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Abstract: Final lesion volume (FLV) is a surrogate outcome measure in anterior circulation stroke
(ACS). In posterior circulation stroke (PCS), this relation is plausibly understudied due to a lack of
methods that automatically quantify FLV. The applicability of deep learning approaches to PCS is
limited due to its lower incidence compared to ACS. We evaluated strategies to develop a convo-
lutional neural network (CNN) for PCS lesion segmentation by using image data from both ACS
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and PCS patients. We included follow-up non-contrast computed tomography scans of 1018 patients
with ACS and 107 patients with PCS. To assess whether an ACS lesion segmentation generalizes
to PCS, a CNN was trained on ACS data (ACS-CNN). Second, to evaluate the performance of only
including PCS patients, a CNN was trained on PCS data. Third, to evaluate the performance when
combining the datasets, a CNN was trained on both datasets. Finally, to evaluate the performance of
transfer learning, the ACS-CNN was fine-tuned using PCS patients. The transfer learning strategy
outperformed the other strategies in volume agreement with an intra-class correlation of 0.88 (95%
CI: 0.83–0.92) vs. 0.55 to 0.83 and a lesion detection rate of 87% vs. 41–77 for the other strategies.
Hence, transfer learning improved the FLV quantification and detection rate of PCS lesions compared
to the other strategies.

Keywords: posterior stroke; segmentation; transfer learning; deep learning; CT

1. Introduction

Infarct volume, representing the tissue damage after an acute ischemic stroke (AIS),
is commonly considered as a surrogate endpoint for the primary functional outcome
(modified Rankin Scale (mRS) after 90 days) [1]. Various trials have shown a strong
association of final lesion volume (FLV) with functional outcome in patients suffering from
a stroke due to a large vessel occlusion in the anterior circulation [1,2].

However, in patients with a stroke due to a posterior circulation stroke (PCS), the rela-
tion between FLV and outcome is understudied [3]. The low number of studies addressing
this relation may be due to the combination of two reasons; the relatively low prevalence
of PCS compared to anterior circulation stroke (ACS) and the lack of automated analysis of
PCS lesion volume assessment.

With the huge effectiveness of endovascular treatment of anterior circulation stroke
patients, treatment of posterior stroke has attained renewed interest in various studies and
trials. For example, the recently completed BASICS trial [4] could not show a beneficial
effect of endovascular treatment with functional outcome used as an outcome measure.
Alternatively, secondary outcome measures such as FLV might show a beneficial effect of
certain treatments since functional outcome, as addressed by the mRS, is a rather coarse
outcome measure, which is also affected by many other confounders [5]. Developing
methods that automatically segment lesions due to a posterior circulation stroke (PCS)
would help investigate FLV as a surrogate outcome for this type of stroke.

Solutions for the automatic segmentation of FLV based on convolutional neural net-
works (CNNs) have been presented in the literature for CT and MR imaging [6,7]. However,
these studies have only considered the FLV of patients with an AIS due to an occlusion of
the anterior circulation [1,6]. To achieve good performance, CNNs typically require large
amounts of labeled training data. However, PCS constitutes only 26% of AIS cases [8,9],
and thus, training of CNNs for automatic PCS lesion segmentation is hindered by the
limited availability of data. Furthermore, the applicability of methods developed for ACS
FLV segmentation on posterior stroke lesion segmentation is unknown.

Several methods exist for dealing with a lack of data to train a CNN. One method
that reduces the data needed to train CNNs by reusing knowledge is transfer learning [10].
To perform transfer learning, a CNN is pre-trained on a task for which large amounts of
image data are available and fine-tuned on a different task for which little image data are
available. Transfer learning has been successfully applied to solve various medical image
analysis problems [11–14].

We evaluate strategies to create automated PCS lesion segmentation by using image
data from patients with ACS and patients with PCS. We hypothesize that transfer learning
utilizing data of ACS lesions improves automatic PCS lesion segmentation performance
compared to alternative strategies: training a CNN on only ACS lesions, only on PCS
lesions, or on the combination of ACS and PCS lesions.
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2. Materials and Methods
2.1. Patient and Image Data

All involved patients in this retrospective study or their legal representatives provided
written informed consent. The medical ethics committee of each participating hospital
approved the use of the data after anonymization.

The Hermes dataset consists of 1665 patients who suffered from an ACS and was
obtained from the HERMES collaboration [15], which investigated the effectiveness of
endovascular therapy for treating ACS. This collaboration combined data from seven
clinical randomized trials and collected data between December 2010 and December 2014.
The scans contain a varying number of slices, which each have 512 rows and columns.
The inclusion criteria are shown in Figure A1A. Patients were excluded if no follow-up
non-contrast computed tomography (FU-NCCT) was made in the time window between
12 h and 2 weeks after stroke onset or if the preprocessing steps were unsuccessful. In
total, 1018 patients out of the 1665 patients were included. Baseline characteristics of the
included patients are shown in Table 1.

Table 1. Baseline characteristics, treatment and time data for patients with posterior circulation stroke
and anterior circulation stroke. Prior to posterior stroke, transient ischemic attack (TIA), posterior
circulation TIA, and atrial fibrillation (history or 12 lead electrocardiogram (ECG)) were not available
(NAV) for the HERMES dataset. We use abbreviations for the National Institutes of Health Stroke
Scale (NIHSS), modified Ranking Scale (mRS) and, Intravenous Thrombolysis (IVT).

Parameter Posterior Stroke Anterior Stroke

Clinical
Age, years, mean (Standard Deviation) 65.65 (12.2) 66.1 (13.3)

Sex, F, No. [%] 34/107 [31.8] 458/1018 [45]
NIHSS at baseline, mean [median] (N) 21.4 [19] (107) 17 [17] (1015)

Prior Conditions
Diabetes mellitus, No. [%] 28/107 [26.2] 169/1018 [16.6]

Hypertension, No. [%] 64/107 [59.8] 564/1018 [55.4]
Stroke, No. [%] 21/107 [19.6] 121/1018 [11.9]

Posterior circulation stroke, No. [%] 7/107 [6.5] NAV
TIA, No. [%] 10/106 [9.4] NAV

Posterior circulation TIA, No. [%] 2/106 [1.9] NAV
Atrial fibrillation, No. [%] 13/107 [12.1] 314/1018 [30.8]

Atrial fibrillation (history or 12 lead ECG),
No. [%] 23/107 [21.5] NAV

Pre-Stroke mRS
0, No. [%] 80/107 [74.8] 836/1017 [82.1]
1, No. [%] 11/107 [10.3] 129/1017 [12.7]
2, No. [%] 13/107 [12.1] 29/1017 [2.9]
3, No. [%] 3/107 [2.8] 23/1017 [2.3]

Treatment
IVT, No. [%] 92/107 [86] 872/1018 [85.7]

Time
Stroke onset to IVT, min.,

mean [Standard Deviation] (N) 176.9 [176.102] (90) 112.2 [57.2] (871)

The BASICS dataset consists of 168 patients who suffered from a PCS and was obtained
from the BASICS trial [16,17], which investigated the effectiveness of endovascular therapy
for treating patients with a PCS. This trial included patients from 23 centers, and the data
were collected between 2011 and 2019. The scans are composed of a varying number of
slices that each have 512 rows and columns. Imaging parameters are shown in Table A1.
Inclusion criteria for our study are shown in Figure A1B.
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Infarcts evolve over time, and the most recent FU-NCCT scans imaged the most
evolved infarcts with the lowest densities. As a result of the more distinct presence of the
infarcts in later scans, these scans are commonly used for the infarct volume assessment in
clinical practice and clinical research. Hence, the latest FU-NCCT scan was used if multiple
scans were available for the same patient. Patients were excluded if no FU-NCCT was
made or if the follow-up image was of insufficient quality.

In total, 107 patients out of the 168 available patients were included. The mean and
median time between symptom onset and the most recent follow-up NCCT are respectively,
98.5 h and 28 (IQR: 24–32). Baseline characteristics of the included BASICS patients are
shown in Table 1. The infarcted regions, as expressed in affected PC-ASPECTS regions, are
shown in Table A2 in the Appendix A.

2.2. Reference Segmentations

For patients with an ACS, reference segmentations were obtained by manual annota-
tion by one of two experienced observers on the most recent FU-NCCT. The annotation
procedure is outlined in [1]. In summary, a window width of 30 Hounsfield Units (HU)
and a center level of 35 HU was set in ITK-Snap [18]. All hypo-dense regions on the
ipsilateral hemisphere including edema were included in the segmentations. Infarcted
tissue in the ipsilateral hemisphere with signs of an old infarct were excluded from the
reference segmentations. Parenchymal hemorrhages adjacent to or within the affected
area were included in the reference segmentations. Finally, reference segmentations were
checked and, if necessary, corrected by one of three radiologists, each of whom had more
than 5 years of experience.

Reference segmentations of lesions caused by a PCS on FU-NCCT scans were manually
created by a single trained observer (IVO) and were checked by an experienced radiologist
(CBLMM) who has more than 15 years of experience. Lesions were segmented by using
the aforementioned window width and center level using ITK-Snap software [18]. PC-
ASPECTS scores [19], which were scored by two experienced radiologists, were used when
available to identify the infarcted territory.

2.3. Preprocessing

The intracranial region as a volume of interest was obtained automatically using a
combination of preprocessing steps [6]. The bone was segmented using a threshold-based
segmentation by selecting all voxels with an intensity of 170 HU or higher. Subsequently,
the foramina, except the foramen magnum, were closed using morphological filters, and a
region-growing algorithm was applied to select the intracranial volume. To obtain the final
volume of interest, the region caudal to the foramen magnum was excluded.

To ensure the same size, orientation, and voxel sizes, all scans were aligned by auto-
matically registering the images to a common space using rigid and affine transformations.
Images were registered using the Mattes Mutual Information [20] with a gradient descent
optimizer. In addition to registration, the scans were downsampled to allow the entire scan
to be passed into the CNNs. After the preprocessing, each scan had a size of 256 × 256 × 32,
with a slice thickness of 5 mm.

The voxel intensities were clipped between −20 and 120 HU and subsequently nor-
malized between minus one and one. The preprocessing was done using SimpleITK [21,22]
and Python 2.7.

2.4. CNN for Automatic Posterior Circulation Lesion Segmentation

The preprocessed images were input to a CNN which consisted of three-dimensional
convolutional kernels. The architecture of the CNN (shown in Figure A2A in the Appendix A)
was inspired by U-Net [23] and ResNet [24]. The CNN consisted of a downsampling path
and an upsampling path. The downsampling path started with an input block, consisting of
a convolution with a kernel size of three and a stride of one, which was followed by a max
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pooling layer with a pooling size of two and a stride of two. The dimensions of the input
were 256 × 265 × 32, and the input block generated features that consisted of eight channels.

Subsequent to the input block, three downsampling blocks were added, consisting of
three 3D ResNet layers, as shown in Figure A2B in the Appendix A. The first two blocks
were followed by average pooling with a stride and pooling size of two.

The upsampling path started with a transposed convolution using a stride of two.
Next, two upsampling blocks followed by an output layer were added. Each upsampling
block consisted of two ResNet layers, which were followed by a transposed convolution
with a stride of two and a kernel size of three. Each upsampling block took the featu res
from the previous block and the corresponding downsampling block and concatenated
them. The output block consisted of two ResNet blocks followed by a convolutional layer.
The CNNs were implemented using Tensorflow 1.5.

2.5. Experimental Setup

Four different training strategies for CNNs were evaluated: A CNN was randomly
initialized and trained on images of patients in the HERMES dataset (ACS-CNN), BASICS
dataset (PCS-CNN), and the HERMES and BASICS datasets combined (CD-CNN). The
ACS-CNN was used to establish the generalization ability of a CNN trained on ACS to
PCS lesion segmentation. The PCS-CNN served as a baseline for training with limited but
representative data. The CD-CNN was used as a benchmark if both ACS and PCS data
were available, but no transfer learning was used. Transfer learning reused the weights
from the trained ACS-CNN to initialize all but the last block of the CNN, and it fine-tuned
by updating all the weights, using images from the BASICS dataset (TL-CNN).

The CNNs used group normalization with four groups, the Leaky ReLU activation
function, a batch size of two, and the Adam optimizer. The loss function used was the
weighted binary cross-entropy. The initial learning rate for the ACS-CNN and CD-CNN
was 10−3 and was decayed stepwise after 5, 10, 15, and 20 epochs to respectively, 5 × 10−4,
2 × 10−4, 10−4, and 10−5. These networks were trained for 25 epochs. The initial learning
for the PCS-CNN and TL-CNN was 10−5 and was decayed after 25, 50, and 75 epochs to
respectively, 5 × 10−6, 2 × 10−6, and 10−6. These networks were trained and fine-tuned
for 100 epochs. The weight decay was set to 10−5.

Data augmentation was applied at training time. The images were rotated at a
randomly chosen angle between zero and ten degrees along the axial plane in either
direction or were randomly flipped along the sagittal plane.

We evaluated the performance of the ACS-CNN to check whether the model converges
during pre-training. The ACS dataset was split randomly into scans for training (85%),
validation (5%), and testing (10%). For this approach, we used the entire PCS dataset for
evaluation. Thus, we used stratified 5-fold cross-validation. Given the number of available
PCS patients, the first four testing splits consisted of 20% and the fifth consisted of 22% of
the data. The training splits were of equal size and consisted of 78% of the PCS data.

2.6. Evaluation

The reliability between the automatically and manually segmented volumes was
evaluated with the intraclass correlation coefficient (ICC) including the 95% Confidence
Interval (95% CI). The ICC was interpreted in accordance to the American Psychological
Association [25]. Following their guidelines, an ICC < 0.4 is defined as poor, an ICC
between 0.4 and 0.6 is defined as fair, an ICC between 0.6 and 0.75 is defined as good,
and an ICC greater than 0.75 is defined as excellent. In addition, a Bland–Altman analysis
was performed to assess the bias and limits of agreement (LoA) in volume measurements.
Statistical significance between ICCs was evaluated by using Fisher’s r-to-z transformation.

We determined whether our model accurately detected lesions independent of size.
Thus, we calculated the ratio of the total number of correctly detected lesions and the
total number of lesions as determined by the ground truth in the dataset. A lesion was
defined as detected if the percentage of overlapping voxels between the automatic and
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reference segmentations was larger than a predefined minimum. However, in case of
small thresholds, a non-zero overlap of automated and reference lesion segmentation
could be caused by chance. To account for this issue, the required minimum percentage
of overlapping voxels to count a lesion as detected was set to be either greater than zero
percent or greater than a more conservative 20%. Next, the effect of lesion volume on the
lesion detection rate was studied by excluding lesions of a progressively larger volume
in the reference segmentations. This latter cutoff was set between zero and 4 mL with
increments of 0.5 mL.

The segmentation performance of the automatic methods was evaluated by calculat-
ing the Dice coefficient as an overlap measure between the reference and the automatic
segmentation. Normality of the distribution of the Dice coefficients was assessed before
pairwise statistical testing by using the Shapiro–Wilk test. If the Dice coefficients were
normally distributed, a paired t-test was used; otherwise, a Wilcoxon rank sum test was
used. p-values were corrected for the family wise error rate using the Bonferroni correction.
All statistical testing was done using the python library Pingouin, v.0.3.1 [26] (University of
California, Berkeley, CA, USA).

3. Results

Baseline characteristics of the patients in BASICS and HERMES datasets were com-
pared. Patients in the HERMES dataset had a similar age to patients in the BASICS
dataset. Diabetes (26.2% vs. 16.6%, p < 0.05) and prior stroke (19.6% vs. 11.9%, p < 0.05)
occurred more frequently in patients in the BASICS dataset. However, atrial fibrillation
(12.1% vs. 30.8%, p < 0.01) occurred more frequently in patients in the HERMES dataset.

The median FLV in patients with PCS was 11 (IQR: 3.4–36) mL. The ICCs for volume
assessments for the TL-CNN, PCS-CNN, CD-CNN, and ACS-CNN were 0.88 (95% CI:
0.83–0.92), 0.80 (95% CI: 0.72–0.86), 0.83 (95% CI: 0.76–0.88), and 0.55 (95% CI: 0.4–0.67),
respectively. The ICC of the TL-CNN was significantly larger than the ICCs of the ACS-
CNN (p < 0.01) and PCS-CNN (p = 0.02). The ICC of the ACS-CNN was significantly
smaller than the ICCs of the PCS-CNN (p < 0.01) and CD-CNN (p < 0.01). In addition, the
Bland–Altman analysis for each of the CNNs resulted in biases ranging from 0.8 mL for
the TL-CNN to 13.5 mL for the ACS-CNN. The LoAs were the smallest for the TL-CNN
with −29 to 30 mL and largest for the ACS-CNN with −32 to 59 mL. The bias and LoAs of
the volume measurements are shown in Figure 1 and, Table A3 in the Appendix A.

The lesion detection rate of the TL-CNN was higher than for the other learning
strategies (Figure 2), which shows that the lesion detection rate increases with increasing
lesion volume and that the lesion detection rate decreases with increasing thresholds of
overlapping voxels.
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CNN (ACS-CNN). Left column: Scatter plots comparing lesion volumes derived from the reference segmentations (y-axis)
and from the automatic segmentations determined by the CNN (x-axis). Right column: Bland–Altman plots of the lesion
volumes. The volumes corresponding to the reference and automatic segmentations are shown on the x-axis and the volume
difference is shown on the y-axis.

The TL-CNN, PCS-CNN, CD-CNN, and ACS-CNN achieved a Dice coefficient of
0.25 ± 0.08, 0.21 ± 0.06, 0.16 ± 0.06, and 0.07 ± 0.03, on the overall PCS test set, respectively
(Figure 3). The Dice coefficients were not normally distributed. Hence, a Wilcoxon rank
sum test was used. Results of the Wilcoxon rank sum test are shown in Table A4. For the
anterior circulation stroke lesions, the ACS-CNN achieved an average Dice coefficient of
0.60 ± 0.07.
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Circulation Stroke CNN (ACS-CNN) (green, blue, red, and gray lines). For all methods, a higher
lesion volume cutoff results in a higher percentage of detected lesions. The lower overlapping voxel
requirement, the higher the percentage of detected lesions (dotted versus solid lines).
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window center around 35, with a window width of 30.

4. Discussion

Our study found that transfer learning results in a high level of agreement between
manually delineated and automatically quantified lesion volumes on the follow-up NCCTs
of patients with a PCS. Furthermore, we found that transfer learning resulted in higher
spatial accuracy and larger volume agreement of automatic PCS lesion segmentation
compared to the other strategies. In addition, the TL-CNN models also detected a larger
number of PCS lesions in comparison to the other strategies. Moreover, our results indicate
that the ACS-CNN models, which were trained on only patients who suffered from an
ACS, do not generalize to PCS lesion segmentation.

Our study is the first to address the automated segmentation of posterior circulation
stroke lesions on sub-acute follow-up NCCT. Previous work include anterior stroke lesion
segmentation in a variety of imaging modalities, such as baseline CTP [27], baseline
CTA [28], follow-up NCCT [6], and baseline and follow-up DWI [29] using multiple
approaches and addressing various types of stroke.

A previous study focused on developing a CNN-based method for automatic ACS
lesion segmentation on FU-NCCT [6] with a higher spatial overlap accuracy than found in
our study. This could be explained by the larger lesion volumes in their population (median
FLV of 48 vs. 11 mL) and the larger dataset available for training. Furthermore, beam-
hardening artifacts are common in the posterior fossa on NCCT. Beam-hardening artifacts
may obscure lesions caused by a posterior circulation stroke, making these lesions harder
to detect than lesions caused by anterior circulation stroke. Finally, the Dice coefficient is a
global overlap metric, which is valuable when comparing large delineations. If the objects
of interest are smaller, such as for the lesions in our population, the Dice coefficient may be
too sensitive to small errors. Therefore, the Dice coefficient must be interpreted in addition
to other metrics, such as the lesion detection rate and the correspondence in lesion volume,
as expressed with the ICC between the automatically quantified and reference volumes,
and not in isolation. The latter measure, lesion volume, is also clinically a more relevant
measure than the spatial overlap. If we put the performance of our algorithms in context
using the ICC, it shows that our algorithm can adequately predict FLV, which has a strong
association with functional outcome in clinical practice. In addition, the bias and LoAs of
the FLV were comparable to other studies assessing infarct volumes for similar problems.
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One study found a bias between the automatically and manually segmented FLV on FU-
NCCT of ACS patients with subtle hypo-densities of 29 mL with LoA of −91 to 149 mL,
which are both considerably larger compared to our study [6]. Another study found a
bias between the automatically and manually segmented FLV on baseline NCCT of ACS
patients of 11 mL with LoA of −59 to 80 mL [30]. Our algorithm, which utilized transfer
learning, resulted in a bias of 0.84 mL and LoA of −29 to 30 mL, showing that, on average,
the bias in FLV is small. A weakness, as in many other studies, is the large LoA values
in our study. Since the infarct volumes are clinically mostly used in prognostic models,
it is unknown to what extent this patient-specific variation in FIV influences prognosis.
However, the large LoAs suggest that patient-specific analysis still has to be improved
before the algorithm could be applied in a clinical setting.

Other methods for automatic ACS lesion segmentation used information from the
contralateral hemisphere to improve segmentation accuracy [28,31]. PCS lesions can
affect both hemispheres; hence, comparing information between the ipsilateral and its
contralateral hemisphere is unlikely to improve the accuracy.

Automated stroke lesion segmentation has also been developed for chronic stroke
lesions on T1 MRI. Chronic stroke lesions have been segmented by using a random forest
classifier to segment lesions in the left hemisphere by using hand-crafted image features [32].
Another study used a deep residual network to segment lesions on images of the ATLAS
dataset, which contains manually traced lesions on 304 T1-weighted MRI images [33]. Both
studies achieved higher similarity scores than our method, which could be explained by
the larger FLVs and higher sensitivity provided by T1-weighted MRI images.

In previous research, transfer learning has also been successfully applied to improve
the accuracy of various other medical image segmentation tasks. One study used CNNs
pre-trained on eight different medical image segmentation tasks on various imaging modal-
ities to improve automatic lung, liver, and liver tumor segmentation [34]. Unlike the
aforementioned study, our study pre-trained on a single imaging modality and task. An-
other study pre-trained CNNs using self-supervised tasks to improve lung nodule, liver,
and brain tumor segmentation [35]. In agreement with our study, the results of prior work
indicate that for medical image segmentation, transfer learning can be beneficial.

Other work using transfer learning for medical image tasks included CNNs pre-
trained on ImageNet [36] as a benchmark. These studies used transfer learning to improve
the performance on medical image analysis tasks on 2D images. However, using ImageNet
for transfer learning was less likely to be suitable for our study, because prior work has
shown that ImageNet pre-training improves performance on medical image analysis tasks
less than using a pre-trained 3D model [35].

This study has several limitations. First, most of the FU-NCCT scans of PCS patients
included in this study were obtained 24 h after the onset of AIS. Creating manual reference
segmentations of the lesions on these early FU-NCCT scans is more challenging owing
to the subtle differences in HU values after 24 h. In addition, FLV segmentations for
patients with PCS were performed by only one trained observer who used PC-ASPECTS
scores to verify the lesion location and was supervised by a radiologist (CBLMM). Since
the assessment was only performed by a single observer, inter-observer agreement of the
reference standard could not be assessed. Second, this study suffered from a low number
of available PCS patients. Therefore, an even lower number of patients would be included
if the data were divided into training, validation, and test sets. This would have lowered
the generalizability of the results to the PCS patient population. To overcome this, five-fold
cross-validation was used to allow all the data to be used as testing data in the analysis
and to assess the stability of the presented results. Third, the CNNs were not accurate
at detecting lesions with a volume smaller than 2 mL. If a patient is suspected of having
lesions with a small volume, results from the presented algorithm should be verified by an
expert evaluation. Transfer learning allowed the CNNs to reuse information learned from
ACS lesion segmentation to segment lesions caused by PCS. The resulting improvement
in PCS lesion segmentation is likely due to the similarity between the pre-training and
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the fine-tuning tasks [37]. However, in our approach, the detection and segmentation of
small lesions and the segmentation of lesions that are connected to cerebrospinal fluid-
filled areas is still suboptimal. Fourth, it is quite likely that the swelling due to stroke has
caused herniation in multiple patients. In our study, we did not exclude patients based
on herniation, also because CT cannot distinguish infarcts resulting from the acute stroke
versus herniation.

Deep learning is potentially valuable for automating demanding tasks in the quantifi-
cation of radiological imaging. It is well-known that deep learning requires large amounts
of data to train algorithms, which may suggest a limited applicability of deep learning in
less common diseases. This study also shows that deep learning models that are trained
on a more general, less specific disease may not be sufficient. Here, we presented an
alternative approach based on transfer learning and showed that deep learning models can
be pre-trained on similar diseases and fine-tuned on the specific rarer disease.

To conclude, the presented transfer learning approach improves the automatic detec-
tion and segmentation of posterior circulation stroke lesions compared to the evaluated
commonly used training strategies. The presented automated posterior stroke lesion seg-
mentation method allows the inclusion of lesion volume as an image outcome measure
and as a metric to predict outcome in large-scale clinical trials and potentially as a first step
toward clinical application.
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Figure A1. (A) Flowchart showing the exclusion criteria used for the HERMES dataset. Exclusion criteria were: No
FU-NCCT available, which was acquired between 12 h and 2 weeks (n = 637), an intracranial region segmentation error
(n = 3), and a registration error (n = 7). In total, 1018 patients were included. These were split into a training set (n = 876), a
validation set (n = 50), and a testing set (n = 101). (B) Flowchart showing the exclusion criteria used for the BASICS dataset.
Exclusion criteria were: No FU-NCCT available (n = 55) or an image quality that was too low (n = 6). In total, 107 patients
were included. These were split into five training and testing sets for the five-fold cross-validation. Patients could only
belong to one test set.

Table A1. Imaging parameters used to acquire the NCCT scans of the included patients from the BASICS trial. Imaging
parameters were missing for two patients.

Manufacturer Model Patients Exposure Time (mS) Exposure (mA) Tube Current kVp

Philips iCT 256 29 1913 (IQR: 1025–1913) 375 (IQR: 251–490) 256 (IQR: 244–256) 100 (IQR: 100–120)
GE LightSpeed VCT 17 1000 (IQR: 1000–2000) 175 (IQR: 171–175) 351 (IQR: 179–351) 120 (IQR: 120–120)

SIEMENS SOMATOM
Definition Flash 13 2000 (IQR: 2000–2000) 340 (IQR: 285–430) 172 (IQR: 143–229) 120 (IQR: 100–120)

TOSHIBA Aquilion 11 750 (IQR: 750–750) 187 (IQR: 187–225) 250 (IQR: 250–300) 120 (IQR: 120–120)
SIEMENS Sensation 64 6 1000 (IQR: 1000–1000) 380 (IQR: 380–380) 352 (IQR: 323–380) 120 (IQR: 120–120)

Philips Brilliance 64 5 1678 (IQR: 1000–1678) 351 (IQR: 250–351) 209 (IQR: 200–209) 120 (IQR: 120–120)
SIEMENS SOMATOM Force 4 2000 (IQR: 1750–2000) 340 (IQR: 327–380) 170 (IQR: 163.5–196) 100 (IQR: 100–105)

SIEMENS SOMATOM
Definition AS+ 4 1000 (IQR: 1000–1000) 250 (IQR: 233–290) 138 (IQR: 129–155) 120 (IQR: 115–120)

Philips IQon—Spectral CT 4 1117 (IQR: 1117–1117) 200 (IQR: 200–200) 179 (IQR: 179–179) 120 (IQR: 120–120)
Other Various 12 1000 (IQR: 1000–1000) 260 (IQR: 158–353) 260 (IQR: 220–325) 120 (IQR: 120–120)
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Figure A2. (A) 3D-Unet Architecture. The downsampling path (left) consisted of 3DResNet blocks with max pooling (green).
The upsampling path (right) consisted of ResNet blocks followed by transposed convolutions (red). The features created in
the downsampling path are colored blue and the features created in the upsampling path are colored yellow. The dotted
arrows indicate the skip connections. The feature maps from the downsampling path were concatenated to the feature maps
in the upsampling path. The input image and output probability map are colored purple. (B) 3D ResNet block.

Table A2. Lesion location in the posterior fossa, which was scored manually by using the PC-ASPECTS.

Lesion Location Count/Total

No lesion 15/107
Left thalamus 33/107

Left cerebellum 40/107
Left PCA territory 19/107

Right thalamus 26/107
Right cerebellum 40/107

Right PCA territory 19/107
Midbrain 34/107

Pons 46/107
Other 4/107

Table A3. The ICC, Dice coefficients, bias, and limits of agreement between the automatically
quantified and manually segmented volumes, respectively for the Transfer Learned (TL-CNN),
Anterior Circulation Stroke (ACS-CNN), Combined Dataset (CD-CNN), and Posterior Circulation
Stroke (PCS-CNN) Convolutional Neural Networks, tested on the PCS test set.

Method ICC Dice Bias Limits of
Agreement

TL-CNN 0.88 (95% CI: 0.83–0.92) 0.25 ± 0.07 0.84 mL −28.7 to 30.4 mL
PCS-CNN 0.80 (95% CI: 0.72–0.86) 0.21 ± 0.06 3.8 mL −31.9 to 39.4 mL
CD-CNN 0.83 (95% CI: 0.76–0.88) 0.16 ± 0.06 6.4 mL −27.3 to 40.2 mL

ACS-CNN 0.55 (95% CI: 0.4–0.67) 0.07 ± 0.03 13.5 mL −32.2 to 59.1 mL
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Table A4. Wilcoxon rank sum test on pairwise differences between the Dice coefficient and the bias of
the volume differences. The W-statistic and p-value are shown in this table. The TL-CNN produced a
significantly greater Dice coefficient than the other methods. The PCS-CNN produced a significantly
greater Dice coefficient than the CD-CNN and ACS-CNN, and the CD-CNN produced a significantly
greater Dice coefficient than the ACS-CNN. The TL-CNN produced a significantly smaller bias than
the CD-CNN and ACS-CNN, the PCS-CNN produced a significantly smaller bias than the CD-CNN
and ACS-CNN, and finally, the CD-CNN produced a significantly smaller bias than the ACS-CNN.

Method 1 Method 2 Dice Coefficient Bias

W p-Value W p-Value

TL-CNN PCS-CNN 766 <0.05 2205 0.28
TL-CNN CD-CNN 216 <0.01 1018 <0.01
TL-CNN ACS-CNN 62 <0.01 938 <0.01

PCS-CNN CD-CNN 535 <0.01 1958 <0.05
PCS-CNN ACS-CNN 114 <0.01 1350 <0.01
CD-CNN ACS-CNN 88 <0.01 1443 <0.01
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