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ABSTRACT OF THE DISSERTATION

Husserlian Philosophy of Mathematical Practice: An Empathy-First Approach

By

Stella Moon

Doctor of Philosophy in Philosophy

University of California, Irvine, 2023

Distinguished Professor Emeritus David Woodruff Smith, Chair

In the history of mathematics and philosophy, the connections and interactions between the two

disciplines were clearer than they are today. For example, Descartes is today a well-respected figure

in both philosophy and mathematics. Edmund Husserl was also a philosopher and a mathematician:

he is best known to be a founder of phenomenology, but he earned his Ph.D. in Mathematics

and worked as an assistant to Karl Weierstrass, known as the ‘father of modern analysis’. In my

dissertation, I develop Husserlian phenomenological methods for studying contemporary philosophy

of mathematics.

Recent literature in philosophy of mathematics often advocates the use of non-philosophical methods,

turning towards the methods of empirical or social sciences (e.g. Maddy, 2000). I suggest, challenging

this view, that phenomenology offers philosophical methods for studying mathematical practice.

Phenomenology can be described as an ‘explicatory science’, whose methods should be adopted, along

with cognitive science, as the means to study human cognition and understanding, especially when

it comes to mathematics. Importantly, this explicatory science takes the first-person perspective

seriously when clarifying our mathematical cognition. Thus, I call this an ‘empathy-first approach’. An

empathy-first approach in mathematics is important, especially when we consider that philosophy of

mathematics should take a ‘mathematics-first’ as opposed to a ‘philosophy-first’ approach. That latter

strategy often begins with certain philosophical first principles and applies those to mathematical

issues. The former kind of approach aims to begin from mathematical practice and to consider

philosophical questions arising from that practice. The empathy-first approach to philosophy of
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mathematics not only would begin from mathematical practice, but would also focus on understanding

the mathematics as experienced by the mathematicians. In doing so, we are able to evaluate

philosophical problems based on how important or relevant they are to mathematical practice.

To demonstrate the empathy-first approach, I begin applying the method to our ordinary perspective

on numbers, rather than the mathematicians’ perspective. By looking at the number sequence,

expressed by the sequence of numerals ‘1, 2, 3, ...’, I describe different acts of accessing the numbers

expressed in ‘...’. In our ordinary experience, there are ways, other than counting, of accessing a

larger number. The numbers accessed by such acts could be considered non-arithmetical numbers, as

opposed to those that can be accessed in principle only by counting, the arithmetical numbers. The

demarcation of non-arithmetical and arithmetical numbers by the empathy-first approach suggests a

way of demarcating between mathematical concepts and non-mathematical concepts in other areas.

But not only that, this demarcation can be supported by other empirical evidence (e.g. Relaford-

Doyle & Núñez, 2017, 2018, 2021). This shows how phenomenology, as an explicatory science, can

work with cognitive science, and be developed into an interdisciplinary research programme.

I also show that Husserlian methods offer a way of studying group knowledge, which I consider

mathematical knowledge to be. Beyond the general method of phenomenological analysis, Husserl

also offers a method for studying group knowledge by analysing scientific practice as teleological.

This method, known as Besinnung, involves standing in the ‘community of empathy’ with scientists

and clarifying the aims and goals that drive their discipline. I argue that Husserl’s notion of

community is different from other existing notions of groups/communities in that it is defined from

a first-person perspective, and that it is defined based on certain properties/experiences shared

between an individual and others in relation to a teleological group subjectivity. When the method

of Besinnung is applied to mathematical practice, it can help philosophers to evaluate whether a

philosophical question is genuinely important to practising mathematicians. Once mathematicians’

goals and aims are clarified, we can then consider whether a given philosophical question needs a

philosophical answer with respect to the goals and aims. This is called ‘radical Besinnung ’. This

feature makes the method superior to the methods found in other disciplines, which do not offer this

meta-analysis.
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I demonstrate this by applying Besinnung to a contemporary foundational theory in mathematics,

called Homotopy Type Theory (HoTT). Philosophers of HoTT (e.g. Ladyman and Presnell (2015);

P. Walsh (2017)) have argued that the definition of identity in HoTT (also known as path induction)

needs a philosophical justification. Once we have clarified what path induction is from the empathised

perspective of the mathematicians, the definition can be internally justified, without appealing to

external philosophical assumptions. In this clarification, we can further identify the goals of the

homotopy type theorists, as rigour and homotopical autonomy. These goals are to be found within

the community of empathy, rather than presupposed when looking at the mathematical theory.
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INTRODUCTION

The typical stance in philosophy of mathematical practice is mathematics-first, instead of philosophy-

first. This means looking at mathematical practice and theories and asking philosophical questions

concerning them, rather than asking philosophical questions independently of the practice of

mathematics, usually treating mathematics as a canonical example for abstract objects or a priori

knowledge. In contemporary philosophy of mathematical practice, it is common to turn to empirical

or social-scientific methods for investigating philosophical questions about mathematics. On the

one hand, this seems appropriate given scientific advances and the fact that cognitive scientific

investigation appears the most appropriate way to develop an understanding of mathematical

cognition. On the other hand, what makes this philosophy of mathematical practice? Is it simply the

kind of questions asked? That is, are philosophers to ask metaphysical and epistemological questions

about mathematical practice, and scientists to ask different kinds of questions? Or, in an extreme

case, are philosophers to stop doing philosophy completely and simply turn to other disciplines? This

dissertation responds to these worries by offering a philosophical method for studying mathematical

practice.

In this dissertation, I aim to develop a Husserlian method for the philosophy of mathematical

practice. Despite the fact that Edmund Husserl was a mathematician and a philosopher in the late

nineteenth/early twentieth centuries, philosophy of mathematics in the analytic tradition has often

ignored Husserl’s contributions to the field. On the one hand, there have been a few discussions

on Husserl and mathematics recently, including work by Mark van Atten (e.g. 2007, 2015, 2017),

Richard Tieszen (e.g. 1984, 1998, 2002, 2005, 2010, 2011, 2012, 2017), and Dagfinn Føllesdal (e.g.

1995); but none of these authors considers the methodological programme that Husserl offered for
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studying mathematics and other sciences. Mirja Hartimo, on the other hand, has explicitly engaged

with Husserl’s methodological programme and highlighted his philosophical views with regard to

studying mathematics. As Hartimo shows (2019a, 2020a, 2020b, 2021a, 2021b), Husserl viewed

mathematics and other sciences as teleological disciplines – differentiating them from other social

practices, and he offered the method of Besinnung (i.e. Reflection) as a way to study mathematical

and scientific practices of his time.

I build on Hartimo’s historical analysis and offer my own interpretation of Husserl’s methods. I

describe the methods outlined as Husserlian (rather than Husserl’s), as my concern is how Husserl’s

methodology ought to be understood in light of contemporary mathematical practice. I propose

to describe the Husserlian approach as an empathy-first approach to philosophy (generally) and to

philosophy of mathematical practice in particular.

According to Zahavi (2014), Husserl’s notion of empathy [Einfühlung ] was influenced by (but

distanced from) that of the psychologist, Theodor Lipps (1905, 1907a, 1907b, 1909). Zahavi describes

that, for Lipps,

[to] feel empathy is to experience a part of one’s own psychological life as belonging to
or in an external object, it is to penetrate and suffuse that object with one’s own life.
(2014, p. 130)

Roughly, given that one separates one’s own psychological life (i.e. a psychological sense of self) from

one’s own physical body, which is external to the psychological sense of self, one feels empathy if one

can treat the physical body as part of or fused with one’s own psychological self. Thus, the German

term Einfühlung can be understood as ‘feeling oneself into’, as one feels one’s psychological self into

one’s physical body. But generally, it is not clear whether Lipps had a single account of empathy

that can be easily summarised, although it is largely agreed that Lipps’s notion is the origin of the

phenomenological notion (see Zahavi, 2014, and Burns, 2021).

For Husserl (and Edith Stein, 1964), the term empathy refers to an intentional experience from one’s

own ego leading into a foreign ego (Zahavi, 2014, p. 134). This contrasts with Lipps’s account, since

the focus in Husserl’s and Stein’s is on the experience of the foreign ego, i.e. an other ego that is
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distinct from one’s own ego. Furthermore, empathy is a form of understanding another person’s

experience (Stein, 1964, see also D. W. Smith, 1989, p. 117). As I empathise with you, I understand

what it is like to be you, to have your experiences, given your other experiences and background.

It is distinct from sympathy, which refers to my own experience of (e.g.) sadness, starting from

your experience of (e.g.) sadness, i.e. ‘feeling with the other what she or he feels’ (D. W. Smith,

1989, p. 117). Thus, empathy is a form of understanding of the other’s experience, from the other’s

perspective.

For Husserl and Stein, empathy is a fundamental experience that grounds our understanding of other

minds, social interactions and social relationships, including scientific practice. By ‘scientific practice’,

I mean the social human practice of various academic disciplines, in so far as the practice has certain

methods or aims in common. For example, history is an academic discipline, as researchers accept

and adopt certain methods with the shared aim of uncovering truths about our historical past.

Historical practice, then, refers to the way historians carry out their research – their methods, use of

concepts, etc. My main interest is in mathematical practice, understood in the Husserlian sense as a

practice grounded in empathy. That means, the methods or concepts used in mathematics can be

understood via our human understanding of the mathematicians’ experience. This does not mean to

reduce mathematics and mathematical practice in line with some variant of social constructivism,

but instead to understand mathematics in terms of the mathematicians’ social activity. In this sense,

my approach here is an empathy-first approach in philosophy of mathematical practice.

In general, Husserlian methods aim at clarifying various concepts, methods, and/or goals that are

found within mathematical practice. I present that the Husserlian phenomenological methods have

applications in contemporary mathematical practices, and, by using them, we can have a clarified

understanding of mathematical practice, as opposed to (e.g.) ordinary usage of mathematical

concepts. Furthermore, I suggest that the Husserlian method of Besinnung, a method of reflection

that aims to clarify the goals of scientific practice, can be used to answer or settle certain philosophical

questions about mathematical practice.
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0.1 The Goals of the Dissertation

One of the general aims of the dissertation is to demonstrate the importance of empathy in philosophy

of mathematical practice. Briefly, I characterise Husserlian empathy in mathematics as an act of

engaging with mathematics from the perspective of the mathematician(s) and, at the same time,

understanding the shared motivation behind their mathematical practice. In my view, empathy

is what makes phenomenology a philosophical method for studying conscious experience from

the first-person perspective. It does not necessarily mean focusing on an individual’s experience

and phenomenological content, but it does require empathising with others, understanding their

experience from their perspective and analysing their experience. Eventually, through empathy, their

types of experiences could become mine: if I empathise with mathematicians and their practice,

I could eventually learn to practise mathematics myself. Thus, empathy is an approach to doing

philosophy that is most appropriate for pursuing philosophy of mathematical practice.

Beyond applying the empathic approach glossed above, my dissertation has two further main

goals. The first is to show that phenomenology and empirical/social sciences can collaborate on

interdisciplinary research projects. In Chapter 1, I introduce Husserl’s phenomenological methods.

Very briefly, phenomenological methods consist in first describing one’s experiences from the first-

person standpoint and then reflecting on those experiences in order to describe and clarify the

meaning or content found in them. Clarification of the meaning or the content of experiences

is the general aim of phenomenological methods. In Chapter 2, I apply the phenomenological

methods to describe the concept of the number sequence ‘1, 2, 3, . . .’ as experienced from an ordinary,

common-folk standpoint, and contrast it with the mathematical concept of the sequence of natural

numbers. To test the result of my phenomenological analysis, I present and evaluate it in the light of

some empirical evidence. In doing so, I show that phenomenological methods primarily describe and

clarify our experienced concepts, while social/empirical scientific methods aim to justify or verify

the accuracy of such concepts. In that sense, phenomenological methods ought to be an important

part of interdisciplinary projects that aim to understand human cognition and concepts.

4



The second goal is to develop a Husserlian/phenomenological method of philosophy of mathemat-

ical practice, extending Mirja Hartimo’s contribution in highlighting the importance of Husserl’s

Besinnung as a phenomenological method. A well-developed Husserlian method of Besinnung could

offer a philosophical method for studying mathematical practice. In contemporary philosophy of

mathematical practice, there has been a move to adopt scientific methodologies, often at the cost of

philosophy. Although this trend could be seen as an anti-philosophical movement, I aim to bring

a philosophical method – i.e. one from phenomenology – into the picture and demonstrate the

fruitfulness of its approach. Furthermore, Husserl’s method of Besinnung offers a unique account of

group knowledge, offering a unique alternative perspective to those of social epistemology and social

ontology.

Before giving an overview of the dissertation, I want to emphasise what I am not aiming to do

here. My dissertation is not focused on what Husserl’s philosophy of mathematics was historically

(although I do offer a philosophical interpretation of Husserl as a philosopher of mathematics and

mathematical practice). The methodological programme I develop here is Husserlian, not necessarily

Husserl’s.

My starting point is the ongoing discussion on the philosophy of mathematical practice. I aim to show

that Husserl’s phenomenology can offer a fruitful methodology for the philosophy of mathematical

practice. For those interested in Husserl’s historical views on mathematics, see (e.g.) Tieszen (2010;

2017), Hartimo (2006, 2019, 2021a, 2021b).

0.2 An Overview of the Dissertation

This dissertation contains four chapters. The first chapter serves both as an introduction to

philosophy of mathematical practice and as an introduction to phenomenology. The second chapter

then demonstrates how the general phenomenological method (which focuses on the first-person

perspective) can be used to understand mathematical cognition and contribute to interdisciplinary

research. In particular, I focus on the phenomenological understanding of number-cognition and the

cognitive scientific work that supports the phenomenological analysis. The third chapter focuses
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on the particular methodological approach (called Besinnung), developed by Husserl, for studying

scientific practice, providing an interpretation of that method, in preparation for the fourth chapter,

in which the method is applied to contemporary problems in philosophy of mathematical practice.

I shall now provide a more detailed overview of the chapters.

The first chapter argues that Husserlian phenomenology1 satisfies the contemporary understanding

of appropriate philosophy of mathematical practice – as philosophy that takes a mathematics-first

approach. The chapter further shows that Husserlian phenomenology satisfies the conditions proposed

by Gray and Ferreirós (2006) for what philosophy of mathematical practice ought to focus on: i.e.

that it should prioritise conceptual and methodological questions that are interesting to practising

mathematicians, and engage with mathematical practice in all aspects. Roughly, this would include

engaging with informal discussion with mathematicians (about mathematics), not only looking at

published work. In Chapter 1, I also show that Husserl viewed mathematics (as he viewed each

of the sciences) as a teleological programme, and that the teleological structure of mathematical

practice is similar to the structure of intentionality in an individual subject’s experience.

The second chapter presents how (sophisticated) mathematical practice is distinct from ordinary

mathematical practice. In particular, I give a phenomenological analysis of our ordinary experience

of number concepts. I argue that in the ordinary experience of the number sequence, we allow

experiences other than counting as ways to grasp large numbers. Hence, the number sequence,

understood from ordinary practice, is distinct from the sequence of natural numbers found in

mathematical practice. I also show that the conclusion I draw from the phenomenological analysis

can also be verified by empirical experiments. In doing so, I demonstrate that phenomenology and

empirical/social sciences often are concerned with similar questions, and both approaches should be

used together for a better and more accurate understanding of human cognition.

The third chapter is devoted to developing the Husserlian method of Besinnung in relation to

contemporary mathematical practice. By focusing on Formal and Transcendental Logic, Crisis and

Cartesian Meditations, I give an interpretation of the Husserlian method of Besinnung. Hartimo (e.g.

1I use ‘Husserlian Phenomenology’ to refer to phenomenology primarily influenced by Husserl, while ‘Husserl’s
Phenomenology’ will be used for the historical views Husserl held for his phenomenology.
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2020a, 2020b) characterises Husserl’s method of Besinnung so as to involve ‘standing [stehend ] in

the community of empathy’ in order to ‘clarify the final goal’ of the community. I explicate what

Husserl could have meant by the ‘community of empathy’ [Einfühlungsgemeinschaft ]. In particular,

I argue that the ‘community of empathy’ (per FTL) is a structural notion of social group (in the

sense of Ritchie 2020), defined by the empathic relation between its members. This means that, in a

community of empathy, each member has an understanding of other members’ experiences, where

these experiences are appropriate for the practice of their discipline. I also show that Husserl’s notion

of community is a unique notion of a social community or group. Unlike contemporary accounts,

such as those offered by Margaret Gilbert (2009, 2020) and Kate Ritchie (2013, 2015, 2016, 2020),

Husserl’s account involves a first-person notion of community. The emphasis on community and

empathy displays the importance of the social aspects of mathematics, which has only recently

gained attention in philosophical approaches to understanding mathematics (see, e.g., Ferreirós,

2016).

On the basis of the relevant empathic experiences, the community has shared goals that are implicit

in its practice. I explain the way in which Besinnung aims to clarify such shared goals (which I

shall call ‘motivational goals’), which have a historical motivation for the community. Chapter 3

is devoted to characterising what steps are necessary to carry out Besinnung successfully; that is,

in such a way that the motivational goals of mathematics, as a discipline practised by the relevant

communities of empathy, can be understood. Simply put, Besinnung initially involves some historical

investigation, to provide an understanding of the historical motivation behind certain assumptions

made for the practice of a mathematical theory. Once the assumptions have been clarified, we

can enter the community of empathy and identify what concepts, methods, goals, etc., could be

further clarified from the empathised perspective. Such clarification will lead us to identifying the

motivational goals of the practice. These goals are understood as what the community is aiming for,

but also what guides the community’s practice. For example, rigour in mathematics is a motivational

goal: mathematical definitions or mathematical proofs can be described as rigorous or precise, and

this rigour is a motivation behind the discipline of mathematics. Furthermore, mathematicians aim

to continue this rigorous practice as the discipline develops and changes. In this sense, rigour is a

motivational goal found within mathematical practice.

7



The fourth chapter applies the method of Besinnung to a contemporary mathematical theory. In

particular, I consider Homotopy Type Theory (HoTT) and I clarify the concept of identity in

HoTT. Understood from the perspective of the homotopy type theorists – i.e. from the empathised

perspective – identity is understood homotopically, in particular as following from the path lifting

property in topology. I clarify this homotopical understanding and thus offer a novel argument for

justifying path induction. The justification I offer is an internal justification, in the sense that it

is an argument offered from the perspective of the community, rather than from a philosophical

perspective that goes beyond the mathematical practice. By carrying out Besinnung, we are able to

settle whether identity in HoTT needs a further philosophical justification or not, and this puts it

at a strong advantage compared with other social/empirical scientific methods. This is a fruitful

consequence of carrying out Besinnung. By employing it we can focus on the philosophical questions

that are the most relevant to mathematical practice, instead of giving equal weighting to all of

the philosophical questions that can arise concerning mathematical practice. In this chapter I also

show that two kinds of motivational goals can be found in HoTT: rigour (in the logical syntax and

computational implementation) and homotopical autonomy. The motivational goal of homotopical

autonomy suggests a new sense of foundation based on the mathematical practice of HoTT.

The chapters show that phenomenological methods can be fruitful for mathematical practice. Not

only do they offer a demarcation between mathematical practice strictly speaking and ordinary,

commonsense ‘mathematical’ practice, in terms of the different acts or experiences involved in them

(Chapter 2), they help us to raise and answer philosophical questions that are interesting or important

for mathematical practice (Chapters 3 and 4). While some questions might seem interesting for

mathematicians, not all questions will be important for its practice. The phenomenological method

of Besinnung involves first identifying which concepts, methods, etc., must be clarified before going

on to clarify them, all from the perspective of the mathematicians. Furthermore, Besinnung aims to

bring out the motivational goals shared in the practice, enabling the phenomenologist to suggest

revisions to the practice to help the mathematicians in achieving their goals.2 Thus, the Husserlian

empathy-first approach, and in particular the Husserlian method of Besinnung, should be considered

seriously as providing a method for studying philosophy of mathematics.

2Husserl calls this approach ‘radical Besinnung ’.
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My dissertation contributes further to areas of philosophy beyond mathematical practice. For social

epistemology/ontology, I offer a Husserlian account of scientific practice as a social practice, in terms

of community of empathy (Chapter 3). I also demonstrate that phenomenology should be adopted

as a descriptive/clarificatory science in relation to human understanding (Chapters 1 and 2). By

doing so, I confirm the importance of philosophical thinking and methodologies, which are often

neglected in other disciplines – and by some within philosophy itself!

With all this said, it must be admitted that phenomenology, like any methodological programme,

has its limitations. It is not one of its aims to offer evidential justifications, but rather clarifications.

(So, to critically evaluate phenomenology on the basis of its provision of justifications would be to

misunderstand its values.3) My aim here is not to argue that phenomenology should replace other

methods (methods that are better suited to providing evidential justifications), but to emphasise

and highlight what is unique about the phenomenological methods outlined. Understanding the

values of the phenomenological approach (and allied methodologies) and using them appropriately

for what they do best, will advance human knowledge.

0.3 Methodological Choices

In his lifetime, Husserl wrote a vast amount in published works and lecture notes, and he delivered

many lectures in different locations. His philosophical works are frequently seen as falling into three

phases. First come his habilitation, On the Concept of Number (1887), and the later published

Philosophy of Arithmetic (1891), which aim to provide logical and psychological analyses of the

concept of numbers. The second phase comes with the Logical Investigations, in which he renounces

the ‘psychological analysis’ of his previous works and introduces phenomenology. And the third

phase is captured in the Ideas, Crisis, Cartesian Meditations and Formal and Transcendental

Logic – often described as articulating ‘Transcendental Phenomenology’ and hence said to mark

Husserl’s ‘transcendental phase’. Although there are some good reasons for understanding Husserl’s

3Although I offer a justification for path induction in Chapter 4, it is a clarificatory justification, in that it is an
argument that clarifies how path induction is understood from the perspective of homotopy type theorists. It is not
an evidential justification in the sense of offering empirical evidence for how mathematicians cognitively process path
induction.
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philosophical thinking in terms of these three distinct phases, I adopt a more unifying approach in

reading Husserl.

Throughout the dissertation, I treat Husserl’s changing ideas to be continuous with his previous

thoughts. On this reading, his later work can sometimes be clarified by his earlier writings. Reflecting

back on Husserl’s prior concepts gives us an insight into Husserl’s original motivation concerning

certain concepts. A good example of this can be seen in relation to Husserl’s explicit remarks when

discussing the notion of Zwecksinn in Formal and Transcendental Logic. He identifies Zwecksinn, or

goal-sense, with the notion of fulfilled sense, found in the Logical Investigations. Thus, in Chapter 3,

I explicate Husserl’s Zwecksinn by looking at the Logical Investigations.

The two key methods I use in the dissertation can be broadly characterised as textual analysis and

phenomenological analysis. In textual analysis, I compare the contemporary published literature

on both philosophy of mathematical practice (Chapter 4) and phenomenology (Chapter 3) with

Husserl’s views on scientific practice (Chapter 1). Furthermore, I engage with the published work

in cognitive science (Chapter 2) in order to argue that empirical evidence can support the findings

of my phenomenological analysis presented earlier in that same chapter. The phenomenological

analysis I use, in Chapter 2, involves reflecting on the empathised experience of the number sequence

and clarifying the meaning found in those experiences of the number sequence. In general, by

‘phenomenological analysis’, I mean carrying out some self-reflective act to clarify the content found

in one’s own or another subject’s experience. Phenomenology, however, is not just one method, but

rather a collection of methods. In particular, in Chapter 1, I explain the phenomenological method

of Besinnung as an extension of the general phenomenological method: i.e. first-person perspectival

reflection aimed at clarifying goals.

As noted, phenomenological methods involve the empathised first-person perspective, and, on some

occasions, additional methods based on the perspective will be adopted. Here, I briefly describe how

the textual analysis and phenomenological analysis pursued in Chapters 3 and 4 can, in combination,

lead us to adopting the formal mathematical method of proof. In Chapter 3, I give a textual analysis

of Husserl’s Formal and Transcendental Logic, Cartesian Meditations, Crisis of European Science

and Ideas I, in order to clarify Husserl’s method of Besinnung. Having developed this particular
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phenomenological method, I provide, in Chapter 4, a phenomenological analysis of the practice of

homotopy type theorists on the basis of textual evidence found in the book Univalent Foundations

Program (2013) and in various online forums in which HOTT originated. This textual analysis is

supplemented by my engagement and interaction with the practitioners of HoTT (e.g.) at conferences

– this kind of engagement/interaction being a necessary part of Besinnung. In doing so, I naturally

adopt the method preferred by the mathematical community (i.e. the mathematical method of

proof) to clarify the meaning of identity in HoTT.

In general, I see Husserl’s work as being in continuous development from his earliest philosophical

work, On the Concept of Number (1887). With this framework in mind, I support my interpretation

of Husserl based on the general or broad picture of his views that can be found in his writings across

his lifetime. This means I do not distinguish between his earlier work – e.g. Logical Investigations

– and his later work – e.g. Crisis – as embodying distinct philosophical programmes, divided by

a ‘transcendental turn’.4 Although I hold by a unified understanding of Husserl’s work overall, I

do focus on particular primary texts in individual discussions throughout my dissertation. I shall

identify these texts below, after giving a brief description of Husserl’s educational background.

0.4 Biography of and Works by/about Husserl

Edmund Husserl was born in Prossnitz (Moravia) on 8th April 1859 to Jewish parents. After

studying mathematics, physics, and philosophy in Leipzig and Berlin, he went to Vienna to complete

his Ph.D. in Mathematics on Calculus of Variations (1883). He then returned to Berlin and worked

as Weierstrass’s assistant until Weierstrass fell ill. In 1884, he moved back to Vienna to study

philosophy with Franz Brentano.

4This view is consistent with that articulated by David Woodruff Smith (1989, 2013), Zahavi (2003), and Hartimo
(2021). Here, Husserl’s work is seen as continuous, with a ‘transcendental turn’ marking a less-than-drastic shift. Please
note, however, that my interpretation of transcendental phenomenology is different from Hartimo’s (for example), in
that I take it that the ‘transcendental’ is what we, as phenomenologists, should be aiming for generally, rather than a
particular stance in relation to which we evaluate only certain practices. This will be clarified in Chapters 1 and 3.
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Since Brentano had given up his professorship in 1880 to marry, he could not advise Husserl on his

Habilitation thesis. So, on Brentano’s advice, Husserl completed his Habilitation dissertation in

philosophy, On the Concept of Number (1887), under Carl Stumpf in Halle.

Husserl’s first book, Philosophy of Arithmetic: Psychological and Logical Investigations (1891), was

based on his habilitation thesis. Then he went on to publish many other books – e.g. Logical

Investigations (1900–1901) in two volumes: Volume 1, Prologomena to Pure Logic, and Volume 2,

Investigations in Phenomenology and Knowledge – and frequently gave lectures. Below, I list some

of Husserl’s major publications (in order of original publication), some of which were published

posthumously. On the left of each title, I label them with the abbreviation to be used throughout the

dissertation. The dates that follow are in the following order (unless specified otherwise): original

publication, Husserliana volumes, and English Translation.

PA Philosophy of Arithmetic: Psychological and Logical Investigations (1891), Hua vol.12 (1970),

English Translation (2003)

LI I/II Logical Investigations (1900–1), Hua vol.18–19 (1984), Hua vol.20 (2002–05), English Transla-

tions (2000)

Ideas I Ideas Pertaining to a Pure Phenomenology and to Phenomenological Philosophy – First Book:

General Introduction to Pure Phenomenology (1913), Hua vol.3 (1976), English Translation

(1989)

FTL Formal and Transcendental Logic (1929), Hua vol.17 (1974), English Translation (1969)

CM Cartesian Meditations, French publication (1931; Lectured in Paris 1929), German publication

and Hua vol.1 (1950), English Translation (1960)

Crisis The Crisis of European Sciences and Transcendental Phenomenology (Partial publication 1936),

Hua vol.6 (1954), Hua vol.29 (1993), English Translation (1970)

Henceforth, I shall reference the texts by their abbreviation, unless a reminder of the full title might

be appropriate, and the Husserliana Volume (when appropriate). The pagination is from the English
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translations, unless stated otherwise. A variety of English translations were used, where available, in

addition to the original German, and in some cases I offer my own translations.

With regard to secondary sources, I focus on the following texts Hartimo (2006, 2008, 2010, 2019a,

2019b, 2020a, 2020b, 2021b, 2022a, 2022b), David W. Smith (1989, 2013, 2018), Zahavi (2003, 2004),

Cohen and Moran (2015), Hopp (2020). The point of focusing on these particular secondary texts is

to give a more succinct and coherent interpretation of Husserl. The works of Edmund Husserl have

been studied and analysed by various scholars across the globe but, since my aim here is to develop

the phenomenological methods for studying philosophy of mathematical practice, it is important

for me to provide a coherent unifying account of Husserl’s thought that is most relevant to my

project, and I have therefore opted to be selective with regard to secondary sources in developing

my interpretation of Husserl.

We shall now turn to the first chapter of the dissertation. In the first chapter, I provide introductions

to both philosophy of mathematical practice and phenomenology, before going on to show that

there could be a phenomenology of mathematical practice. The discussion has been framed with the

intention that the reader, regardless of their level of familiarity with philosophy of mathematical

practice or phenomenology, will be able to grasp the ideas and arguments. I also offer an original

interpretation of Husserl’s account of the teleological structure of science/scientific practice as an

application of his account of the structure of the intentionality of subjective experience.
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Chapter 1

Husserlian Phenomenology of

Mathematics

In this chapter, I argue that Husserlian philosophy of mathematics is a philosophy of mathematical

practice. In section 1.1, I give a brief overview of philosophy of mathematical practice. Recent

advocates for philosophy of mathematical practice have been critical of the systematic methods and

approaches in philosophy regarding mathematics. I argue that Husserlian phenomenology, while it

offers a systematic philosophical methodology, does not fall victim to the criticisms levelled at other

philosophical methods and approaches. In sections 1.2 and 1.3, I clarify the nature of Husserlian

phenomenology, and show that Husserlian phenomenology is an empathy-first approach to philosophy.

I further highlight the importance of Husserl’s view of science as a teleological practice and compare

its structure with the structure of intentionality.

The goals of this chapter are threefold. The first goal is to introduce philosophy of mathematical

practice. The second goal is to explain what Husserlian phenomenology is. The third goal is to show

that Husserlian phenomenology offers methods for the philosophy of mathematical practice.
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1.1 Philosophy of Mathematical Practice

In this section, I introduce philosophy of mathematical practice as a response to concerns over

traditional philosophy of mathematics.

As Shapiro (1997) says

For some time, philosophers and mathematicians held that ontology and other philo-
sophical matters determine the proper practice of mathematics. (Shapiro, 1997, p.
6)

According to this perspective, in order to practice mathematics, we ought to ‘first figure out what

we are talking about, by describing or discovering the metaphysical nature of mathematical entities’

(Shapiro, 1997, p. 6). Shapiro calls this ‘the philosophy-first principle’. The perspective placed

philosophy of mathematics prior to mathematical practice: it was thought necessary to secure a

foundation for mathematics in order for mathematical practice to be viable. An alternative to this

view is the philosophy-last-if-at-all principle (Shapiro, 1997, p. 7). The extreme of this view would

claim that there should be no philosophy in mathematics, since ‘it is mathematicians, after all, who

practice and articulate their field’ (Shapiro, 1997, p. 7). If one were to follow this extreme view,

there ought not to be a discipline called philosophy of mathematics at all – which, as Shapiro says,

would be ‘unhealthy for mathematics’ (Shapiro, 1997, p. 7).

A search for a happy middle-ground between the extremes of the two principles leads us to philosophy

of mathematical practice. Owing to there being a wide range of views among the advocates

for philosophy of mathematical practice, we cannot characterise it simply in terms of necessary

and sufficient conditions. For instance, some have advocated their position as going against the

foundational questions (e.g. Kitcher, Tymoczko, Corfield), while others have suggested that we

should go beyond them (see Gray & Ferreirós, 2006, p. 5). What brings the philosophers of

mathematical practice together is perhaps that they focus on expanding or extending discussion

around the existing epistemological and ontological problems about mathematics to engage with

issues found in mathematical practice:
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the epistemology of mathematics needs to be extended well beyond its present confines
to address epistemological issues having to do with fruitfulness, evidence, visualization,
diagrammatic reasoning, understanding, explanation, and other aspects of mathematical
epistemology[. The] ontology of mathematics could also benefit from a closer look at how
interesting ontological issues emerge both in connection to some of the epistemological
problems mentioned above [. . . ] and from mathematical practice itself. (Mancosu, 2008,
pp. 1–2)

The general suggestion is that we ought to consider the philosophical questions about mathematics by

engaging with mathematical practice, and focus on those questions that are interesting to practising

mathematicians, not only to philosophers.

A natural question is, then, what kind of philosophical questions would interest practising mathemati-

cians? In this chapter, I answer this question by focusing on the views of Gray and Ferreirós (2006),

as these offer more general desiderata for philosophy of mathematical practice.

Other discussions on philosophy of mathematical practice can be found in Mancosu (1996, 2008),

Lakatos (2015), Corfield (2003), Ernest (1994, 1998), and Maddy (2007). Note here that I am not

claiming that Gray and Ferreirós’s view on philosophy of mathematical practice is the only view, nor

that it is the best view. I simply consider it to be one of many views of philosophy of mathematical

practice that describe the general desiderata for what philosophy of mathematical practice ought to

focus on. It is, I hold, a view that Husserlian philosophy of mathematics/mathematical practice can

satisfy. So, let us turn to Gray and Ferreirós.

Here, I characterise two desiderata of philosophy of mathematical practice suggested by Gray

and Ferreirós (2006). The first one states that philosophers ought to engage with conceptual

or methodological problems found in mathematics. They write that philosophical reflections on

conceptual or methodological problems, which are ‘practised by mathematicians themselves’, tend to

be ‘perceived as relevant and interesting by mathematicians and historians’ (2006, p. 10). The view

is that these conceptual or methodological problems are already what mathematicians are engaged

in, so philosophical perspectives on these would be useful for mathematicians. From this we can

define the first desideratum of philosophy of mathematical practice (PMP):
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PMP1: PMP should engage with conceptual or methodological problems.

While one could argue that the foundational problems are already effectively conceptual or method-

ological, what Gray and Ferreirós propose is to focus primarily on these rather than ontological or

epistemological problems. If the foundational problems about mathematics are only about ontological

or epistemological problems, these ought not to be the problems in philosophy of mathematical

practice, but in philosophy of mathematics. So, what makes PMP philosophy is its engagement

with the conceptual and methodological problems, which are philosophical problems, over the more

traditional ontological and epistemological problems, such as the epistemic accessibility of abstract

mathematical objects (see, e.g., Mancosu, 2008, pp. 1–2).

Gray and Ferreirós also ask that philosophers ‘engage in a real exchange with the complexities

of mathematical practice, past or present, and to be open to the questions that worry practising

mathematicians about the nature of their subject, especially in times of change’ (2006, p. 11). The

desire to engage in a real exchange has some methodological implications. It is not a matter of

simply engaging with published works in mathematics but, in addition, of engaging with other,

informal aspects of the practice. This is where ‘real exchange’ between mathematicians occurs. By

engaging with the ‘real exchange’, philosophers can learn more about the complexities of conceptual

and methodological developments within the practice. This suggests a more open-minded approach

to studying mathematics, including the approaches of empirical or social sciences. Thus, this

desideratum presses for an interdisciplinary methodology. For instance, informal correspondences

between mathematicians have historical value in showing how certain ideas came to be: we have a

better understanding of Descartes’s mathematics because of his correspondence with Mersenne and

other mathematicians of his time. So, we can characterise this as the second desideratum of PMP:

PMP2: PMP ought to engage in a real exchange with the complexities of mathematical
practice.

The two desiderata together suggest what kinds of philosophical questions we ought to focus on

(PMP1) and what kinds of methodologies we might consider in engaging with the ‘complexities
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of mathematical practice’ (PMP2). Thus, Jessica Carter suggests that PMP is a sub-discipline of

philosophy of mathematics such that

(i) mathematics is taken to be mathematics in every shade and not idealisations of
mathematics, and (ii) an extension of methods [i.e. interdisciplinarity] is allowed, i.e.,
the possibility of bringing in results and tools from other disciplines. (2019, p. 2)

One well-known approach to the ‘extension of methods’ is to follow a ‘naturalist’ method, in particular

in the methods of social and empirical sciences (see, e.g., Maddy, 1997, 2007). However, one ought

to be careful that we do not neglect the desideratum PMP1 in pursuit of the interdisciplinary

methodology motivated by PMP2. If we focus exclusively on the interdisciplinary method, this might

lead us to ignore the philosophical problems and investigate the non-philosophical – sociological or

anthropological – issues. In the next subsection, I briefly explain how such a mis-step might arise

from the desiderata, but clarify what the desiderata mean.1

1.1.1 Interdisciplinarity or Anti-Philosophy?

As we saw, engaging in the real complexities of mathematical practice, interdisciplinary approaches

might be adopted. For example, one could focus on the natural language of mathematics as it

appears in journal publications in terms of speech acts (see, e.g., Ruffino, San Mauro, and Venturi,

2021), perhaps deploying social scientific methods to analyse the samples. Another example is the

use of interviews and surveys (i.e. the methods used in the social sciences) to provide philosophical

insight on the set theoretic practice of today (e.g. Dzamonja and Kant, 2019). Along this line,

Ferreirós (2016) claims:

[An] open-minded approach to the study of mathematical practice can only act for the
good. The study of mathematical knowledge and how it is produced is an important topic,
and it is certainly desirable that the work of philosophers be of interest to mathematicians,
mathematical educationalists, and scientists who are mathematics users. (Ferreiorós,
2016, Foreword)

1To demonstrate fully that engaging with the complexities of mathematics requires an interdisciplinary methodology,
I would need to provide a philosophical argument. This is not the main focus of this chapter, thus I omit this argument
here.
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At the same time, Ferreirós warns his readers to be ‘careful’ of simply applying ‘established’ theories

from other disciplines to mathematical practice (2016, p. 3). Importantly, he is not interested in

reducing the practice to the terms of a particular theory or position, but rather in looking at its

‘meaning’ in terms of its ‘use’ (Ferreirós, 2016, p. 5).

Another advocate for interdisciplinary methods is Penelope Maddy, whose methodological position

is known as Second Philosophy (1997; 2007; 2014). The general attitude of a Second Philosopher

is that philosophy is contiguous with empirical or social sciences, and some questions traditionally

considered philosophical are better answered by other scientific methods. In order to explain what

Second Philosophy is, Maddy introduces an idealised simple enquirer ‘who sets out to discover what

the world is like, the range of what there is and its various properties and behaviors’ (2011, p. 39).

This character is ‘equally at home in all the various empirical investigations, from physics, chemistry,

and astronomy to botany, psychology, and anthropology’ (2011, p. 39). Hence, Maddy’s philosophy

of mathematical practice ought to accept the methods from all these disciplines.

Despite the description that they are ‘open-minded’, these interdisciplinary approaches are sometimes

considered to be anti-philosophical.2 For instance, Gray and Ferreirós (2006) are critical of philoso-

phy’s systematic approach which attempts to fix the basic fundamental principles of mathematics,

or ‘lay out the ontology of mathematics [. . . ] to show that there are no objects’ (2006, pp. 8–9).

This sort of view is further clarified by Aspray and Kitcher (1988): the traditional philosophy of

mathematics, they say,

appears to be a microcosm for the most general and central issues in philosophy – issues
in epistemology, metaphysics, and philosophy of language – and the study of those parts
of mathematics to which philosophers most often attend (logic, set theory, arithmetic)
seems designed to test the merits of large philosophical views about the existence of
abstract entities or the tenability of a certain picture of human knowledge. (Aspray &
Kitcher, 1988, p. 77)3

2As we shall see later on, this charge is not entirely accurate. The sense in which they are ‘anti-philosophical’ is
actually a matter of resistance to particular philosophical approaches.

3A target of this criticism might be Benacerraf (1973). In his famous paper, Benacerraf aims to argue for a general
account of truth that could also apply to mathematics.
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Although the criticisms offered by Gray and Ferreirós (2006) and Aspray and Kitcher (1988) are more

generally aimed at a systematic philosophical approach, Maddy also offers a particularist criticism of

the traditional philosophical approaches. Maddy claims in Naturalism in Mathematics (1997) that

on the basis of historical analysis, [. . . ] certain types of typically philosophical considera-
tions have turned out to be irrelevant in the past. [. . . I propose,] guided by this fact, a
naturalized model of the underlying justificatory structure of the practice that can then
be tested empirically (1997, p. 200).

Not only that, but in Second Philosophy (Maddy, 2007), she criticises various traditional philosoph-

ical methods (and/or their consequences) attributed to Descartes, Kant, Carnap, and Quine, by

considering the method introduced by each philosopher and arguing that it is not suitable for the

Second Philosopher’s investigation.

Although Maddy does not engage with Husserlian phenomenology, Mirja Hartimo has highlighted

some similarities between Second Philosophy and Husserlian phenomenology in a number of works.

I shall briefly discuss this in the next section, after defending Husserlian phenomenology from the

generalist criticism.

1.2 Husserlian Phenomenology as Pertaining to a Philosophy of

Mathematical Practice

In this section, I argue that Husserlian phenomenology is an instance of philosophy of mathematical

practice satisfying the general desiderata proposed by Gray and Ferreirós for PMP. To show this,

I briefly discuss (in section 1.2.1) the principle of freedom from presuppositions. Then in sections

1.2.2 and 1.2.3, I describe Husserl’s method of Besinnung for studying mathematical practice and

compare it with Maddy’s metaphilosophy, ‘Second Philosophy ’.
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1.2.1 Presuppositionlessness as ‘First’ Philosophy

The criticisms offered by Gray and Ferreirós and by Aspray and Kitcher target the systematic

approaches of fixing and reducing mathematics. An example of this is provided by Benacerraf’s paper

on ‘Mathematical Truth’ (Benacerraf, 1973). One of the problems raised in the paper is whether

there is a general account of truth (provided by knowledge) such that it is also an appropriate account

of mathematical knowledge (with respect to truth).4 The paper raises a dilemma, by arguing that

a general account of truth and/or knowledge that is also an appropriate account of mathematical

truth/knowledge is not possible. The starting point of the enquiry is the general philosophical issues

(concerning truth and knowledge) rather than a mathematical problem.

Instead of starting with a particular philosophical perspective, Husserlian phenomenology begins

with the natural attitude of the practitioners – i.e. the naïve standpoint of the practitioners prior

to any extra theorising about their practice. (Being in the natural attitude is to presuppose only

what the practitioners already presuppose.) From this beginning, Husserlian phenomology goes on

to attempt to describe and clarify mathematics and its aims from the practitioners’ perspective. In

this sense, phenomenological methods start from an ontologically and epistemically neutral position

– as long as the practitioners typically have neutral positions on the matter of ontology – and,

consequentially, describe and clarify the ontological and epistemic positions found in the natural

attitude5 of practising mathematicians. Husserl writes:

Phenomenology must lay claim [. . . ] to being ‘first’ philosophy and providing the means
for every rational critique [Vernunftkritik ] that needs to be carried out. Thus, it requires
the uttermost presuppositionlessness and an absolute, reflective insight into itself. (My
emphasis, Ideas I, §63; Dahlstrom, translation, p. 117)

Husserl calls this requirement the ‘principle of freedom from presuppositions ’. This principle suggests

that one should not assume a philosophical stance beyond what is found in the natural attitude of

the practitioners, before pursuing an investigation:

4In Benacerraf’s case, he assumes a correspondence theory of truth.
5I will clarify this in section 1.3.1.
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An epistemological [phenomenological] investigation that can seriously claim to be
scientific must [. . . ] satisfy the principle of freedom from presuppositions. This principle
[. . . ] only seeks to express the strict exclusion of all statements not permitting of a
comprehensive phenomenological realization. (LI II, Part I, Introduction §7; 2000, p.
189)

At base, the principle asserts that the statements that cannot be phenomenologically experienced or

understood should be excluded from phenomenological investigation. Correlatively, in the context of

mathematical practice, whatever is part of mathematical practice would be up for phenomenological

investigation.

In order to engage phenomenologically with mathematics, and be in the mathematicians’ natural

attitude, we must begin by empathising with mathematicians. ‘Empathy ’, in the context of Husserlian

phenomenology, roughly refers to understanding another person’s experience (e.g. of mathematics)

from that other’s perspective (i.e., in this case, the mathematician’s perspective).6 Once this is

achieved, we can reflect on the relevant concepts and methods from the mathematicians’ perspective.

For this reason, I would like to describe phenomenology as an ‘empathy-first approach’ to philosophy,

and hightlight pre-suppositionlessness as what is necessary to empathise with the relevant subject(s).

In this sense, I could phenomenologically investigate what mathematical experiences (such as proving

a theorem) are like or how mathematical things or facts appear to the mathematicians in these

experiences.

But phenomenology is not only restricted to investigation of the experiences of individual mathemati-

cian. When we focus on the experiences of a community of mathematicians, rather than individual

mathematicians, we first need to understand what kind of experiences are shared among the members

of the given community. Then we aim to clarify what the community’s goals are. Husserl calls this

method ‘Besinnung ’. In the next subsection, I shall briefly explain what Besinnung is and how this

method can be used to study mathematical practice. A more detailed account of Besinnung will be

presented in Chapter 3.

6I shall clarify what this comes to in more detail in Chapter 3.1.
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1.2.2 Husserl’s Method of Besinnung : Empathising with the Community

Besinnung is explicitly described in Formal and Transcendental Logic (1929, 1969, 1974), but is

also mentioned in Cartesian Meditations (1929/31, 1960) and Crisis (1936, 1970). This method

aims to clarify the Zwecksinn (i.e. the goal-sense or final-sense) of a practice, which broadly refers

to the aims and goals of the practice. It involves ‘standing in the community of empathy’ (FTL,

introduction), which roughly means to engage in the real practice of the community and understand

its motivation.7

In the context of mathematics, to stand in the community of empathy, phenomenologists should be

interacting with the mathematicians as they practise their discipline. This means understanding what

kinds of experiences are involved in their practice – e.g. proving. To achieve this, one might attend

lectures, solve mathematical problems, attend conferences, or converse with working mathematicians

to engage in the real exchange with ‘complexities of mathematical practice’ (satisfying PMP2). Of

course, not all mathematicians do all of these things, but these are some of the activities involved

in the complexities. In relation to historical practice in mathematics, the phenomenologists can

read primary mathematical sources engaging with the mathematics – not merely as a reference but

as a source – in the way historians of mathematics would. Importantly, it is the community of

empathy (in particular, mathematical empathy) that phenomenologists are aiming to stand within:

phenomenologists ought to empathise with the mathematicians and understand what it is like

to be a working mathematician, not simply as an individual subject but as a member of the

mathematical community. This does not simply mean empathising with a person who happens to

be a mathematician, but engaging with the mathematical content with which the mathematicians

engage, and understanding the mathematician’s perspective as they engage with that content.

In conversing and engaging with working mathematicians, phenomenologists cannot avoid the

methodological/conceptual questions and worries of the mathematicians. If phenomenologists

were to reject these worries, then they would simply be failing to empathise with the working

mathematicians. Thus, being ‘open to questions that worry mathematicians’ (Gray and Ferreirós) is

7I shall expand on what Husserl means by the ’community of empathy’ in Chapter 3.
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a feature of standing in the community of empathy, and hence, and contributes to the satisfaction of

PMP1.

Thus far, I have shown that Husserlian phenomenology of mathematics is a systematic philosophical

approach starting with presuppositionlessness, that it is an empathy-first approach, and that

the method of Besinnung satisfies PMP1 and PMP2. I shall now briefly show how Husserlian

phenomenology compares with an existing methodological programme, Maddy’s Second Philosophy.

As Hartimo has pointed out (see, e.g., her 2020a and 2021b), there are similiarities between Maddy’s

Second Philosophy and the Husserlian phenomenological method of Besinnung. The next section

aims to highlight some differences between the approaches and suggest some advantages of the

Husserlian method. In particular, I argue that an understanding of Husserlian phenomenology allows

us to see how it might be pursued effectively in practice, while Maddy’s Second Philosophy remains,

in contrast, an idealised methodological programme.

1.2.3 Phenomenology and Second Philosophy

As Mirja Hartimo has pointed out, there are many similarities between Second Philosophy and

Husserlian phenomenology, especially when it comes to the method of Besinnung (see, e.g., Hartimo,

2020a, 2020b, 2021a, 2021b). This might come as a surprise to phenomenologists because of Husserl’s

anti-naturalist positions. Hartimo, (2021b, p. 18) writes that

Husserl [argued] in ‘Philosophy as Rigorous Science’ (1911) that phenomenology should
overcome naturalism. By ‘naturalism’ he means a reductive philosophical attitude
according to which [. . . ] human consciousness, ideas, ideals, and norms are reduced to
physics, which results in relativism and skepticism.

Since Maddy’s Second Philosophy is sometimes seen as a kind of Naturalism (see, e.g., Maddy, 1997,

2022), the knee-jerk reaction of phenomenologists might be ‘Second Philosophy is bad!’ However,

the ‘Naturalism’ Husserl opposes is one intent on metaphysical reduction, in particular to physics,

rather than the methodological one advocated by Second Philosophers.
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One similarity between the two methods concerns how they view mathematics/mathematical practice.

Second Philosophers and phenomenologists alike ‘[examine] developments in mathematics as they are

motivated by particular goals and values’ (Hartimo, 2021b, p. 19). In Formal and Transcendental

Logic, Husserl writes that the mathematical community has a ‘goal sense [Zwecksinn] toward which

[mathematicians] have been continually aiming’ (FTL, p. 9, quoted, with my minor modification to

the translation, in 2021b, p. 20).8 Similarly, Maddy identifies foundational goals (e.g. in Maddy,

2019) toward which set theorists and homotopy type theorists have been continually aiming. Thus,

Second Philosophers and phenomenologists agree in their teleological view of mathematical practice,

and in that share the aim to ‘identify the goals and evaluate the methods by their relations to those

goals’ (1997, p. 194, quoted from 2021b, pp. 19–20).

However, they would disagree on what qualify as the goals of mathematical practice are. For

phenomenologists, Zwecksinne include minimal requirements, ‘without [which] one would think

that there is something wrong with the theory, or that the theory is not a theory at all’ (2021b,

p. 189). For example, Hartimo (2021b) argues that the law of non-contradiction is a Zwecksinn of

mathematical practice. These requirements are then one of the most trivial necessary conditions

found in mathematics, and they ought to be understood when empathising with the community.

However, such a general law would simply fall under logic for the Second Philosophers, and thus

the law will be further reduced to the combination of the logical structure of the empirical world as

well as our cognitive mechanisms (Maddy, 2007, p. 225ff.). So the law of non-contradiction is, for

Second Philosophers, ‘true of the world’ and human beings’ ‘most primitive cognitive mechanisms

allow them to detect [the law]’ (Maddy, 2007, p. 233). In that sense, Zwecksinne are more broadly

conceived than the goals of Second Philosophers. The law of non-contradiction is a Zwecksinn (as a

minimal requirement for mathematical practice) while, for Second Philosophers, it is simply a law of

logic which the practitioners can empirically verify.

There is a more important difference between the Second Philosopher and the phenomenologist. While

the Second Philosopher is an idealised enquirer who is ‘equally at home in all the various empirical

investigations’, the phenomenologist is not. Because the Second Philosopher is an idealisation, it is

hard to find any practical guidance by which one can carry out the method of Second Philosophy. A

8See Chapter 3 for more on ‘goal sense’ (Zwecksinn).
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phenomenologist is a real person with varying levels of skill in different disciplines, and someone

who is curious to learn about different disciplines. A human being could be a phenomenologist by

learning and carrying out phenomenological methods, while the Second Philosopher seems to be an

unattainable ideal whose methods human beings will never be able to carry out.

Furthermore, any phenomenological method would require the enquirer to look at mathematics – to

take one example – from a mathematician’s perspective, via empathy – i.e. looking at the mathematics

from a first-person perspective – unlike a Second Philosopher, who might pursue a third-person

investigation, looking at a practice from an outsider’s perspective. To conduct this phenomenological

enquiry then, one must pay attention to the mathematics with which the mathematicians are

engaging, rather than simply conducting a sociological or anthropological investigation concerning

mathematicians (which might be considered satisfactory by a Second Philosopher).

Husserlian phenomenology qualifies as a Philosophy of Mathematical Practice because of its principle

of freedom from presuppositions and its method relying on empathy: both of these elements put

mathematical practice first, prior to any philosophical commitments. Besinnung is an example of a

particular phenomenological method which focuses on the community’s practice. Its aims resemble

the aims of Maddy’s Second Philosophy, but the two approaches differ, both in what they count

as such goals, and in that the phenomenological method must be carried out from a first-person

perspective, paying attention to the mathematics that the mathematicians are looking at.

1.3 What is Phenomenology?: Intentionality and Teleology

The previous section introduced Husserlian phenomenology as a candidate for a philosophy of

mathematical practice. In this section, I provide a detailed account of the nature of Husserlian

phenomenology. In particular, I argue that the basic structure of intentionality, considered to

be fundamental to phenomenology, is paralleled by the teleological structure that Husserl sees in

scientific practice, including mathematics.9

9This section also aims to clarify some terminology that I shall use throughout the dissertation.
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1.3.1 Phenomenology as the Study of Consciousness: The Basic Structure of

Intentionality

Husserl’s phenomenology begins with the Logical Investigations (1900/1) in which he articulates the

structure of intentionality. The term ‘intentionality’ comes from Husserl’s teacher, Franz Brentano,

whose work Psychology from an Empirical Standpoint (1874) had been a great influence on Husserl.

Brentano claimed that, in a mental phenomenon, we have two distinct objects – the physical object

and the intentionally inexisting object. The physical object is independent of our mental phenomenon,

but is that at which our experience is directed. However, the intentionally inexisting object exists

within our mental phenomenon. What Brentano sought was a new science of mental phenomena,

focusing on acts of consciousness. But Husserl takes Brentano’s descriptive psychology and builds

his own theory, focusing on the idea that conscious experience has the intentional structure that

Brentano described, but diverges from Brentano’s views in some respects.10 For instance, Husserl

does not use the notion of intentional inexistence, but instead discusses the meaning (which he

calls, ‘sense’ [Sinn]) in an intentional experience. On the Brentanian and Husserlian accounts,

intentionality is a description of the structure of our conscious experience.

For example, our ordinary sense-perceptual experiences can be described as intentional, since they are

of or about something. This structure can be found when we simply reflect on our own experiences.

When we are seeing, hearing, touching, smelling, etc., there is always something that we see, hear,

touch, smell, etc. This description is also true of hallucinations. If I were hallucinating a pink

elephant, the something (regardless of whether it physically exists or not) is the pink elephant.

Hence, ‘intentionality’ is a description of a subjective experience.11

In our experiences, the something is not restricted to particular physical objects like a tree. It can

be of an event or a situation. Suppose that I see a cat falling out of an apple tree. In this experience,

I am not merely seeing the cat, but I also see the cat falling from the tree onto the ground. Perhaps

I even see the cat land safely on four legs. These experiences of seeing are about more than just

the cat: they are about the cat falling from a tree, the cat landing on the ground, and so on. The

10Brentano, (1874/2012) claims that the term ‘intentionality’ [Intentionalität ] comes from the medievals, but it is
not clear whether the term was ever used by any medieval philosopher.

11I follow David Woodruff Smith (2013) in my characterisation of the general structure of intentionality.
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structure of intentionality can also be found in non-sense-perceptual experiences such as thinking,

remembering, imagining, etc. – for example, when I think, I am thinking of or about something: I

am thinking of the cat outside; or I am remembering what happened yesterday; or I am imagining a

dragon flying away from a castle, and so on. Phenomenology focuses on these kinds of experiences,

which can be described as intentional.12

Given these features of intentional experiences, the structure of intentionality [Intentionalität ] or

of intentional experience can be clarified in more detail as follows. In an intentional experience, a

subject experiences the (intended) object. This subject is usually referred to as ‘I’. As I described

earlier, the something of an intentional experience does not need to be a particular thing, but it

could be an event or even an abstract entity. Regardless of the nature of what the experience is of or

about, we refer to it as an object [Gegenstand, Objekt ] or an intended object.13 The question about

the nature of the intended object is not always of concern to a phenomenologist, in contrast with

the situation in (e.g.) metaphysics.

In an intentional experience, the intended object is said to be presented [Vorgestellt ] in a certain

way, and the way the object is presented is called the content [Inhalt, or Gehalt ]. We use the terms

‘sense [Sinn]’, ‘meaning [Meinung ]’, ‘meaning content’, or ‘concept’ to refer to the content of the

experience, and throughout the dissertation, I shall use these words interchangeably. In particular in

Chapter 2, I use the word ‘concept’ to refer to the content of intersubjective experiences.14 Even

though I am seeing the apple tree in my garden, if I do not know what an apple tree looks like, the

content of the experience could be of a tree rather than an apple tree. Even though the intended

object, apple tree, can be presented as a <tree>, as well as an <apple tree>, the content of my

experience (i.e. this particular experience of my seeing) of the tree is the <tree>, not <apple tree>.

That is, I see the thing in front of me as a <tree>. In this sense, the content is the meaning as

12I am not opposed to the idea that there could be experiences which are not intentional. In that case, we can
simply say that phenomenologists are interested only in intentional experiences.

13We can understand the ‘intended object’ to refer to the object (or the objective event or situation) at which our
subjective intentional experience is directed.

14As Husserl develops his phenomenology as a systematic science and sharpens his structure of intentionality, he
replaces the term ‘content’ with the term ‘sense [Sinn]’ : ‘Each noema has a “content”, that is to say its “sense”, and is
related through it to “its” object ’ (Ideas I, §129), Sometimes he refers to the ‘noematic Sinn’. In this dissertation, I
shall simply drop the adjective ‘noematic’.
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presented by the intended object in the experience. Hence, phenomenology can also be seen as the

study of meaning in our conscious experience.

Henceforth, I shall use angle brackets ‘<’, ‘>’ to indicate reference to the content of the experience

or the presentation of the relevant object, in order to distinguish it from the object itself. By making

this distinction, I do not mean to assert an ontological difference between the two, but rather to

indicate that we can treat them differently, since the content can be described only within the

experience itself, while it is possible that the intended object is described independently of the

subject’s experience.15

Occasionally, we might say the object is presented to me as a <tree> to emphasise that the <tree>

is the content of my experience of seeing the apple tree, that is, the tree is constituted as a <tree>

for me.

As we shall see shortly, the term ‘Sinn’ is important for the project of this dissertation, since

Husserl’s phenomenological methods for studying mathematical practice, which he calls Besinnung,

aims to clarify the Zwecksinn – i.e. the goal-sense. I take Husserl’s terminological usage of ‘Sinn’

very seriously for understanding Besinnung. Although ‘Besinnung ’ can be translated as ‘reflection’

with some spiritual or religious connotation, I am looking at Besinnung as a reflection on the Sinn

of a given practice.16

From this basic structure of intentionality, D. W. Smith and R. McIntyre (1982) and David Woodruff

Smith (2013) further clarify and sharpen different features of our consciousness. Some of these

features will become important later in the dissertation, but for now, I shall focus only on the simple

structure of intentionality described here.
15There is a debate among phenomenologists about the nature of the intentional content (see, e.g., Zahavi (2004);

Hirvonen (2022)). In so-called ‘West-Coast phenomenology’, the content is distinct from the object. In the case of a
tree, the object tree is in nature, but the content <tree> is not. However, the ‘East-Coast phenomenology’ reading
interprets the tree in nature as the same tree as the content of the experience. In this reading, it is the subject’s
attitude that changes with respect to the experience of the tree – the subject brackets certain metaphysical questions
about the tree and turns towards their phenomenological attitude, focusing on the meaning of the experience, or how
the tree is presented. The distinction is an important one philosophically, but it is not significant for my project.
Thus, I take an ontologically neutral stance on this issue and allow that we can talk about the content as a separate
thing from the object by referring to them via certain noun phrases. On the other hand, we can also talk about the
content in terms of adverbial ways in which we experience the object – e.g. the thing appears to me visually in a
tree-like manner. For further discussion of these issues, see Zahavi, 2003, pp. 58–60; Zahavi, 2004; Follesdal, 1969;
Follesdal, 1990; Crowell 2006, pp. 18–19; and D. W. Smith, 2013.

16For this reason, Dorian Cairns translates ‘Besinnung ’ as ‘sense-investigation’ in Husserl (1969).
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With the basic structure of intentionality clarified, let us turn towards phenomenology as a

method/collection of methods.

1.3.2 Phenomenology as a Methodological Approach

Another view of phenomenology is that it is a method, or that it consists of a collection of methods

(see, e.g., D. W. Smith, 2013, p. 226ff.). The most fundamental phenomenological methods are

bracketing, and phenomenological reductions (epoché). In order to explain what these methods

involve, we must first explain what a natural attitude is.

As we go about our everyday business, we do not (always) stop to ask philosophical questions. We

naturally assume that the world is out there, and that we live in this world. I do not doubt whether

I have two hands, nor do I doubt whether 2 + 2 = 4. This naïve attitude in which we have certain

assumptions is called the ‘natural attitude’ or ‘natural standpoint ’ [‘natüraliche Einstellung ’].17

The general methods of phenomenology aim to describe and clarify the meaning, or Sinn, found in

our experience. To do so, we turn away from our natural attitude by bracketing (i.e. ignoring or

suspending) judgements, questions or naïve assumptions; and by phenomenological reduction (or

epoché), which is a kind of reflection, we turn our attention towards, for example, the phenomenolog-

ical/intentional content – i.e. our perception of the objects. For example, when seeing an apple tree,

we can reflect on this seeing experience and focus on the content <apple tree>. Once we focus our

attention to the experiences, we can clarify what it means for something to be an apple tree from a

subjective perspective. This is what phenomenological reduction (epoché) is, in the simplest sense.18

17There are different translations of ‘Einstellung ’ in Husserl scholarship. For example, Hartimo generally translates
it as ‘attitude’ while David W. Smith translates it to ‘standpoint’. For the sake of consistency, I shall typically use
‘attitude’. The important point in my interpretation, however, is that the Einstellung refers to the perspectives of
different subjects, in addition to the different contexts or situations in which they are placed.

18The notion of epoché goes back to Sextus Empiricus, a Pyrrhonian sceptic, who describes it as a ‘mental rest
stasis’ [stasis dianoias] from which we neither deny nor affirm anything (Sextus, 1933, p. 10). Literally in Greek,
‘epoché’ means stopping, but it is often translated as ‘to suspend judgement’ or ‘to withhold assent’. I would like to
thank Charles Leitz for pointing this out to me.

30



When we suspend our judgement from the intended object of our experience and focus on the

content of our experience, we are said to be in the ‘phenomenological attitude [phänomenologische

Einstellung ]’.

Although in the example above, phenomenological reduction aimed to clarify the intentional content,

it can also clarify the meaning/Sinn of other parts of intentionality. Carrying out phenomenological

reduction begins in our natural attitude, bracketing the naïve assumptions, and then, by reflection,

we clarify the meaning found from the experiences we have. This is not restricted to clarifying

only the intentional content; it can also involve clarifying the kinds of experiences we have or the

structure of our experience. For example, in my experience of seeing an apple tree, I can focus on

seeing and clarify what it means to see from the subjective perspective.

Along these lines, Husserl characterises phenomenological reduction as a generalisation of Descartes’s

method of sceptical doubt (see, e.g., Cartesian Meditations). In his Meditations, Descartes begins

to doubt the existence of the things he experiences and concludes that the I who is capable of

doubting exists. The existence of the I is characterised as the Cogito, and it is considered to be a first

principle that grounds all knowledge. Similarly, Husserl begins in his natural attitude and (instead of

doubting) brackets all these naïve assumptions he has. Eventually, he comes to the realisation that

the meaning or the Sinn (sense) of the I is the one who can think, experience, or has consciousness.

Hence, the I is the precondition that makes his thinking experience possible. Going even further,

for an arbitrary individual subject, they can also phenomenologically reduce to the existence of

themselves, so this I can be understood as a universal idealised subject. Thus, Husserl refers to the

universal, ideal I, as the transcendental Ego. While phenomenological reduction could be applied to

understand the meaning within a particular intentional experience, with a transcendental aim, the

method can result in a universal or general condition that makes intentional experience or certain

experiences possible. Husserl’s transcendental ego is an example of that: while considering various

kinds of experiences, the transcendental aim leads Husserl to clarify the meaning of the I.
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The term ‘transcendental’ has a variety of interpretations, but based on a loosely Kantian notion of

the ‘transcendental’, it is broadly characterised as the pre-conditions that make cognition possible.19

Like the Kantian term, Husserl’s term ‘transcendental’ also has various interpretations. Instead of

providing a review of other interpretations, I focus on my interpretation of Husserl’s ‘transcendental’.

Husserl’s aim in transcendental phenomenology is, in my view, to clarify what is universal or general

to our cognition or experience, such that every particular experience is an instance of the universal.

For example, a phenomenologist might start with the ordinary experiences of seeing, and turn

towards what is universally common in all the seeing experiences. Once this universal commonality

is clarified, every experience of seeing is understood as an instance of the universal account of seeing.

Then, the universality can be described as the condition that makes seeing possible. In this sense,

phenomenology is an explicatory or clarificatory science: it is a science because it offers a systematic

method, and it aims to clarify the universal conditions found from our experiences.

This is clearer in Husserl’s characterisation of Descartes’s Cogito. Descartes’s Cogito shows that

there must be a subject who is having these experiences. Any conscious subject must be able to

conclude that the thinker/experiencer exists, and so the Cogito can be viewed as a transcendental

condition – i.e. a universal condition – for cognition. This transcendental Cogito, or transcendental

ego [transzendentale Ich](CM, §9ff., §11) as Husserl refers to it, is not the ego of a particular subject,

but rather the general form or structure that is universal to any ego, and it is understood in virtue

of carrying out the phenomenological method:

By phenomenological epoché I reduce my natural human Ego and my psychic life – the
realm of my psychological self-experience – to my transcendental-phenomenological Ego.
(CM, §11)

Once we are able to clarify the transcendental condition, we are said to be in a transcendental

attitude – a phenomenological attitude in which the content of the experience is the most pure. (See

Crisis, Part III, A; 1970, p. 179.)

19For Kant, transcendental philosophy is what explains the a priori conditions for the possibility of knowl-
edge/cognition. I would like to thank Jeremy Heis for clarifying this distinction for me. For a review of different
interpretations of Kant’s ‘transcendental’, see Stang, 2022.
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In general, the transcendental conditions can be understood as universal features of our conscious

experience, which are accessible by following the phenomenological methods. In that sense, we can

understand ‘Transcendental Phenomenology’ as phenomenology that aims to clarify the universal

conditions of our cognition. Although many scholars (e.g. Cobb-Stevens, 1990, p. 165) claim Husserl

makes the ‘transcendental turn’ in his Ideas I, I do not consider Husserl’s work to be divided as

such. I follow the reading of Husserl that he is continuously developing his philosophical ideas

(see, e.g., Hartimo, 2021b, D. W. Smith 2013), starting from the Philosophy of Arithmetic (Husserl,

1891/2003). On my account, the phenomenological methods aim to arrive at the transcendental (or

universal) conditions, and transcendental attitude is a kind of phenomenological attitude where we

have successfully clarified the universal conditions.20 So, let us return to the more simple kind of

phenomenological reduction and describe how the structure of intentionality can be understood by

phenomenological reduction.

In phenomenological reduction applied to a particular experience, we turn our attention to the various

parts of the experience. The structure of intentionality can then be found by phenomenological

reduction. In any conscious experience, there is always a subject, a something that the subject is

experiencing, and a meaning that the subject attributes to the thing experienced (or the object

as experienced). Thus, we can understand the notion of Sinn (i.e. the meaning content) to be

a transcendental condition of cognition. Furthermore, the structure of intentionality is also a

transcendental condition for (intentional) consciousness, since it is necessary for conscious experience.

The ultimate aim of Husserlian phenomenology is to identify and clarify what conditions make our

conscious experience possible. And we can apply the phenomenological methods to specific types of

conscious experiences in an attempt to clarify what universal conditions there are for those types

of experiences. For instance, if we apply it to the experiences of knowing, we ask what are the

conditions that make knowledge possible? We reflect on our experiences of knowing, and discover

what is universally common in those experiences and characterise them as transcendental conditions

20This would contrast with Hartimo’s and Cobb-Stevens’s treatments of transcendental reduction as a separate
methodology from epoché or phenomenological reduction. And yet I agree with Cobb-Stevens that the transcendental
attitude (if one must distinguish it) is a ‘philosophical attitude that permits appropriate thinking about the relationship
between knower and known’ (1990, p. 162). On my account, in contrast with that of Cobbs-Stevens, ‘transcendental’
phenomenology describes an aim that extends the method of epoché. I shall return to this in Chapter 3.
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for knowing. We can narrow the focus still further, to mathematical knowledge, for example, and

ask what conditions make mathematical knowledge possible.

When Husserl claims that scientific practice is teleological, he is not simply assuming that, but

stating what he has found through the application of phenomenological methods. What all of the

sciences (including philosophy) have in common is teleological structure and continuity from their

own individual histories. In the next subsection, I provide textual evidence to support Husserl’s

teleological view of the sciences. Then, I compare the structure of intentionality with the teleological

structure.

1.3.3 The Teleological Practice of Science

According to Husserl, both subjective experience and scientific practice have the structure of

intentionality. In subjective experience, our experience is directed at or aimed at the intended

object via the intentional content. Through phenomenological reduction, however, we clarify the

meaning of the object that is universally present in all our experience with the object. This clarified

meaning is what Husserl calls, in Logical Investigations, ‘fulfilled sense’. It refers to the objective

or ideal meaning or the complete meaning presented by the intended object, without which all our

experiences of the said object would not be possible. In empirical sciences, the practice is concerned

with the empirical world. The scientists study the empirical world around us in order to understand

it better. Similarly, in mathematical sciences, we can describe ourselves to be concerned with the

‘mathematical world’. Whatever groups, topological spaces, real numbers, sets, functions, etc., are,

mathematical practice is concerned with them, whether or not they occupy some mathematical

world. However, Husserl claims that the practice is directed at or aims at the goal sense [Zwecksinn]

(see, e.g., Hartimo, 2020b, pp. 70–1). Husserl claims that Zwecksinn is similar to ‘fulfilled sense’ in

LI. I shall show later, in Chapter 3, that Zwecksinn refers to the motivational goals of the practice,

which guide or motivate the practice to be such, but also they are what the practitioners aim for.

This suggests that Zwecksinn is a universal condition for the practice in consideration. With this

view in mind, we can visualise the teleological structure of Husserl’s as in Figure 1.1.
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Figure 1.1: Intentionality and Teleology Comparison

Since our experience and our scientific practice share the structure of intentionality, we can apply

the same general method to clarify the meaning (i.e. sense) of our experience and practice – in the

former, this is the fulfilled intentional sense; and in the latter it is the goal sense [Zwecksinn]. Here,

I provide textual evidence from Husserl’s writings to show that he held this teleological view of

science throughout his career.

For Husserl, science is an intersubjective or spiritual [geistes ] creation by which the scientists jointly

aim to achieve a particular goal:

Sciences are creations of the spirit [Geist ] which are directed to a certain end, and which
are for that reason to be judged in accordance with that end. (LI, Prolegomena, §11;
Findlay translation, p. 25)

This sentiment is similar to what we find in Dedekind’s view (in Was sind und was sollen die Zahlen? ;

Dedekind, 1888) of the numbers as the ‘free creation of the human spirit’ [freie Schöpfungen des

menschlichen Geistes,] (Dedekind, 1995), as well as in the Berlin school of mathematics according to

Poincaré: ‘The mathematical continuum from [the point of the Berlin school] would be a pure creation

of the spirit [une pure création de l’esprit] in which experiment would have no part’ (Poincaré, 2018, p.

19; 1903; modified with my translation). By ‘spirit’ (Geistes in German or esprit in French), Husserl,

Dedekind, and Poincaré seem to be referring to the intersubjectively shared culture or practice (see,

e.g., Reck & Keller, 2021, footnote 15). In other words, scientific and other mathematical objects

are creations of the intersubjective spirit, the intersubjective practice, motivated by and directed to

‘certain end[s]’ (LI, §11).
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For Husserl, then, philosophy of science (or of scientific practice) is the study based on these

teleological structures, which cannot be completed by the natural sciences themselves:

Furthermore, the systematic investigation of all teleologies that are to be found in the
empirical world itself is not completed simply by the natural-scientific explanations of all
such formations, on the basis of given factual circumstances and according to natural
laws. (Ideas I, §58; Dahlstrom translation, p. 106)

Furthermore, the study of such structures involves the search for and the uncovering of the goal-idea

or final idea [Zweckidee]:

the interest in uncovering the teleological structures [teleologischen Strukturen] immanent
in the final idea [Zweckidee] of a theory of science; the interest in developing, in orginary
evidence, the other ideas included in the intentional sense [intentionalen Sinn] of that
idea – ideas of component logical disciplines – and the essentially united set of problems
peculiar to each of them. (FTL, p. 66, §23; Janssen, p. 79; Cairns translation, p. 75)

In fact, it is not only in the natural sciences that we find this teleological structure, but also in

philosophy (Crisis, §15). And to understand the teleology of philosophy – and, as I consider, of other

sciences including mathematics – we must understand how the discipline was formed historically,

and also understand what our current final goals and ideas are:

Our task is to make comprehensible the teleology in the historical becoming of philosophy,
especially modern philosophy, and at the same time to achieve clarity about ourselves,
who are the bearers of this teleology, who take part in carrying it out through our
personal intentions. (Crisis §15; Carr translation, p. 70)

So how is this teleological structure of practice described as intentional? Recall that the structure of

intentionality consisted broadly of a subject, intentional content, and the intended object. In the

teleological picture of the practice, instead of a subject, we have a community of subjects – that is,

the practitioners of a given discipline. The intended object can be replaced by anything that the

scientists are concerned about. Since teleological practice is focused on the aims or goals, in place of

intentional content, we have Zwecksinn, the goal sense. As Husserl describes, Zwecksinn is similar to
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the ‘fulfilled sense’ in the structure of intentionality. A sense, in a conscious experience, is said to be

fulfilled if the subject can instantaneously and accurately grasp the object via the fulfilled sense.

Thus, the object as experienced is the object as itself. In other words, we have a complete picture of

the intended object, which cannot be faulted. Hence, Zwecksinn is the complete meaning or purpose

of the practice, that which the practitioners are aiming for, and the practice cannot be understood

completely without grasping this meaning.

When we consider mathematics as a science, and see it as a teleological practice, then Husserl’s

approach would suggest what philosophy of mathematical practice ought to be. Husserlian philosophy

of mathematics, or the phenomenology of mathematics, ought to focus on understanding the

historical/cultural becoming of the discipline, and aim to clarify the finals goals and ideas of the

practice.

1.4 Conclusion

In this chapter, I have argued that Edmund Husserl, better known within philosophy as the founder of

phenomenology, was a philosopher of mathematical practice. Phenomenology takes an empathy-first

approach to philosophy of mathematics. This means taking the perspective of the mathematicians

first in understanding mathematics without any external presuppositions (section 1.2.1). Furthermore,

Husserl’s phenomenology (in the context of mathematical practice) is a methodological programme

that deals with the philosophical questions (i.e. conceptual and methodological questions) and aims

to clarify the concepts and methods found within the community of mathematicians (section 1.3.2).

Achieving this aim involves accepting that mathematical practice is an intersubjective practice with

a teleological structure, similar to the structure of intentionality (see section 1.3.3).

Phenomenology neither asks nor answers ontological or epistemological questions independently of

mathematics, the mathematical community, or mathematical practice; rather, Husserl’s methods

suggest philosophising within the community’s practice (i.e. in empathic experience with the

community – see section 1.2.2). The important methodological feature of phenomenology is the

first-person perspectival analysis (and, hence, the empathy-first approach) and phenomenology aims
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at clarification from such a perspective. Any explication of our experience or practice that does not

start from the first-person perspective is not one that can be considered phenomenological.

In the following chapters, I shall expand on these features of Husserlian phenomenology and clarify

further how an empathy-first approach can be a fruitful approach to philosophy of mathematics and

mathematical practice. The next chapter, for instance, focuses on this empathy-first approach in the

broader context of epistemology of mathematics. Instead of taking the mathematicians’ perspective,

I take the perspective of the ordinary folk as the first-person perspective to understand human

number cognition. By doing so, I aim to demonstrate how this empathy-first approach can be fruitful

to epistemology generally.

The subsequent chapters will focus on developing the Husserlian method of Besinnung with the aim of

applying it to contemporary discussions in philosophy of mathematical practice. With the empathy-

first approach articulated in Chapter 2, I explain how empathy is important in understanding

Husserl’s notion of community of empathy in Chapter 3. Then in Chapter 4, I characterise what

must be involved in empathising with the community of mathematicians who practice homotopy

type theory.
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Chapter 2

A Phenomenological Analysis of the

Number Sequence

The general aim of phenomenology is to clarify the meaning or sense that we find in our experience

or in our practice. A common criticism of phenomenology from the perspective of other empirical

sciences is that it does not offer any empirical evidence for the accuracy of the first-person analysis of

our conscious experience. But this criticism is misguided, since phenomenology is not an explanatory

science. Instead, it aims to explicate and clarify what might be intersubjectively valid conditions

for human conscious experiences, while paying close attention to the community and culture of

which we are a part. Whether these descriptions are objectively valid is not a question for the

phenomenologists, but perhaps for anthropologists or empirical psychologists. Hence, I describe

phenomenology as an ‘explicatory science’.

This, in fact, is how I view phenomenology as a methodological programme. It provides descriptions

and clarifications of our experience and/or scientific practice. Whether we can provide a causal

explanation of shared human experience should be left to empirical or social scientists, while

the phenomenologists focus on explicating such experience. In this chapter, I demonstrate how

phenomenology and empirical sciences can interact and collaborate.
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I shall take a step back from scientific practice at this point, and focus instead on our ordinary

experience. Since phenomenology is an empathy-first approach, its methods can be applied to

ordinary experiences, not just scientific practice. Here, I shall spend some time focusing on our

experience of the number sequence ‘1, 2, 3, . . .’ and work to clarify the meaning of the sequence as

experienced by an ordinary subject.

This chapter has two main aims. One is to show that phenomenological methods (i.e. the methods of

the empathy-first approach) can be used to demarcate sophisticated mathematical practice from the

ordinary use of mathematical concepts. A second aim is to outline a way in which phenomenology

and cognitive science might be pursued collaboratively, as an explicatory science and an explanatory

science, respectively.

To achieve these aims, I focus on our experience of the natural or counting numbers from the

subjective perspective. The general approach is as follows. I first attempt to understand and describe

our ordinary common-folk experience of the natural or counting numbers. This means, rather than

assuming a mathematical definition or an account of the natural numbers, I simply begin with the

ordinary description of the sequence of numbers as ‘1, 2, 3, . . .’. Thus, the phenomenological method

involves simply describing certain kinds of experiences about the sequence ‘1, 2, 3, . . .’ from the

subjects’ standpoint. Supposing that the mathematicians’ experience of the description ‘1, 2, 3, . . .’

refers to the structure of the natural numbers N, I show that the ordinary experience of 1, 2, 3, . . . is

not concerned with N.

My approach here is similar to that taken by Husserl in his Philosophy of Arithmetic (1891, 2003).

In PA, Husserl focused on the origins of the concept of numbers, but I shall focus on the experience

of the sequence of numbers as ‘1, 2, 3, . . .’. I then argue that the ordinary notion of numbers is

distinct from the mathematical notion of natural numbers. Thus, I distinguish ordinary mathematics

from mathematical practice. In fact, Husserl often demarcated between different disciplines as he

studied philosophy: in FTL, Husserl demarcated logic and mathematics, and in Crisis, physics and

mathematics (see Hartimo, 2020b, for more details).
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2.1 Background: Understanding the Natural Numbers

In this section, I focus on the question, How do we come to understand the natural numbers? Various

philosophers have offered their solution, which focused on the notion associated with ‘. . .’ in the

expression ‘1, 2, 3, . . .’. I shall present their views in section 2.1.1.

2.1.1 Understanding the Natural Numbers?

Given that mathematicians characterise the sequence of natural numbers as ‘1, 2, 3, . . .’ (see, e.g.,

Davenport, 2008), how do we actually come to understand the natural numbers? There are different

ways to answer this question. Shapiro (1997, p. 177ff.) argues that we can have epistemic access to

the natural number structure, despite its abstractness, by using ellipses (. . .). Using ellipses, one

can generalise from finite sequences of collections of strokes to a potentially infinite sequence. For

instance, a child is given the following sequence of collections of strokes:

|, ||, |||, ||||.

The child understands that starting with the first collection (|), the next collection of strokes in the

given sequence (||) is generated by drawing a stroke | next to the first collection. The third collection

of strokes (|||) in the sequence is generated by the same operation on the previous one (||). This

pattern of generating the next collection of strokes can be generalised, so the child can project the

next collections to be ||||| and then |||||||:

Reflecting on these finite patterns, the subject realizes that the sequence of patterns goes
well beyond those she has seen instances of. [. . . ] Our subject thus gets the idea of a
sequence of 9, 422 strokes, and she gets the idea of the 9, 422 pattern. Soon she grasps
the quadrillion pattern. (Shapiro, 1997, p. 119)

Then the subject can abstract from this pattern the notion of a finite sequence (Shapiro, 1997, p.

118) and express it as

‘|, ||, |||, ||||, . . . ’.
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Here the ‘. . .’ expresses the potentially infinite nature of the sequence of collections. Once our subject

has successfully understood what is expressed by ‘. . .’, Shapiro adds:

[we] can coherently discuss the infinite pattern and can teach it to others. [Then we]
have grasped (an instance of) the natural-number structure. (Shapiro, 1997, p. 119)

Similar to Shapiro, Maddy (2014; 2018) emphasises the notion of ‘. . .’ in understanding the natural

number sequence, and she argues that the ‘. . .’ arises from a language-learning device (as well as other

human cognitive features) (Maddy 2018): this language-learning device refers to the ‘recursivity’ of

spoken or written natural languages.1 Maddy claims that

Insofar as arithmetic [whose subject matter is the standard model or the omega-sequence]
is ‘about’ anything, it’s about an intuitive picture of a recursive sequence of potentially
infinite extent, an intuitive picture we humans share thanks to the evolved linguistic
faculty common to our species (Maddy, 2018, p. 26).2

Both Shapiro and Maddy are concerned with human subjects and their acquisition of the notion3 of

the structure of the natural numbers denoted by ‘N’. But in Shapiro’s case, he is responding to an

anti-realist worry: if N does not exist, knowledge of N might not be possible. Thus, he aims to show

how we can come to have knowledge of abstract (perhaps non-existing) entities by highlighting that

if we are able to talk about abstract entities, we can have knowledge of them. Maddy, in contrast, is

attempting to answer a question regarding how we humans actually come to know or understand the

structure of the natural numbers N. Thus, she appeals to some empirical evidence that highlights

the different features and stages of learning numerical notions from cognitive sciences. The question

I am interested in is closer to Maddy’s than it is to Shapiro’s. I am interested how we come to

understand the structure of the natural numbers N, rather than the problem of epistemic access to

abstract structures.
1The recursivity of natural languages should not be confused with the mathematical notion of recursivity. Rather,

natural language is recursive in the sense that we can concatenate words to generate a phrase or a sentence, or even a
new word.

2I would like to highlight that Maddy is no longer committed to this view in light of new empirical results which
will be discussed in section 2.3. The point is explicitly stated in (Maddy and Väänänen, 2022, pp. 42f.): ‘believing
there’s no largest number, appreciating the endlessness of the sequence, 1, 2, 3, . . ., isn’t always enough to equip one
with the notion of an orthodox omega sequence.’ In footnote 74 of Maddy and Väänänen, (2022), they further point
out that Maddy had made an error concerning this in her earlier work.

3I use the term ‘notion’ here since the term ‘concept’ is philosophically overloaded.
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As we see, Maddy focuses on the sequence of the natural numbers (sometimes called the ω-sequence),

which is often denoted by ‘1, 2, 3, . . .’. On Maddy’s account, what is meant by the sequence of

numerals ‘1, 2, 3, . . .’ is the natural number sequence, or the N-sequence. In more phenomenological

terminology, we say that the N-sequence is given to a subject by ‘1, 2, 3, . . .’ – meaning that, for

this subject, what is meant by the expression ‘1, 2, 3, . . .’ is the N-sequence. Since Maddy’s claim is

that understanding the recursivity of the ‘. . .’ will give us (the humans) an intuitive picture of the

N-sequence, we can interpret Maddy to be claiming that what is given (to an arbitrary subject) by

‘1, 2, 3, . . .’ is the N-sequence.

Let us call this the ‘Dots-N thesis’:

Dots-N thesis: the N-sequence is given by ‘1, 2, 3, . . .’.

Although Maddy (2014) uses empirical evidence for the Dots-N thesis, a recent empirical finding

suggests that the thesis fails. If the above thesis were true, then anyone who understands what is

meant by ‘1, 2, 3, . . .’ would not deny any instance of mathematical induction. However, across three

papers, Relaford-Doyle and Núñez, (2017; 2018; 2021) argue that (at least some) university-educated

students do not have the natural number concept, because they do not understand mathematical

induction.

I think the problem is a little more complex than a simple denial of induction. Instead, I offer another

perspective, in which the common-folk understanding of ‘1, 2, 3, . . .’ involves some non-arithmetical

acts by which we access the larger numbers that occur in the ‘. . ..’ Hence, we can conceptually

distinguish ‘arithmetical numbers’ from ‘non-arithmetical numbers’ based on the acts involved with

accessing the larger numbers in ordinary understanding of the number sequence.

The main argument in this chapter is as follows:

• Premise 0: In order to understand the structure of the natural numbers, every number in the

number sequence must be accessed by counting alone;4

4Note that I have already advocated for premise 0 in this introduction.
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• Premise 1: Numbers in the sequence ‘1, 2, 3, . . .’ can be accessed by non-arithmetical acts, as

well as arithmetical acts (e.g. counting), in our ordinary experiences;

• Premise 2: A conceptual boundary between ‘arithmetical numbers’ and ‘non-arithmetical

numbers’ can be made based on how they are accessed;

• Premise 3: Empirical evidence shows that the above conceptual boundary can be found even

in adult understanding of the numbers;

• Conclusion: Even cardinal principle knowers5 do not understand N. That is, the Dots-N thesis

is false.

I argue for premise 1 by analysing what kinds of acts might be involved in accessing numbers that

appear in the number sequence. While we could simply say counting or adding one is how we access

all the numbers in principle, I argue that, for the common-folk, there are other ways of accessing the

numbers. In section 2.2.1, I shall identify certain acts that can be interpreted as an arithmetical

operation (such as successor operation, addition, or multiplication) and those which cannot be. Then,

in section 2.2.2, I shall introduce the notion of feasibility from Dean (2018) in order to demarcate

the numbers that are accessed by arithmetical acts from those that are not (Premise 2). I refer

to these as ‘arithmetical’ and ‘non-arithmetical’ numbers, respectively. Informally, a number is

arithmetical if we can count to that number starting from 1, 2, and 3, while it is non-arithmetical if

we cannot in a given context owing to some human or physical limitations. In the end, I argue that

only arithmetical numbers are the natural numbers.

In section 2.3, I present empirical evidence that suggests that even adults who have some under-

standing of what is meant by ‘1, 2, 3, . . .’ allow non-arithmetical acts to access numbers (Premise

3). Then we can make a distinction between the arithmetical and the non-arithmetical numbers in

their understanding of numbers. Hence, I conclude that they do not have an understanding of the

structure of the natural numbers. And this is not simply because they deny an instance of induction

as suggested by Relaford-Doyle and Núñez (2018).

5By ‘cardinal principle knower’, I mean those who have an in-principle understanding of counting indefinitely.
This will be clarified shortly.
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For the purposes of this investigation, I shall use the following operational definitions. By the

(structure of the) natural numbers, I mean the collection of things (which I refer to as ‘numbers’)6

often denoted by N with the appropriate arithmetical operations/relations defined on the elements.

Note that, although the term ‘natural numbers’ is grammatically plural, by ‘natural numbers’ I

mean the collection (singular). To minimise confusion, while being consistent with natural language

usage, I shall be explicit whether I am referring to N or a particular element of N. I shall simply refer

to each element of N as a ‘natural number ’. In general, by ‘numbers ’, I mean finite quantities, rather

than natural numbers that are elements of the structure N. Generally, the numbers can be expressed

by numerals (e.g. ‘1’ and ‘2’) or by number words (e.g. ‘one’ and ‘two’). I shall also use the numerals

or number words to denote them. If I mention number words instead of using them I put quotation

marks around the expressions, and if I am using and mentioning them at the same time, I italicise

them in addition to using quotation marks.7 Whether N contains 0 or not is a disciplinary difference

within mathematics/computer science, and since this distinction is less important in my research,

I shall arbitrarily include 0 as a natural number (unless specified otherwise). By including 0 as a

natural number, we can define 0 as an additive identity, and 1 as a multiplicative identity.

I say that a subject has the understanding of the natural numbers N just in case the subject

knows that the structure of natural numbers is unique and has the properties of the standard model

of arithmetic. The standard model is mathematically characterised as the second-order structure

(N, s,0) where N is the domain containing a constant 0, and s is the unary successor function on N8.

To know the structure of natural numbers N does not mean that one needs to know of all truths in

the standard model. But if one knows the natural numbers, or if one has understood the concept9 of

6I am not interested here whether each natural number is an object or they are simply positions in a structure.
For the ontological debate about this, see Benacerraf, 1965, and Shapiro, 1991.

7I will also italicise when I am emphasising certain expressions.
8The distinction between first-order and second-order structures is usually important when considering the

corresponding deductive system. When we are concerned about the theories of arithmetic, a second-order theory will
be much more expressive than a first-order theory, as the background logic is more expressive. For that reason, the
first-order theory has to include further axioms for additional symbols such as + and ×. The second-order structure
does not have + or × in its language, but they can be defined in second-order logic with the unary predicate N , unary
successor function s, and a first-order constant 0.

9Throughout the dissertation, I will use the term ‘concept’ as we use the term in English. Philosophically speaking,
by ‘concept’ I mean the intentional content the experience of a subject or group of subjects. The intentional content
is understood to be intensional in the sense that it is characterised by certain properties it has rather than by the
elements that fall under the concept.
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the natural numbers, it would seem unusual to deny a well-known fact about the standard model.10

For instance, if one denies an instance of mathematical induction or more generally an axiom of

first-order Peano arithmetic, one does not have the knowledge of the structure of natural numbers.

Let us call this the N-test:

N-test: if a subject has the knowledge of N, then the subject accepts the axioms of
first-order PA and some of their elementary consequences.11

The N-test has (at least) some limitations as an operational test. First, the N-test informs us only

when a subject does not have the knowledge of N rather than when they have the knowledge of

N. That is, if the subject denies an axiom of first-order PA, this shows that the subject does not

have the knowledge of N. Another limit is that some philosophers or mathematicians might have

an understanding of the structure of natural numbers but deny that the elements of N are what

numbers really are . Given these cases, it seems that what I am pursuing here is how we come

to understand the structure of natural numbers, rather than how we come to know them. Such

a distinction, although important, can be made only once one has already understood what the

structure of natural numbers is. Thus, for the present purposes, I shall not make the distinction.

In the next section, I give a short review of how contemporary empirical studies explain the stages

of learning about the numbers for humans. Since this chapter concerns how human mathematicians

come to understand the structure of the natural numbers N, empirical research might provide useful

insights (see, e.g., Maddy, 2014). In appealing to some empirical research, I do not mean to say that

philosophy of mind or even epistemology should be replaced by psychology and cognitive science.

But, in so far as I am engaging with how human mathematicians come to understand N, it is

important to engage with what might be the precursors to understanding N.

10Of course, not all truths or facts of the standard model are known to us. For example, what is the status of the
Goldbach conjecture?

11The test ought to include not only the axioms of first-order PA but also some elementary consequences of them.
But for succinctness, I will omit the clause concerning ‘elementary consequences’ when we describe the N-test again.
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2.1.2 From Proto-Numbers to Natural Numbers: Empirical Studies

I begin by looking at some developmental psychology to guide us through the stages of learning

about the proto-numbers. By ‘proto-numbers’, I mean the finite quantities that we understand prior

to our acquisition of more sophisticated mathematical notions. I shall begin by discussing some

biologically fundamental abilities found in pre-linguistic human infants, and explain what kind of

things are considered as proto-numbers.

The Biological Origin of the Proto-Numbers

Cognitive scientists and developmental psychologists have identified several human abilities as

precursors to the acquisition of numbers. For a long time, subitising was considered a biological

numerical ability (see, e.g., Starkey and Cooper, 1980) by which a subject instantaneously recognises

the quantity (up to three or four) of objects (usually) visually presented. This ability is now

considered to be a more fundamental ability of object tracking (see, e.g., Watson, Maylor and

Bruce, 2007, and Carey, 2009). In more contemporary literature, the cognitive system that allows

pre-linguistic humans to estimate exact quantities is called the approximate number system (see

Dehaene, 2011), which can be found across different non-human animals as well.

Regardless of whether there genuinely is a cognitive system that functions over finite exact quantities

or numbers, it is plausible that the numbers one, two, and three are common across known human

cultures as evidenced by their use of number words (for, e.g., Pirahã in Amazonia – see Gordon, 2004,

Pica et al., 2004). Núñez (2017) proposes that we should make a distinction between the quantical

abilities, which are biologically evolved abilities to discriminate different quantities generally, from

the numerical abilities, which involve discriminating particular finite exact quantities. The quantical

abilities are found across different cultures and species, since it is likely that they are biologically

evolved abilities. But numerical abilities are found only in industrialised cultures (in our time). For

instance, the exact quantity three is not commonly found in the Pirahã culture (Gordon, 2004),

although they still make a distinction (through their language) between the quantities one and two.

Following Núñez’s distinction of abilities, I shall call one, two, and three the proto-numbers.
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In contemporary industrialised societies (by which I mean most of the world), we find exact quantities

greater than three.12 Focusing on these societies, developmental psychologists characterised the

stages of learning the number concepts in terms of knower-levels (see Sarnecka and Lee, 2009, for

more details). The knower-levels characterise different stages in which

children learn the exact cardinal meanings of the first three or four number words in
order. That is, children begin by learning the meaning of ‘one’ first, then ‘two’, then
‘three’, and then (for some children) ‘four’, at which point they make an inductive leap,
and infer the meaning of the rest of the words in their counting list. (Sarnecka and Lee,
2009, p. 52)

Such proficiency can be captured by empirical experiments such as the ‘Give n’ tasks (Wynn 1990;

1992). In a Give n task, a child is asked to bring n objects. If they can successfully bring n objects,

they are considered an n-knower.

For proto-numbers one, two, and three (and occasionally four), children tend to become n-knowers

in gradual stages. First, they begin not knowing any finite number concepts.13 In this case, when

a child is asked to bring ‘one toy’, they might bring one, two, or three toys – clearly failing to

understand what is meant by the number word ‘one’. But once the child learns what is meant by

‘one’ – that is, they can successfully bring one thing when asked – the child has become a 1-knower.

At this stage, the child can be a 1-knower but not yet a 2-knower. In this case, they might successfully

bring one object when asked for ‘one’, but fail to bring two objects when asked for ‘two’. Up to

three or four years of age, children tend to become an (n+ 1)-knower only after being an n-knower,

so the knower-levels can be correlated to certain age groups.14 In developmental psychology, the

children who understand the word ‘ten’ correctly, for example, are called subset-knowers15 – they

can correctly bring some finite number of objects (e.g. ten), although they do not know the number

words beyond the word for that number . It is believed that human beings are eventually able
12By ‘industrialised’ here, I mean the mode of subsistence for a human society that obtains just in case its social

structure integrates industrial processes of production. This contrasts with agricultural or horticultural societies,
whose mode of subsistence involves only agricultural or horticultural production. Since the empirical evidence I
consider focuses on contemporary societies, I shall restrict the discussion to the contemporary ones.

13By ‘knowing’ here, I simply refer to whether they are an n-knower or not.
14At what age a child becomes an n-knower may vary depending on the child’s linguistic background. See Sarnecka,

Kamenskaya, et al. (2007)
15Note that this notion of ‘subset’ is not the same as the mathematical notion of subset.
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to understand the notion of any arbitrarily large number n in so far as there is a corresponding

symbolic/numerical or linguistic expression for it delivered by the process of counting.16 In this they

become cardinal-principle knowers.17

One might think that cardinal-principle knowers, in virtue of being able to count to arbitrarily

large numbers, understand the notion of potential infinity (. . .) in the sequence ‘1, 2, 3, . . .’. Hence,

according to Maddy, they understand (or ‘have an intuitive picture of’) the N-sequence. In fact,

this is also a view among cognitive scientists such as Rips and his co-authors (2007; 2008a; 2008b;

2015). They claim that children do grasp the natural number concept, which is characterised by the

Dedekind-Peano Axioms:

What information must children include in their math schema in order to possess the
concept of natural number? As we mentioned earlier, it is hard to escape the conclusion
that they need to understand that there is a unique initial number (0 or 1); that each
number has a unique successor; that each number (but the first) has a unique predecessor;
and that nothing else (nothing other than the initial number and its successors) can be a
natural number. These are the ideas that the Dedekind-Peano axioms for the natural
numbers codify . . . (Rips, Bloomfield, and Asmuth, 2008, p. 638)

The Dedekind-Peano Axiom system is a mathematical theory which is usually characterised as a

set of second-order18 axioms defined on the language of second-order arithmetic L2 := {s,0}.19 But

for our purposes, and for what Rips and his co-authors appear to be alluding to, the theory of

second-order Peano arithmetic PA2 is enough:

Definition 2.1 (Second-Order Peano Arithmetic (see, e.g., Button and Walsh, 2018, p. 29). Let s

and 0 be the language of second-order arithmetic, where s stands for a unary total successor function

and 0 is a first-order constant for zero. Then, the pair (s,0) satisfies the Dedekind-Peano axioms

just in case all the following conditions are satisfied:

16Generally, we can take ‘counting’ to mean the process of reciting the number words or the numeral list – i.e. ‘one,
two, three, . . . ’, or ‘1, 2, 3, . . .’.

17Some have argued that to go from a subset-knower to a cardinal-principle-knower, one must acquire the successor
principle (see, e.g., Sarnecka and Carey, 2008): given a numeral n, the ‘next number’ is the numeral n+ 1.

18That is, a set of formulas stated in the language of second-order logic. Second-order logic extended first-order
logic with quantifiers for predicates or classes. Class variables are usually denoted as capital Roman letters X,Y, Z, . . .
and the class constants are denoted as A,B,C, . . ..

19To be clear, the Dedekind-Peano axiom system can be characterised in many ways which are bi-interpretable in
second-order deductive system. For more details see Reck (2003; 2008).
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(P1) ∀x, y
(
s(x) = s(y) → x = y

)
,

i.e. ‘the successor function is injective’;
(P2) ∀x s(x) ̸= 0,

i.e. ‘zero is not a successor of a number’;
(P-IND) ∀X

(
[(0 ∈ X ∧ ∀y (y ∈ X → s(y) ∈ X)] → ∀y (y ∈ X)

)
,

i.e. ‘for any predicate X such that 0 is X, and whenever a number y is X, its
successor is X, then every number is X’.

In this definition, ‘0’ stands for the initial element zero, and ‘s’ stands for an injective function that

takes any number n and maps it to its successor ‘s(n)’.20 And the induction axiom (P-IND) states

very roughly that if X is a predicate that is closed under the successor s then every number is X.

This mathematical definition characterises a unique abstract structure often known as the standard

model of arithmetic, denoted by N := (N, s,0). That is, for any structure M = (M, s,0) satisfying

the second-order axioms of PA2, there is an isomorphism between M and N.21 Henceforth, I shall

use the bold-face font (e.g.) s for the symbols that are internal to the logical language, and a plain

(non-bold) font (e.g.) s for the meta-theoretic successor function.22

There are a few other ways to characterise the standard model N. Informally, we often characterise

the domain N of the standard model as ‘{0,1,2,3, . . .}’ and call them the ‘counting numbers’ or

the ‘natural numbers’. In some disciplines, the counting numbers and the natural numbers refer to

different collections. For instance, in mathematics, the series of the latter starts from ‘0’, while the

series of the former starts from ‘1’. In this dissertation, I shall not make the distinction and simply

refer to the natural number(s) as the elements of the sequence which is informally expressible as

‘0, 1, 2, 3, . . .’ or ‘1, 2, 3, . . .’ (depending on the choice of initial element) and formally equivalent to

the standard model.23

If Rips and his co-authors are correct, and one accepts Maddy’s explanation, then what the

cardinal-principle knowers mean by ‘1, 2, 3, . . .’ – i.e. their concept of number sequence – should
20When I am mentioning the symbols such as ‘0’, and ‘n’, I shall use single quotation marks; no quotation marks

will be used when using the terms.
21This is known as Dedekind’s Categoricity Theorem: for any two structures satisfying the axioms of second-order

Peano arithmetic, there is an isomorphism between them.
22This is necessary only for distinguishing the meta-theoretic arithmetical notions from the notions defined within

an arithmetical theory. For that reason, when I am considering the common-folk natural language understanding of
certain numerical properties, I do not invoke§ the distinction.

23In set theory, we might define the domain N of the standard model N as ω in which each number is defined as a
particular set (e.g. 0 := ∅), and the function s is defined taking a set x to a set x ∪ {x}, i.e. s : x 7→ x ∪ {x}.
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be mathematically modelled as the sequence of natural numbers. On their accounts, the cardinal-

principle knowers consider adding one or counting as the only ways to access more numbers.24 This

is precisely what I deny. The successor operation (i.e. adding one or counting) is not the only way

we access numbers for ordinary common-folk – as I shall argue in the next section.

For the sake of rigour, we shall use the formal definition of mathematical induction as defined in

first-order arithmetic. First-order Peano Arithmetic (PA1) is a theory in the language of first-order

arithmetic L1 := {s,+,×, <,0,1} such that the unary successor function s, the binary functions

addition + and multiplication ×, and the binary relation < are defined recursively with the additive

identity 0 and the multiplicative identity 1. Then, any first-order formula φ(x) defined in the

language of first-order arithmetic L1 is called an arithmetical formula. In addition to the recursive

definitions of the language, PA1 contains the following axiom schema:

Definition 2.2 (Mathematical Induction). For any arithmetical formula φ(x),

φ(0) ∧ ∀x (φ(x) → φ(s(x))) → ∀x φ(x). (PA-Ind(φ))

The definition states that whatever condition is expressed by the arithmetical formula φ, if it holds

for 0 and whenever it holds for an arbitrary number, it also holds for the next number, then φ holds

for all numbers. This formal definition shows that induction cannot be applied to any first-order

formula but only the arithmetical ones. But if we are able to extend the language L1 with other

predicates P then whether induction should also apply to the formulas in the language L1 ∪ {P}

becomes important.

Over a series of papers, Núñez and Relaford-Doyle (2017; 2018; 2021) have argued that (at least

some) university educated adults do not have an understanding of the notion of natural numbers.

That is, despite being cardinal-principle knowers, their number concept does not coincide with the

natural number concept as Rips and co-authors, and Maddy claim.
24In general, this seems to be a common problematic assumption among those who rely either on purely neuropsy-

chological accounts (e.g. Dehaene, 2001; Gallistel and Gelman, 2000) – which explain our acquisition of numbers
purely from biological evidence – or cognitive accounts (e.g. Burge, 2007, 2010; Giaquinto, 2007) – which explain
acquisition by looking at developmental psychology and identify what is logically or conceptually necessary. They
both assume that common-folk will ultimately get to the sophisticated mathematical concept. See Marshall (2018) for
a detailed argument against such accounts.
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In the next section I offer a phenomenological descriptive analysis to show that in our ordinary

experience, counting is not the only experience by which we access the unending sequence of numbers.

Thus, what is meant by the sequence of numerals ‘1, 2, 3, . . .’ cannot be the N-sequence for the

common-folk.

2.2 From ‘1, 2, 3,. . . ’ to the Arithmetical and Non-Arithmetical

Numbers

In this section, I shall argue that what is meant by the sequence of numerals ‘1, 2, 3, . . .’ is not

the N-sequence for the common-folk. The ‘. . .’ in the expression suggests that we can access more

numbers beyond 1, 2, and 3. In our ordinary linguistic experience, we can access numbers for the

unending sequence expressed by ‘1, 2, 3, . . .’ by using the features of our natural language that are

not essentially arithmetical/mathematical. (This despite of the fact that cardinal-principle knowers

will also characterise the unending sequence of numbers as ‘1, 2, 3, . . .’.) Thus, I argue that being a

cardinal-principle knower is not enough to know or understand the structure of natural numbers N.

2.2.1 What does ‘1, 2, 3, . . .’ Mean? The Common-Folk Notion of ‘1, 2, 3, . . .’

In this subsection, I shall give a phenomenological analysis of what is meant by ‘1, 2, 3, . . .’ based

on the way people talk about numbers in our natural language. Before doing so, there are two

assumptions I must make explicit here. My first assumption (and here I am similar to other authors

on this topic) is that ‘1, 2, 3, . . .’ is about the unending sequence of numbers (whatever one might

mean by numbers). This condition is also assumed by Maddy, given her claim that ‘1, 2, 3, . . .’ gives

an intuitive picture of the natural numbers. It is plausible that this assumption might turn out to

be empirically false. Perhaps common-folk do not consider ‘1, 2, 3, . . .’ to be expressing the sequence

of numbers, but numbers and also something else! However, such a problem is beyond the scope of

this philosophical investigation, so I do not discuss this further here.
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My second assumption is that common-folk have the understanding that the numerals ‘1’, ‘2’, and

‘3’ denote exact quantities. Although it can be debated whether their being n-knowers really entails

that the subjects know what the number n is, I shall not discuss this further in this dissertation.

Since, ultimately, I am interested in the possibility of sophisticated mathematical knowledge, in

particular, knowledge of N, what is important in my dissertation is that there is a distinction between

the mathematically sophisticated notion of numbers (i.e. the structure of natural numbers) and the

common-folk notion of numbers.

Let us begin by stating a few obvious things. ‘1, 2, 3, . . .’ is a sequence of numerals, where each

numeral ‘1’, ‘2’, ‘3’ denotes an exact quantity – 1, 2, and 3. Then the ‘. . .’ expresses the notion

of potential infinity, as Maddy claims. Below, I will present four possible ways of understanding

‘. . .’ from a subject’s standpoint. First, note that, while ‘. . .’ is understood to describe the potential

infinity of the number sequence, it seems that, in order for the subject to comprehend that, they

should have committed at least a few acts of accessing the numbers which occur in the ‘. . .’. The

four forms such acts can take are: (1) counting, (2) numeralising, (3) predicating, and (4) naming.

To explain what these acts are from a subject’s standpoint, I refer to an arbitrary subject as ‘I ’ in

italics. The four acts are described below as though I is carrying them out.

Counting simply refers to the act of ‘adding one’ to an existing number. In logic and mathematics,

we can characterise this by the successor operation s. So for any number n, the successor s(n) is also

a number. Repeating this process of ‘adding one’, I can access infinitely many numbers appearing in

the number sequence. This, as I show shortly, is the only arithmetical act by which I can understand

the infinitude of the number sequence. The other acts I will term non-arithmetical acts, since they

cannot be understood by the language of arithmetic in logic, and are, rather, features of ordinary

language.

Numeralising refers to the act of generating numerals, and understanding them to refer to numbers.

For instance, in our number sequence, ‘1, 2, 3, . . .’, I am given the numerals ‘1’, ‘2’, and ‘3’. From

these numerals, I can make other numerals, (e.g.) ‘123’, which stands for the number 123. Once I

have other numerals, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, and ‘0’, I can generate all kinds of numerals by putting

them next to one another. Thus, numeralising is a distinct act from counting that allows a subject
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to access infinitely many numbers, and is based on the features of the numerical symbols I use to

express numbers.

Predicating refers to the act of describing a finite number by using the predicate ‘the number of’.

For example, I can refer to a particular finite number as ‘the number of trees on campus’, despite

not knowing exactly what that number might be. Perhaps I know that there are more than 3, so

whatever the number might be, it must be occurring in ‘. . .’. Since I can refer to any large number,

such as, the number of stars in the sky, by predicating, this act can be used to understand the

potential infinity of the number sequence, depending on the concepts I can apply the predicate ‘the

number of’. Thus, this act is non-arithmetical since it relies on the subject’s knowledge of concepts.

Naming is yet another non-arithmetical act, distinct from numeralising or predicating. In naming, I

assign a name to an arbitrary number. I start from naming 3 as ‘three’, 4 as ‘four’, 5 as ‘five’, etc.

But at some point, I start to give new names for every 10 numbers, ‘twenty’, ‘thirty’, ‘forty’, etc.,

then I name ‘hundred’, ‘thousand’, ‘million’, ‘billion’, etc.25 This process of number-naming has no

termination. I can (and do) decide to name a number ‘gazillion’. Although I do not know exactly

what number ‘gazillion’ refers to, I believe that by naming a number, this number must occur in

the number sequence.

These four acts together allow a subject to access the infinity of the number sequence. It is not simply

by counting, but in other acts that are ‘non-arithmetical’. So why does Maddy think ‘1, 2, 3, . . .’

means the N-sequence? That is, why does Maddy think that being a cardinal-principle knower

means to be an N-sequence knower? My best understanding is that Maddy is focusing only on

the arithmetical act(s) on the numbers. For Maddy, what is meant by ‘. . .’ is that the rest of the

numbers can be generated by arithmetical act(s) and by arithmetical act(s) alone. On this view, the

sequence of numerals express the sequence of natural numbers.

If, however, we are really interested in how real humans come to understand N, then we should

also consider the different ways that ‘. . .’ can be understood by common-folk rather than simply

assuming that ‘. . .’ might be adequate for understanding N. If my interpretation of a common-folk
25It used to be the case that, in UK English, ‘one billion’ referred to 1012, while in US English, it refers to 109.

The American usage became increasingly common in the UK, and is now the official usage in the UK parliament, and
this shows that even these known number words do not necessarily refer to one particular number.
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understanding of the number sequence is accurate, we ought to be able to empirical verify this.

Although I am not familiar with any existing empirical studies focusing on these understandings, I

argue (in section 2.3) that Relaford-Doyle and Núñez’s findings are consistent with the separation

between arithmetical and non-arithmetical acts. But before presenting the empirical findings, I offer

a conceptual demarcation between the numbers generated by arithmetical act(s) and the numbers

generated by non-arithmetical acts.

In the next subsection, I offer a conceptual distinction between the numbers generated by arithmetical

acts and those generated by non-arithmetical acts.

2.2.2 Arithmetical and Non-Arithmetical Numbers

The conceptual boundary between arithmetical and non-arithmetical numbers I offer here is motivated

by the distinction between ‘feasibility’ and ‘infeasibility’ from finitist mathematics. I give a quick

overview of what ‘feasible numbers’ are. In his paper ‘Strict Finitism, Feasibility, and the Sorites’,

Dean (2018) characterises ‘feasible numbers’ as found in Yessenin-Volpin (1961; 1970). He begins

by describing an ‘infeasible’ number, as one that is ‘not possible to count’ (Yessenin-Volpin, 1970,

p. 5). Although the infeasible numbers seem to be greater than all feasible numbers, infeasible

numbers are still ‘finite’ numbers. For an example of an infeasible number, consider the number

‘one million’. Although in principle we could begin from 0 or 1 and count up to 1, 000, 000, there

are bound to be some errors and physical difficulties in counting that many things.26 In that

sense, a million is an ‘infeasible number’. Unlike the feasible/infeasible numbers distinction, the

arithmetical/non-arithmetical number distinction is not primarily concerned with the notion of

finiteness. The conceptual boundary I am drawing here is based on how we access these numbers.

The arithmetical numbers are accessible simply by counting alone. But non-arithmetical numbers

can be accessed only by non-arithmetical acts, which could be linguistic acts.

Despite some conceptual differences between Dean’s feasible/infeasible number distinction and

my arithmetical/non-arithmetical number distinction, I present a possible (but rather incomplete)

26If a million does not seem to be infeasible, consider the number ‘googolplex’, which can be characterised numerically
as 10googol, and a googol is expressed as 10100.
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definition of the arithmetical/non-arithmetical number distinction based on Dean’s characterisation

(2018, p. 12).

Definition 2.3 (Arithmetical/Non-Arithmetical Numbers). The following conditions give a

meta-theoretic description of ‘arithmetical/non-arithmetical numbers’:

(F1) 0 is an arithmetical number;
(F2) for any x, if x is an arithmetical number then s(x) (or the ‘next number’) is an

arithmetical number;
(F3) there is a non-arithmetical number iF.

The first two conditions defining the arithmetical numbers resemble some (first-order variations) of

the conditions of definition 2.1. Note that exactly what the non-arithmetical number iF is will vary

depending on what context we are in.27 But by using this mathematical characterisation, we can

avoid specifying a context.

Instead of defining the demarcation meta-theoretically, if we wish to define it in the language of

arithmetic, we could extend our arithmetical theory with a predicate F . For example, we could

have Robinson’s arithmetic (Q), which does not include mathematical induction,28 and in which

associativity and commutativity of + and × are not provable. We can then extend Q to the theory

PA− which includes associativity and commutativity of + and ×, but in which the induction schema

is not an axiom schema.29 Naturally, both Q and PA− can be extended with the predicate F to

distinguish between arithmetical and non-arithmetical numbers.

However, I show here that we can also consistently accept PA1 (including induction) and the meta-

theoretic distinction between arithmetical/non-arithmetical numbers. This is to show that the failure

of mathematical induction is not precise enough to show that the common-folk do not understand N,

but the matter is mathematically and philosophically more complex than it seems.
27Since feasible/infeasible numbers can be distinguished by considering the context in which certain numbers

cannot be counted, non-arithmetical numbers could also depend on the context. See the discussion on Wang’s Paradox
(Dummett, 1975, p. 303) for the contextualist interpretation of the feasible/infeasible number distinction. In my work,
I hope to characterise the common-folk account of numbers independently of contexts, yet let it be applicable in any
context.

28Robinson’s Arithmetic is a first-order theory that does not include the first-order induction schema but has
addition and multiplication defined recursively.

29If we extend either Q or PA− with the induction schema, then we simply obtain the theory PA1.
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The condition (F2) of the statement of the arithmetical/non-arithmetical number distinction states

that if n is an arithmetical number, its successor is also an arithmetical number. So, we must have

1, 2, and 3 are all arithmetical numbers. So any number obtained by counting from 1, 2, and 3 are

arithmetical numbers, as expected.

The definition does not tell us how a non-arithmetical number is defined, but only that there is

at least one. Accepting the three conditions, (F1), (F2), and (F3), tells us that the sequence of

numerals ‘1, 2, 3, . . .’ expresses the sequence of arithmetical and non-arithmetical numbers, where

the former can be accessed by arithmetical acts (e.g. counting) alone, but the latter are accessible

only by non-arithmetical acts. For example, the number expressed by ‘gazillion’ is not something I

can access by counting or adding other numbers, but this number could still appear in the sequence

1, 2, 3, . . .. So we might call the value of gazillion a non-arithmetical number.

One upshot of using the meta-theoretic distinction is that we can offer a consistent mathematical

model capturing it. Namely, by using non-standard models of PA1. Non-standard models of PA1

are models of PA1 that are not isomorphic to the standard model. These models contain all the

natural numbers, but in addition to the naturals, they also have non-standard numbers. For any

non-standard number m ∈ M , where M is the domain of a non-standard model M, M |= n < m

where n ∈ N. But since M cannot express whether a number is standard or not, it does not ‘know’

that n is a standard number. We can apply this meta-theoretic distinction between standard and

non-standard numbers to the arithmetical and non-arithmetical numbers, and provide a consistent

model for the common-folk understanding of numbers.30

Now, let us turn to some empirical evidence that supports the claim that the sequence ‘1, 2, 3, . . .’

contains both arithmetical and non-arithmetical numbers.

30Although I shall not discuss this further in this paper, this illustrates a way in which tools from mathematical
logic can be used for research in number cognition. In particular, we can design empirical questions based on properties
of non-standard models to see whether ordinary common-folk will consider these properties to be true of their
understanding of the numbers.
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2.3 ‘1, 2, 3, ...’ does not mean the N-sequence: Empirical Study

Before explaining the experiment in more detail, let me emphasise the limitations of the study. First,

this is one study concerning cardinal-principle-knowers that suggests a surprising result. For this

result to generalise to the common-folk in industrialised societies, or even just to university students,

further empirical work needs to be done. Second, the study is designed to focus on a particular

diagram. If further empirical studies on number concepts are conducted that are independent of

using sophisticated diagrams, the evidence from these will strengthen support for the claim.

Despite the limitations of this study – and the empirical evidence – there are, to my knowledge,

no other similar empirical studies to date. The conclusion of the experiment is interesting since it

suggests that cardinal-principle-knowers do not have the concept of natural numbers, challenging the

typical philosophical view that they are N-knowers (e.g. Maddy, 2014; 2018; Shapiro, 1991; Burge,

2010), and it supports my view that their understanding of ‘1, 2, 3, . . .’ treats non-arithmetical acts

of generating numbers as equally legitimate as arithmetical acts.

2.3.1 The Experiment

There were a total of 49 participants (university students) from two distinct groups. One group

(n = 24) consisted of students who had never taken a course in mathematical proofs.31 The other

(n = 25) were recruited from the students who received at least a B- in the ‘Mathematical Reasoning’

course that included mathematical induction as a method of proof. Let us call the first group ‘the

Educated group’ and the second ‘the Proof-Trained group’.32

Each participant was presented with a diagram (figure 2.2) that depicts a ‘visual proof’33 of the

mathematical claim, ‘the sum of the first n odd numbers is equal to n2.’ (Brown 1997) Henceforth, I

31Although none of the educated students had taken the ‘Mathematical Reasoning’ course, four of these students
claimed to be familiar with mathematical induction.

32Some might be worried that achieving a B- does not indicate that the students have successfully understood the
course content. However, as we shall see, the Proof-Trained group has a different understanding of numbers from the
Educated group.

33Whether such a diagram is a ‘proof’ is controversial. See Brown, 2010, and Giardino, 2010, for more on this. We
can consider it at least as a ‘generic proof by figurate number’ per Kempen and Biehler (2019).
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Figure 2.2: Picture Proof from Brown 1997

refer to figure 2.2 as ‘the diagram’ and the claim ‘the sum of the first n odd numbers is equal to n2’

as ‘the target claim’.

To begin, the participants were asked to explain how the diagram shows the target claim to be

‘true’.34 After the participants successfully completed their task, they were asked the following two

questions by the researchers:

(Q1) Do you think the statement [‘the sum of the first n odd numbers is n2’] is true in
all cases?;

(Q2) What would be the sum of the first 8 odd numbers?

If they answered ‘yes’ and ‘64’, then they were asked an additional question:

(Q3) could there be a large number where the statement fails?

Note that a positive answer to (Q1) would logically imply that the answer to (Q3) is negative.

That is, if the target statement is true in all cases, there cannot be a large number that makes the

statement false. However, the researchers allow for a consistent interpretation here. The participants’

34More precisely, the participants were presented with only one of the following three conditions: (1) they were
presented with the target claim and the diagram, and ‘asked to explain how the picture shows that the statement
is true’; or (2) they were presented with the diagram and the incomplete target claim (‘The sum of the first n odd
numbers is equal to ’) and were to complete the target claim and ‘to explain how the picture shows that the statement
is true’; or (3) presented with the diagram and were ‘told that a mathematician drew the picture while trying to prove
a statement about the sum of odd numbers’, and they were asked ‘to guess what the mathematician was trying to
prove and explain their answer’ (Relaford-Doyle and Núñez, 2017, p. 1006).
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use of ‘all’ is to be understood as a very general use, similar to ‘most’ or ‘many’ according to

Relaford-Doyle and Núñez (2017; 2018; 2021). Later, in section 2.2.2, I shall give an alternative

consistent interpretation that focuses on the properties on the numbers rather than the quantifier

‘all’.

Let us now turn to the results. If the participant had answered (Q1) and (Q2) with ‘yes’ and ‘64’

respectively, the researchers considered them to generalise the statement to ‘nearby cases’. Since the

diagram given to them is of a 7 by 7 square, being able to apply the diagram to an 8 by 8 square

would entail such answers to (Q1) and (Q2). From the experiment, almost all participants answered

(Q1) and (Q2) as expected.35

In the interviews conducted, the researchers observed that some counterexample-resisting participants

explicitly talked about mathematical induction in their reasoning (2018, p. 244), while others claimed

that counting should prohibit a counterexample (2018, p. 245). This suggests that any cardinal-

principle-knowers, who consider the numbers as the counting numbers, ought to have been able to

make the same claims.

Furthermore, none of the Educated participants mentioned ‘counting’ in their explanation of their

(Q3)-answers (2018, p. 245). Instead, they explain that there could be a counterexample because

‘in extremes things tend to not work as they do normally’ (2018, p. 247) or that it would fail for

large numbers because ‘it’s too hard to draw a million dots’ (2018, p. 248). Thus, we can clearly see

from this study that the Educated group makes a distinction between the ‘large’ counterexamples

that are beyond their ability to count. So these ‘large’ numbers must be accessed (if they can be

obtained or accessed) by acts that are beyond counting.

35Additionally, the participants’ answers to (Q3) were coded on a scale of 0 to 5 based on their ‘resistance’. The
scores 0 to 3 meant ‘low resistance’ while 4 or 5 meant ‘high resistance’. The researchers compared the resistance scores
between the two groups. Interestingly, the Educated group showed less resistance to the possibility of a counterexample
than the Proof-Trained group. That is, the Educated group was more likely to think that there is a large number n
such that the sum of the first n odd numbers is not n2.
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2.3.2 The Educated Group Distinguishes Arithmetical and Non-Arithmetical

Numbers

Now I shall show that the Educated participants are making a distinction between arithmetical

and non-arithmetical numbers in their answer to (Q3). I shall show that they do not make the

distinction in their answers to (Q1) and (Q2), since those answers satisfy (F1) and (F2). But in

their answer to (Q3), they bring some properties of the ‘large’ numbers which could be interpreted

as ‘non-arithmetical’.

Let us first consider how the conditions (F1) and (F2) should be interpreted with respect to the

experiment. (F1) states that ‘zero’ or some other number serves as an initial case, and (F2) claims

that for any number, if it is an arithmetical number then its successor is also an arithmetical number.

Since the experiment concerned the statement ‘the sum of the first n odd numbers is n2,’ we can

consider this as a meta-theoretically defined property ‘the sum of the first n odd numbers is n2’ in

place of ‘arithmeticality’. Then we can re-state the conditions for the arithmetical numbers as (F1’)

and (F2’) as follows:

(F1’) the sum of the first 0 odd numbers is 02

(F2’) if the sum of the first n odd numbers is n2 then the sum of the first (n+ 1) odd
numbers is (n+ 1)2.36

Since all the participants had to explain how the diagram shows the target claim to be true, we can

safely accept that all the participants agree with (F1’). To see whether the participants accept (F2’),

we must do some further interpretation.

Recall the questions (Q1) and (Q2): (Q1) Do you think the statement is true in all cases? ; and

(Q2) What would be the sum of the first 8 odd numbers?. Fifteen out of sixteen participants of the

Educated group answered ‘yes’ and ‘64’, respectively. Their answer to (Q1) can be interpreted as

(A1) ‘for any arithmetical number n, the sum of n odd arithmetical numbers is n2.’ Here I interpret

the use of ‘any’ not as a generic generalisation (contrary to Relaford-Doyle and Núñez 2017; 2018;

2021) but rather a universal quantification over the ‘arithmetical numbers’. Thus, we have,
36Expanding the brackets, we have the sum of the first (n+ 1) odd numbers is n2 + 2n+ 1.
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(A1) for any arithmetical number n, the sum of n odd numbers is n2.

Now in first-order logic, we can show from that every x is arithmetical, it follows that for any

arithmetical number x, its successor is arithmetical. Thus (F2’) follows from (A1).

In order to show that the Educated group distinguishes between arithmetical and non-arithmetical

numbers, I must show the third condition (F3’) is satisfied. (F3’) can be stated as follows:

(F3’) there is a number nF such that the sum of the first nF odd numbers is not n2
F.

To do so, I shall now look at the answers of three Educated-group participants, whose initials are DA,

KL, and AT, to (Q3). The scripts below are taken directly from Relaford-Doyle and Núñez (2018).37

Recall the question (Q3): could there be a large number where the statement fails? When this

question was asked, DA answered as follows.

DA: I guess that makes sense. Like the larger numbers could be, like, outliers, or
something like that. (Relaford-Doyle and Núñez, 2018, p. 246)

DA’s answer not only suggests that there is a ‘large number’ that fails the condition, but compares

it to a ‘statistical outlier’. The others provide more information about their answers to (Q3).

KL: Based on my impression, just based on this observation, I think it would work, but
when it gets to really high numbers, um, it’s possible that, like (pauses). I can see maybe
it gets kind of fuzzy. Because at extremes, things tend to not work as they do normally.
(Relaford-Doyle and Núñez, 2018, p. 247)

Although KL shows more resistance than DA, they indicate that for ‘really high numbers’ the

equation could fail to hold. They talk about how the ‘really high numbers’ can get ‘fuzzy’ and that

‘at extremes things tend to not work as they do normally’.

37As mentioned earlier, the Educated group showed less resistance to a ‘large number’ counterexample than the
Proof-Trained group. In the scripts below, I interpret their lack of resistance more strongly. For instances, ‘I guess
that makes sense’ and ‘I think it would work’ are interpreted as positive answers to the question (Q3).
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Although DA’s and KL’s answers show that (F3′) is satisfied, they do not explicitly refer to an

example for this ‘large number’. But AT’s interview specifies that a ‘large number’ counterexample

could be after ‘99’.

AT: I guess this model proves to be true for, until, maybe like 99. I know it would be
true. I don’t know, I consider 99 a big number. I don’t know how big this person . . . like
maybe the model deconstructs at a thousand or a million, I don’t know, but it’s too hard
to draw a million dots. (Relaford-Doyle and Núñez, 2018, p. 248)

Unlike DA, who refers to ‘outliers’, and KL, who adverts to ‘fuzziness’, in describing the possible

‘large number’, AT explains why there could be a counterexample. AT appeals to certain physical

limitations of the ‘model’ (i.e. the diagram) and of a human-limitation of drawing the diagram

for large numbers. At the same time, AT refers to 99 as a ‘big number’ which could be the ‘non-

arithmetical number’ in (F3’). Hence, AT considers ‘big numbers’ to be restricted by human and

physical limitations.

Thus far, I have shown that the Educated concept is of the arithmetical/non-arithmetical numbers.

It might be argued that the participants did not understand the question, as they seemed to be

applying the question to the diagram or to a statistical situation. This, however, is precisely the

distinction between arithmetical and non-arithmetical numbers. The arithmetical numbers are those

that can be accessed by the successor operation (or by arithmetical acts) while the non-arithmetical

ones are accessed by non-arithmetical acts. So, thought about, arithmetical numbers are not troubled

by concerns over their applicability or their instantiations in physical world. Human and physical

limitations are only a consideration in relation to the non-arithmetical numbers.

The responses show that even when considering a mathematical statement, the Educated group

considers it in relation to some physical or statistical context, unlike the Proof-Trained group. Given

that the question (Q3) was not about the diagram but simply about the mathematical equation and

the possibility of a ‘large number’, the Educated group’s interpretation of the question shows an

important difference in their understanding of the numbers from the Proof-Trained group. The Proof-

Trained group treats the property ‘large’ not to really mean an arithmetical property for the numbers.

So, it is irrelevant whether a number is large or small. But the Educated participants interpret
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‘large’ to bring in the non-arithmetical properties in understanding the mathematical equation. In

this sense, the Proof-Trained group shows strong resistance to a ‘large number’ counterexample, as

their understanding of numbers is abstract and not necessarily connected to their applicability.

So what does this tell us? Let us suppose that the Educated participants are all cardinal-principle-

knowers. If we can generalise from the empirical evidence to all cardinal-principle-knowers, it suggests

that being a cardinal-knower – despite having an understanding of the recursivity (in the Maddy

sense) of the ‘. . .’ – does not mean that they understand N. The ‘. . .’ for the Educated group includes

different non-arithmetical acts or methods of generating numbers which I have characterised as

‘non-arithmetical’. For those who are Proof-Trained, the ‘. . .’ simply refers to what can be generated

by counting only.

So why are the number concepts between ordinary and mathematical practice different? One way

to answer this question is to consider what the aims of using the concept might be. This can be

understood as the goals of the practice, which ought to be clarified, as suggested by Husserl’s method

of Besinnung. I shall analyse Besinnung in more detail in Chapter 3, and apply it to HoTT in

Chapter 4, but, for now, here is a very simplified version of it applied to our conceptions of numbers.

One goal of ordinary practice of numbers is to measure and compare different exact quantities. A

trivial example might simply be in comparing how much food you have. If I have ten apples, and

you have nine apples, I have more than you. It doesn’t tell us who has bigger apples, but it tells us

that I must have more apples than you! If I wanted to feed my family of ten, I better have ten apples

rather than nine! But arithmetic or number theory for mathematical practice has fundamentally

different goals. It aims to provide general properties of the finite numbers, which could be used as in

the ordinary practices, but it is less about particular situations and more about generally applicable

notions. Another goal is that arithmetic serves as a foundation to the rest of mathematics. Prior to

learning any particular mathematical theory, arithmetic and geometry are taught. The history of

the two disciplines is immense, and entangled with the ordinary practice, but they are considered to

be pure sciences. These goals of mathematical practice are not goals of ordinary practice. Ordinary

practice with numbers is not concerned about the general properties of numbers.
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Adopting a Husserlian approach, we can not only answer the question of why there are two distinct

number concepts (of ordinary or mathematical practices, respectively): Husserlian method also

promises to answer how we can come to know the mathematical concept from the ordinary concept

of numbers, by providing a clearer demarcation between the two.

2.4 From Mathematical Enculturation Towards Besinnung

Before diving into giving an account of the nature of Besinnung, let us entertain an alternative

answer to the question of how we can come to mathematical knowledge from a starting point in

ordinary knowledge. In his paper ‘Objectivitiy in Mathematics, Without Mathematical Objects’,

Markus Pantsar (2021) argues that knowledge of natural numbers is acquired via ‘enculturation’:

It is indeed the evolution on the cultural level that we need to include in order to explain
how the proto-arithmetical abilities can develop into mathematical knowledge and skills.
(Pantsar, 2021, p. 338; emphasis in the original)

The enculturation framework can then provide the link between the proto-arithmetical
abilities, which are the product of biological evolution, and the arithmetical ability that
is the product of cumulative cultural evolution. (Pantsar, 2021, p. 341)

For Pantsar, enculturation refers to the ‘transformative processes in which interactions with the

surrounding culture determine the way cognitive practices are acquired and developed’ (2021, p.

340).38 Thus, if N is learnt by enculturation, our understanding of N is attributable to the process

of interacting with the surrounding ‘mathematical culture’, which establishes that N is the correct

notion of the set of finite numbers. This ‘mathematical culture’ goes beyond general university

education, as suggested by the empirical study, but perhaps includes learning to do mathematical

proofs.
38Pantsar (2021, p. 340) generally follows Richard Menary’s account of enculturation:

Enculturation rests in the acquisition of cultural practices that are cognitive in nature. The practices
transform our existing biological capacities, allowing us to complete cognitive tasks, in ways that our
un-enculturated brains and bodies will not allow. (Menary, 2015, p. 4)
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The participants in the experiment discussed above had sufficient educational background to be

cardinal-principle-knowers. Yet, they failed to understand the N-sequence from the arithmetical/non-

arithmetical sequence ‘1, 2, 3, . . .’. This suggests that doing mathematical proofs is a kind of

enculturation needed for the knowledge of N. In that sense, mathematical knowledge is grounded in

cultural norms and practices. However, this is perhaps not an interesting conclusion: of course, in

order to learn A, where A is found in a specific community, one must learn the culture in which A is

found!39

In fact, the importance of enculturation to the acquisition of mathematical knowledge has already

been highlighted by other empirical evidence concerning cultures outside industrialised societies.

The proto-number concepts that we find in these cultures (e.g. Pirahã or Munduruku – see Gordon,

2004; Pica et al., 2004) are certainly different from the ones found in industrialised cultures to the

point that Núñez argues that we should further make a distinction from what is common across

cultures and call those notions quantical rather than numerical (Núñez, 2017). In some cultures,

although they have the words referring to the proto-numbers, they do not commonly use words

that pick out the exact quantity 5. For any quantity larger than 4, they will often use the word

for ‘many’ instead of referring to a particular exact quantity, despite that the language acquisition

device should allow them to express a term for four by (e.g.) concatenating ‘one’ and ‘three’.40

Despite the (perhaps unsurprising) fact that the knowledge of N seems to be a result of enculturation,

Pantsar claims that there is something ‘objective’ about mathematics and mathematical knowledge.

In particular, why is mathematics so applicable to explaining natural world phenomena? Pantsar’s

own answers refer to Maddy (2014) and the way the world is structured, as well as our evolved

cognitive ability of the language-learning device:

Much as our primitive cognitive architecture, designed to detect [the logical structure
of the world], produces our firm conviction in simple cases of rudimentary logic, our
human language-learning device produces a comparably unwavering confidences in this
potentially infinite pattern. (Maddy, 2014, p. 234; quoted from Pantsar, 2021, p. 343)

39By claiming the importance of enculturation, I do not mean to reduce mathematics to social constructivism (see,
e.g., Ernest, 1998, for a social-constructivist account of mathematics).

40For example, in English, we say ‘twenty-one’ to refer to the exact quantity after the quantity 20, simply by
concatenating the word ‘twenty’ and ‘one’.
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Based on his claim, one might misunderstand Pantsar’s argument as running as follows. Our empirical

world is structured in a certain way41 from which we validate our logic. This logic of the empirical

world is weaker than classical logic, but through our evolved human cognitive abilities, we idealise the

logical structure of the world to the structure of classical logic where every proposition is either true

or false. When it comes to the knowledge of the sequence of numbers, expressed as ‘1, 2, 3, . . .’, it is

the human language-learning device (as well as other features of human cognition) that allows us to

understand the infinitude of the sequence of numbers. And since this cognitive device is an evolved

human ability, we can have objective (or intersubjective) knowledge of arithmetic, which is applicable

to all exact quantities in the world with which we interact. However, if the language-learning device

is what gets us to the objectivity of arithmetical knowledge, then the proto-numerical notions we

find among the Pirahã or Munduruku peoples ought to be equivalent to ours in the industrialised

societies. And, furthermore, we must allow for the linguistic acts such as numeralising, in so far as it

allows us to generate numbers in a recursive manner – write more ‘0’s next to the ‘1’. Given that

this is not the case, it seems to follow that the language-learning device alone does not get us to

mathematical knowledge, never mind its objectivity.

What Pantsar perhaps is claiming is that these cognitive features are necessary for having mathe-

matical knowledge, but we also need enculturation: the non-industrialised societies also have all

the cognitive features that are needed for understanding the natural numbers, and for whatever

cultural reasons they have, they do not have N. I fully agree with Pantsar that it is not simply

the cognition that is enough for the human understanding of N. And similarly for the participants

of the Relaford-Doyle & Núñez experiement, they have the cognitive capacities, but they are not

enculturated to the mathematical community.

Pantsar’s enculturation is one answer (perhaps a sociological answer), but I think the Husserlian

picture of standing in the community of empathy could provide a philosophical explanation. The

Husserlian view also adds to the case that the mathematical community is a goal-oriented community.

Then one reason why common-folk do not have the knowledge of N is because they do not share the

goals of mathematical practice.

41Maddy calls the way in which the world is structured the ‘KF-structure’ after Kant and Frege.
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2.5 Conclusion

In this chapter, I have argued that for the common folk, what is meant by ‘1, 2, 3, . . .’ is not the

N-sequence. This challenges Shapiro’s and Maddy’s view that once a subject understands what

‘1, 2, 3, . . .’ means, then they understand N. Instead, I showed in section 2.2.2 that ‘1, 2, 3, . . . ,’

could be modelled by the demarcation between the arithmetical and non-arithmetical numbers:

the arithmetical numbers are those that we can access by counting or adding one (or by other

arithmetical acts), while the non-arithmetical numbers are accessed only by non-arithmetical acts.

Then I argued that arithmetical/non-arithmetical numbers were supported by the empirical evidence

in section 2.3.

In section 2.4, I described enculturation as a sociological explanation for acquiring mathematical

knowledge from ordinary knowledge, per Pantsar (2021). However, I propose to give a Husserlian

account of this enculturation.

What this chapter has shown is how the Husserlian subjective analysis (or what I call an ‘empathy-

first approach’) can be adopted in interdisciplinary research concerning mathematical cognition. In

the particular analysis of ‘1, 2, 3, . . .’, the Husserlian approach aims to give a clear description of our

ordinary experience of the number sequence. The empirical cognitive sciences then aim to verify

the accuracy of the description. Of course, such Husserlian analysis is already being adopted in

different areas of empirical work – for example, when interpreting the subjects’ interviews from the

Relaford-Doyle & Núñez experiment. What distinguishes my account of interdisciplinary work is the

general aim of the methods. Phenomenology, or an empathy-first approach, aims to explicate our

experience, while cognitive science aims to verify that explication.

As I mentioned in the introductory chapter, I believe the Husserlian view is that the communities

have different aims, goals, or values (i.e. the Zwecksinne) that can shape the norms of their practices.

Upon clarifying what these Zwecksinne are, we are able to explain why the mathematical community

has opted in for the natural numbers N as opposed to (e.g.) some non-standard model. In order

to uncover and explicate the Zwecksinne, we must carry out Besinnung. We are to stand within

or enter the community of empathy. Empathy in phenomenology describes an experience of other
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conscious subjects and understanding the other’s experience. Thus, the community of empathy can

be understood as a community (formed by shared experiences) whose members understand each

other’s shared experiences. To stand within or enter this community means to learn to empathise

with its members and/or the whole community. Enculturation on this Husserlian account would

mean standing in or entering the community of empathy. As philosophers, we ought to enculturate

ourselves with the practising community and clarify its Zwecksinne. Thereby, we can explain why

(e.g.) the natural numbers are given to mathematicians by the sequence of numerals ‘1, 2, 3, . . .’.

In the next chapter, I shall clarify the nature of Besinnung. This involves explaining what the

phenomenological notion of empathy is, and in what sense the mathematical community is a

community of empathy. Then, I shall explicate Zwecksinn.
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Chapter 3

Husserl’s Method of Besinnung for

Mathematical Practice

Husserl describes his Formal and Transcendental Logic (1929) as his ‘most mature work’ (Schuhmann,

1977, pp. 484–485; translation quoted from Hartimo, 2021a). In it, he introduces and characterises

his method of Besinnung, which he also uses in the Cartesian Meditations (1929/31) and the Crisis

(1936). The method of Besinnung was highlighted only recently by Mirja Hartimo (e.g. in her

2018). Hartimo characterises Besinnung as a method that ‘aims to make the goals of intentional

activities explicit (Hartimo, 2021b, p. 4), and further suggests that phenomenological philosophy

of mathematics in the twenty-first century ‘would use radical Besinnung – that is, it would aim to

capture the values and goals of present-day mathematicians’ (Hartimo, 2021b, p. 189).

In this chapter, I clarify the nature of Husserlian method of Besinnung1 – briefly introduced in

Chapter 1. I argue that Besinnung is a method which aims to clarify the motivational goals of a

scientific community, which Husserl calls ‘Zwecksinne’ (i.e. goal-senses or final senses). In order

to clarify the motivational goals of a community’s practice, we first need to engage with that

1I prefer to use the German term ‘Besinnung ’ instead of choosing a particular translation into English. As I shall
discuss shortly, there are several different English terms that might be used as translations, including ‘reflection’,
‘sense-investigation’, ‘meditation’, and ‘clarification.’
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community’s practice, by empathising with the members of the community. Then we must identify

those concepts, methods, goals, or questions that might need some further clarification. By clarifying

these (or by determining answers the questions), we can then turn to the motivational goals that are

implicit in the community’s practice.

Husserl’s own aim in pursuing Besinnung was to produce a Leibnizian mathesis universalis (Centrone

& Da Silva, 2017, see also Hartimo, 2021b, §5.2.5): Husserl wanted to characterise a general theory of

sciences, which offers a universal method for studying any science (see e.g. FTL, p. 16). By ‘sciences

[Wissenshaften]’, Husserl would have included natural and social sciences and humanities disciplines

(as is usual with the German term). Hence, Husserl appears to take the general scientific practice

to apply to the community that he is interested in, instead of referring explicitly to a particular

scientific community. However, I follow Husserl’s own presuppositionlessness and do not assume that

we can discover mathesis universalis through the method of Besinnung. Thus, my interpretation of

Besinnung does not have the aim of mathesis universalis, but rather aims in each particular case to

clarify the motivational goals of a particular scientific community. These motivational goals identify

what a scientific community aims to achieve in their practice, but they also guide the community to

practise their discipline in a certain way. Hence, I refer to the method as ‘Husserlian Besinnung ’,

instead of ‘Husserl’s ’, since it is motivated by Husserl’s own work without being strictly what Husserl

would have aimed for.

There are several reasons for my departing from Husserl. One is that academic disciplines today

are not quite the same as in Husserl’s time. Mathematics today is broadly divided into pure and

applied mathematics. Even in these sub-disciplines, we find various mathematical theories (e.g.

model theory) with which not all mathematicians would necessarily engage. Another reason is that,

while I agree with Husserl’s more historical approach to understanding each discipline, Husserl often

refers back to Leibniz, Galileo, or Euclid, with whose actual work contemporary mathematicians do

not engage. Instead of focusing on these particular figures, or thousands of years of history of the

discipline as a whole, I believe that it is best to understand the local history of each mathematical

theory. This will help us to understand the motivation behind the theory, and thus help us to clarify

the motivational goals.
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The goal of this chapter is to explicate the Husserlian method of Besinnung as a method for

studying contemporary mathematical practice. In section 3.1, I give an overview of the nature of

Besinnung, focusing on CM, FTL, and Crisis. Roughly, Husserl claims that, in order to carry out

Besinnung, we must (1) ‘enter the community of empathy with the scientists’ and (2) clarify the

‘intending sense’ leading to the ‘fulfilled sense’ (FTL, p. 9). In order to understand what Husserl

means by them, I explicate (in sections 3.2 and 3.3) Husserl’s phrases ‘community of empathy

[Einfühlungsgemeinschaft ]’, and ‘intending sense’/‘goal-sense’ [‘Zwecksinn’], respectively. While

doing so, I also compare these Husserlian accounts with contemporary notions of community or

group intentions, as articulated by Ritchie (2020) and Gilbert (2009; 2013; 2020). Furthermore, I

explain the community of empathy within the mathematical context in section 3.2.2. To conclude the

chapter, I explain radical Besinnung and discuss how it can be applied to contemporary mathematical

practice (before going on, in Chapter 4, to apply it to the community of homotopy type theorists).

In particular, I suggest that we ought to start with particular mathematical theories and practices,

and look at their histories.

My interpretation of Husserl’s community of empathy offers an explanation for the teleological

structure of science expounded in Chapter 1. To enter the community of empathy, one starts from

the fundamental experience of empathy, i.e. an understanding of another’s experience from that

other’s perspective (D.W. Smith, 1989, p. 112), and the goals of the community arise from the

shared empathised experiences of the community of empathy. Naturally, then, Besinnung can be

carried out to clarify the goals shared among the members of the community.

3.1 The Method of Besinnung

In this section, I describe Husserl’s notion of Besinnung as found in Formal and Transcendental

Logic (FTL, 1929, 1969), the Cartesian Meditations (1929, 1960), and the Crisis (1936, 1954, 1970).

In each of these texts, different kinds of Besinnung are emphasised. In FTL, Besinnung aims at

clarifying the values that motivate the sciences, by highlighting that there are two meanings of ‘logic’.

In the Cartesian Meditations, Besinnung focuses on our understanding of the Cogito, clarifying its
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structure. In the Crisis, Husserl focuses on the method of historical Besinnung, which aims to clarify

the origins of the sciences. Rather than distinguishing between each of these methods, I characterise

Besinnung as a single method that can be found in these different applications depending on the

community that Husserl was engaged in.

Here, I briefly highlight some difficulties in understanding Besinnung that arise from various English

translations of the Crisis, Formal and Transcendental Logic, and the Cartesian Meditations. The

term ‘Besinnung ’ is translated variously into English as ‘reflection’ (Crisis, 1936, 1970), or ‘sense-

investigation’ (FTL, 1929, 1969). Throughout the Crisis, Husserl explains and carries out Besinnung

on the European community and their view on science, and it is easy here to mistake Besinnung

as a naïve kind of reflection, without any philosophical or methodological significance. But, in the

introduction of FTL, Husserl emphasises that Besinnung is a method with a particular aim and a

method that can be carried out in a certain way.2

In fact, FTL was published in German in 1929, a few years before the partial publication of Crisis

in 1936.3 In this sense, FTL is an earlier work in which Husserl introduces the method ofBesinnung,

a method he goes on to develop more thoroughly and in more detail in his later work, Crisis With

regard to the English translations, while the translation of FTL (by Dorian Cairns) was published

in 1969, a year earlier than that of Crisis, the translator of Crisis, David Carr, did not use Cairns’

carefully chosen phrase ‘sense-investigation’. In fact, this might have been intentional on Carr’s part,

as he writes in his translator’s introduction:4

[For] some writers who are careful in their use of technical terms, precisely defined in
advance, it may be possible to devise a sort of one-to-one correspondence in translation
so that the reader will always know what German word is meant and so that a glossary
of terms can be produced. Husserl was not such a writer[. . . .W]hen he does speak
of terminology in general, it is usually to warn the reader that the phenomenologist’s

2It is possible that the introduction was added after Husserl delivered his Cartesian Meditations lecture in Paris
in 1929. The term ‘Besinnung ’ is not used frequently in the remainder of FTL, despite being emphasised in the
introduction. This historical investigation is not the central theme of this chapter, so I won’t discuss it further.

3The publication history of Crisis is rather complicated. In 1936, a selection of key parts were published based
on lectures by Husserl. But the full publication, as we know it today, dates from 1954 and was subject to editorial
selection.

4Carr refers to Husserl’s remark from Ideas I, §66: ‘The words used may stem from ordinary language, being
ambiguous and vague in their changing meaning. [But] as soon as they “coincide” [sic decken] in the manner of
immediate expression, with what is given intuitively, they take on a definite sense which is their immediate and clear
sense hic et nunc’ (quoted from Carr, 1970, footnote 10).
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language must necessarily remain ‘in flux’ and that a demand for mathematical exactness
of definitions is totally inapprorpiate in phenomenology. (xxi–xxii)

My reading of Husserl, contrary to Carr’s, is that his work does contain exact terminology, terminology

which Husserl had clarified by the method of Besinnung. For example, the term ‘Besinnung ’ is

consistently used throughout Husserl’s writings (at least since FTL) to advert to a particular

phenomenological method.

The situation is further complicated by the English translation of the Cartesian Meditations. CM

was first given as a lecture in Paris in 1929, then the French translation, by Michelle Pfeiffer and

Emmanuel Levinas, was published in 1931. The German edition was published in 1950, and the

English translation (by Dorian Cairns) in 1960. Cairns’ translation was not based on the 1950

German publication, but on the typescript that Husserl gave Cairns in 1933 (Typescript C). Although

the content of Cartesian Meditations and FTL can be believed to have developed around the same

time, the English translations are separated by a nine-year gap. FTL was published in 1969, nine

years after the English publication of the Cartesian Meditations. Although both translations are

by Cairns, the translation of ‘Besinnung ’ in these volumes differs. In the Cartesian Meditations,

‘Besinnung ’ is often translated as ‘reflection’, ‘meditation’, or ‘self-investigation’, while in FTL, it is

‘sense-investigation’.

Another issue we find in English translations is that the term ‘reflection’ is used as a translation for

‘Reflexion’ and as a translation for ‘Besinnung ’ for both translators. This makes it necessary to look

at the German text carefully to verify which term was used by Husserl. Thus, in my investigation,

I pay closer attention to Husserl’s use of ‘Besinnung ’ and related terms such as ‘besinnen’ and

‘besinnlich’.

3.1.1 Husserl’s Characterisation of Besinnung

Here, I give a characterisation of the method of Besinnung as follows. Besinnung aims to clarify the

motivational goals of the scientific practice of a particular scientific community. Along these lines,

Hartimo observes that ‘Besinnung means clarification of the sense of the activity by explication of
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the implicit goals that determine the activity’ (Hartimo, 2018, p. 249). By ‘motivational goals’, I

mean both the goals that are pursued by the scientific community under consideration,5 and also the

goals pursued by their historical predecessors. In order to carry out Besinnung, there are three broad

steps one must follow. The first step is to ‘enter the community of empathy with scientists’ (FTL).

This means to empathise with the scientists, i.e. to understand the science from their perspective

and also to understand what motivates them. The second step is to identify and clarify the concepts,

methods, goals, or questions within the practice that could be philosophically clarified. Husserl

refers to these as ‘intending senses’. Roughly, we can understand the intending senses to include

(e.g.) the intended meaning of certain concepts, or (e.g.) the intended purpose of certain methods.

The third step is to clarify the motivational goals of the community, based on the clarification of the

intending senses.

Now, let us turn to Husserl’s characterisations and uses of Besinnung in the full range of his relevant

works. In order to understand Besinnung, we need to remind ourselves of Husserl’s view that sciences

have teleological structure similar to the structure of intentionality (Chapter 1). Underlying this

structure is Husserl’s focus on scientific practice as a social practice. Hence, in describing the method

of Besinnung, Husserl first states that sciences are generally formed by the practice of the relevant

scientists, and indeed successive generations of scientists:

[Sciences] are formations produced indeed by the practice of the scientists and generations
of scientists who have been building them. (FTL, p. 9)

For Husserl, when philosophically engaging with science, we must not forget that it is a practice of

the scientists and that, as a result, sciences cannot be considered independently of the scientists. For

example, if we are interested in studying philosophy of physics, we cannot simply look at physics as

a science independently of physicists. For Husserl, what makes physics a science is that it is formed

by the practice of physicists. Thus, each scientific discipline can be understood as formed by the

practice of the discipline’s practitioners.

5Who these scientists are would depend on which particular sciences or scientific theories are my concern. In this
chapter, I do not narrow down to a particular community, but aim to clarify what Husserl’s general view is.
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Importantly, Husserl’s view of scientists includes not only the contemporary practictioners, but also

their predecessors. Husserl’s interest in historically informed practice is clear: for him, sciences, as

disciplines, are historically formed by those who practised them in the past as much as by those who

are currently continuing the practice.

As mentioned earlier, for Husserl, ‘science’ includes not only natural sciences, such as physics and

chemistry, but also humanities disciplines such as anthropology and history. Each discipline is to

be understood in terms of the community of scientists who are continuing the practices, started

by their predecessors, ‘directed to a certain end, and which are for that reason to be judged in

accordance with that end’ (LI, Prologomena, §11). In FTL, Husserl calls such goals, the ‘goal-senses’

[Zwecksinne]:

[as] produced, they [the sciences] have a goal-sense [Zwecksinn], toward which the
scientists have been continually striving, at which they have been continually aiming.
(FTL, p. 9)

In Crisis, Husserl also states that Besinnung aims at clarifying ‘what was originally and always

sought in [sciences]’ (Crisis, §7), and ‘what was continually sought by all the [scientists and sciences]

that have communicated with one another historically’ (Crisis, §7). Thus, the goal-sense is something

that’s shared by the scientists or within the community of scientists, continued through the historical

practice. I shall clarify this sense of community later, in section 3.2. Given that the community

shares a goal-sense, Besinnung aims at ‘a final clarification [letzten Besinnung ]’ of ‘the ultimate

sense [letzten Sinn]’ (CM :§61) or goal-sense of the sciences.

Following Hartimo (2020, 2021a, 2021b), the nature of goal-senses [Zwecksinn] are not pre-determined

but can refer to aims, goals, or values of the scientists. This is because the goal-senses are to be

discovered within the scientific practice of a given community, and each community might have

different goal-sense. But the general structure of the goal-senses is clear: they are the goals at which

scientists have always been aiming, according to their historically continued practice. Thus, I call

them the ‘motivational goals ’ of the scientists. Similarly, Hartimo often refers to what is clarified by

Besinnung as the ‘ideals guiding the practice’ (see, e.g., Hartimo, 2019b, p. 430; 2022b, p. 88). So,

while these motivational goals are what the scientists (or the particular community of scientists) are
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aiming at, they are also what guides the scientists to use certain concepts, or adopt certain methods

in their practice.

For example, consider the broad mathematical community. It is undeniable that rigour is something

that any mathematical community is aiming for (see, e.g., Marfori, 2010; Tatton-Brown, 2021;

Burgess & Toffoli, 2022). For instance, a proof ought to be rigorous so that it provides sufficient

evidence for the conclusion. At the same time, rigour is also what motivated certain mathematical

practice: e.g. category theory was motivated to provide a rigorous account of structure for solving

‘problems involving different kinds of mathematical structure’ (Awodey, 1996, p. 212). So, rigour is

a motivational goal that can be found in various mathematical communities.

Although the general scientific community might share these motivational goals, how these goals

appear in practice could differ among the particular scientific communities. For example, one could

say that every science aims at truths, but what determines truth in each discipline would vary.

In mathematics, deductive reasoning is privileged, but in empirical sciences inductive reasoning is

adequate. Thus, while they can all aim for truth, how this aim can be achieved, or what methods

are allowed to achieve such aim, can vary across disciplines. Furthermore, what exactly the nature

of these goals is would vary depending on the scientific community. Some communities might

be focused on a motivational goal that provides an ontology of their practice, e.g. set theoretic

V or type theoretic universes U . Others might simply be motivated by and aim for something

epistemic. Despite each community’s difference, each community has their own motivational goals:

they motivate the community’s practice but also are what the community is aiming for.

By clarifying the motivational goals of the scientists, Besinnung clarifies the historical foundation of

the science:

Every attempt of the historically developed sciences to attain a better grounding or a
better understanding of their own sense and performance is a bit of self-investigation
[Selbstbesinnung ] on the part of the scientist. (CM, §64)

This suggests how Husserl considered Besinnung an important method that ought to be carried out

by all scientific communities, so that they can have a better understanding of their own discipline.
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While Husserl considered each community of scientists to have a motivational goal, he did not

consider the community to have a good understanding of it. Thus, it is left to the phenomenologists

to clarify them for a better understanding of the scientific disciplines.

Importantly, it is carried out from the perspective of the scientific community, as a ‘self-investigation

[Selbstbesinnung ]’ (CM, §64) i.e. it is a phenomenological – empathy-first – investigation. So how

can we (as philosophers) carry out Besinnung from the perspective of the scientists? Husserl claims

that we can do so by immersing ourselves in the intentions (i.e. the motivations) of the scientists

and, by doing that, discovering the motivational goals [Zweckidee] of their practice:

by immersing ourselves meditatively [besinnliche] in the general intentions of scientific
endeavor, we discover fundamental parts of the final idea [Zweckidee], genuine science,
which, though vague at first, governs that striving. (CM, §5)

Immersing ourselves does not simply mean practising the science in question, but seeking to

understand the motivations for the community. These motivations are not always explicit in the

practice, and they are often vague. For example, no mathematician explicitly discusses whether their

proof is rigorous, yet rigour is a motivation that can be found within the practice. As philosophers,

we ought to identify these vague motivations and carry out Besinnung in order to clarify them.

Husserl describes this process of immersing ourselves as entering the community empathy with the

scientists:

Standing in, or entering, a community of empathy [Einfühlungsgemeinschaft ] with the
scientists, we can follow and understand the goal sense [Zwecksinn] — and carry on
‘sense-investigation’ [‘Besinnung ’]. (FTL, p. 9)

Thus far, we have looked at how Besinnung aims to clarify the motivational goals of the scientists,

and have seen that, in order to carry out Besinnung, we need to enter the community of empathy. In

the next section (section 3.2), I further clarify in what sense the scientific community is a community

of empathy.
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Before moving on to that section, however, I want to discuss briefly how Hartimo’s interpretation of

Besinnung differs from mine in relation to the term ‘transcendental ’. I treat Besinnung as a method

similar to phenomenological reduction/epoché, but a method applied to the teleological structure of

the sciences, rather than to the structure of individual acts of intentionality. On Hartimo’s account,

Besinnung is not described as an application of epoché applied to the teleological structure. For

instance, Hartimo (2022a) distinguishes the method of ‘transcendental clarification’ from that of

‘sense-investigation’ (i.e. Besinnung), and claims that ‘Husserl’s phenomenological method is a

combination of methods: sense-investigation and transcendental clarification’. This difference is due

both to our different interpretations of the term ‘transcendental’ in Husserl and to differences in

our overall aims. Hartimo interprets ‘transcendental clarification’ as a separate method from epoché

and Besinnung, while I treat it as an aim of transcendental phenomenology. Thus, phenomenology

(for me) is an explicatory science that aims at (transcendental) clarification, i.e. clarification of

the general or universal condition such that each experience or practice is an instance of that

condition. The difference in interpretation here perhaps arises from our differing aims. I am focused

on developing Besinnung as a method to apply to contemporary mathematics, while Hartimo aims

at historical clarification of Husserl’s method of Besinnung, with Husserl’s own aim of mathesis

universalis in mind. Despite the differences between our interpretations, Hartimo and I agree that

Besinnung generally aims to clarify the goal-senses (i.e. the motivational goals) of the community of

scientists.

3.2 Community of Empathy

In this section, I explicate the notion of ‘community of empathy [Einfühlungsgemeinschaft ]’ (FTL)

in terms of ‘we-subjectivity [Wir-Subjectivität ]’ (Crisis §28, and Die Lebenswelt, Hua, vol. 39,

2008). Husserl claims that, in order to enter the ‘community of empathy with the scientists’, we ‘let

ourselves be guided by our empathic experience of the sciences’ (FTL, p. 9). The scientists with

whom we empathise here are individuals who practice the particular science that I am interested in.

If I am interested in mathematics, then I would attempt to enter the community of empathy with

mathematicians.
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To be ‘guided by our empathic experience of the sciences’ (FTL, p. 9) means to empathise with

their community by understanding what experiences are shared within that community, and to

engage with the science from the community’s perspective. Empathising with the community could

initially begin by empathising with an individual scientist, who is a member of the community that

I am interested in. But in order to fully empathise with the community, one must understand what

experiences or assumptions are shared within it. Furthermore, engaging with the science from the

community’s perspective involves understanding the motivation behind the community’s practice,

since the goal-sense formed in the practice can be found in the ‘living intention of’ the scientists

(FTL, p. 10). I shall clarify what it means to empathise with a scientist or with a community of

scientists shortly.

Elsewhere, Husserl characterises the notion of ‘we-subjectivity’. I argue that we can further explicate

the notion of communities of empathy by understanding them as a we-subjectivities. In a we-

subjectivity, instead of focusing on an individual subject I, the focus is on a group of subjects, a we.

In this we, an I can be described as being at the centre, with the others in the we surrounding the I

as actors:

I, in the centre, the others around me — not as objects, but as actors. (Die Lebenswelt,
Hua, vol. 39, p. 385; quotation from Caminada, 2015, p. 39)

Importantly, each actor is also a central subject that observes others as actors.

In this way I have my others, but each of these others has me and its others around it,
eccentrically, while each centre is there as a subject of interests, as a first person, while
the others are second and self-mediating persons. (Hua, vol. 39, p. 385; quotation from
Caminada, 2015, p. 39)

A community of empathy does not simply refer to an individual central subject and its actors, but

rather to the totality of each central subject and its actors, understood from a particular central

subject’s perspective. For example, a group of philosophers to which I belong might be referred

to as a community of empathy, in so far as I see them as sharing certain practices with me when
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practising philosophy. This could include a shared interest in Husserl, or mathematics, or logic, or

other specific topics. From my perspective, each of these individuals also sees me as sharing the

practice. While I might not know who all these individuals are, I can still have a sense of we, and I

suppose that any you in my we would also have a sense of we.

The relationship that each central subject has with its actors is called ‘empathy [Einfühlung ]’. The

German word ‘Fühlung ’ translates to the English word ‘feeling’. So we can literally understand

‘empathy’ as ‘feeling into’, referring to an experience of another that involves positioning (or feeling)

oneself in another’s perspective. More broadly, we say that a subject empathises with (or has an

empathic experience of) another (an other) just in case the subject has an intentional relation such

that the intended object is a distinct conscious subject. Although this characterisation seems to

be simplistic, the underlying understanding of empathy is much deeper. The Husserlian/Steinian

account of empathy I am invoking here suggests that empathy is possible because the subject has a

sense of self as a conscious being, I, who is capable of experience. My sense of self-hood is constantly

there, regardless of the status of my physical body. But when I have physical experiences, my

body moves in a certain way, which I can perceive. So when I see another physical body moving

in a similar way, I can understand the other’s experience in a similar way to my experience. So I

understand the other’s self-hood (as a conscious being), or the other I, in an empathic experience.

See Stein (1964, Ch. 3) and D.W. Smith (1989, pp. 112ff.) for more details.

Hence, one of the necessary features of empathy or empathising is that the intended object is a

conscious subject, i.e. another I. For example, consider yourself being at a wax museum. You see

many wax figures, and you do not think of them as being conscious subjects. Suddenly, one of these

figures starts to move and interact with others, and it turns out that this individual was not a wax

figure after all, but a person who was pretending to be a wax figure. Let us call this individual

‘the pretender’. You now have an empathic experience of the pretender (i.e. you empathise with

this individual), an experience that you did not have before. Despite the fact the pretender was a

conscious being, prior to your own recognition of them as such, your previous experience of them

was not empathy. You did not recognise them as a conscious being (even though you now know that

you were previously mistaken) and that is crucial in empathic experiences.
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Note that to be a conscious subject means to be capable of intentional acts/experiences. In this

sense, empathy is ‘understanding another’s experience from the other’s point of view’ (D. W. Smith,

1989, p. 112). It is not a matter of asserting my own perspective when it comes to the other’s

experience, but of understanding, or empathising with, the other person’s perspective and their

intentions. When you were seeing the pretender as a wax figure, you did not consider the pretender

to have a perspective or a point of view. They were seen as a figure without consciousness, and

thus without a perspective. However, once you empathised with the pretender, you were seeing the

pretender as a conscious being with a perspective. From this broad account of empathy, we can

also define particular empathic experiences, in which the other is perceived as having a particular

intentional experience. Returning to the pretender example, consider if the pretender starts to cry

in front of you. You will probably perceive the pretender as doing or experiencing many different

kinds of things. The obvious one is that the pretender is crying, but you might also think that

the pretender is crying because they are sad. Crying might be a physical experience that you can

see, but understanding that they are sad is an empathic experience. These are particular empathic

experiences a subject can have of another subject, and we shall describe them in the following sort

of way: ‘a subject empathically experiences/empathises with another subject as doing X’, where X

refers to a particular experience.

In general, I shall refer to the core empathising subject as the ‘central subject’, and while the

empathised subject as the ‘other subject’. In an empathic experience, we can also call the particular

experience X the ‘empathised experience’. Consider, for example, a subject looking at another

subject who is eating. The central subject perceives (empathically) the other subject as to be eating

something, i.e. having this particular kind of intentional experience. To the subject, the experience

of eating is an empathised experience. These particular, empathised experiences could also be

experiences of mathematical or scientific practice. A central subject might look at a mathematician

proving a theorem. Then the empathised experience is proving of a theorem.6

Importantly, Husserl’s account of empathy is not simply an act or an attempt to feel another person’s

emotions, but it is an act of understanding. Empathy is an understanding of the other’s perspective,

6It is not the case that in all cases of empathy, the central subject might be fully aware of the empathised
experience. Suppose I am speaking with someone who speaks in a foreign language that I am not familiar with. Then,
while I see this person to be talking about something, I do not fully understand what they are saying.
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the other’s experience, rather than feeling the other emotions or making those experiences my own.

In some places, this feeling another’s emotion is characterised as ‘sympathy’. Thus, in seeing the

other cry, the central subject empathised with – i.e. understood – the other’s feeling of sadness. See

also Jardine (2014, p. 274) on this.

Husserl (in Crisis, §28; and see also Stein, 1964) further elaborates on empathy by distinguishing

the living body [Leib]7 from the physical body [Körper ] in order to distinguish the experience of

the embodied self as opposed to the others. The ‘living body’ refers to the abstract notion of

an embodied subject that is conscious. It is not materially located, but centrally located in our

own consciousness. My living body, then, occupies my physical body that is materially located.

My experience of another then can be analysed as an experience of their physical body, which I

physically perceive, where I also empathically experience their living body, as a conscious being,

which I empathically perceive through the physical perception of the physical body. Stein (1964)

clarifies further that empathy is not a primordial experience, but a reproductive experience. This

means that when the subject experiences (e.g.) the emotions of another, the experienced emotion is

not the subject’s own, but the other’s. Another reproductive experience is memory, or remembering.

When we remember what we had for dinner yesterday, we are not actually experiencing, or eating,

the dinner. The experience of dinner is relived in our memory, so we say memory is a reproductive

experience. See D. W. Smith (1989, pp. 115ff.) for more details.

Let me briefly digress and elaborate my account of empathy. Empathy is not only an experience

of understanding another’s perspective, but also a way in which we can learn certain things. If

I am simply empathising with mathematicians, while I understand that they are (e.g.) proving

something, I might not understand exactly every detail of the proof, nor reproduce the proof myself.

But eventually, as I attempt to write a mathematical proof myself, I come to make the experience of

proving my own. I shall not go into more details here, but this is generally how I consider empathy

to be playing a role in our mathematical education, and also in our attempt to enter the community

of empathy with mathematicians.8

7Some translations refer to Leib as the ‘lived body’.
8Although there are some discussions of the importance of empathy in, e.g., art or history education (see Krieger,

2023, and Brooks, 2009), there is no current discussion about empathy in mathematical education in the literature.
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In the next section, I build on from this account of empathy, as a form of understanding, and explain

how it gives rise to the community of empathy and the teleological structure of scientific practice.

3.2.1 We-Subjectivity

How do we form a community of empathy? This can be better understood by looking at Husserl’s

description of community in the Cartesian Meditations. As Ronald McIntyre (2013) has shown,

Husserl claims that a community can be formed by empathic pairing. Pairing, for Husserl, is a kind

of association rather than identification:

Pairing is a primal form of that passive synthesis which we designate as ‘association’, in
contrast to passive synthesis of ‘identification’. (CM ; Hua, vol. 1:142)

When we experience two distinct things that are alike in some ways, we start to associate them.

Through this association, we can experience the two objects as one pair. In doing so, we are not

identifying two objects to be the same, but making an association of the two into a single unity

and experiencing the unity in one experience (McIntyre, 2013, p. 75). We find the experience of

pairing things, when considering social kinds. For example, we might group a pair of tigers as ‘two

tigers’ without considering each of them distinctly. When we have more than two things that are

experienced in unity, this unity is called a community.

A community of empathy is a unity formed by subjects who empathise with one and other as having

similar kinds of experiences. For example, suppose that I am a mathematician. I might describe the

natural numbers as the sequence ‘1, 2, 3, . . .’, as we saw in chapter 2. When I engage with ordinary

people and their understanding of ‘1, 2, 3, . . .’, I am surprised to see that they have certain beliefs

about the numbers that I do not have. But when I meet another mathematician, I understand that

this mathematician also thinks of the natural numbers as expressed by the sequence ‘1, 2, 3, . . .’.

I empathise that you, another mathematician, have the experience of the natural numbers when

considering the sequence ‘1, 2, 3, . . .’. Then you and I, along with others, form a community of

empathy as you and I share the same experience.
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One helpful way to understand Husserl’s community of empathy is the structuralist account of a

social group given by Ritchie (2020). Ritchie’s structuralist account understands social groups in

such a way that they can ‘be represented as (although they are not identical to) graphs composed

of nodes and edges’ (Ritchie, 2020), where each node is a member of the group, and the members

are connected to one another by the edges, or some relations. Husserl’s community of empathy is

similarly structured. There are individual members who are related to one another by their shared

empathic experiences. What matters here is not the individual members and who they are, but

rather that the members share certain kinds of experiences, and can empathise with each other as

having these experiences.

However, Husserl’s notion goes beyond this: the community is defined from the first-person perspective.

Importantly, I, a member of the community, empathise with others in my community as we share in

its history and culture. I might not know every single member of my community, as I have not

interacted with all of them. Regardless, I still recognise that the members of my community of

empathy share or understand certain experiences that I have. Then these shared experiences give

rise to one or more shared goal (Zwecksinne).

These shared goals are not explicitly stated by the members of the community. Rather, they are

formed by the shared intentions, or shared experiences, of the members. For example, mathematicians

might share the experience of proving theorems, and be connected by their understanding of the

proofs made by others, and so on. Or they might share the view that certain concepts are fundamental

to mathematics – e.g. the concept of the natural numbers. But they need not explicitly discuss why

certain ways of proving or certain concepts are important in mathematical practice. In adopting

and accepting certain concepts and proof-methods, they form shared goals that are implicit in their

practice. These goals are what need to be clarified by the method of Besinnung.

Given that Husserl’s community of empathy gives rise to the shared goals of the community, one

might consider it to be similar to Margaret Gilbert’s notion of joint commitment. However, there

are several important differences between Gilbert’s joint commitment and Husserl’s community

of empathy, specifially, in relation to how they are formed. For the former, ‘there are no special

background understandings’ (Gilbert, 2013, p. 65), or at least background understandings are
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not required in joint commitments. This contrasts with Husserl’s community, which is a cultural

formation ‘by the practice of the scientists and generations of scientists who have been building them’

(FTL, p. 9). The background understanding for the community of empathy is a shared culture and

history, which the members of the community share by empathising with each other’s experience.

This shared (cultural or historical) experience is what forms a community of empathy.

Another difference is that Gilbert’s joint commitment assumes each participant to explicitly express

the shared mental state or commitment to their commitment (see Gilbert, 2009, p. 180, and 2013, p.

65). Whereas, for Husserl, the aims are implicit in the practice within the community, and they are

to be clarified by carrying out the method of Besinnung.

Before going into further details about Besinnung, let me remark on what entering the community

of empathy with mathematicians would look like.

3.2.2 Community of Empathy with Mathematicians

To enter the community of empathy with mathematicians, one must empathise with mathematicians.

This does not mean empathising with a single random mathematician and their experience. Instead,

there are particular experiences that are shared among the mathematicians, and we should attempt

to understand what these experiences are. These experiences include taking certain concepts to

be fundamental to their mathematical practice, or accepting certain proof-strategies. In the case

of accepting certain fundamental mathematical concepts, this can narrow down our focus to a

particular mathematical theory and its practitioners. For instance, taking groups as the fundamental

concepts of mathematics narrows down our community to that of group theorists. Hence we enter the

community of empathy: i.e. the community formed by their shared experience and understanding.

The general mathematical community is perhaps held together by the empathised experience of

proving a theorem, but a smaller community of mathematicians can be characterised by particular

kinds of practices included within the sub-community. For instance, if one wishes to enter the

community of empathy of topologists, one would have to understand certain diagrams to be referring

to certain topological notions. Or if one is looking at the community of category theorists, one
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should understand what the commutative diagrams mean. These are just some of the examples of

how one can empathise with mathematicians, who form a community of empathy. What would be

difficult for me to provide is necessary and sufficient criteria for empathising with mathematicians,

for each mathematical community might have different means of doing so. But the less controversial

account for the general mathematical community is the activity or experience of proving a theorem

is certainly a mathematical one.

Empathising with the mathematicians also involves understanding the mathematics from the mathe-

matical community’s perspective. Once understood, we could also provide a clarified characterisation

of the mathematics used by the community. For example, what the natural numbers are for the math-

ematical community can be characterised by the second-order axioms of PA. However, characterising

the set of natural numbers by second-order PA is not the business of the broader mathematical

community, but for a particular sub-community of mathematicians, namely mathematical logicians.

But this is not the only available characterisation of the set of natural numbers. Despite the different

ways of characterising the set of natural numbers, the fact that the set of natural numbers can be

characterised as the minimal set closed under the successor operation is something that is shared

among the mathematicians. In virtue of this shared experience, mathematicians continue to prove

theorems about the natural numbers, and it is (perhaps) assumed that facts about (the set of)

the natural numbers are decidable in the broad mathematical practice – otherwise, why would

mathematicians (or in particular number theorists) continue to try to prove currently unsettled

problems about the natural numbers?

However, if we are not considering the set of numbers from the mathematical community’s perspective,

we can have a different account of numbers, holding beliefs about them which would be false in

the standard model of arithmetic. As we saw in the previous chapter, common-folk beliefs about

the numbers include facts that are not true of the minimal structure closed under the successor

operation. Thus, empathising with the mathematicians ought to involve looking at mathematics

from the perspective of mathematicians, whether it be the general mathematical community or a

smaller community of mathematicians.
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Another feature involved in entering the mathematical community, or empathising with the mathe-

maticians, is to understand the shared motivation which emerges from their history. For contemporary

mathematical practice, this might be more difficult. Mathematics has branched out into several

different theories, and not every mathematician can be an expert in all the theories. However,

given a particular mathematical theory (usually formed by shared assumptions or experience about

certain concepts), it is important to understand the motivation of the relevant mathematicians for

practising and developing such a theory. This might not be something that is explicitly stated by

the mathematicians in their research work and discussions, but we might discover their motivations

in their textbooks – either in the form of explicit statements or by ‘reading between the lines’ – or

through informal discussions exploring motivations.

To summarise, entering the community of empathy with mathematicians, or empathising with

mathematicians, involves (1) understanding the shared experiences of the mathematical community

(e.g. the activity of proving a theorem), (2) understanding the mathematics from their perspective,

and (3) understanding the motivation behind practising certain mathematical theories. Although

these conditions might not be sufficient (but I would think they are necessary), we can then

characterise empathising with the mathematicians as ‘mathematical empathy ’. Thus, the first step of

the method of Besinnung is to mathematically empathise.

3.3 Intending Sense, Fulfilling Sense, and Zwecksinn

In the previous section, I clarified Husserl’s account of community of empathy, and thus how one

can enter the community of empathy with mathematicians. Here, I show how we can clarify the

motivational goals of the scientists – i.e. the third step of Besinnung characterised in 3.1. But before

clarifying the motivational goals, Husserl explains that Besinnung involves clarifying the Zwecksinne

by converting the intending sense, which is vaguely available to us in the practice, to the clear sense:

Besinnung implies nothing other than the attempt at the genuine making of the Sense
‘itself’, which is presupposed in the bare aiming meaning [Meinung gemeinter ]; or the
attempt to convert the ‘intending sense’ [intendierenden Sinn] (as it was called in the
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Logical Investigations), [which is] in the unclearly aiming, ‘vaguely floating before us’,
the unfulfilled sense [erfüllten Sinn] into the clear one, and hence it provides the evidence
of its [i.e. the fulfilled one’s] clear possibility. (FTL: Introduction; my own modified
translation based on Cairns)

In this section, I clarify what Husserl means by the ‘intending sense’ in the Logical Investigations

and explain that Besinnung involves identifying the concepts, methods, goals, or questions that are

already found within the practice, and attempt to unify these by looking at the motivations of the

practitioners.

3.3.1 Intending Senses in Logical Investigations

As Husserl described in FTL, Besinnung involves an attempt to clarify the intending sense in relation

the fulfilled sense. He explicitly refers to the Logical Investigations to clarify what he means by the

‘intending sense’ [intendierenden Sinn]. In Logical Investigations, Husserl distinguishes between the

intending sense and the fulfilling sense [erfüellender Sinn]– note that this is not the fulfilled sense,

which is what a Zwecksinn (or a motivational goal) is. Here, I clarify Husserl’s notions of intending

sense and fulfilling sense, before turning towards the fulfilled sense.

In Logical Invesitigations I, Prologomena, §14, Husserl writes that content [Inhalt ] can be distinguished

into three kinds: intending sense [intendierender Sinn] or meaning [Bedeutung ]; fulfilling sense

[erfüellender Sinn]; and the object [Gegenstand ]. On the one hand, the intending sense refers to the

meaning that is out there with the object, without any reference to the intentional act or experience

of a subject. This describes the possible meanings (or purposes) that an object could have, which

could possibly be grasped by a subject. This meaning could be of a linguistic expression, concept,

or even method, since Husserl’s intended objects simply refer to the something that a subject has

a relation to in an intentional experience (recall section 1.3.1). For example, consider a table. A

table has an intending sense, i.e. the meaning or the purpose that the table is for. Regardless of

whether there is a subject who is using the table, it has an intended purpose that (e.g.) it is an

item of furniture that can be used to eat meals on, etc. Thus, intending sense can be understood

as the intended purpose of an object or an intended meaning of a concept, etc. Just as Husserl’s
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characterisation of intended object could be particulars or events, Husserl’s characterisation of

meaning is not pre-predicated with certain ontological features.

The fulfilling sense, on the other hand, is the meaning in virtue of a fulfilling act. Husserl provides

perception, e.g. seeing, as an example of a fulfilling act. But, using the example of the table, simply

seeing the table will not get us to fully grasp the intending sense (or intended meaning) of the

table, although seeing another person using the table appropriately might get us closer to it. In

general, a fulfilling act refers to an intentional act that aims to grasp the object (i.e. the table) via

the intending sense (i.e. the intended meaning or purpose of the table) that is around us. When

an appropriate fulfilling act is aimed at the object, the force of evidentness, or intuitive fulfilment,

which brings further clarity to the intending sense itself. Thus, Husserl here is not referring to some

reasoning involved in experiencing (e.g.) the table, but simply that we have such evident experience,

that allows us to understand what the intending meaning of the table is, and thus can experience

the table itself.9

In the context of Besinnung, Husserl describes the ‘intending sense’ as the ‘meaning that is vaguely

floating around us’ (FTL, p. 9). Hence, the intending sense is the intended meaning that we can

find in the scientific practice, i.e. in the concepts or methods available in the scientific practice. For

example, when mathematicians practice number theory, the intended meaning of the set of natural

numbers is the intending sense of the set of natural numbers. One could describe it as the minimal

structure closed under the successor operation, or via mathematical induction, etc. But in order to

fully grasp the set of natural numbers, we must perform a fulfilling act. This fulfilling act could be

proving theorems about the natural numbers, e.g. by applying mathematical induction. In carrying

out the proofs, we have the fulfilling sense of the natural numbers.

In some cases, the fulfilling sense might not coincide with the intending sense (LI I, Prologomena:§15),

as in the case of seeing a table. How could one understand what a table is for just by staring at

it? We can also find similar examples when considering mathematical concepts and some fulfilling

experiences. For instance, suppose that a subject counts the numbers, so counting would be the

9In this particular section, Husserl further distinguishes between the subjective content and the objective content
without further clarification. The three kinds of content are about the objective content, not the subjective content.

90



fulfilling act. The fulfilling sense of the numbers in the act of (intransitive10) counting might not

be of the natural numbers (as I have argued in Chapter 2). While the subject continues to count,

they might simply allow other non-arithmetical acts when describing certain large numbers. But in

order for the intending sense and fulfilling sense to coincide, unity of fulfillment is required (LI I,

Prologomena:§15). Only in the unity of fulfilment (or unity of coincidence) do the intending sense

and fulfilling sense coincide and thereby the subject fully experiences the object. Thus, in proving a

theorem about the natural numbers, the subject performs a fulfilling act in the unity of fulfilment.

Thus far, I have clarified Husserl’s notions of intending sense and fulfilling sense. But to understand

‘Zwecksinn’, we must understand the notion of fulfilled sense [erfüllten Sinn]. As the adjective

‘fulfilled’ suggests, it can be understood as the final result of the fulfilling sense. In particular, if the

fulfilling act is performed in the unity of fulfilment, then the intentional content is the intending

sense (i.e. the intended meaning), and through the unity of fulfilment, we can further clarify the

fulfilled sense (i.e. the motivational goal). Thus, a fulfilled sense refers to the sense that arises as the

intending and fulfilling senses coincide in an act, so that the intended object is intuitively grasped at

a glance:

The child who already sees physical things understands, let us say, for the first time the
final sense [Zwecksinn] of scissors; and from now on he sees scissors at the first glance as
scissors – but naturally not in an explicit reproducing, comparing, and inferring. (CM,
§50)

However, in the context of Besinnung, Zwecksinn seems to carry more than simply the fulfilled meaning

by which we can grasp the relevant object. Since Husserl’s explanation in Logical Investigations

concerns the structure of intentionality between a subject and an intended object, when we come to

consider the teleological structure of sciences, the fulfilled sense carries a slightly different structure.

In particular, I am referring to the transcendental aspect of the science, i.e. to universal or general

features that make the science possible. The Zwecksinn is not simply the intended meaning, but

more abstract motivational goals, which are implicit in practice. Once we have clarified these

motivational goals via Besinnung, we can then look at the practice and understand certain features
10Following Benacerraf (1965), by ‘transitive counting’, I mean the act of counting a particular set of objects, while

intransitive counting does not have a particular set of objects.

91



of the practice as the instances of the clarified motivational goals. For example, having clarified

rigour as a motivational goal of mathematics, we understand (e.g.) axiomatic characterisations of

definitions as instances of mathematical rigour. Hence the clarified motivational goals are more

abstract, implicit aims whose instances can be intuitively or immediately seen in practice. In line

with this, Mirja Hartimo (2021b, p. 189) writes that the Zwecksinne can also refer to values or

virtues, which could be further divided into ideal desiderata or minimal requirements (see, e.g.,

Douglas, 2013). Thus, the Zwecksinne include values that motivate sciences to be a certain way,

but they are also what sciences must aim to meet. The fulfilled senses, or Zwecksinne, are the

motivational goals as described earlier.

To summarise, the intended sense refers to the intended meaning or purpose that is openly available

within the practice of the scientific community in question. These meanings could be of concepts,

goals, methods, or even questions. Besinnung involves carrying out an appropriate act such that we

can clarify the intended meaning. This refers to clarifying the concepts, goals, or methods, or to

answering the question based on the mathematical community’s perspective. In such clarification,

we can then find the motivational goals of the community. In the next section, we turn to some

textual examples of how Husserl carries out Besinnung.

3.4 Husserl’s Use of Besinnung

Having described what Husserl means by intending senses and Zwecksinne, I shall discuss how

Husserl uses the method of Besinnung. For this discussion, I consider how Husserl himself carries

out Besinnung in FTL, CM, and Crisis, and show that he begins with a general question within the

community of empathy. This question then guides us to the particular concepts or other features

within the practice that need to be further clarified. Clarifying those, we can turn to convert the

intending senses to the Zwecksinne (i.e. motivational goals) of the practice. In describing Husserl’s

own approach, I also comment on how a more precise understanding of Besinnung can be provided

for contemporary usage.
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The aim of this section is to show that carrying out Besinnung successfully requires explicitly

specifying the community of empathy in question in terms of their shared experience or practice, by

looking at the historical motivation of the community. I find that while Husserl was not always so

explicit about the community of empathy with which he is engaging, this is an important step in

carrying out Besinnung.

In FTL, CM, and Crisis, Husserl’s starting community of empathy is different in each case. In Crisis,

he begins within the European community, rather than the scientific community. His question is Is

there, in view of their constant successes, really a crisis of the sciences? (Crisis, §1), which can be

answered negatively if he were starting from the scientific community’s perspective, given the success

of scientific methodologies, as it would be hard to consider that there is a threat to the sciences.

However, he continues in §2 that there is another perspective, within the European community,

where there is a crisis in the sciences, i.e. ‘the crisis of our culture and the role [ascribed] to the

sciences’ (Crisis, §2).11 As we see in the Crisis, he aims to clarify the question that has risen within

the European community, and carries out ‘a teleological-historical reflection upon the origins of our

critical scientific and philosophical situation’ (see Carr’s footnote 1 on p.3 or Crisis, p.xiv). I shall

clarify Husserl’s Besinnung in the Crisis shortly, but let me briefly remark on his approaches in CM

and FTL here.

In the Cartesian Meditations, he begins by situating himself as a (neo-)Cartesian mediatator (as far

as is possible, without presupposing any sciences), presenting his phenomenology as a continuation

of Descartes’s Meditations on First Philosophy. Thus, Husserl’s community of empathy is with the

philosophers who see themselves as following Cartesian philosophy. By carrying out Besinnung,

Husserl raises several questions leading to the claim that Descartes’s meditative, sceptical method

ought to be re-envisioned so that Descartes’s original goal could be continued: ‘to uncover [. . .] the

genuine sense of the necessary regress to the ego, and consequently to overcome the hidden but

already felt naïveté of earlier philosophising’ (CM, §2). The question that Husserl is asking here is

‘what is the genuine sense of the ego?’ By answering the question, Husserl can be seen to clarify the

renewed motivational goals of Descartes and the Cartesian meditators.

11Here, perhaps Husserl is referring to the Nazis coming to power in Europe.
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In Formal and Transcendental Logic, his main questions are ‘What is the genuine sense of science?’

and ‘What is the genuine sense of logic?’ In his introduction, he describes the sense (i.e. meaning) of

science as found in Plato, ‘as a place for exploring the essential requirements of “genuine” “knowledge” ’.

The sense of logic in Plato, according to Husserl, ‘arose from the reaction against the universal denial

of science by sophistic skepticism’. Logic is then the ‘theory of sciences’, which makes ‘genuine

science possible’ by ‘[guiding] its practice’. His worry is then the abandonment of this genuine sense

of science in modern science. By answering these questions, carrying out Besinnung, Husserl aims to

clarify the motivational goals of the modern scientists as a continuation of this historical genuine

sense of science.

Although Husserl generally focuses on the sense of science of particular historical scientists, e.g.

Plato and Descartes, I do not think that this is the interesting methodological feature of Husserl’s

Besinnung. His methodological claim is that we ought to enter the community of empathy with

practitioners, and then we ought to clarify the motivational goals by looking at their questions,

concepts, or goals (i.e. the intended objects that have the intended meaning in the practice). But

the communities Husserl focuses on can sometimes be too broad. In order to productively carry

out Besinnung, we ought to start with smaller communities, not (e.g.) European humanity, which

consists of speakers of various languages who have complicated and diverse histories. It is also

important to specify to which community we are referring, defined by what kind of shared experience,

as a community of empathy. Then, within the community of empathy, we can follow Husserl’s

approach, starting with questions that arise in the practice or in the community. These questions

then guide us to particular concepts, methods, etc., which the community would use, but would

require further clarification in an attempt to clarify the motivational goals of the community.

In the next subsection, I shall argue that, in considering the shared experience of the community, we

ought to look at the historical motivation behind the experience. To do so, I follow Husserl’s use of

Besinnung in Crisis.
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Historical Besinnung in Crisis

The main goal of Crisis is to understand the meaning (or sense) of science, which began with the

question, Is there a crisis in the sciences? The question arises from within humanity (or particularly,

that European section of humanity of which he is a part), thus it demands an understanding of

what the goals of European humanity are. He quickly narrows down to the European philosophical

community, as it influenced European humanity in general. To clarify the goals of the community,

Husserl carries out the method of Besinnung by reflecting [besinnen]12 on our philosophical history.

He first identifies the historical motivation of European philosophy as ‘in the possibility of universal

knowledge’ (Crisis, §7), and then questions ‘how do we hold onto this belief?’ (Crisis, §7).

The identifying of the historical motivation of the community is one of the important steps in

empathising with the community. Such historical motivation is understood as the common experience

by the members of the community. Thus, a historical reflection, which clarifies the motivation, is a

necessary step in empathising with the community of European philosophers. He further clarifies

that the contemporary European philosophical community is connected to the historical predecessors

by the ‘concepts, problems, and methods’ used:

Our first historical reflection [historiche Besinnung ] has not only made clear to us the
actual situation of the present and its distress as a sober fact; it has also reminded us
that we as philosophers are heirs of the past in respect to the goals which the word
“philosophy” indicates, in terms of concepts, problems, and methods. (Crisis, §7)

Since the philosophical community is a continuation of the practices of its predecessors, ‘in terms of

concepts, problems, and methods’, starting with the historical motivation is then more important.

Without a clarified understanding of the historical motivation of the community, it would be harder

to find which concepts, problems, or methods ought to be clarified for the philosophical practice.

Returning to Husserl’s main question of whether there is a crisis in the sciences, we then ought to

consider what is meant by ‘sciences’ in the question by looking at its historical meaning according to

12Husserl writes: ‘In dieser Not uns besinnend, wandert unser Blick zurück in die Geschichte unseres jetzigen
Menschentums’ (Crisis, §5)
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the philosophical community. That is, what was meant by ‘sciences’ by the historical predecessors

of philosophers contemporary with Husserl. This is why it is necessary here to ‘reflect back

[Rückbesinnung ], in a thorough historical and critical fashion, in order to provide, before all decisions,

for a radical self-understanding’ (Crisis, §7).

What these passages show is that there are at least two steps for a successful Besinnung. One step is

the historical reflection, which will point us to the historically shared motivation of the community

that we are interested in. Another step involves starting with a general question (as found within

the community) – e.g. Is there a crisis in the sciences? – to identify what concepts and methods

we must focus on. Ultimately, Besinnung will lead us to ‘what was originally and always sought in

philosophy’ (Crisis, §7), which is more general than the question concerning the crisis in the sciences

we began with.

In other words, Besinnung involves clarifying the original motivations of the relevant community in

question. Within this community, we are then led to certain questions that need to be answered.

Answering these questions will guide us towards the concepts, methods, goals, etc., that need to be

clarified. And the clarifications of these will take us to the clarification of the motivational goals of

the community.

3.5 Radical Besinnung and Contemporary Mathematical Practice

In some places, Husserl describes Besinnung as ‘radical’, by which he means Besinnung, which aims

to be critical in a way that will produce an original, clarified sense of the practice:

Radical Besinnung, as such, is at the same time criticism for the sake of original
clarification. Here original clarification means shaping the sense anew, not merely filling
in a delineation that is already determinate and structurally articulated beforehand[.
. . . O]riginal sense-investigation [Besinnung ] signifies a combination of determining
more precisely the vague predelineation, distinguishing the prejudices that derive from
associational overlappings, and cancelling those prejudices that conflict with the clear
sense-fulfilment – in a word, then: critical discrimination between the genuine and the
spurious. (FTL, p. 10)
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The result of radical Besinnung is that the resulting Zwecksinne are ‘genuine’, rather than ‘spurious’

(FTL, p. 10). Hartimo (2018, p. 265) observes that ‘[t]he outcome of radical Besinnung is criticism of

existing practices.’ This does not mean that radical Besinnung simply aims to criticise the practice,

but rather that it re-directs the practice in the direction of its genuine Zwecksinne. This ensures the

Zwecksinne to be actually possible, or achievable, for the practitioners. Husserl, in the Cartesian

Meditations, also emphasises that radical Besinnung is to be ‘phenomenological’:

Every attempt of the historically developed sciences to attain a better grounding or a
better understanding of their own sense and performance is a bit of self-investigation [Selb-
stbesinnung ] on the part of the scientist. But there is only one radical self-investigation,
and it is phenomenological. (CM, §64)

Here, what makes Besinnung radical, or phenomenological, is the aspect of critical evaluation.

Although scientists can attempt to understand their own practice and aims, so that this might be

called Besinnung, the genuine Besinnung must be radical or phenomenological (CM, §11). This

means to go beyond the clarification and offer a critical perspective that might not be easily available

from within the community’s perspective.

Hartimo (2018) describes this radical Besinnung as involving the ‘transcendental method’ or ‘tran-

scendental clarification’. By ‘transcendental’, Hartimo means a method of clarification that involves

reflecting on the practice. Hence, for Hartimo, radical Besinnung involves two methods: sense-

investigation (or simply Besinnung) and transcendental clarification. (See Hartimo, 2022a, for more

details.) In my account, looking to mathematical practices, radical Besinnung is a particular kind of

Besinnung with a critical aim. What makes Besinnung radical is the particular aim in consideration

rather than an additional method. Once we have clarified the motivational goals, we can take a

critical perspective and evaluate whether the goals are achievable or whether particular revisions

might be necessary in the mathematicians’ methods. Although Hartimo’s account and my account

of both Besinnung and radical Besinnung are more or less in agreement, where we diverge is on our

interpretation of the term ‘transcendental’. The ‘transcendental’, for me, does not describe a distinct

method, but an aim of Husserl’s transcendental phenomenology, i.e. to clarify universal structural

conditions that guides the practice. Naturally, with this reading of Husserl’s notion of transcendental,
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radical Besinnung involves critical evaluation of the motivational goals, and whether these goals are

achievable for the practitioners, given their current methods (as Hartimo would agree). In order to

successfully carry out radical Besinnung, one does not stop at clarifying the goals, but refers back to

the practitioners and challenges their practice in light of the motivational goals. The practitioners

might then reflect upon their clarified motivational goals and review or revise their practice.

An example of such revision could be the contemporary use of interactive proof checkers in math-

ematical practice. In light of concerns that there were problems arising in mathematical practice

(see, e.g., Voevodsky, 2014) and given that having a rigorous method was a motivational goal of

mathematical practice, interactive proof checkers have been used in algebraic topology to make the

goal of rigorous method more achievable. Another example, along the same line, is the change in

what concepts are considered foundational in mathematics. Naïve set theory is usually taken to

be the foundational theory that (e.g.) provides the background language for mathematics. But for

algebraic topology, it is widely claimed that type theory (or some form of naïve type theory) is

better suited for the relevant practice. If mathematical practice needs a foundational theory that

provides the background language for the practice (and this is a motivational goal), then the relevant

and appropriate revision to the practice is necessary. In the long term, radical Besinnung is then an

important part of mathematical practice. Besinnung clarifies the motivational goals found in practice.

Then we refer back to the current state of practice to evaluate whether the motivational goals are

achievable. It ensures that mathematical practice can continue to achieve the motivational goals of

the practitioners, while continuing the practice in an open ended way. An example of such revision

could be the contemporary use of interactive proof checkers in mathematical practice. In light of

concerns that there were problems arising in mathematical practice (see, e.g., Voevodsky, 2014),

given that having a rigorous method was a motivational goal of mathematical practice, interactive

proof checkers have been used in algebraic topology to make the goal of rigorous method more

achievable. Another example, along similar lines, is the change in what concepts are considered

foundational in mathematics. Naïve set theory is usually taken to be the foundational theory that

(e.g.) provides the background language for mathematics. But for algebraic topology, it is widely

claimed that type theory (or some form of naïve type theory) is better suited for the relevant practice.

If mathematical practice needs a foundational theory that provides the background language for the
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practice (and this is a motivational goal), then the relevant and appropriate revision to the practice

is necessary.

In the long term, then, radical Besinnung is an important part of mathematical practice. Besinnung

clarifies the motivational goals found in practice, and then we refer back to the current state of

practice to evaluate whether the motivational goals are achievable. Radical Besinnung ensures that

mathematical practice can continue to achieve the motivational goals of the practitioners, while

continuing the practice in an open ended way.

In the next chapter, I apply the method of Besinnung to mathematical practice. In particular, I

focus on HoTT that developed out of Voevodsky’s worries about mathematical practice. We shall

find that carrying out Besinnung offers a new philosophical approach to HoTT that contrasts with

other contemporary approaches (e.g. that of Ladyman & Presnell, 2015). HoTT is a particularly

interesting mathematical theory, with a relatively clear history. It is being developed by a group

of mathematicians (and computer scientists and philosophers) who call themselves ‘the Univalent

Foundations Program’. Understanding their empathised experiences is especially valuable and

important, since HoTT brings together various practitioners of mathematics, not necessarily all from

mathematics departments. For example, there are mathematical logicians who have been interested

in type theory and category theory, among those from computer science or philosophy departments.

Among the mathematicians are those who work on homotopy theory or algebraic topology more

broadly, and have no prior experience of type theory. Despite their differences in training and

mathematical practice, they have come together to develop HoTT as a new mathematical theory

with a shared goal. In the next chapter, I highlight the mathematical assumptions shared among the

homotopy type theorists, which one must accept and understand in order to join the community of

empathy. Then I clarify the concept of identity in HoTT, in an attempt to clarify what motivational

goals can be understood from such clarification.
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3.6 Conclusion

As I have shown, Besinnung (if applied to mathematical practice) aims to clarify the motivational

goals of (the appropriate community of) mathematicians by (1) empathising with the community of

mathematicians, understanding their historical motivation and engaging with the mathematics from

within the community’s perspective, (2) finding the concepts, methods, goals, or questions which are

implicit in the practice, and (3) clarifying these. Once they are clarified, we can further clarify the

motivational goals. Then, we can perform a critical evaluation of whether these goals are achievable

– this is called radical Besinnung.

While Husserl’s own application of radical Besinnung refers back to the Greek origin of European

sciences, when we come to focus on contemporary mathematics, it is important to start with

a particular theory and the community (or perhaps sub-communities) that practice that theory.

Mathematics is an enormous discipline with many applications in other scientific disciplines. Thus,

I suggest that radical Besinnung of contemporary practice should focus on certain mathematical

theories, whose practitioners have a shared historical motivation, and carefully empathise with the

relevant practitioners in an attempt to clarify their motivational goals.

To show more concretely how the method of Besinnung is used in mathematical practice, I apply

Besinnung to HoTT in the next chapter. I shall show by demonstration that radical Besinnung is a

successful philosophical method for studying mathematical practice in the special case of HoTT.
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Chapter 4

Homotopy Type Theory

Homotopy type theory (HoTT) is a mathematical theory that was developed by a group of mathe-

maticians and computer scientists supporting the so-called Univalent Foundations Program (UFP).

This programme is often described as an ‘alternative foundation for mathematics’, going against set

theory. The usual criticism of taking set theory as a foundation is that the language of set theory is

much too expressive, making it possible to pose questions which are not relevant to mathematical

practice: e.g. Is the number two {∅, {∅}} or {{∅}}? Some also argue that set theory is not a

foundation, since it does not reflect mathematical practice (e.g. Leinster, 2014). HoTT, in contrast,

is claimed to reflect the more structural aspects of mathematical practice, particularly in relation to

topology and homotopy theory. In it, for instance, the natural numbers are defined as ‘terms’ in a

‘natural number type’ N, so each number is simply defined by how it is related to other numbers in the

type N. Thus, as a foundation for mathematics that reflects the structural features of mathematical

practice, HoTT can be seen as a more appropriate theory than set theory.

The aim of this chapter is to demonstrate how the method of Besinnung can be used to clarify the

motivational goals of HoTT. In particular, I focus on clarifying what the definition of identity is in

HoTT, by empathising with the homotopy type theorists. I identify three minimal requirements that

we must accept in order to empathise with the homotopy type theorists. These are (a) the univalence
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axiom, (b) the logical syntax of HoTT, and (c) its intrinsic homotopical content. I explain each

of them in section 4.1 while providing a motivation for each of them in the development of HoTT.

Given these minimal requirements, we turn our attention to the definition of identity in HoTT, called

‘path induction’. Philosophers (e.g. Ladyman & Presnell, 2015, and P. Walsh, 2017) have recently

argued that path induction, the definition of identity in HoTT, needs to be justified. By looking at

path induction from the perspective of the homotopy type theorists, in section 4.5, I offer a new

internal justification for path induction. By an ‘internal’ justification, I mean a justification, i.e. an

argument, which simply follows from what is already assumed within the mathematical theory. In

this case, the given theory is HoTT and the presumed mathematics includes topology and homotopy

theory, as stated by the UFP (2013, p. 3). Based on my justification of path induction, I then clarify

the motivational goals of homotopy type theory in section 4.6.

There are two main arguments in this chapter. One argument aims to show that path induction is

internally justified. This argument can be summarised in the following way.

• P1: In order to be internally justified, path induction must be shown to follow from the

minimal requirements of empathy with the homotopy type theorists.

• P2: The minimal requirements of empathy with homotopy type theorists include accepting

the univalence axiom, HoTT’s logical syntax of Martin-Löf type theory (MLTT), and HoTT’s

intrinsic homotopical content. (Sections 4.1 and 4.2)

• P3: Path induction, written in MLTT, follows from the intrinsic homotopical content via the

univalence axiom. (Sections 4.4 and 4.5)

• C1: Hence, path induction is internally justified.

The premise P3 can be demonstrated by the method of Besinnung. I do so by explicitly stating which

topological/homotopical assumptions are needed to fully understand path induction, and showing

that path induction actually follows from the path lifting property in topology. This argument

particularly challenges the philosophical motivation of Ladyman and Presnell (2015). I shall discuss

their argument in more detail in section 4.3, but briefly, they claim that if HoTT is a foundation, it
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must be understood from logical principles alone, independently from mathematical content. This,

in my view, goes against the motivation of HoTT as a foundational theory that reflects the practice

of topology and homotopy theory. Instead of starting with a particular sense of foundation prior to

empathising with the homotopy type theorists, we should aim to clarify in what sense HoTT is a

foundation.

The other main argument in the chapter aims to clarify the Zwecksinne (i.e. the motivational goals)

of HoTT as homotopical autonomy and rigour. The general argument is as follows:

• P1: HoTT has three vaguely floating senses (Sinne) – the univalence axiom, the logical syntax

of MLTT, and the intrinsic homotopical content (section 4.1) – understanding these is necessary

for empathising with the mathematicians.

• P2: By Besinnung, the Zwecksinne can be clarified based on the three senses.

• C1: Hence, the logical syntax of MLTT aims to guarantee rigour in HoTT; and from the

intrinsic homotopical perspective, HoTT provides an autonomous homotopical foundation.

(section 4.6)

While the conclusion above suggests that the univalence axiom is not being further clarified as a

motivational goal, this is not the case. The univalence axiom, as we shall see later, provides that we

should treat the logical syntax and the intrinsic homotopical content as the same. Thus, through

acceptance of the univalence axiom, HoTT has the motivational goals of rigour and homotopical

autonomy.

By the two arguments noted above, I demonstrate that Besinnung is a fruitful philosophical method

for studying mathematical practice. The first argument shows a way to engage with an existing

philosophical question about mathematical practice. This satisfies the claim that philosophical

questions in PMP ought to be interesting to practising mathematicians, and it offers a philosophical

solution appropriate for the mathematicians. The second argument highlights the values or virtues

(i.e. the motivational goals) of HoTT. More attention has been given to values and virtues of

mathematics in the recent literature (e.g. Aberdein, Rittberg, and Tanswell, 2021), and Besinnung,
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as a method that aims to clarify the Zwecksinne, can be understood to clarify values and/or virtues

found within the practice.

4.1 Empathising with Homotopy Type Theorists

In this section, I clarify the requirements for entering the community of empathy with the homotopy

type theorists, as understanding (a) the univalence axiom, (b) HoTT’s logical syntax, and (c) HoTT’s

intrinsic homotopical content. These can be understood as the minimal requirements for HoTT, or as

what is involved in empathising with the homotopy type theorists. I provide some brief explanations

and historical motivations for the requirements, before focusing on path induction and diving further

into the mathematics behind it.

4.1.1 Univalence Axiom

The UFP was introduced in order to provide a foundation for algebraic topology that can use

computer verification software (or interactive theorem provers/checkers) for mathematical practice.

The term ‘univalent’ comes from the axiom that was stated by Vladimir Voevodsky, the founder of

UFP. The axiom is presented as the following statement by Awodey (2018):

Definition 4.1 (Univalence Axiom (UA)). Equivalence is equivalent to identity.

(A ≃ B) ≃ (A = B).

The axiom states that certain mathematical concepts that are shown to be equivalent can be treated

as identical, but the notion of equivalence can vary depending on the mathematical context. For

example, within group theory, if two groups are isomorphic, we treat them as identical, despite them

having different elements. This is similar in models of arithmetic, where we consider there to be

the unique standard model of arithmetic, often with the tag ‘up to isomorphism’. Unlike in group

theory or model theory, in topology, the notion of equivalence is homeomorphism, not isomorphism.

But it is not only the objects of a given theory that can be equivalent to one another. If we take a
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theory and consider a category of its objects (e.g. the category of topological spaces), then we can

define certain notions of equivalence between this category and others (e.g. an equivalence between

the category of topological spaces and the category of groups).

The univalence axiom can be seen as asserting an identity between structures/theories, when there is

an equivalence between them. For example, since some equivalences can be found between Martin-Löf

type theory, topology, and homotopy theory, certain notions used in these theories can be identified

as the same. So, given a type theoretic judgement p : A = B, UA identifies (at least) the following

concepts in HoTT (UFP, 2013, p. 5):

(1) a logical proof p of the proposition A = B,

(2) a topological path p : [0, 1] → U1 between the points A and B, i.e. p(0) = A and p(1) = B,

and

(3) a homotopy equivalence p between topological spaces A and B.

With these three distinct concepts identified as the same, we can freely use any one of the interpreta-

tions – logical, topological or homotopical – to understand the judgement p : A = B (see Figure 4.1

for the pictorial versions of the topological and homotopical interpretations). For instance, consider

the following statement: let A and B be topological spaces such that there is a proof p showing

A and B are homotopy equivalent. In the following, I shall use ‘(HT)’ to denote the homotopical

interpretation, ‘(topology)’ to denote the topological interpretation, and ‘(logic)’ to denote the logical

interpretation. The logical interpretation of types is obtained by Curry-Howard isomorphism – it is

often used as an intutionistic semantics (also known as BHK – Brouwer-Heyting-Kolmogorov/Kreisel

interpretation) for type theory (Howard, 1980; Troelstra, 2011). Briefly, the logical interpretation

treats types as propositions, and terms as proofs of the proposition. So the following types, 0,

1, A + B, A × B, A → B,
∑

x:AB(x),
∏

x:AB(x), and IdA(x, y), are logically interpreted as the

propositions ⊥, ⊤, A ∨B, A ∧B, A → B, ∃x ∈ A,B(x), ∀x ∈ A,B(x), and x =A y.2

1U stands for the universe of types where all types occur.
2Explaining the topological and homotopical interpretations requires more work than the logical interpretation. I

shall provide the mathematical details shortly, but the point to take away (for now) is that we are welcome to use any
of these interpretations when reading the type theoretic statements. See Figure 4.1 for a pictorial understanding of
these interpretations.
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Topological interpretation

A B
p

Homotopical interpretation

Figure 4.1: Interpretations via UA

Let us begin by numbering each sub-clause: (1) let A and B be topological spaces, (2) there is a proof

p, and (3) p shows that A is homotopy equivalent to B. So, with the univalence axiom, (1) can be

variously interpreted as any of the following three statements: (1a: HT) let A and B be topological

spaces; (1b: topology) let A and B be points in the topological space U ; and (1c: logic) let A and B

be propositions. Then (2) is interpreted as the following: (2a: HT) there is a homotopy equivalence

p : A → B; (2b: topology) there is a path p : [0, 1] → U ; and (2c: logic) there is a proof p. And

finally, (3) is interpreted as the following: (3a: HT) p shows that A is homotopy equivalent to B;

(3b: topology) the starting point of p is p(0) = A and the end of point of p is p(1) = B; and (3c:

logic) p proves the proposition A = B.

One challenge in following HoTT and standing in the community of empathy with the homotopy type

theorists is in using these three interpretations concurrently. One must learn to choose whichever is

most appropriate for the situation. This requires one to be at least comfortable, if not fluent, in all

three interpretations, and to observe that there is a superior interpretation in certain instances.3

Individually, each homotopy type theorist might have a preference for one interpretation over another,

but insofar as the community is seen as a whole, it is only the situation that determines which

interpretation is preferred.

4.1.2 Logical Syntax

Another requirement, independent of the univalence axiom, is that HoTT has a formal logical syntax

for computer implementation. This allows the mathematical content from topology and homotopy

theory to be expressed as judgements in type theory, and any proofs of the judgements be checked

3This is a difficult aspect of the practice of HoTT, an aspect that I believe one can master by trying out some
problems.
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by a computer. To understand why logical syntax is a minimal requirement for HoTT, we must look

at the history of its development. In this section, I give a brief account of how HoTT was developed

by Vladmir Voevodsky as a mathematical theory that could be computer implemented.

Voevodsky introduced the UFP with an aim to provide a proof-checking assistant for working

mathematicians (Voevodsky, 2010). This was to resolve the situations where a mathematician’s

social reputation was influencing the verification of a mathematical argument. As an example,

Voevodsky (2014) discusses a situation from his own experience. Despite the fact that Carlos

Simpson had provided a counterexample in 1998 to a ‘theorem’ by Voevodsky and Kapranov,

Simpson’s counterexample was disregarded in the community because of Voevodsky and Kapranov’s

eminence.

To develop a ‘foundation’ with the goal of providing a computer assistant for proof verfication,

Voevodsky introduces (what I call) the foundational desiderata in (Voevodsky, 2010). The following

presentation is made precise based on Voevodsky, (2010; 2014). A theory T satisfies the desiderata

for a univalent foundation just in case

(FD1) there is a formal deductive system T ′ ⊆ T such that LT ′ = LT ,

(FD2) for any T ′-sentence φ, φ can be interpreted as some existing mathematical concepts in T , and

(FD3) T ′ can be implemented on a computer.

The first desideratum was put forward so that the theory relies on a deductive reasoning that is similar

to the deductive reasoning found in mathematics. While one might question whether it is possible

to formalise mathematical deductive reasoning, I do not wish to question this in this dissertation. I

simply highlight it as a desideratum for achieving Voevodsky’s goal of computer implementation

of mathematical proofs. The second desideratum claims that the sentences of the formal system

be interpreted by some existing mathematical concepts. This is so the working mathematicians

who are less familiar with the formal system are able to work with the formal language. Otherwise,

the theory presented would require all those who wish to work in the new theory to first learn the

formal language. By allowing an interpretation of the sentences with the existing mathematical
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concepts, any mathematician already familiar with the concepts can immediately practice in this

new theory. The third desideratum states that the formal system must be apt to be implemented in

a programming language. This means that there is a programming language that corresponds with

the relevant formal system such that a proof in the formal system can be written in the programming

language, and be checked by the program. This is the essential feature that must be met by the

theory, so that proofs in the theory can actually be verified by a computer. By interpreting the

sentences in the formal system in terms of existing mathematical concepts, the computer program

that runs the implemented programming language can inform the mathematician whether the proof

is correct or not. Therefore, if all three desiderata are met by a theory T , then mathematicians who

work with the concepts interpreting the sentences of T can verify whether their proofs are correct

without relying on other expert opinion or the reputation of other mathematicians.

As a univalent foundation, HoTT was introduced by the UFP (2013). HoTT is a theory that uses

the language of Martin-Löf type theory (MLTT), so a proof in HoTT can be written in MLTT –

this satisfies the first desideratum. Then for any sentence in MLTT, which are called ‘judgements’,

the univalence axiom provides the homotopical/topological interpretations of the judgements. For

example, a judgement of the form a : A is interpreted as a point a in a topological space A. And,

since MLTT was already implemented in the programming language Coq (see, e.g., Coquand and

Coquand, 1999; Bertot and Castéran, 2013), this satisfies the third desideratum. So, Voevodsky

started working on a univalent foundation in Coq, by sharing the code on GitHub, which can be

found in UniMath/Foundations (2014).

To realise Voevodsky’s foundational desiderata, certain mathematical results played important roles.

In 2009, Awodey and Warren (2009) published a proof showing that there is a homotopy theoretic

model of identity types in MLTT. This means for homotopy theorists, they could simply follow their

homotopical thinking to read the identity types of MLTT. If we can generally apply a homotopical

model to MLTT, then Voevodsky’s desiderata could be satisfied by HoTT: let T be HoTT and T ′ be

MLTT. In HoTT, the judgements in MLTT are interpreted topologically and/or homotopically, and

MLTT is implemented on a computer.
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Naturally, the requirement of logical syntax is tied with the requirement of univalence axiom. If there

is an equivalence between the logical interpretation of the language LT and another mathematical

interpretation, these are treated as the same, and thus, we are free to use the logical syntax and the

mathematical interpretations.

Now let us turn to the third requirement for HoTT: intrinsic homotopical content.

4.1.3 Intrinsic Homotopical Content

Generalising from the homotopical models for identity types in MLTT, HoTT treats types in MLTT

as homotopy types.4 By doing so, HoTT contains intrinsic homotopical content. Other univalent

foundations could involve other mathematical contents, as Voevodsky’s desideratum (FD2) does not

specify which existing mathematical concepts can be adopted.

To interpret all types, not just identity types, homotopically, we need something stronger than

the results by Awodey and Warren (2009). One reason it is possible to interpret all types is the

∞-groupoid model for type theory by Hofmann and Streicher (1998).5 The notion of ∞-groupoids

can be found in higher-order category theory. Roughly, groupoids are obtained by weakening certain

conditions on groups (e.g. replacing the binary operation with a partial function). ∞-groupoids are

then understood as a generalisation of groupoids, which contains an infinite structure of groupoids

nested one on top of another. (See nLab authors, Oct. 2022, for more details.) If there are only n

many groupoids stacked together, we call this structure ‘n-groupoid’. Without going into the details

of the mathematics, we can simply understand that there is a reasonable interpretation between

groupoids and homotopy types: an n-groupoid is interpreted as an n-homotopy type in homotopy

type theory. Thus, an ∞-groupoid is interpreted as a general homotopy type. If types can be

interpreted as ∞-groupoids, and ∞-groupoids can be interpreted as homotopy types, then types can

also be interpreted as homotopy types. Hence, interpreting MLTT types as homotopy types would

seem appropriate, and so, HoTT contains intrinsic homotopical content as its minimal requirement.

4I shall explain this briefly here, and offer more details in the next section.
5For a more detailed account of the mathematical history of homotopical interpretation of types, see Awodey,

2012.
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Given the prior mathematical results, and Voevodsky’s motivation, we can understand (1) univalence

axiom, (2) logical syntax, and (3) intrinsic homotopical content as the minimal requirements for

HoTT. It is due to its mathematical history that HoTT satisfies these conditions. Understanding

and engaging with these minimal requirements is then essential for practising HoTT. By doing so,

we can enter the community of empathy with the homotopy type theorists. With these requirements

in mind, I give a short introduction to topology and homotopy theory, which are necessary for the

topological and homotopical interpretations. We then focus on path induction, the definition of

identity in HoTT.

We shall see that, since types in HoTT are homotopically interpreted as homotopy types, and

propositional equalities as paths (UFP, 2013, pp. 6–10), path induction can be thought of as

characterising a property on paths. In particular, once we have fully grasped the homotopical and

topological interpretations, we can see that path induction follows from the path lifting property.

4.2 Mathematical Introduction: Introduction to HoTT and Path

Induction

In this section, a short mathematical introduction to HoTT will be given, so the readers can begin to

practise mathematical empathy with the homotopy type theorists. Unfortunately, the mathematics

behind HoTT is complex and might require several reads. To help the reader understand the

mathematics, I also offer a pictorial interpretation of HoTT, pertaining to the topological and

homotopical interpretations in section 4.2.2. The pictorial interpretation, however, should not

replace the homotopical and topological interpretations. Detailed homotopical and topological

interpretations will be given in section 4.4 as we look at path induction in close detail.
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4.2.1 The syntax of MLTT

Roughly,6 MLTT is a two-sorted language, consisting of types and terms. In general, I will use

the upper case letters, A,B,C, and so on, to denote the types, and the lower case letters, a, b, c,

and so on, to denote the terms. There are three different ways to express judgements in MLTT. A

judgement is of one of the following forms:

• A Type;

• a : A; and

• a ≡ b : A.

Judgements of the first form state that A is a type. In addition to types, there are also terms. So

a : A states that a is a term of type A. The colon : separates the term a from the type A. We can

simply read this either as a sentence, ‘a is a term of type A’, or as a noun phrase, ‘a term a of type

A’. As suggested by the form of the judgements above, a term cannot be stated independently of a

type: whenever a term is mentioned in a judgement, there must be a type that the term belongs

with. In some cases, a type A might not have a term. In that case, we say that A is uninhabited. If

A has a term, then A is inhabited.7 The third form states that a and b are terms of type A and they

are judgementally equal. All judgements in MLTT are in one of the three forms.

Before moving onto the logical interpretation, note that there are two kinds of identities or equalities

in MLTT and HoTT. I shall use ‘identity’ and ‘equality’ interchangeably, as in the HoTT literature.

We have already introduced the judgemental equality ≡, but path induction concerns another

identity/equality, known as the propositional identity =. The judgemental equality ≡ is part of the

primitive judgements in MLTT, while the propositional equality = is introduced later as an identity

type. In some occasions, propositional equality is expressed as IdA(x, y), like a predicate on terms

x, y : A. When we turn to consider path induction, we shall discuss this in more detail.
6Of course, if one thinks set theoretically, MLTT is a two-sorted language consisting of terms and types. But for

the type theorists, this is the primitive language of type theoretic logic.
7When I discuss the logical interpretation of types, I shall explain that MLTT is the language of intuitionistic

logic. However, by assuming that for any type A, we have either A is inhabited or its negation ¬A is inhabited, the
logic becomes classical.
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Logical interpretation of MLTT

The logical interpretation of MLTT, mentioned briefly earlier, extends the Curry-Howard isomorphism

from the implication portion of propositional logic to the full intuitionistic system (Howard, 1980).

That is, Curry-Howard for propositional logic interprets the function type A → B in type theory

as the proposition A → B (if A then B). Hence, every type is interpreted as a proposition, and

each term of the type is interpreted as a proof of that proposition.8 So, a term f of the function

type A → B is interpreted as a proof f of the proposition A → B. By extending this isomorphism

to first-order intuitionistic logic, the symbols ×,+,
∏

and
∑

in MLTT are logically interpreted as

conjunction, disjunction, universal quantifier, and existential quantifier (∧,∨,∀ and ∃) in first-order

logic.

In general, the fact that A is uninhabited does not imply that ¬A (which abbreviates A → 0) is

inhabited: the basic logic for MLTT is intuitionistic. However, particular types B, where the type

B + ¬B is inhabited, will exhibit classical behaviour.

While
∏

and
∑

are interpreted as the quantifiers of first-order logic, they are bounded quantifiers.

That is, the quantifiers always apply to terms in a given type, which bounds the term. So to say,

e.g., ‘for any a of type A, P (a)’, we write
∏

a:A P (a), which is a type.

In the above example, P is interpreted as a predicate in first-order logic. This is only possible by

the logical interpretation of types. In general, P is a type family or family of types, and is expressed

as P : A → U for a type A. The U denotes the type universe containing all of the types. Hence the

judgement of the form A Type can be re-expressed as A : U .9 So the family P : A → U takes a term

a of type A to output Pa : U . With the type universe notation U , we can treat Pa : U be equivalent

to the judgement that Pa Type. I shall often use the notation P (a) for Pa to highlight that a is

8By interpreting the terms as proofs for the propositions, when the type theoretic judgements are computer
implemented, we can treat the proofs as the execution of the the given program.

9Generally, the hierarchy of type universes are defined as follows:

• Um : Un for all m < n;

• if A : Um and m ≤ n, then A : U ; and

• if ⊢ A : Un and x is a new variable, then x : A is a judgement. The type universe is then hypothesised as the
universe U such that for any n, Un : U See UFP (2013:§A.1.1) for more details.
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a term from a different type and P is taking the term a.10 To explicate what a family of types is,

consider the following example. Let even : N → U be a family of types, representing the predicate ‘is

even’ on natural numbers. In this, even takes a natural number n : N to a new type, even(n). Since

a type is interpreted as a proposition by Curry-Howard, even(n) is interpreted as the proposition ‘n

is even’. Hence a family of types can be treated as a predicate for terms of a given type; and the

truth of the proposition even(n) is determined by whether the type even(n) is inhabited.

4.2.2 Logical and Pictorial Interpretations

I shall provide an informal introduction to the homotopical interpretation here, which I shall call a

‘pictorial interpretation’ of HoTT. We can use the pictorial interpretation of HoTT, as it will carry

the intrinsic homotopical content shared by the mathematicians. Later, in section 4.4, I give a more

thorough homotopical interpretation of types, with a particular focus on path induction.

In general, types in HoTT are pictured as (topological) spaces with certain homotopical features.

Throughout this discussion, I shall picture a space as an oval. A term of a given type is interpreted

as a point in the given space. Points are depicted as dots within the oval figure. As the types

become more complicated, the pictures of the spaces become more complicated. For example, given

the function type A → B with the term that is a function f : A → B, there are at least three

different ways we can picture the judgement f : A → B. One is by pictorially interpreting the given

judgement directly as ‘f is a point in space A → B’. However, for A → B to be a type, we must

have A and B be types. So, we can picture A and B as spaces, and f as a map between the spaces –

depicted as an arrow. A third picture is obtained by treating the type universe U as a type and

A and B are terms of the type U . Thus we can picture A and B as points in the space U . In this

picture, the term f of type A → B is then pictured as a path from A to B within the space U . We

can simply interpret a path to be an arrow starting from one point and going to a (same or different)

point within the given space.

10In type theory, every term is defined within a type. Hence it is not necessary to use (, ) since the application of
the types are always read left to right with respect to a given type. The notation P (a) is used to make the notation
easier for the reader to follow. But what is important is that the term is appropriate for the given type.
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B

A → B
f

A → B as a space and f as a point

f

A

A Bf
U

A and B as spaces and f as a map.

U as a space, A and B as points and f as a path between the points.

Figure 4.2: f : A → B

The reason we can rely on the pictorial interpretation is that mathematical results show the types in

MLTT can be interpreted as homotopy types (Awodey and Warren, 2009; Hofmann, 1998).11 Since

homotopy types are also spaces in homotopy theory, it is safe to picture types in HoTT as spaces.

The mathematical content of types is particularly interesting for identity =. Given the identity type

x =A y where x and y are terms of a type A, any term p : x =A y is topologically interpreted as a path

from x to y.12 Homotopically, p is a homotopy equivalence from spaces x to y, so p is a continuous

map from x to y with certain properties. With this topological/homotopical interpretations of

identity =, we have the following pictures (Figure 4.3) available. While these pictures are similar

to the pictures for the function f : A → B, the underlying homotopical content between the term

p : x =A y is different from the term f : x → y. This is because the function term f : x → y

is homotopically interpreted as a continuous map without the assumption of the property that it

behaves like a homotopy equivalence (UFP, 2013, p. 6). We shall use pictures to help with our

topological/homotopical reasoning, but it is important not to treat the pictures as a definitive

description of our topological/homotopical reasoning. They do not replace the mathematical content

and details, but rather supplement them.

11I shall provide the definition of homotopy types in section 4.4.
12We cannot immediately assume the usual properties of identity under the homotopical interpretation, because a

term p : x =A y is interpreted as a path from x to y, while a term q : y =A x is interpreted as a path from y to x.
However, it can be proven that identity = is an equivalence relation.
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x =A y
A

x y

p
p

p

x y

p as a point in space x = y p as a path from x to y, in space A

p as a map from space x to space y

Figure 4.3: p : x = y

In section 4.4, I shall provide the mathematical definitions needed for understanding the topo-

logical/homotopical interpretations of types. For now, I shall rely on the logical and pictorial

interpretations to explain path induction.

4.2.3 What is Path Induction?

Path induction is described as the elimination rule of identity types (UFP, 2013, p. 48). The

introduction rule states that for any given type A, the identity type is characterised as
∏

x,y:A(x =A y),

and for any term a : A, the identity type has the following term refla : a =A a.13 I will occasionally

drop the
∏

x,y:A, and simply refer to (x =A y) as the identity type. Note that, while
∏

x,y:A(x =A y)

is the identity type for arbitrary terms x, y : A, when we define the term reflx, we can focus on

the particular identity type x =A x. The index A on the propositional identity a =A a means

the term a is from the type A. Here, we can logically interpret the
∏

as the universal quantifier

∀. Thus the type
∏

x,y:A(x =A y) is interpreted as the statement that for any x, y : A, (x =A y)

is a type. Then path induction is the elimination rule that removes the propositional identity =

from the identity type
∏

x,y:A(x =A y). The term ‘induction’ in ‘path induction’ comes from the

computational properties of MLTT, in which certain types are called ‘inductive’:

13The introduction rule must show how a type is introduced as well as its terms.
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Intuitively, we should understand an inductive type as being freely generated by its
constructors. That is, the elements of an inductive type are exactly what can be obtained
by starting from nothing and applying the constructors repeatedly. (UFP, 2013:§5.1)

Consider the natural number type, N, which is defined by the term 0 : N and a function succ : N → N.

Starting with 0 : N, we can apply succ repeatedly to obtain all terms in the type N. So the type

N is inductive. Now take the identity type and note that its terms are inductively generated by

refl·. This is how the introduction rule is given. The elimination rule is characterised by induction

principle, among other rules (see UFP, 2013:§6.2, for discussion), and it generally informs us how we

can use the terms of the type (UFP, 2013:§A.2.4). So, we can understand path induction as telling

us how we can use the terms in the identity type.

I shall first give the formal characterisation of path induction, then turn to the logical and pictorial

interpretations to explain it.

Path induction is stated as the following in the language of MLTT.

Definition 4.2 (Path induction). Let A be a type, and

C :
∏
x,y:A

(x =A y) → U

be a family of types, and let a function

c :
∏
x:A

C(x, x, reflx)

be such that c(x) : C(x, x, reflx). Then there is a function

f :
∏
x,y:A

∏
p:x=y

C(x, y, p),

such that

f(x, x, reflx) ≡ c(x).
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(a =A a)

refla

C(a, a, refla)

c(a) f(x, y, p)

C(x, y, p)

p

(x =A y)

Figure 4.4: Type Family C in Path Induction

Explicating the statement with the logical interpretation, we can see that path induction claims the

following. We are given a type A (or a set A, if one prefers), and a predicate

C :
∏
x,y:A

(x = y) → U ,

which takes a triple (x, y, p) where p is a proof that x = y, for x, y : A. We are also given a dependent

function

c :
∏
x:A

C(x, x, reflx),

which takes an x : A and outputs a proof c(x) of the statement C(x, x, reflx), where reflx is a proof

that x =A x. From these given conditions, path induction informs us that there is a way to generalise

the proof c(x) of C(x, x, reflx) to the proof f(x, y, p) of C(x, y, p), where p is a proof of x =A y.14

Now we can further clarify path induction with the topological terminologies, such as ‘points’, ‘paths’,

and ‘spaces’, and it can be pictured as in Figure 4.4.

To begin, we are given a type A and a family of types C :
∏

x,y:A(x =A y) → U . So A can be

topologically interpreted as a space. Since C is a family from
∏

x,y:A(x =A y) to the type universe

U , we can picture C(x, y, p) as a space, as in the right diagram in Figure 4.4.

Importantly, C(x, y, p) is a space that depends on p. For any arbitrary points x, y : A and p : x =A y

is pictured as a path in space A, but it can also be pictured as a point p in space (x =A y). This

space (x =A y) is called a ‘path space’. Similarly
∏

x,y:A(x =A y) is topologically interpreted as a

14While
∏

x,y:A(x =A y) is a type, this does not mean that everything in A is identical. For this to be true, the
identity type needs to be inhabited. Logically interpreted, this means there would have to be a proof of the proposition∏

x,y:A(x =A y).
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path space consisting of points, which are paths from an arbitrary point to an arbitrary point in

space A. You can see, in Figure 4.4, the path space (x =A y) of arbitrary paths (on the right), and

the path space (a =a) of paths from a to itself (on the left).

In path induction, we are given a function c that takes a term x : A to c(x) : C(x, x, reflx). Then we

can picture c(a) for an arbitrary point a : A as a point in C(a, a, refla), as in the diagram on the left

side of Figure 4.4. Since C(a, a, refla) depends on refla, which in turn depends on a, we also picture

refla as a point in the path space (a =A a) in Figure 4.4.

We can summarise the given conditions for path induction with the logical and pictorial interpretations:

we are given a space A, a predicate C on paths in A, and, for any point a in A, we have a proof c(a)

that shows C holds of the reflexive path refla. We can also depict C(a, a, refla) as a space with a

point c(a) (as in left diagram in Figure 4.4) via the pictorial interpretation.

Now, path induction states that from these given conditions, we have a function f :
∏

x,y:A

∏
p:x=y C(x, y, p),

which generalises from c. Recall that we can logically interpret the type as the following proposition:

‘for any x and y of A, for any proof p showing that x = y, the predicate C holds for the triple

(x, y, p)’. This means that f(x, y, p) is a proof of C(x, y, p). By further topologically/pictorially

interpreting C(x, y, p) as a space, we find that f(x, y, p) is a point in the space C(x, y, p) – (as in

right diagram in Figure 4.4). So f is a function that maps any triple of points (x, y, p) to a point in

the space C(x, y, p).

Unsurprisingly, if we fix both x and y to be a in A, and fix p as the path refla, we have f(a, a, refla)

is a point in C(a, a, refla). Recall that the given condition of path induction stated that c(a) is a

point in C(a, a, refla), and note that this function f is specified to be such that f(a, a, refla) ≡ c(a).

As the diagrams in Figure 4.4 suggest, the function f generalises the function c to apply to any

arbitrary path. But with a homotopical interpretation, we shall be given additional structures on

the type families such that the role of function f becomes clearer.

Recall the minimal requirements of HoTT, which are (1) HoTT contains an intrinsic homotopical

content, and (2) HoTT can be machine-implemented. The reason why HoTT is a theory written

in MLTT is that it is a feature of type theory that the definitions can be ‘executed’ as computer
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programs – see UFP (2013, p. 6). While the logical interpretation of types offers an explanation for

path induction, it does not in itself explain the homotopical content in path induction. Hence the

complete explanation of path induction can be given only when the logical interpretation and the

topological and homotopical interpretations are all provided.

In the remainder of this chapter, I shall use a pictorial interpretation of types that is similar to

that used by topologists and homotopy theorists. This will give an informal introduction to the

topological/homotopical ideas without the mathematical definitions. (For examples of diagram usage

in HoTT, see UFP, 2013 pp. 69, 73; and, for algebraic topology, see Hatcher, 2002, pp. 2, 4, 5, 8, 9,

. . .) However, as I mentioned earlier, the pictorial interpretation should not replace the mathematical

definitions. Thus, I also provide the mathematical definitions necessary for fully understanding the

topological and homotopical interpretations of path induction.

Before going into the mathematical details behind path induction, let us look at the philosophical

discussions concerning path induction.

4.3 Philosophical Interlude: Justifications for Path Induction

To begin, I shall briefly explain here why the question of justifying path induction might be

appropriate for philosophy of mathematical practice. Recall the view of Gray and Ferreirós (2006),

that philosophy of mathematical practice should concern itself with philosophical questions which are

‘perceived as relevant and interesting’ for practising mathematicians (2006, p. 10). The practising

mathematicians, in this case, are homotopy type theorists, or the supporters of the UFP.

For homotopy type theorists, path induction is described as the definition of identity in HoTT

(Univalent Foundations Program, 2013). To be more precise, it is a principle that shows how we can

eliminate identity types. So, is justifying path induction something that is relevant and interesting

for the homotopy type theorists? And what does it mean to justify a definition in mathematics?

And what kind of definition is path induction? I shall answer these questions in reverse order. So, I

first answer the question of what kind of definition path induction is, then consider what kind of
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justification it needs, and then finally, I show that such a justification would be of interest to the

homotopy type theorists.

Definitions in mathematics or logic can be (but are not limited to being) of one of the following kinds:

extrinsic definitions; intrinsic definitions. An extrinsic definition introduces a new definiendum in a

formal or mathematical language. Usually, the definition is expressed in the following form

∀x [P (x) ↔ φ(x)]

where P is a new predicate for the definiendum and φ is an open formula in a language L that does

not contain the predicate P . For example, the definition of a group is an extrinsic definition since

it introduces the definiendum ‘group’ in terms of the corresponding group axioms. An intrinsic

definition, on the other hand, renders an informal notion into a formal language. Examples include

second-order axioms of Peano arithmetic or Frege’s definition of numbers.

Path induction, however, is neither an explicit nor an implicit definition. As a definition, it does

not introduce a new predicate or symbol, hence it is not an explicit definition. Nor is it an implicit

definition since it does not appeal to some informal notion of identity that is being formally rendered.

Instead, path induction renders a general notion of identity into a very particular mathematical

setting, i.e. into HoTT. I shall call definitions this kind ‘contextualised’, since they render a general

notion into a particular mathematical context.15

Given that path induction is a contextualised definition, what kind of justification would it require?

Let us briefly consider the kinds of justifications required for extrinsic and intrinsic definitions before

turning to consider contextualised definitions. Broadly, a justification can be understood as an

argument that supports our commitment. In epistemology, a justification is usually applied to beliefs,

but in the context of mathematical definition, it is not clear whether we believe definitions. So I say

that we have certain commitments to definitions, whether it be a belief or not. A justification for an

extrinsic definition ought to show that the definition has certain characteristics. For example, the

15This is similar to the notion of recasting found in Panza and Sereni, 2016. Roughly, one can recast parts of
mathematics in a particular theory if those parts are restated in that theory. Along this line, contextualised definitions
are those which are recast in a particular mathematical theory.
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definiendum P ought to be consistent with respect to the relevant L-theory, so that extending L

with P does not result in an inconsistent theory. There may be other relevant characteristics, such

as fruitfulness in producing results: i.e. the definiendum is apt to bring about new results in the

L ∪ {P}-theory. An intrinsic definition ought to also be consistent with the existing theories, but a

justification also ought to show that the definition accurately characterises the informal notion. If

a formal rendering does not accurately capture the informal notion in question, then it cannot be

considered an acceptable definition.

For a contextualised definition, a different kind of justification is required. In particular, the

justification ought to show what mathematical contexts are required for the rendering of the general

notion. For example, take the notion of a continuous map. In the context of topology, a real

continuous map f : R → R is defined in terms of open sets in R with an appropriate topology. But in

the context of real analysis, a continuous map is defined by the ϵ-δ definition. These definitions are

justified appropriately, since the mathematical contexts in which the definitions are given are clear.

When we treat path induction as a contextualised definition, a justification for it ought to clarify

exactly what mathematical contexts are required, not only to state the definition, but also to

understand it. While the homotopy type theorists state that homotopy theory is involved in

understanding the definition, the type-theoretic expression of path induction does not make this

obvious, and they do not explain (when giving the definition) exactly what homotopy theoretic

notions are being involved in understanding path induction. So I believe that path induction is in

need of a justification, because the mathematical context of the definition is not clear. Thus, I aim

to clarify what path induction is by focusing on its mathematical context.

The need for clarification of path induction can also be found in the informal discussions among the

mathematicians on GitHub (2013). GitHub is an online depository used by computer scientists and

mathematicians. One of the leading mathematicians of HoTT, Vladmir Voevodsky, created a GitHub

depository where mathematicians can develop HoTT collaboratively online (see Voevodskey, 2014).

Given the relevance of GitHub in the development of HoTT, engaging in the informal discussions

on GitHub would be ‘engaging with the complexities of real mathematics’ (Gray and Ferreirós,

2006, p. 6). Thus, I refer to one of the discussion found there to explain why justifying path
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induction is relevant and interesting for homotopy type theorists. Although the evidence I provide

here comes from an informal online discussion between Mike Shulman and Robert Harper (two of the

authors of the HoTT book), if philosophy of mathematical practice is to take mathematical practice

seriously, then it should consider practice that goes beyond university (or other formal) settings.

This should include consideration of discussions at conferences, online, and informal discussions

among mathematicians. In some ways, online discussions are the modern variations of the letters

exchanged between mathematicians of the past. The difference is that the historical letters were

addressed to only a small number of scholars, but these online discussions are publicly available for

everyone.

On the forum discussion, we find Mike Shulman and Robert Harper discussing the nature of path

induction. When a GitHub user raises a question about path induction, Robert Harper writes:

your concerns about the nature of path induction are understandable, and are related
to the absence of a computational interpretation of the theory in the [Homotopy Type
Theory book 2013]. (2013:User name: RobertHarper (Robert Harper))

Harper’s comment suggests that path induction can be understood because of the computational

interpretation of types. However, Shulman replies to Harper’s comment as follows:

As you can see, there are differences of opinion even among the authors of the book.
Bob’s [Robert Harper’s] is one way of looking at it. I maintain that one can be completely
satisfied with path induction as resulting from an inductive definition of identity types,
together with HITs [Higher Inductive Types] and univalence, whether or not there is
a computational interpretation of HoTT [. . .] (2013:User name: mikeshulman (Mike
Shulman), emphasis added)

What is clear from Shulman’s comment is that path induction should be understood as being

based upon the ‘inductive definition of identity types’. That is, it is not necessary to provide a

computational interpretation of path induction, as Harper claims. Although it appears that both

Harper and Shulman agree that path induction is legitimate for practice, the difference in their
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opinions implies that they do not agree on how they understand the definition. This discussion

suggests that some philosophical clarification is needed for path induction.16

Some might argue that this is a sociological reason, rather than a philosophical one. However, if

we consider philosophy of mathematical practice seriously, and if this informal online discussion

between Harper and Shulman shows that there is a disagreement among the authors of the Univalent

Foundations Program (2013), then this concern should be taken seriously from the perspective of

philosophy of mathematical practice. And hence, some philosophical clarification for path induction

is relevant for the homotopy type theorists.

Now, let us turn to the existing philosophical justifications for path induction, in particular, those

endorsed by Ladyman and Presnell (2015) and P. Walsh (2017). Before discussing their views in

more detail I would like to emphasise that I am not here going to endorse either of their views. In

fact, I offer a criticism of Ladyman and Presnell’s motivation. Ladyman and Presnell (2015) offer a

justification (in their own sense) for path induction by claiming that HoTT must be an ‘autonomous

foundation’ of mathematics. According to Ladyman and Presnell, an autonomous foundation is a

mathematical theory that can be understood without appealing to any other mathematical theories.

I will suggest that this goes against the motivation behind HoTT, and thus does not seem appropriate

for path induction. P. Walsh (2017) offers a different view which is based on a philosophical position

called ‘inferentialism’. By supposing that a definition of a logical connective can be given by its

inference rules and further supposing that the rules are ‘harmonious’, Walsh argues that path

induction follows from harmonious inference rules of identity. I will suggest shortly that Walsh’s

justification is more appropriate for path induction than Ladyman and Presnell’s, but I will also

offer an alternative justification. Here, I shall explain and discuss both arguments briefly.

16While Harper’s and Shulman’s views seem to differ, I interpret this to show that there are different sub-communities
of empathy among the homotopy type theorists. The community of empathy I highlight in this chapter is a particular
one that follows Voevodsky’s motivation.
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4.3.1 Ladyman and Presnell’s account of HoTT as an Autonomous Foundation

Ladyman and Presnell (2015) argue that a foundational theory must be autonomous in the sense of

both conceptual autonomy and justificatory autonomy as defined by Linnebo and Pettigrew (2011,

p. 241):

• A theory T1 has conceptual autonomy with respect to T2 if it is possible to understand T1

without first understanding T2, and

• T1 has justificatory autonomy with respect to T2 if it is possible to motivate and justify the

claims of T1 without appealing to T2, or to justifications that belong to T2.

Ladyman and Presnell suggest that HoTT ought to be autonomous both conceptually and justifica-

torily with respect to all of mathematics. Thus one should understand HoTT without understanding

any other mathematical theory and one should motivate and justify the claims in HoTT (e.g.

definitions in HoTT) without appealing to another mathematical theory:

An autonomous foundation must therefore use only concepts that can be pre-mathematically
understood, and rules that can be pre-mathematically motivated. (Ladyman and Presnell,
2015, p. 388)

Hence, (they argue that) path induction, as a definition in HoTT, can be understood and justified

with the ‘basic principles’ of the ‘pre-mathematical’ concept of identity (2015, p. 388; see also

Mayberry, 1994).17

One problem I find with Ladyman and Presnell’s position is that their claim of autonomy of HoTT

goes against the way path induction is understood in HoTT in terms of paths and spaces. They

claim that the way path induction is justified in HoTT, as it stands, is not sufficient to show that

HoTT is an autonomus foundation in their sense:

17P. Walsh (2017) argues that the basic principles of identity are not so ‘pre-mathematical’, because of the difficulty
in understanding them without any mathematical background. Since this issue has already been touched on by Walsh,
I shall focus on a different issue here.
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In the presentation in the HoTT Book identifications such as a = b are thought of
as paths in (homotopy) spaces, and the clearest and most accessible explanation and
justification of path induction depends upon intuitions arising from homotopy theory[.
. . .] If this were the only way of justifying path induction then that would of course
undermine any claims for HoTT as an autonomous foundation for mathematics. (2015,
p. 389)

While Ladyman and Presnell are committed to their notion of autonomy, I believe HoTT can

be autonomous in its own sense, although I do maintain that, if HoTT is to be recognised as an

autonomous foundation, we must clarify the sense in which HoTT is an autonomous foundation. This

will involve fully understanding what identity is, as it is intended by the homotopy type theorists

in terms of ‘paths in (homotopy spaces)’ (2015, p. 389). This is precisely what Besinnung aims to

do. By Besinnung, we first clarify the meaning of identity in HoTT, and then we can further clarify

HoTT’s motivational goal, which includes that HoTT has a homotopical autonomy.

For instance, recall that the UFP considers HoTT as a theory that involves

[. . .] a new conception of foundations of mathematics, with intrinsic homotopical content,
[. . .] and convenient machine implementations, which can serve as a practical aid to the
working mathematician. (UFP 2013, p. 3)

By ‘homotopical content’, they mean that

Homotopy type theory (HoTT) interprets type theory from a homotopical perspective.
(UFP, 2013, p. 3)

If HoTT is intended to be understood from the homotopical perspective, and that is included in its

sense of foundation, then this is contrary to Ladyman and Presnell’s claim that HoTT ought to be

autonomous. Both homotopical and pre-theoretic ways of understanding path induction might be

available, but HoTT is not an autonomous foundation in Ladyman and Presnell’s sense. A better

justification for path induction should actually show how this homotopical perspective explains path

induction, and re-establish in what sense it still offers to be an autonomous foundation (if it does).
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The interpretation of types as homotopical spaces is a feature of HoTT, rather than a flaw. To reject

this is to refuse to empathise with the homotopy type theorists. Path induction is a definition in

HoTT, and HoTT necessarily has homotopical content. At best, their justification does not actually

concern path induction in HoTT. Rather, they are engaging with the existing discussions about

justifying identity elimination rule in Martin-Löf type theory (see, e.g., Klev, 2019b).

Having challenged Ladyman and Presnell’s motivation, I turn to Walsh’s justification for path

induction.

4.3.2 Walsh’s Inferentialist Justification

Walsh’s argument for path induction is motivated by the inferentialist view in philosophy of logic:

‘the meaning of the logical concepts [. . .] is determined by the rules governing them’ (P. Walsh, 2017,

p. 1). Given this, inferentialists ask whether an inference rule is at least meaning-bearing (P. Walsh,

(2017, p. 2). Walsh’s goal then is to show that path induction is a meaning-bearing inference rule for

identity. In particular, Walsh writes that his justification for path induction is ‘established through a

notion of harmony that ensures the rules are balanced and conservative with respect to provability’

(2017, p. 4).

The need for harmony between the introduction rule and the corresponding elimination rule can be

clarified by looking at Prior’s example of ‘tonk ’ (Prior, 1960).

A tonk -I
A tonk B

A tonk B tonk -E
B

When considered individually, the introduction and the elimination rules appear unproblematic. The

introduction rule behaves similarly to the disjunction introduction rule, while the elimination rule

behaves like the conjunction elimination rule. However, when we apply the introduction rule followed

by the elimination rule, we can derive B from A, which might as well be independent statements. In

this sense, the introduction and elimination rules of tonk are not balanced, as the elimination rule

does not reverse the introduction rule, and they are not conservative with respect to provability, as

we are able to prove new theorems such as B with the inference rules for tonk.
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Walsh’s argument is, then, that path induction can be justified because it is the elimination rule of

identity types, and it is categorically harmonious to the corresponding introduction rule. Going into

the details of categorical harmony is beyond the scope of this dissertation but, if Walsh’s notion of

categorical harmony is appropriate for an inferentialist notion of harmony (see, e.g., Read, 2016 or

Klev, 2019a), then Walsh’s argument does indeed show that path induction is harmonious to its

corresponding introduction rule.

Walsh’s argument is an interesting one and might even be appropriate from the perspective of

homotopy type theorists. For instance, the UFP says

one [virtue] of type theory is its computable character. In addition to being a foundation
for mathematics, type theory is a formal theory of computation, and can be treated
as a powerful programming language. From this perspective, the rules of the system
cannot be chosen arbitrarily the way set-theoretic axioms can: there must be a harmony
between them which allows all proofs to be ‘executed’ as programs. (UFP, 2013, p. 10;
emphasis added)

What this passage suggests is that there is a community of homotopy type theorists, who would

focus on this ‘computable character’ of HoTT. This is perhaps what Robert Harper was referring to

earlier with ‘the computational interpretation of the theory’ (GitHub 2013).

Despite the possibility that Walsh’s inferentialist argument might give an appropriate justification

in relation to the HoTT community, I shall propose a different justification. My focus is to look at

the mathematical context (of homotopy theory and topology) that is required to understand path

induction, rather than looking at path induction as an identity elimination rule for the type-theoretic

syntax. In this sense, my justification is a novel one that highlights the mathematical notions that

are needed to understand path induction, and hence to understand identity in HoTT.

In the next section, I present the details of the mathematics required for the topological and

homotopical interpretations of HoTT. Then we can fully understand the mathematical contexts

involved in understanding path induction.

127



4.4 Topological and Homotopical Interpretations of HoTT

In this section, I introduce the mathematical definitions required to engage with the topological

and homotopical interpretations of HoTT, with a particular focus on path induction. I shall also

define what a homotopy equivalence is, and thus how identity is homotopically interpreted as a

homotopy equivalence (Definition 4.8). With p : x = y interpreted as a homotopy equivalence p from

space x to space y, we can also interpret the identity type x = y as a homotopy type (Definition 4.9).

After providing the mathematical definitions, in Section 4.4.2, I briefly explain how we can use these

definitions for homotopically interpreting types in HoTT. This interpretation helps us to understand

what identity is in HoTT.

Recall that we are given a type family in path induction. The topological/homotopical interpretations

tell us that a type family must be interpreted as a fibration (UFP, 2013, §3.3). In order to fully

understand what that means, some mathematical premliminaries are necessary. I shall begin by

defining paths and homotopies, and building from these notions to define what homotopy equivalences

are (Section 4.4.1) and to show how a fibration can be defined (Section 4.4.3). Throughout the rest

of the chapter, I shall use bold-font to highlight the mathematical term being defined.

Definition 4.3 (Path in topology). Let X be a topological space, and x and y be points in X.

p : [0, 1] → X is a path from the starting point x to the end point y just in case p is a continuous

map where p(0) = x and p(1) = y.

Simply put, a path is a continuous map from the interval [0, 1] to a topological space, and the

starting and end points of a path are points in the topological space. We can define certain properties

using this notion of path. I shall define two of these properties here: the path lifting property and

homotopies between paths. Eventually, we shall define what the homotopy lifting property is. But, in

order to do so, we need to understand what homotopies are and what the lifting property is about.

Definition 4.4 (Path lifting). Let X be a topological space with a point x. Let p : [0, 1] → X

be a path such that p(0) = x. Given a map π : C → X such that there is a point x̃ ∈ C, where

π(x̃) = x, we say that π has the path lifting property with respect to p just in case there is a

path p̃ : [0, 1] → C such that π ◦ p̃ = p.
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x̃ p̃

Figure 4.5: Path lifting

The definition tells us that a path p in the given space X can be lifted onto the space C via a

projection map π : C → X. Intuitively, as the project map takes points from C to X, the path in X

is being lifted along this projection into the space C. This projection map π preserves the starting

point of paths, so if p̃(0) = x̃ is the starting point of the lifted path, π(p̃(0)) = p(0). See Figure 4.5.

Since the whole path p is lifted into the space C, there must be an end point of the path p̃. Later, I

shall show that this end point of the lifted path defines path induction in HoTT. In general, π has

the path lifting property just in case it has the path lifting property with respect to any path p.

Another property that concerns paths in topology is homotopy. Understanding what a homotopy is

is essential for understanding the homotopical interpretations in HoTT. Generally, a homotopy can

be defined as a continuous map between continuous maps, but, for now, I define it only as a relation

between paths. In the definition, we find that a path pi is indexed with an i ∈ [0, 1]. This refers to

continuum many paths, each indexed by i.

Definition 4.5 (Homotopy between paths). Let X be a topological space, and let each pi : [0, 1] →

X be a path such that pi(0) = x and pi(1) = y for all i ∈ [0, 1]. A homotopy between paths p0

and p1 is a continuous function H : [0, 1]× [0, 1] → X such that

H(0, t) = p0(t);

H(1, t) = p1(t);

H(s, 0) = x, and H(s, 1) = y.

We say that p0 and p1 are homotopic whenever there is a homotopy between them.

129



The diagram (Figure 4.6) shows two paths p0, p1 : [0, 1] → X that share the starting and end points.

And H : [0, 1] × [0, 1] → X is the homotopy (denoted as ⇒) between the two paths p0 and p1.

Intuitively, a homotopy indicates that there are many continuous paths between p0 and p1 such that

p0 can be morphed into p1. Thus, a homotopy H can be visualised as if it were filling the space

between the paths. So the purple area within the space X is filled by the homotopy H.

X
p0

p1

Hx y

Figure 4.6: Homotopy between paths

Homotopies between paths also define a relation

≃ such that p0 ≃ p1 just in case there is a ho-

motopy between p0 and p1. This relation is an

equivalence relation (see Hatcher 2002:Proposi-

tion 1.2), so we can define an equivalence class

of paths [p0]≃. Later we shall define homotopies

between maps and a similar equivalence rela-

tion will be defined. This is necessary for defining homotopy types, and thus for the homotopical

interpretation of types in HoTT. I use the double arrow ⇒ notation for homotopies from now on.

Thus far, we have defined two properties concerning paths: path lifting and homotopies between

paths. A map π satisfies the path lifting property just in case π lifts the path p to p̃. A homotopy

‘fills the space’ between two paths p0 and p1. Since a homotopy defines an equivalence relation, for

any two paths that are homotopic, they are considered the ‘same’ (as in ‘homos’ in Greek).

We can also extend these properties to continuous maps. And, furthermore, we can define a homotopy

lifting property, just as we had defined a lifting property for paths. For now, let us define a homotopy

between maps.

Definition 4.6 (Homotopy between maps). Let X and Y be topological spaces. Let f, g : X → Y

be continuous maps. A homotopy between maps f and g is a continuous map H : X × [0, 1] → Y

such that, for all x ∈ X,

H(x, 0) = f(x) and H(x, 1) = g(x).

If there is a homotopy between f and g, we say that they are homotopic to each other.
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g
X Y

H

Figure 4.7: Homotopies between maps

Just as we described a homotopy between paths to be ‘filling the space’ between the paths, we can

visualise the homotopy between maps in the same way. However, instead of filling the given space,

the homotopy is filling something outside the spaces X and Y – in some ways, it creates a separate

‘space’ of its own that would take X and Y as points in that new space (see Figure 4.7). With the

notion of homotopy between maps defined, the following defines the homotopy lifting property.

Definition 4.7 (Homotopy lifting property). Let H : X × [0, 1] → Y be a homotopy and

H0 : X → Y be a continuous map such that H(x, 0) = H0(x). Let π : C → Y be a map and

H̃0 : X → C be a map such that H0 = π ◦ H̃0. We say that (X,π) has the homotopy lifting

property just in case there is a homotopy H̃ : X × [0, 1] → C, such that π ◦ H̃ = H.

X Y

C

π

H

H0

H1

H̃0

H̃1

H̃

Figure 4.8: Homotopy lifting property

The diagram (Figure 4.8) shows the definition of the homotopy lifting property on (X,π). Given a

homotopy H between H0 and H1, which are both maps from space X to Y , and also given a map
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π : C → Y , we can lift the homotopy H. We thereby obtain a new homotopy H̃, which is between

H̃0 and H̃1, which are defined from H0 and H1.

In fact, we can restrict homotopy lifting property to path lifting property by taking the domain of

H0 : X → Y to be [0, 1]. Then H0 is a path in space Y . So H : [0, 1] × [0, 1] → Y is a homotopy

between paths in Y such that H(y, 0) = H0(y). If ([0, 1], π) satisfies the definition of homotopy

lifting property, then the homotopy H gets lifted to a homotopy H̃ : [0, 1] × [0, 1] → C between

paths in C. Hence we have paths H̃i : [0, 1] → C for 0 ≤ i ≤ 1, which are lifted from Hi, as the

homotopy H is lifted to H̃.

4.4.1 Homotopy Equivalences and Homotopy Types

Earlier we discussed how a homotopy between paths defines an equivalence relation. Similarly, a

homotopy between maps defines an equivalence relation. For the following definition, let idX denote

an identity map from space X to itself.

Definition 4.8 (Homotopy equivalence). Let X and Y be topological spaces. We say that X and

Y are homotopy equivalent just in case there are maps f : X → Y and g : Y → X such that f ◦ g

is homotopic to idY and g ◦ f is homotopic to idX . We call f and g homotopy equivalences.

The homotopy equivalence relation is between spaces, rather than maps, and we denote that X

and Y are homotopy equivalent by X ≃ Y . This relation is an equivalence relation (i.e. reflexive,

symmetric, and transitive). Hence we can define an equivalence class [X ≃ Y ] on the maps from X

to Y . Note that f : X → Y and g : Y → X do not have the same domain and codomain, but if

there is an f ∈ [X ≃ Y ], then there is a g ∈ [Y ≃ X]. When the spaces X and Y are homotopy

equivalent, we say that they have the same homotopy type.

Definition 4.9 (Homotopy type). Let X and Y be topological spaces. X and Y have the same

homotopy type if there are continuous maps f : X → Y and g : Y → X such that g ◦f is homotopic

to idX and f ◦ g is homotopic to idY . That is, X and Y have the same homotopy type just in case

X ≃ Y .
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X
Y

f

g

idX idY

f ◦ gg ◦ f

Figure 4.9: Homotopy type

The diagram (Figure 4.9) depicts the spaces X and Y as ovals, and the homotopy equivalences f

and g as arrows between them. The other arrows idX and g ◦ f are maps from X to itself, and they

are depicted in the same colour because they are homotopic to each other. The homotopy between

them is depicted by the purple double arrow ⇒. Similarly, idY and f ◦ g are maps from Y to itself,

and the homotopy between them is depicted by the pink double arrow.

The definition tells us that if X and Y have the same homotopy type, then there are equivalence

classes [X ≃ Y ] and [Y ≃ X]. Further more, we have the homotopy equivalences f ∈ [X ≃ Y ] and

g ∈ [Y ≃ X]. This is the key to the homotopical interpretation of types in HoTT: the judgement

p : x = y is interpreted as a homotopy equivalence p from space x to space y (UFP 2013, p. 5), i.e.

p ∈ [x ≃ y], where x and y are homotopy equivalent.

I shall expand on this to further clarify how types are understood in HoTT, before applying it to

explicating path induction.

4.4.2 Homotopical Interpretations: Types as Homotopy Types and Identity as

Homotopy Equivalence

Earlier, I mentioned that a type A in HoTT is interpreted as a homotopy type (See Section 4.2.2).

This is confusing for (at least) two reasons. First, a homotopy type is a property between spaces:

we defined what it is for X and Y to be of the same homotopy type, rather than saying what a

homotopy type is. Second, a type A was interpreted as a space in the pictorial interpretation, rather
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than as a homotopy type [X ≃ Y ]. In fact, I mentioned above that the identity type is interpreted

as a homotopy type. In order to understand this, let me clarify a few things, namely that a type A

is interpreted as a homotopy type means that there is an identity type (x =A y) on A. Since all

types are interpreted as homotopy types, this generates a nested structure by identity types on every

type, similar to an ∞-groupoid structure (see section 4.2.2).

Recall that a homotopy equivalence f : X → Y is a map such that there is a map g : Y → X, and

f ◦ g and g ◦ f are homotopic to idY and idX , respectively. Another way to represent this is by using

equivalence classes, so f ∈ [X ≃ Y ] and g ∈ [Y ≃ X]. Then, identity, =, in HoTT is homotopically

interpreted as the relation ≃, and a term p : x = y is homotopically interpreted as a homotopy

equivalence f : X → Y with x and y interpreted as spaces X and Y , respectively. Hence, a type A

is topologically interpreted as a space consisting of points, e.g. x, y, such that these points x and y

are homotopically interpreted as spaces with the same homotopy type. Thus, interpreting a type A

as a homotopy type means treating A as having terms x and y, which have the same homotopy type.

This means that, for any type A, the identity type (x =A y) can be introduced on any arbitrary A,

then the identity type (x = y) can be interpreted as the homotopy type [X ≃ Y ].

Another challenge is that the notations of homotopy theory and topology are very different from the

type theoretic syntax. Here, I shall briefly explain how to interpret the type theoretic syntax, before

fully adopting type theoretic syntax with topological/homotopical interpretations. To minimise con-

fusion between the different interpretations, let us employ calligraphic and gothic fonts, respectively,

when topological and homotopical interpretations are used. As we become more comfortable with

the topological and homotopical interpretations of types, this will perhaps not be needed.

A judgement a : A is topologically/homotopically interpreted as a space a, or a point a in the space

A. After this clarification, I will not distinguish between topological and homotopical interpretations.

Even though the topological interpretation looks simpler, one still needs to take the homotopical

properties involved. In fact, the univalence axiom allows us to treat all of these interpretations as

equal without mathematically privileging one over another.
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Generally, for any types A,B : U and a term p : A =U B, p can be interpreted as a homotopy

equivalence p : A → B. At the same time, we can further interpret the terms a and a′ of type A, as

points a and a′ in the space A and interpret the term q : a = a′ as a topological path q : [0, 1] → A

such that q(0) = a and q(1) = a′. Note that in the type theoretic notation, the type a = a indicates

the starting point a and the end point a of the path q.

When we apply the topological interpretation with the type universe U as a space and types as

points, it is important not to forget the homotopical features. Here, I shall briefly describe how

the properties of homotopy equivalences are preserved when we treat them as paths. This shows

that we can freely interchange between the homotopical and topological interpretations in HoTT.

While, in our reasoning, we can think of q as a topological path between points a and a′, if we treat

a and a′ as spaces, q is interpreted as homotopy equivalence. This detail is similar to the comparison

between homotopies: a homotopy between paths is filling the space between paths, but a homotopy

between maps is filling the ‘space’ between maps. For q as a homotopy equivalence, there must

be some q′ : a′ → a such that q ◦ q′ and q′ ◦ q are homotopic to ida′ and ida, respectively. So we

can (topologically) think of q′ as a path that reverses the path q. So q′ : [0, 1] → A is such that

q′(0) = a′ and q′(1) = a, where instead of composing, we simply follow one path after the other.

Also, if we follow the path q and then follow the path q′, the starting point and the end point of the

concatenation of the paths are q(0); and if we follow q′ first, then follow q, the starting point and

end point are q′(0). These give us new paths from q(0) to itself and q(1) to itself, i.e. the reflexive

path refl(·). So the properties of homotopy equivalences are preserved when they are considered as

paths between two points.

Having explained how a type in HoTT is interpreted as a homotopy type, let us turn to the

homotopical interpretation of type families.
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4.4.3 Families of Types as Fibrations

In the given conditions of path induction, we have an arbitrary family of types C :
∏

x,y:A(x =A

y) → U . A family of type in HoTT is homotopically interpreted as a fibration (UFP 2013, §2.3).

The following defines a fibration in homotopy theory.

Definition 4.10 (Fibration). π : C → Y is a fibration just in case for all X, (X,π) has the

homotopy lifting property.

Recall the definition of the homotopy lifting property, which said any map Hi : X → Y could be

lifted by a map π : C → Y to a map H̃i : X → C (just as the homotopy H between H0 and H1 is

lifted to a homotopy H̃ between H̃0 and H̃1). A fibration generalises this property of π to any space

X!

If we topologically interpret Hi as a path from point X to point Y in another space, e.g., U , then the

homotopy lifting property of a fibration would also lift paths. We let X = [0, 1], then the fibration

π : C → Y lifts all topological paths in Y .

A a

P (a)

πa

Figure 4.10: Type family as a fibration

Earlier, when we discussed path induction picto-

rially, we depicted a family of types P : A → U

as in Figure 4.4. Now, treating type family as a

fibration, the pictorial interpretation must show

the fibration map, as in Figure 4.10, rather than

simply thinking of the spaces.

The claim that a family of types P : A → U is

said to be ‘homotopically interpreted as a fibration’ (UFP, 2013:§2.3) is actually misleading, since

it is not the map P that is interpreted as a fibration, but rather it informs us the existence of a

projection map, which is a fibration, pr1 :
∑

x:A P (x) → A such that pr1(x, y) = x (UFP, 2013:§2.3),

or with the topological/homotopical notations, we have a fibration π :
∑

x∈A Px → A, where the
∑

means the disjoint union. For any point d in the homotopical interpretation Pa of P (a), we have

π(d) = a. This is because all elements of Pa would be a pair (a, z) and the projection will output the
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first entry in the pair. So the fibration π goes from a disjoint union of spaces Px (the interpretations

of P (x)), to the interpretation A of A.

Hence the homotopical interpretation of a type family P : A → U is the fibration π :
∑

x∈A Px → A.

Furthermore, we call the space Px, a fibre for each x.

Definition 4.11 (Fibre). Given a fibration π : P → Y 18 and a point y ∈ Y , we call the subset

π−1(y) ⊆ P a fibre.

This means a type family P : A → U suggests that there is a fibration π :
∑

x∈A Px → A, and the

type P (a) for each a : A is interpreted as a fibre Pa for each a ∈ A. Understanding type families as

fibrations,
∑

x∈A Px is called the total space, which is the disjoint union of spaces (i.e. fibres) Px

with the index set A, and A is called the base space.

With the mathematical definitions clarified, we can now return to path induction. The rough idea

behind my argument is as follows. From the topological/homotopical perspectives, path induction

can be understood to follow from the path lifting property. In particular, f(x, y, p) : C(x, y, p) in

path induction is given by the end of point of the lifted path p̃. In the next section, I shall work

through this idea step by step.

4.5 Path Induction from the Perspective of the Homotopy Type

Theorists

In this section, we shall make free use of the type theoretic language and look for aid as regards the

pictorial interpretation that carries the homotopical and topological interpretations of types. I shall

explain how path induction mathematically follows from the path lifting property, so that, from the

perspective of HoTT-ists, it ought to be understood via the path lifting property.19

18Henceforth, I will use P :=
∑

x:A Px to simplify notation. Regardless of the index set A, I will use this notation
for the disjoint union, unless it might be ambiguous.

19This argument was presented at the annual HoTT/UF Workshop in Vienna, Austria, in April 2023. I thank the
audience for their questions and generous feedback.
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The general idea is that, once we interpret type families as fibrations, any path in the base space

can be lifted into the total space. The function f(x, y, p), which generalises the function c(x), can

be defined as the end point of the lifted path p̃.

To be more precise, we begin by interpreting type family C :
∏

x,y:A(x = y) → U as a fibration.

That means that we have a fibration pr1 :
∏

x,y:A

∑
p:x=y C(x, y, p) →

∏
x,y:A(x = y), which satisfies

the path lifting property. So, if we fix a point a : A, then the given conditions of path induction

tell us that we have a refla such that c(a) : C(a, a, refla). So, the fibration pr1 lifts the point

refla :
∏

x,y:A x = y to the point c(a) in the fibre C(a, a, refla). In the total space of the fibration,

this is expressed as (refla, c(a)).20

If, instead of the fibration pr1 with the base space
∏

x,y:A x = y, we have another fibration

π :
∏
x,y:A

∏
p:x=y

C(x, y, p) → A,

we can prove path induction. This fibration π would lift the paths from the type (or space) A and

lift them to a path in C(x, y, p). For example, the path refla in A would be lifted as the path r̃efla,

and this path can be defined as reflc(a), as in Figure 4.11.

Now, if π is indeed a fibration, it can lift an arbitrary path q : a = b to a path q̃ in space∏
x,y:A

∏
p:x=y C(x, y, p). We can see this in Figure 4.12. Once we have all these conditions met, the

consequent of path induction gives us a function

f :
∏
x,y:A

∏
p:x=y

C(x, y, p),

such that f(a, a, refla) ≡ c(a). Here, f(a, a, refla) is precisely the end point c(a) of the lifted

path r̃efla. Similarly, f(a, b, q) can be defined as the end point of the lifted path q̃ in the space∏
x,y:A

∏
p:x=y C(x, y, p).

20It is my understanding that the map c can actually be understood as a section to the fibration π. A section is
defined as follows.

Definition 4.12 (Section). Given a map π : C → X, a continuous map σ : X → C is a section of π just in case
π(σ(x)) = x for all x ∈ X.
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pr1 c

A

∏
x,y:A

∏
p:x=y

C(x, y, p)

a refla

(refla, c(a))

refla

∏
x,y:A

x = y

∏
x,y:A

∑
p:x=y

C(x, y, p)

pr2

reflc(a)

π

Figure 4.11: Fibration in Path Induction

pr1

∏
x,y:A

x = y

c

c(a)

A

∏
x,y:A

∏
p:x=y

C(x, y, p)

a bq

∏
x,y:A

∑
p:x=y

C(x, y, p)

(refla, c(a))

π

q̃

refla

pr2

Figure 4.12: Fibration in Path Induction with Arbitrary Path
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Interestingly, the converse of this result is given as a theorem in HoTT (see Lemma 2.1.2 in UFP,

2013). Roughly, the lemma states that, given any type family P : A → U and an arbitrary u : P (x),

for any p : x = y, we have a lifting map lift(u, p) that lifts the path p with the starting point u in

P (x). So with the two results together, path induction can be seen as equivalent to the path lifting

property.

With path induction clarified via the path lifting property from the perspective of homotopy type

theorists, we can see that it is internally justified. We now have a better understanding of path

induction and the mathematical contexts that are needed to understand it. This argument is internal,

since we are simply clarifying the mathematical context that is already available internally in HoTT,

without appealing to anything that goes beyond HoTT.

Having clarified path induction, now we can turn to what motivational goals can be found in HoTT,

thereby completing Besinnung.

4.6 Besinnung and the Zwecksinne of HoTT

What can we say about the motivational goals of HoTT given this clarified understanding of path

induction and the practice of HoTT? I suggest that there are two motivational goals that could be

found within the community of empathy with the HoTT-ists: homotopical autonomy and rigour.

4.6.1 HoTT as a Homotopical Autonomous Foundation

Although I have argued against Ladyman and Presnell’s account of autonomy for HoTT, I maintain

that there is indeed a sense of autonomy, which is an aim of HoTT. My opposition to Ladyman and

Presnell’s view is not that it is incorrect to think that HoTT is an autonomous foundation. Ladyman

and Presnell began with a particular sense of autonomy and insisted that HoTT be understood

independently of other mathematical theories, e.g. homotopy theory or topology. But this, I hold,

goes against one of the motivations behind HoTT, namely that it has an intrinsic homotopical

content.
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To answer whether HoTT is intended to be an autonomous foundation, we first ought to empathise

with the homotopy type theorists, and then reflect on whether their practice aims at an autonomous

foundation. And only if it does must we further clarify in what sense HoTT is an autonomous

foundation. In fact, the three minimal requirements identified earlier suggest that HoTT is intended to

be an autonomous foundation combining the logical and the practice-oriented aspects of mathematics

(the former through the syntax of MLTT, and the latter through homotopy theory). By an

‘autonomous foundation’, I mean a mathematical theory that can be understood as a stand-alone

theory, in terms of which other mathematical theories can be interpreted – but I hold that this does

not mean that it must be understood independently of other mathematical theories.

An example of such theory is ZFC-set theory, which has clearly defined syntax and axioms such that

any given mathematical concept or definition could be interpreted in its language. Similarly, HoTT

has a clearly defined syntax (MLTT) and axiom (Univalent Axiom). And various chapters in the

HoTT Book (UFP 2013) attempt to interpret other mathematical concepts and definitions in the

language of HoTT.

However, unlike set theory, HoTT is not a ‘pre-mathematical theory’ as required by Ladyman and

Presnell. Instead, HoTT relies on the background homotopical content in order for the mathematician

to interpret its syntax. Set theory, on the other hand, does not require a background in other

areas of mathematics in order to understand its syntax. This difference is not intended to be a

criticism against one theory over the other. While the two theories are both ‘autonomous’, they

are ‘autonomous’ in different ways. Set theory is or can be understood as autonomous in the

sense suggested by Ladyman and Presnell. It is possible to understand set theory, without a prior

mathematical understanding of sets, via the axioms defining the intuitive understanding of sets

required to practice set theory. HoTT is not such a theory. HoTT is a mathematical theory that arose

out of existing contemporary mathematics, and shows the possibility of a homotopically understood

foundation. Hence, we can characterise homotopical autonomy as a motivation goal, a Zwecksinn, of

HoTT.
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4.6.2 HoTT as a Rigorous Foundation

Another motivational goal of HoTT is that it be a rigorous mathematical theory. Traditional accounts

of rigour claim that it can be obtained from the possibility of formalising the theorems into some

formal language (see the survey of different accounts of rigour in mathematics in Burgess and Toffoli,

2022). More recently, alternative informal accounts of rigour have been proposed by Marfori (2010)

and Tatton-Brown (2021). So, what is the account of rigour that can be read from the practice of

HoTT?

To uncover a motivational goal (Zwecksinn) it is important to examine its historical development

and consider its current practice. Recall that Voevodsky’s motivation for using a formal language

for his mathematics was to eliminate the sociological aspect from proof verification. HoTT is a

product of this motivation. HoTT is a theory that can be written entirely in the syntax of MLTT,

and this means that various definitions (including path induction) are given in terms of inference

rules in MLTT, rather than in terms of axioms. This is not a common feature of a contemporary

mathematical theory outside mathematical logic, particularly not in proof theory, where definitions

are often given in terms of axioms.

HoTT being a theory written in MLTT also means that the sentences (or judgements) have to be

written in the logical syntax of MLTT, and its proofs are given in accordance with the inference rules

of MLTT. In mathematical logic generally, it is important to define the signature of a theory with

appropriate axioms for the non-logical symbols, but, outside mathematical logic, it is not necessary

to express every theorem in a formal syntax (e.g. first-order logic). This is also the case for algebraic

topology, and in homotopy theory in particular. The attempt to write the homotopical content in the

syntax of MLTT guarantees the kind of rigour that is independent of sociological influences. While

the mathematicians can work with the homotopical content, when it comes to proving theorems,

a rigorous account must be given that can be written in MLTT: the proof is given in accordance

with the inference rules of MLTT, and can be verified by a computer program, independently of a

mathematician’s influence and reputation.
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This does not mean that this is a universal account of rigour in all of mathematics, but one account

of rigour in mathematics that can be found in HoTT. Importantly, this account of rigour does not

sacrifice the other values or motivational goals (Zwecksinne) of HoTT. Whatever other motivational

goals (Zwecksinne) there might be, HoTT preserves its rigour because it can be written in the syntax

of MLTT.

It is worth reminding the readers of what the motivational goals (Zwecksinne) are in Husserlian terms.

Husserlian ‘Sinn’ refers to the meaning found in experience, or in practice. Zwecksinn, interpreted as

‘final sense’ in the case of subjective experience, means the clearest meaning of an intended object

X, via which we can grasp X in an intuitive (i.e. immediate) act. In the context of Besinnung,

the ‘Zwecksinn’ refers to the motivational goal, i.e. the abstracted goal based on the historical

motivation and the current practice of the community, via which we can understand different parts of

the community’s practice. The motivational goals we find within the community are then the Sinn,

which guides the practice, and certain methods or concepts, etc., of the practice can be understood

clearly as particular instantiations of the motivational goals. Thus, rigour and homotopical autonomy

are the motivational goals of HoTT: the use of logical syntax (as demonstrated in the expression of

path induction) is an example of how rigour is achieved; and the use of homotopical interpretation of

the logical syntax along with the practice of interpreting other mathematical concepts in homotopy

type theoretic terms is how homotopical autonomy is instantiated.

4.6.3 Radical Besinnung and HoTT

If we are to carry out radical Besinnung, some further investigation will need to be pursued. For

instance, we would need to ask whether the current methods used in HoTT are actually appropriate

to obtain its motivational goals (Zwecksinne), e.g. rigour. In particular, HoTT-ists have adopted

machine implementation as a way to establish rigour in verifying proofs. Verifications of proofs

are important to ensure that a proof is good (in some appropriate sense of goodness). Carrying

out radical Besinnung would mean questioning whether this is an appropriate way to obtain rigour

in mathematical proofs, and, if not, how the mathematicians ought consider a possible revision of

the practice. For instance, in type theoretic syntax, definitions are given as inference rules. This
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contrasts with the more typical axiomatic practice of mathematics. So, the question is: Can we

obtain rigour in proofs when the definitions are given as inference rules? I do not offer an answer

here but, if I were to carry out radical Besinnung, this is one question that might be addressed.

Similarly, we might ask whether homotopical autonomy is something that is achievable in the current

state of practice. While we have observed that HoTT-ists aim to interpret other mathematical

theories (e.g. set theory) in HoTT, the question remains whether this is a viable pursuit for HoTT.

My naïve perspective is that this is viable only with some restrictions. HoTT, as a theory, is a product

of mathematical results showing similarities in MLTT-types, homotopy types, and ∞-groupoid

structures. Given this, HoTT could offer an autonomous foundation for other mathematical concepts

or theories that have similar structures, but not for all of mathematics. Mathematics is a huge

discipline with many different applications, and I would think a more modest aim ought to be

established for the HoTT-ists, and this is where another Husserlian method of zig-zagging between

the motivational goal and the practice would be relevant.

By zig-zagging, one can look at the mathematics from the perspective of the practitioners, but also

then turn to the clarified motivational goals (Zwecksinne) and critically evaluate them. Moving back

and forth between the practice and the clarified sense is what Husserl calls zigzagging. This critical

evaluation is not necessarily what is currently part of the practice, but rather something that radical

Besinnung adds to the practice.

Although I shall not pursue radical Besinnung in much detail here, I believe it to be an important

philosophical part of a Husserlian investigation. Questioning and analysing whether the clarified

motivational goals are appropriate, and providing some guidance to mathematical practice could

really make the collaboration between philosophers and mathematicians stronger. Philosophers can

clarify mathematical goals that are to some extent vague into clarified motivational goals, and offer

suggestions based on reflection on the practice and its goals, while the mathematicians can revise

their practice so the methods used can be more appropriate for achieving their own goals. Husserlian

Besinnung and, in particular, radical Besinnung, then offer a philosophical criticism and evaluation,

based on the perspective of the practitioners. Thus, it can really be considered a method for the

philosophy of mathematical practice.
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4.7 Conclusion

In this chapter, I have demonstrated how Besinnung can be pursued in relation to HoTT. To stand

in the community of empathy with the homotopy type theorists, I highlighted (a) the Univalent

Axiom, (b) Logical Syntax, and (c) Intrinsic Homotopical Content as the minimal requirements of

HoTT. These requirements are the unfulfilled senses vaguely floating in the practice of HoTT, and

empathising with homotopy type theorists involves committing to these requirements. Only then

can one carry out Besinnung by clarifying them – i.e. by fully engaging with what they mean in the

practice – then one can explicate the motivational goals aimed at by the homotopy type theorists.

While empathising with the homotopy type theorists, I have also argued that, from the perspective

of the homotopy type theorists, path induction can be understood in terms of path lifting property.

This offers an alternative justification for path induction, challenging the views of Ladyman and

Presnell (2015) and P. Walsh (2017), who argue, respectively, that path induction needs to be

philosophically justified by pre-mathematical concepts or an inferentialist notion of harmony. From

the homotopy type theorists’ perspective, path induction is simply understood from the path lifting

property, thus path induction can be internally justified.

I further clarified homotopical autonomy and rigour as motivational goals (Zwecksinne) of HoTT.

Importantly, these values are identified and clarified through Besinnung rather than defined prior to

empathising with homotopy type theorists. This contrasts with the account of autonomy given by

Ladyman and Presnell (2015), who attempts to characterise what kind of autonomy is required for

HoTT independently of a process of empathising with practitioners. We also saw how an appropriate

understanding of rigour for HoTT could be found in consideration of the history and practice of

HoTT. Unlike many mathematical theories outside mathematical logic, HoTT is written in a formal

syntax, MLTT. This guarantees that every theorem of HoTT can be formalised and thus guarantees

the rigour required for verifying the theorems.

Although rigour and homotopical autonomy could be the motivational goals of HoTT, we can further

clarify the more general motivational goals for mathematics by the method of Besinnung. This

means looking not only at the practice of HoTT, but also at other theories of mathematics and their
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practices, to establish their motivational goals and, in the light of identification of these, to consider

whether further shared goals can be found in mathematical practice. This would be a continuation

of the method of Besinnung, as we aim to clarify the motivational goals of mathematics, rather

than a particular theory of mathematics. Besinnung must be carried out in different mathematical

communities. Ultimately these communities could provide us with more general motivational goals

for mathematical practice. In pursuing this broad project, we can carry on the empathy-first approach

to philosophy of mathematical practice.
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Chapter 5

Future Directions and Conclusion

In this concluding chapter, I outline three projects extending the work of my dissertation. The

first two projects are applications of the Husserlian methods developed in the dissertation to the

philosophy of mathematics. The third project offers an interpretation of HoTT as a geometrical

foundation for mathematics, as opposed to an arithmetical foundation. (This suggestion will be

clarified shortly.)

The first project (see Section 5.1) addresses a contemporary foundational debate in mathematics

concerning set theory, category theory, and type theory (including HoTT and Univalent Foundations).

By looking at each of the respective theories as understood by the foundational positions within the

perspective of the community, the project aims to settle some ongoing debates. The second project

(see Section 5.2), which is to be pursued during my post-doctoral position at the Czech Academy of

Sciences, compares the intended informal semantics of HoTT and of Martin-Löf Type theory. The

third project (see Section 5.3) offers new insight into how HoTT can be considered a geometrical

foundation for mathematics, compared with set theory, which might be considered an arithmetical

foundation. Then, in Section 5.4, I shall summarise the dissertation.

147



5.1 Project 1: Empathy and Contemporary Foundational Debate

in Mathematics

Contemporary foundational debate in the philosophy of mathematics concerns in what sense different

mathematical theories can serve as a foundation for mathematics. Many of the contributions,

however, are offered by the advocates of particular theories (e.g. see Altenkirch, 2023), who are not

fully engaged in the philosophical literature of the other theories. A general problem, then, is that

the arguments offered by an advocate do not address the advocates of other theories. For productive

philosophical discussion, or for there to be a debate concerning the foundation of mathematics, there

ought to be a meaningful way in which different advocates can engage with each other. In this future

project, I offer mathematical empathy as a method of engaging with advocates of different theories,

by looking at their preferred theory from their perspective. This involves understanding the kinds of

concepts that are taken to be primitive by them, rather than offering a logical translation between

the syntax of the theories.

At the risk of stating the obvious, for type theorists, types and functions are considered to be

primitive, and thus the rest of mathematics ought to be understood in terms of types and functions.

For set theorists, sets are taken to be primitive. The empathy-first approach would explicate the

conceptual differences in these approaches and in their motivation from the perspective of the

advocates, and explain why certain questions are more concerning to them.

This will encourage genuine and open discussion between advocates of different theories and further

the discussion on the foundations of mathematics generally.

5.2 Project 2: Intended Models of Homotopy Type Theory and

Martin-Löf Type Theory

There has been some discussion on the status of path induction in HoTT and the identity elimination

rule in Martin-Löf Type Theory. As discussed in Chapter 4, Ladyman and Presnell (2015) and
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Walsh (2017) argue that path induction ought to be justified. I have suggested in the same chapter

that this is not the case.

Ansten Klev (2019b), however, has argued that Ladyman and Presnell’s justification is appropriate for

justifying the identity elimination rule in MLTT, given Martin-Löf’s meaning explanation: meaning

explanation is offered as an intended interpretation of MLTT. This raises the question of why this

justification is an appropriate one for identity elimination in MLTT, but not for path induction in

HoTT. While Martin-Löf’s meaning explanation offers an intended interpretation for MLTT, this is

not the intended interpretation for HoTT. Thus, the two theories have different interpretations of

identity.

This might seem surprising, because HoTT is an extension of MLTT: shouldn’t the notion of identity

in MLTT be preserved in HoTT? To answer this question, one must consider the philosophical

motivations behind the two theories. My current answer is that, given Voevodsky’s motivation for

the development of HoTT, the two theories and their intended interpretations are independent of one

another. For Voevodsky, MLTT was adopted as the syntax for HoTT because of its convenience for

machine implementation (see UFP, 2013, p. 3). Hence MLTT’s intended interpretation via meaning

explanation is not considered for HoTT.

5.3 Project 3: Homotopy Type Theory as a Geometrical Foundation

As shown in Chapter 4, in empathising with the HoTT-ists, one must look at HoTT with the homo-

topical interpretation. This interpretation assumes that identity between terms can be understood as

a continuous path from one term to the other. This underlying notion of continuity offers a possibility

of HoTT as a geometric foundation for mathematics, as opposed to an arithmetical foundation.

Arithmetic and geometry are two fundamental branches of mathematics, which were historically taken

to be the foundations of mathematics. On the one hand, arithmetic concerns discrete magnitudes,

while geometry concerns continuous magnitudes. From a contemporary perspective, one might argue

that set theory (sometimes called transfinite number theory) is an arithmetical foundation because
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it concerns finite and transfinite ordinals, which are discrete magnitudes. Along this line, HoTT can

be considered a geometrical foundation concerning continuous magnitudes.

In order to pursue this project, one must clarify in what sense the two theories concern magnitudes.

While the practice of ordinal arithmetic in set theory makes it obvious for its case, it is not immediately

clear what this would look like in the case of HoTT. This project aims to investigate whether there

is a notion of continuous magnitude in HoTT.1

5.4 Summary and Conclusion

In my dissertation, I have offered Husserlian methods for the contemporary philosophy of mathematics

and mathematical practice. My general claim was that empathy, or understanding mathematics

from the perspective of mathematicians via their historical motivation, is an important part of any

Husserlian method.

In Chapter 1, I argued that Husserlian phenomenology can be considered as a methodological

programme for philosophy of mathematical practice based on two general features. The first feature

is that Husserlian phenomenology assumes the principle of pre-suppositionlessness. This means

making no metaphysical presuppositions when it comes to considering mathematics, although the

investigation may clarify what metaphysical presuppositions are being made. This corresponds to

(what Stewart Shapiro describes as) the mathematics-first approach in philosophy of mathematics.

In this approach, we are to look at mathematics and address philosophical (e.g. metaphysical or

epistemological) questions arising from within mathematics. The second feature is the Husserlian

method of Besinnung, which aims to clarify the goals of mathematicians. This method was compared

with Maddy’s method of Second Philosophy applied to mathematics.

The second chapter took a short, but natural, detour before explicating the method of Besinnung.

The general aim was to show that a phenomenological method of first-person investigation can be

used in interdisciplinary research concerning numerical cognition. It involves forming an empathic

1I thank John Mumma, both for raising this issue during my presentation at the UC Riverside Workshop on Goals
and Values in Mathematics and Logic, and for subsequent follow-up discussions.
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understanding of the sequence of numbers from the perspective of an ordinary natural language

user. As I highlighted, at least three forms of non-arithmetical act are involved in how ordinary

people (ordinary natural language users) understand the sequence of numbers. These acts were

numeralising, predicting, and naming, all of which involve certain linguistic features of the numerals

or simply the use of natural language. These acts, I argued, provide us with two distinct kinds of

numbers in the ordinary understanding: arithmetical and non-arithmetical numbers.

The arithmetical numbers are those that, in principle, can be obtained only by counting. These

numbers coincide with the natural numbers as understood by mathematicians. However, the non-

arithmetical numbers are not considered as the natural numbers by mathematicians, yet they are

present in our ordinary understanding of numbers.

The analysed concept of numbers (i.e. not the natural numbers) was then compared with the empirical

evidence offered by Relaford-Doyle and Núñez. The comparison showed that undergraduate students

who have not studied mathematical proofs convey a similar account of numbers, i.e. a sequence of

numbers with arithmetical and non-arithmetical numbers.

I suggested that distinct concepts of numbers arise from different communal practices and that this

could be clarified in the Husserlian notion of community of empathy, which is one of the first steps of

carrying out the method of Besinnung.

The method of Besinnung, as analysed in Chapter 3, consists of (1) entering the community of

empathy with the mathematicians, (2) identifying the vague concepts, goals, methods and/or

questions in the practice, and (3) clarifying the vagueness in order to clarify the motivational

goals of the disciplines. This method can be extended to the method of radical Besinnung, which

adopts a critical perspective on the clarified motivational goals. This means evaluating whether the

motivational goals are achievable given the mathematicians’ current practice and then revising the

practice accordingly.

In Chapter 4, I applied the method of Besinnung to the contemporary theory of Homotopy Type

Theory (HoTT). By entering the community of empathy, I recognised that the notion of identity in

HoTT was in need of further clarification. Importantly, empathising with the mathematicians, or
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looking at mathematics from their perspective and understanding their motivation, involved clarifying

the use of univalence axioms, the logical syntax of MLTT and HoTT’s intrinsic homotopical content.

Clarifying these meant understanding the syntax of MLTT as topologically and homotopically

interpreted. Through this interpreted picture, I argued that path induction is the end point of the

lifted path based on the path lifting property in topology.

Having clarified what path induction is, I could further clarify the motivational goals of HoTT-ists,

and thus I offered rigour and homotopical autonomy as the motivational goals. Rigour in HoTT is

established by ensuring that the syntax of HoTT can be implemented by proof verification programs.

Homotopical autonomy suggests that any mathematical concept could be understood in HoTT.

Logically speaking, there will be a translation such that any given mathematical notion can be

translated into the syntax of HoTT. Conceptually speaking, any mathematical concept can be

understood with the appropriate homotopical/topological interpretations. This is distinct from

offering a pre-mathematical autonomy, as suggested by Ladyman and Presnell (2015).

The four chapters together offer guidance on applying Husserlian methods to mathematics and

mathematical practice. In contrast with the recent tendency of philosophers to prefer to adopt the

methods of empirical and social sciences, I offer philosophical methods for studying mathematics

and mathematical practice. With this dissertation, I hope that I have sufficiently demonstrated how

fruitful such methods can be in philosophical investigations concerning mathematics.
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