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Abstract

We study the role of Rydberg bound-states and continuum levels in the field-induced electronic

dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen

atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital

expansions (up to L = 4 with sextuple augmentation and off-center functions) to describe the

bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in

TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the

ionization potential. The heuristic lifetime model is compared against the conventional atomic

orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the

bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using

conventional TD-CI do not converge with increasing AO basis set size, whilst the zero lifetime

and heuristic lifetime models converge to qualitatively similar spectra, with implications for how

best to apply bound state electronic structure methods to simulate HHG. The origin of HHG

spectral features including the cutoff and extent of interference between peaks is uncovered by

separating field-induced coupling between different types of levels (ground state, bound Rydberg

levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between

the predictions of the semi-classical three step model and the full simulation can be associated with

particular physical contributions, which helps to explain both the successes and the limitations of

the three step model.
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I. INTRODUCTION

The study of atomic and molecular processes in intense ultrashort laser fields is a sub-

ject of increasing interest since the advent of attosecond (10−18 s) laser pulse generation,

characterization and application [1–8]. In fact, the recent impressive advances in laser tech-

nology are continuously triggering the introduction of new spectroscopic and measurement

methods, which offer the opportunity to investigate unexplored research areas in atoms and

molecules with unprecedented time resolution [7–12].

Attosecond pulses may be obtained via the high-harmonic generation (HHG) process,

which can provide coherent XUV and soft X-ray radiation with a sub-femtosecond temporal

resolution. HHG is a highly nonlinear phenomenon [13], where the optical spectrum has a

distinctive shape: a rapid decrease for the low-order harmonics consistent with perturbation

theory, followed by a broad plateau region where the harmonic intensity drops more slowly,

and then an abrupt cutoff, beyond which no harmonics are observed. Associated with these

characteristics is the fact that the harmonic emission spectrum is composed of coherent

radiation lines with equally spaced frequencies.

The HHG process can be understood by semiclassical models [14, 15] where three impor-

tant assumptions are made: (i) an electron escapes from the nuclei through tunnel ionization

associated with the strong laser field, and (ii) it is accelerated away by the laser field until the

sign of the field changes, (iii) whereupon the electron is reaccelerated back to the Coulomb

field of the nuclei, where it may emit a photon (a harmonic of the laser field) as it returns

towards the ground state. It is possible to roughly estimate when these assumptions are

valid through the Keldysh parameter (γ) which describes the balance between the amount of

energy carried by the laser field and the energy which is necessary for an electron to escape

to the continuum. γ is defined[16] as γ =
√
Ip/(2Up) where Ip is the ionization potential

and Up = E2
0/(4ω

2
0) is the ponderomotive energy (E0 is the laser amplitude and ω0 is the

carrier frequency of the laser field). If γ > 1 we are in the the multiphoton regime, while if

γ < 1 we are in the tunneling regime. From this simple model it is also possible to obtain

the position of the cutoff in the HHG spectrum, associated with the maximum energy the

field can impart to the electron, which is Ecutoff = Ip + 3.17Up. Most previous theoretical

descriptions employ approaches where it is assumed that only a single electron is “active”

[17–20], consistent with the semi-classical three step model reviewed above. However, even
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if these semiclassical models have explained some key features of the HHG spectra, the

true electronic dynamics is more complicated and the importance of quantum mechanical

properties of the many-electron dynamics in strong laser field has been pointed out [21, 22].

When the laser interacts with the system a non-stationary electronic wave-packet is gen-

erated, consisting of a coherent superposition of excited states. Time-evolution of the wave-

packet corresponds to the dynamics, and involves changing interference between the dif-

ferent excited states in the wave-packet. The wave-packet and its dynamics are strongly

determined by parameters of the laser such as intensity, duration, polarization and phase of

carrier frequency.

The proper treatment of this many-electron dynamics under the influence of the laser

field is obtained by solving the time-dependent Schrödinger equation which is only possible

in very limited cases, even with semi-classical treatment of the molecule-field interaction.

For an approximate solution, time-dependent density-functional theory (TDDFT) [23–27] is

widely employed. Recently, wavefunction based methods have been extended to the time-

domain. Examples include multiconfigurational time-dependent Hartree-Fock (MCTDHF)

[28–34], a direct method to solve the time-dependent coupled-cluster equations [35] and

time-dependent configuration-interaction [36–45] using singly excited states (TD-CIS) with

perturbative (TD-CIS(D)) and full (TD-CISD) corrections for double excitations. Recently,

we used the last class of time-dependent wavefunction method and we found that they are

also quite valuable for predicting HHG in small molecular systems [45].

In this paper, we discuss in detail the role of the Rydberg bound-states and the continuum

levels for the time-dependent dynamics responsible for HHG in the model case of the H atom

[17, 46] using time-dependent configuration-interaction (TD-CI) in an atomic orbital (AO)

expansion. The first issue is what are the implications of using a finite AO basis set? With

a finite AO basis, ionization losses do not occur, because the electron never fully escapes

the atom. What consequences does this have for convergence of the results as the AO basis

is improved to better describe the bound Rydberg levels and the continuum? Grid-based

methods typically employ a complex absorbing potential (CAP) or other method (“mask

function”) to capture outgoing waves associated with ionization [47]. In the AO description,

one can associate a heuristic lifetime with energy levels above the ionization potential [42]

to approximately achieve the same result. This model correctly allows an electron that has

been excited to very high energy states because of the acceleration imposed by the field to
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escape (be absorbed) with high probability such that it does not contributes to the HHG.

We shall compare the heuristic model (finite lifetimes for nonstationary levels), which is

appropriate for high-field problems, against the conventional AO treatment which assumes

infinite lifetimes, and a third approximation which is to assume the lifetimes go to zero

(effectively removing the continuum levels entirely). These results have implications for

the manner in which bound state electronic structure methods are best applied to simulate

HHG.

With the overall form of the HHG spectrum under control, the second issue that we con-

sider is the origin of the spectral features including the cutoff and the extent of interference

between peaks in terms of the electronic dynamics. Contributions from field-induced cou-

pling between different types of levels can be separated in the simulation in order to deduce

their effects on the observed HHG spectrum. Thus the origin of deviations between the pre-

dictions of the semi-classical three step model of the full simulation can be associated with

particular physical contributions. For example, we can separate the role of field-induced

coupling between different excited bound levels (i.e. the Rydberg series) from the coupling

between the ground state and the Rydberg levels, as well as coupling to the continuum

levels. These results help to explain both the successes and the limitations of the three step

model. The remainder of the paper consists of a description of the overall time-dependent

quantum approach, as well as simulation details, followed by a presentation of the results.

II. THEORY

We consider the case of the H atom in an external laser field. The time-dependent

Schrödinger equation (TDSE) (atomic units e2 = ~ = m = 1) is

i
∂Ψ(r, t)

∂t
=

(
−∇2

2
− 1

|r|
− r̂ · F(t)

)
Ψ(r, t), (1)

where −r̂ · F(t) represents the interaction between the H atom and the time-dependent

external laser field F(t) in the semiclassical dipole approximation. The electric field F(t) is

represented as

F(t) = nf(t)sin(ω0t+ ϕ) (2)

where n is a unit vector in the direction of the (linear) electric field polarization, f(t) is the

envelope function, ω0 is the carrier frequency and ϕ is the phase. In this article, we employ
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a cos2 shape for the envelope function

f(t) =

f0cos
2( π

2σ
(σ − t)) if |t− σ| ≤ σ,

0 otherwise.

where σ is the width of the field envelope.

We represent Ψ(r, t) using time-dependent configuration interaction (TD-CI) where

Ψ(r, t) is expanded in a truncated eigenstate basis composed of the ground state (|ψ0⟩), and

time-independent (field free) CI excited states, (|ψk⟩, k > 0):

|Ψ(t)⟩ =
∑
k=0

R̃k(t)|ψk⟩. (3)

In applying this many-electron methodology to our specific case of the H atom, considering

a given basis set of size K we obtain 1 occupied molecular orbital |ϕ1⟩ and v = K−1 virtual

orbitals |ϕa⟩. |ψ0⟩ = |ϕ1⟩ while the excited states are single orbital substitutions. |ψa⟩ = |ϕa⟩

For the H atom, the field-free CI matrix is trivially diagonal, although the same methodology

can applied to many-electron systems where different configurations do interact to yield the

field-free eigenstate basis. For details of the time-(in)dependent CI equations we refer the

reader to existing reviews [48].

Inserting the time-dependent wavefunction, Eq. (3), into Eq. (1) and projecting with bras

corresponding to the HF ground state and the CI excited states, we obtain a time-dependent

equation for the coefficients:

i
dR̃k(t)

dt
=

∑
s

(ECI
k δks − rks · F(t))R̃s(t), (4)

where the initial condition at t = 0 is chosen to be the ground state represented in the

chosen basis.

In order to solve this equation we approximate the time integral by discretizing the time

of the propagation and we make use of a split propagator technique as the Hamiltonian is

the sum of two independent terms: the field-free hamiltonian and the laser field in the dipole

approximation. With these two assumptions we can write the solution of the time-dependent

propagation in TD-CI in matrix notation as

R̃(t+∆t) = U†eir·F(t)∆tUe−iECI∆tR̃(t) (5)

The matrix ECI is the diagonal matrix of the field-free hamiltonian in the basis of the CI

eigenstates, while the matrix r · F(t) describes the dipole-field interaction. The matrix U
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is the unitary matrix describing the change of basis between the CI eigenstate basis, and a

basis in which the dipole-field interaction is diagonal. Once the time-dependent coefficients

are known also the time-dependent wavefunction, Ψ(r, t), is known, making possible to

monitor the time-dependent dynamics of the electrons through the induced dipole-moment

µ(t) = ⟨Ψ(r, t)|µ̂|Ψ(r, t)⟩ which is calculated as

µ(t) =
∑
s,k

R̃∗
s(t)R̃k(t)µsk, (6)

where µsk = ⟨ψs|µ̂|ψk⟩. The power spectrum of the HHG is then acquired by taking the

Fourier transform of the total time-dependent induced dipole moment, µ(t)

P (ω) =

∣∣∣∣ 1

tf − ti

∫ tf

ti

µ(t)e−iωtdt

∣∣∣∣2. (7)

HHG is in competition with ionization processes which cannot be modeled directly by

TD-CI, due to the lack of continuum basis functions (we assume that TD-CI employs finite

atomic orbital basis expansions, as used in bound state electronic structure codes). For

the same reason, contributions to the electron dynamics of HHG from the continuum are

also not properly treated by TD-CI. Analogous problems exist in grid-based wavepacket

propagation, and are dealt with by approaches such as a CAP [37, 49], complex scaling

[50, 51], or a wavefunction absorber [47]. We shall use the recent heuristic model proposed by

Klinkusch et al. [42] to describe laser-induced electron dynamics including photoionization

with TD-CI in AO basis sets. This model allows for the treatment of ionizing states as

nonstationary states with a finite, energy-dependent lifetime to account for above-threshold

ionization losses in laser-driven many-electron dynamics. The CI eigenstates (ECI) with

energies above the ionization threshold are interpreted as non-stationary and replaced with

complex energies:

ECI → ECI − i

2
Γ, (8)

Γ is a diagonal matrix where Γnm = Γnδnm and Γn is the ionization rate of CI energy state n,

which is related to the lifetime of that state as τn = 1/Γn. The heuristic model was developed

for (time-dependent) configuration-interaction with single substitutions((TD)-CIS), which

rely on prior solution of the Hartree-Fock equations for the field-free system. The resulting

ground-state Slater determinant of occupied molecular orbitals, |ϕi⟩, is written as |ψHF
0 ⟩ =

||ϕ1⟩|ϕ2⟩...|ϕl⟩| where l = N/2 (N is the number of electrons). Considering a given basis set
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of size K we obtain l occupied molecular orbitals |ϕi⟩ and ν = K − l virtual orbitals |ϕa⟩.

The CIS wavefunction for the state n > 0 is defined as

|ΨCIS
n ⟩ =

∑
ia

Ca
i,n|Ψa

i ⟩. (9)

|Ψa
i ⟩ are singly excited determinants where an electron was excited from the occupied orbital

|ϕa⟩ to the virtual orbital |ϕr⟩. In the case of one electron, the (TD-)CIS become an exact

(TD-)CI with Ca
1,n = δan. To obtain the ionization rate, Klinkusch et al. [42] considered

that an electron in a virtual orbital a with energy ϵa > 0 has the classical kinetic energy

ϵa = 1
2
v2 where v is the escape velocity of the electron, which is defined as v = d

τ
. Here d

is a parameter that is the characteristic escape length which the electron can travel during

the time interval, τ , which is the lifetime (or inverse of the ionization rate, τ = Γ−1) of the

one-electron system, so that Γ =
√
2ϵr/d. Based on these considerations, the ionization rate

of the CIS state n is given by:

Γn =

 0 if ECI
n < Ip,∑

ia |Ca
i,n|2

√
2ϵa/d if ECI

n > Ip and ϵa > 0

This model is appropriate for the high field case where above-threshold ionization is domi-

nant, and is similar to a complex absorbing potential in energy space [42].

III. RESULTS

In TD-CI, the time-dependent wave function is expanded using a finite number of field-

free electronic states and dipole moments from a corresponding static CI calculation. We

took these matrix elements from calculations using the Q-Chem software package [52], and

employed in a small external program we have written to propagate the time-dependent

wave-packet. These methods all employ finite Gaussian atomic orbital basis expansions.

All HHG spectra presented in this article were computed for a cos2-shaped laser field

(see Eq.(2)) with carrier frequency ω0= 1.55 eV (corresponding to a Ti:sapphire laser) and a

duration of the pulse that is 20 optical cycles (o.c.) (σ = 10 o.c.), where 1 o.c = 2π/ω0. The

polarization of the field was chosen to be linear and parallel to the ẑ direction. The TD-CI

calculations were propagated using a time step of 0.24 as (0.01 au) for a total duration of

40 o.c. The simulations reported in this paper used an intensity of I=1014 W/cm2, which

was tested against I=1013 W/cm2 and I=1015 W/cm2.
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In order to have a good representations of the bound excited states comprising the Ry-

dberg series, we used augmented Dunning quintuple-zeta basis. Whilst up to double aug-

mentation is common [53–55] (corresponding to adding two extra shells of each angular

momentum), this will only adequately describe the n = 2 states. Therefore we also included

from 3 up to 6 sets of diffuse shells, defining the t-aug-cc-pV5Z, through s-aug-cc-pV5Z basis

sets. The sextuply augmented basis thus consists of 11s,10p,9d,8f,7g shells, for a total of

205 functions. To ensure numerical stability with this largest basis, we had to remove the

two most diffuse g functions, leaving a basis comprised of 11s,10p,9d,8f,5g shells, for a total

of 187 functions.

The Rydberg energies calculated with this sequence of basis sets are shown in Fig. (1). It

is evident that as more diffuse functions are included in the AO basis, more excited Rydberg

states are correctly reproduced. In particular, with the s-aug-cc-pv5z basis we can fully

describe the (Rydberg) bound states through n = 5: n = 1 (E = −0.500, 1 state), n = 2

(E = −0.125, 4 states), n = 3 (E = −0.055, 9 states), n = 4 (E = −0.031, 16 states), n = 5

(E = −0.020, 25 states). In addition this basis provides an incomplete description of n = 6

(E = −0.014, 16 of 36 states) and n = 7 (E = −0.010, 1 of 49 states), as well as a very

partial (and poor) description of some continuum (unbound levels).

To achieve some further representation of the unbound continuum levels, we also con-

structed two “super” basis sets that enhance the s-aug-cc-pv5z basis with six ghosts atoms

arranged octahedrally on a sphere of radius 1 a.u. These ghost functions are either cc-

pVDZ or cc-pVTZ on each of the 6 sites. The “super-DZ” basis has 217 basis functions

in total, whilst the “super-TZ” basis has 271 basis functions in total. The CI continuum

energy-states are shown in Fig. (2). The total number of CI states obtained is 186 for s-aug-

cc-pV5Z, 216 for s-aug-cc-pV5Z plus six cc-pVDZ ghost atoms, and 270 for s-aug-cc-pV5Z

plus six cc-pVTZ ghost atoms.

HHG spectra from TD-CI with the 3 different basis sets, s-aug-cc-pV5Z, s-aug-cc-pV5Z

plus six cc-pVDZ ghost atoms, and s-aug-cc-pV5Z plus six cc-pVTZ ghost atoms, are shown

in Fig. 3. The curves show peaks at the odd harmonics with decreasing intensities as the

order increases. Based on the 3 step model [14, 15], we expect to observe a cutoff around the

21st harmonic. However, the calculated spectra shows signal up to about the 25th harmonic.

However because of strong interference effects, it is difficult to distinguish structure and

signal in the HHG spectra from the background.
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Fig. 3 shows a large background signal is present in these HHG spectra calculated with

finite basis TD-CI . For the intensity used (I=1014 W/cm2), the background is similar for all

three calculations, however we observed for higher intensities that the background increases

as the basis set is enlarged, and therefore as the number of localized unbound states included

in the calculation is increased. In fact it is expected that calculated HHG spectra cannot

be feasibly converged to a limiting form as the finite basis is enlarged. Energy levels above

the ionization potential correspond to an electron that is no longer bound to the nucleus.

Therefore amplitude in such levels may well lead to ionization in the HHG dynamics, rather

than reforming the neutral atom. However, as the unbound states are localized in finite

AO basis TD-CI, no such ionization channel is open, and they can contribute to the HHG

spectrum. Adding more and more localized yet unbound levels to the TD-CI therefore will

not give convergent spectra until the spatial extent of the AO’s is sufficient so that outgoing

flux is not reflected on the timescale of the simulation.

The non-convergent behavior of the calculated TD-CI HHG spectra can be corrected

by allowing for the possibility of ionization, by applying the heuristic model to give an

energy-dependent lifetime to all energy levels above the ionization potential Ip. In this

way the CI eigenstates with energies above the ionization threshold are interpreted as non-

stationary, and possible ionization from high-energy levels is accounted for. As can be

seen in Fig. 4, adding a lifetime to the unbound states appears to solve the problem of

artifactual contributions to HHG from high-energy levels. In particular, with finite lifetimes,

the calculated spectra appear to be satisfactorily convergent as the AO basis is improved to

s-aug-cc-pV5Z plus six cc-pVTZ ghost atoms. Evidently removal of spurious recombination

and interference effects from the quantum dynamics also removes most of the basis set-

dependent background signal in the HHG spectra calculated without lifetimes, as follows

from comparing Fig. 3 and Fig. 4. In order to apply the heuristic lifetime model we had to

choose a value for the escape length. We started by considering that the maximum radial

extension of the electron is equal to E0

ω2 following the three step model. Considering our laser

parameter we obtain 16.6a0. Therefore, we tested our calculations using d = 16.6a0, and

also the smaller value d = 1.4a0 and a larger value of d = 100a0. We found that the results

are not strongly affected by the choice of the escape length and for the calculations reported

here, we used d = 1.4a0.

It is interesting to compare the HHG spectra computed this way against other methods
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that properly treat the continuum [17]. For instance, Bandrauk et al. [17] calculated

HHG spectra from numerical solution of the Schrödinger equation for the hydrogen atom

interacting with a linearly polarized laser pulse. They used the same parameters for the

laser as we used, except that the carrier envelope has a Gaussian form and was propagated

for a slightly shorter time. Directly comparing our HHG spectrum with theirs, we find quite

good agreement. We observe that our harmonic peaks are sharper then theirs, which presents

some more complex structures. Moreover, in our case we also observe that the background

is higher and it appears to partly obscure the harmonic signal. The overall structure of the

signal is not much affected by the heuristic lifetimes, suggesting that ground and bound

excited states are primarily responsible for the HHG. We note that we both have a plateau

region around -8 (on a log10 scale). The background in our case starts around -12.5 while in

their case it starts lower at around -14.

As the other limiting case, we also computed HHG with TD-CI after completely removing

the continuum states (all the field-free states above Ip, as shown in 2) before propagation

(zero lifetime). As is evident in Fig. 5, the spectra obtained this way are in reasonable

agreement with the heuristic model using finite lifetimes. The overall intensity is slightly

higher and the peaks show slightly more structure. As a practical matter, this result suggests

that a reasonable approach to using bound-state codes for HHG spectral simulations is to

simply delete the continuum states. This result also shows that there is an important role

for the (bound) Rydberg excited states in the HHG electron dynamics.

Given the reasonable predictions of the HHG spectrum using the heuristic (finite) life-

time model, we next report investigations on the electronic dynamics exploiting the ease of

separating the different contributions included in the TD-CI wavefunction (Eq. (3)) and in

the propagation equation (Eq. (4)). We shall use the following abbreviations for the different

contributions: ground (G), bound (B) and continuum (C). We can develop Eq. (3) as

|Ψ(t)⟩ = G(t)|ψ0⟩+
Nb∑
b=1

Bb(t)|ψb⟩+
Nc∑
c=1

Cc(t)|ψc⟩, (10)

where Nb is the number of bound excited states and Nc is the number of continuum states

associated with a chosen basis set. The same type of separation can also be performed for the

energy and the dipole matrices appearing in Eq. (4) for the calculation of the time-dependent

coefficients of the wavefunction.

The terms describing interference between G, B and C can be explicitly identified. All
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the matrices have dimension K ×K where K = 1+Nb +Nc and have the following general

form in terms of G, B and C 
G-G G-B G-C

B-G B-B B-C

C-G C-B C-C

 .

Here G−G is a 1×1 matrix describing the interaction of the ground state with itself, G−B

(B−G) is a vector of dimension 1×Nb (Nb× 1) describing the interaction of ground-bound

(bound-ground) states and G − C (C − G) is also a vector of dimension 1 × Nc (Nc × 1)

describing the interaction of ground-continuum (continuum-ground) states. Finally, B − B

is a matrix of dimension Nb ×Nb and C − C of dimension Nc ×Nc describing respectively

the bound-bound and continuum-continuum interactions.

The total time-dependent dipole (and as a consequence HHG) can also be written in

terms of G, B and C time-dependent dipole contributions by expanding the time-dependent

expectation value:

µ(t) = µGG(t) +µGB,BG(t) + µGC,CG(t) + µBB(t) +

µBC,CB(t)+µCC(t), (11)

where

µGG(t) = G∗(t)G(t)µ0,0, (12)

µGB,BG(t) =

Nb∑
b=1

(G∗(t)Bb(t)µ0,b +B∗
b (t)G(t)µb,0), (13)

µGC,CG(t) =
Nc∑

c=Nb+1

(G∗(t)Cc(t)µ0,c + C∗
c (t)G(t)µc,0), (14)

µBB(t) =

Nb∑
b=1

Nb∑
b′=1

B∗
b (t)Bb′(t)µb,b′ (15)

µBC,CB(t) =

Nb∑
b=1

Nc∑
c=Nb+1

(B∗
b (t)Cc(t)µb,c + C∗

c (t)Bb(t)µc,b) (16)

µCC(t) =
Nc∑

c=Nb+1

Nc∑
c′=Nb+1

C∗
c (t)Cc(t)µc,c′. (17)

The HHG spectra shown in Fig. (3) and Fig. (4) are obtained from a time-dependent

propagation where G, B and C contributions describe the time-dependent effects such as
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ground- and excited-state depletion, ionization, and recombination. This gives us the physi-

cal information about the elaborate role of every electronic state in the HHG and in principle

allows us to identify the energy transfer among harmonics, laser field and the electrons in the

HHG process. Therefore, we shall henceforth regard the full time-dependent propagation

with heuristic lifetimes as our “benchmark” solution, and now proceed to characterize the

electronic dynamics that is primarily responsible for the HHG signal.

A first approach to this task is to start from the “benchmark” solution for the TD-CI wave

function, and then include only particular partial contributions to the time-dependent dipole

moment and thus the power spectrum. In this approach, the time-dependent coefficients ap-

pearing in the partial dipoles still conserve all the information about the full time-dependent

propagation, i.e. all possible interferences between G, B and C. In Fig. 6 we compare HHG

as obtained from the total time-dependent dipole (Eq. 11) (full propagation) and from the

partial time-dependent dipoles (Eqs (12,13,14,15,16,17)).

All the spectra in Fig. 6 have a very similar shape and it is mainly the intensity that

changes. We observe that in the region where there is a clear harmonic signal, the G−C, G−

B and BB have almost the same intensity as the full propagation, while in the background

region the larger contributions primarily originate from the B−B terms. However, because

the time-dependent coefficients still conserve the full propagation information, it is clear that

these contributions cancel each other to a large extent when summed to give the full result.

This indicates that the partial contributions cannot be expected to yield much physical

information individually.

In order analyze HHG on the basis of G, B and C contributions avoiding cancellation

effects, we turned to a second approach in which we also modified the Hamiltonian of the

propagation. First, we started by setting the B − B perturbation to zero in Eq. (4) which

reduces to


G-G G-B G-C

B-G 0 B-C

C-G C-B C-C

 .

This also means that µBB is equal to zero in the time-dependent dipole moment (Eq. 15) .
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Second, we also set to zero all the other possible contributions from B states:
G-G 0 G-C

0 0 0

C-G 0 C-C

 ,

which makes µGB,BG, µBC,CB equal to zero in the time-dependent dipole moment (Eqs. 13,16).

Third, the C − C perturbation was also set to zero
G-G 0 G-C

0 0 0

C-G 0 0

 ,

making µCC equal to zero in the time-dependent dipole moment (Eq. 17). In this last case

we obtain a propagation which is very similar to the physical mechanism of the 3SM as

we do not include any transitions between bound states and interactions/recombinations

between continuum and bound states. Note that in all these three cases we do not lose

any cancellation effects as it is straightforward to observe that the time-dependent dipole is

coherent with the Hamiltonian propagation.

In Fig. (7) HHG spectra calculated in the three ways described above are compared

with a full propagation. First, it is interesting to see that neglecting the BB contribution

effectively removes the background in the HHG spectrum, which makes possible to discover

a number of harmonics that were previously below the background level. The magnitude of

the background depends very strongly on the presence of the bound states and is primarily

determined by the bound-bound interactions. We confirm similar earlier findings [47] where

the sensitivity of the background to the number of bound states was also deduced.

Comparing the HHG where we neglected BB coupling to those where all bound states

were removed, we observe that the bound states contribute to the higher part of the spectra

close to the cutoff region. We also observed that these two parts of the spectrum (the cutoff

region and the background) are strongly modulated by the intensity of the laser we used

in the simulation. In fact, as in these regions the main contributions come from the bound

states, increasing or decreasing the laser intensity changes the depletion of the ground states,

the extent of excitation into the Rydberg states and the ionization in the continuum. In

other words, the intensity changes affect how Rydberg bound states can interfere.
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The blue HHG curve presented in Fig. 7 was calculated considering only the interaction

between the ground and continuum states. We started from an Hamiltonian which is able to

describe the physical mechanism ascribed to the 3SM model: ionization, propagation in the

laser field and recombination of the returning electronic wave packet with the ground-state.

Continuing to take as a reference the cutoff from 3SM, we see that our simulation reveals

that the HHG signal ends at much lower harmonics than the predicted cutoff. However,

the first and more intense harmonics are evidently due to the mechanism described by the

3SM. We conclude that even if the 3SM seems to give reasonable results, the harmonics

appear to be the overall result of several mechanisms, depending very much on the bound

states in question [56]. In fact, the lowest harmonics are well described by all the simplified

models, while harmonics close to the cutoff region, and the background, strongly depend

on the interference of the bound excited states with the ground state, themselves, and the

continuum.

To go deeper towards understanding the role of the Rydberg bound states we calculated

the HHG neglecting the bound-bound contributions as a function of the principal quantum

number, n, as shown in Fig. 8. We started by considering only n = 1 (G contribution) and

n = 2 (E = −0.125, 4 states). Then we progressively included higher Rydberg states: first

n = 3 (E = −0.055, 9 states), then n = 4 (E = −0.03125, 16 states), n = 5 (E = −0.020,

25 states) and n = 6 (E = −0.014, 16 states). The lowest harmonics are well described by

n = 1, 2, however the inclusion of higher Rydberg levels creates distinct plateaus at different

energy ranges related to the Rydberg states in question.

This effect clarifies the role of the Rydberg states in developing new methods to extend the

plateau of the harmonic generation to higher energies. For example, by preparing the initial

state as a coherent superposition of the ground state and an excited state it is possible to

induce dipole transitions between the continuum and the ground state via the intermediate

bound(excited)-state. This new scheme may provide a way of controlling the coherent output

that is produced in an experiment [57–59].

Moreover, this means that if a smaller basis with fewer diffuse functions is used such as

d-aug-cc-pV5Z, t-aug-cc-pV5Z, q-aug-cc-pV5Z, p-aug-cc-pV5Z, etc, we obtain roughly the

same trend observed in Fig. 8 because of the varying number of Rydberg bound-states that

can be correctly described by the different basis sets.

The results presented here illustrate the roles of G, B and C states in HHG dynamics.
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Whilst we have only reported results for a single set of field parameters, the same qualitative

results are found for a range of parameters of the laser field. However, we observed that

TD-CI with heuristic lifetimes is not able to describe HHG as the laser intensity increases

towards around I=1015 W/cm2. In this regime, the ionization processes start to compete

strongly with HHG, and limitations of the heuristic lifetime model become evident. Only

the first harmonics are reproduced while the rest of the spectrum is an undistinguishable

mix of background and harmonics due to the artifacts of the interference between G, B

and C. With an intense field such as I=1015 W/cm2, most of the dynamics is played by

the high continuum levels, which because of the heuristic model, also have relatively large

lifetimes. This has the consequence that most of the electron dynamics is lost. By decreasing

the heuristic lifetimes, it is possible to obtain slightly better behavior. However, this also

makes new structure coming from spurious interactions appear in the HHG dynamics. Most

sophisticated approaches such as the complex scaling method [30, 50] are probably necessary

in this regime.

IV. CONCLUSIONS

In this work, we have presented a detailed study of the role of Rydberg bound-states

and continuum in High-Harmonic Generation (HHG) Spectroscopy using time-dependent

configuration-interaction for the H atom. We improved the atomic orbital basis to better

describe the bound Rydberg levels and the continuum levels. We explicitly demonstrated

that a full propagation with bound state code including all levels does not converge with

AO basis set and gives artifacts in the form of an increasingly strong background. The basic

problem is that ionization losses do not occur in finite atomic orbital basis, because the

electron never fully escapes the atom.

To address this issue, we employed a heuristic lifetime model [42] for energy levels above

the ionization potential, to approximately allow an electron that has been excited to very

high energy states to escape and not contribute to the HHG. We compared the heuris-

tic model (finite lifetimes for non-stationary levels) against the conventional atomic orbital

treatment which assumes infinite lifetimes, and a third approximation which is to assume

the lifetimes go to zero (effectively removing the continuum levels entirely). These results

have implications for the manner in which bound state electronic structure methods are best
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applied to simulate HHG. The use of heuristic lifetime model gives HHG spectra that con-

verge with basis set and are in reasonable agreement with other methods that properly treat

the continuum as long as the laser intensity is not too high ( 1014 W/cm2). Removing the

continuum states entirely (zero lifetimes) gives an HHG spectrum in reasonable agreement

with the heuristic model (slightly higher intensities). This appears to be the preferable way

to use a bound state code without the heuristic lifetimes.

We also considered the origin of the HHG spectral features including the cutoff and the

extent of interference between peaks in terms of the electronic dynamics. Contributions from

field-induced coupling between different types of levels can be separated in the simulation in

order to deduce their effects on the observed HHG spectrum. Thus the origin of deviations

between the predictions of the semi-classical three step model, and the full simulation can be

associated with particular physical contributions. We can separate the role of field-induced

coupling between different excited bound levels (i.e. the Rydberg series) from the coupling

between the ground state and the Rydberg levels, as well as coupling to the continuum

levels. Considerably insight into the success and limitation of the semiclassical 3 step model

can be obtained by selectively removing coupling between different types of levels in the

simulations. The origin of the HHG cutoff is more complicated than implied by the 3 step

model. These results help to explain both the successes and the limitations of the three step

model.
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FIG. 1. Rydberg bound state energies for the d-aug-cc-pV5Z, t-aug-cc-pV5Z, q-aug-cc-pV5Z, p-

aug-cc-pV5Z and s-aug-cc-pV5Z basis sets.

FIG. 2. Unbound continuum levels obtained with the s-aug-cc-pV5Z, s-aug-cc-pV5Z plus six cc-

pVDZ ghost atoms, and s-aug-cc-pV5Z plus six cc-pVTZ ghost atoms.
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FIG. 3. HHG spectra from full propagation calculations using s-aug-cc-pV5Z, s-aug-cc-pV5Z plus

six cc-pVDZ ghost atoms, and s-aug-cc-pV5Z plus six cc-pVTZ ghost atoms.

FIG. 4. HHG spectra from full propagation calculations with finite lifetimes for unbound states,

using s-aug-cc-pV5Z, s-aug-cc-pV5Z plus six cc-pVDZ ghost atoms, and s-aug-cc-pV5Z plus six

cc-pVTZ ghost atoms.
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FIG. 5. HHG spectra from a TD-CI propagation calculation where the continuum was treated by

using the heuristic lifetime model (red trace) or completely removed (green trace).

FIG. 6. Comparison between HHG spectrum from full propagation with lifetimes with HHG spectra

with lifetimes from GC, GB, BB, BC and CC partial contributions.
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FIG. 7. HHG spectra from full propagation (black), without BB contribution (red), without BB,

GB (BG) and CB (BC) contributions (green) and only with GC (CG) contributions (blue). All

spectra have been calculated using heuristic lifetimes for unbound levels and with the s-aug-cc-

pV5Z basis set.

FIG. 8. Assessing the role of the Rydberg bound states in HHG by systematically neglecting

bound-bound contributions to the dynamics as a function of the shell n. The basis s-aug-cc-pV5Z

was used.
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