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Abstract

Wastewater reclamation and reuse have the potential to supplement water supplies, offering 

resiliency in times of drought and helping meet increased water demands associated with 

population growth. Non-potable water reuse represents the largest potential reuse market. Yet 

economic constraints for new water reuse infrastructure and safety concerns due to microbial 

water quality, and especially viral pathogen exposure, limit widespread implementation of 

water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled 

water would do much to instill greater confidence in the practice. This manuscript discusses 

advancements in monitoring and modeling of viral health risks in the context of water reuse. 

First, we describe the current wastewater reclamation processes and treatment technologies with 

an emphasis on virus removal. Second, we review technologies for the measurement of viruses, 

both culture- and molecular-based, along with their advantages and disadvantages. We introduce 

promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral 

risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry 
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for quantification of virus-like particles as new approaches to complement more traditional 

methods. Third, we describe modeling to assess health risks through quantitative microbial risk 

assessments (QMRAs), the most common strategy to couple data on virus concentrations with 

human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) 

to incorporate suites of data from wastewater treatment processes, water quality parameters, and 

viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside 

new complementary measures of viral quality, to achieve cost-effective strategies to assess risks 

associated with infectious human viruses in recycled water. Given the review, we conclude that 

technologies are ready for identifying and implementing viral surrogates for health risk reduction 

in the next decade. Incorporating modeling with monitoring data would likely result in more 

robust assessment of water reuse risk.
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1. Introduction

Municipal wastewater reclamation and reuse represents an important opportunity to meet 

human civilization’s ever-increasing water demands. Compared with wastewater reuse 

efforts in other water-stressed regions around the world, water reuse in the United States has 

significant room to grow in both quantity and diversity of applications. Currently, roughly 

7–8% of municipal wastewater in the U.S. is reclaimed for reuse (U.S.EPA 2012), which 

is significantly less than the percentages in Israel and Singapore, where 85% and 35% of 

wastewater is treated for various reuse purposes (Angelakis and Snyder 2015). Recognizing 

that traditional water supplies are no longer a certainty for many municipal water utilities 

across the U.S., a wave of investment has been initiated in water reuse. So far, 17 U.S. 

states have planned reuse projects in the pipeline, exceeding $18 billion in total investment 

(Anonymous 2017). California and Florida continue to lead reuse development, while 

planned water reuse projects in Hawai’i, Georgia, Wyoming, North Dakota, Pennsylvania, 

and Tennessee signal even more widespread adoption, according to Bluefield Research 

(Figure 1). Bluefield’s nationwide database of reuse projects ballooned to 763 projects in 

2017, in comparison to 135 projects just a few years prior (Anonymous 2017). The rapid 

development of reuse projects around the U.S. shows that water reuse is no longer just a 

drought mitigation strategy, but instead a viable option for utilities to boost water supplies.

Non-potable reuse is and will continue to be the dominant market share of reclaimed 

wastewater, while drinking water production from wastewater is a very small fraction 

of the planned water reuse share of the market (Lautze et al. 2014). Non-potable reuse 

applications vary by region; the main wastewater reuse applications include agricultural 

irrigation, landscape irrigation, industrial use, and non-potable urban uses including for 

in-door plumbing (Figure 1). Indirect potable reuse represents less than 2% of the market 

share of the global planned water reuse market (Warsinger et al. 2018). This trend is likely 

to continue due to the high cost of infrastructure investments, technology costs, and the low 

public acceptance to use recycled wastewater as a source of drinking water (Nkhoma et al. 
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2021). Standardized viral monitoring methods to assess treatment performance and risks of 

water reuse are critically needed for use in anticipated diverse non-potable reuse scenarios.

Treatment of wastewater for non-potable reuse varies significantly from region to region. 

There are no uniform engineering treatment processes or water quality standards at the 

national or international level. U.S. EPA guidelines for water reuse recommend secondary 

wastewater treatment followed by filtration and disinfection as technology processes for 

reclaiming municipal wastewater for urban uses, irrigation of food crops eaten raw, and 

recreational impoundments. The filtration process is no longer mandatory when the water 

is intended for use with restricted human access (U.S. EPA 2012), such as aesthetic 

impoundments, construction uses, processed food crops, industrial cooling, and other 

environmental uses where direct contact with humans is considered minimal.

Microbiological water quality guidelines for reuse water are based upon fecal coliform 

counts, with standards including no detectable fecal coliform/100 mL and less than 200 fecal 

coliforms/100 mL based on 7-day median value for unrestricted and restricted reuse types, 

respectively (U.S. EPA 2012). However, a complicating factor is that wastewater is known 

to include pathogenic viruses, and viruses may be impacted differently than fecal bacteria 

when treated. So, there is a need to investigate viral pathogens specifically to determine 

guidelines and regulatory criteria suitable to protect public health of those who may come in 

contact with reuse water (NAS 2012).

Viruses are ubiquitous and persistent in raw and treated wastewater as well as in receiving 

water bodies (Fumian et al. 2010). Human feces from infected persons are the main source 

of human viruses (Gerba et al. 2017, Symonds et al. 2009). A recent review captured the 

high abundance and diverse human viruses in human wastewater (Corpuz et al. 2020). Due 

to their small size (20~220 nm), low dose required for infection, and high resistance to 

wastewater treatment, including disinfection processes, viruses generally pose the highest 

health risk for water reuse (Gall et al. 2015, IAWPRC 1983).

To evaluate what is known and what is needed for wastewater reuse to gain acceptance 

from a microbiological safety perspective, this paper presents a review of the viral quality 

of reuse water. This review of viruses in reuse water differs from others in that it focuses on 

measurements of viral quality and describes conventional and new approaches for estimating 

risk. Other reviews focus on viruses in wastewater including their occurrence, methods of 

detection, potential to cause waterborne diseases (Zhang et al. 2016, Haramoto et al., 2018), 

technologies available to remove viruses from wastewater (Ibrahim et al. 2021), and the 

identification of viral surrogates (Farkas et al. 2020). Reviews on wastewater treatment for 

reuse focus on computing viral removal efficiencies based upon published datasets (Sano 

et al. 2016), and the reductions in viral loads to assure safety in the consumption of edible 

crops and drinking water (Gerba et al. 2017). This review differs in that it provides a review 

of water reclamation processes, human viruses and viral surrogates in wastewater, followed 

by traditional and innovative technologies for viral measurement and methods for assessing 

risk. The intended audience for this review is both practitioners (wastewater treatment plant 

operators) and researchers. As such the discussion at the end of this manuscript describes 
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advantages and disadvantages of the available technologies from a practical implementation 

viewpoint.

2. Water reclamation processes

As wastewater treatment is undergoing the transition to resource recovery, the previously 

known sewage or wastewater treatment facilities are now referred to as water resource 

recovery facilities (WRRFs). One of the main drivers to retrofit or upgrade facilities to 

WRRFs is water reclamation and reuse, which necessitates nutrient removal and filtration. 

In Figure 2 we illustrate the main unit operations responsible for water reclamation in most 

facilities in the United States. The treatment steps from left to right mirror the chronology 

of technology deployment, since a century ago most facilities were mere screening plants 

that later upgraded to settling and ultimately added biological treatment following the 

infrastructural wave of the 1970s (Metcalf and Eddy 2013). The treatment of wastewater 

can be accomplished with the goal of discharge to a water body (river, lake, ocean) by 

performing in series: screening and grit removal (in the head works); solids settling (in the 

primary clarifiers); biological oxidation of dissolved matter and non-settled solids (in the 

secondary process).

There exists a variety of secondary process options, with activated sludge having gained 

the majority of the treatment market worldwide since its invention by Ardern and Lockett 

(1914). The main benefits of this process are simplicity of design and operation, and the 

ability to reach advanced levels of nutrient removal. Other processes exist, each with their 

benefits and peculiarity. Of those illustrated in Figure 2, membrane bioreactors represent 

the most recent technological development, having been on the market for less than three 

decades. This process is particularly suitable for water reclamation, despite its elevated 

energy intensity, because it combines the two unit-operations of biological oxidation and 

filtration in one process.

A typical water reclamation standard used as reference worldwide is California’s Title 22, 

which specifies filtration in the tertiary step of treatment (Crittenden et al, 2012). One must 

remember that filtration is performed with microfiltration membranes (with pore diameters 

of the order of ~10−4 mm) and thus the barrier separation targets microorganisms but 

not viruses (Metcalf and Eddy 2013). Disinfection is always required downstream of the 

filtration step (Figure 2). When reclamation is pushed forward to the step of water reuse, 

further barrier separation is used (e.g., reverse osmosis). The energy associated with the 

last step can be substantial (Sobhani et al. 2012), yet much lower than the option of 

long-distance water importation (Tchobanoglous et al. 2011). However, the quality of the 

effluent water fits the criteria for many additional uses, including potable reuse.

Reduction of pathogen counts is one of the primary criteria used to assess reuse options 

and are quantified as log-reduction credits for each specific treatment process (WRRF 

2015, Prado et al. 2019). Log-reduction credits are evaluated through the removal of 

reference human pathogens or surrogates, but often underestimate the removal efficiency of 

microorganisms (Rockey et al. 2019). Norovirus and Cryptosporidium spp. were identified 

as important reference pathogens when comparing treatment process layouts due to the 
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challenge for some treatment processes to abate them adequately (Soller et al. 2017). 

Establishing a suite of viral surrogates for ongoing monitoring of water reuse will provide 

value in establishing appropriate credits for water reuse treatment processing.

3. Current technologies for monitoring viruses

3.1 Sample Concentration Methods

The quantities and types of human enteric viruses in wastewater vary widely and depend on 

myriads of factors that include geographic location, season, and source of wastewater. High 

concentrations of target viruses can be detected easily from small amounts of wastewater 

or sludge samples, while greater volumes are generally required for detection following 

treatment for water reuse due to lower viral concentrations. To improve detection, it is 

necessary to concentrate viruses in water samples.

Several parameters, such as water quality or sample volume, can readily alter the efficiency 

of virus concentration and downstream detection approaches. One significant parameter 

influencing the performance of concentration technologies is natural organic matter. Organic 

matter in environmental samples and chemicals added during concentration/elution can 

inhibit DNA/RNA extractions and subsequent molecular detection steps. Inhibition of 

molecular detection due to organic matter is especially important to consider given the 

frequent use of PCR-based techniques for detection (Rodriguez et al. 2009, Haramoto et al. 

2018).

Several different types of concentration methods are available (Table 1). A single method is 

rarely capable of effectively concentrating all viruses in a water sample. As a result, using 

the right concentration approach can enhance virus detection (Corpuz et al. 2020). Previous 

studies investigated a variety of primary and secondary virus concentration methods, 

including virus adsorption and elution (VIRADEL), electronegative filtration, electropositive 

filtration, size-exclusion, and coagulation/flocculation. Several previous reviews summarized 

and compared methods to concentrate viruses from water (Corpuz et al. 2020, Bofill-Mas et 

al. 2020, Cashdollar et al. 2013, Haramoto et al. 2018). Viral concentration methods that are 

useful for monitoring viruses in water reuse are highlighted below.

Electronegative membranes are commonly applied for virus concentration. Several studies 

demonstrated viral filtration using flat filter membranes with electronegative surface charge 

in electronegative filtration (Abdelzaher et al. 2008, Abdelzaher et al. 2009, Ahmed 

et al. 2020, APHA 2017, Bonilla et al. 2015). Haramoto et al. (2018) successfully 

concentrated viruses and protozoa from wastewater, river water, and groundwater samples 

using electronegative mixed cellulose ester membranes (pore size, 0.45 μm). More recently, 

electronegative membranes have also been used extensively for concentrating SARS-CoV-2 

from wastewater, in efforts to document COVID-19 disease transmission (Sharkey et 

al. 2021; Sherchan et al., 2020). The VIRADEL method has been used to concentrate 

viruses from a variety of water samples, including seawater, tap water, surface water, and 

wastewater (Bofill-Mas et al. 2020). Virus recovery can vary widely depending on the types 

of water and viruses investigated (Corpuz et al. 2020).
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Electropositive media and filters have also been applied in a variety of configurations for 

virus concentration. Examples include 1MDS filters (3M, Maplewood, MN USA) (Corpuz 

et al. 2020) and NanoCeram filters (Argonide, Sanford, USA). The NanoCeram filter media 

has been applied to concentrate viruses in drinking water (Cashdollar et al. 2013) and 

wastewater (Soto-Beltran et al. 2013, Corpuz et al. 2020) and are suggested as a less 

expensive alternative to the 1MDS filter (Li et al. 2010).

In addition to surface-charged filters, size-exclusion filtration methods allow for the 

simultaneous recovery of viruses and bacteria (Corpuz et al. 2020, Cashdollar et al. 

2013, Qiu et al. 2016, Farkas et al. 2018). Another common ultrafiltration technique 

uses specialized cartridges designed for separation through membrane filters during 

centrifugation (Ahmed et al. 2020, KWR Water Research Institute, 2020).

Among coagulation/flocculation methods, skimmed milk flocculation was shown to be a 

low-cost, one-step virus concentration approach. This procedure entails flocculating viruses 

with skimmed milk proteins in pre-acidified water samples (pH 3.5), stirring for 8 hours, 

and gravity sedimentation of the floc for another 8 hours. The sedimented floc is centrifuged 

to obtain a pellet, which is resuspended in a smaller volume of phosphate buffer after 

supernatant removal. Virus recoveries using this method have been established at roughly 

50% from 5 and 10-L samples of saltwater and river water (Corpuz et al. 2020, Cashdollar 

et al. 2013). The method is likely highly applicable to the treated wastewater for reuse. 

Another common coagulation/flocculation method utilizes polyethylene glycol precipitation 

(PEG) (Torii et al. 2021, Torii et al. 2022, Sangkham 2021). This method is similar to 

that of skimmed milk flocculation except that PEG and sodium chloride are added and the 

centrifugation and sedimentation steps are slightly different.

As these studies show, no single strategy for concentrating human enteric viruses in 

wastewater appears to be completely efficient (Gerba et al. 2017). Given the attention to 

SARS-CoV-2, the virus that causes COVID-19, in wastewater, a recent inter-laboratory 

method comparison study in recovery of SARS-CoV-2 from wastewater have been 

conducted (Sherchan et a., 2020). Three viral concentration methods (ultrafiltration, 

electronegative filtration, and PEG precipitation) did not present significant variability in 

the final outcomes (Pecson et al. 2020). Other strategies utilize settled solids and primary 

sludge to obtain highly sensitive detection of SARS-CoV-2 (Peccia et al. 2020, Graham et al, 

2020). These methods rely on virus sorption to solids, which is generally elevated for viruses 

with a lipophilic outer envelope (Ye et al. 2016), but are expected to be less applicable 

to concentration of viruses in (low-solids) finished water produced for reuse. Applications 

of automated virus concentration techniques, including magnetic bead-based virus capture 

(Karthikeyan et al. 2021, Safford et al. 2022), demonstrate the potential for high-throughput 

virus concentration.

Given the emergence of various new target viruses of interest (e.g., crAssphage, tomato 

mosaic virus), recovery efficiencies of different concentration approaches may need to 

be reevaluated (Bofill-Mas et al. 2020). The influence of viral shape, surface charge, 

hydrophobicity and other characteristics on recovery efficiencies of existing concentration 

methods should be evaluated. Given the wide range of viral recoveries from various 
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water matrices, as well as the discoveries of new viruses, incorporating viral concentration 

efficiency controls on a regular basis will be beneficial for future research and applications 

in practice.

3.2 Culture versus molecular detection

Cell culture methods are the gold standard for detecting infectious viruses, but next-

generation molecular tools have been widely utilized for detecting enteric viruses in 

water samples (Tandukar et al. 2020). Polymerase chain reaction (PCR)-based methods 

enable faster detection timeframes (within hours), higher sensitivity and specificity, and the 

capacity to detect viruses that are difficult to culture (Table 1).

Multiplex qPCR assays that use distinct fluorophores for various targets can detect several 

targets in a sample at the same time, albeit this method is restricted by the wavelength ranges 

that current qPCR instruments can detect (usually 2 to 5 wavelength ranges) (Rodriguez 

et al. 2009). High-throughput qPCR using microfluidic technology has been demonstrated 

as a direct multi-pathogen detection approach for ambient water samples to circumvent 

this constraint. This technology makes use of microfluidic chips, which allow for high-

throughput measurement of large sample quantities for a variety of enteric viruses and other 

pathogens (Kishida et al. 2014, Xue et al. 2018).

A downside of PCR-based approaches is that they are susceptible to inhibitory compounds 

that are frequently co-concentrated with viruses, such as humic acids commonly found in 

environmental water samples. Various strategies have been applied to reduce the effects of 

inhibitory substances. For instance, magnetic bead-based extraction methods may remove 

(RT-) qPCR inhibitors more efficiently than spin column-based approaches (Gerba et al. 

2017).

Droplet digital PCR (ddPCR) has also been shown to have improved performance in the 

presence of inhibitory compounds as compared to qPCR (Ciesielski et al. 2021). ddPCR 

performs better because it is an end-point positive/negative detection with Poisson statistics, 

so it has higher accuracy and precision against PCR inhibition. Furthermore, ddPCR 

directly quantifies viral gene copies in a sample without the need for calibration by known-

concentration standards (Vasudevan et al. 2021, Mousazadeh et al. 2021).

4. Viruses and Viral Surrogates in Wastewater for Reuse

Risk-based assessments of wastewater treatment performance and water reuse applications 

should include both quantitative assessment of waterborne pathogenic human viruses known 

to be in circulation as well as non-pathogenic virus surrogates for human viral pathogens. 

The presence and loads of human viruses within treated wastewater will depend upon the 

health characteristics of the communities contributing to the wastewater and the efficacy 

of the treatment operations to remove the viruses. Hence, the number and type of human 

pathogenic viruses in untreated and treated wastewater will vary regionally and over time. 

Given the high level of variability of human viruses in wastewater, viral surrogates are 

often used to assess viral risks. The EPA defines viral surrogates as, “Nonpathogenic (e.g., 

coliphage, pepper mild mottle virus [PMMoV], etc.) or pathogenic viruses (e.g., adenovirus, 
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norovirus, etc.) and/or other types of indicators demonstrated to predict the presence of 

and/or risk of illness from human pathogenic viruses (e.g., enterococcus qPCR [EPA 

Method 1609. U.S. EPA 2013], the human marker HF183, etc.) via co-occurrence studies 

and quantitative microbial risk assessments.” Given this EPA definition, viral surrogates 

are surrogates of risk of illnesses from viruses as a whole and thus pathogenic viruses 

themselves can serve as surrogates of risk.

Much research characterizes the occurrence and abundance of pathogenic human viruses 

and viral surrogates in wastewater. Table 2 shows virus panels that represent structurally 

diverse targets, including viruses with single-stranded (ss) or double-stranded (ds) DNA 

and RNA genomes as well as a range of sizes and morphologies. This list is not meant 

to be all inclusive but is intended to capture a range of physicochemical properties that 

influence the inactivation and removal efficiency of viruses undergoing diverse treatment 

processes. Moreover, we present a combination of human viruses that we expect to have 

wide geographic relevance and comprise a range of disease etiologies with varying seasonal 

prevalence patterns. This section further describes types of viral surrogates in wastewater 

along with molecular- and culture-based assays for their detection. We also discuss the use 

and importance of metagenomics for virus discovery. Non-viral surrogates are described in 

Section 5.

4.1 Human viruses

Human enterovirus, norovirus, and adenovirus are frequently used in risk-based water 

quality assessments because of their high abundance in wastewater, their importance in 

waterborne outbreaks, and the historical data on their prevalence in wastewater around the 

world. Enteroviruses including coxsackievirus, enterovirus 71, coxsackie A virus, DHV-1a, 

and DHV-3 are considered the most prevalent viruses in the world (Betancourt and Shulman 

2017). They cause a number of infectious illnesses, which are usually mild. Children, 

particularly those younger than 10 years old, are most likely to be infected. Human 

noroviruses are the leading cause of epidemic gastroenteritis in all age groups. They are 

the leading cause of acute gastroenteritis in the United States and are responsible for at 

least 50 % of acute gastroenteritis outbreaks occurring worldwide each year (CDC 2020). 

Adenoviruses in water have been extensively investigated and reviewed (Jiang, 2006). 

The high abundance (typically 108-1010 gc/L in raw wastewater) and relatively ease of 

detection has made adenovirus a popular target for monitoring of viral quality in water. 

With a double-stranded DNA genome, adenovirus is more resistant to UV disinfection than 

other viral pathogens during wastewater reclamation (Eischeid 2011). Diverse serotypes 

of human adenoviruses are responsible for both enteric illnesses and respiratory and eye 

infections. Unlike the three viruses discussed above, aichivirus (Table 2) has been identified 

more recently in wastewater. High concentrations of aichivirus have been found in over 

90% of wastewater tested in the Netherlands, Japan and North America (Lodder et al. 

2013, Kitajima et al. 2011, Kitajima et al. 2015, Tandukar et al. 2020b,c), suggesting that 

further investigation of aichivirus to assess treatment performance is warranted. Most human 

viruses that are identified in high concentrations in wastewater are transmitted through 

fecal-oral pathways with the exception of human adenovirus. Amongst various serotypes of 

adenoviruses, serotypes 40 and 41 are enteric viruses and are transmitted through fecal-oral 
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route, while adenovirus serotype 5 causes respiratory infection and is transmitted by aerosols 

but also shed in human feces in high concentration (Jiang 2006). Understanding the viral 

transmission pathways has important implications on health risk assessment.

Enteric viruses in wastewater show clear seasonality in concentrations and are unlikely 

to be detected in wastewater at all times of year (Farkas et al. 2018, Tandukar et al. 

2020a). Human virus panels designed for risk-based monitoring of recycled water should 

thus attempt to capture known seasonality of regionally significant waterborne viruses. 

For instance, enteroviruses peak in the summer while noroviruses peak during winter in 

temperate climates. In contrast, human adenovirus and aichivirus are frequently found in 

wastewater without any distinct seasonality. Data on the presence and removal of a suite 

of human viruses alongside other water treatment operations and water quality may thus 

provide a broad picture of viral pathogens and their removal during wastewater reclamation 

throughout a given year.

4.2 Viral surrogates for human viruses

Various viral surrogates for human viruses have been proposed to indicate removal of 

infectious viruses during wastewater treatment. Among them, somatic and F-specific 

coliphage are top candidates. In fact, a large body of work has evaluated the suitability 

of coliphages as indicators of human viral contamination in recreational water (U.S. 

EPA 2012). In comparison with human virus infectivity assays, coliphage assays are 

significantly faster, cheaper, and easier. Advancements in genome-based methods have also 

identified new potential surrogates for human viruses in wastewater, with pepper mild mottle 

virus (PMMoV) and crAssphage rising as particularly promising candidates (Table 2). In 

2021, tomato brown rugose fruit virus (ToBRFV) was found to be the most abundant 

RNA virus in Southern California wastewater, in much greater abundance than PMMoV 

(Rothman et al 2021). These potential human viral surrogates, although morphologically 

and physiologically distinct from human enteric viruses, are found in high concentrations in 

municipal wastewater. Furthermore, recent studies evaluating viral indicators (Farkas et al. 

2020, Amarasiri et al. 2017) suggest gut-associated bacteriophages beyond crAssphage as 

additional potential viral surrogates, with the advantage of adding human specificity over the 

more abundant plant viruses.

Coliphages—Coliphages are bacterial viruses that infect E. coli and are found in human 

fecal waste. Coliphages are relatively easy and inexpensive to measure through culture-

based techniques, which are based upon counts of plaque forming units (PFU) on agar 

containing the host bacteria (Grabow 2001). This technique provides an approximation of 

the presence and number of infective coliphage viruses. These analyses help overcome 

limitations of PCR, which measures genetic material regardless of infectivity. Coliphages 

are considered better indicators for viral pathogens than traditional FIB (fecal indicator 

bacteria) due to their more similar physical structure and morphology, and they have higher 

persistence in treatment processes (Agulló-Barceló et al. 2016, Jofre et al. 2016, Nappier et 

al. 2019). Coliphages are generally expected to exhibit persistence in environmental waters 

and response to treatment that is similar to human enteric viruses, but extensive reviews 

of environmental data reveal varying patterns (US EPA 2015). The detection of infectious 
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coliphage in reuse water implies a potential presence of infectious human viruses in the 

same wastewater or the failure of treatment processes to inactive viruses.

Coliphages are separated into two classes: somatic and male-specific (otherwise known 

as F+ or F-specific) coliphage. Somatic coliphages are DNA viruses that infect host 

bacteria via the outer membrane. They consist of a broad range of coliphage types and 

have been included in many environmental studies. Male-specific coliphages (F+) were 

originally believed to contain a single-stranded RNA genome (APHA 2005) but are now 

known to include viruses with DNA- or RNA-based genomes (U.S. EPA 2018). The 

male-specific coliphages (F+) infect host bacteria through an appendage, the F-pilus of 

male strains of E. coli, used for bacterial conjugation. Various studies suggest that somatic 

coliphages are more abundant than F-specific coliphages in untreated wastewater, primary 

and raw sludge. With few exceptions, similar relative proportions of somatic coliphages, 

F-specific bacteriophages, and RNA F-specific bacteriophages are measured in secondary 

effluents from wastewater treatment plants when counted using standardized methods in 

the same samples (Grabow et al. 1998, Jofre et al. 2016, Georgia et al. 2006). F-specific 

bacteriophages are inactivated by high temperature or high pH and have low persistence in 

warmer climates. F-specific bacteriophages thus perform more accurately as indicators in 

samples where they predominate, such as groundwater, clay sediments, and reclaimed waters 

(Toribio-Avedillo et al. 2021). MS2 is a strain of F+ RNA (group I) coliphage. Because 

of the resemblances of physical size and shape of MS2 and its genomic content to many 

human enteric viruses (i.e., enterovirus), MS2 has been proposed as viral surrogate by EPA 

for recreational water quality. Somatic coliphages are greatly affected both by UV radiation 

as well as chlorination. Chlorination may not significantly change the relative proportion 

of somatic and F- specific coliphages (Georgia et al., 2006), but somatic coliphages are 

found to be lower in number than F-specific coliphages following UV treatment. F-specific 

coliphages may therefore be better indicators in effluents from facilities using UV treatment 

(Montemayor et al. 2008, Jofre et al. 2016).

CrAssphage—CrAssphage is a group of dsDNA bacteriophage infecting Bacteroides 

spp. (Shkoporov et al. 2018) and potentially other bacterial hosts. CrAssphage is highly 

abundant in wastewater (excreted by 50–70% of people). This group was named based 

on its metagenome-assembled genome and is thought to belong to the normal human gut 

virome (Edwards et al. 2019). Importantly, crAssphage can be specifically associated with 

humans, and is a specific indicator of human waste, distinguishable from other animal waste. 

There is still much to be learned about crAssphage in wastewater, although some groups 

are already using it as a specific indicator of human fecal contamination (Kongprajug et al. 

2019, García-Aljaro et al. 2017, Green et al. 2020, Farkas et al. 2019, Sangkaew et al. 2020, 

Wu et al. 2020, Tandukar et al. 2020a, Ward et al. 2020). In addition, qPCR comparisons 

of crAssphage abundance with PMMoV and aichivirus show that crAssphage abundance 

correlates with human viral pathogens and is found in high abundance relative to other tested 

viruses (Tandukar et al. 2020a).

Pepper mild mottle virus—Pepper mild mottle viruses (PMMoV) are non-enveloped, 

rod-shaped plant pathogens that contain a single-stranded RNA (ssRNA) genome (Fauquet 
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et al. 2005, Rosario et al. 2009). Several characteristics make PMMoV a valuable indicator 

of human fecal load in a water sample from diverse geographic regions. PMMoV are 

ubiquitous and present at high concentrations in human feces worldwide (Kitajima et al. 

2018). PMMoV virions are also stable over a range of environmentally relevant temperatures 

(Kitajima et al. 2018). Since the presence of PMMoV is dietary in origin, PMMoV may be 

a more consistent indicator of fecal load than viruses that cause human disease (Kitajima 

et al. 2018). Finally, PMMoV is rarely found in animal feces, limiting the potential for 

animal fecal contributions to bias PMMoV-based estimates of human fecal load (Rosario et 

al. 2009). PMMoV have been used extensively as a measure of fecal strength in wastewater 

in analyses of SARS-CoV-2.

PMMoV does have several limitations as a water-quality indicator. PMMoV’s morphology 

and surface charge are markedly different from enteric viruses. This could lead to 

differences between PMMoV and viruses of interest with respect to environmental behavior 

and removal/reduction rates under different treatment processes. The co-occurrence of 

PMMoV with human viruses is poorly understood, if not inconsistent, and requires further 

investigation. There are also concerns of underestimating viral removal efficiency due to the 

high stability of PMMoV genome fragments. On the other hand, PMMoV detection may 

offer a conservative estimation of viral risk in water reuse.

4.3 Metagenomics Approaches

Metagenomics can provide unique insights for selecting targeted viral surrogates for non-

potable reuse of wastewater. As sequencing and bioinformatics pipelines continue to rapidly 

evolve, they may offer more comprehensive input data for risk assessments. Already known 

to be the most abundant biological entities in the earth’s biosphere (Paez-Espino et al. 

2016), virus diversity is expected to be significantly larger than currently known. The current 

10th report by the International Committee for the Taxonomy of Viruses identified 189 

viral families and 9110 viral species (Walker et al. 2021), while one study estimated more 

than 320,000 viral species infecting mammals alone (Anthony et al. 2013). As municipal 

wastewater contains both fecal and other human bodily wastes, it is expected to contain 

viruses of diverse origins, including human viral pathogens, plant and animal viruses from 

dietary ingestion, and bacteriophages that infect the human microbiome. Metagenomics 

based on the emerging next generation sequencing (NGS) technologies requires no a 
priori knowledge of the targets and hence has the unique capability of providing more 

comprehensive mapping of the viral diversity in wastewater and identifying new potential 

viral surrogates.

Metagenomic characterization of viruses in wastewater have reported a highly diverse 

wastewater virome with specific host affiliation profiles. Many studies have reported that 

a significant portion of wastewater viral metagenomic sequences have no known matches in 

reference databases (Aw et al. 2014, Bibby et al. 2013, Fernandez-Cassi et al. 2018, O’Brien 

et al. 2017), indicating tremendous virus diversity in wastewater. Sequences assigned to 

human viral pathogens (either enteric or respiratory) are usually present but at very low 

abundance levels (e.g., often less than 1% of the total reads or contigs) (Aw et al. 2014, 

Bibby et al. 2013, Hjelmso et al. 2019, Ng et al. 2012). For example, in a 2021 study 
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of Southern California wastewater, norovirus was detected in the majority of unenriched 

or enriched wastewater samples, while PMMoV was detected in all samples regardless 

of enrichment (Rothman et al. 2021). Although direct metagenomic detection of human 

pathogenic viruses may be the most unbiased approach for microbial risk assessment 

in water reuse, the low abundance and associated requirements for pre-processing of 

wastewater samples and post-sequencing bioinformatic analysis could present significant 

technical challenges. A resurgence of interest in wastewater monitoring of SARS-CoV-2 has 

led to additional approaches for analyzing imperfect sequence data to assess the abundance 

and distribution of variants of concern, all of which may expand the utility of wastewater 

sequencing (Pipes et al. 2022, Karthikeyan et al. 2021, Baaijens et al. 2021).

Metagenomic characterization of the wastewater viromes have led to the identification of 

potential alternative viral surrogates. Analysis of human fecal metagenomes has led to the 

discovery of the most abundant phage in human feces. The previously unknown Bacteroides 
phage, crAssphage (Cantalupo et al. 2011), was also shown to be the most abundant phage 

in wastewater virome (Tamaki et al. 2011). Given the high abundance of fecal bacteria in 

wastewater, not surprisingly, many viral sequences in wastewater virome were identified to 

belong to bacteriophages, including crAssphage (Aw et al. 2014, Ng et al. 2012, Dutilh et 

al. 2014, Stachler et al. 2014). Metagenomic sequencing of wastewater viromes has also 

detected plant viruses as the largest group of eukaryotic viruses in wastewater viromes, 

which is attributable to undigested plant matter in human fecal matter (Victoria et al. 

2009). Among many different plant viral families, the Tobamovirus pepper mild mottle virus 

(PMMoV) was previously detected by metagenomic sequencing as the dominant RNA virus 

in human feces (Zhang et al. 2006), which has also been suggested as a viral surrogate in 

fecal pollution (Rosario et al. 2009) and may also be potentially suitable for water quality 

monitoring in water reuse.

5. Non-Viral Indicators of Viral Quality

5.1 Physicochemical water quality parameters

Physicochemical water quality parameters measured at wastewater treatment plants have 

the potential to support viral health risk assessments by informing expectations about 

treatment performance and by indicating virus removal efficiency (e.g., by breakthrough 

of small molecules in a reverse osmosis system). Total organic carbon (TOC) and 

electrical conductivity (EC) are easily measurable water quality parameters that can serve 

as conservative surrogates for continuous monitoring of microbe removal for water reuse 

(Fujioka et al. 2019, Tchobanoglous et al. 2015). Other physicochemical parameters, such 

as pH, NH4
+, turbidity, and adenosine triphosphate (ATP) also offer rapid and low-cost 

measures of water quality. In Section 6.2 we discuss new modeling approaches that could 

integrate diverse data inputs to determine which provide meaningful indication of virus 

infectivity and removal.

5.2 Bacterial surrogates

Bacterial surrogates for human viral pathogens are likely to provide an incomplete 

understanding of viral health risks in water reuse, but information from bacterial monitoring 
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programs may ultimately provide utility in viral health risk assessments. Common bacterial 

surrogates include coliform bacteria (especially Escherichia coli), fecal streptococci, 

enterococci, and bacteria belonging to the genus Bacteroides (Lin and Ganesh 2013, Papp 

et al. 2020). Fecal indicator bacteria (FIB) have had a long history to establish their utility 

for microbial water quality monitoring. FIB are not pathogenic in themselves but are used 

to “indicate” the possible presence of pathogens. The coliform group of bacteria was the 

original FIB group, dating back to 1914 (NRC 2004), used to regulate drinking water. 

This group is still used today to regulate drinking water supplies except that regulations 

also require measurements of specific subcategories of total coliform, fecal coliform (which 

selects for coliforms of fecal origin by using a higher incubation temperature) and E. coli 
(based on the action of β-glucuronidase).

As for viruses, differences in source, size, morphology, persistence, stability, genome 

structure, and other characteristics of bacterial surrogates can (1) lead to differences in the 

ways that surrogates and targets respond to different treatment processes and (2) can create 

inconsistent relationships between surrogates and targets in different settings. Using multiple 

surrogates or surrogate approaches is often recommended to obtain a comprehensive and 

reliable water-quality assessment. For bacterial monitoring, this may mean combining 

monitoring of one or more individual surrogate species with approaches that examine the 

broader bacterial community in a water sample. Examples of the latter include heterotrophic 

plate count (HPC) (Bartram et al. 2013), the 16s rRNA gene assay (Papp et al. 2020), and 

flow cytometry (FCM) (Safford and Bischel 2019). Such approaches are especially useful 

for monitoring bacterial regrowth in drinking-water infrastructure (Buysschaert et al. 2018), 

and generally for assessing water quality in highly treated waters where the concentration of 

any individual surrogate is expected to be low (Olivieri et al. 2016).

The use of coliforms for regulating recreational water has been questioned as it has been 

found that environmental sources other than feces can contribute to the presence of the 

coliform group of microbes. Alternative sources have been observed in both tropical and 

subtropical climates (Fujioka 2001, Fujioka et al. 1998, Hardina and Fujioka 1991, Hazen et 

al. 1987) and most recently within temperature regions (Byappanahalli et al. 2006, Whitman 

and Nevers 2003). Alternative bacteria have been identified as Clostridium perfringens 
(Fujioka and Shizumura 1985) and enterococci (previously known as fecal streptococci). 

Enterococci includes a group of 26 species of Enterococcus (Klein 2003). These alternative 

indicators of fecal contamination can potentially be used to supplement viral surrogates in 

water reuse.

5.3 Virus-like particles as viral removal and viral safety indicator

An important remaining challenge associated with enumeration strategies for human viruses 

and viral surrogates is the lengthy time for analysis (from hours for PCR, to days for 

bacteriophage culture, to more than a week for human virus culture). Flow cytometry 

(FCM), however, has the potential to quickly determine concentrations of biological 

particles in water samples. FCM refers to the analysis of particles (including cells, cell 

fragments, inorganic debris, and viruses) based on how they scatter light in the forward and 

side directions and/or fluoresce when passing through a laser beam. Switzerland’s Federal 
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Office of Public Health has officially endorsed FCM as an acceptable method for obtaining 

total cell counts for freshwater samples (SLMB 2012), and many utilities and regulatory 

bodies around the world are considering the same. The successful application of FCM to 

enumerate bacteria in drinking water demonstrates that FCM can characterize microbial 

water quality in a rapid, reliable, and reproducible manner. The recent development of 

better instrumentation and new fluorescent dyes has expanded applications of FCM from 

bacteria to viruses. The total number of viruses in wastewater is estimated to be in the 

range of 1011/L based on direct counting under the microscope and by FCM (Huang et al. 

2016). Ma et al. (2013) and Huang et al. (2016) both used FCM combined with sensitive 

nucleic-acid dyes to quantify abundance of virus-like particles (VLPs) at various stages 

of wastewater treatment. A review by Safford and Bischel (2019) of nearly 300 studies 

published in the past two decades concluded that “substantial progress” has been made in 

the application of FCM to water treatment, distribution, and reuse. Nevertheless, research 

has shown that FCM is only capable of detecting viral particles of relatively large physical 

and/or genome size (Dlusskaya et al. 2021). Despite progress on the use of FCM to detect 

viruses, demonstration studies of FCM in wastewater treatment are needed to evaluate 

correlations between total virus removal as detected by flow cytometry and removal of 

human viruses. Such studies would provide much value to understand the potential role of 

FCM in supporting measurements of viral quality and risk in municipal reuse applications.

6. Modeling

6.1 QMRA

Quantitative microbial risk assessment (QMRA) is an important tool for determining fit-for-

purpose water reuse applications. QMRA is a mathematical approach used to estimate 

the risk of illness when humans are exposed to microbes. QMRA requires identifying the 

hazard, assessing the exposure, and understanding the response or illness once the dose is 

estimated. The results provide a characterization of risk which is typically expressed as the 

probability of illness. QMRA of viral pathogens for water reuse in irrigation and recreational 

impoundments has been investigated since the ‘90s (Asano et al. 1992, Hamilton et al. 

2006). In recent years, risk modeling has evolved (1) from generating point-estimates 

of risk to characterizing its distribution, (2) from using hypothetically assumed water 

volumes retained in food crops to data collected through physical experiments, and (3) 

from simplifying assumptions about virus infectivity to considering relationships between 

infectious viruses and viral genomes in some cases (Olivieri et al. 2014, Petterson et al. 

2001, Agulló-Barceló et al. 2012). However, nearly all food crop irrigation QMRAs were 

based on very old viral monitoring data from wastewater reclamation plants in Southern 

California (late ‘70s data) that do not represent the current state of water reclamation 

practices. Moreover, early QMRA studies assumed that enterovirus results were equivalent 

to rotavirus results and used a rotavirus dose-response model for a conservative risk measure 

(Tanaka et al. 1998, He et al. 2011). However, the risk of rotavirus infection does not appear 

on the top list for illness cases in the U.S. and is significantly lower than that of norovirus.

A norovirus dose-response model based upon PCR- detected viral genome has been 

developed and adopted in risk analysis of stormwater harvesting for household uses and 
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food crop irrigation (Lim et al. 2015). They have also shown the risk of viral transport 

from irrigation water through plant roots to edible portions even without direct contact 

with irrigation water (Chandrasekaran et al. 2018). Moreover, previous research has shown 

that pathogen dose is the most sensitive parameter in the risk outcome (Chandrasekaran 

et al. 2018). Therefore, to improve the accuracy of risk estimations, the data in gaps in 

viral concentrations in treated wastewater and dose-response models incorporating multiple 

pathogens should be addressed.

6.2 Modeling of infectious viruses using Artificial Neural Network (ANN)

Greater understanding of the complex and interdependent relationships between treatment 

performance, parameters that indicate viral quality, and the presence of infectious 

pathogenic viruses is needed to improve risk assessments. An intelligent systems approach, 

including models based on artificial neural networks, offers a potential solution to this 

classic challenge. An early application of ANNs in wastewater treatment demonstrated 

superiority of neural networks compared to conventional kinetic models of microbial 

inactivation during disinfection (Haas 2004). In the past quarter century, there has been 

an increase in application of ANN to a myriad of contexts—including wastewater process 

control (Jawad et al. 2021, Dias et al 2020), constituent monitoring (Cecconi and Rosso 

2021), treatment performance (Malviva and Dipika 2021, Newhart et al. 2020), and virus 

disinfection (Carvajal et al. 2017) or removal (Zhu et al. 2021) to deal with scaling 

challenges associated with multi-dimensional data. Yet applications of such data-driven 

models to assess viral risk are lacking. Here, we offer an example ANN model framework 

that incorporates treatment performance and viral quality parameters discussed in this paper 

to predict infectious enteric viruses (Vi) as follows (Figure 3):

[V i] ∈ [Ent][Nor][Ade][Aic][s ∅ ][f ∅ ][PMMoV ][CrA ∅ ][VLPs][NH4
+][TSS][ClO−][Temp][P] ,

where viral surrogates including PCR-detected viral pathogens (Ent, Nor, Ade and Aic), 

somatic and F-specific coliphage (s∅ and f∅), PMMoV, CrAssphage (CrA∅), and virus-

like particles (VLPs) by flow cytometry, as well as water quality parameters including 

ammonia (NH4
+), total suspended solids (TSS), free chlorine (ClO−), temperature (temp) and 

a dummy variable (P) to differentiate different treatment operations and processes used in 

the reclamation plant operation are used as input variables in the model.

In this example, the presence of the infectious enteric virus in the treated wastewater relates 

to water quality parameters, virus surrogates, and treatment processes. ANN modeling 

can identify which parameters influence viral risk significantly and facilitate adaptive 

treatment strategies. Stable output predictions would require a multi-layer perceptron (MLP) 

ANN, composed of neurons, arranged into hidden layers, interconnected in parallel. In 

wastewater applications, ANNs with one hidden layer are the best structure to achieve 

accurate predictions without excessively increasing complexity and computational costs 

(Chen et al. 2003, Barron et al. 2009, Khataee and Mirzajani 2010). The number of 

neurons in the hidden layer is a fundamental parameter, which can be analyzed to obtain 

the desired accuracy of the infectious virus predictions. To each input is associated a weight 
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or coefficient that determines to which extent the input information is transmitted to its 

output.

In addition to the main neural network to predict the infectious virus in the effluent by 

exploiting the information from all the viral surrogates and treatment conditions, networks 

for detecting faults in the input variables would facilitate selection of appropriate model 

inputs. This involves construction of a neural network for each input variable to predict the 

targeted variable using the other surrogates and water quality parameters as input variables. 

Sensitivity analysis would point to which input variables have a higher influence on the 

output prediction and facilitate reduction in model complexity (Zhao et al. 2005). For 

example, the model structure can be simplified, as illustrated in Figure 3, from scenario A), 

which includes all surrogates and water quality parameters in this example, to scenario B), 

in which only a subset of surrogates and parameters are necessary. The surrogates with the 

greatest influence on the prediction outcome are the recommended surrogates for viral risk 

indication. Monte Carlo simulation can then be applied to quantify model uncertainty from 

model parameters, input data, or model structure (Menezes et al. 2018).

7. Discussion and Limitations

Our inability to adequately monitor human viruses and understand their removal during 

wastewater reclamation processes present significant challenges to critical water reuse 

objectives. Direct monitoring of human viruses to estimate viral risk in water reuse is 

currently limited in the quantification of infectious viruses within a reasonable time. 

Cell culture assay for viral infectivity, including ICC-PCR method, takes days to weeks 

and requires highly trained professional staff, which is not feasible for most wastewater 

reclamation utilities or regulatory agencies. PCR-based methods for virus detection are 

relatively fast and sensitive but lack the ability to directly indicate infectious virus, and 

therefore risk of infection. One possible solution is to integrate the presence of human viral 

genomes or other viral genome shed in human feces, as determined by PCR, with loss of 

viral infectivity as observed by viral surrogates alongside water quality parameters to predict 

infectious virus levels. Coliphage has shown promise for evaluating treatment efficacy for 

infectious viruses. Enumerating surrogates can help address challenges in direct monitoring 

of infectious human viral pathogens.

Although sophisticated measurement techniques can be developed, there will be practical 

limitations to their implementation. Integration of PCR detection technologies requires the 

purchase and maintenance of equipment and use of this equipment by trained personnel. 

The availability of equipment and trained personnel will represent a challenge for many 

water reuse operations. Even with PCR-based technologies results may not be tied directly 

to infectivity which would require additional techniques to address, such as culture-based 

coliphage assays and/or ICC-PCR. All infectivity protocols would require refurbishing 

traditional water quality laboratories which typically measure only for bacterial surrogates. 

Coliphage infectivity assays can be conducted in fashions similar to fecal indicator bacteria 

quantification but ICC-PCR would require viral culturing capabilities which have become 

less common in recent years resulting in a smaller pool of trained personnel.
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Additional limitations in direct viral surrogate or pathogen quantification is the need for 

measuring very low levels of viruses which translates to concentrating very large volumes 

of water. This is particularly true for direct potable reuse which would dictate very low 

levels of viruses, at values of less than one per many liters of treated water. Filtering tens 

to hundreds (or even thousands) of liters of water would require on-site sample filtration 

processes which are then to be eluted and concentrated for analysis. This preprocessing is 

time consuming, and the filter cartridges can be expensive.

Given the technical challenges in directly measuring viral surrogates and pathogens, 

other simpler non-microbial measures should be considered along with viral detection 

technologies. The use of physical, chemical, and biological water quality measures such as 

conductivity, total organic carbon and total bacteria and virus-like particles can be indicative 

of possible treatment inadequacies or breakthroughs and can be used to supplement direct 

specific viral detection programs. Potentially simpler measures of water quality should 

be integrated into risk-based models, with the aid of artificial neural networks. Risk 

based QMRA models in themselves are limited in that dose-response relationships are not 

available for all viruses of concern and the synergistic effects of different viruses within 

a water sample are not well known. There is also uncertainty in the relationships between 

surrogates and viral pathogens. Ideally the hazard characterization portion of the QMRA 

should be recalibrated occasionally for a specific site through PCR-based measures of viral 

pathogens and/or surrogates coupled with culture-based measures of coliphage.

The desired outcome of a proposed viral monitoring program is that the target is measurable 

and is technically simple for widespread implementation. The on-going COVID-19 

pandemic has promoted widespread implementation of wastewater-based surveillance of 

SARS-CoV-2 using genome-based approaches. These experiences suggest the feasibility of 

adopting molecular methods by wastewater treatment utilities. Moreover, the metagenome 

analysis of wastewater does not only provide information of viral quality of treated 

water but also gives insight to the pandemic prediction and forecasting. The rapid 

advancement of sequencing technology, robotic liquid handling for sample concentration 

and downstream target detection by ddPCR have already revolutionized the detection 

of diverse viral pathogens in wastewater. Looking into the future, streamlined sample 

collection, concentration, nucleic acid extraction, ddPCR detection of specific targets 

or automatic bioinformatic programs for pathogen identification using metagenomic 

sequencing data are possible within the next 5 years. More research on an improved 

understanding of the best surrogates, their response to treatment relative to particular viral 

pathogens, and their relationship to risk are needed in water reuse scenarios. A considerable 

amount of additional investigation is needed to develop practical approaches to ensure safety 

in water reuse.

8. Summary and Conclusion

One of the greatest challenges of water-quality monitoring is that pathogens (including 

viruses as well as bacteria and protozoa) are often present at concentrations high enough to 

present disease risks, but too low for direct detection. As a result, a variety of surrogate 

microorganisms are used as indicators of microbial water quality. In this review we 
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describe viral surrogates, viral pathogens, and other surrogate measures that can be used to 

monitor the safety of reuse waters. We recommend integrating all available treatment plant 

information (including unit operations utilized and physical-chemical water quality data) 

with artificial neural networks which in turn assess the adequacy of treatment processes 

to remove viral pathogens. This information can then be combined with a QMRA to 

evaluate risks from viral pathogens on a real-time basis. In an ideal scenario the reuse plant 

would have their waters intermittently tested for viral pathogens directly, perhaps through 

sensitive metagenomics approaches, coupled with measures of targeted viruses by qPCR 

and possibly viral surrogates by culture, to assess vulnerability to specific viruses and to 

assess the suitability of viral surrogates. A model based upon simple measures and QMRA is 

envisioned to assess risk on a continuous basis.
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Figure 1. 
Planned water reuse projects by state and planned water reuse share of market based on data 

collected by Blue Field Research (Anonymous 2017).
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Figure 2: 
Treatment Flow Diagrams for Water Reclamation. Unit operations within parentheses 

perform similar treatment functions. Dashed lines are for sludge, while solid lines are for 

water flows. For suitable treatment trains choose one among the unit operations within 

parentheses.
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Figure 3. 
Illustration of ANN structure change based on sensitivity analysis of input variables.
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Table 1.

Methods for concentrating and quantifying viruses in wastewater samples.

Viral Concentration Methods

Advantages Disadvantages

Virus adsorption and 
elution

Fast (hours). Viruses must be subject to capture and elution which may not be 
100% efficient. Less inhibition depending upon eluate chemistry.

Electronegative filtration Fast (hours). Inexpensive. Supplies easy 
to procure.

Viruses must be positively charged and captured, which may not be 
100% efficient.

Size exclusion Captures by size. Cartridges subject to availability and can be expensive. May be 
subject to extensive plugging limiting volume processed. Requires 
a specialized centrifuge in some cases.

Coagulation/flocculation Fast (hours). Inexpensive. Supplies easy 
to procure.

Viruses must be captured by process, which may not be 100% 
efficient.

Magnetic Bead Based 
Capture

Fast (hours). Process has been 
automated by commercial vendors.

Beads subject to availability and can be expensive. Less inhibition.

Viral Quantification Methods

Advantages Disadvantages

Cell Culture Measures potentially infectious viruses. Slow to obtain results (weeks).

PCR Fast (hours). Higher sensitivity and 
specificity
Detects non-culturable viruses.

Does not measure infectious 
Viruses. Subject to inhibition.
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