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Perfect 2-d Quadrupole Fields From Permanent Magnets 

Edward P. Lee, Michael Vella 

April1996 

LBL-38430 
HIFAN 804 

Consider the 13:_beam channel array shown in Figure 1. It is asserted that, under 
mathematically ideal assumptions, a pure quadrupole field is centered in each of the 13 
beam channel boxes. An identical quadrupole field (for H, not B) is also centered in each 
of the 4 boxes containing 4 magnetic wedges located near the center of the system. An 
iron yoke (!l = oo) with the displayed zig-zag shape provides a boundary condition (H11 = 
0) that makes the 13 channels equivalent to a portion of an infinite array. A similar array 
can be readily drawn for any number of beams. The quadrupole gradient in the beam 
channels is B' = M0 /2b, where M0 is the remnant field of the magnetic wedges, and the 
channel diameter (wedge-to-wedge) is 2b. Note that a unit cell of the array, containing 
one beam, has diameter 2-/2 b (viewed from a 45° tilt) so its area is 8 b2. A significant 
advantage of this design over those using dipolar blocks is the large fraction of cross 
section devoted to beam channels (50% vs 25%). 

Contents: 
_ Proof of asserted field properties 

Application to a heavy ion fusion driver 
Numerical study with Opera-2d/TOSCA 

infinite array: wedge blocks, !l = 1, !l = 1.039, nonlinear B-H data 
infinite array: dipole blocks, !l = 1 
finite array: !l = 1.039, iron boundary 

Ideal Field Structure 

We initially assume there is no demagnetization of the magnetic wedges by the 
opposed H field; this is justified for high quality SmCo or Nd B Fe blocks due to the 
relatively low fields in this configuration (IHI is less than - 50% of the remnant field) and 
permeability close to unity. All fields are given in units of Tesla so !lois suppressed: 

B = H + M, (1) 

where M = ± M0 (ex or ey) in the wedges. In the iron H vanishes,- so M = B there. A 
more realistic model for the magnetization allows constant permeability in the wedges; if 
the easy axis is in the + ex direction then 

(2) 

and similarly for the easy axis in other directions. If isotropic permeability (!l = !l; 1 = !l _L) 

is included in the fielEl calculation the advertised ideal field structure for H is again 
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Figure 1 
13 Beam Channel Array 
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present in both the vacuum and magnetic wedge boxes. However, the magnitude of H 

is reduced by the factor ( 1 + (Jl- 1) I 2 r 1 
. Typically, hard magnetic materials have, Jll. ~ 

Jl 11 and analytic calculation of fields is considerably complicated by this model feature. 
However it is found, in this case, that an ideal quadrupole field can be produced in the 
vacuum boxes by inserting iron wedges along the ± 45° diagonals between the magnetic 
wedges. Both the vacuum aperture and field strength are reduced by the presence of the 
additional iron. 

Since there are no "true" currents 

V' X H = 0, (3) 

and we are able to use a scalar potential everywhere: 

H = V' <1>. (4) 

From V • B = 0, we have, 

(5) 

This equation is completely general and is valid in 3-d as well as 2-d. We assume 
channels which are much longer than their diameter, so fringe fields can be ignored*; we 
only will solve the 2-d equation 

(
dMx + dMyJ· 
dx dy 

(6) 

For a box of 4 magnetic wedges, V' • M is non-zero only on the vertical and 
horizontal boundaries. It vanishes on the ±45° diagonal interfaces between wedges 
because lines of M flux do not end there; they only kink. This feature is also easily 
demonstrated mathematically, and its utility for design was previously exploited by Don 
Swenson in a 1982 LANL memorandum on multiple beam channels. See Figure 2 for a 
clarification of this discussion. It is found that 

Horizontal surfaces V' • M = M0 • delta function, 

Vertical surfaces Y' • M = -M0 • delta function. 

*For a calculation of fringe fields see: E. Lee, LBL-38333, HIFAN 801, April1996. 
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Figure 2 
Lines of M flux in a box of 4 magnetic wedges. Note that V • M = 0 in the interior 

of each magnet wedge group because the interfaces are at ±45°. Only on the box surface 
is V • M -:~: 0. 

In the example of Figure 2: 

V • M = M0 [-8(x-b)-8(x+b)+8(y-b)+8(y+b)]. (7) 

A 90° rotation of an entire infinite array around any channel or 4-wedge box center 
causes c:P ~ - c:P. Hence we have the expansion around any box center 

(8) 

We have asserted that <1>6 = <1>10 = ... = 0 inside the box. We can also set c:P = 0 at all box 
centers, so only the quadrupole term c:P2 would remain. This is the result of the system 
symmetry and the condition 
f H • dQ = 0 around any closed loop. 

We now assume the advertised result of identical pure quadruple (H) fields 
centered in all boxes (vacuum and block boxes) and show that it satisfies the 
jump /boundary conditions. It is sufficient to examine the three adjacent boxes shown in 
Figure 3. The scalar potential is assumed to have the form: 
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box# box center assumed potential in box 

#1 x=o q,(l) =A[x2-y2] 
y=o 

(=A r2 cos 26) 

#2 x=2b 
q,(z) =A[ (x-2b)2 -y2] 

y=o 

#3 
x=2b q,(J) = A[(x-2b)2- (y-2b)2] 
y=2b 

Recalling the fundamental equation for <1>: 

(
aMx + aMyJ 
ax ay I 

(9) 

it is clear that we have a solution inside each box, where V • M = 0. We need only to 
verify that Hx = a<I>/ax and Hy = a<I>;ay are continuous across the horizontal and vertical 
box interfaces respectively, and Hx and Hy jump by ±M0 at the vertical and horizontal 
interfaces respectively. Continuity of the parallel components is built into their assumed 
form, e.g. at the vertical interface at x = b, between boxes #1 and #2 we have 

= <1>(2) = (10) 

Hy = = 2Ay (11) 

on both sides. Continuity of Hx between boxes #2 and #3 is similarly guaranteed. For the 
normal component of H at the box #1 /box #2 interface we have 

b+ 

( -2Ab)- (2Ab) = H~2) - H~I) =- f dx aaMx = M
0

, 

b- X 

(12) 
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Figure 3 
Layout of three adjacent boxes for application of jump conditions on H. 
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yielding 

A = _Mo 
4b 

Similarly at the box #2/box #3 interface 

which is again satisfied by 

b+ ()M, 
(2Ab)-(-2Ab)=- fdy ()y) =-M0 , 

b-

A=- Mo. 
4b 

The assumed solution is therefore consistent in an infinite array with the value of A 
derived above. 

We have, centered in each beam channel box~ 

<I> = _Mo 
4b 

By = H = ()cp - Mo y . 
Y ay - 2b ' 

B' ~a~x~ = 
Mo 
2b 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

It has been shown that <I> is a simple quadru_E?le potential centered in the 4-wedge 
boxes as well as in the channel boxes. Therefore H is normal to the diagonal interfaces 
between wedges. For the finite system iron* replaced wedges on diagonal surfaces 
around the edge exactly where the tangent H field would vanish in the infinite array. 
This is a sufficient condition to leave fields unperturbed in the wedges and channels since 
the essential property of iron (J.l = oo) is to eliminate the tangential component of H on its 
surface. 

* In the simulation of the finite system described in the last section of this report, magnetic steel with Jl 
= 80 is placed on these surfaces. 
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Application To A Heavy Ion Fusion Driver 

The following example suggests that permanent magnet channels can efficiently 
transport driver scale currents at high energy, but with an appreciable penalty in 
quadrupole length (and at present, cost) compared with superconducting arrays. 

Let the magnetic wedge material be Nd B Fe, with remnant magnetization 
M 0 ""' 1.2 T and !l = 1.0. Questions of radiation damage, etc. are put off for future study. 
Transportable current per unit area of the array -is maximized* by choosing b = 0.036 m, 
independent of M0 , so we get the very modest quadrupole gradient 

B' = Mo = 
2b 

1.2 T 

2x.036 
= 16.7T /m. (20) 

By contrast, gradients in the range 20 - 60 TIm are typical for superconducting layouts 
for HIF drivers. 

To get a 4.0 MJ driver we accelerate 800 !lC of Cs+ to 5.0 GeV. A typical lattice 
parameter set is obtained for the intermediate energy 1.0 GeV: 

Ion= cs+ I 

A= 132.9 amu, q = +1, 

Kinetic energy T=1.00 GeV, 

Number of beams N = 36, 

v = j3 = ~ 2T = 
c Mc2 

Ion rigidity = Bp = 3.107j3A = 
q 

2 X 1.0 = 0.127, 
132.9 X 0.9315 

3.107 X 0.127 X 
132

· 
9 

= 
1.0 

52.5T-m, 

B' 16.7 2 
Quad strength= K = = = 0.318 m- . 

Bp 52.5 

(21) 

(22) 

(23) 

Assuming field occupancy fraction 11=.5 and undepressed tune cr0 = 72°, then the half 
period length is+ 

* See note on optimum aperture at end of this section. 
+For transport formulas see HIFAR Note #425 and HIFAN Report #701. 
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(24) 

We have set b = .036 m =distance from a beam center to a wedge. Suppose the vacuum 
aperture (d) is at .034 m and the maximum beam edge radius is given by the standard (for 
heavy ion fusion) allowance 

a = 
d-.01rn 

1.25 
= .0192 m. 

The mean beam edge radius is then 

a .0192 
a= 2 = 2 =0.0151m. 

1+ 11KL (1_11) 1+ 0.5x0.318x(3.01) x0.75 
4 2 4 

The maximum transportable beam perveance is (emittance = 0) 

( 
a )

2 
( 0.0151 J2 

-6 Q=- 2(1-coscr0 )= x 2 x (1-cos72)=8.71x10 . 
2L 2 x 3.01 

Transportable line charge density per channel is given by 

( 
T J 1 10

9 
-6 J.LC t.=(41te0 )- Q= 9 x-x8.71x10 = 0.968-. 

qe 9 x 10 1. 0 rn 

Since 800J.LC is divided among N=36 beams, we have a pulse length 

f. = total charge = 800 = 23_ 0 rn 
p NA 36 X 0. 968 I 

and pulse duration is 

t = fp = 23·0 = 0.602 JlS. 
P ~c 0.127x3x108 

The 36 beam square array has diameter (including iron) 

diameter= 6x2.J2b+2-v'2b=14.J2 x0.036=0.713m. 
(boxes) (iron) 
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(29) 

(30) 

(31) 



The above numbers are not unreasonable. The big change with respect to 
superconducting magnets is the low B' (by a factor of ;...3), which is compensated by 
increasing 11 by a similar factor. This leaves less room per half period for acceleration and 
probably results in a longer accelerator. On the other hand, cryogenics, thermal 
insulation, power supplies, leads, superconducting cable, magnet end configuration, and 
high field mechanical stresses are eliminated. Cost may be a problem. At a current price 
of about $5 I cm3 for finished blocks* , we have a total cost (per lattice half period of 3.01 
m): 

cost of blocks= NT\L(2b)2 X (5 X 106 $jm3) = 36 X 0.5 X 3.01 X (.072)2 X $5 X 106 = 1.4 M$, 

which is .47 M$/m of linac. Clearly a significant reduction in unit price is needed to make 
this an attractive option for a driver. However, it may be acceptable in a scaled 
experimental system. 

Note on optimum channel size 

A frequently used figure of merit (FOM) for transport is total beam current divided 
by total cross sectional area associated with the focusing lenses. For a multibeam 
transport structure this FOM is the current per beam divided by the unit cell area. While 
a global cost minimum may not exactly coincide with this FOM, it does provide a useful 
starting point for design. 

Note that at any given energy the current is proportional to the beam perveance: 

Ia Q, (32) 

and the unit cell area is proportioned to the squared magnetic block distance (8b2 in the 
present case). Hence 

Q FOM a 2 . 
b 

(33) 

Maximum transportable Q is proportional to (ajL)2 with cr0 fixed at its stable maximum 
(cr0 -::;: 90°): 

(34) 

The square of the lattice half period length is, for given cr0 and 1'\, inversely proportional 
to K and therefore proportional to b: 

L2 a _!_=Bp=( 2b)(Bp) a b. 
K B' Mo 

(35) 

,. Private communication: S. Lund of LLNL has recently received a vendor quote close to this figure. 
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For the relation between beam edge radius a and block distance b, we adopt the 
traditional standard clearance for image and alignment related effects and add another 
2.0 mm for structure between the beam pipe aperture and magnet block: 

b = 0.002 m + 
extra 

structure 

Equivently a=0.8 (b-0.012). 

Putting together the pieces we have 

1.25a 
image 

allowance 

Q 
FOM a b2 

a _1 (~)2 
b2 L 

The maximum FOM follows from 

which is solved by 

O=~(FOM) 
db 

2(b- 0.012) 
a 

b3 

+ 0.01 m 
alignment 
allowance 

boptimum = 3 x 0.012 = 0.036 m. 

More generally we may write 

b · =3X + . ( 
extra alignment) 

optimum structure allowance 

(36) 

(37) 

(38) 

(39) 

We note here that if the extra structure allowance is increased from 0.002 m to 0.01 m, 
the optimum b is increased to 0.06 m. A linac transporting the same total current then 
uses -22 beams and the cost for magnetized blocks is increased from 0.47 M$/m to 
0.79M$/m of linac. A different design approach is found if it is assumed that beam 
steering or magnet shimming can eliminate the need for a large alignment allowance. In 
this case b may be made very small, with a simultaneous large increase in number of 
beams to produce larger transported currents per unit area than were found above. 

The wedge-based system we have described has one magnetic wedge set per beam 
channel; this is a very efficient use of space and material. For comparison it is interesting 
to consider a system made up of simple dipolar blocks instead of the wedge sets. It is then 
found that (for given M0 , b, and Tt) the quadrupole gradient is increased by a factor of 
1.18, and the number of beams is decreased by this factor. However; two dipole blocks 
per beam channel are required, so the mass of blocks and their cost per meter of linac is 
increased by a factor of 2/1.18 = 1.7. In addition, the dipole block system contains idle 
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spaces equal in number to the beam channels resulting in a significant increase in total 
cross sectional area of the array (also by a factor of 1.7). 

2-D Simulation Ideal Magnetic Quadrupole Arrays 

Ideal permanent magnet quadrupoles were simulated using the Opera-
2d/Tosca finite element magnetostatic code.- First, a single cell in an infinite array 
was simulated, and the results are compared here with analytic predictions for the 
infinite array limit. A comparison with an array constructed of simple dipole blocks 
is also made. Second, the practical utility of the ideal quadrupole configuration is 
illustrated by simulating a thirteen beam array with an iron boundary of large but 
finite permeability. 

Infinite Array with Ideal Magnetic Wedges 

The magnetic field lines of an octant of an ideal magnetic quadrupole cell in 
an infinite array are illustrated in Figure 4a by plotting lines of the magnetic field 

(i3). In this and all following simulation examples, each full cell is square, with 
width 4b = 0.24 m, so in the ideal array it would contain two beams. The octant in 
Figure 4 shows octants of two beam channels because this is the smallest simulation 
segment allowed by symmetry. The easy axes of the magnets are illustrated by 
arrows. For comparison with theory, special magnetic material properties were 
created by using a linear B-H curve, with J.L = 1, Br (i.e., M0 ) = 1.120 T, and He= -1.120 
T. The quadrupole field gradient of the simulated channel was found by taking 
Fourier moments of the tangential magnetic field along arcs with radii between 0.01 
m and 0.059 m. The simulated gradient was found to be 9.3331 T/m, which agrees 
very well with the analytic prediction of 1.1200/(2 x 0.06) = 9.3333 T /m. For this and 
all other simulations reported here, Opera's quadratic mesh option was used to 
achieve an internal tracking error < 0.5%. The quadratic mesh option refines the 
mesh by adding nodes at the midpoint of each of the specified mesh lines; the added 
nodes are connected with straight line sections. The quadratic' option refines the 
mesh but reduces the size of output files by saving only end point data for the hard 
mesh nodes. In this example all the higher order moments were < 1E-4 for cases 
with constant J.l -:;:. 1, also in agreement with theory. For the case J.l = 1, the un
normalized moments* for them = 5 and 9 poles were about 1o-5 T at a radius of 
0.059 em, compared with 0.5506 T for m=l. This is much less than the nominal 
accuracy of this simulation. So, the higher order moments were found to be zero 
within the accuracy of this simulation, and the ideal nature of this quadrupole 
geometry is confirmed. · 

*For Opera-2d/Tosca output the moment designation (m = 1, 5, 9, .. ) denotes the power of r in the 
magnetic field multipole rather than the corresponding magnetic potential (2, 6, 10, .. ) The value of 
the moment is the strength of the multipole field component at a particular value of r. Simulation 
fields are expressed in Gauss and radii in centimeters. 
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Figure 4a 
An octant of a cell of an infinite array of ideal permanent magnet quadrupoles was simulated with 

Opera-2d. In an ideal quadrupole array, the smallest-simulation region allowed by symmetry contains 
octants of two beam channels. (a) Magnetic field lines are plotted. 



The ideal nature of this configuration is illustrated graphically by plotting I B I 
(called BMOD in Opera) contours in Figure 4b. The "bulls eye" pattern of evenly 
spaced, circular BMOD contours graphically confirms a uniform, symmetric 
magnetic gradient centered in the channel. Since higher order multipole moments 
also have higher order asymmetries, the presence of finite higher order moments 
would produce non-circular I B I contours, as will be illustrated in later examples. 
As mentioned previously, an interesting theoretical characteristic of this ideal 
quadrupole geometry is that H forms perfect quadrupoles both in the beam channels 
and inside the magnets, as illustrated in Figure 4c. 

For comparison with the ideal array, a standard dipole block quadrupole cell 
in an infinite array was simulated using the same B-H characteristics as above, J.L = 
1, Br (i.e., M0 ) = 1.120 T, and He = -1.120 T. Magnetic field lines for an octant of this 
cell are illustrated in Figure Sa, and I B I contours are shown in Figure Sb. The most 
obvious difference between an ideal quadrupole and a standard dipole block array is 
that an ideal quadrupole array has double the number of beam channels per magnet 
block. From Figure 5, only the lower section in the dipole based array is usable for 
beam transport, because the upper section contains an octopole field in lowest order 
and is typically occupied by a non-magnetic spacer. This gives the ideal quadrupole 
array an intrinsic scaling advantage. From Figure 4, the ideal quadrupole array also 
produces high quality quadrupoles in both lower and upper non-magnet sections. 

The geometric advantage of an ideal quadrupole array is somewhat 
diminished by its' lower quadrupole field gradient. For the examples illustrated in 
Figures 4 and 5, the gradient of the ideal quadrupole is 9.33 T /m, compared with 
11.01 T /m for the dipole block array, i.e., the ideal quadrupole produces 15% less 
gradient. However, field quality for the ideal array is intrinsically better, since the 
dipole array has a finite dodecapole moment, that creates significant magnetic 
perturbations beyond a radius of 0.05 m. The presence of higher order moments in 
the dipole array is visually confirmed by asymmetries in the I B I contours of Figure 
Sb. 

For ideal quadrupoles fabricated from real materials, a subtle systematic issue 
arises regarding treatment of the magnetic permeability in the direction orthogonal 
to the easy axis. Only a few hard magnetic materials are approximately linear 
through the entire range He < H, and even fewer have the same permeability 

parallel and perpendicular to the easy axis, i.e., usually J.lparallel > J.lperp· A 
difference between the two permeabilities can generate small higher order moments 
in an ideal quadrupole, which would otherwise be perfect. This effect might not be 
noticed in a dipole based array, because the dipole geometry has much larger 
intrinsic higher order moments. The 1995 version of Opera-2d/Tosca was used for 
this work. For hard, non-linear materials, this version self-consistently finds the 
appropriate J.lparallel for the B-H range of interest, but blindly takes J.lperp from the 
slope of the B-H curve at the intercept to the horizontal axis, i.e., at B=O. This can 
give rise to very large (incorrect) values of J.Lperp for highly nonlinear material. 
Given nonlinear B-H data, Opera-2d's ad hoc treatment of J.lparallel and J.lperp can 
generate small higher order multipoles in an ideal quadrupole array. This is 
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Figure 4b 
An octant of a cell of an infinite array of ideal permanent magnet quadrupoles was simulated with 

Opera-2d. In an ideal quadrupole array, the smallest simulation region allowed by symmetry contains 
octants of two beam channels. (b) I B I contours take the shape of evenly spaced, concentric circles, which 
indicates that the gradient is dominated by the linear, quadrupole field, component. 
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An octant of a cell of an infinite array of ideal permanent magnet quadrupoles was simulated with 

Opera-2d. In an ideal quadrupole array, the smallest simulation region allowed by symmetry contains 
octants of two beam channels. (c) In ideal quadrupoles, the I HI contours everywhere have the shape of 
evenly spaced, concentric circles. In this example, fl = 1.0. 
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Figure Sa 
An octant of a cell of an infinite array of dipole block quadrupoles was simulated with Opera-2d. The 

smallest simulation region allowed by symmetry contains only one beam channel. Magnetic field lines are 
plotted 
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Figure Sb 
An octant of a cell of an infinite array of dipole block quadrupoles was simulated with Opera-2d. The 

smallest simulation region allowed by symmetry contains only one beam channel. I B I contours deviate 
from evenly spaced concentric circles, indicating the presence of higher order multipole components. In 
this example, Jl = 1.0. 



illustrated in Table 1, where moments have been tabulated for three cases of B-H 
data: (1.) Jl = 1; (2.) nonlinear Jl; and (3.) linear NdFeB (maximum B-H). The 
nonlinear B-H data has an effective Jlparallel = 1.03, and Jlperp = 1.57. This produces a 
4.5% lower quadropole gradient than would be for J.1 = 1, and an order of magnitude 
increase in the dodecapole field moment (m=5). Since the same mesh was used in 
these examples, with the same nominal computational error, the increased 
dodecapole moment is attributed to the higher effective Jlperp forced by the code., 
For the case of Jl = 1 the dodecapole moment is entirely attributed to numerical 
inaccuracy. This hypothesis is also supported by the results for the third case, which 
used linear B-H data generated from the Brand He typical of NdFeB. In this case, 
Jlparallel = Jlperp = 1.039, and the simulation gradient essentially equals that 
predicted by the finite Jl theoretical results. The three sets of B-H data are shown in 
Table 2. It should be noted that the present version of Opera-3d allows operator 
control of anisotropic magnetic properties, and the 1996 release of Opera-2d is 
expected to include an anisotropic magnetic option. 

Finite Array 

An octant of the thirteen beam array shown in Figure 1 was simulated with 
realistic magnetic steel B-H data, appropriate symmetry boundary conditions on two 
sides, and finite boundary on one side, as illustrated in Figure 6a. , The finite 
boundary along the steel side necessitated a large mesh. Magnetic materials 
properties were prescribed by using B-H data for tenten stainless steel (Jl :::::: 80), and 
linear NdFeB permanent magnets, with Br = 13.3 kG and He = -12.8 kG as listed in 
Table 2 (c, d). The quadratic option was used to reduce Opera's internal rms tracking 
error to < 0.5%. 

The "ideal" nature of the quadrupoles in the 13 channel array was confirmed 
in several ways. A plot of the magnetic field lines is shown in Figure 6b, and 
constant absolute values of the magnetic field I B I are plotted in Figure 6c. The 
bulls eye patterns of the I B I plots visually indicate that high quality quadrupole 
fields are produced in each channel, and that they are geometrically centered. The 
magnetic centers were confirmed within 0.01cm of the geometric centers by reading 
out BMOD along the x- and y-axes. 

Each quadrupole channel in the array was also quantitatively characterized by 
using Opera's moments package to take the Fourier moments of the tangential 
component of the magnetic field along a series of arcs centered at the geometric 
center of each channel. The moments were taken for arcs of radii, r = 1, 3, 4, and 5 
em. The results are tabulated in Table 3. For every channel, the nonvanishing 
higher order m = 5 and m = 9 moments were order 1E-7 compared with computed 
quadrupole moment; this is zero within the accuracy of this simulation. Therefore, 
the conclusion is that this 13 beam array effectively has no higher order moments in 
the two dimensional limit despite the non-ideal characteristics of the steel. 
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Table 1. Fourier moments of the magnetic field tangent to an arc are shown for radii of 1.0 em in a beam channel in an infinite array. The 
standard deviation of the moments for the quadrupole gradient (m = 1) was<< 1E-5. The standard deviation of the non-vanishing higher 
order moments, m = 5 and 9, was comparable to the computed moments, indicating that indicated higher order moments are due to finite mesh 
errors. The finite m = 5 moment for the nonlinear material is attributed to the large, incorrect, value of J.lperp. extracted from the B-H data. 

NORMALIZED MOMENTS (av@ r=l, 5, 5.9 em) 
Opera-2d Theory Opera-2d Opera-2d 

bh data mu Br He m=1 m=l, theory m=5 m=9 
ideal quad edl.bh l 11,200 -11,200 933.31 933.33 -4.53E-05 -l.31E-07 
dipole quad edl.bh 1 11,200 -11,200 1101.59 4.70E-02 4.84E-06 

ideal quad ndfebo.bh nonlin 11,200 -9,814 891.23 3.68E-04 -l.6IE-07 
dipole quad ndfebo.bh nonlin 11,200 -9,814 1068.42 4.93E-02 5.09£-06 
nonlinear, J.l parallel = 1.03, J.lperp = 1.57 

ideal quad ed5.bh 1.04 13,300 -12,800 1087.08 1086.60 -3.02E-05 -4.02E-08 
dipole quad ed5.bh 1.04 13,300 -12,800 1288.70 5.66E-02 5.88E-06 
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Figure 6a 
An octant of a thirteen beam array of ideal quadrupoles with a magnetic steel boundary was simulated 

with Opera-2d. The size of the mesh and boundary conditions are illustrated. 



Table 2. B-H data used in Opera-2d simulations: (a) Linear, !J. = 1; (b) Nonlinear, 1-l parallel = 
1.03, !J.perp = 1.57; (c) Linear NdFeBO, !J. = 1.039; (d) Data for magnetic steel. 

(a) Linear, 11 = 1. 
H, Gauss B, Gauss 

-11200 0 
-10200 1000 
-9200 2000 
-7200 4000 
-5200 6000 
-3200 8000 
-1200 10000 

0 11200 

(b) Nonlinear, 11 parallel= 
1.03 and 11perp = 1.57. 

B H 
0 -9814.34 

1000 -9198.58 
2000 -8482.30 
3000 -7652.92 
4000 -6798.41 
6000 -4963.72 
8000 -3078.76 
10000 -1156.11 
11200 0.0 

(c) Linear NdFeBO, 11 = 1.039. 
B H 
0 -12800.0 

1000 -11837.0 
2000 -10875.0 
4000 -8950.3 
6000 -7025.5 
8000 -5100.7 
10000 -3175.9 
12000 -1251.1 
13300 0 

(d) Tenten magnetic stainless steel 

B H 
0 0.0000 

6400 79.5775 
9200 135.2820 
10100 159.1550 
11000 190.9860 

·12000 238.7320 
13000 318.3100 
14000 493.3800 
14500 644.5780 
15000 875.3520 
15500 1273.2400 
15750 1591.5500 
16000 2148.5900 
16500 3342.2500 
17000 4774.6500 
17500 6525.3500 
18000 9151.4100 
18500 11936.6000 
19000 15119.7000 
19500 18541.6000 
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Figure 6b 
An octant of a thirteen beam array of ideal quadrupoles with a magnetic steel boundary was simulated 

with Opera-2d. Magnetic field lines _are plotted. Note that essentially no flux leaks from the iron. The only 
line outside the iron corresponds· to the zero magnetic potential line. 
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Figure 6c 
An octant of a thirteen beam array of ideal quadrupoles with a magnetic steel boundary was simulated 

with Opera-2d. I B I contours take the shape of evenly spaced, concentric circles, which indicates that the 
gradient is dominated by the linear, quadrupole field, component. The I B I centers appear to coincide with 
the geometric beam centers. In this example, J.1 = 1.039, Br = 13.3 kG and He = -12.8 kO 



Table 3. Fourier moments of the magnetic field tangent to an arc are shown for radii of 1, 3, 4, 
and 5 em. The arcs were centered at the geometric center of each channel in an octant of a 
thirteen beam array with a steel boundary. All moments are normalized with respect to radius, 
i.e. divided by r, r5, or r9. Only the nonvanishing higher order moments are shown, m = 5, 9; 
and these are zero within the accuracy of this simulation. Magnetic properties were specified by 
using linearized B-H data generated from Brand He of NdFeB with J.l = 1.039. 

NORMALIZED MOMENTS 

center 
0,0 

12, 12 

24,24 

24,0 

r, em 
1 
3 
4 
5 

1 
3 
4 
5 

1 
3 
4 
5 

1 
3 
4 
5 

average 

stdev 

m=1 
1087.11 
1087.11 
1087.11 
1087.11 

1087.11 
1087.53 
1087.46 
1087.41 

1087.11 
1086.50 
1086.54 
1086.57 

1087.11 
1086.56 
1086.60 
1086.61 

1086.97 

0.35 
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m=5 

-3.06E-04 
-9.69E-05 
-3.94E-05 

-1.25E-03 
-3.12E-04 
-1.11 E-04 

2.22E-04 
4.52E-05 
1.42E-05 

-4.32E-04 
-1.43E-04 
-3.78E-05 

-2.04E-04 

3.75E-04 

m=9 

-3.80E-06 
-3.77E-07 
-6.38E-08 

2.98E-06 
9.76E-08 
-5.84E-09 

-7.50E-06 
-6.60E-07 
-1.03E-07 

-4.43E-06 
-3.98E,07 
-6.68E-08 

-1.19E-06 

2.75E-06 



The computed moments correspond to the coeficients of Be in the Fourier expansion with 
e: 

Be = MJ (r) sin e + Ms(r) sin 5 e + M9(r) sin 9 e + ... I (40) 

with M1 oc r, Ms oc rS, etc. expected in vacuum in the limit of perfect computational 
accuracy. The predicted (ideal) value at r = 1.0 em 

(41) 

is in excellent agreement with the simulation average = 1086.97. 
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