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Defining and testing a granular continuum element
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Continuum mechanics relies on the fundamental
notion of a mesoscopic volume “element” in which
properties averaged over discrete particles obey deter-
ministic relationships. Recent work on granular ma-
terials suggests a continuum law may be inapplicable,
revealing inhomogeneities at the particle level, such
as force chains and slow cage breaking. Here, we ana-
lyze large-scale Discrete-Element Method (DEM) sim-
ulations of different granular flows and show that a
“granular element” can indeed be defined at the scale
of dynamical correlations, roughly three to five parti-
cle diameters. Its rheology is rather subtle, combining
liquid-like dependence on deformation rate and solid-
like dependence on strain. Our results confirm some
aspects of classical plasticity theory (e.g. coaxiality of
stress and deformation rate), while contradicting oth-
ers (i.e. incipient yield), and can guide the develop-
ment of more realistic continuum models.

Granular materials exhibit many interesting collec-
tive phenomena and have attracted growing interest
from the physics community [1–4], but many of the cen-
tral challenges remain unanswered. In particular, there
is still no general continuum model that can describe
the many phenomena of dense granular flow, such as
parabolic flow [5–7] transitioning to plug flow [8] in a
draining silo, wide shear zones [9] and localized shear
bands [10] in Couette cells, and Bagnold scaling for in-
clined plane flows [11, 12]. This is in contrast to the hy-
drodynamics of dilute granular materials and molecular
fluids, for which accurate continuum models can be sys-
tematically derived by averaging over particle collisions
in an idealized element [13].

Recent work has revealed microscopic features of
dense granular materials, which seem to defy a sim-
ple continuum description. These include: (i) complex,
fractal networks of force chains, which are inhomoge-
nous down to the particle level [14–18]; (ii) anomalous,
non-collisional particle dynamics with very slow cage
breaking [7, 19, 20]; (iii) proximity to the jamming tran-
sition, where geometrical packing constraints suppress
any dynamics [21, 22]; (iv) a lack of thermal equilibrium
in the conventional sense, since particles only move in
response to external forces, motivating new definitions

∗Electronic address: chr@math.berkeley.edu
†Electronic address: kenman@mit.edu
‡Electronic address: bazant@mit.edu

FIG. 1: A typical 2.5d × 8d × 2.5d cell of particles from a DEM
simulation, which forms the basis of the approximate granular
element considered in this paper.

of temperature [23–25]; and (v) a wide range of dynami-
cal response, from liquid-like to solid-like [2, 26, 27]. The
first four points cast serious doubt on the prospects of a
continuum law. The fifth means that the full stress ten-
sor must be described, and it may depend on strain, de-
formation rate, and material parameters that can evolve
during the process.

We thus arrive at the fundamental question: can a
“granular element” be meaningfully defined, and if so,
what is its rheology? The oldest definition corresponds
to the two-dimensional “Ideal Coulomb Material”, in
which the granular element behaves like a rigid solid,
which undergoes failure if the ratio of shear stress to
normal stress in any direction exceeds a critical value
µ, the Coulomb internal friction coefficient [28]. The
stress tensor is determined by mechanical equilibrium
along with the hypothesis of incipient yield, which as-
serts that the yield criterion is attained everywhere at
all times (in a “limit state”). In Mohr–Coulomb plastic-
ity, these conditions are assumed to hold even if bound-
ary conditions allow for plastic yielding. In that case,
the velocity follows from the assumption of coaxiality,
which asserts that the stress and deformation rate have
the same eigendirections. The resulting equations of
Mohr–Coulomb plasticity are used extensively in engi-
neering [28], but their general solution requires sophis-
ticated numerical techniques to capture shock-like dis-
continuities in stress and velocity, which arise even in
relatively simple geometries [29]. Besides the question-
able physical basis of such discontinuities, the model is
incapable of describing most of the flows listed above,
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even qualitatively.
Recently, a number of theories have been developed

to more precisely capture the underlying physics of a
granular element. The Shear Transformation Zone the-
ory developed by Langer et al. [30, 31] provides a mech-
anism for the element to retain a memory of its shear-
ing history, through an auxilliary continuum variable,
the STZ density. The partial fluidization model of Aran-
son and Tsimring [26, 27] introduces another auxilliary
“order parameter” for the granular element, which con-
trols the size of the viscous-like contribution to the stress
tensor. From extensive experimental studies of inclined-
plane flows, Jop et al. have proposed a 3D flow rule for
a granular element at yield [32]. Although each of these
models has had successes, none constitutes a complete
continuum description of granular flow, which can be
applied to more than one of the geometries listed above.

Our group has developed a different, multiscale the-
oretical framework [19, 20, 33, 34], which, although
also not complete, strongly suggests that the length of
a granular element is roughly three to five particle di-
ameters (in a dry sphere packing), as shown in Figure
1. This is the typical size of a spot of correlated motion
among a particle and its nearest neighbors [19], which
can be inferred from tracer-diffusion measurements in
silo drainage [7, 35]. Independently, the same length
scale also emerges from direct measurements of spatial
velocity correlations in drainage experiments [36] and
DEM simulations [20]. Using this scale in spot-based
drainage simulations also produces incredibly realistic
flowing random packings [20]. These ideas have also
been incorporated into a general theory, which can pre-
dict a variety of experimental flow profiles, again us-
ing the same length scale (and no other fitting param-
eters) [33]. Assuming stresses at incipient yield, the
coaxial flow rule is be replaced by a “stochastic flow
rule” in which spots of mobilized material perform ran-
dom walks along slip lines, biased by local stress imbal-
ances. The resulting theory is the first to predict both
gravity-driven flow in a silo and shear flow in a Cou-
ette cell [33, 34], so a major motivation for this work is
to directly test its basic assumptions.

By “element”, we refer to what is techincally known
as a Representative Volume Element (RVE) [37]. An
RVE is a mesoscale material volume that is minimal
in size but contains enough well-homogenized micro-
constituents, that a uniform stress state expressed at
the RVE boundaries causes a predictable homogeneous
boundary deformation and vice versa. Ideally, an RVE
is small compared to the macroscopic length of the flow,
allowing the material domain to deform as a network of
RVEs, each one experiencing close to uniform boundary
conditions. Unfortunately, granular flows can form nar-
row shear bands of width 10d to 15d. Within a band, an
RVE would be inhomogenously deformed, reducing the
multiplicity of the microstate within, and resulting in a
less predictable stress state. Thus, as we study flow re-
lationships at the 3d to 5d mesoscale, we accept that de-
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FIG. 2: Three computed material quantities (µ, left; packing
fraction φ, center; magnitude of deviatoric deformation rate
|D0|, right) in the tall silo drainage simulation, shown at t =
25τ . All the particles in each computational cell are colored
according to the computed material parameters for that cell. µ
and φ are dimensionless, while |D0| has units of τ−1.

terminism in any such stress/deformation law will have
its limitations.

In this paper, we present the results of several large-
scale DEM simulations carried out using the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) developed by Sandia National Laboratories
[38]. The contact model is based on that developed by
Cundall and Strack [39], and has been well-tested and
used in many other studies [11, 40–42]; details can be
found in the Methods section. In the simulations, par-
ticles of mass m and diameter d experience gravity g
in the negative z direction, which can be used to de-
fine a natural time unit τ =

√
d/g. For the simulations

considered here, we restrict attention to cases which
are periodic in the horizontal y direction with period
8d, although this still allows us to consider fully three-
dimensional stresses.

Since our overall aim is to extract information about
the inherent properties of a granular material, and not
its behavior in a particular situation, we consider a va-
riety of granular flows in different geometries. We con-
sider a tall silo with base at z = 0 and walls at x = ±25d,
and create an initial packing by pouring in 55000 parti-
cles from z = 160d at a constant rate of 123τ−1 to fill the
silo to an approximate height of z = 110d. We also con-
sider a wide silo, with walls at x ± 75d, z = 0, and pour
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FIG. 3: Three computed material quantities (µ, left; packing fraction φ, center; magnitude of deviatoric deformation rate |D0|,
right) in the wide silo for the drainage simulation at t = 40τ (top) and the pushing simulation at t = 25τ (bottom). The color
scheme used is the same as that in Figure 2.

in 100000 particles from z = 160d at a constant rate of
379τ−1. For both situations, the initial packing fraction
is approximately 63.5%.

For both packings, a drainage simulation is then car-
ried out, by opening a 6d-wide slit in the center of the
container base. In addition, a pushing simulation is car-
ried out in the wide silo, by freezing all particles whose
centers initially satisfy z < 7.5d, and then moving those
with x > 0 upwards at a constant speed of 0.2dτ−1. All
three of these simulations are quite different in form.
The tall silo drainage simulation is different from the
wide silo since the velocity profile is strongly affected
by the presence of the vertical walls. The pushing sim-
ulation corresponds to an active forcing of the material,
while the drainage simulations are generated by a pas-
sive response to gravity.

For each simulation, a snapshot of all particle posi-
tions is recorded at fixed intervals of 0.2τ . In addition to
this information, numerous material quantities are cal-
culated in a grid of cells of size 2.5d × 8d × 2.5d, at the
scale of the granular element. The local packing fraction
φ is computed in each cell of interest by evaluating the
precise fraction of the cuboidal cell volume which is oc-
cupied by the particles. The stress tensor in each cell is
calculated by looking at the forces between particles on
contact. If there are N particles in the cell, and particle
l has a total of Nl contacts, then an approximate stress
tensor can be defined as in [43] and simplified for spher-
ical grains to give

Tij =
1
V

N∑
l=1

Nl∑
k=1

∆x
(k,l)
i F

(k,l)
j

where F(k,l) is the force of the kth contact on particle l,
and ∆x(k,l) is the separation vector from the center of
particle l to its kth contact.

From this, we can define a pressure p = − 1
3 trT and a

deviatoric stress tensor T0 = T + 1
3p1. To calculate the

value of µ, we make use of the classical Mohr–Coulomb
definition, in which µ is the ratio of shear stress to nor-
mal stress acting on an internal plane of the material el-
ement maximized over all possible internal planes. Al-
gebraically, if T has eigenvalues λ1 < λ2 < λ3, then

µ =
λ3 − λ1

λ3 + λ1
.

To calculate the velocity gradient L in a cell, we con-
sider the least squares regression problem

v = Lx + v0.

Here x and v are all the instantaneous positions and ve-
locities of all particles within the cell. We find the av-
erage cell velocity v0 and the velocity gradient by min-
imizing the sum of squares of residuals. The deforma-
tion rate tensor is then defined as the symmetric part of
L, namely

D =
L + LT

2
.

From this, the deviatoric deformation rate tensor is de-
fined as D0 = D − 1

3 (trD)1. In most cases we expect
D0 ≈ D since the density of the granular material does
not fluctuate by a large amount, making the contribu-
tion to D from shearing larger than that from dilation.
For some of the analysis, we made use of a normalized
deformation rate |I0| = |D0|d

√
ρs/p where ρs is the par-

ticle density; this has been studied by others [32, 44, 45]
and is well-suited for use in rate sensitive granular con-
stitutive laws.

Figure 2 shows plots of µ, φ, and |D0| for the tall silo
drainage simulation. Near the orifice, there is a converg-
ing region of flow, that has roughly parabolic stream-
lines. Higher in the container, there is a transition to
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FIG. 4: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress and deformation rate tensors, calculated
instantaneously in 5d× 8d× 5d boxes with no time-averaging. The maximal stress eigenvector is shown in purple, with the other
two eigenvectors being shown in blue. In the regions where deformation is occurring, the maximal and minimal eigenvectors of
the deformation rate tensors are plotted in orange. In all cases, a high degree of alignment between the two tensors can be seen.
The top right panel shows a detail from the wide drainage simulation, while the bottom right panel shows the individual forces
between the particles in the same region. Additional plots are available in the Supplementary Information.

uniform flow, where the particles drop like a plug, be-
have like a solid, and experience little rearrangement, as
has been seen in similar situations [8]. The plot of |D0|
supports these results. High in the container, very little
rearrangement is seen, while there is a sharp transition
to high values when the packing must undergo defor-
mation to pass through the orifice.

It is clear from the plots that φ and |D0| are closely cor-
related. In the upper region, where particles are falling
like a plug, the packing fraction remains constant. In the
converging region, the packing fraction decreases, as the
particles must have more free space in order to geomet-
rically rearrange; this is studied quantitatively later.

Of the three plots, µ exhibits the largest fluctuations,
which we attribute to the fact that it is a ratio between
two computed quantities. However, large variations
over the range 0.2 to 0.6 can be clearly seen. This imme-
diately calls the Mohr–Coulomb incipient yield hypoth-
esis into question, which would predict that µ would be
constant everywhere. At first sight, the spatial differ-
ences in µ appear not directly correlated with the other
two. However, regions of higher µ exist at the inter-
face between the plug-like region, and the converging
flow region; this will be expanded on later. Figure 3

shows the same three plots for the wide drainage and
wide pushing simulations, and the same relationships
between the three quantities can be observed.

Figure 4 shows the directions and magnitudes of the
eigenvectors of the deviatoric stress tensor for three dif-
ferent situations. For these images, the stress tensor
was calculated on a 5d × 8d × 5d grid, by averaging the
computed stress tensor in 2 × 2 blocks of cells. Even
though they were computed using local, instantaneous
data, we can see that in all situations, the stress tensors
are smooth, and exhibit none of the shocks predicted by
limit-state plasticity theory. For regions undergoing de-
formation, the eigenvectors of D0 are also shown in Fig-
ure 4. We see that in all areas where there is appreciable
deformation rate, there is a strong alignment between
the two sets of eigenvectors. At this scale, the average
angular differential between the maximal eigenvectors
is approximately 12◦. If the plots are time-averaged over
a window of twenty frames, then the mean angular dif-
ferential drops to 6.7◦. Averaging over progressively
larger time windows also allows us to verify coaxiality
as far into the granular packing as one can reasonably
define a deformation rate tensor. Coaxiality is a con-
sequence of material isotropy at the scale of a contin-
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FIG. 5: A plot of packing fraction φ versus normalized defor-
mation rate |I0|. Each point corresponds to the computed ma-
terial quantities for a granular element from one of the three
DEM simulations.

uum element, so it appears that increasing the time win-
dow increases the extent to which the liquid-like mate-
rial flows like a true continuous fluid.

Using this data, we tested the codirectionality hypoth-
esis T0 ∝ D0. This assertion is stronger than just coax-
iality and has been presumed by some [32] while chal-
lenged by others [46]. Our data reveals reasonably large
variations from purely codirectional flow. It is possible
that double-shearing [47] may be a more appropriate hy-
pothesis, but more testing is necessary.

We now investigate quantitatively the connections
seen above, by viewing all the material cells from the
different simulations as an ensemble of approximate
“granular elements”, and seeking statistical relation-
ships between them. As a first example, consider Fig-
ure 5, showing a plot of |I0| against φ. Each point on
the graph corresponds to the instantaneous computed
values of a material element from one of the simula-
tions, during a period when steady flow has developed.
We see an approximate collapse of the points from the
three simulations, suggesting that the correlation we are
viewing is a property inherent to the granular material,
and not tied to any particular simulation configuration.
Also shown is a fit line |I0| = 0.123(ρ − 0.635), The lin-
ear relationship is consistent with the two-dimensional
results of da Cruz [44].

While instructive, the above approach will only allow
us to search for direct correlations between variables. In
reality, we expect that the material parameters are re-
lated in a more complicated way, and that differential
relationships may exist; there may also be internal state
variables which we are not measuring, that relate to an
element’s history of deformation and stress. Because of
these complications, it is natural to switch from an Eu-
lerian to Lagrangian approach: rather than viewing our
data set as an ensemble over fixed spatial positions, we
treat it as an ensemble of material elements which de-
form and move with the flow. Each granular element

corresponds to an approximate trace in the phase space
of material parameters over its history during the simu-
lation.

To correctly implement this, we must also take into
account that a granular cell may move during the sim-
ulation. We therefore initially introduced a number of
tracer positions on a 5d × 5d lattice. During the simu-
lation, the tracer positions are advected according the
average background velocity of the particles. For each
tracer, a history of a granular element is created by lin-
early interpolating all the material parameters from the
underlying raw simulation data on the 2.5d×2.5d lattice.

Figure 6(a) shows material tracers in a plot of µ ver-
sus φ for the three different simulations. The plot shows
us that, while µ is not directly correlated to φ, it plays
an important role in the failure of a granular element.
The majority of tracers start off on the right side of the
graph, at the initial packing fraction of 63.5%. Those
tracers corresponding to failing elements take a path in
an inverted U-shape, first attaining a value of µ of ap-
proximately 0.6 before starting to decrease in packing
fraction. A material element will dilate only if a critical
value of µ is first attained. This directly relates to the be-
havior seen in Figures 2 and 3, where it was noted that
areas of larger µ were located at the interface between
solid-like and liquid-like regions. Also visible in 6(a) is
a tendency for dilated elements which experience a low
value of µ to recompact slightly.

The Lagrangian approach also allows us to get a
clearer insight into shear dilation, the precise mechan-
ics of which remains an open study. Our results showed
correlations between packing fraction and deformation
rate, in agreement with other authors. However, there
are also numerous examples in the literature of “rate-
independent” plasticity [48–50] which propose that the
total strain is instrumental in determining the amount of
dilation. Since one would expect for a single snapshot,
the regions of high strain could roughly be correlated
with the regions of high deformation rate, we defer to a
quantitative analysis to attempt to resolve this paradox.

Strain is calculated from the simulation data by us-
ing the snapshots of all particle positions. At t = 0, a
5d× 8d× 5d box of particles is labeled, centered on each
material tracer. Let xi be the initial particle positions in
a particular box. A deformation gradient tensor F and
an overall translation x0 can then be found by solving
the least squares regression problem

x = Fxi + x0

where x are the current particle positions. We then com-
pute the polar decomposition F = RU where R is a
rotation matrix, and the stretch U is a symmetric posi-
tive definite matrix. Unlike infinitessimal theory, there
are many valid ways to define the strain tensor for large
deformations, though each way must be a function of
U which asymptotes under small stretches to the well-
known infinitessimal definition. Here, we choose the
Hencky strain measure E ≡ log U, which has the ad-
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FIG. 6: Lagrangian tracer plots of (a) µ versus packing frac-
tion φ and (b) packing fraction φ versus magnitude of Hencky
strain |E|. Each line corresponds to the trace in phase space of
a granular element.

ditional property that strains are additive in the absence
of rotation.

Figure 6(b) shows a plot of packing fraction versus
strain, with a sharp collapse of the trajectories across
several simulations. In order to be consistent with Fig-
ure 5, strain must be instrumental in the process by
which the material dilates, but deformation rate sets the
final packing fraction.

The above results show that it is possible to make
a direct connection between continuum theories and
particle-based simulations of dense granular flow at the
local level. Motivated by previous work on co-operative
particle motion, we have shown that it is possible to
define an approximate granular element at the level of
several particle diameters, and while material quantities
computed at this scale exhibit statistical variation, they
are clear enough to test the rheology of granular mate-
rials. Our simulations are consistent with some previ-
ous numerical studies [44, 46], but we have been able to

show these results locally and instantaneously in several
different three-dimensional geometries.

In the future we hope to directly evaluate the some
of the recently proposed theories for granular materi-
als [26, 30, 32]. These are frequently characterized by
having a microscopic continuum quantity, such as STZ
populations n± or partial fluidization parameter ρ, and
part of the challenge in investigating these parameters
will be to understand how they directly relate to the mi-
croscopic packing structure. Another promising avenue
to pursue is to better understand the role of total strain.
While strain appeared to play a crucial role in interpret-
ing our data, it is an undesirable quantity to use in an
eventual continuum theory of granular materials, since
it is always tied to an initial reference state. Examining
fully 3D situations may also provide useful clues, since
it may allow us greater control and variation in the stress
tensor. In this work, we only considered yielding as a
function of µ, which is defined in terms of the maximum
and minimum stress eigenvalue. A useful study would
be to check the role, if any, of the intermediate stress
eigenvalue, a question which is currently unresolved.

Methods

Particles are modeled as frictional, visco-elastic glass beads of diameter d and

mass m, and interact according to Hookean, history dependant contact forces.

If a particle an its neighbor have a separation vector r, and the two particles are

in contact, so that δ = d− |r| > 0, then they experience a force F = Fn + Ft,

where the normal and tangential components are given by

Fn =
(
knδn− γnvn

2

)
Ft =

(
−kt∆st −

γtvt

2

)
.

Here, n = r/ |r|. vn and vt are the normal and tangential components of the

relative surface velocity, and kn,t and γn,t are the elastic and viscoelastic con-

stants, respectively. ∆st is the elastic tangential displacement between spheres,

obtained by integrating tangential relative velocities during elastic deformation

for the lifetime of the contact, and is truncated as necessary to satisfy a local

Coulomb yield criterion |Ft| ≤ µ |Fn|. Particle–wall interactions are treated

identically, but the particle–wall friction coefficient is set independently. For

the current simulations we set kt = 2
7 kn, and choose kn = 2 × 105mg/d.

While this is significantly less than would be realistic for glass spheres, where

we expect kn ∼ 1010mg/d, such a spring constant would be prohibitively

computationally expensive, as the time step must have the form δt ∝ k−1/2
n

for collisions to be modeled effectively. Previous simulations have shown that

increasing kn does not significantly alter physical results [40]. We make use of a

time step of δt = 1.75×10−6s, and damping coefficients γn = γt = 50
p

g/d.
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Description

This document contains additional plots of the stress and deformation rate tensors to supplement those in
figure 4 of the paper. For each situation, the stress and deformation rate tensors are calculated in 5d×8d×5d
boxes, using instantaneous information, with no time-averaging. The maximal stress eigenvector is shown
purple, and the other two eigenvectors are shown in blue. The length of each component is proportional to
the square root of the magnitude of the deviatoric stress eigenvalue. In the regions where deformation is
occurring, the maximal and minimal eigenvectors of the deformation rate tensors are plotted in orange.

Figure S1: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress tensors for the
wide initial packing.
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Figure S2: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress and deforma-
tion rate tensors for the tall silo before drainage (left), and during drainage (right). During drainage, a high
degree of alignment between the two tensors can be seen.
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Figure S3: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress and deforma-
tion rate tensors for the wide granular packing during drainage (top), and during pushing (bottom). Again,
a high degree of alignment between the two tensors can be seen.
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Figure S4: Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress tensors after
the drainage (top) and pushing processes (bottom) were arrested. The stress lines closely resemble those in
the corresponding flowing states.
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