runtime, calling contexts, page faults) are

then attributed with specific code regions through performance visualization [125, 200].

Although runtime analysis aids in identifying time-consuming code sections, it falls

short in diagnosing the impact of data movement on memory-bound applications. For

instance, optimizing the performance of General Matrix Multiplication (GEMM) demands

various optimizations like grid/block size and tiling strategies to maximize hardware

utilization and adhere to physical memory constraints [110, 201]. Developers must

minimize unnecessary data movement operations and optimize the memory footprint to

achieve desired scalability and performance. Achieving this often requires domain experts
1This work primarily focuses on Nvidia’s Volta architecture, which is a widely adopted GPU accelerator

(as of 2023).

113

to experiment and evaluate several optimization strategies, under diverse conditions,

such as data sizes, configurations, hyperparameters, network conditions, etc.. This

necessitates tracking and analyzing data movement and runtime performance across

numerous executions, which can be an even more formidable challenge.

To comprehensively investigate and analyze data movement within the heterogeneous

paradigm, it is crucial to simultaneously explore the application behavior across the

Hardware, Application, and Communication (HAC) domains [6]. As such, multiple

state-of-the-art profiling and tracing tools need to be incorporated to capture all the

relevant information in an easy-to-consume format. The sheer scale and complexity of

the collected HAC data for large-scale applications make visualization indispensable for

revealing and understanding key patterns. It turns out existing performance visualizations

are limited to relating the bottlenecks to a single domain, leaving much to be desired for

a full-scope study across all domains. For example, one might record the communications

between the devices to understand data movement, but these data transfers are often

not associated with the corresponding code or the hardware it utilizes. Moreover, no

existing tool can help developers understand and correlate the performance across two or

more domains. Consequently, the absence of appropriate tools to analyze, visualize, and

monitor data movement hampers developer’s ability to formulate strategies for reducing

data movement overheads.

In this chapter, I present Data Movement Visualized (DMV) — a framework to

track data movement across heterogeneous interfaces and understand their implication

on performance trade-offs. I architect an API, DMTracker , enabling code-based

instrumentation to track data movement across the HAC domains. DMTracker unifies

the performance data across several state-of-the-art tools —CUPTI [202], Caliper [11],

and hwloc [203] for C++ and Python applications that run on Nvidia GPUs. DMTracker

also closely integrates with PyTorch API’s to monitor and track data movement across

MLOps. To facilitate a holistic exploration of data movement, I design a visual

analytic interface, DMVis, which introduces four interconnected — Hardware, Application,

Communication, Summary and Ensemble views. The hardware view summarizes the

114

hardware topology and the memory hierarchy of the allocated resources. By mapping

the collected performance metrics, DMVis highlights where expensive data transfers are.

The application view relates bandwidth and latency to the corresponding application code

using a calling context tree (CCT) representation. The communication view summarizes

the data transfers across the host–device and the device–device interfaces during the

execution. Summary and ensemble view allows comparing and contrasting multiple

executions in an ensemble for quick insights. I demonstrate the utility of the framework

through two use cases which identify common types of data movement overheads (e.g.,

frequent data transfers and alternating CPU/GPU transfers) and show if an application

is compute- or memory-bound. DMV is released as an open-source, web-based tool to

support performance analysis of the data movement across the HAC domains.

7.2 Domain Problem Characterization
Through collaboration with domain experts, we identified their primary challenges and

derived their analysis goals, the current workflow, and the limitations therein. Based on

this collaboration, we list out the requirements (R1–R4) for supporting performance

analysis in their development workflow. To address these requirements, I develop

DMTracker — a unified tracking interface (see Section 7.3) and DMVis — a visual

analytic interface (see Section 7.4).

R1. Facilitate a simple API to collect performance data. The challenges

of capturing, representing, and ingesting such performance data are compounded

significantly when focusing simultaneously on the HAC domains, which requires utilizing

several tools and libraries. Our collaborators expressed the need to have a simple and

minimally invasive API that can orchestrate the different tools and represent the data

compactly, offering a lightweight framework.

R2. Summarize the performance across the HAC domains. Efficient data

management requires overlapping the data transfers with kernel computations using

prefetching (for a single GPU) and communication patterns (for multiple GPUs). To

determine if data orchestration is efficient, summarized performance from each of the

115

HAC domains is essential [6].

R3. Compare and contrast performance across multiple executions. Existing

performance visualization tools generally focus on individual executions. However,

comparing performance is integral when it comes to understanding different strategies

(e.g., explicit data transfer or unified memory), configurations (e.g., single-GPU vs.

multi-GPU), and experiments (e.g., weak- and strong-scaling).

R4. Determine if an application is compute-bound or memory-bound. For

domain experts, it is critical to ensure both runtime and memory usage are considered

with equal importance in the performance analysis. Focusing on both aspects helps target

suitable optimization efforts to improve performance.

7.3 DMTracker — A Unified Interface for Tracking
Data Movement

DMTracker collects performance profiles and execution traces using four commonly

used performance interfaces — NVIDIA’s CUPTI [202] to collect GPU profiles and

traces, Caliper [11] to collect CPU traces and Calling Context Trees (CCT), NVML2

to monitor GPU devices (e.g., power consumption), and hwloc [203] to determine the

hardware topology. To facilitate a minimally invasive framework with a simple API

(R1), we design DMTracker as a header-only C++ interface, offering easy integration

into application codes, and that abstracts the complexity of handling these individual

tools (refer Figure 7.1).

The abstraction is offered through the “DMV object” that allows a configurable interface

to underlying libraries. For example, users can configure the vector metrics to request

tracking of performance metrics, which are internally forwarded to CUPTI and Caliper

(see default values in Table 7.1). Overall, DMTracker performs the data movement

tracking in four phases — setup, collect, categorize, and teardown.

Setup: First, DMTracker gathers information about the underlying hardware topology

requested by the application code. Domain experts commonly employ resource managers
2https://developer.nvidia.com/nvidia-management-library-nvml

116

DMTracker – CollectDMTracker – Setup

Activity API

Event API

Callback API

NVML

linux-perf

Caliper

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

clock UVM
Support

Topology

CPU & GPU
Activities/
Metrics

Job
Metadata Metrics are

sampled in a
shared
buffer

Stored in
JSON
format

2

Event tags

Sample CUDA code1 3 DMTracker – Categorize4

Data Movement
from CPU to GPU

l
l

Data Movement
from GPU to CPU

CPU Processing

Kernel Launch

Figure 7.1: (1) A code snippet demonstrating data movement in a sample CUDA
application code. (2) Setup phase involves collecting event tags, identifying topology,
storing job metadata and setting up callbacks for activities and tracking for metrics. (3)
Collect phase stores the events, activities, and metrics in a shared buffer (allocated for
each GPU device). (4) Categorize phase aggregates the timeline of events according to
the tags provided during code instrumentation.

and job schedulers (e.g., slurm) to allocate exclusive and/or non-exclusive access to

computational resources. Although these schedulers can provide some monitoring

capabilities, the hierarchy of the underlying topology and their metadata (e.g., number

of cores, size of caches) is usually not tracked. In other cases, applications may also

allocate resources directly, in which case a more general solution to capturing the

hardware topology is useful. DMTracker employs the hwloc library to identify all

the connected components associated with the job execution (including the memory

hierarchy). Additionally, DMTracker uses cudaDeviceProp to gather the metadata (e.g.,

number of threads, blocks, SMs) for the GPUs and their corresponding interconnects

(i.e., PCIe, NvLink). To ensure all hardware components are captures, the user must

Domain Performance data

Hardware UUID, local device ID, global device ID, bus ID, CPU utilization (%),

GPU utilization (%), Temperature (F), Power drawn (Watts),

Memory used (MB), Memory free (MB), Clocks per SM (MHz)

Application Correlation ID, Exclusive runtime, Inclusive runtime, Calling Context Tree,

Page Faults, Active Warps, SM occupancy, Memory Bandwidth, Bank conflicts

Communication Data sent/recv using PCIe, NVLink (MB), Bandwidth (MB/s)

Table 7.1: List of data collected by DMTracker .

117

1 #include "libdmv.h"

2

3 using namespace std

4

5 /* Initialize parameters for tracking metrics, activities and config */

6 vector<string> metrics = { "exclusive_runtime", "achieved_occupancy" ... };

7 vector<string> activities = { "CUPTI_ACTIVITY_KIND_PCIE", "CUPTI_ACTIVITY_KIND_NVLINK" ... };

8 unordered_map<string, float> config = { "sample_period_ms": 500.0, "warmup_ms": 3000 };

9

10 /* Setup the dmv context. */

11 auto &dmv = libdmv::DMV(activities, metrics, config);

Figure 7.2: Setup API: The “DMV” object takes in three input parameters: metrics to
record performance metrics during code execution, activities to register callbacks into
CUPTI Activity for asynchronous events, config to configure settings for DMTracker to
track data movement.

perform all resource allocation before the DMTracker ’s start function is triggered. “DMV

object” takes in three input parameters: activities, metrics, and config (see line 14

in Figure 7.2). Once the “DMV object” is constructed, DMTracker allocates a buffer in the

cache memory to collect the performance data stored.

Collect: Profiling and tracing across the HAC domains require separate tools, which

incurs additional efforts from the user to orchestrate the data collection (R1). To simplify,

DMTracker presents an integrated solution to capture the required performance data.

DMTracker employs thread profiling, where a master thread spawns six worker threads

across six interfaces — Activity API, Event API, Metrics API, NVML, linux-perf, and

Caliper. Since different workers collect the performance data, DMTracker maintains

an internal clock to ensure synchronization. Data movement tracking begins with the

start function (see line 2 in Figure 7.3) and ends with the stop function (see line 9

in Figure 7.3). Additionally, the application code can be tagged by developers using

“events” (through start_event and stop_event) to provide additional semantics for

correlating the captured performance metrics during performance analysis (see line 5-6

in Figure 7.3). Below, we discuss how DMTracker collects performance data across the

HAC domains.

118

Hardware: In addition to the hardware topology (captured during setup), DMTracker

measures utilization and related metrics, such as temperature and power drawn, using

NVML for GPUs and linux-perf for the CPUs at the requested sampling rate (default:

500 ms). DMTracker also tracks the memory usage across the topology to track if an

application is memory-bound (R4). Adequate system-level permissions are necessary to

facilitate the monitoring of all hardware components effectively.

Application: Using CUPTI’s callback API, DMTracker registers callbacks to capture

snapshots of activities from device, context, stream, NVLink, and PCIe during runtime.

Each activity marks the entry and exit to the CUDA runtime and driver APIs. At

the exit of each activity, DMTracker reads the event counters and metrics from CUPTI.

We prefer the usage of CUPTI’s callback and activity API since it allows asynchronous

performance tracking for Nvidia GPUs. Similar to other tools that summarize the

application domain, DMTracker collects runtime metrics (i.e., inclusive and exclusive

runtime), calling context trees (CCTs), and throughput (data consumed per second).

DMTracker employs source-code instrumentation using Caliper to correlate the collected

performance metric to the line of code. DMTracker adds an abstraction layer over CUDA

runtime routines to automatically track the inclusive and exclusive runtimes. Additionally,

users can add caliper instrumentation as desired. At the end of the execution, DMTracker

reads the caliper-json output and appends the CCT (represented as nodes) to JSON.

Communication: DMTracker collects the communication traces exchanged between

CPU–GPU and GPU–GPU asynchronously using the CUPTI Activity API. DMTracker

records the amount of data transferred between the CPU and GPU interfaces (i.e.,

NVLink and PCIe). Finally, DMTracker appends the bytes moved at the end of each

activity along with their corresponding timestamps.

Categorize: For each event captured, DMTracker constructs a JSON object with the

timestamp and the requested metadata. Depending on the context and device in which

an event occurs, DMTracker categorizes events into four: (1) CPU compute, (2) GPU

compute, (3) Data movement, and (4) CUDA runtime. The CPU compute category

comprises events on the host that are point-events (e.g., statements) or range-events

119

1 /* Start DMTracker tracking */

2 dmv.start();

3

4 /* Add custom event tags to track user events */

5 dmv.start_event("event_name", "event_tag"); // Optional

6 dmv.stop_event("event_name", "event_tag"); // Optional

7

8 /* End DMTracker tracking */

9 dmv.stop();

Figure 7.3: Collect API: DMV provides start and stop API functions to begin and
end the data movement tracking. Users can also annotate specific sections of the code
using start_event and stop_event functions.

(e.g., loops, functions). The GPU compute includes kernel invocations and other

operations performed on the GPU; these events can also be point-events (for asynchronous

operations) or range-events (for synchronous operations). Data movement tracks the

exchanges across the CPU–GPU and GPU–GPU interfaces through the PCIe and NVLink

communication interfaces. Finally, the CUDA runtime category accounts for internal

CUDA functions (all functions with prefix cuda*). This categorization effectively classifies

a computation as either compute-bound or memory-bound (R4).

Teardown: Finally, DMTracker dumps the performance data from the buffer using the

chrome trace JSON format. We chose this format to generalize to existing UI interfaces

(such as UI Perfetto 3 and chrome tracing 4) that also visualize the execution timeline.
3https://ui.perfetto.dev
4chrome://tracing

1 /* Dump the collected trace in the JSON format */

2 dmv.dump("/path/to/data", format="json");

3

4 /* Destroy the DMTracker context */

5 dmv.destroy();

Figure 7.4: Teardown API: DMTracker provides a dump function to store the collected
traces in the JSON format. Finally, DMTracker instance can be safely destroyed using
destroy function.

120

https://ui.perfetto.dev
chrome://tracing

cudaDeviceSynch,,,

A B

C

D E F

Summary Event Timeline

Metric Timeline

Hardware Application Communication

A B

C

D E F

Figure 7.5: DMVis summarizes the data movement in an application run using a visual
analytic interface. Users begin the performance analysis with the summary view (A).
Users can play/pause the execution timeline. Event timeline (B) and Metric timeline
(C) enable the analysis of timestamped traces. Hardware (D), Application (E), and
Communication (F) views summarize the performance across the domains using linked
views.

7.4 DMVis — Visual Analytic Interface
DMVis is a web-based visual analytic interface for studying the performance data

collected by DMTracker . Users can load a directory containing the JSON files (one file

per run) created by DMTracker to begin the performance analysis. Here, we discuss

the visualization of a single profile first, followed by that of the ensemble. DMVis

(see Figure 7.5) interface comprises of 5 views — summary view, timeline view, hardware

view, application view, and communication view.

Summary view (see Figure 7.5 A⃝) comprises of two visual glyphs — Utilization

glyph(see Figure 7.6 A⃝), Clock glyph(see Figure 7.6 B⃝) to summarize the collected

performance data from DMTracker .

Utilization glyph is introduced as a visual representation to effectively showcase

spikes in CPU/GPU usage, providing valuable insights into the performance behavior

of the application and enabling users to identify critical bottlenecks and performance

121

Utilization Glyph Clock Glyph

Arc

Sector

Tooltip

1

3

2

BA

Colormaps5

Play/Pause4

0.0

0.7

1.4

2.1

2.8

3.5

4.2

4.9

5.6

6.3

7.0

7.7

8.4

0 % 100 %100 %

Figure 7.6: (a) Utilization glyph visualizes the CPU/GPU visualization during the
execution timeline. (b) Summary glyph uses a “clock” metaphor to visualize the summary
of the data movement across different event tags produced by DMTracker .

irregularities. We visualize the CPU- and GPU-utilization for the execution timeline as

a vertical line graph, with CPU utilization on the left and GPU utilization on the right.

To ensure flexibility, users may also choose any two metrics collected by DMTracker to

encode the utilization glyph (refer Table 7.1).

Clock glyph presents a summary of the execution time based on the categorization

provided by DMTracker— namely CPU compute (in purple), GPU compute (in green),

CUDA runtime (in yellow), and Data movement (in red) (R4). To concisely represent

large performance profiles, we present a visual design inspired by a “clock” — we do

so because human brains are extremely well trained to interpret clocks instantly and

correctly. DMVis applies a clock metaphor by splitting the entire execution timeline

into 12 equal sectors. For each clock sector, DMVis calculates the contributions of the

event tags and projects them as bars with the height representing the runtime of the

122

event (see Figure 7.6 1⃝). If multiple event tags are within a given sector, then the bars

are stacked on top of each other. This facilitates the user to quickly identify sectors

in the timeline that overlap between compute and memory operations (e.g., see the

overlap at four’o clock). Users can use the hover interaction to display the sector-wise

breakdown using tooltips, which provides a textual breakdown of the runtime, data

movement, and the CPU/GPU occupancy (see Figure 7.6 2⃝). Inside the clock, we embed

an arc (see Figure 7.6 3⃝) to denote the current window and play/pause functionality

(see Figure 7.6 4⃝) to navigate the timeline. When the user clicks the play button, the

linked views update to summarize the performance of the current window. Finally, the

summary view also shows the colormaps for the tags (see Figure 7.6 5⃝).

Timeline view (see Figure 7.5 B⃝ C⃝) presents a detailed view of all the events and

metrics recorded by DMTracker as individual timelines. DMVis visualizes two kinds of

timelines — (1) event timeline and (2) metric timeline.

Event timeline visualizes the range-events using rectangles (width corresponds to the

duration of the event) and point-events with circles (with fixed radius). DMVis enables

the user to interact with the execution using horizontal scrolling to zoom and drag to the

regions of interest within the execution. When the window is adjusted, the HAC views

automatically update to summarize performance for the selected region. For larger event

timelines (with >1000 events), DMVis clusters the events based on context (i.e., using

the correlationId) to reduce the cognitive overhead of visually assessing a large number

of events at once. Double-clicking a clustered event reveals the comprising events.

Metric timeline visualizes the trace data collected for each metric tracked by

DMTracker . Since the number of metrics can be high depending on the analysis, we

enable vertical scrolling for the metric timeline. To facilitate identifying a metric of

interest, DMVis calculates the variance of the metric values in the current timeline window

and automatically displays the metrics sorted by variance (high variance first).

Hardware view (see Figure 7.5 D⃝) visualizes the topology collected from the

DMTracker ’s hardware interface (R2). DMVis encodes the estimated utilization for each

component (CPU, GPU, and caches) from the topology using a white-red colormap(with

123

white signifying zero usage to red signifying 100% usage). Users can also use the full-screen

mode button to view the topology with a better resolution. In the full-screen view, users

can gather further information (e.g., bandwidth, memory size) about each device in the

topology.

Application view (see Figure 7.5 E⃝) visualizes the CCT from the application code as

a node-link diagram (R2). The nodes in the tree are colored based on tag so the users

can relate the event timeline to their calling context. If a node is present in the current

window, DMVis enables a pulsating animation to show the user regions of code that are

active in the current window’s context. The runtime and data movement statistics are also

summarized as (a) per-timeline and (b) per-event using bar charts. These supplementary

views help filter less significance nodes belonging to the corresponding event categories.

Communication view (see Figure 7.5 F⃝) visualizes the communication involved between

the components (i.e., CPU-GPU and GPU-GPU) using a matrix visualization (R2). We

choose a matrix visualization since large-scale machines typically have several hundreds

of components and a node-link visualization will not be scalable. We color the matrix

based on the amount of data moved by the component using a white-red colormap.

Ensemble view (see Figure 7.7) enables comparison of multiple executions by organizing

each run’s summary using a grid-based visualization (R3). If the directory loaded into

DMVis has more than one JSON file, ensemble view serves to identify and select interesting

executions to delve deeper into. The grid-based visualization lets users immediately

visualize and compare the performance across different configurations and provides a

high degree of flexibility to scale to larger ensembles. By clicking on a specific execution,

users can explore it in detail. To facilitate the comparison of executions, the ensemble

view supports two key interactions: (1) sort and (2) compare.

Sort (refer Figure 7.7A⃝) interaction allows users to order the executions based on

their runtime. Executions with minimized runtime can be easily located at the top left

of the grid, providing valuable insights into the optimal configurations.

Compare (refer Figure 7.7 B⃝) interaction which scales the 12-hour clock to normalize

sector widths to match the run with maximum runtime, making it easier to identify

124

similarities between two executions. This normalized view helps users identify common

patterns or discrepancies in performance, making it easier to spot trends and anomalies.

Overall, the ensemble view empowers users to make informed decisions about their

application’s performance by offering a systematic and visual representation of multiple

executions. It enables them to pinpoint significant variations in execution behavior,

compare performance metrics, and identify factors that contribute to the application’s

efficiency or inefficiency under different settings. This functionality proves invaluable in

optimizing applications and making data-driven decisions to improve overall performance

and resource utilization.

7.5 Use Cases
DMV framework is first evaluated through case studies performed on CUDA-enabled

applications. All measurements were obtained from the compute nodes, each of which

has two CPUs (each comprising 20 processing units) and four 16 GB Nvidia V100 GPUs

with NvLink connecting the GPUs. The case studies were conducted by collaborating

with domain experts interested in identifying where and why data movements occur.

7.5.1 Case 1: GEMM on tall-and-skinny matrices

GEneral Matrix Multiplication (GEMM) is rich in data reuse, and improving the

performance for “tall-and-skinny” matrices requires careful data management because

it is memory-bound for both CPUs [204] and GPUs [205, 206]. For example, multiplying

m∗k and k ∗n matrices requires m∗n∗ (2k −1) floating point operations, so each element

is accessed either O(m) or O(n) times. While coding a basic regular GEMM kernel

(where m == n) is a fairly simple exercise, achieving high performance for irregular

matrices requires much more insight into how the data is handled underneath. For a

“tall-and-skinny” matrix (i.e., n << m, k), each element in the input matrices is used

O(n) times on average. Depending on the size of n, GEMM can be either compute-bound

(for large n) or memory-bound (for small n).

To perform the case study, we compare GEMM for matrices with m = 65536,

n = 65536, and k = 32 matrices under five different memory allocation schemes —

125

40

Sort (by runtime) A

CompareB

Figure 7.7: GEMM on tall-and-skinny matrics: We leverage the ensemble feature
to investigate and compare the time spent across various unified memory management
techniques. (A) Sorting the executions by total runtime, from maximum to minimum,
highlights that explicit memory transfer is the most time-consuming approach. (B) By
comparing the usage of Unified Virtual Memory (UVM) with memory advises and UVM
with prefetching, we observe minor differences in the time distribution across CUDA.

explicit transfer (EXP), unified virtual memory (UVM), UVM with memory advise

(UVM-MA)), and UVM with prefetching advise (UVM-Prefetch). We batch the

matrix A (m ∗ k) into multiple tiles (batch size=128) and perform a batched GEMM

on a single node using CUBLAS. By dividing the entire matrix computation into multiple

tiles, scalable performance improvement can be achieved. The study aims to determine

which allocation strategy for matrix A leads to a performant GEMM kernel using

DMV framework. To do this, we add CUPTI_ACTIVITY_KIND_UVM to track UVM-related

performance metrics (e.g., page faults and bank conflicts).

Using DMVis, we visualize the different allocation schemes using the ensemble view

(see Figure 7.7). Comparing EXP with UVM, we can notice that a total of 3 GB

data transfer occurs (see the 4’o clock and 11’o clock for EXP). However, there is no

explicit data transfer in UVM since CUDA places the data in shared memory space.

126

For UVM-MA, we enable memory advises and set the matrix A and B as “read”

mostly (using cudaMemAdviseSetReadMostly), while the matrix C is set to reside in

the preferred location (using cudaMemAdviseSetPreferredLocation). Although memory

advises improve the code quality by specifying the data locality, it does not provide any

performance improvement in this scenario (performance decreases from 6.3s to 6.4s). This

is mainly because memory advises are effective when both CPU and GPU are trying to

access the data during GEMM kernel execution, but in this case, only GPUs are executing

the matrix multiplication. Although UVM makes it easier for the developer, it incurs

an extra penalty in resolving page faults. To avoid page faults, we prefetch the matrices

A and B asynchronously for UVM-prefetch, which leads to reduced page faults and

improves performance by 6% (from 6.3s to 6.1s). Overall, using the “clock” metaphor

makes it easier to spot the regions of execution where the runtime is spent differently

across executions.

7.5.2 Case 2: GPT-2 model training with TorchScript

With Deep Learning (DL) applications constantly increasing in size and complexity,

runtime and/or data movement optimizations are critical in reducing the training and

inference time. As DL models become larger, they exceed the memory limit of modern

processors and require additional memory management techniques, such as checkpointing

and hybrid learning techniques, like data- or task-parallel. Because most DL applications

are developed using Python, incorporating efficient data management strategies can be

challenging (because of the global interpreter lock). Recently, PyTorch TorchScript 5

introduced just-in-time (JIT) execution through a process called tracing. Tracing enables

developers to extract computation graphs as an intermediate representation (IR) to

enable further optimizations (e.g., operator fusion). Once traced using torch.jit.trace,

PyTorch outputs a .pt file that contains the optimized computation graph, which can

be offloaded to the GPUs for parallel processing. Additionally, the JIT tracing allows

dispatching execution to either the host or device (using .to(device)) and allows

device pinning (explicitly transfer compute to device). In this case study, I was
5https://pytorch.org/docs/stable/jit.html

127

GPT-2 timeline

8.0 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0 128.0

6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0 96.0

8.0 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0 128.0

6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0 96.0

Optimized GPT-2 timeline

C

D

CommunicationBApplicationA

Figure 7.8: GPT-2 model training: Using the timeline view, I analyze the recurring
events involving CPU, GPU, and data movement during GPT-2 training. Subsequently,
I select specific regions in the timeline to establish correlations with the HAC domains
(refer to A and B). This analysis enables us to optimize the application code effectively,
leading to a reduction in repeated transfers between different contexts (as depicted in D).

interested in understanding the improvements with JIT tracing of publicly available

GPT-2 model [207], which has approximately 1.5 billion parameters and fitting the entire

model in a single GPU is not practically possible.

GPT-2 is a large transformer-based language model to predict the next word using

a prompt provided by the user. The model comprises several attention heads (Hatt), an

embedding module, and a layer-mapping module (stores all the hidden states). GPT-2

abstracts model parallelism by distributing the attention heads across the GPUs, which

can involve significant data movement while updating the model. Previous research has

also exposed that transformer models do not fully utilize the GPU, and data movement is

a key bottleneck in the training phase [102]. To track data movement with DMTracker , I

write python bindings to the “DMV object” and place instrumentation in the TorchScript

tracing module to record the start and end of CPU- and GPU-compute using the device

128

field in each tensor operation. Additionally tags were placed to mark the beginning and

end of each epoch (in this case study, we train for 10 epochs) and use four GPUs for

training with the following parameters (Hatt=12).

From the execution timeline, we notice that the DMTracker recorded 3728 events.

For this case study, we cluster the events based on data locality — CPU or GPU,

where the data resides — to reduce the number of events shown in the timeline view.

For each epoch, the JIT execution begins with JIT tracing (in purple), followed by the

execution of tensors on the GPU-compute (in green), and finally, there is data movement

to exchange the hyperparameters (in yellow). From the timeline view(see Figure 7.8(C)),

we notice this pattern until epoch-4; after that, there are a lot of exchanges between the

execution timelines (from 60s to 114s). From this, we can identify that data exchanges

(as highlighted by grey selection) are a key bottleneck.

To identify the root cause of the bottleneck, we use the HAC views by using a brush

operation to summarize the performance. From the application view (see Figure 7.8(A)),

we notice the function GPT2TrainLayerMapping::get_output_embeddings() with the

biggest node size in the CCT. From the communication view (see Figure 7.8(B)), we

can see each communication event was alternating between the GPU fetch the output

embeddings from the layer-mapping head (aka LMHead). To avoid this alternating pattern,

we cache the output embeddings from the LMHead and only update the embeddings if the

model changes the attention mask. After optimizing the training (see Figure 7.8(D)),

we can notice that this reduces the communication between the CPU-GPU and improves

runtime by 28% (with total training time of 98s for 10 epochs). The number of recorded

events has also reduced to 328 events. Overall, this case study demonstrates that DMVis

is able to identify communication patterns from the timeline view and relate them to the

HAC domains, and facilitate optimization strategies.

7.6 Overhead Evaluation
Evaluating overhead is essential when developing DMTracker because it helps gauge the

impact of the tracking and monitoring mechanisms on the application’s performance.

129

By carefully measuring and analyzing the overhead introduced by DMTracker , we

can ensure that its data collection and abstraction do not significantly affect the

application’s execution time or resource utilization. This assessment is vital to maintain

the tool’s minimally invasive nature, enabling developers to trust the accuracy of the

captured performance metrics and effectively optimize their codes for better efficiency

and performance.

To quantify the cost of using DMV , we measure the cost of executing different

applications with/without using DMTracker (see Table 7.2). We conducted our

analysis on popular CUDA kernels from the Rodinia benchmark [208] (i.e., streamcluster,

backprop, pathfinder, and srad) and GEMM. We selected kernels and problem sizes

that produce modest-to-large memory footprints and involve significant memory-copy,

representative of modern workloads for current heterogeneous architectures. We ran each

kernel using both single and multi-GPU environments, collected the runtime overheads

and averaged the costs over 100 iterations. To compare against a popular baseline, we

profiled the application using Nvidia’s open-source profiling tool, nsys. Finally, we varied

the number of metrics recorded during experiments (25 vs 100 metrics) to evaluate the

impact of tracing. For the multi-GPU experiments, we employ data parallelism where the

input data is batched across the GPUs.

Comparison with nsys: We notice that applications have an overhead of 10-25%

when using nsys tool. In comparison, DMTracker had a reduced overhead of 3-8% for

25 metrics. This is primarily attributed to DMTracker ’s requirement to summarize the

execution timeline across HAC domains, while nsys enables tracing at finer granularity

(i.e., with a higher sampling rate). However, this trade-off between overhead and trace

granularity may be acceptable for many use cases, and the reduced overhead of DMTracker

makes it a promising tool for profiling and optimizing CUDA applications.

DMTracker with 25 and 100 metrics: When we increase the number of metrics,

we observe that the overhead doubles from 3-8% to 8-15% across all applications. This

is primarily because of the added tracing of GPU metrics. However, we also notice an

increased variability across applications. For example, srad and streamcluster have the

130

Application GPUs runtime w-nsys O-nsys w-dmv(25) O-dmv(25) w-dmv(100) O-dmv(100)
Backprop 1 0.641 0.712 11.1 0.661 3.1 0.680 6.0

4 0.41 0.487 18.7 0.441 7.5 0.454 10.7
PathFinder 1 0.63 0.703 11.6 0.653 3.4 0.684 7.8

4 0.542 0.612 12.9 0.579 6.8 0.593 9.4
Srad 1 3.154 3.462 9.7 3.35 6.1 3.52 11.6

4 0.737 0.871 18.1 0.79 8.2 0.842 14.2
Streamcluster 1 10.83 12.73 17.5 11.44 5.6 11.82 11.9

4 3.92 4.9 25.1 4.23 7.4 4.45 13.5
GEMM 1 24.46 29.05 18.7 25.74 5.2 26.94 8.5

4 6.48 7.67 18.3 6.83 5.4 7.23 11.5

Table 7.2: Performance overhead with different applications. All runtimes are presented
in seconds (s). The overhead (O) is calculated by ((w DMV - w/0 DMV)/ (w/o DMV))
× 100).

highest overhead since they have a low computation-to-communication ratio and therefore

have increased data movement.

Single- vs multi-GPU profiling: In our experiments, we observe that the

overhead consistently (4.4% for backprop, 3.4% for pathfinder, 3.6% for srad, 1.6%

for streamcluster, 3.0% for GEMM) increases for multi-GPU executions across all

applications. This is because, in multi-GPU executions, DMTracker needs to synchronize

the worker threads across the four GPUs, which introduces additional communication and

synchronization overhead. Moreover, the degree of overhead increase varies depending on

the specific application and input data size, but in general, multi-GPU executions seem

to experience higher overhead than single-GPU executions even with nsys.

7.7 Summary
In this chapter, I presented Data Movement Visualized (DMV), a framework that

tracks data movement across heterogeneous interfaces and analyzes its impact on

performance trade-offs. The framework includes two tools: DMTracker, a unified data

collection interface, and DMVis, a visual analytic interface. DMTracker facilitates

performance data collection across CPU-GPU and GPU-GPU interfaces, while DMVis

offers interactive performance analysis across the HAC domains. The significance of

DMV lies in its ability to bridge performance analysis and data movement understanding,

providing developers with valuable insights to optimize memory usage and improve overall

131

performance. Through case studies on the GEMM kernel and GPT-2 model training,

DMV demonstrated effective performance optimizations achieved through careful data

management, resulting in substantial runtime reductions. Beyond specific case studies,

DMV’s impact extends to various applications and domains, reducing overhead in

data movement summarization by at least 20%. It opens up opportunities for further

research and development, including support for additional heterogeneous architectures

and interface types. Future improvements in DMVis will enhance usability and efficiency.

In conclusion, DMV offers a valuable approach to understand data movement’s effects on

performance, with the potential to revolutionize performance analysis and optimization.

With its insights, reduced overhead, and memory management benefits, DMV can advance

high-performance computing and data-intensive applications.

132

Chapter 8
Conclusion

This dissertation tackles the difficulties associated with analyzing and establishing

connections among performance data gathered in three crucial domains of

high-performance computing (HPC): — Hardware, Application, Communciation. The

research culminates in the development of visual analytic frameworks to significantly

enhance the capabilities of HPC experts in comprehending and optimizing the

performance of resource-intensive supercomputing applications.

First, I develop CallFlow, an interactive visual analytic tool that utilizes semantic

operations to explore the sampled profiles representing the caller-callee relationships

from the application domain. Modern scientific applications are built on top of rich

frameworks and libraries that add layers of abstraction, leading to large-sized Calling

Context Trees (CCT). Multiple layers of abstraction make attribution of performance

bottlenecks associate with a CCT challenging. Additionally, domain experts conduct a

variety of test configurations to identify optimal performance, resulting in an ensemble

of sampled profiles. To address the attribution challenge, CallFlow introduces a

new representation called “super graphs”, that can aggregate and split a CCT at

user-controllable levels of abstraction to gain insights into expensive call sites. To scale

the analysis for an ensemble of CCTs, CallFlow constructs “ensemble super graphs”

that aggregate call paths across multiple CCTs and encode the differences between the

CCTs to study performance variability.

Next, I design a visual analytic framework to support performance analysis in

the communication domain by recording event traces at different time points of code

execution. Grouping computing nodes based on the communication behaviors can

reveal bottlenecks while studying different network topologies. However, a variety

133

of performance metrics require correlation for detecting bottlenecks from large-scale

applications. To study communication behaviors, I integrate a analysis workflow

to study multivariate performance metrics with coordinated communication views to

reveal temporal behaviors using clustering algorithms and detect change points using

time-series analysis. Finally, to reduce the high computational cost of analyzing large-scale

applications, I extend the framework to support real-time analysis and monitor streaming

data by adopting an in situ analysis workflow. Online algorithms provide scalable analysis

by handling large data velocities, and progressive visualization techniques enable active

user-engagement, perception, comprehension of performance behaviors.

Finally, I develop Data Movement Visualized (DMV) — a framework to track

data movement across heterogeneous interfaces and understand their implication in the

hardware domain. Handling data movement has become vital with the introduction of

GPUs and FPGAs as compute-intensive operations demand expensive data movement

across devices. To achieve good scalability and performance, one must minimize

unnecessary data movement operations and data transfer volume between devices. DMV

provides an unified data collection interface (DMTracker) for tracking the data movement

across CPU–GPU and GPU–GPU interfaces and integrates a visual analytic interface

(DMVis) to provide a holistic exploration of data movement across the HAC domains.

I expose critical data access patterns and anti-patterns from the CPU-GPU interface

by investigating the GEMM kernel under different memory allocation strategies and

the training of the GPT-2 model. DMV helps identify performance optimizations

through careful data management for code developers to better understand the resource

utilization and derive strategies to improve performance with upcoming heterogeneous

supercomputers.

As the future of performance analysis in HPC unfolds, developers will face the

challenge of adapting their applications to leverage the latest hardware upgrades

in supercomputers. Moreover, evolving software frameworks and libraries will add

complexity, rendering manual performance analysis impractical. The transition to

exascale computing will further amplify the volume and intricacy of performance

134

data, necessitating advanced visual analytic frameworks that will prove crucial in

comprehending intricate performance patterns across the HAC domains. Successful

progress in this will hinge upon collaborative efforts among computer scientists, domain

experts, and tool developers to design sophisticated solutions capable of managing data

scale and empowering users to effectively optimize HPC applications in the exascale era

and beyond.

135

Bibliography

[1] G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox,
F. Driouech, S. Emori, V. Eyring et al., “Evaluation of climate models,” in Climate
change: the physical science basis. Cambridge University Press, 2014, pp. 741–866.

[2] Y. Cui, E. Poyraz, K. B. Olsen, J. Zhou, K. Withers, S. Callaghan, J. Larkin,
C. Guest, D. Choi, A. Chourasia et al., “Physics-based seismic hazard analysis
on petascale heterogeneous supercomputers,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2013, pp. 1–12.

[3] D. Günther, R. A. Boto, J. Contreras-Garcia, J.-P. Piquemal, and J. Tierny,
“Characterizing molecular interactions in chemical systems,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2476–2485, 2014.

[4] M. Smith and J. C. Smith, “Repurposing therapeutics for COVID-19:
Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike
protein-human ACE2 interface,” ChemRxiv, 2020.

[5] “Top 500 supercomputer list,” https://www.top500.org/lists/top500/2020/11/,
accessed: 01/2021.

[6] M. Schulz, J. A. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci, “Interpreting
performance data across intuitive domains,” in International Conference on Parallel
Processing. IEEE, 2011, pp. 206–215.

[7] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent, “HPCToolkit: Tools for performance analysis of optimized parallel
programs,” Concurrency and Computation: Practice and Experience, vol. 22, no. 6,
pp. 685–701, 2010.

[8] S. S. Shende and A. D. Malony, “The TAU parallel performance system,” The
International Journal of High Performance Computing Applications, vol. 20, no. 2,
pp. 287–311, 2006.

[9] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann,
and P.-T. Bremer, “State of the art of performance visualization.” in EuroVis
(STARs), 2014.

[10] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Müller,
and W. E. Nagel, “The Vampir performance analysis tool-set,” in Tools for High
Performance Computing. Springer, 2008, pp. 139–155.

[11] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez, M. LeGendre,
O. Pearce, and M. Schulz, “Caliper: Performance introspection for HPC software
stacks,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2016, p. 47.

136

https://www.top500.org/lists/top500/2020/11/

[12] G. T. Chetsa, L. Lefèvre, J.-M. Pierson, P. Stolf, and G. Da Costa, “Exploiting
performance counters to predict and improve energy performance of HPC systems,”
Future Generation Computer Systems, vol. 36, pp. 287–298, 2014.

[13] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance counters
with flow and context sensitive profiling,” ACM Sigplan Notices, vol. 32, no. 5, pp.
85–96, 1997.

[14] P. Moret, W. Binder, A. Villazón, D. Ansaloni, and A. Heydarnoori, “Visualizing
and exploring profiles with calling context ring charts,” Software: Practice and
Experience, vol. 40, no. 9, pp. 825–847, 2010.

[15] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “GPROF: A call graph execution
profiler,” in ACM Sigplan Notices, vol. 17, no. 6. ACM, 1982, pp. 120–126.

[16] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr, “The
scalasca performance toolset architecture,” Concurrency and computation: Practice
and experience, vol. 22, no. 6, pp. 702–719, 2010.

[17] B. Mohr and F. Wolf, “KOJAK – A tool set for automatic performance analysis of
parallel programs,” in Euro-Par 2003 Parallel Processing, 2003, pp. 1301–1304.

[18] J. Abello, F. Van Ham, and N. Krishnan, “ASK-GraphView: A large scale graph
visualization system,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 669–676, 2006.

[19] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization and navigation
in information visualization: A survey,” IEEE Transactions on Visualization and
Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[20] Q. V. Nguyen and M. L. Huang, “A space-optimized tree visualization,” in IEEE
Symposium on Information Visualization, 2002, pp. 85–92.

[21] C. Plaisant, J. Grosjean, and B. B. Bederson, “Spacetree: Supporting exploration
in large node link tree, design evolution and empirical evaluation,” in Proceedings
of the IEEE Symposium on Information Visualization, 2002, pp. 57–64.

[22] T. Munzner and P. Burchard, “Visualizing the structure of the world wide web
in 3D hyperbolic space,” in Proceedings of the First Symposium on Virtual Reality
Modeling Language. ACM, 1995, pp. 33–38.

[23] G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees: Animated 3D
visualizations of hierarchical information,” in Proceedings of the Conference on
Human Factors in Computing Systems, 1991, pp. 189–194.

[24] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC)., 2011.

137

[25] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability of graphs using
node-link and matrix-based representations: A controlled experiment and statistical
analysis,” Information Visualization, vol. 4, no. 2, pp. 114–135, 2005.

[26] H. Bhatia, N. Jain, A. Bhatele, Y. Livnat, J. Domke, V. Pascucci, and P.-T. Bremer,
“Interactive investigation of traffic congestion on fat-tree networks using TreeScope,”
Computer Graphics Forum, vol. 37, no. 3, pp. 561–572, 2018.

[27] L. DeRose, B. Homer, and D. Johnson, “Detecting application load imbalance on
high end massively parallel systems,” in Euro-Par Parallel Processing, 2007, pp.
150–159.

[28] H. T. Nguyen, L. Weit, A. Bhatele, T. Gamblin, D. Boehme, M. Schulz, K.-L. Ma,
and P.-T. Bremer, “VIPACT: A visualization interface for analyzing calling context
trees,” in Proceedings of the 3rd International Workshop on Visual Performance
Analysis. IEEE Press, 2016, pp. 25–28.

[29] J. Bohnet and J. Döllner, “Visual exploration of function call graphs for feature
location in complex software systems,” in Proceedings of the ACM symposium on
Software visualization, 2006.

[30] C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for the detection
of anomalous call stack trees in high performance computing application,” IEEE
Transactions on Visualization and Computer Graphics, 2019.

[31] M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis, and D. Weiskopf,
“Visualizing dynamic call graphs,” in Vision, Modeling and Visualization,
M. Goesele, T. Grosch, H. Theisel, K. Toennies, and B. Preim, Eds. The
Eurographics Association, 2012.

[32] B. Johnson, “TreeViz: Treemap visualization of hierarchically structured
information,” in Proceedings of the Conference on Human Factors in Computing
Systems, 1992, pp. 369–370.

[33] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,” in Proceedings of
the IEEE Symposium on Information Visualization, 2001, pp. 73–78.

[34] A. Adamoli and M. Hauswirth, “Trevis: A context tree visualization & analysis
framework and its use for classifying performance failure reports,” in Proceedings
of the 5th International Symposium on Software Visualization. ACM, 2010, pp.
73–82.

[35] G. Sander, “Graph layout through the VCG tool,” in Graph Drawing. Springer
Berlin Heidelberg, 1995, pp. 194–205.

[36] F. Balmas, “Displaying dependence graphs: a hierarchical approach,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 16, no. 3, pp.
151–185, 2004.

138

[37] S. Devkota and K. E. Isaacs, “CFGExplorer: Designing a visual control flow
analytics system around basic program analysis operations,” in Computer Graphics
Forum, vol. 37, no. 3, 2018, pp. 453–464.

[38] M. Schmidt, “The sankey diagram in energy and material flow management,” J.
Industrial Ecology, vol. 12, no. 1, pp. 82–94, 2008.

[39] K. Soundararajan, H. K. Ho, and B. Su, “Sankey diagram framework for energy
and exergy flows,” Applied Energy, vol. 136, pp. 1035–1042, 2014.

[40] H. Alemasoom, F. Samavati, J. Brosz, and D. Layzell, “Energyviz: An interactive
system for visualization of energy systems,” The Visual Computer, vol. 32, pp.
403–413, 2016.

[41] M. Ogawa, K.-L. Ma, C. Bird, P. Devanbu, and A. Gourley, “Visualizing social
interaction in open source software projects,” in 6th International Asia-Pacific
Symposium on Visualization. IEEE, 2007, pp. 25–32.

[42] K. Wongsuphasawat and D. Gotz, “Outflow: Visualizing patient flow by symptoms
and outcome,” in IEEE VisWeek Workshop on Visual Analytics in Healthcare, 2011,
pp. 25–28.

[43] C.-F. Wang, J. Li, K.-L. Ma, C.-W. Huang, and Y.-C. Li, “A visual analysis
approach to cohort study of electronic patient records,” in IEEE International
Conference on Bioinformatics and Biomedicine, 2014, pp. 521–528.

[44] J. Zhao, F. Chevalier, C. Collins, and R. Balakrishnan, “Facilitating discourse
analysis with interactive visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2639–2648, 2012.

[45] H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann, “A design space of
visualization tasks,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 12, pp. 2366–2375, 2013.

[46] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou, “TreeJuxtaposer:
Scalable tree comparison using Focus+ Context with guaranteed visibility,” in ACM
Transactions on Graphics, vol. 22, no. 3. ACM, 2003, pp. 453–462.

[47] M. Meyer, T. Munzner, and H. Pfister, “MizBee: A multiscale synteny browser,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
897–904, 2009.

[48] A. Telea and D. Auber, “Code flows: Visualizing structural evolution of source
code,” in Computer Graphics Forum, vol. 27, no. 3. Wiley Online Library, 2008,
pp. 831–838.

[49] M. Graham and J. Kennedy, “A survey of multiple tree visualisation,” Information
Visualization, vol. 9, no. 4, pp. 235–252, 2010.

139

[50] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C. Roberts,
“Visual comparison for information visualization,” Information Visualization,
vol. 10, no. 4, pp. 289–309, 2011.

[51] D. Holten and J. J. Van Wijk, “Visual comparison of hierarchically organized data,”
in Computer Graphics Forum, vol. 27, no. 3. Wiley Online Library, 2008, pp.
759–766.

[52] M. M. Malik, C. Heinzl, and M. E. Groeller, “Comparative visualization for
parameter studies of dataset series,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, no. 5, pp. 829–840, 2010.

[53] N. Amenta and J. Klingner, “Case study: Visualizing sets of evolutionary trees,” in
Symposium on Information Visualization. IEEE, 2002, pp. 71–74.

[54] J. Y. Hong, J. D’Andries, M. Richman, and M. Westfall, “Zoomology: comparing
two large hierarchical trees,” Proceedings of the IEEE InfoVis Poster Compendium,
pp. 120–121, 2003.

[55] S. Bremm, T. von Landesberger, M. Heß, T. Schreck, P. Weil, and K. Hamacherk,
“Interactive visual comparison of multiple trees,” in Conference on Visual Analytic
Science and Technology. IEEE, 2011, pp. 31–40.

[56] S. Fu, H. Dong, W. Cui, J. Zhao, and H. Qu, “How do ancestral traits shape
family trees over generations?” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 205–214, 2017.

[57] Z. Liu, S. H. Zhan, and T. Munzner, “Aggregated dendrograms for visual
comparison between many phylogenetic trees,” IEEE transactions on visualization
and computer graphics, vol. 26, no. 9, pp. 2732–2747, 2019.

[58] G. Li, Y. Zhang, Y. Dong, J. Liang, J. Zhang, J. Wang, M. J. McGuffin,
and X. Yuan, “Barcodetree: Scalable comparison of multiple hierarchies,” IEEE
transactions on visualization and computer graphics, vol. 26, no. 1, pp. 1022–1032,
2019.

[59] Z. Vosough, D. Kammer, M. Keck, and R. Groh, “Visualization approaches for
understanding uncertainty in flow diagrams,” Journal of Computer Languages,
vol. 52, pp. 44–54, 2019.

[60] K. Williams, A. Bigelow, and K. Isaacs, “Visualizing a moving target: A design
study on task parallel programs in the presence of evolving data and concerns,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp.
1118–1128, 2019.

[61] K. Andrews, M. Wohlfahrt, and G. Wurzinger, “Visual graph comparison,” in
Internations Conference in Information Visualization. IEEE, 2009, pp. 62–67.

140

[62] J. Schmidt, “Scalable comparative visualization - visual analysis of local features in
different dataset ensembles,” Ph.D. dissertation, TU Delft, 2016.

[63] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard,” Parallel computing,
vol. 22, no. 6, pp. 789–828, 1996.

[64] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. 100, no. 10, pp.
892–901, 1985.

[65] F. Petrini and M. Vanneschi, “k-ary n-trees: High performance networks for
massively parallel architectures,” in Proceedings of the 11th International Parallel
Processing Symposium. IEEE, 1997, pp. 87–93.

[66] K. M. Iftekharuddin and M. A. Karim, “Butterfly interconnection network: design of
multiplier, flip-flop, and shift register,” Applied optics, vol. 33, no. 8, pp. 1457–1462,
1994.

[67] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable
dragonfly topology,” in Proceedings of the International Symposium on Computer
Architecture. IEEE, 2008, pp. 77–88.

[68] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa,
P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken et al., “Blue gene/l
torus interconnection network,” IBM Journal of Research and Development, vol. 49,
no. 2.3, pp. 265–276, 2005.

[69] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk, R. Thakur,
and J. L. Träff, “MPI on a million processors,” in European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer, 2009, pp.
20–30.

[70] B. Van Straalen, J. Shalf, T. Ligocki, N. Keen, and W.-S. Yang, “Scalability
challenges for massively parallel AMR applications,” in IEEE International
Symposium on Parallel & Distributed Processing. IEEE, 2009, pp. 1–12.

[71] K. Mohror and K. L. Karavanic, “Evaluating similarity-based trace reduction
techniques for scalable performance analysis,” in Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, 2009, pp. 1–12.

[72] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, and
B. Hamann, “Combing the communication hairball: Visualizing parallel execution
traces using logical time,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 12, pp. 2349–2358, 2014.

141

[73] T. Fujiwara, P. Malakar, K. Reda, V. Vishwanath, M. E. Papka, and K.-L. Ma,
“A visual analytics system for optimizing communications in massively parallel
applications,” in Proceedings of the IEEE Conference on Visual Analytics Science
and Technology, 2017, pp. 59–70.

[74] R. M. Fujimoto, “Parallel discrete event simulation,” Communications of the ACM,
vol. 33, no. 10, pp. 30–53, 1990.

[75] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-performance, low-memory,
modular time warp system,” Journal of Parallel and Distributed Computing, vol. 62,
no. 11, pp. 1648–1669, 2002.

[76] C. Ross, C. D. Carothers, M. Mubarak, P. Carns, R. Ross, J. K. Li,
and K.-L. Ma, “Visual data-analytics of large-scale parallel discrete-event
simulations,” in Proceedings of the International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems.
IEEE, 2016, pp. 87–97.

[77] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 7, no. 3, pp. 404–425, 1985.

[78] C. Sigovan, C. W. Muelder, and K.-L. Ma, “Visualizing large-scale parallel
communication traces using a particle animation technique,” Computer Graphics
Forum, vol. 32, no. 3pt2, pp. 141–150, 2013.

[79] C. Muelder, B. Zhu, W. Chen, H. Zhang, and K.-L. Ma, “Visual analysis of cloud
computing performance using behavioral lines,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 6, pp. 1694–1704, 2016.

[80] T. Fujiwara, J. K. Li, M. Mubarak, C. Ross, C. D. Carothers, R. B. Ross, and
K.-L. Ma, “A visual analytics system for optimizing the performance of large-scale
networks in supercomputing systems,” Visual Informatics, vol. 2, no. 1, pp. 98–110,
2018.

[81] A. Dasgupta, D. L. Arendt, L. R. Franklin, P. C. Wong, and K. A. Cook, “Human
factors in streaming data analysis: Challenges and opportunities for information
visualization,” Computer Graphics Forum, vol. 37, no. 1, pp. 254–272, 2018.

[82] M. Krstajic and D. A. Keim, “Visualization of streaming data: Observing change
and context in information visualization techniques,” in Proceedings of the IEEE
International Conference in Big Data, 2013, pp. 41–47.

[83] P. Xu, H. Mei, L. Ren, and W. Chen, “ViDX: Visual diagnostics of assembly line
performance in smart factories,” IEEE Transactions of Visualization and Computer
Graphics, vol. 23, no. 1, pp. 291–300, 2017.

142

[84] S. Cheng, K. Mueller, and W. Xu, “A framework to visualize temporal behavioral
relationships in streaming multivariate data,” in Proceedings of the New York
Scientific Data Summit. IEEE, 2016, pp. 1–10.

[85] K. Webga and A. Lu, “Discovery of rating fraud with real-time streaming visual
analytics,” in Proceedings of the IEEE VizSec, 2015, pp. 1–8.

[86] C. C. Aggarwal, “A survey of stream clustering algorithms,” in Data Clustering.
Chapman and Hall/CRC, 2013, pp. 231–258.

[87] C. Turkay, N. Pezzotti, C. Binnig, H. Strobelt, B. Hammer, D. A. Keim et al.,
“Progressive data science: Potential and challenges,” arXiv preprint:1812.08032,
2018.

[88] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit, “Opening
the black box: Strategies for increased user involvement in existing algorithm
implementations,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 12, pp. 1643–1652, 2014.

[89] C. D. Stolper, A. Perer, and D. Gotz, “Progressive visual analytics: User-driven
visual exploration of in-progress analytics,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 12, pp. 1653–1662, 2014.

[90] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser, “Designing progressive
and interactive analytics processes for high-dimensional data analysis,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 131–140,
2017.

[91] H. Strange and R. Zwiggelaar, Open Problems in Spectral Dimensionality Reduction.
Springer, 2014.

[92] N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann, and
A. Vilanova, “Approximated and user steerable tSNE for progressive visual
analytics,” IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 7, pp. 1739–1752, 2017.

[93] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[94] T. Fujiwara, J.-K. Chou, S. Shilpika, P. Xu, L. Ren, and K.-L. Ma, “An incremental
dimensionality reduction method for visualizing streaming multidimensional data,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp.
418–428, 2019.

[95] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust
visual tracking,” Int. Journal of Computer Vision, vol. 77, no. 1-3, pp. 125–141,
2008.

143

[96] T. Gysi, T. Grosser, and T. Hoefler, “Modesto: Data-centric analytic optimization
of complex stencil programs on heterogeneous architectures,” in Proceedings of the
29th ACM on International Conference on Supercomputing, 2015, pp. 177–186.

[97] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.
Chamberlain, R. Cledat, H. C. Edwards, H. Finkel et al., “Trends in data locality
abstractions for HPC systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 10, 2017.

[98] P. Cicotti, S. Oral, G. Kestor, R. Gioiosa, S. Strande, M. Taufer, J. H.
Rogers, H. Abbasi, J. Hill, and L. Carrington, “Data movement in data-intensive
high performance computing,” in Conquering Big Data with High Performance
Computation. Springer, 2016.

[99] M. E. Belviranli, F. Khorasani, L. N. Bhuyan, and R. Gupta, “CUMAS: Data
transfer aware multi-application scheduling for shared GPUs,” in Proceedings of the
International Conference on Supercomputing, 2016.

[100] T. Gysi, J. Bär, and T. Hoefler, “dCUDA: hardware supported overlap of
computation and communication,” in IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016.

[101] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful dataflow multigraphs: A data-centric model for performance portability
on heterogeneous architectures,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019, pp. 1–14.

[102] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data movement is all
you need: A case study on optimizing transformers,” Proceedings of the Machine
Learning and Systems, vol. 3, pp. 711–732, 2021.

[103] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” Journal of
Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014.

[104] C. Phuong, N. Saied, and C. Tanis, “Assessing kokkos performance on selected
architectures,” in Latin American High Performance Computing Conference.
Springer, 2019, pp. 170–184.

[105] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen,
O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland, “RAJA: Portable
performance for large-scale scientific applications,” in IEEE/ACM International
workshop on Performance, Portability and Productivity in HPC (p3hpc). IEEE,
2019, pp. 71–81.

[106] D. A. Beckingsale, M. J. Mcfadden, J. P. Dahm, R. Pankajakshan, and R. D.
Hornung, “Umpire: Application-focused management and coordination of complex

144

hierarchical memory,” IBM Journal of Research and Development, vol. 64, no. 3/4,
pp. 00–1, 2019.

[107] T. Allen and R. Ge, “In-depth analyses of unified virtual memory system for GPU
accelerated computing,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021.

[108] C. Shao, J. Guo, P. Wang, J. Wang, C. Li, and M. Guo, “Oversubscribing
GPU unified virtual memory: Implications and suggestions,” in Proceedings of the
ACM/SPEC on International Conference on Performance Engineering, 2022, pp.
67–75.

[109] S. Chien, I. Peng, and S. Markidis, “Performance evaluation of advanced features
in cuda unified memory,” in IEEE/ACM Workshop on Memory Centric High
Performance Computing (MCHPC). IEEE, 2019, pp. 50–57.

[110] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Performance, design,
and autotuning of batched gemm for GPUs,” in International Conference on High
Performance Computing, 2016.

[111] T. Allen and R. Ge, “Demystifying GPU UVM cost with deep runtime and workload
analysis,” in IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2021, pp. 141–150.

[112] Z. Jin and J. S. Vetter, “Evaluating unified memory performance in hip,” in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2022, pp. 562–568.

[113] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Rossbach,
and O. Mutlu, “Mosaic: a GPU memory manager with application-transparent
support for multiple page sizes,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017, pp. 136–150.

[114] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learning beyond the
GPU memory limit via smart swapping,” in Proceedings of the 25th International
Conference on Architecture Support for Programming Languages and Operating
Systems, 2020.

[115] H. Xu, P.-H. Lin, M. Emani, L. Hu, and C. Liao, “Xunified: A framework for guiding
optimal use of GPU unified memory,” IEEE Access, vol. 10, pp. 82 614–82 625, 2022.

[116] S. Go, H. Lee, J. Kim, J. Lee, M. K. Yoon, and W. W. Ro, “Early-adaptor:
An adaptive framework forproactive UVM memory management,” in IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2023, pp. 248–258.

145

[117] T. Mu, J. Tao, M. Schulz, and S. A. McKee, “Interactive locality optimization
on NUMA architectures,” in Proceedings of the ACM symposium on Software
visualization, 2003, pp. 133–ff.

[118] A. Giménez, T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P.-T. Bremer,
and B. Hamann, “Memaxes: Visualization and analytics for characterizing
complex memory performance behaviors,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, no. 7, pp. 2180–2193, 2017.

[119] A. F. Blanco, A. Bergel, and J. P. S. Alcocer, “Software visualizations to analyze
memory consumption: A literature review,” ACM Computing Surveys (CSUR),
vol. 55, no. 1, pp. 1–34, 2022.

[120] C. Sigovan, C. Muelder, K.-L. Ma, J. Cope, K. Iskra, and R. Ross, “A visual network
analysis method for large-scale parallel I/O systems,” in IEEE 27th International
Symposium on Parallel and Distributed Processing. IEEE, 2013, pp. 308–319.

[121] A. G. Landge, J. A. Levine, A. Bhatele, K. E. Isaacs, T. Gamblin, M. Schulz,
S. H. Langer, P.-T. Bremer, and V. Pascucci, “Visualizing network traffic to
understand the performance of massively parallel simulations,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2467–2476, 2012.

[122] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, and S. Z. Guyer,
“Heapviz: interactive heap visualization for program understanding and debugging,”
in Proceedings of the 5th International Symposium on Software Visualization, 2010,
pp. 53–62.

[123] B. Quaing, J. Tao, and W. Karl, “Yaco: A user conducted visualization
tool for supporting cache optimization,” in High Performance Computing and
Communications (HPCC). Springer, 2005, pp. 694–703.

[124] S. Moreta and A. Telea, “Visualizing dynamic memory allocations,” in Proceedings
of the 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, 2007, pp. 31–38.

[125] P. Rosen, “A visual approach to investigating shared and global memory behavior
of cuda kernels,” in Computer Graphics Forum, vol. 32, no. 3pt2. Wiley Online
Library, 2013, pp. 161–170.

[126] A. Ariel, W. W. Fung, A. E. Turner, and T. M. Aamodt, “Visualizing
complex dynamics in many-core accelerator architectures,” in IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS). IEEE,
2010, pp. 164–174.

[127] NVIDIA, “NSYS: Nvidia nsight systems,” https://developer.nvidia.com/
nsight-systems.

146

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems

[128] AMD, “Rocprofiler: a low-level performance analysis api for profiling GPU compute
applications,” https://docs.amd.com/bundle/AMD-ROCProfiler-User-Guide-v5.1/
page/ROCProfiler_Profiling_API.html.

[129] P. Kousha, B. Ramesh, K. Kandadi Suresh, C.-H. Chu, A. Jain, N. Sarkauskas,
H. Subramoni, and D. K. Panda, “Designing a profiling and visualization tool for
scalable and in-depth analysis of high-performance GPU clusters,” in Proceedings
of the IEEE 26th International Conference on High Performance Computing, Data,
and Analytics (HiPC), 2019, pp. 93–102.

[130] B. Johnson and B. Shneiderman, “Tree-Maps: A space-filling approach to the
visualization of hierarchical information structures,” in Proceedings of the 2nd
Conference on Visualization. IEEE Computer Society Press, 1991, pp. 284–291.

[131] J. B. Kruskal and J. M. Landwehr, “Icicle plots: Better displays for hierarchical
clustering,” The American Statistician, vol. 37, no. 2, pp. 162–168, 1983.

[132] L. Adhianto, J. Mellor-Crummey, and N. R. Tallent, “Effectively presenting call path
profiles of application performance,” in 39th International Conference on Parallel
Processing Workshops, 2010, pp. 179–188.

[133] W. McKinney, “Data structures for statistical computing in python,” in Proceedings
of the 9th Python in Science Conf. (SciPy), 2010, pp. 51–56.

[134] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-performance
network programs,” IEEE Internet Computing, vol. 14, no. 6, pp. 80–83, 2010.

[135] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito, M. Gokhale,
R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke, S. Lloyd, J. McGraw, R. Neely,
D. Richards, M. Schulz, C. H. Still, F. Wang, and D. Wong, “LULESH programming
model and performance ports overview,” Lawrence Livermore National Laboratory,
Tech. Rep. LLNL-TR-608824, 2012.

[136] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance evaluation of
adaptive MPI,” in Proceedings of 11th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2006, pp. 12–21.

[137] W. H. Cabot, A. W. Cook, P. L. Miller, D. E. Laney, M. C. Miller, and H. R.
Childs, “Large-eddy simulation of rayleigh–taylor instability,” Physics of Fluids,
vol. 17, no. 9, p. 091106, 2005.

[138] H. T. P. Nguyen, A. Bhatele, N. Jain, S. Kesavan, H. Bhatia, T. Gamblin, K. Ma,
and P. Bremer, “Visualizing hierarchical performance profiles of parallel codes using
CallFlow,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–1,
2019.

[139] P. Riehmann, M. Hanfler, and B. Froehlich, “Interactive Sankey diagrams,” IEEE
Symposium on Information Visualization, pp. 233–240, 2005.

147

https://docs.amd.com/bundle/AMD-ROCProfiler-User-Guide-v5.1/page/ROCProfiler_Profiling_API.html
https://docs.amd.com/bundle/AMD-ROCProfiler-User-Guide-v5.1/page/ROCProfiler_Profiling_API.html

[140] M. Gleicher, “Considerations for visualizing comparison,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 413–423, 2017.

[141] O. Pearce, T. Gamblin, B. R. De Supinski, M. Schulz, and N. M. Amato,
“Quantifying the effectiveness of load balance algorithms,” in Proceedings of the
26th ACM International Conference on Supercomputing, 2012, pp. 185–194.

[142] N. J. Wright, S. Smallen, C. M. Olschanowsky, J. Hayes, and A. Snavely, “Measuring
and understanding variation in benchmark performance,” in DoD High Performance
Computing Modernization Program Users Group Conference. IEEE, 2009, pp.
438–443.

[143] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the overgrowth in
parallel profiles,” in Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser. SC ’19, Nov.
2019.

[144] W. McKinney et al., “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in Science Conference (SciPy), 2010, pp. 51–56.

[145] H. D. F. Group., “HDF5 Reference Manual September, National Center for
Supercomputing Application (NCSA), University of Illinois at Urbana-Champaign,”
https://www.hdfgroup.org/solutions/hdf5.

[146] B. Gregg, “The flame graph,” Communications of the ACM, vol. 59, no. 6, pp.
48–57, 2016.

[147] N. Henry, J.-D. Fekete, and M. J. McGuffin, “Nodetrix: a hybrid visualization
of social networks,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1302–1309, 2007.

[148] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, 1964.

[149] H. Bhatia, D. Hoang, N. Morrical, V. Pascucci, P.-T. Bremer, and P. Lindstrom,
“AMM: Adaptive multilinear meshes,” IEEE Transactions on Visualization and
Computer Graphics, vol. 28, no. 6, pp. 2350–2363, 2022.

[150] D. Hoang, P. Klacansky, H. Bhatia, P.-T. Bremer, P. Lindstrom, and V. Pascucci.,
“A study of the trade-off between reducing precision and reducing resolution for
data analysis and visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 1, pp. 1193–1203, 2019.

[151] I. Karlin, “Lulesh programming model and performance ports overview,” Lawrence
Livermore National Laboratory (LLNL), Livermore, CA (United States), Tech.
Rep., 2012.

148

https://www.hdfgroup.org/solutions/hdf5

[152] J. K. Li, T. Fujiwara, S. P. Kesavan, C. Ross, M. Mubarak, C. D. Carothers,
R. B. Ross, and K.-L. Ma, “A visual analytics framework for analyzing parallel and
distributed computing applications,” in IEEE Visualization in Data Science (VDS).
IEEE, 2019, pp. 1–9.

[153] T.-c. Fu, “A review on time series data mining,” Engineering Applications of
Artificial Intelligence, vol. 24, no. 1, pp. 164–181, 2011.

[154] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” Journal of the
Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100–108,
1979.

[155] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons, 2009, vol. 344.

[156] R. Xu and D. C. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on
Neural Networks, vol. 16, no. 3, p. 645, 2005.

[157] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series,” in Proceedings of the International Conference on Knowledge Discovery and
Data Mining. AAAI Press, 1994, pp. 359–370.

[158] P.-F. Marteau, “Time warp edit distance with stiffness adjustment for time series
matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 2, pp. 306–318, 2009.

[159] J. Serra and J. L. Arcos, “An empirical evaluation of similarity measures for time
series classification,” Knowledge-Based Systems, vol. 67, pp. 305–314, 2014.

[160] W. S. Torgerson, “Multidimensional scaling: I. theory and method,” Psychometrika,
vol. 17, no. 4, pp. 401–419, 1952.

[161] L. Van Der Maaten, “Accelerating t-SNE using tree-based algorithms,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245, 2014.

[162] C. Bryan, K.-L. Ma, and J. Woodring, “Temporal summary images: An approach to
narrative visualization via interactive annotation generation and placement,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 511–520,
2017.

[163] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change
point detection,” Knowledge and Information Systems, vol. 51, no. 2, pp. 339–367,
2017.

[164] N. A. James and D. S. Matteson, “ecp: An R package for nonparametric multiple
change point analysis of multivariate data,” Journal of Statistical Software, vol. 62,
no. 07, 2015.

149

[165] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling parallel
simulation of large-scale HPC network systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 1, pp. 87–100, 2017.

[166] Argonne Leadership Computing Facility, “Theta,” https://www.alcf.anl.gov/theta,
accessed: 2017-12-11.

[167] C. design at Lawrence Livermore National Laboratory, “Algebraic multigrid solver
(AMG),” https://computation.llnl.gov/projects/co-design/amg2013, accessed:
2019-3-8.

[168] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho, and
J. Gama, “Data stream clustering: A survey,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, p. 13, 2013.

[169] R. Bro, E. Acar, and T. G. Kolda, “Resolving the sign ambiguity in the singular
value decomposition,” Journal of Chemometrics, vol. 22, no. 2, pp. 135–140, 2008.

[170] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In-situ processing and visualization
for ultrascale simulations,” in Journal of Physics: Conference Series, vol. 78, no. 1.
IOP Publishing, 2007, p. 012043.

[171] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine learning for data
streams: with practical examples in MOA. MIT Press, 2018.

[172] E. W. Bethel, H. Childs, and C. Hansen, High performance visualization: Enabling
extreme-scale scientific insight. CRC Press, 2012.

[173] K. D. Moreland, D. Pugmire, D. Rogers, H. Childs, K.-L. Ma, and B. Geveci,
“Xvis: Visualization for the extreme-scale scientific-computation ecosystem:
Year-end report.” Office of Scientific and Technical Information U.S. Department
of Energy, Tech. Rep. DOE-UOREGON-0012380, 2019. [Online]. Available:
https://www.osti.gov/biblio/1547341

[174] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and C. Harrison,
“The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman,” in
Proceedings of the ISAV 2017, pp. 42–46.

[175] J. K. Li, M. Mubarak, R. B. Ross, C. D. Carothers, and K.-L. Ma, “Visual analytics
techniques for exploring the design space of large-scale high-radix networks,” in
Proceedings of the IEEE Cluster, 2017, pp. 193–203.

[176] S. Kesavan, H. Bhatia, A. Bhatele, S. Brink, O. Pearce, T. Gamblin, P.-T. Bremer,
and K.-L. Ma, “Scalable comparative visualization of ensembles of call graphs,”
IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 03, pp.
1691–1704, 2021.

150

https://www.alcf.anl.gov/theta
https://computation.llnl.gov/projects/co-design/amg2013
https://www.osti.gov/biblio/1547341

[177] S. Albers, “Online algorithms: a survey,” Mathematical Programming, vol. 97, no.
1-2, pp. 3–26, 2003.

[178] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thompson, “Time
dependent processing in a parallel pipeline architecture,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1376–1383, 2007.

[179] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A PCA-based change
detection framework for multidimensional data streams: Change detection in
multidimensional data streams,” in Proceedings of the ACM SIGKDD International
Conference in Knowledge Discovery and Data Mining, 2015, pp. 935–944.

[180] I. T. Jolliffe, Principal Component Analysis and Factor Analysis. Springer Series
in Statistics, 1986, pp. 115–128.

[181] D. H. Jeong, C. Ziemkiewicz, W. Ribarsky, R. Chang, and C. V. Center,
“Understanding principal component analysis using a visual analytics tool,”
Charlotte Visualization Center, UNC Charlotte, vol. 19, 2009.

[182] D. A. Bodenham and N. M. Adams, “Continuous monitoring for changepoints in
data streams using adaptive estimation,” Statistics and Computing, vol. 27, no. 5,
pp. 1257–1270, 2017.

[183] M. Carnein and H. Trautmann, “Optimizing data stream representation: An
extensive survey on stream clustering algorithms,” Business & Information Systems
Engineering, pp. 1–21, 2019.

[184] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the Conference in
World Wide Web. ACM, 2010, pp. 1177–1178.

[185] J. C. Gower, G. B. Dijksterhuis et al., Procrustes problems. Oxford University
Press on Demand, 2004, vol. 30.

[186] J. D. Hamilton, Time series analysis. Princeton University Press, 1994, vol. 2.

[187] D. A. Pierce and L. D. Haugh, “Causality in temporal systems: Characterization
and a survey,” Journal of Econometrics, vol. 5, no. 3, pp. 265–293, 1977.

[188] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns, “Modeling a million-node
dragonfly network using massively parallel discrete-event simulation,” in Proceedings
of the 2012 SC Companion. IEEE, pp. 366–376.

[189] D. W. Bauer Jr, C. D. Carothers, and A. Holder, “Scalable time warp on blue gene
supercomputers,” in Proceedings of the ACM/IEEE/SCS Workshop on Principles
of Advanced and Distributed Simulation, 2009, pp. 35–44.

[190] L. Eeckhout, “Is moore’s law slowing down? what’s next?” IEEE Micro, vol. 37,
no. 4, pp. 4–5, 2017.

151

[191] J. P. Dahm, D. F. Richards, A. Black, A. D. Bertsch, L. Grinberg, I. Karlin,
S. Kokkila-Schumacher, E. A. León, J. R. Neely, R. Pankajakshan et al., “Sierra
center of excellence: Lessons learned,” IBM Journal of Research and Development,
vol. 64, no. 3/4, pp. 2–1, 2019.

[192] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous computing
techniques,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–35, 2015.

[193] R. W. Wisniewski, X. Tian, P. Thierry, S. Sury, and J. Pennycook, “A holistic
systems approach to leveraging heterogeneity,” in 2021 IEEE/ACM Programming
Environments for Heterogeneous Computing (PEHC). IEEE, 2021, pp. 27–33.

[194] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Workload partitioning
for accelerating applications on heterogeneous platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 9, pp. 2766–2780, 2015.

[195] N. Dryden, N. Maruyama, T. Benson, T. Moon, M. Snir, and B. Van Essen,
“Improving strong-scaling of cnn training by exploiting finer-grained parallelism,” in
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2019, pp. 210–220.

[196] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,
“Gromacs: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers,” SoftwareX, vol. 1, pp. 19–25, 2015.

[197] P. Sinha, A. Guliani, R. Jain, B. Tran, M. D. Sinclair, and S. Venkataraman, “Not
all GPUs are created equal: characterizing variability in large-scale, accelerator-rich
systems,” in SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2022, pp. 01–15.

[198] Y. Ma, F. Rusu, K. Wu, and A. Sim, “Adaptive stochastic gradient descent
for deep learning on heterogeneous CPU+GPU architectures,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2021, pp. 6–15.

[199] J. R. Madsen, M. G. Awan, H. Brunie, J. Deslippe, R. Gayatri, L. Oliker,
Y. Wang, C. Yang, and S. Williams, “Timemory: modular performance analysis
for HPC,” in High Performance Computing: 35th International Conference, ISC
High Performance. Springer, 2020, pp. 434–452.

[200] Y. Sun, Y. Zhang, A. Mosallaei, M. D. Shah, C. Dunne, and D. Kaeli, “Daisen: a
framework for visualizing detailed gpu execution,” in Computer Graphics Forum,
vol. 40, no. 3. Wiley Online Library, 2021, pp. 239–250.

[201] J. Lai and A. Seznec, “Performance upper bound analysis and optimization
of SGEMM on fermi and kepler GPUs,” in Proceedings of the IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE,
2013, pp. 1–10.

152

[202] NVIDIA, “CUDA,” https://developer.nvidia.com/cuda-toolkit, 2022.

[203] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst, “hwloc: A generic framework for managing
hardware affinities in HPC applications,” in 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing. IEEE, 2010, pp. 180–186.

[204] F. G. Van Zee and R. A. Van De Geijn, “Blis: A framework for rapidly instantiating
blas functionality,” ACM Transactions on Mathematical Software (TOMS), vol. 41,
no. 3, pp. 1–33, 2015.

[205] D. Yan, W. Wang, and X. Chu, “Demystifying tensor cores to optimize half-precision
matrix multiply,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2020, pp. 634–643.

[206] T. Faingnaert, T. Besard, and B. De Sutter, “Flexible performant gemm kernels on
GPUs,” IEEE Transactions on Parallel and Distributed Systems, 2021.

[207] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[208] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2009, pp. 44–54.

153

https://developer.nvidia.com/cuda-toolkit

	Abstract
	Acknowledgments
	Introduction
	Performance Analysis and Visualization for HPC
	Challenges to Performance Visualization
	Attribution
	Scalability
	Correlation
	Velocity

	Content Overview

	Background
	Application domain - Sampled Profiles
	CCTs and Call Graphs
	Visualization of CCTs and Call Graphs
	Visual comparison of graphs and trees.
	Visual exploration of ensembles of Call Graphs.

	Communication domain - Network Event Traces
	Parallel Discrete Event Simulation (PDES)
	Visualization of Network Traces from PDES
	Streaming Data Visualization and Analytics

	Hardware domain - Performance metrics
	Data Movement in Heterogeneous Applications
	Data Movement and Memory Visualization

	Visualization of Sampled Profiles from the Application Domain
	Domain Problem Characterization
	Super Graphs and Graph operations
	Filtering of CCT Nodes
	Aggregation of CCT Nodes
	Splitting of CCT Nodes

	Visual Design of CallFlow
	Control Flow View
	Histogram View
	Correlation View
	User Interactions

	Case Studies
	Study 1: Load Balancing of LULESH
	Study 2: Scaling Performance of Miranda

	Potential Improvements
	Summary

	Ensemble Visualization of Sampled Profiles from Application Domain
	Need for studying call graph ensembles
	Domain Problem Characterization
	Requirements for Exploring Call Graph Ensembles
	Identification of Targets and Actions

	Ensemble SuperGraph
	Data Representation
	Construction of Ensemble GraphFrames

	Visual Analytic Design
	Ensemble-Sankey: The Ensemble SuperGraph View
	Supernode Hierarchy View
	Complementary Views
	Visual Analytic Modes

	Case Studies
	Study 1: Performance Variability due to Application Parameters
	Study 2: Performance Trends for a Weak Scaling Study

	Summary

	Visualization of Multivariate Network Traces from the Communication Domain
	Domain Problem Characterization
	Methods
	Time-Series Clustering
	Time-Series Dimensionality Reduction (DR)
	Time-Series Segmentation with Change-Point Detection
	Visualization of Communication Patterns

	Visual Analytic System
	Visualization for Analyzing Temporal Changes
	Visual Comparison of Multiple Performance Metrics
	Visual Comparison of Communication Patterns

	Case Studies
	Experiment Setup
	Analysis of PDES Performance
	Proximity and Communication Patterns
	Interactive Analysis

	Potential Improvements
	Summary

	Streaming Visualization of Network Traces from Communication Domain
	Characteristics of Streaming Performance Data
	Data Management Module
	Analysis Module
	Online Change Point Detection for Multiple Time-Series
	Progressive Time-Series Clustering
	Progressive Time-Series Dimensionality Reduction
	Progressive Causal Relation Analysis Methods
	Performance Evaluation

	Interactive Visualization Module
	Performance Behavior Views
	Behavior Similarity Views
	Metric Causality View
	Communication Behavior Views
	User Interactions across Views

	Case Studies
	Monitoring Key Changes in PDES Performance
	Tracing Performance Bottlenecks
	Analyzing Communication Patterns

	Summary

	DMV - A Unified Performance Analysis Framework for tracking Data Movement in the Hardware Domain
	Introduction
	Domain Problem Characterization
	DMTracker — A Unified Interface for Tracking Data Movement
	DMVis — Visual Analytic Interface
	Use Cases
	Case 1: GEMM on tall-and-skinny matrices
	Case 2: GPT-2 model training with TorchScript

	Overhead Evaluation
	Summary

	Conclusion

