Lawrence Berkeley National Laboratory

Recent Work

Title

THE CRYSTAL AND MOLECULAR STRUCTURES OF THREE BORON COMPOUNDS

Permalink https://escholarship.org/uc/item/5g77c26w

Author DeBoer, Barry Goodwin.

Publication Date 1968-08-01

UCRL-18391

ey. 2

RECEIVED LAWRENCE RADIATION LABORATORY

SEP 16 1968

LIBRARY AND DOCUMENTS SECTION

University of California

Ernest O. Lawrence Radiation Laboratory

THE CRYSTAL AND MOLECULAR STRUCTURES OF THREE BORON COMPOUNDS

Barry Goodwin DeBoer (Ph.D. Thesis) August 1968

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UCRL-18391 Preprint

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

THE CRYSTAL AND MOLECULAR STRUCTURES OF THREE BORON COMPOUNDS

Barry Goodwin DeBoer (Ph.D. Thesis)

August 1968

4.34

The Crystal and Molecular Structures of Three Boron Compounds

<u>Contents</u>

Abstr	act \ldots \ldots \ldots $ $ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	7
1 I.	Introduction	1
II.	The Crystal Structure of the Rubidium Salt of an Octadeca-	
	hydroeicosaborate(2-) Photoisomer	3
	A. Introduction	3
· · ·	B. Experimental	3
	C. Results	7
	1. Determination of Structure	7
	2. Discussion	1
	References and Footnotes	6
III.	The Crystal Structure of a Brominated Carborane - Metal	
	Sandwich Compound - $N(CH_3)_{2}[(B_9C_2H_8Br_3)_2Co]$	7
	A. Introduction	7
	B. Experimental 2	7
	C. Results	1
	1. Determination of Structure	2
	2. Discussion	4
	References and Footnotes	9
IV.	The Crystal and Molecular Structure of Tris-difluorobora-	
	borane — Phosphorus Trifluoride	1
	A. Introduction	1

B.	Experimental
C.	Results
	1. Determination of Structure
	2. Discussion
Ref	erences and Footnotes
Acknowled	gments

iv

The Crystal and Molecular Structures of Three Boron Compounds

Barry Goodwin DeBoer

Lawrence Radiation Laboratory University of California Berkeley, California

August, 1968

Abstract

The crystal and molecular structures of three boron-containing compounds have been determined by X-ray diffraction studies of single crystal specimens. They are: the rubidium salt of an octadecahydroeicosaborate(2-) photoisomer, $\text{Rb}_2\text{B}_{20}\text{H}_{18}$; the tetramethylammonium salt of a brominated carborane-metal "sandwich" ion, $N(\text{CH}_3)_4[(B_9\text{C}_2\text{H}_8\text{Br}_3)_2\text{Co}]$; and <u>tris</u>-difluorobora-borane — phosphorus trifluoride, $B_4F_6\text{PF}_3$.

Crystals of $\text{Rb}_2\text{B}_{20}\text{H}_{18}$ are orthorhombic, space group $\text{Pn2}_1\text{a}$, with $\underline{a} = 12.344 \pm .007 \text{ A}$, $\underline{b} = 19.014 \pm .010 \text{ A}$, $\underline{c} = 7.260 \pm .005 \text{ A}$, and contain four formula units per unit cell. The calculated density is 1.58 g/cc (by flotation, 1.57 g/cc). The structure was determined by Patterson and Fourier techniques and refined by a full-matrix least-squares procedure to a conventional <u>R</u> of 0.127 for 1175 scintillation-counter data (0.073 for the 935 non-zero data). The non-centric nature of the space group was demonstrated by the measurement of anomalous dispersion effects. The anion consists of two capped-square-antiprismatic B_{10} polyhedra joined by a pair of hydrogen bridges, one between each pair of equatorial fourrings, such that the result has an approximate $2/\underline{m}$ ($\underline{C}_{2\underline{h}}$) point symmetry. A list of thirteen possible isomers covering reasonable choices of bridge positions is presented together with their point symmetries.

Crystals of N(CH₃)₄[(B₉C₂H₈Br₃)₂Co] are monoclinic, space group $P2_1/c$, with <u>a</u> = 19.893 ± .010 A, <u>b</u> = 19.487 ± .010 A, <u>c</u> = 15.058 ± .010 A, $\beta = 93.15^{\circ} \pm .05^{\circ}$, and contain eight formula units and four crystallographically independent anions per unit cell. The calculated density is 1.967 g/cc, in agreement with the measured value of 1.98 \pm .01 g/cc. The structure was solved by statistical methods and refined by a leastsquares procedure to a conventional \underline{R} of 8.7% on 3002 data collected by counter methods. All four independent anions have the same shape to within the accuracy of this determination. The anion, the product of a bromination during which the bis-dicarbollyl cobalt "sandwich" is believed to remain intact, consists of two substituted icosahedra with the cobalt as their common vertex. In each icosahedron, the carbons are adjacent to each other and to the cobalt, while the three borons bonded to bromine form the corners of a triangular face. Two corners of this face are as far as possible from the carbons, and the third is adjacent to the cobalt. These bromination sites are consistent with a charge distribution in the reactant which is analogous to that in $\underline{o}-B_{10}C_2H_{12}$, but modified slightly by the presence of the Co(III).

Crystals of $B_4F_6PF_3$ are orthorhombic, space group Pnma, with <u>a</u> = 13.893 ± .005 A, <u>b</u> = 10.578 ± .005 A, <u>c</u> = 6.075 ± .005 A, and contain four formula units per unit cell. The calculated density is 1.82 g/cc. The structure was solved by statistical methods and refined by fullmatrix least-squares to a conventional <u>R</u> of 9.3% for 703 data collected by counter methods (6.7% for the 603 non-zero data). The molecule consists of a central boron atom, tetrahedrally bonded to three BF₂ groups and the PF₃ group in such a way that the molecule has approximately 3m (C_{3v}) point symmetry, one mirror of which is required by the crystal symmetry. Distances found (uncorrected for thermal motion) are: B-F, 1.305 A; B-B, 1.68 A; B-P, 1.825 A; and P-F, 1.51 A (all ± .015 A).

I. Introduction

Determinations of molecular structure form a large and important part of chemistry and the study of matter in general. A knowledge of the three-dimensional atomic arrangements in the molecules of substances is a prerequisite to an understanding of many of the physical and chemical properties of those substances. One of the most powerful methods of determining such atomic arrangements is the examination of the diffraction of X-rays by single crystals. The method is powerful because it is applicable to a wide range of compounds and is able to handle molecules composed of many more atoms than those amenable to study by, for instance, spectroscopic methods. Crystal structure studies such as those described here may be thought of as a form of inverted spectroscopy, in which an unknown diffraction grating is examined by the use of a known radiation source. rather than vice versa. Since our crystal "diffraction grating" is composed of units which are arranged with three-dimensional periodicity, the three-dimensional locations of the atoms within the repeated unit may be deduced from the diffraction intensities. These locations provide the desired image of the molecule(s), with the information it carries as to composition, conformation, substitution sites, etc. These locations may also be used to calculate interatomic distances and angles from which inferences may be drawn concerning bonding, electronic structure, nonbonded forces, and other detailed properties of the molecules.

The principle parts of this thesis describe the application of the single-crystal X-ray diffraction technique to three compounds drawn from the rapidly expanding field of boron chemistry. They are, in order, a

borohydride anion, a metallo-carborane, and a novel boron fluoride compound. Each of these compounds was chosen for study because each is the product of a type of reaction which has not previously been observed in the chemistry of boron, and the compounds themselves are likewise unique. They represent opportunities to observe previously unseen facets of boron chemistry and so increase our knowledge of this element. However, since these compounds are not very closely related otherwise, and because the determination of the structure of one crystal is well separated from that of another, the work on each compound is presented separately. Each presentation has its own introduction, descriptions of the experimental procedure and method of solution, and discussions of the results and their implications.

II. The Crystal Structure of the Rubidium Salt of an Octadecahydroeicosaborate(2-) Photoisomer

A. Introduction

In the last few years, there has been considerable interest in the reactions of the $B_{20}H_{18}^{2-}$ ion, and proposals have been made for the probable structures of the products.^{1-9*} The structure of the parent ion has been established^{5,6} as a pair of capped-square-antiprismatic B_{10} polyhedra connected by a pair of three-center bonds which join the 1-2 edge of one polyhedron to the 2' position of the other and the 1'-2' edge of the second to the 2 position of the first.¹⁰

Recently, Hawthorne and Pilling² observed the isomerization of $B_{20}H_{18}^{2-}$ in acetonitrile solution when exposed to light from a mercury lamp. They predicted that the photoisomer was one of the two possible structures which result when two B_{10} polyhedra are joined by a pair of B-H-B bridges, one between each pair of equatorial four-rings.

This work was undertaken to determine the geometry of the photoisomerization product. The results prove that the geometry is the centrosymmetric $(2/\underline{m} \text{ or } \underline{C}_{2\underline{h}})$ alternative of the pair suggested by Hawthorne and Pilling.

B. Experimental

Crystals of the rubidium salt were received from Professor M. F. Hawthorne of the University of California, Riverside. Part of this material was recrystallized from water by slow evaporation. Two sets of intensity

* References and Footnotes for part II are to be found on page 26.

data were recorded from different crystals, one from the original sample and the other from the recrystallized portion.

A small, colorless crystal fragment from the original sample was glued to the end of a Pyrex glass fiber, with its long direction parallel to the fiber, the instrument φ axis, and the <u>a</u> axis of the crystal. Preliminary oscillation and Weissenberg photographs were taken with $Cu\underline{K}a$ radiation to find the Laue group, extinction rules, and cell dimensions. More accurate cell dimensions were derived from Bragg angles of the h00, OkO, and OOL reflections measured with a manual General Electric XRD-5 apparatus using molybdenum radiation and a Zr filter at the receiving slit. The components of the alpha doublet $(\lambda(\underline{K}\alpha_1) = 0.70926 \text{ A})$ were resolved. The same apparatus was used to measure intensities of 1153 independent (in the sense of Laue group) reflections, including 283 recorded as zero, but not including space group absences. Each reflection was counted for 10 seconds with crystal and counter stationary and a large (~ 3.5°) take-off angle from the X-ray tube anode. Coincidence losses were negligible. For each reflection which was seriously affected by streaking from other orders, individual backgrounds were measured by seeking a minimum on the low-20 side of the peak; otherwise, the background was taken from a plot of background as a function of 20 for various values of phi and chi. The measurements included reflections to $2\theta = 45^{\circ}$, or $\sin\theta/\lambda' = 0.540$. Repeated measurements of several arbitrarily chosen reflections showed systematic trends in which one reflection actually became slightly stronger and others decreased by various ratios, in one case a factor of two. It is suspected that these changes were caused by a bending or cracking of the crystal induced at least in part by radiation damage. In spite of these inauspicious circumstances, this data was used in the early stages of the analysis. When it became evident that the quality of the data was unacceptable, a second crystal about 0.11 × 0.06 × 0.05 mm in size and of much better appearance than the first was selected from the recrystallized material. Cell dimensions and reflection intensities were measured with the same technique as before except that a shutter excluded the X-rays from the crystal except during the actual counting time. The measurements included 1158 Laue-independent reflections, including 240 recorded as zero. The intensities of several reflections which were measured at frequent intervals showed only random fluctuations of the size expected for counting statistics.

Calculations with the partly refined structure permitted identification of reflections which were most likely to show violations of Friedel's rule. Eleven of these and six others of simple indices were selected. Each member of the sets $\pm h$, \underline{k} , $\pm \underline{\ell}$, and $\pm h$, $-\underline{k}$, $\pm \underline{\ell}$ which was observable with the quarter-circle goniometer in this setting (<u>a</u> axis) was counted at least twice for 100 seconds. These data gave a total of 1175 intensities (independent in the sense of the point group, but including 17 Friedel pairs). Standard deviations of five percent of the intensity or one count per second, which ever was greater, were assigned to all the raw intensities, except for the anomalous dispersion data, for which standard deviations were estimated from the scatter between measurements made within the sets $\underline{k} > 0$ and $\underline{k} < 0$. Weighting factors were derived from these standard deviations as one over the square of the resulting

standard deviations of the observed structure factors. The calculated absorption coefficient, μ , of 60 cm⁻¹, and the dimensions of this crystal indicate that $\mu \underline{s}$ is limited between 0.3 and 0.5, where \underline{s} is the maximum path length of an X-ray within the crystal. It is estimated that the variation in intensities due to absorption is not more than twenty percent and is distributed in such a way as to be largely absorbed by temperature factors.

Both data sets were corrected for Lorentz and polarization effects, but no corrections were made for absorption or extinction.

Pyroelectricity was indicated by attraction of a crystal to the side of the glass dewar after the crystal was quickly dipped into liquid nitrogen.

Computations were performed on an IBM 7044 with a 32K memory except for final refinements, which were done on a CDC 6600. Fourier syntheses and distance-and-angle calculations were done by Zalkin's (unpublished) FORDAP and DISTAN programs. The unpublished version of the Ganzel-Sparks-Trueblood least-squares program which was used, minimizes the function $\Sigma_{\underline{W}}(|\underline{kF}_{\underline{O}}| - |\underline{F}_{\underline{C}}|)^2/\Sigma_{\underline{W}}|\underline{kF}_{\underline{O}}|^2$, where $\underline{F}_{\underline{O}}$ and $\underline{F}_{\underline{C}}$ are the observed and calculated structure factors, respectively, \underline{w} is the weighting factor, and \underline{k} is the scale factor. This least-squares program has been modified to handle anomalous dispersion and these effects were included in the later refinements. The atomic scattering factors¹¹ for Rb⁺ were corrected by $\Delta \underline{f}' = -0.9$ electrons and $\Delta \underline{f}'' = +3.1$ electrons as the real and imaginary parts of the anomalous dispersion. Scattering factors for boron and hydrogen were also taken from standard tables.¹¹ The anisotropic

temperature factors used have the form: $\exp(-0.25\Sigma_{1}\Sigma_{\underline{h},\underline{h},\underline{b},\underline{b},\underline{B},\underline{j}}),$ $\underline{i},\underline{j} = 1, 2, 3$, where \underline{b}_{1} is the <u>i</u>th reciprocal axis.

C. <u>Results</u>

Four formula units of $\operatorname{Rb}_2^{\operatorname{B}_{20}\operatorname{H}_{18}}$ are contained in the orthorhombic unit cell with dimensions $\underline{a} = 12.344 \pm .007 \operatorname{A}$, $\underline{b} = 19.014 \pm .010 \operatorname{A}$, $\underline{c} = 7.260 \pm .005 \operatorname{A}$. The calculated density of 1.58 g/cc agrees with the value (1.57 \pm .01 g/cc) obtained by flotation in a mixture of carbon tetrachloride and dibromoethane. These measurements apply to room temperature (~ 23°C) and their standard deviations are estimates. The Laue symmetry and observed extinction rules of $0\underline{k}\underline{\ell}$, $\underline{k}+\underline{\ell} \neq 2\underline{n}$ and $\underline{h}\underline{k}0$, $\underline{h}\neq 2\underline{n}$ correspond to both the centric Pnma and the non-centric Pn2₁a. The positive test for pyroelectricity and the violations of Friedel's rule (presented below) indicate the non-centric Pn2₁a, and this choice leads to a successful structure with each atom in the general set of positions: $(\underline{x}, \underline{x}, \underline{z}; \frac{1}{2} - \underline{x}, \frac{1}{2} + \underline{x}, \frac{1}{2} + \underline{z}; -\underline{x}, \frac{1}{2} + \underline{x}, -\underline{z}; \frac{1}{2} + \underline{x}, \underline{y}, \frac{1}{2} - \underline{z}$).

1. Determination of Structure

The Patterson function calculated from the first data set was consistent with either one rubidium ion in the eight-fold Pnma or a pair of nearly-centric rubidium ions in the four-fold $Pn2_1^{a}$. The latter was chosen because of the observed pyroelectric effect and the broadening of the Patterson peaks in the <u>a</u> and <u>c</u> directions. Four cycles of leastsquares on two slightly non-centric rubidium ions with isotropic temperature factors reduced the <u>R</u> factor for S11 low-angle data of the

first set to 0.323 where $\underline{R} = \Sigma ||\underline{kF}_{o}| - |\underline{F}_{c}|| / \Sigma |\underline{kF}_{o}|$. The zero coordinate of the \underline{y} axis in the polar space group Pn2₁a was defined by requiring the two rubidium ions to have equal and opposite y coordinates in this and all subsequent refinements. A Fourier synthesis phased on the rubidiums was calculated and various choices of peaks refined as boron atoms on a cut-and-try basis. In these trials, the appearance of a large temperature factor was taken as an indication of a poor choice of atomic position. After several trials, a difference Fourier was calculated on the basis of the two rubidium ions and 16 borons which had been "found" $(\underline{R} = 0.297, all data)$. This difference Fourier indicated that the rubidium ions were rather badly anisotropic. The same 16 borons plus four more selected from the difference Fourier were refined with the rubidium ions allowed anisotropic temperature factors. Redropped to 0.233 with two of the new borons going to large temperature factors. It was suddenly seen that sixteen of the eighteen "good" borons were arranged in pairs about a pseudo-center (local, non-crystallographic inversion center) and that the addition of two more borons in positions pseudo-centric to the remaining pair produced two capped square anti-prisms which had a pair of short equatorial-equatorial distances between them. Two anisotropic rubidium atoms and these twenty borons refined to $\underline{R} = 0.218$ on all 1153 data of the first set.

An empirical correction for absorption and for degradation of the crystal was attempted, but \underline{R} was not significantly reduced. The possibilities of disorder in the orientation of the boron structure, of being in the wrong space group, and of having the rubidium atoms "trapped" in

the wrong places by false minima were all investigated without improving the agreement.

It was at this time that the second data set was taken and the first set discarded. The structure found from the first data set immediately refined to $\underline{R} = 0.158$ on the 1158 data of the second set. An inspection of the observed and calculated structure factors revealed a systematic error in the second data set caused by the scattering of the irradiating X-ray beam off a telescope into the counter near a particular value of theta. When the affected data were removed by deleting all data with $\sin\theta/\lambda \ge .50$, <u>R</u> dropped to 0.114 on 925 data.

All the data in the neighborhood of the systematic error (40 to 45 degrees 20) were retaken with a lead sheet shielding the counter from the spurious X-rays, and other data showing large disagreements were remeasured to check for errors such as mis-set angles and mis-punched cards. At this time, the seventeen reflections were selected and examined for anomalous dispersion effects. These data showed that the wrong alternative had been chosen for the polarity. When the structure was inverted as required, a refinement of two anisotropic rubidium ions and twenty borons, including anomalous dispersion, gave an <u>R</u> of 0.136 on the 1175 data of the corrected second set. Another difference Fourier showed peaks ranging from 0.78 to 0.46 electrons/A³ in reasonable positions for all eighteen hydrogens. Only eight non-hydrogen peaks larger than 0.46 electrons/A³ were not explainable by such things as pile-up of errors near the rubidium ions or ill-fitting borons (e.g. a peak midway between two boron positions). Many attempts at refining the hydrogen positions under various restrictions produced various degrees of agreement, various unacceptable temperature factors and boron-hydrogen distances, and much frustration. The structure was finally refined in two ways: with no hydrogen included, and with each hydrogen in a calculated position 1.2 A from its boron (~ 1.3 A in the case of the two bridging hydrogens) and constrained to "ride"¹² on its boron. All hydrogens were also required to have the same temperature factor. Both refinements were done with the weighting scheme described.

In the no-hydrogen case the final \underline{R} was 0.133 on all 1175 data and 0.079 on the 935 non-zero data. In the last cycle, no parameter shifted by more than 0.04 of the standard deviation calculated for it from the least-squares matrix.

In the case which included hydrogens, the final <u>R</u> was 0.127 on all 1175 data and 0.073 on the 935 non-zero data. In the last cycle, no parameter shifted by more than 0.03 of its standard deviation. The standard deviation of an observation of unit weight, defined as $\left[\Sigma\underline{w}(|\underline{kF}_{0}| - |\underline{F}_{c}|)^{2}/(\underline{u}-\underline{v})\right]^{\frac{1}{2}}$ where <u>u</u> is the number of data and <u>v</u> is the number of independent parameters refined, was 1.73. The root-mean-square difference in boron positions between the two refinements is 0.05 A, and the greatest difference is 0.11 A.

The results of the refinement which included hydrogen are believed to be more accurate on the basis of better agreement and smaller scatter in both the boron temperature factors and in boron-boron distances. All results presented hereinafter refer to the refinement on the corrected second data set which included hydrogens. The final positional and thermal

parameters are presented in Table I, while Table II lists the observed and calculated structure factors. Observed and calculated values of the function

$$\frac{|F(+)| - |F(-)|}{0.5(|F(+)| + |F(-)|}$$

where $\underline{F}(+)$ and $\underline{F}(-)$ are structure factors for $\underline{k} > 0$ and $\underline{k} < 0$, are tabulated in Table III for the seventeen anomalous dispersion data. The agreement of magnitudes and signs clearly establishes the non-centric space group and is strong evidence of the correctness of the structure.

2. <u>Discussion</u>

The structure of the photoisomeric $B_{20}H_{18}^{2-}$ anion found in this study is shown in Figure 1. This structure is the more symmetric one of the two possibilities postulated by Hawthorne and Pilling.² The anion has an approximate $2/\underline{m}(\underline{C}_{2\underline{h}})$ point symmetry. A calculation of the anion's deviations from perfect $2/\underline{m}$ symmetry gave a root-mean-square deviation of 0.07 A (excluding B5', see below). It is felt that this is nearly, if not entirely, within the accuracy of the determination. Thus the noncentric nature of the space group is a result of an unsymmetrical arrangement (Figure 2) of symmetric pieces. No significance is assigned to the handedness found for the particular sample from which the data were obtained, and another crystal would be expected to have an equal chance of having either handedness.

An examination of the boron-boron distances given in Table IV shows that B5' is apparently mis-located in a position too far from the apex and too close to the opposite equatorial ring. The author does not Table I. Final Positional and Thermal Parameters in $Rb_2B_{20}H_{18}$

Atom	X	Y	<u>Z</u>	$\underline{B}^{\mathbf{a}}$
Rb(1)	3714(2) ^b	0801(1)	.3225(4)	(c)
Rb(2)	.3688(2)	.0801(1)	3299(4)	(c)
B(1)	.039(2)	.176(1)	.566(4)	4.4(6)
B(2)	.052(1)	.219(1)	.369(3)	1.1(4)
B(3)	•158(2)	.167(1)	.457(3)	2.7(5)
B(4)	.069(2)	.092(1)	•499(3)	3.0(5)
B(5)	044(1)	.146(1)	.407(2)	0.8(3)
B(6)	•140(2)	•181(1)	.218(3)	1.8(4)
B(7)	.162(2)	.091(1)	.315(4)	3.2(5)
B(8)	.022(2)	.075(2)	.275(4)	4.8(7)
B(9)	.000(2)	.160(1)	.174(3)	2.3(4)
B(10)	.096(2)	•111(1)	.110(4)	3.0(5)
B(1')	.138(2)	.389(1)	.400(3)	2.9(4)
B(2')	.095(2)	.316(1)	.293(3)	2.8(5)
B(3')	.077(2)	.405(1)	• 19 5(3)	2.3(5)
B(4')	.229(1)	.421(1)	.239(2)	0.9(4)
B(51)	•241(2)	.329(1)	.312(3)	2.4(4)
B(6')	.081(2)	.330(1)	.048(3)	2.8(5)
B(7')	.172(2)	.403(1)	.005(4)	3.1(5)
B(81)	.287(2)	.350(1)	.104(3)	3.1(5)
B(91)	.1 88(2)	.284(1)	.153(3)	4.0(5)
B(10')	.204(2)	.318(1)	062(3)	3.2(5)

		· ·		
H(1) ^d	•019	•197	.717	1.2
H(3)	•229	.187	•556	1.2
H(4)	.064	•054	•631	1.2
H(5)	136	•150	•463	1.2
H(7)	.238	.053	.286	1.2
H(8)	017	.022	.214	1.2
H(9)	051	.177	•040	1.2
H(10)	.116	.089	041	1.2
H(1')	•117	•412	•550	1.2
H(3')	.003	•445	.217	1.2
H(4')	.267	.475	•295	1.2
Ĥ(5 ')	.297	• 309	.437	1.2
H(61)	. 008	. 309	047	1.2
H(71)	.173	•440	128	1.2
H(81)	.378	• 344	•046	1.2
H(101)	•225	•295	212	1.2
H(2-2')	.027	.285	•403	1.2
H(6-9')	•210	•215	•114	1.2

(a) The units are A^2 .

Table I, continued

(b) The number in parentheses is the standard deviation in the least significant digit as derived from the leastsquares matrix. 13.

Table I, continued

- (c) The anisotropic temperature factors for Rb(1) are: $(\underline{B}_{11}, 4.1(2); \underline{B}_{22}, 2.5(2); \underline{B}_{33}, 5.6(2); \underline{B}_{12}, 0.7(1);$ $\underline{B}_{13}, 1.4(1); \underline{B}_{23}, 0.3(1)$) and for Rb(2): $(\underline{B}_{11}, 4.3(2);$ $\underline{B}_{22}, 3.1(2); \underline{B}_{33}, 3.8(2); \underline{B}_{12}, -0.7(1); \underline{B}_{13}, -1.1(1);$ $\underline{B}_{23}, 1.1(1)$, where the units are A^2 .
- (d) H(1) is on B(1) and similarly. H(2-2') and H(6-9') are the two bridging hydrogens. No standard deviations are given for the positional parameters since these are assumed positions.

27 28 11 12 6 11 5 7 22 19 8 0 1 9 59 54 10 0 4 11 36 35 12 0 3 H,L= 2, 7 57 55 75 75 43 42 1 31 45 47 15 22 41 41 19 15 53 54 17 14 25 31 L= 3, 5 11 12 13 14 15 1(14 17 5 14 17 5 14 19 Hula K FR(0 74 1 10

 mile 1.5
 5
 60

 1.5
 5
 60
 7

 2.1
 1.1
 7.1
 1.1
 7

 2.2
 1.4
 7.4
 7.7
 7.1
 7

 2.3
 1.4
 7.4
 7.7
 7.3
 7.2
 7.4
 7.7
 7.3
 7.2
 7.4
 7.4
 7.7
 7.3
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.3
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.3
 7.2
 7.2
 7.2
 7.2
 7.3
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2
 7.2 27 24 10 19 0 16 100 78 7 2 53 51 0 13 0 15 .L= 4, 2 20 40 37 60 34 52 64 52 65 10 12 18 32 16 18 37 6 6 7 31 6 7 21 7 08 46 21 66 26 46 26 31 44975142370111027 42 12 17 17 21 42 F & 6324 64 433 4 7 6 6 47 15 35 16 27 27 45 12 57 12 30 $\begin{array}{c} \mu_{1} = 1, 1 \\ \mu_{2} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{1} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{1} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{1} = 1, \mu_{2} \\ \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\ \mu_{2} \\ \mu_{2} = 1, \mu_{2} \\$ 28 23 34 6 74 27 11 10 17 19 14 14 14 14 14 14 14 14 10 0 0 45678 11 12 13 14 35 n q 10 11 12 13 14 16 17 67 80 10 11 1C 11 12 13 14 15 16 17 H,L+ 2, K F(R F) 0 55 1 1 0 2 23 1 3 0 4 24 2 5 0 6 34 3 7 0 8 28 2 H,L+ 3, 1 K F(R F) $\begin{array}{c} {}_{\mu, \mu = 0}^{\mu}, {}_{\mu,$ 1 - 4. 7 FAR FCA 0 7 17 20 12 12 45 4C 0 6 17 21 0 9 FN9 79 10 39 7 2112271464291414729 66000713795305 $\begin{array}{c} \textbf{w}_1 \textbf{L} = \textbf{7}, \ 2 \\ \textbf{x} \in \textbf{FCB} \ \textbf{FC} \\ \textbf{S} = \textbf{S} = \textbf{S} \\ \textbf{S} = \textbf{S} = \textbf{S} \\ \textbf{S} = \textbf{S} = \textbf{S} \\ \textbf{S} \\ \textbf{S} = \textbf{S} \\ \textbf{S} \\ \textbf{S} = \textbf{S} \\ \textbf{S$ 87 79 11 7 44 41 12 12 6 10 32 12 13 14 15 16 1C 11 12 13 14 15 1 FCA 33 32 165 165 136 72 3# 2 2P $\begin{array}{c} \mathbf{x} \\ \mathbf$ $\begin{array}{c} \textbf{H}_{11} = 10, 1 \\ \textbf{K} \in \text{FOR} \ \text{FGA} \\ \textbf{0} \ \text{e3} \ \text{of} \\ \textbf{0} \ \text{e3} \ \text{of} \\ \textbf{1} \ \textbf{C} \ \textbf{7} \\ \textbf{2} \ \textbf{1} \ \textbf{C} \\ \textbf{2} \\ \textbf{3} \ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \ \textbf{2} \\ \textbf{3} \ \textbf{3} \\ \textbf{3} \\ \textbf{5} \ \textbf{16} \ \textbf{6} \\ \textbf{7} \ \textbf{11} \\ \textbf{6} \\ \textbf{7} \ \textbf{11} \\ \textbf{6} \\ \textbf{7} \ \textbf{11} \\ \textbf{6} \\ \textbf{7} \\ \textbf{11} \\ \textbf{6} \\ \textbf{7} \\ \textbf{5} \\ \textbf{7} \\ \textbf{10} \\ \textbf{10} \\ \textbf{20} \\ \textbf{10} \\ \textbf{5} \\$ FCB 44 0 26 74 24 0 48 0 28 6 17 0 FOR FC 2 2C 22 22 41 45 23 25 8 C 11 41 63 24 22 47 46 74 75 11 23 55 6C 0 4 11 7 24 22 55 6C $\begin{array}{c} \mathbf{x} & \mathbf{r} & \mathbf{q} & \mathbf{q} & \mathbf{q} \\ \mathbf{r} & \mathbf{r} & \mathbf{q} & \mathbf{q} \\ \mathbf{r} & \mathbf{r} & \mathbf{q} & \mathbf{q} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{q} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{q} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf$ 10 0 9 19 C 9 H,L. 2, 3 K FOB FCA C 44 57 1 1C 13 2 11 11 3 8 7 4 21 20 5 C 3 4 14 15 9 10 11 12 13 14 15 16 +,L= EC 12 78 65 14 15 14 0 0 0 20 2 14 4 7 11 16 1 2 # 28 32 FCA 37 13 11 7 20 3 15 26 15 15 26 15 13 227 6 6 4 10 7 K FDE 0 129 1 4C 2 4E F1 1571450157156244 C3661571450157156244 9 10 11 17 14 14 16 F125640585049 10 11 12 13 $\begin{array}{c} * \ fCe \ FCa \\ 0 \ e7 \ e5 \\ 27 \ 27 \ 2 \\ 2 \ 29 \ 21 \\ 3 \ 4e \ 42 \\ 4 \ 22 \ 34 \\ 4 \ 22 \ 34 \\ 5 \ 22 \ 27 \\ e \ 45 \ 4e \\ 7 \ 0 \ 7 \ 59 \\ 57 \ 6 \ 59 \ 57 \\ 9 \ 37 \ 2e \\ 10 \ 0 \ 7 \ 7 \\ 11 \ 25 \ 34 \\ 12 \ e0 \ 57 \\ 13 \ 9 \ 57 \\ 13 \ 26 \ 37 \\ 14 \ 26 \ 37 \\ 14 \ 26 \ 37 \\ 15 \ 21 \ 24 \\ F_{+}L^{\pm} \ 7, \ 4 \end{array}$ 124 7154 1144 7157 1577 1577 1431 280 1435 1435 1435 1435 5 C e 16 e 27 5 c 10 17 11 10 12 25 13 C 14 C 15 C 15 C 17 12 16 21 16 21 FCA 10 12 6 30 14 24 12 17 23 4 10 1 4,1 ± * = 60 0 0 1 0 1 0 0 1 0 1 0 1 FC8 45 12 20 17 20 26 77 28 78 10 H.L= K FOB 0 12 1 12 1 C 0 C 12 12 12 12 F089720970019102008
 γ
 1.1
 4.6
 6.7

 1
 4.6
 1.2
 1.7
 6.7

 1
 1.0
 1.2
 1.17
 7.6
 1.2

 1
 1.0
 1.2
 1.17
 1.0
 1.2
 1.17
 1.0
 1.2
 1.17
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 2 e 16 35 7 44 14 11 4 28 13 14 13 28 0 15 10 11 12 13 14 15 15 16 17 18 19 10 11 12 FCB 27 21 15 27 0 25 8 46 8 46 9 45 10 11 12 41 12 41 13 3C 4 24 4 3C 4 3C 4 7 5 19 3 68 4 24 5 48 5 48 5 10 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 3C 13 77 12 12 13 77 14 3C 14 3C 14 3C 15 75 16 75 17 12 16 75 17 12 17 75 17 12 18 75 18 FC# 15 14 18 34 23 6 7
 K
 F(R)

 0
 P

 1
 20

 2
 15

 3
 55

 4
 26

 5
 15

 6
 0

 7
 2

 8
 4

 6
 0

 10
 0

 11
 40

 12
 16

 14
 0

 15
 16

 16
 25
 9 10 11 12 13 14
 10
 10

 1
 1

 2
 1

 3
 1

 2
 1

 3
 1

 2
 1

 3
 1

 2
 1

 5
 16

 9
 6

 10
 1

 11
 1

 12
 1

 12
 1

 12
 1

 12
 1

 12
 1

 3
 2

 13
 17

 14
 17

 12
 14

 3
 2

 13
 17

 14
 17

 15
 17

 14
 17

 14
 17

 15
 17

 14
 17

 15
 17
 H.L.R 1. 3 K FDE FCA O 124 FCA I e3 e5 2 75 77 -2 71 73 3 132 135 -3 137 74 $\begin{array}{c} \mathsf{v} & \mathsf{n} \\ \mathsf{r} \\ \mathsf{n} \\ \mathsf{r} \\ \mathsf$ $\begin{array}{c} \mathsf{m}_{Ll}=2, \ 0 \\ \mathsf{s} \ \mathsf{Fr}8 \ \mathsf{Fc}a \\ \mathsf{o} \ \mathsf{s} \ \mathsf{Fr}8 \ \mathsf{Fc}a \\ \mathsf{o} \ \mathsf{s} \ \mathsf{r}78 \ \mathsf{Fc}a \\ \mathsf{s} \ \mathsf{1} \ \mathsf{s}6 \ \mathsf{1} \ \mathsf{s}6 \\ \mathsf{s} \ \mathsf{1} \ \mathsf{c}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{1} \ \mathsf{s}6 \ \mathsf{1} \ \mathsf{s}6 \\ \mathsf{s} \ \mathsf{1} \ \mathsf{1} \ \mathsf{s} \ \mathsf{1} \ \mathsf{1} \\ \mathsf{s} \ \mathsf{1} \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{1} \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{1} \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{1} \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{1} \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{s} \ \mathsf{s}7 \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{s} \ \mathsf{s}7 \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{s} \ \mathsf{s}7 \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \ \mathsf{s} \ \mathsf{s} \ \mathsf{s}7 \ \mathsf{s}7 \ \mathsf{s}1 \\ \mathsf{s} \ \mathsf{s} \$
 +.L= 7, 4

 K FCA FCA

 0 32

 1 23

 2 29

 3 35

 3 4 25

 5 46

 5 1

 6 50

 7 28

 8 19

 9 57

 10 11

 12 29

 13 0

 +.L= 7, 5

 K FCE F5
 11 17 11 6 54 52 C 7 C 15 C 10 L+ P, 3 11 52 22 13 4 92 15 24 52 20 34 92 15 24 56 26 11 12 13 14 15 H+L* 23 15 17 24 0 21 18 LA 42 36 27 4 40 35 16 51 31 74 11 13F 14C e5 e5 105 104 31 75 31 75 31 75 31 25 31 25 31 25 31 25 31 25 31 25 31 25 31 25 31 25 31 41 31 25 31 41 31 25 31 41 31 25 31 25 31 45 31 25 31 45 31 25 31 45 31 25 31 45 31 25 x FnB 1 49 1 0 1 43 15 29 15 49 0 30 12 12 39 42 12 9 23 10 15 35 0 42287181117772 544805438 FC4 2559151497059 FCB 17 0 17 6789 10112 1314 15167 18 177 4 5 6 7 # 7 10 11 12 12 12 21 25 12 +.L= 7. 6 K FCE FCA 0 43 42 1 72 24 2 16 22 3 11 17 4 16 2C 5 C 17 6 22 3C 7 0 5 R 17 22 9 17 26 11 12 11 H.L= 7. 6 K FCA FCA

 3
 4

 4
 30

 5
 1

 7
 2

 2
 1

 5
 2

 2
 1

 5
 2

 6
 1

 7
 1

 4
 300

 1
 2

 4
 4

 5
 2

 6
 1

 6
 1

 7
 1

 4
 4

 4
 3

 6
 1

 7
 1

 6
 1

 7
 1

 6
 1

 7
 1

 7
 1

 7
 1

 8
 1

 8
 1

 8
 1

 8
 1

 8
 1

 8
 1

 8
 1

 8
 1

 8
 1

 K 0 FN8 52 11 27 28 23 16 47 74 21 21 21 21 2100 5 1 3 5 6 7 8 5 1 6 7 8 5 1 7 8 5 1 7 8 5 1

 0.14

 H.L.+10.5
 S

 10
 SC

 11
 SC

 12
 C

 13
 11

 4
 11

 35
 C

 13
 S

 13
 S

 13
 S

 14
 11

 35
 C

 13
 S

 13
 S

 13
 S

 14
 11

 35
 C

 13
 S

 13
 S

 14
 12

 15
 C

 17
 21

 2
 17

 12
 S

 0 F 9 7 4 9 4 5 8 3 4 8 3 3 5 2 3 3 1 2 15 2273 14 11 10 59 59 59 59 19 1 FCB 0 12 0 28 D, E FCA 67 42 25 74 41 28 45

12 13 14 15 16 17 FC# 26 55 25 30 FCR 20 52 75 72

H.t. K FCB J 69 36 45 94 32 3 3. 4 3. FCA 3. FCA 9. 37 4. 8 98 36

H.L. 4. 6 K FOB FCA 0 69 66 1 0 6 2 4] 39

Table II. Observed and Calculated Structure Factors for Rb2B20H18

XBL 687-1324

17

10

F05 C 25 12 21 LE

.L=1C. 0

P, 5 FCA D 16 E 27 H.L+ 1 K FCB C 20 1 26

FCA 44 8

S

	<u>h</u>	k	<u>l</u>	Obs.	Calc.
	1	1	1	-0.13	-0.15
	9	3	2	-0.13	-0.14
	1	17	3	0.11	0.10
	1	9	5	0.10	0.14
	6	3	1	-0.10	-0.12
	8	3	0	-0.10	-0.11
	1	3	. • 1	0.06	0.07
	5	9	2	-0.05	-0.07
	1	2	3	0.05	0.05
	0	1.	1	0.05	0.03
•	1 :	3	3	-0.04	-0.03
	0	14	0	0.04	0.03
	3	3	3	-0.03	-0.04
	0	18	0	0.03	0.03
	0	2	0	0.01	0.01
	0	2	2	0.	-0.01
	0	3	1	0.	0.01

Table III. Values of $\frac{|\underline{F}(+)| - |\underline{F}(-)|}{0.5(|\underline{F}(+)| + |\underline{F}(-)|)}$ for $Rb_2B_{20}H_{18}^{a}$

(a) Where $\underline{F}(+)$ and $\underline{F}(-)$ are the structure factors for $(\underline{h}, \underline{k}, \underline{\ell})$ and $(\underline{h}, -\underline{k}, \underline{\ell})$, respectively.

XBL 678-4463

Figure 1. - $B_{20}H_{18}^{2-}$ photoisomer (terminal hydrogens omitted for clarity).

Figure 2. - One unit cell of $Rb_2 B_{20} H_{18}$ seen down <u>c</u> axis (hydrogens omitted). Numbers on Rb ions are <u>z</u> coordinates as decimal fractions of <u>c</u>; the centers of

the B_{20} units are approximately at $z = \frac{1}{2}$ and $z = \frac{3}{4}$.

apex-ring	A	<u>intra-ring</u>	A	inter-ring	A
B(1)-B(2)	1.66(3)	B(2)-B(3)	1.77(3)	B(2)-B(6) ^c	1.72(3)
-B(3)	1.67(3)	B(3)-B(4)	1.82(3)	B(6)-B(3)	1.78(3)
– B(4)	1.70(3)	B(4)-B(5)	1.87(3)	B(3)-B(7)	1.77(3)
-B(5)	1.64(3)	B(5)-B(2)	1.85(3)	B(7)_B(4)	1.76(3)
B(10)-B(6)	1.64(3)	B(6)-B(7)	1.86(3)	B(4)-B(8)	1.76(4)
-B(7)	1.73(4)	B(7)-B(8)	1.78(3)	B(8)-B(5)	1.85(4)
-B(8)	1.65(4)	B(8)-B(9)	1.80(4)	B(5)-B(9)	1.80(3)
-B(9)	1.58(3)	B(9) - B(6)	1.80(3)	B(9)- B(2)	1.91(3)
B(1')-B(2')	1.68(3)	B(2')-B(3')	1.86(3)	B(2')-B(6')	1.80(3)
-B(3')	1.70(3)	B(3')-B(4')	1.93(3)	B(6')-B(3')	1.79(3)
-B(4†)	1.73(3)	B(4')-B(5')	1.83(3)	B(3')-B(7')	1.82(3)
-B(5') ^b	1.82(3)	B(51)-B(21)	1.83(3)	B(71)-B(41)	1.88(3)
B(10 ')- B(6 ')	1.73(3)	B(6')-B(7')	1.82(3)	B(4')-B(8')	1.82(3)
-B(7')	1.73(3)	B(7')_B(8')	1.88(3)	B(8')-B(5') ^t	1.66(3)
-B(81)	1.70(3)	B(8')-B(9')	1.79(3)	B(5')-B(9') ^k	, 1.58(3)
-B(9')	1.70(4)	B(9')-B(6')	1.76(3)	B(9')-B(2')	1.65(3)
•	*	· · ·			- +

Table	IV.	Distances ^a	in	Rb2B20H	18
-------	-----	------------------------	----	---------	----

٢.

across	bridges
B(2)-B(2')	1.98(3)
B(6)-B(9')	2.10(3)

Table IV, continued

- (a) These distances are not corrected for thermal motion. The terminal digits in parentheses are the standard deviations as estimated from the least-squares matrix in units of .01 A. However, the author feels that the root-mean-square deviations from the averages given in the text of ~.05 A are a better measure of the accuracy of these distances.
- (b) Evidence that B(5') is displaced from its "true" position.
- (c) Pairs of borons in the same B₁₀ unit which are involved in hydrogen bridges.

Angle, -B-B Numbers	degrees, unprimed	degrees, primed	Angle, B-B-B Numbers	degrees, unprimed	degrees, primed
2 1 3	64	67	629	59	61
3 1 4	65	68	637	63	61
4 1 5	68	62	748	61	61
512	68	63	859	59	67
6 10 7	67	63	263	61	62
7 10 8	63	66	374	62	63
8 10 9	68	63	4 8 5	62	63
9 1 06	68	62	2 9 5	60	69
e-a-e at	$re. = 66^{\circ} \pm$	2 [°]	e-e¹-e	ave. = 61°	± 2°
1 2 3	58	57	326	61	59
1 2 5	55	62	529	57	54
1 3 2	58	56	236	58	59
1 3 4	58	57	4 3 7	59	60
1 4 3	57	55	3 4 7	59	57
1 4 5	55	61	548	61	54
1 5 2	56	55	2 5 9	63	57
154	58	57	4 5 8	57	63
10 6 7	59	58	269	66	55
10 6 9	55	58	367	58	60
10 7 6	54	58	376	58	59
10 7 8	56	56	4 7 8	60	58
10 8 7	60	57	4 8 7	60	61

Table V. Angles^a in Rb₂B₂₀H₁₈

B-

Table V,	continued
----------	-----------

10	8	9	54	58		5	8 9	9 59	5
10	9	6	57	60		2	96	55	64
10	9	8	58	58		5	9 8	62	59
	a	-e-	e ave. = $57^{\circ} \pm$	2 ⁰			ee	e-e' ave. = 5	9 [°] ± 3 [°]
2	1	4	102	101		3	2 2	21	115
3	1	5	101	97		9	6)1	116
6	10	8	100	99		2	2' 4	51	112
7	10	9	103	94		* 6	9 1 (51	110
		a	$ve_{*} = 100^{\circ} \pm 3^{\circ}$	D				ave. = 113°	± 3 ⁰
2	3	4	93	88		5	2	21	155
3	4	5	88	89		7	6)1	154
4	5	2	89	92		2	2' 3	31	157
5	2	3	90	91	•	6	9 1 8	31	153
6	7	8	88	89	• 1910 - •			ave. = 155°	± 2 ⁰
7	8	9	9 3	86		6	.2 2	21	93
8	9	6	89	95		2	6 9	91	86
9	6	7	90	89		2	21	91	91
					· .	6	91 2	21	91
		a	$ve_{\bullet} = 90^{\circ} \pm 2^{\circ}$					ave. = $90^{\circ} \pm$	3 ⁰

(a) Standard deviations for these angles as calculated from the leastsquares matrix are ~ 1.5° , but the author feels that the given root-mean-square deviations from the average show that ~ 2.5° would be nearer the truth.

understand how this effect arises but did exclude B5' from the calculation of the deviations of the anion from $2/\underline{m}$ symmetry and from the calculations of average boron-boron distances.

The average of 15 apical-equatorial distances (excluding B1'-B5') is 1.68 \pm .04 A and the average of 28 equatorial-equatorial distances (excluding B5'-B8', B5'-B9', and the inter-bridging-boron distances) is 1.82 \pm .05 A. The shortened inter-bridging-boron distances average 1.68₅ \pm .05 A and the B-B distances across the B-H-B bridges average 2.04 \pm .09 A. The errors quoted are root-mean-square deviations. The increase in calculated bond distances due to thermal motion is estimated to be ~.02 A, or about half a standard deviation. These averages may be compared with those found¹³ for the cuprous salt of B₁₀H₁₀²⁻ which are 1.73 \pm .02 A for apical-equatorial distances, 1.86 \pm .03 A for distances within the equatorial rings, and 1.81₅ \pm .01₅ A for distances between equatorial rings.

The two rubidium ions are nearly centrically located, as can be seen from the table of atomic coordinates. The distance between one rubidium ion and the invert $(\overline{1})$ of the other's position is $0.062 \pm .008$ A. The rubidium-hydrogen distances are normal for van derWaals contacts. The average of the eight shortest Rb-H distances (four on each rubidium) is 2.8 A, and the shortest single distance is 2.6 A. The minimum boronrubidium distance is 3.3 A.

The $B_{20}H_{18}^{2-}$ ion described above is not the only one which might be constructed by joining two B_{10} polyhedra with two B-H-B bridges involving adjacent borons in each B_{10} unit. There are thirteen isomers which may

be so constructed, five of which are symmetric and the remaining eight of which form four enantiomorphic pairs. Other isomers involving bridging to non-adjacent atoms were not considered because of the drastic crowding of the pair of B-H groups which lie between any such non-adjacent pair. The thirteen isomers are listed in Table VI, together with the point groups to which they belong and an indication of which pairs of atoms in each polyhedron are involved in the hydrogen bridges. The isomer found in this investigation is the fifth listed in Table VI, while number 1 was proposed⁹ for the structure of the parent $B_{20}H_{18}^{2-}$ ion before it was shown^{5,6} to be linked by a pair of B-B-B three-center bonds rather than hydrogen bridges. Hawthorne and Pilling mention² "the formation of unidentified metastable intermediates" in the thermal reversion of the photoisomer studied here to the parent ion. Thus it may be that some or all of the isomers discussed here also exist.

no.ª	bridge locations	pairs ^c linked	point ^d group
1	(1-2', 2-1')	A-A	$2/\underline{m} = \underline{C}_{2h}$
2	(1-1', 2-2')	AA	$\underline{mm}2 = \underline{C}_{2\underline{v}}$
3	(2-31, 3-21)	E ⊸ E	$\underline{mm}^2 = \underline{C}_{2\mathbf{v}}$
4	(2-2', 3-3')	E-E	$2/\underline{m} = \underline{C}_{2\underline{h}}$
5	(2-21, 6-91)	E'-E'	$2/\underline{m} = \underline{C}_{2\underline{h}}$
6a	(2-21, 6-61)	T-7 1 T-7 1	
6ъ	(2-21, 9-91)	тт.	$222 = \underline{P}_2$
7a	(1-2', 2-3')	4 17	1 0
7b	(1-31, 2-21)	A-L	$1 = \frac{1}{2}$
8a	(1-2', 2-6')		
8b	(1-2', 2-9')	<u>А-</u> <u></u>	$1 = \frac{1}{2}$
9a	(2-21, 3-61)	· · · · · · · · ·	
9Ъ	(2-21, 3-91)	E-E'	$1 = \frac{C_1}{2}$
			· · ·

Table VI. Possible $(B_{10}H_8) \xrightarrow{H} (B_{10}H_8)^{2-}$ Isomers

- (a) The a-b pairs are enantiomers.
- (b) Reference 10.
- (c) A denotes an apex-equatorial pair, E denotes

 a pair in the same equatorial ring, and E'
 denotes a pair which has one member in each
 ring.
- (d) In Hermann-Mauguin and Schoenflies notations, respectively.

References and Footnotes

- A description of this work has been published by B. G. DeBoer,
 A. Zalkin, and D. H. Templeton, <u>Inorg. Chem.</u>, <u>7</u>, 1085 (1968).
- M. F. Hawthorne and R. L. Pilling, J. <u>Am. Chem. Soc.</u>, <u>88</u>, 3873 (1966).
- (3) M. F. Hawthorne, R. L. Pilling, and P. M. Garrett, <u>ibid</u>., <u>87</u>, 4740 (1965).
- (4) M. F. Hawthorne, R. L. Pilling, and P. F. Stokely, <u>ibid</u>., <u>87</u>, 1892 (1965).
- (5) R. L. Pilling, M. F. Hawthorne, and E. A. Pier, <u>ibid</u>., <u>86</u> 3568 (1964).
- (6) B. L. Chamberland and E. L. Muetterties, Inorg. Chem., 3, 1450 (1964).
- M. F. Hawthorne, R. L. Pilling, P. F. Stokely, and P. M. Garret,
 <u>J. Am. Chem. Soc.</u>, <u>85</u>, 3704 (1963).
- (8) A. R. Pitochelli, W. N. Lipscomb, and M. F. Hawthorne, <u>ibid</u>., <u>84</u>, 3026 (1962).
- (9) A. Kaczmarczyk, R. Bobrott, and W. N. Lipscomb, <u>Proc. Nat'l</u>. <u>Acad</u>. <u>Sci. U. S</u>., <u>48</u>, 729 (1962).
- (10) Numbering according to: R. Adams, <u>Inorg. Chem</u>., 2, 1087 (1963);
 See Figure 1.
- (11) "International Tables for X-ray Crystallography", Vol III, The Kynoch Press, Birmingham, England, 1962, pp. 202, 206, 216.
- (12) Each B-H unit was refined as a rigid, non-rotating body.
- (13) R. Dobrott and W. N. Lipscomb, <u>J. Chem. Phys.</u>, <u>37</u>, 1779 (1962).

III. The Crystal Structure of a Brominated Carborane - Metal Sandwich Compound - N(CH₃)₄[(B₉C₂H₈Br₃)₂Co]

A. Introduction

Hawthorne and co-workers^{1-6*} have recently synthesized a number of π -dicarbollyl metal compounds analogous to the π -cyclopentadienyl "sandwich" compounds. They found^{6,7} that one of these substances, $\text{Co}(\text{B}_9\text{C}_2\text{H}_{11})_2^{-1}$, could be electrophilically brominated by treatment with neat bromine or bromine in glacial acetic acid to give $\text{Co}(\text{B}_9\text{C}_2\text{H}_8\text{Br}_3)_2^{-1}$. This is thought⁷ to be the first example of a substitution upon the intact bis-dicarbollyl metal "sandwich" compound.

This determination⁸ of the crystal structure of the tetramethylammonium salt of the product ion once again establishes the bis-dicarbollyl metal structure as two icosahedra with the metal atom as their common vertex. This work was undertaken in order to ascertain the positions of bromine substitution upon these icosahedra. It was found that the bromines are bonded to three borons in each icosahedron which form a triangular face, one corner of which is adjacent to the cobalt atom. The other two corners of the brominated face are as far as possible from the two carbon atoms, which are adjacent to each other and to the cobalt.

B. Experimental

Crystals of $N(CH_3)_4[(B_9C_2H_8Br_3)_2C_0]$ were received from Professor

* References and Footnotes for part III are to be found on page 49.
M. F. Hawthorne of the University of California, Riverside. Intensity data were collected from two of these orange-brown crystals, both of which were approximately 0.1 mm square and 0.05 mm thick. The calculated linear absorption coefficient, μ , was 153 cm⁻¹ (for CuKa). It is estimated that the absorption effect on intensities may vary by a factor of the order of 1.5 between the extreme cases. Both crystals were mounted by being glued to the ends of Pyrex glass fibers in such a way that the fiber, the instrument φ axis, and the <u>b</u> axis were all perpendicular to the plate. A General Electric XRD-5 X-ray diffractometer equipped with a molybdenum X-ray tube, a manual quarter-circle Eulerian-cradle goniostat, and a Zr filter at the receiving slit was used to measure cell dimensions. They were obtained from carefully measured 2θ (θ is the Bragg angle) values of the <u>h</u>00, 0<u>k</u>0, and 00<u>l</u> reflections. The alpha doublet (λ (MoKa₁) = 0.70926 A) was resolved. The β angle was obtained directly from the angle on the φ circle between the <u>h</u>00 and 00<u>l</u> sets of reflections. A card-controlled version of the same apparatus, using a copper X-ray tube and a Ni filter between crystal and counter, measured intensities by scanning 20 at the rate of $1^{\circ}/\text{min.},$ beginning 0.7° below the α_1 peak and ending 0.7° above the a_2 peak (λ (CuKa₁,Ka₂) = 1.5405, 1.5443 A). The take-off angle at the X-ray tube anode was approximately 4°. Coincidence losses were negligible. Ten-second stationary background counts were taken at each end of the scan. Three reflections which were measured at frequent intervals showed no systematic trends over the course of taking either data set. The maximum 20 was 75° (sin $\theta/\lambda = 0.395$).

The first crystal yielded 1598 independent intensities before it

was accidentally destroyed. Of these, ~ 23% were measured once, ~ 64% either two or three times, and the remainder up to six times. These multiple measurements include remeasurements of the same reflection and measurements of equivalent $(-\underline{h}, \underline{k}, -\underline{\ell})$ reflections in an irregular pattern caused by the fact that these measurements were made during an initial exploration of the use of the newly-acquired diffractometer. The second crystal gave a complete set of 3002 independent intensities. Approximately 75% of these (those with $|\underline{\ell}| \leq 6$) also had their equivalent $(-\underline{h}, \underline{k}, -\underline{\ell})$ reflections measured. These figures do not include the space group extinctions which were also measured and found to confirm the extinction rules $(0\underline{k}0, \underline{k} \neq 2\underline{n}$ and $\underline{h}0\underline{\ell}, \underline{\ell} \neq 2\underline{n}$) obtained from preliminary Weissenberg photographs.

The intensity, \underline{I} , and standard deviation, $\sigma(\underline{I})$, for each measurement was calculated by:

$$\underline{\mathbf{I}} = \underline{\mathbf{C}} - (\underline{\mathbf{t}}_{\underline{\mathbf{C}}}/2\underline{\mathbf{t}}_{\underline{\mathbf{B}}})(\underline{\mathbf{B}}_{1} + \underline{\mathbf{B}}_{2}) \quad \text{and:}$$
$$\mathbf{\mathbf{I}} = \underline{\mathbf{C}} + (\underline{\mathbf{t}}_{\underline{\mathbf{C}}}/2\underline{\mathbf{t}}_{\underline{\mathbf{B}}})^{2}(\underline{\mathbf{B}}_{1} + \underline{\mathbf{B}}_{2}) + (0.06 \times \underline{\mathbf{I}})^{2}$$

σ

where \underline{C} is the number of counts accumulated in scanning through the reflection in time $\underline{t}_{\underline{C}}$, and \underline{B}_1 and \underline{B}_2 are the background counts, each obtained in time $\underline{t}_{\underline{B}}$. Within each data set, multiple measurements (including measurements of equivalent reflections) were averaged and the averages assigned standard deviations equal to the greater of: $(\Sigma_{\underline{i}} \sigma_{\underline{i}}^2/\underline{n}^2)^{\underline{i}}$ or $(\Sigma_{\underline{i}} \Delta_{\underline{i}}^2/\underline{n}^2)^{\underline{i}}$, where $\sigma_{\underline{i}}$ and $\Delta_{\underline{i}}$ are the standard deviation and deviation from the average of the <u>i</u>th measurement and <u>n</u> is the number of measurements averaged. The latter expression did give the greater value in 10% of the

cases in the first set and 15% in the second set. Later, it was realized that this procedure tends to "average out" the 0.06 X \underline{I} included in $\sigma(\underline{I})$, but this was approximately corrected when the two data sets were combined as described below. Observed structure factors for reflections which were included in both data sets were larger in the first set about as often as in the second, and corresponding values were typically in disagreement by 5%. There was no statistically valid deviation from equal scaling, and the combined data set was generated by averaging (without scaling) those \underline{F}_{o} values⁹ which the two sets had in common and setting: $\sigma^{2}(\underline{F}_{\underline{ave}}) = 0.5[\sigma^{2}(\underline{F}_{1}) - (0.03\underline{F}_{1})^{2}] + 0.5[\sigma^{2}(\underline{F}_{2}) - (0.03\underline{F}_{2})^{2}] + (0.03\underline{F}_{\underline{ave}})^{2},$ where the terms in square brackets were set to zero if they were negative. If the expression: $\sigma^2(\underline{F}_{ave}) = 0.5(\underline{F}_1 - \underline{F}_2)^2$ gave a larger number, it was used instead. In no case was any reflection of the combined set allowed to have a standard deviation less than 3% of itself (corresponding to 6% of <u>I</u>). A plot of the resulting $\sigma(\underline{F}_0)$ versus \underline{F}_0 revealed that the great majority of points fall on or near a smooth curve. This curve starts near 10 electrons for small \underline{F}_{0} , stays near 3 electrons for $\underline{F}_{0} = 40$ to 100 electrons, and follows the 3% of $\underline{F}_{\underline{0}}$ line thereafter. Forty-five percent of the data have $\underline{F}_{0} \ge 70$ electrons, and of these, only about 8% have standard deviations more than three electrons above the curve described, with the 002 reflection by far the worst at 441 ± 66 electrons. These large deviations were, of course, caused by disagreements between the two data sets obtained from the two different crystals. All data were corrected for Lorentz and polarization effects, but no corrections beyond the averaging just described were made for absorption or extinction. Computations were performed on an IBM 7044 and a CDC 6600. Zalkin's FORDAP and DISTAN programs (unpublished) were used for Fourier syntheses and distance-and-angle calculations. An unpublished Wilson-plot program by Maddox and Maddox gave normalized structure factor magnitudes¹⁰ which were used in Long's sign-determination program¹¹ as described below. The unpublished version of the Ganzel-Sparks-Trueblood least-squares program which was used, minimizes the function $\Sigma_{\rm W}(|{\bf kF}_{\rm Q}| - |{\bf F}_{\rm Q}|)^2/\Sigma_{\rm W}|{\bf kF}_{\rm Q}|^2$, where ${\bf F}_{\rm Q}$ and ${\bf F}_{\rm Q}$ are the observed and calculated structure factors, <u>k</u> is the scale factor, and <u>w</u> is the weighting factor. Scattering factors¹² for Co⁺³ and neutral Br were corrected for the real part of anomalous dispersion by -2.2 and -0.9 electrons, respectively. The imaginary part of anomalous dispersion was neglected. Scattering factors for neutral nitrogen, carbon, and boron were also taken from standard tables¹². The anisotropic temperature factors used have the form:

$\exp(-0.25 \Sigma_{\underline{\Sigma}} \underline{\Sigma}_{\underline{h},\underline{h},\underline{b},\underline{b},\underline{B},\underline{i}}),$

 $\underline{i}, \underline{j} = 1, 2, 3$, where $\underline{b}_{\underline{i}}$ is the \underline{i} th reciprocal cell length.

C. <u>Results</u>

The monoclinic unit cell, space group $P2_1/c$, $\underline{a} = 19.893 \pm .010$ A, $\underline{b} = 19.487 \pm .010$ A, $\underline{c} = 15.058 \pm .010$ A, $\beta = 93.15 \pm .05^{\circ}$, contains eight formula units of $N(CH_3)_4 [Co(B_9C_2H_8Br_3)_2]$. The calculated density of 1.967 g/cc agrees with the value (1.98 $\pm .01$ g/cc) found by flotation in a mixture of bromoform and ethylene dichloride. These measurements apply to room temperature (~ 23[°] C) and the error figures given are estimates. The observed extinctions correspond to space group $P2_1/c$. All four of the two-fold sets of special positions are occupied by cobalt atoms and all other atoms are in general four-fold positions $\pm(x,y,z; x, \frac{1}{2}-y, \frac{1}{2}+z)$.

1. Determination of Structure

Attempts to interpret the Patterson function calculated from the second (complete) data set failed because of an error in communication which resulted in the mistaken idea that there were four, rather than eight, molecules per unit cell. Normalized structure factor magnitudes.¹⁰ \underline{E}_{n} , were calculated and used in Long's sign-determining program¹¹ which iteratively applies the relation; $\underline{sE}_{\underline{h}} \sim \underline{s\Sigma}_{\underline{k}} \underline{E}_{\underline{h}} \underline{E}_{\underline{k}}$, where \underline{s} is to be read "the sign of". After enough of the signs were worked out by hand to yield a good set of "starting reflections" for input, a run of Long's program on 379 <u>E's \geq 1.5 gave one set of signs which was better than any</u> other as judged by the smaller number of passes necessary to reach it and by its high consistency index (0.82 as against the second-best 0.65). The consistency index is defined as: $\sum_{h} \sum_{k} E_{k} E_{h} E_{k} E_{h-k} / \sum_{h} \sum_{k} |E_{h} E_{k} E_{h-k}|$. A Fourier synthesis using the signed E's as coefficients showed sixteen largest peaks ranging in relative size from 1.00 to 0.57 with a definite break down to the seventeenth at 0.28. Isotropic bromines at these sixteen positions, four of which were the two-fold special positions, quickly refined to <u>R</u> = 0.26 where <u>R</u> = $\Sigma ||\underline{kF_o}| - |\underline{F_c}|| / \Sigma |\underline{kF_o}|$. A difference Fourier synthesis phased by these sixteen atoms showed all fifty-four of the non-hydrogen light atoms. Their locations showed that the asymmetric unit contains four half-anions plus two tetramethylammonium ions and that the cobalt atoms are those in the four two-fold sets of

special positions. The refinement beyond this point was routine except that, because of the large number of parameters involved, it was done in a block diagonal fashion. The heavy atoms (four anisotropic cobalts fixed at the special positions plus twelve anisotropic bromines) were refined full-matrix while the light atoms were held fixed, alternately with fullmatrix refinements of the fifty-four isotropic light atoms with the heavy atoms fixed. The two carbons in each of the four icosahedral fragments were identified by their low temperature factors when refined as borons and the shorter distance between them. The partial data set from the first crystal was averaged in as described above when the refinement halted at $\underline{R} = 0.11$ and it was found that the large disagreements were concentrated at low angle (where most of the partial data set had been obtained). Continued refinement using this composite data set changed the structure only slightly, but <u>R</u> fell to nearly its final value and the distribution of large disagreements became more uniform. Six cycles of diagonal-matrix least-squares (all parameters) finished the refinement and gave the final R value of 0.087. The standard deviation of an observation of unit weight, defined as $\left[\Sigma_{\underline{w}}(|\underline{kF}_{o}| - |\underline{F}_{c}|)^{2}/(\underline{u}-\underline{v})\right]^{\frac{1}{2}}$, where \underline{u} is the number of data and \underline{v} is the number of independent parameters refined, was 2.28. Standard deviations derived from the final diagonal matrix were typically 10% less than those obtained from one cycle of full-matrix refinement which included all parameters, and ranged from approximately 5% larger to approximately 25% smaller.¹³ In the last cycle, no parameter shifted more than 4% of the standard deviation calculated for it, except for the tetramethylammonium ions, where a few parameters shifted by as much as 11%

of their calculated standard deviations. The six largest peaks in a final difference Fourier (1.9, 1.8, 1.8, 1.3, 1.1, and 0.9 electrons/A³) were all judged to be due to errors in the data, since their positions (far from any atom) made no chemical sense. This result made a search for hydrogens unjustified. The final atomic coordinates and thermal parameters are listed in Table I and the values of $|\underline{F}_0|$ and \underline{F}_c are given in Table II.

2. <u>Discussion</u>

All four crystallographically unrelated anions were found to have the same atomic arrangement with corresponding dimensions equal to within the experimental accuracy. Figure 1 illustrates the structure of the $C_0(B_9C_2H_8Br_3)_2^{-1}$ anion and the numbering system used in this study. The top and bottom halves of the anion are related by a crystallographic inversion center located at the cobalt. Interatomic distances are presented in Table III and averages thereof in Table IV. The average B-B. B-C, C-C, B-Br, and Br-Br distances are in agreement with those found 14-19 for similar compounds. The Br-B-B angles are all (with one exception) within 5° of their 121° average and show no significant deviations from this value which are systematic over the four anions. The Br(5)-B(5)-Coangles are slightly smaller (116° to 119°) as expected from the protrusion of the icosahedron's cobalt vertex. This protrusion is also shown by the smaller angles (49.4°) with a root-mean-square deviation of $\pm 1.7^{\circ}$ about this value) at cobalt. The 120 B-B-B angles necessarily average to exactly 60° and have a root-mean-square deviation of 2°. The sixteen B-C-B and thirty-two C-B-B angles average 63° and 58 $\frac{10}{2}$ while the four C-B-C and

Table I. Final Positional and Thermal Parameters^a in N(CH₃)₄[(B₉C₂H₈Br₃)₂Co]

atom	X	Y	<u>Z</u>	<u>B</u> 11	<u>B</u> 22	<u>B</u> 33	<u>B</u> 12	<u>B</u> 13	<u>B</u> 23
1 Co	0.	0.	0.	3.1(2)	2.1(2)	3.0(2)	0.7(2)	0.1(2)	0.0(2)
1 Br(5)	.0939(1) ^b	.0812(1)	1619(2)	6.1(1)	5.8(2)	5.0(2)	-0.1(1)	0.9(1)	0.6(1)
1 Br(9)	.1640(2)	.1975(2)	.0155(2)	7.9(2)	6.9(2)	8.3(2)	-2.5(1)	-1.2(2)	0.2(2)
1 Br(10)	0010(1)	.2408(1)	1278(2)	7.6(2)	3.4(1)	8.4(2)	-0.1(1)	-1.5(2)	2.2(1)
2 Co	0.5	0.5	0.	2.2(2)	2.2(2)	2.2(2)	-0.1(2)	0.4(2)	-0.2(2)
2 Br(5)	.3829(1)	•4459(1)	.1533(2)	4.9(1)	4.7(1)	5.4(2)	-0.8(1)	2.5(1)	0.4(1)
2 Br(9)	.3712(2)	.2769(2)	.0308(2)	12.7(2)	8.2(2)	6.5(2)	-7.7(1)	1.4(2)	-1.0(2)
2 Br(10)	•5025(1)	.3069(1)	.2262(2)	8.3(2)	5.0(1)	4.8(2)	-1.0(1)	0.2(1)	2.0(1)
3 Co	0.	0.5	0.	2.1(2)	2.1(2)	3.1(3)	0.3(2)	0.3(2)	0.0(2)
3 Br(5)	.0684(1)	.6171(1)	1475(2)	5.1(1)	5.9(1)	8.4(2)	0.1(1)	1.8(1)	4.2(1)
3 Br(9)	•1905 (1)	•4844(2)	2110(2)	6.2(1)	7.8(2)	6.9(2)	-1.3(1)	3.5(1)	-2.1(1)
3 Br(10)	.2332(1)	.6034(2)	0147(2)	4.3(1)	8.4(2)	8.6(2) .	-3.1(1)	1.3(1)	-2.1(2)
4 Co	0.5	0.	0.	2.6(2)	2.5(2)	2.9(3)	0.9(2)	0.4(2)	0.2(2)
4 Br(5)	.4304(1)	1082(1)	1688(2)	5.8(1)	4.2(1)	3.3(1)	-0.5(1)	0.4(1)	-0.6(1)
4 Br(9)	.2666(1)	0179(2)	1510(2)	4 . 3(1)	7.5(2)	6.9(2)	0.1(1)	-2.0(1)	1.8(2)
4 Br(10)	.3133(1)	1774(1)	0066(2)	6.4(1)	4.7(1)	5.0(2)	-1.7(1)	0.6(1)	0.0(1)

ontinued Ta

ble	I,	co
-----	----	----

							•			
atom	x	Y	<u>Z</u>	B		atom	x	Y	<u>Z</u>	B
1 C(2)	060(1)	.070(1)	.057(1)	3.5(5)		3 C(2)	.068(1)	.463(1)	.088(2)	4.8(6)
1 C(3)	.012(1)	.050(1)	•115(2)	4.7(6)		3 C(3)	.053(1)	.413(1)	.004(1)	4.4(5)
1 B(4)	.079(1)	.058(1)	.058(2)	3.8(6)		3 B(4)	.056(1)	•451(1)	099(2)	3.9(6)
1 B(5)	.044(1)	.091(1)	055(2)	3.4(6)		3 B(5)	.085(1)	.540(1)	067(2)	2.2(5)
1 B(6)	040(1)	.092(1)	042(2)	3.1(6)		3 B(6)	• 0 90(1)	.546(1)	.052(2)	3.9(6)
1 B(7)	034(2)	•124(2)	•141(2)	7.5(9)		3 B(7)	•131(2)	.398(2)	.056(2)	7.0(9)
1 B(8)	.060(1)	.124(1)	•136(2)	4.3(7)		3 B(8)	.122(1)	.399(2)	053(2)	5.7(8)
1 B(9)	.079(1)	.150(2)	.029(2)	6.2(8)		3 B(9)	•147(1)	.477(1)	096(2)	3.3(6)
1 B(10)	•005(1)	.169(1)	036(2)	3.8(6)		3 B(10)	•164(1)	.532(1)	009(2)	3.5(6)
1 B(11)	068(2)	.151(2)	.033(2)	7.4(9)		3 B(11)	.159(2)	.483(2)	.091(2)	6.2(8)
1 B(12)	.011(2)	.192(2)	.073(2)	77(9)		3 B(12)	.185(1)	•445(2)	007(2)	5.6(8)
۰۰ ۲۰		•			an An an					· · · · · ·
2 C(2)	.580(1)	.435(1)	001(1)	4.3(6)		4 C(2)	.447(1)	009(1)	•113(1)	3.4(5)
2 C(3)	.522(1)	.422(1)	082(1)	4.1(5)		4 C(3)	.425(1)	.060(1)	.053(1)	3.7(5)
2 B(4)	.443(1)	•413(1)	048(2)	3.9(6)		4 B(4)	.407(1)	.037(1)	064(2)	3.9(6)
2 B(5)	.455(1)	.418(1)	.073(2)	1.8(5)		4 B(5)	.416(1)	055(1)	063(2)	4.5(7)

· · · ·				Table 1	, cont	inued				.*
	· .			-						
2 B(6)	•541(1)	.436(1)	.101(2)	2.9(6)		4 B(6)	.445(1)	085(1)	.046(2)	3.7(6)
2 B(7)	.578(2)	.357(2)	050(2)	6.7(8)		4 B(7)	.372(2)	.030(2)	•128(2)	6.7(8)
2 B(8)	.488(1)	.342(2)	079(2)	6.4(8)		4 B(8)	.346(1)	.060(1)	.018(2)	4.5(7)
2 B(9)	.447(1)	.340(2)	.023(2)	5.7(8)		4 B(9)	.336(1)	017(1)	052(2)	3.4(6)
2 B(10)	.509(1)	.352(2)	.109(2)	5.4(7)		4 B(10)	.357(1)	088(1)	.014(2)	2.9(6)
2 B(11)	.589(1)	.361(1)	.064(2)	4.7(7)		4 B(11)	.378(1)	060(1)	•124(2)	4.7(7)
2 B(12)	.527(2)	.301(2)	.019(2)	6.3(8)		4 B(12)	•311(1)	020(1)	.060(2)	5.0(7)
			•							
1 N	.773(1)	•255(1)	. 265(1)	4.9(4)		2 N	.269(1)	.259(1)	.272(1)	6.3(5)
1 Me(1)	•796(2)	.214(2)	.345(3)	14.8(13)		2 Me(1)	.237(2)	.301(3)	.196(3)	17.4(16)
1 Me(2)	.701(2)	.245(2)	.250(2)	11.1(10)		2 Me(2)	.240(3)	•21 <u>6(3)</u>	.337(5)	24.5(24)
1 Me(3)	.812(1)	.235(1)	.187(2)	8.1(8)		2 Me(3)	.312(2)	.209(2)	.233(3)	17.3(16)
1 Me(4)	•791(2)	.329(2)	.300(3)	12.6(11)		2 Me(4)	.301(2)	.317(2)	.328(3)	14.0(13)

(a) The units are A^2 .

(b) The numbers in parentheses are the standard deviations in the least significant digit as calculated from the final diagonal least-squares matrix. They are not significantly different from those obtained from the complete matrix (see text and footnote 13).

Table 11.	Observed	and Calculat	ed Structure	Factors f	for $N(CH_3)$	$L^{(B_{9}C_{2}H_{8}Br_{3})}$) ₂ Co]
H.R.* 0. 0 1 110-1 2 441 221 3 423 4 217 223 3 413 4 217 223 3 413 4 217 223 3 413 4 217 223 3 423 4 217 223 3 423 4 217 223 3 433 4 217 233 441 1 3 45 23 1 133- 4 1 321 1 134- 3 57 4 139 124 1 134- 4 139 124 1 146 1 10 344 20 1 723 4 139 124 1 146 1 13 1 10 344 20 1 13 1 134 1 134 1 13 1 13 4 139 124 1 14 1 13 4 139 124 1 14 1 13 4 139 124 1 14 1 14 4 14 1 22 2 100- 1 139 124 1 1	$\begin{array}{c} 21 & -1 & 132 & 142 \\ 21 & -1 & 132 & 142 \\ 31 & -1 & 142 & 142 \\ 41 & -1 & 142 & 142 \\ 42 & 1 & 144 & 20 \\ 43 & 100 & 143 & 5 & 14 \\ 51 & -1 & 141 & 10 \\ 44 & -1 & -2 & 141 \\ 41 & -1 & -2 & 141 \\ 41 & -1 & -2 & 141 \\ 41 & -1 & -2 & 141 \\ 41 & -1 & -2 & 141 \\ 42 & 11 & 10 \\ 11 & 10 & 11 \\ 11 & 10 \\$	$ \begin{array}{c} \mathbf{H} \\ \mathbf{H} \\ \mathbf{F} \\ \mathbf$	$ \begin{array}{c} 1 & 103 & 105 & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a b b c c b b c c c c b c c c c c c c c c c c c c c c	$\begin{array}{c} 4 \\ - 9 \\ - 9 \\ - 2 \\ - 7 \\ - 9 \\ - 2 \\ - 7 \\ - 9 \\ - 2 \\ - 7 \\ - 9 \\ - 2 \\ - 7 \\ - 9 \\ - 2 \\ - 7 \\ - 9 \\ - 7 \\ -$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
							NOL OFFICEDOTO

38

¥

Table II, continued

L FO8 FCA	3 176-169	4 70 65	2 81 83	-3 177 165	3 38 - 39	-4 154 152	-3 214 218	3 26 27	1 33 37	1 18 12	-6 36 -30 -5 45 43	L FOB FCA	3 26 18	H,K= 14, 4 L FOB FCA
-9 118-109	5 133-130	6 15 1 7 63 63	4 70 -75	-1 114-108	5 14 2 6 70 -72	-2 88 88	-1 102-101 0 122 130	H.K= 11, 0 L FOB FCA	3 100 -69	3 26 27 4 25 36	-4 102 102 -3 53 50	-4 49 -35 -2 149 165	H.K= 13, 0	-4 41 48 -3 19 6
-7 23 -4	7 44 -45	H.K= 6. 10	6 67 -69	1 119 107 2 125 126	H.K= 9. 10	0 23 19 1 142 136	1 15 17 2 87 79	-8 105 100 -6 48 -50	5 29 -15	H.K. 11. 10	-2 64 54 -1 99 98	0 103 111 2 207 213	L FOB FCA -5 31 39	-2 203 214 -1 33 37
-5 25 -25	9 112-121	L FOB FCA	8 12 22	3 111 111	L F08 FCA	2 62 63	3 218 225	-4 291-290	7 36 -39	L FCB FCA	0 61 77	4 14 -5	-4 38 36 -3 32 -23	0 22 20
-3 104-113	H,K= 6, 6	-6 42 30	H MH B. 3	5 38 - 39	-5 31 -19	4 140 142	5 10 12	0 119 109	H,K= 11, 5	-2 30 -24	2 188 181	H-K= 13. 1	-2 75 69	2 15 9
-1 35 -34	-9 126-114	-4 243 240	L FOB FCA	7 36 -38	-3 115 117	6 75 79	7 50 -52	4 117-116	-7 65 -70	0 53 -55	4 58 58	L FOS FCA	0 117-113	H.K. 14. 5
1 220 206	-7 60 -71	-2 141 140	-8 103 -96	8 97 100	-1 65 58	8 58 - 55	H,K= 10, 7	8 93 -91	-5 137-142	2 16 -14	6 53 58	-6.17 -3	2 69 74	L FOB FCA
3 172-166	-5 111-112	0 30 -12	-6 28 -30	L FOB FCA	1 87 83	H,K= 10, 3	-7 43 -38	H.K= 11, 1	-3 116-112	3 9 -10	H,K= 12, 5	-4 96 113	4 59 65	-3 22 -19
4 110 117 5 87 72	-4 88 79 -3 82 -88	1 19 11 2 175 167	-5 179-176 -4 64 56	-8 129-130 -7 31 20	2 23 16 3 54 47	-9 59 54	-6 76 -79 -5 31 20	L FOB FCA -8 52 42	-2 29 -18 -1 24 -33	H,K= 12, 0 L FOB FCA	-7 95 97	-2 36 46	H,K= 13, 7	-1 26 -15
6 219 232 7 153 160	-2 124-113 -1 232-234	3 0 -10 4 168 174	-3 148-156 -2 108 105	-6 60 57 -5 79 88	4 23 13 5 31 - 34	-8 26 -37 -7 17 -28	-4 72 -69 -3 53 52	-7 89 95 -6 49 -58	0 80 -74 1 138-139	-8 105 102 -6 115 113	-6 104 110 -5 41 -45	0 29 -21	-4 102 -96	1 89 -87
8 148 147 9 16 -5	0 32 -31 1 21 32	5 12 6 6 58 -53	-1 132 110 0 75 -71	-4 88 77 -3 44 -36	H,K= 9, 11	-6 25 31 -5 211-215	-2 104 93 -1 114-108	-5 46 48 -4 161 151	2 13 -11 3 133-133	-4 280 304 -2 22 20	-4 10 24 -3 69 70	1 59 -63 2 50 56	-3 21 -12 -2 16 -5	2 62 51 3 73 -68
H,K= 8, 3	2 69 72 3 150-137	H,K= 8, 11	1 91-101 2 33 32	-2 43 -45 -1 13 8	L FOB FCA -5 15 10	-4 65 61 -3 90 88	0 23 -17 1 22 25	-3 113-102 -2 0 -20	4 49 -53 5 73 -77	0 283 283 2 207 199	-2 32 -19 -1 150 148	3 115 110 4 44 -34	-1 18 9 0 70 65	H,K= 14, 6
L FOB FCA	4 52 -48	L FOE FCA	3 55 -57	0 161-155 1 30 36	-4 70 72	-2 87 -95 -1 23 22	2 63 -54 3 84 96	-1 59 60 0 44 -51	6 84 -86 7 17 -4	4 70 -76 6 103 104	05468 18-8	5 26 -31 6 76 -74	1 25 -13 2 69 -63	L FOB F CA -3 75 79
-9 110 113	6 22 -10	-5 46 -37	5 16 -9	2 161 163 3 25 30	-2 16 14	0 35 36	4 50 50 5 25 24	1 48 60 2 137 128	H.K= 11. 6	H.K= 12. 1	2 153 148 3 120 120	H.K= 13. 2	3 38 44	-2 116 125 -1 6 -15
-7 69 -63	8 55 50	-3 29 -34	7 16 16	4 11 5	0 22 -25	2 14 -15	6 61 57	3 25 -17	L FOB FCA	L FOB FCA	4 53 -59	L FOB FCA	H,K= 13, 8 1 FOA FCA	0 23 35
-5 240 239	H,K= 6, 7	-1 39 -34	9 47 -57	6 76 -72	2 46 -42	4 105-104	H,K= 10, 8	5 0 -4	-6 48 -54	-7 8 -13	6 0 2	-6 28 -26	-3 31 34	2 23 13
	-9 36 -35	1 116-101	H.K= 9, 3	8 21 30	4 39 39	6 116 121	-7 0 -4	7 103 105	-4 82 77	-5 126 136	H,K= 12, 6	-4 30 -31	-1 43 42	H.K= 15, 0
-1 147 141	-7 59 -63	3 39 -43	-9 17 23	H,K= 9, 7	H,K= 9, 12	8 22 -15	-5 44 -49	H.K= 11, 2	-2 76 -80	-3 146-147	~6 28 -13	-2 56 -59	1 74 74	-4 90-100
1 218 203	-5 145 149	4 87 -93 5 32 -16	-8 42 -42	-8 97 -93	-3 64 -67	H.K= 10, 4	-3 142 143	-8 69 88	-1 74 74 U 47 -44	-1 24 -3	-4 132 140	0 88 -99	H,K= 14, 0	0 47 -44
2 74 -90 3 46 62	-4 193-196 -3 107-101	H,K= 6, 12	-6 120 120 -5 20 10	-7 62 -65 -6 72 -71	-2 22 -16 -1 49 -38	L FOB FCA -9 121-107	-2 242 234 -1 50 38	-7 55 64 -6 32 -19	1 20 -9 2 60 60	1 116 117	-2 139 145	2 20 -2	-4 8 -9	2 0 -12
4 10 -2 5 158 164	-2 263 264 -1 40 29	L FOS FCA -4 45 -30	-4 190 190 -3 191 179	-5 26 21 -4 24 -13	0 107 113 1 92 -98	-8 22 39 -7 168-164	0 44 29 1 49 -50	-5 114 116 -4 18 -8	3 69 96 4 27 29	2 48 -50 3 47 -38	0 95,97	4 32 -30	0 151 153	L FOB FCA
6 146 144 7 24 35	0 11 2 1 163 169	-3 79 81 -2 76 81	-2 55 59 -1 67 -73	-3 142 138 -2 157-153	2 11 13	-6 158 160 -5 21 26	2 100 93 3 214 214	-3 8 -13 -2 63 -66	5 105 106 6 40 41	4 71 -68 5 94 -97	1 81 -84 2 110 114	5 132-134	2 80 -77 4 25 23	-4 30 -32
8 23 -16 9 112 113	2 207-216	-1 16 2 0 75 78	0 83 90 1 126 124	-1 136-134 0 16 15	H,K= 10, 0 L FOB FCA	-4 47 38 -3 116-107	4 127 133 5 38 39	-1 84 74 0 116 117	H.K= 11. 7	6 87 -90 7 91 85	3 49 -48 4 131 139	H,K= 13, 3 L FOB FCA	H,K= 14, 1	-2 52 -45
H.K= 8. 4	4 279 282	1 32 -19	2 69 66	1 74 74 2 129-137	-8 63 -57	-2 93 102	6 58 69	1 97 91 2 196-200	L FOB FCA	H,K= 12, 2	5 13 13	-6 97 -94 -5 24 -23	L FOB FCA -5 83 92	0 19 13 1 8 14
L FOB FCA	6 109 114	3 131-135	4 19 6	3 91 63	-4 26 0	C 230 223 1 112-116	H.K≈ 10, 9 L FOE FCA	3 82 83	-5 03 -04	L FOB FCA -7 60 65	H,K= 12, 7 L FOB FCA	-3 68 -67	-1 5 5 -3 43 36	2 26 -8
-9 24 -25	8 33 20	H,K= 8, 13	6 8 -14 7 22 39	5 84 -87	0 220 214	2 39 30	-6 119-106	5 40 -39	-3 96 95	-6 62 67 -5 51 52	-5 65 62 -4 55 -54	-2 128 134 -1 99 -97	-2 33 38 -1 62 -52	H,K= 15, 2 L FOB FCA
-7 56 57	H,K= 5, 8	-2 96 -99	8 55 67	7 44 -44	4 168 179	4 170 165	-4 39 36	7 76 75	-1 71 73	-4 203 218 -3 20 15	-3 46 -47	0 51 -57	0 32 -33	-3 24 -21 -2 54 -59
-5 202 195	-8 93 81	0 24 24	y 1, 10	H,K= 9, 8	8 154 145	6 61 57	-2 96 -86	H,K= 11, 3	1 31 -28	-2 36 39	-1 98 -94	2 24 -19	2 14 -12 3 74 -61	-1 107-104 0 56 52
-3 63 -62	-6 120 122	1 9 -24	L FOB FCA	-7 15 -22	H,K= 10, 1	8 68 55	0 64 -61	-6 86 -85	3 34 34	0 50 34	1 67 -87	4 31 37 5 20 6	4 63 61	1 81 -85
-1 235 220	-4 269 265	L FOL FCA	-8 47 -48	-5 46 -48	-9 33 30	H,K= 10, 5	2 31 -15	-6 224-240	5 54 -57	2 241 234	3 87 84	H.K= 13. 4	H,K= 14, 2 1 FOB FCA	H.K= 15. 3
1 161 171	-2 291 284	-8 52 40	-6 10 6	-3 33 28	-7 88 82	+8 27 36	4 46 -37	-4 58 59	U.V.= 11 0	4 29 23	H-K= 12. 8	L FOE FCA	-5 76 -71	L FOB FCA
3 21 -18	0 71 61	-4 121-124	-4 72 -68	-1 11 -41	-5 64 -69	-6 12 4	J 120-130	-2 71 67	L FOB FCA	6 61 73	L FOB FCA	-5 39 29	-3 14 -17	-2 85 84
5 17 -15	2 392 386	0 111-119	-3 45 51	1 7 12	-3 145 141	-4 39 -35	L FOB FCA	0 229-226	-5 18 -21	H,K= 12, 3	-4 77 -70	-3 43 37	-1 41 -34	0 40 48
6 208 202 7 113 114	3 2 -7	2 75 -83 4 92 92	-1 52 46 0 129-130	2 24 -17 3 48 -44	-2 18 14	-2 110-108	-5 81 -84	2 37 30	-4 50 35	-7 22 -12	-2 39 38	-1 185-185	1 65 -48	2 64 -63
8 157 169 9 93 -91	5 16 -12 6 58 54	6 57 -45 8 88 -93	2 43 41	4 49 52 5 15 -40	1 26 23	-1 34 28	-2 23 -9	4 44 34	-1 66 62	-5 16 -3	0 58 70	1 91 85	3 45 -49	H,K= 15, 4
H,K= 8, 5	7 35 -33	H,K= 9, 1	3 95 -89 4 170-173	6 7 -18 7 8 29	2 229 232 3 25 15	1 117-109 2 12 6	-1 14 -21 0 62 -54	5 30 -25 6 63 -65	0 57 54 1 96 -96	-3 140-135	2 35 38	3 43 36	4 121 144	-2 26 16
L FOB FCA -9 33 -31	H,K= 8, 9 L F08 FCA	L FOE FCA -10 72 -66	5 71 73 6 179-179	H,K= 9, 9	4 124 122 5 16 6	. 3 54 54 4 61 -48	1 95-104 2 77 -67	7 105 109	2 109-107 3 66 -71	-1 59 55	4 75 -71	5 18 -8	L FOB FCA	0 96 104
-8 133 137 -7 27 15	-7 45 48	-9 2424 -6 51 -46	7 0 6	L FOB FCA -7 23 -23	6 43 47 7 22 20	5 69 77 6 34 -23	3 4 -14 4 126 136	H,K= 11, 4 L FOB FCA	4 19 -7 5 85 84	1 92-103	H,K= 12, 9	H.K= 13, 5	-4 76 96	
-6 87 93 -5 59 66	-5 23 28 -4 26 34	-7 59 67 -6 60 -50	H,K≈ 9, 5	-6 83 67 -5 37 -48	8 121 119	70-8	H,K= 10, 11	-8 44 38 -7 64 63	H,K= 11, 9	3 85 -94	-3 33 -19	-5 122 126	-2 190 195	
-4 77 -79 -3 88 -61	-3 97 -99 -2 41 27	-5 16 5 -4 22 3	L FOB FCA -9 121 115	-4 0 14 -3 72 -75	H,K= 10, 2 L FOB FCA	H,K= 10; 6 L FOB FCA	L FOB FCA -3 55 54	-6 44 46 -5 68 65	L FOB FCA -5 19 ~33	4 59 -72 5 49 -50	-2 53 42	-3 30 15	0 23 8	
-2 82 74 -1 68 -68	-1 24 -19 0 25 13	-3 143-156 -2 226-234	-8 115-112 -7 219-220	-2 73 -75 -1 58 -56	-9 49 -50 -8 25 26	-8 74 81 -7 58 -70	-2 18 20 -1 10 -1	-4 96 100 -3 27 -21	-4 75 -76 -3 27 -4	6 14 -9	0 82 74	-2 40 30	2 19 9	
0 17 5	1 58 55 2 64 65	-1 15 -21 0 151-135	-6 73 73 -5 30 17	0 17 -3 1 11 -4	-7 35 33 -6 185 191	-6 61 64	0 19 -7 1 67 66	-2 29 -23 -1 76 -75	-2 20 14 -1 114 109	H,K# 12, 4 L FOB FCA	2 65 60	0 49 43 1 80 85	3 0 -29 4 119 125	

XBL 6711-6071

XBL 6711-6069

Figure 1. - $(B_0C_2H_8Br_3)_2C_0^-$ (hydrogens omitted).

Table III. Distances^a in N(CH₃)₄[(B₉C₂H₈Br₃)₂Co]

ion no.:	• 1	2	3	4
atom	d	istances, A	ngstroms	•
Co-C(2)	2.04(2) ^b	2.03(2)	1.98(2)	2.05(2)
Co-C(3)	1.99(2)	2.02(2)	2.00(2)	2.09(2)
	r.m.s.	scatter ^c =	•034	
Co-B(4)	2.09(3)	2.13(3)	2.14(3)	2.17(3)
Co-B(6)	2.05(2)	2.10(2)	2.12(3)	2.12(3)
	r.m.s.	scatter =	•037	
Co-B(5)	2.17(3)	2.17(2)	2.15(2)	2.16(3)
· · · ·	r.m.s.	scatter =	.007	·
Co-Br(5)	3.527(3)	3.530(3)	3.511(3)	3.527(3
	r.m.s.	scatter =	•009	
Br(5)-Br(9)	3.716(5)	3.775(4)	3.709(4)	3.725(4
Br(5)-Br(10)	3.689(4)	3.730(4)	3.756(4)	3.719(4
	r.m.s.	scatter =	.027	
Br(9)-Br(10)	3.921(5)	3.869(5)	3.816(5)	3.876(4
	r.m.s.	scatter =	.043	•
B(5)-Br(5)	1.95(3)	2.00(2)	1.96(2)	1.94(3)
B(9) - Br(9)	1.96(3)	1.95(3)	1.98(3)	1.97(3)
B(10)-Br(10)	1.96(3)	1.98(3)	1.96(3)	1.96(2)
	11 m C	agetton -	017	· · · .

Table III, continued

C(2) - C(3)	1.68(3)	1.65(3)	1.63(3)	1.66(3)
· · · ·	r.m.s	. scatter =	•023	
C(2)-B(6)	1.63(3)	1.75(3)	1.77(4)	1.78(3)
C(3)-B(4)	1.64(3)	1.68(3)	1.72(3)	1.84(3)
C(2)-B(11)	1.63(4)	1.75(4)	1.84(4)	1.72(3)
C(3)-B(8)	1.75(3)	1.69(4)	1.68(4)	1.64(3)
C(2)-B(7)	1.71(4)	1.71(4)	1.86(4)	1.71(4)
C(3)-B(7)	1.76(4)	1.73(4)	1.73(4)	1.69(4)
an a	r.m.s	. scatter =	•064	
B(4)-B(5)	1.91(4)	1.82(4)	1.88(3)	1.81(4)
B(4)-B(8)	1.79(4)	1.73(4)	1.76(4)	1.82(4)
B(4)-B(9)	1.84(4)	1.79(4)	1.88(3)	1.77(4)
B(5)-B(6)	1.69(3)	1.78(3)	1.80(4)	1.81(4)
B(5)-B(9)	1.81(4)	1.70(4)	1.82(3)	1.77(4)
B(5)-B(10)	1.74(4)	1.74(4)	1.77(3)	1.81(4)
B(6)-B(10)	1.74(4)	1.75(4)	1.81(4)	1.79(3)
B(6)-B(11)	1.74(4)	1.84(4)	1.90(4)	1.88(4)
B(7)-B(8)	1.88(4)	1.83(4)	1.63(5)	1.81(4)
B(7)-B(11)	1.79(5)	1.73(4)	1.82(5)	1.77(4)
B(7)-B(12)	1.91(5)	1.84(5)	1.74(4)	1.83(4)
B(8)-B(9)	1.75(4)	1.79(4)	1.74(4)	1.83(4)
B(8)-B(12)	1.89(4)	1.82(5)	1.67(4)	1.84(4)
B(9)-B(10)	1.76(4)	1.76(4)	1.71(4)	1.75(4)
B(9)-B(12)	1.75(5)	1.77(4)	1.62(4)	1.79(4)

Table III, continued

B(10)-B(11)	1.86(4)	1.76(4)	1.79(4)	1.76(4)
B(10)-B(12)	1.71(4)	1.74(4)	1.74(4)	1.78(4)
B(11)-B(12)	1.82(5)	1.79(4)	1.76(4)	1.79(4)
	r.m.s.	scatter =	.060	
N-Me(1)	1.49(5)	1.52(6)		
N-Me(2)	1.46(4)	1.43(7)		
N-Me(3)	1.49(3)	1.44(5)		
N-Me(4)	1.57(4)	1.53(5)		
	r.m.s.	scatter =	.048	e a constante de la constante

- (a) None of these distances is corrected for thermal motion.
- (b) The numbers in parentheses are the standard deviations in the least significant digit as calculated from the standard deviations of coordinates (Table I).
- (c) Each of the "r.m.s. scatter" values given is the rootmean-square deviation from the average, $[\Sigma\Delta^2/(\underline{n}-1)]^{\frac{1}{2}}$, for the preceeding set of distances. These are given for comparison with the standard deviations calculated from the standard deviations of coordinates.

	• • • • • • • • • • • • • • • • • • •	
number averaged	atoms	distance, A
. 4	C-C	$1.654 \pm .017^{b}$
24	C-B	1.725 ± .013
72	B-B	1.786 ± .007
12	B-Br	1.963 ± .008
8	Co-C(2,3)	2.024 ± .013
8	Co-B(4,6)	2•115 ± •014
4	Co-B(5)	2.162 ± .014
4	Co-Br(5)	3.524 ± .005
8	Br(5)-Br(9,10)	3.727 ± .010
4	Br(9) - Br(10)	3.870 ± .025
8	N-Me	1,791 + .018

Table IV. Average Distances^a in N(CH₃)₄[(B₉C₂H₈Br₃)₂Co]

8

(a) None of these distances is corrected for thermal motion.

(b) The error figures are the author's best estimate of the precision of these averages. They have been pessimistically chosen as the greater of $[(\Sigma \Delta^2)^{\frac{1}{2}}/(\underline{n}-1)]$ or $[(\Sigma \sigma^2)^{\frac{1}{2}}/\underline{n}]$, where Δ is the deviation from the average, σ is the standard deviation of a single distance as calculated

Table IV, continued

from the standard deviations of coordinates, and \underline{n} is the number of distances averaged. The latter expression was the larger for the C-C, B-Br, and Co-B(5) distances.

eight B-C-C angles average 57° and $61\frac{1}{2}^{\circ}$. All four of these sets of angles show $2\frac{1}{2}^{\circ}$ root-mean-square deviations from the averages. The root-meansquare deviations are believed to be better measurements of the accuracy of these angles than the ~ 1.6° values derived from the standard deviations of coordinates. The temperature factors in the dicarbollyl portion of the anions seem to indicate some rigid-body motion, but a rigid-body analysis was not done because of the absorption errors known to be in the data and because of the excessive effort it would require.

The packing of the approximately dumbbell-shaped anions and the tetramethylammonium ions is very similar to that of KHF_2^{20} as indicated in Figure 2. The higher symmetry (tetragonal, I4/mcm) of the KHF_2 structure²⁰ is broken down to its P2₁/c subgroup (on the doubled cell) by the anion's lack of cylindrical symmetry and the up and down (in \underline{z}) distribution of the bromine substituents. If we consider only the arrangement of plus and minus charges, this is approximately a CsCl-type structure.

The pentagonal rings adjacent to cobalt are all planar to within the accuracy of this determination, but are tilted or slid over in such a way as to decrease the cobalt-carbon distance and increase the cobaltboron distances (Table IV). The tilt and slide descriptions are equivalent and amount to ~ 3° and ~ .07 A, respectively. This is interpreted as the effect of the Br(5) of each dicarbollyl being crowded up against the hydrogens on the carbons of the other. This interpretation is supported by the short Br(5)-Br(9) and Br(5)-Br(10) distances (Table IV). If we assume that each hydrogen is 1.10 A from its carbon and in line with the carbon and the opposite icosahedral vertex, the bromine-hydrogen distance

XBL 6711-6068

Figure 2. - The crystal structure of $N(CH_3)_4[(B_9C_2H_8Br_3)_2C_0]$ compared with that of KHF₂. In both drwaings, the cations are at $\underline{z} = \pm \frac{1}{4}$ and the anions at $\underline{z} = 0$. The anions at $\underline{z} = \frac{1}{2}$ (not shown) are related to those shown by the <u>c</u> glide which runs horizontally across the center of each drawing. is only 2.75 A, which is 0.40 A less than the sum of their van der Waals radii $(1.95 \pm 1.2 = 3.15 \text{ A}).^{21}$ A similar steric effect of about the same size, but in the opposite direction (carbons farther from metal than the borons) was found²² in B₉C₂H₉(CH₃)₂PdC₄(C₆H₅)₄ in which the methyl groups are on the dicarbollyl carbons. These steric effects are not to be confused with the larger shift (about 0.6 A) observed by Wing²³ in the $Cu(B_9C_2H_{11})_2^{2^-}$ anion where bonding effects are believed to be involved.

The electrophilic bromination sites found for this anion may be rationalized if we say that the charge distribution in the dicarbollyl portion is similar to that in 1,2 -dicarbaclovoduodecaborane $(B_{10}C_2H_{12})$, but modified by a polarization induced by the Co(III). Substitution sites $^{17-19}$ and dipole moments²⁴ found for $B_{10}C_2H_{12}$ derivatives and molecular orbital calculations 17,18 for the parent compound all lead to the conclusion that the borons farthest from carbon are the most susceptible to electrophilic attack and this susceptibility decreases as the carbons are approached. This analogy, considered alone, would indicate that our B(9) and B(10) are the most subject to electrophilic attack and B(5) and B(12), possibly causing B(5) to become more subject to electrophilic attack than the B(9)-B(10) pair.

References and Footnotes

- M. F. Hawthorne, D. C. Young, and P. A. Wegner. J. Am. Chem. Soc.,
 <u>87</u>, 1818 (1965).
- (2) M. F. Hawthorne and T. D. Andrews, <u>ibid</u>., <u>87</u>, 2496 (1965).
- (3) M. F. Hawthorne and R. L. Pilling, <u>ibid</u>., <u>87</u>, 3987 (1965).
- (4) M. F. Hawthorne and T. D. Andrews, <u>Chem Commun.</u>, 443 (1965).
- (5) L. F. Warren, Jr. and M. F. Hawthorne, J. Am. Chem. Soc., 82, 407 (1967).
- (6) M. F. Hawthorne, et al., ibid., 20, 879 (1968).
- (7) M. F. Hawthorne, private communication.
- (8) A description of this work has been submitted to <u>Inorganic</u> <u>Chemistry</u> for publication.
- (9) It may be argued that \underline{F}^2 should be the quantity averaged, but the "error" incurred is only 5.4% even if $\underline{F}_1 = 2\underline{F}_2$ ($\underline{I}_1 = 4\underline{I}_2$).
- (10) J. Karle and I. L. Karle, <u>Acta Cryst.</u>, <u>21</u>, 849 (1966).
- (11) R. E. Long, Ph. D. thesis, University of California, Los Angeles, 1965.
- (12) "International Tables for X-ray Crystallography", vol. III, The
 Kynoch Press, Birmingham, England, 1962, pp. 204 207, 214.
- (13) Late in the refinement, one cycle of full-matrix least-squares was run on all 361 parameters (12 fixed) and 3002 data to be sure that no errors were caused by the block-diagonal procedure. This one cycle required 74K storage and 43 minutes on a CDC 6600. These figures may be compared with the requirements for the final diagonal-matrix refinements of 28K storage and 2¹/₄ minutes/cycle.
 (14) A. Zalkin, D. H. Templeton, and T. E. Hopkins, J. Am. Chem. Soc., S7, 3988 (1965).

References and Footnotes, continued

(15)	A. Zalkin, D. H.	Templeton,	and T.	Ε.	Hopkins,	Inorg.	<u>Chem.</u> ,	2,
	1189 (1966).							

- (16) A. Zalkin, D. H. Templeton, and T. E. Hopkins, <u>ibid</u>., <u>6</u>, 1911 (1967).
- (17) H. Beall and W. N. Lipscomb, <u>ibid</u>., <u>6</u>, 874 (1967) and references therein.
- (13) J. A. Potenza and W. N. Lipscomb, <u>ibid</u>., 5, 1471, 1478, 1483 (1966) and references therein.
- (19) J. A. Potenza and W. N. Lipscomb, <u>ibid</u>., 3, 1673 (1964).
- (20) R. W. G. Wyckoff, "Crystal Structures" vol. 2, Interscience Publishers, New York, 1964, pp. 277 ff.
- (21) L. Pauling, "The Nature of the Chemical Bond", 3rd ed., Cornell University Press, Ithaca, New York, 1960, p. 260.
- (22) R. C. Petterson, A. Zalkin, and D. H. Templeton, unpublished results.
- (23) R. M. Wing, <u>J. Am. Chem. Soc.</u>, <u>82</u>, 5599 (1967).
- R. Maruca, H. S. Schroeder, and A. W. Laubengayer, <u>Inorg. Chem.</u>,
 <u>6</u>, 572 (1967).

IV. The Crystal and Molecular Structure of <u>Tris</u>-difluorobora-borane — Phosphorus Trifluoride, B_LF₆PF₃

A. Introduction

Timms has recently reported^{1*} the synthesis of a number of novel boron fluoride compounds by reactions of the high temperature species, boron monofluoride, on cold surfaces. Cocondensation of BF and PF₃ produces $B_4F_6PF_3$, a pyrophoric and water-sensitive substance which readily sublimes (m. p. 55°, b. p. 74°) to form well-developed, colorless crystals which are stable at room temperature. The present X-ray diffraction investigation² was undertaken to verify the proposed structure:

and to determine the bond distances and angles in this molecule.

B. Experimental

Samples of the compound, sealed into thin-walled glass capillaries, were provided by Professor Timms. Crystals formed quite readily as the compound was sublimed back and forth in the capillaries under the very mild heating provided by a beam from a low voltage lamp. Persistence seemed to be the only way to obtain a suitable crystal which did not have others nearby. Complete data sets were taken on two different crystals.

The first crystal was a plate about $.16 \times .51 \times 2.2$ mm, where the intermediate dimension is the inside diameter of its capillary. A crystal

* References and Footnotes for part IV are to be found on page 69.

this large was accepted because there was no assurance of ever obtaining a better one, and because of the low absorption coefficient, μ , of 4.3 cm⁻¹ $(\mu^{-1} = 2.3 \text{ mm})$ for MoKa radiation. The crystal was mounted with its long dimension, <u>b</u> axis, and capillary parallel to the instrument φ axis. Preliminary oscillation and Weissenberg photographs gave the extinction rules, Laue symmetry, and rough cell dimensions. More accurate cell dimensions were derived from the Bragg angles of the h00, 0k0, and 00ℓ reflections measured with a General Electric manual goniostat using molybdenum radiation and a Zr filter at the receiving slit. The components of the alpha doublet were resolved $(\lambda(MoKa_1) = 0.70926 \text{ A})$ at the highest angles, but the peaks were broad and the positions of reflections at low chi angles could not be accounted for except by assuming a 20 correction as a function of phi. It is suspected that these difficulties were caused by the large size of the crystal, which was certainly longer and probably wider than the beam diameter, and by strains in the crystal (see below). In spite of these troubles, a one-octant data set of 830 independent intensities, exclusive of space-group absences, was taken, using the same apparatus, by counting each reflection for 10 seconds with crystal and counter stationary and an approximately 3.5° take-off angle to the X-ray tube anode. Of these, 173 were recorded as zero. Measurements were also taken at all the locations in the region of the data set which correspond to space group absences. They were found to confirm the extinction rules of $0\underline{kl}$, $\underline{k} + \underline{l} \neq 2\underline{n}$ and $\underline{hk}0$, $\underline{h} \neq 2\underline{n}$. Individual backgrounds were measured for those reflections which were seriously affected by streaking from other orders; otherwise, backgrounds were taken from a plot of background as a function of 20 at various values of phi and chi. Three standard reflections which were measured at frequent intervals during the course of data taking showed only small, random fluctuations. Measurements included reflections up to $20 = 50^{\circ}$ ($\sin\theta/\lambda = 0.595$). Standard deviations were assigned to the measurements of 5% of the intensity or a fixed minimum (8, 5, or 3 counts per second, for low, intermediate, and high 20), whichever was greater. The structure was initially solved using this data set, which was then definitely seen to be of unacceptable quality. A second set of samples was provided by Professor Timms, and a better crystal sought.

The second crystal had the shape of a cylinder ~.14 mm long and ~.15 mm in diameter (the inside diameter of its capillary). Nickelfiltered copper radiation was used in order to obtain as large a data set as possible from this smaller crystal. This crystal's smaller size made the larger absorption coefficient, μ , of 39 cm⁻¹ ($\mu^{-1} = 0.26$ mm) for CuKa radiation acceptable. The maximum variation in transmission factors is estimated to be less than 20%. The crystal was mounted with its cylinder axis, a axis, and capillary parallel to the instrument φ axis. The cell dimensions were determined as before, and found to correctly predict the positions of off-axis reflections, in contrast to the trouble experienced with the first crystal. When a narrow receiving slit was being used to obtain accurate cell dimensions, the peaks were sharp and well-formed and the alpha doublet ($\lambda(CuKa_1) = 1.5405 A$) was resolved in a majority of cases. After the slit was removed, the peaks at low chi angles showed a characteristic broad shape with an irregular top in both 20 and omega scans. At high chi angles, a narrower, regular, peak shape

.53

was maintained. This is again ascribed to distortions in the crystal. since the troubles with the two crystals (this and the previous one) seem to be correlated with the direction of the capillary axis and not with the directions of the crystallographic axes. The strains might have been the result of growth on a curved surface or of slight flexings of the thin-walled capillaries as they were handled. However, it was found that the calculated settings reproducibly gave the same part of the irregular peaks (and the tops of the regular ones) and that point counts taken at the calculated settings on a few peaks at chi = 0° and chi = 90° were in the same ratio as the integrated counts obtained by scanning through those peaks (in 2θ). A second data set of 703 intensities, including 100 recorded as zero, but not including space group absences, was taken in the same way as before. Backgrounds were likewise obtained as before, and again, frequently measured standard reflections showed no systematic variations. The maximum value of 20 was 120° (sin $\theta/\lambda = 0.562$). A standard deviation of 2.25 counts per second or 7.5% of the intensity. whichever was greater, was assigned to each measurement. Both data sets were corrected for Lorentz and polarization effects, but no corrections were made for absorption or extinction.

All computations were performed on a CDC 6600. Zalkin's unpublished FORDAP and DISTAN programs were used for Fourier syntheses and distanceand-angle calculations, while an unpublished Wilson-plot program by Maddox and Maddox gave normalized structure factor magnitudes³ which were used in Long's sign-determining program⁴ as described below. The unpublished version of the Ganzel-Sparks-Trueblood least-squares program which was used.

minimizes the function $\Sigma_{\underline{W}}(|\underline{kF}_{\underline{0}}| - |\underline{F}_{\underline{c}}|)^2/\Sigma_{\underline{W}}|\underline{kF}_{\underline{0}}|^2$, where $\underline{F}_{\underline{0}}$ and $\underline{F}_{\underline{c}}$ are the observed and calculated structure factors, \underline{k} is the scale factor, and \underline{w} is the weighting factor. For the early refinements, scattering factors for neutral phosphorus, fluorine, and boron were taken from standard tables.⁵ The phosphorus scattering factors were corrected for the real part of anomalous dispersion by +0.1 electrons for the molybdenum data and +0.2 electrons for the copper data, and the imaginary part was neglected. The final refinements were performed using the scattering factors listed by Cromer and Waber⁶ and both real and imaginary anomalous dispersion corrections given by Cromer.^{7,8} The anisotropic temperature factors used have the form: $\exp(-0.25 \Sigma_{\underline{i}} \Sigma_{\underline{j}} \underline{h}_{\underline{i}} \underline{h}_{\underline{j}} \underline{b}_{\underline{i}} \underline{B}_{\underline{i}})$, $\underline{i}, \underline{i} = 1, 2, 3$, where $\underline{b}_{\underline{i}}$ is the \underline{i} th reciprocal cell length.

C. <u>Results</u>

Four formula units of $(BF_2)_3BPF_3$ are contained in the orthorhombic unit cell, space group Pnma, with $\underline{a} = 13.893 \pm .005 \text{ A}$, $\underline{b} = 10.578 \pm .005 \text{ A}$, and $\underline{c} = 6.075 \pm .005 \text{ A}$. The calculated density is 1.82 g/cc. No direct measurement of the density was attempted because of the highly reactive nature of the compound. The Laue symmetry and observed extinction rules correspond to space groups Pnma and Pn2₁a. Choosing the former space group leads to a successful solution with six atoms on the mirror plane in the fourfold special position set $\underline{c}: \pm (\underline{x}, \frac{1}{4}, \underline{z}; \frac{1}{2} + \underline{x}, \frac{1}{4}, \frac{1}{2} - \underline{z})$ and four more atoms in the general set of positions: $\pm (\underline{x}, \underline{y}, \underline{z}; \frac{1}{2} - \underline{x}, \frac{1}{2} + \underline{y}, \frac{1}{2} + \underline{z}; \underline{x}, \frac{1}{2} - \underline{y}, \underline{z}; \frac{1}{2} + \underline{x}, \underline{y}, \frac{1}{2} - \underline{z}).$

1. Determination of Structure

The Patterson function calculated from the first (Mo) data set was discouragingly featureless, consisting primarily of two positive regions at $\underline{y} = 0$ and $\frac{1}{2}$, with a negative region between (i.e. it was dominated by very strong 0,k,0 reflections). Several attempts at refining various trial structures guessed at from this Patterson function met with no success whatever. The author reasoned that the strong 0,k,0 reflections would arise only if some large fraction of the atoms were concentrated at or near the same $\underline{\mathbf{y}}$ coordinate, as would be the case if the molecule were bisected by the mirror plane in Pnma. With this in mind. the Wilson-plot program was used to calculate normalized structure factor magnitudes, $\frac{3}{\underline{E}_{h}}$, for use in the statistical method of sign determination (centrosymmetric case). Long's program⁴ which iteratively applies the relation: $\underline{sE}_{\underline{h}} \sim \underline{s\Sigma}_{\underline{k}} \underline{E}_{\underline{h}} \underline{E}_{\underline{h}}$, where \underline{s} is to be read "the sign of" was employed for this purpose. After enough signs were worked out by hand to yield a good starting set (of E's) for input, a run of Long's program using 99 <u>E</u>'s \geq 1.5 gave one set of signs which was more consistent than any other and which was arrived at in the fewest passes. A Fourier synthesis using the signed E's as coefficients gave ten largest peaks, six of them in the mirror plane, which formed the expected molecule. Leastsquares refinement of isotropic phosphorus, fluorine, and boron atoms in the appropriate positions quickly reduced the <u>R</u> factor to 0.29, where $\underline{\mathbf{R}} = \Sigma \left| \left| \underline{\mathbf{kF}}_{\underline{\mathbf{0}}} \right| - \left| \underline{\mathbf{F}}_{\underline{\mathbf{c}}} \right| \right| / \Sigma \left| \underline{\mathbf{kF}}_{\underline{\mathbf{0}}} \right|.$ It was immediately evident that the O<u>k</u>O reflections had given intensities which were systematically too large by

factors between 3.6 and 5.2. A refinement in which the Oko reflections were

given zero weight did not reduce \underline{R} , but when they were omitted from the calculation of \underline{R} , its value became 0.26. When all atoms were allowed anisotropic temperature factors, \underline{R} fell to 0.180 on all data and 0.145 if the OkO's were omitted. These values could not be improved upon and a re-run of Long's program with the OkO reflections omitted gave the same structure a second time.

At this time the first (Mo) data set was discarded and the second crystal and second (Cu) data set were obtained as described above. The structure found from the first data set refined to <u>R</u> = 0.217 with isotropic temperature factors. When all atoms were allowed anisotropic temperature factors, the structure gave the final <u>R</u> value of 0.093 on all 703 data and this can be reduced to 0.067 by omitting the contributions from the 100 reflections which were recorded as having zero intensity. In the last cycle of the refinement, no parameter shifted by as much as 1% of the standard deviation calculated for it from the leastsquares matrix. The standard deviation of an observation of unit weight, defined as $\left[\Sigma_{\underline{W}}(|\underline{kF}_{o}| - |\underline{F}_{c}|)^{2}/(\underline{u} - \underline{v})\right]^{\frac{1}{2}}$, where \underline{u} is the number of data and v is the number of independent parameters refined, was 1.33. Tests of slightly non-centric structures in the other space group $(Pn2_{1}a)$ gave neither better agreement nor significant deviations from the higher symmetry. The magnitudes of the three largest peaks on a final difference Fourier were .50, .38, and .30 electrons/A³. The final positional and thermal parameters are presented in Table I, while Table II lists $|\underline{F}_{o}|$ and \underline{F}_{c} .

Table I. Final Positional and Thermal Parameters in ${}^{B}_{4}F_{6}PF_{3}$

atom	х	У	Z	B a 11	^B 22	^B 33	^B 12	^B 13	^B 23	[<mark>ਇ</mark> ਤ] ਤੋਂ
P.	.0998(1) ^b	<u>1</u> ℃ 4	•5699(4)	5.8(1)	6.0(1)	8.5(1)	o°	0.0(1)	0	(.33,.27,.27) ^d
F1(P)	.0497(3)	14	.7931(10)	8.6(3)	15.8(5)	11.8(4)	0	4.8(3)	0	(.45,.44,.25)
F2(P)	.0524(2)	.1403(3)	.4588(7)	7.8(2)	9.2(2)	17.9(4)	-2.4(1)	-2.7(2)	-2.5(2)	(.49,.37,.25)
B(1)	.2311(5)	1 4	.5805(10)	4.9(3)	3.2(3)	3.7(3)	0	0.4(3)	0.	(.26,.22,.21)
B(2)	.2788(7)	1 4	.3255(14)	7.3(5)	4.0(3)	5.3(5)	. 0	1.0(4)	0	(.31,.25,.23)
F1(2)	.2264(4)	<u>1</u> 4	.1424(7)	15.0(4)	8.9(3)	3.6(2)	0	-1.3(2)	0	(.44,.33,.20)
F2(2)	.3694(3)	<u>1</u> 4	.2902(8)	8.9(3)	9.7(3)	8.6(3)	0	4.2(2)	0	(.40,.35,.24)
B(3)	.2697(4)	.3788(5)	.7122(8)	7.8(3)	4.2(2)	4.4(2)	0.0(3)	-0.2(2)	0.3(2)	(.32,.24,.23)
F1(3)	•2131(2)	•4693(3)	.7870(5)	12.3(2)	4.9(1)	7.6(2)	1.4(1)	0.5(1)	-1.9(1)	(.40,.33,.21)
F2(3)	.3598(2)	.4004(3)	.7500(6)	9.3(2)	7.0(2)	11.3(2)	-1.8(2)	-3.1(2)	-1.7(2)	(.41,.34,.24)

(a) The units are A^2 .

- (b) The number in parentheses is the standard deviation in the least significant digit as derived from the least-squares matrix.
- (c) Values expressed without the use of a decimal point are fixed by symmetry.
- (d) These are the principal root-mean-square amplitudes of vibration, in order of magnitude. For orientations, see Figures 1 and 2.

ł

K FO8 FCA	4 430-419	l 15 -6	11 0 - 13	6 0 5	4 43 - 41	4 97 - 96
H.L= 0. 0	5 190-194	2 196 198	H.L= 5, 2	H.L= 6. 6	5 17 15	5 46 52
2 762-952	6 161 137	3 79 80	0 17 14	0 16 6	6 0 -2	6 0 63
4 484 484	7 103 -98	4 23 - 34	1 58 62	1 16 -1	7 15 19	7 0 - 23
6 545-552	8 93 -87	5 17 19	2 101 94	2 22 -13	H.L= 8. 5	8 15 -14
8 450 460	9 186-180	6 65 62	3 23 -40	3 0 5	0 38 - 38	H.L. 11. 2
10 149-147	10 25 20	7 20 32	4 37 - 35	H.I. 7. 1	1 38 37	0 62 -58
	11 44 40	9 60 - 49	5 110 103	0 104 97	2 17 11	1 44 -40
1112- 01 1	11 40 40	0 00 49	5 110 105	1 140 130		2 20 21
1 385 411	M,L= 2, 1	. 9 22 19	0 /0 04	1 198-159	5 0 -2	2 39 31
3 764 858	0 120 133	Hal= 39 5	/ 1/ 18	2 60 - 56	4 10 -20	5 0 -7
5 190 177	1 136 137	0 90 -90	8 30 -50	3 224 218	5 0 -1	4 17 15
7 0 -11	2 403-416	1 67 -52	9 34 42	4 64 - 59	H,L= 9, 1	5 0 -3
9 60 70	3 779-778	201	10 0 -3	5 232-231	0 65 66	6 0 11
11 90 92	4 748 757	3 49 32	H,L= 5, 3	6 16 -23	1 26 -28	7 0 -6
H.L. 0. 2	5 107 104	4 39 - 34	0 85 -80	7 127 126	2 110 111	H,L= 11, 3
0 777-866	6 24 -15	5 0 34	1 134 137	8 43 42	3 57 58	0 78 83
2 351-330	7 175-173	6 17 22	2 63 -64	9 38 -40	4 182-182	1 30 -29
4 115-118	8 23 34	7 50 48	3 67 -64	10 16 -14	5 54 - 52	2 17 -16
6 00 03	0 47	N.1 - 3. 4	A 0 -14	u.t. 7. 2	6 85 80	3 0 7
8 0 - 32	10 83 -09	0 0 - 22	5 70 77	0 246 255	7 0 48	4 17 - A
8 0 + 32	10 85 -98	0 0 -23	4 20 20	0 249 200	0 24 -17	5 14 -5
10 54 -64	11 79 - 79	1 0 1	6 38 - 30	1 0 -7	8 24 -17	2 10 42
H,L= 0, 3	H,L= 2, 2	209	7 0 20	2 147-159	9 16 -15	6 0 -12
1 78 -83	0 747 751	3 16 -26	8 0 ~2	3 148-161	H,L= 9, 2	H,L= 11, 4
3 543-528	1 564-589	4 54 -64	9 16 12	4 56 60	0 16 -3	0 29 - 29
5 152 156	2 272 264	5 0 - 5	H,L= 5, 4	5 97 97	1 209-211	1 33 - 22
7 98 -98	3 44 -50	H,L= 4, 0	0 16 10	6 93 -90	2 48 - 57	2 16 18
9 0 21	4 66 -65.	0 30 20	1 71 66	7 60 -64	3 220 220	3 36 44
H.I = 0. 4	5 27 -16	1 783-799	2 0 -8	8 62 56	4 38 44	4 26 -22
0 140 144	4 33 44	2 120 100	3 117-176		5 93 -91	H.I. 12. 0
2 220 212	7 307 207	2 70 01	4 119-109	10 21 - 33	6 17 -6	0 105-104
2 230 213	9 104 103	6 117 100	6 36 43	10 21 - 55	7 17 49	1 72 -75
4 141-124	6 104 105	4 117 100	5 35 42		0 22 12	2 2 2 12
0 40 51	9 30 - 20	2 144 141	0 20 29	0 215 214	0 23 13	2 22 11
8 24 20	10 0 -14	6 264 281	7 61 -65	1 101 94	9 41 -48	3 43 32
H ₁ L# 0, 5	11 26 26	7 289 287	8 16 11	2 35 - 38	H+L= 9, 3	4 25 18
1 164 183	H+L= 2+ 3	8 0 5	H.L= 5, 5	3 59 58	0 104-111	5 60 - 56
3 78 ~85	0 151 136	9 30 -17	0 17 16	4 34 35	1 29 - 27	6 23 - 21
5 97 104	1 37 27	10 17 - 30	1 17 -4	5 34 -31	2 24 25	7 51 51
7 63 -80	2 74 -76	11 41 41	2 65 56	6 46 - 39	307	H.L. 12. 1
H.L. 0. 4	3 168 150	H.L= 4.	3 46 42	7 17 -27	4 49 -4R	0 70 69
0 30 - 34	4 66 -64	0 76 79	4 17 -12	8 55 50	5 49 -4A	1 0 9
2 10 - 34	5 04 77	1 7475	5 51 -40	0 16 10	A 40 47	· · · · ·
2 U -4	5 80 //	1 14 -15	5 51 -48		7 10 1/	3 60 -43
8- 01 -8	0 104-115	2 515-512	0 10 18	111L- (1 4	1 23 11	5 50 -47
H_L= 1+ 1	r 30 14	3 91 -14	7 21 -21	0 80 72	8 30 -28	4 52 -01
0 626-639	8 52 61	4 87 -80	H,L= 5, 0	1 68 /1	H,L= 9, 4	5 0 10
1 405 390	9 24 33	5 30 26	0 16 4	2 114-113	C 39 27	6 0 - 21
2 305 286	10 0 -2	6 192-199	1 28 40	3 0 - 5	1 49 -47	7 0 -11
3 194-173	H,L= 2, 4	7 145 147	20-8	4 111 116	203	H,L= 12, 2
4 110 127	0 21 10	8 30 38	3 15 -6	5 46 41	3 39 -40	0 58 55
5 12 11	1 122 120	9 80 71	4 33 39	6 29 - 34	4 0 8	1 17 25
6 31 18	2 183-191	10 34 41	H.L= 6. 0	7 0 -9	5 16 -5	2 25 - 26
7 172-171	3 0 -1	11 41 45	0 543-517	8 36 34	6 16 -12	3 76 71
8 129-128	6 52 57	H.I.# 4. 2	1 592-574	H.I. 7. 5	H.L. 9. 5	4 42 50
9 76 70	5 24 10	0 19 -10	2 401 377	0 83 -76	0 86 76	5 33 - 25
10 46 40	4 70 -47	1 26 - 23	2 214-214	1 0 -19	1 29 20	6 31 - 30
10 05 60	7 (0 70	1 20 - 33	2 210-210	1 0 -19	1 20 29	
11 40 -49	1 60 -10	2 31 - 23	4 222-254		2 23 -14	DIL- 121 3
H,Le L, Z	8 0 -1	3 96 - 95	5 54 - 56	3 34 -21	3 0 -1	0 50 28
0 121-114	9 0 -11	4 258-249	6 99 98	4 17 -8	4 15 11	1 42 38
1 115-105	H,L= 2, 5	5 0 ~ 13	7 44 ~50	5 0 11	H,L= 10, 0	2 59 -51
2 379 370	0 0 39	6 47 - 54	8 193~197	6 15 8	0 27-102	3 17 14
3 292 277	1 114 -90	7 94 - 99	9 30 -40	H,L= 7, 6	1 95 83	4 51 49
4 99-106	2 55 -65	8 65 - 57	10 70 72	0 15 18	2 42 - 36	5 0 10
5 184-182	3 39 30	9 74 -82	H.L= 6. 1	1 30 - 30	3 68 66	H.L= 12. 4
6 151 153	4 84 98	10 23 29	0 263 261	2 0 6	4 196 203	0 22 - 29
7 107 123	5 35 - 36	H.I.# 4. 3	1 52 -49	H.I. 8. 0	5 65 -51	1 27 - 13
8 99	6 17 -16	0 0 22	2 225 225	0 00 04	4 43 -44	2 2 3
9 25 -44	7 28 21	1 187-200	2 323 333	1 104 174	7 77 - 80	2 0 0
10 17 0	N 1 - 2 - 2 - 2 - 2	1 101-200	5 104 100	1 104 110	1 11 -00	3 0 -2
10 11 9		2 20 22	- 14 12	2 104-105	0 0 11	n,L= 13, 1
11 19 29	0 0 -8	3 220 234	5 33 - 36	3 88 -85	9 15 -4	0 17 21
H,L= 1, 3	1 17 15	4 229 228	6 27 -6	4 90 90	$H_{1}L = 10, 1$	1 46 37
0 367-369	2 29 27	5 120-120	7 17 18	5 299 310	0 28 34	2 17 -12
1 112 105	3 44 -34	6 0 - 7	8 30 -18	6 146-134	1 16 -4	3 71 - 71
2 153 151	4 16 -11	704	19 52 -61	7 63 - 70	2 36 - 30	4 0 ~5
3 13 -9	5 30 18	8 17 19	10 16 14	8 70 69	3 60 -65	5 56 56
4 76 -73	H,L= 3, 1	9 71 -70	H.L= 6, 2	9 53 47	4 128 129	6 15 16
5 146 140	0 290-275	10 15 -20	0 191-194	10 0 9	5 25 29	H.L= 13, 2
6 81 74	1 585 579	H.L= 4. 4	1 197 205	H.L= 8, 1	6 17 1	0 73 -80
7 64 72	2 42 -43	0 52 -65	2 87 99	0 181-184	7 0 36	1 0 1
8 55 -42	3 71 - 74	1 86 -87	3 73 -68	1 14 9	8 0 2	2 63 63
9 34 30	4 143 136	2 77 81	4 39 -40	2 117-119	H.L= 10. 2	3 0 5
10 23 26	5 103 98	3 0 10	5 260 260	3 181 183	0 90 93	4 42 -40
H,L= 1. 4	6 74 -76	4 0 -18	6 142 139	4 84 -97	1 96 - 90	5 15 -5
0 194-191	7 90 -84	5 17 6	7 24 -9	5 120-120	2 00 -00	H.L. 12. 2
1 56 -45	8 0 17	6 87 80	8 25 -13	6 30 45	. 3 24 4	0 14 11
2 43 62	9 97 84	7 65 67	9 20 14	7 55 -50	4 45 45	1 0 4
3 54 51	10 0 10	8 0 7	10 27 22	8 0 - 9	6 17 17	2 0 4
4 217-222	11 16 -20	g 16 14	H.1 = 4. 3	a ^ +	6 01 -02	3 33 -13
5 106 -0*	H.J.F 3 7	H-1 F 4 F	0 274 270	10 16 77	2 20 2.	6 16 -13
5 100 - 95	0 174 1/1	111L 41 5	0 214-218	10 15 23	7 58 54	
	U 176 164	0 30 -22	1 78 - 76	H+L= 8+ 2	8 31 22	H.L= 14, 0
7 30 29	1 298 301	1 30 32	2 0 - 22	0 145-153	H.L= 10, 3	0 24 -7
8 17 -25	2 269-243	2 0 -2	3 62 81	1 47 58	0 30 29	1 24 -16
9 16 -19	3 283-284	3 55 -46	4 40 -46	2 15 -12	1 111 104	2 55 55
H,L= 1, 5	4 112-113	4 25 - 26	5 123-129	3 198-199	2 0 3	3 57 64
0 93 96		5 0 18	6 25 6	4 169 159	3 25 -23	4 42 - 36
1 0 19	5 40 47					
2 64 -53	5 40 47 6 43 41	6 23 - 26	7 46 53	5 56 45	4 63 - 72	5 47 - 51
	5 40 47 6 43 41 7 105-109	6 23 - 26 7 0 - 9	7 46 53	5 56 45	4 63 -72	5 47 -51 H.L. 14. 1
3 25 2	5 40 47 6 43 41 7 105-109 8 49 20	6 23 -26 7 0 -8	7 46 53 8 30 -21 9 16 -9	5 56 45 6 17 11 7 99 - 95	4 63 -72 5 17 15 6 16 -20	5 47 -51 H,L= 14, 1
3 25 3 4 7A 54	5 40 47 6 43 41 7 105-109 8 49 30 9 35 34	6 23 -26 7 0 -8 H,L= 4, 6	7 46 53 8 30 -21 9 16 -9	5 56 45 6 17 11 7 99 -95 8 45 -49	4 63 -72 5 17 15 6 16 -20 7 48 -47	5 47 -51 H,L= 14, 1 0 0 2
3 25 3 4 78 56 5 47 -45	5 40 47 6 43 41 7 105-109 8 49 30 9 35 36	6 23 -26 7 0 -8 H,L= 4, 6 0 33 28	7 46 53 8 30 -21 9 16 -9 H,L= 6, 4	5 56 45 6 17 11 7 99 -95 8 45 -48 9 21 20	4 63 -72 5 17 15 6 16 -20 7 48 -47	5 47 -51 H,L= 14, 1 0 0 2 1 29 -25
3 25 3 4 78 56 5 67 -65 6 38 -35	5 40 47 6 43 41 7 105-109 8 49 30 9 35 36 10 24 19	6 23 -26 7 0 -8 H,L= 4, 6 0 33 28 1 17 20 7 33 10	7 46 53 8 30 -21 9 16 -9 H,L= 6, 4 0 98 102	5 56 456 17 117 99 -958 45 -489 31 30	4 63 -72 5 17 15 6 1620 7 48 -47 H.L= 10, 4	5 47 -51 H,L= 14, 1 0 0 2 1 29 -25 2 0 -12 3 43 47
3 25 3 4 78 56 5 67 -65 6 38 -35 7 60 -65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 23 -26 7 0 -8 H,L= 4, 6 0 33 28 1 17 20 2 33 -19	7 46 53 8 30 -21 9 16 -9 H,L= 6, 4 0 98 102 1 55 -51 2 0: -70	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L= 8, 3	4 63 -72 5 17 15 6 1620 7 48 -47 H.L= 10. 4 0 69 -55	5 47 -51 H,L≠ 14, 1 0 0 2 1 29 -25 2 0 -12 3 43 47
3 25 3 4 78 56 5 67 -65 6 38 -35 7 40 -48	5 40 47 6 43 41 7 105-109 8 49 30 9 35 36 10 24 19 11 26 -30 H+L= 3, 3	6 23 -26 7 0 -8 H,L= 4, 6 0 33 28 1 17 20 2 33 -19 3 16 -6	7 46 53 8 30 -21 9 16 -9 H,L= 6, 4 0 98 102 1 55 -51 2 81 -79	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L= 8, 3 0 104-107	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 47 -51 H, L= 14, 1 0 0 2 1 29 -25 2 0 -12 3 43 47 4 22 11 4 22 11
3 25 3 4 78 56 5 67 -65 6 38 -35 7 40 -48 8 0 14	5 40 47 6 43 41 7 105-109 8 49 30 9 35 36 10 24 19 11 26 -30 H,L= 3, 3 0 156 163	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 30 -21 9 16 -9 H,L= 6, 4 0 98 102 1 55 -51 2 81 -79 3 38 -39	5 56 45 6 17 11 7 99 -95 8 45 -46 9 31 30 H,L= 8, 3 0 104-107 1 75 72	4 63 -72 5 17 15 6 16 -20 7 48 -47 H.L= 10, 4 0 69 -55 1 24 22 2 30 25	5 47 -51 H,L= 14, 1 0 0 2 1 29 -25 0 -12 3 43 47 4 22 11 5 14 -14
3 25 3 4 70 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6	5 40 47 6 43 41 7 105-109 8 49 30 9 35 36 10 24 19 11 26 -30 H,L= 3, 3 0 156 163 1 26 35	6 23 -26 7 0 -8 H,L= 4, 6 0 33 28 1 17 20 2 33 +19 3 16 -6 4 15 7 H,L= 5, 1	7 46 53 8 30 -21 9 16 -9 H.L= 6, 4 0 98 102 1 55 -51 2 81 -79 3 38 -39 4 67 62	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L= 8, 3 0 104-107 1 75 72 2 225 231	4 63 -72 5 17 15 6 16 -20 7 48 -47 H.L= 10, 4 0 69 -55 1 24 22 2 30 25 3 0 12	5 47 -51 H,L= 14, 1 0 0 2 1 29 -25 2 0 -12 3 43 47 4 22 11 5 14 -14 H,L= 14, 2
3 25 3 4 78 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37	5 40 47 6 43 41 7 105-109 8 49 30 9 35 36 10 24 19 11 26 -30 H,L= 3, 3 0 156 163 1 26 35 2 19 -24	$ \begin{array}{c} 6 & 23 & -26 \\ 7 & 0 & -8 \\ H, L = 4, 6 \\ 0 & 33 & 28 \\ 1 & 17 & 20 \\ 2 & 33 & -19 \\ 3 & 16 & -6 \\ 4 & 15 & 7 \\ H, L = 5, 1 \\ 0 & 324 & 332 \end{array} $	7 46 53 8 3021 9 169 H,L= 6, 4 0 98 102 1 5551 2 81 -79 3 38 -39 4 67 62 5 17 -18	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L= 8, 3 0 104-107 1 75 72 2 225 231 3 113-102	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 76 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 0 -5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 3021 9 169 H,L= 6, 4 0 98 102 1 5551 2 8179 3 38 -39 4 67 62 5 17 -18 6 52 -55	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L= 8, 3 0 104-107 1 75 72 2 225 231 3 113-102 4 83 -91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 78 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 C -5 2 0 -11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L= 8, 3 0 104-107 1 75 72 2 225 231 3 113-102 4 83 -91 5 63 61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 76 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 C -5 2 0 -11 3 0 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 30 -21 9 16 -9 $H_{+}L_{-}$ 6, 4 0 98 102 1 55 -51 2 81 -79 3 38 -39 4 67 62 5 17 -18 6 52 -55 7 0 0 8 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 70 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 0 -5 2 0 -11 3 0 22 4 62 73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 30 -21 9 16 -21 9 16 -4 0 98 102 1 55 -51 2 81 -79 3 38 -39 4 67 62 5 17 -18 6 52 -55 7 0 0 8 0 1 $H_{1} = 6.5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 78 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 0 -51 3 0 22 4 62 73 5 0 -4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 30 -21 9 16 -9 H $_{\rm L}$ L 6, 4 0 98 102 1 55 -51 2 81 -79 3 38 -39 4 67 62 5 17 -18 6 52 -55 7 0 0 8 0 1 H $_{\rm L}$ L 6, 5 0 17 24	5 56 45 6 17 11 7 99 -95 8 45 -48 9 31 30 H,L ^a 8, 3 0 104-107 1 75 72 2 225 231 3 113-102 4 83 -91 5 63 61 6 70 69 7 17 10 8 59 -57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 78 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 0 -5 2 0 -11 3 0 22 4 62 73 5 0 -6 1 22 4 62 73 5 0 -12 4 62 73 5 0 -22 4 62 73 5 0 -22 4 62 73 5 0 -22 4 0 2 37 5 0 -22 4 0 2 37 5 0 -22 5 0 -25 5 0 -25 6 0 -25 7 0 0 0 -25 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 23 -26 7 0 -3 H,L= 4, 6 0 33 28 1 17 20 2 33 -19 3 16 -6 4 15 7 H,L= 5, 1 0 324 332 1 233 210 2 170-176 3 152 159 4 183 185 5 197-193 6 121-127	7 46 53 8 30 -21 9 16 -9 9 16 -9 9 8 102 1 55 -51 2 81 -79 3 38 -39 4 67 62 5 17 -18 6 52 -55 7 0 0 8 0 1 H,L= 6, 5 0 17 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 25 3 4 70 56 5 67 -65 6 38 -35 7 40 -48 8 0 14 H,L= 1, 6 0 42 37 1 0 -5 2 0 -11 3 0 22 4 62 73 5 0 -6 H,L= 2, 0 0 662-65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 30 -21 9 16 -9 16 -9 8 10 -21 9 18 -9 9 18 -9 9 18 -9 9 18 -7 9 18 -7 2 81 -7 9 3 38 -39 4 67 62 5 17 -18 6 52 -55 7 0 0 8 0 1 H,L= 6, 5 0 1 7 26 1 58 -66 2 2 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 46 53 8 30 -21 9 16 -9 16 -9 18 -9 1 5 -51 2 81 -79 3 38 -39 4 67 62 5 17 -18 6 52 -55 7 0 0 8 0 1 H,L= 6, 5 0 17 26 1 525 -61 2 80 -17 8 0 1 H,L= 6, 5 0 17 26 1 525 -18 0 17 26 1 525 -18 0 27 25 1 525 -18 0 25 25 1 7 25 25 25 0 26 25 0 25 25 25 0 25 25 0 25 25 0 25 25 25 0 25 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

XBL 687-1323

2. <u>Discussion</u>

The $B_4F_6PF_3$ molecule is shown in Figure 1. The duplicate atom labels are caused by the crystallographic mirror plane which bisects the molecule and contains F1(P), P, B(1), B(2), F1(2) and F2(2). The atoms F2(P), P, B(1), and B(3) all lie in another plane to within the accuracy of this determination; F1(3) and F2(3) deviate from it by only a small (~3°) rotation of the BF₂ group about the B-B bond. This second plane makes an angle of $120^{\circ} \pm 1^{\circ}$ with the mirror plane so that the molecule has approximately 3m (C_{3v}) point symmetry, only one mirror of which is required by crystal symmetry. The fluorines on phosphorus are in a staggered configuration with respect to the BF₂ groups on B(1), and the angles at B(1) are tetrahedral to within the experimental accuracy.

Distances and angles found in this structure are presented and compared with those found for related compounds in Table III. These interatomic distances must be corrected for the effect of thermal motion in order to arrive at quantities which are comparable to the results of studies by other methods (e.g., spectroscopic and electron-diffraction methods). This is particularly true in view of the large thermal parameters found here. Large thermal parameters are consistent with the observations that this is a low-melting, readily sublimable crystal. The accuracy of thermal corrections is poor, however, because of the ambiguity as to the correct model on which to base their calculation. The minimum and "riding-model" corrections⁹ in Table III are included to indicate the approximate magnitude of the calculated corrections.

The author can find no chemical or molecular-packing-forces

Figure 1. - The $B_4F_6PF_3$ molecule. The molecule is bisected by a crystallographic mirror plane which contains F1(P), P, B(1), B(2), F1(2), and F2(2). The thermal elipsoids have been reduced to 30% probability contours for the sake of clarity.

atoms	distance, A	comparison distance	comparison compound
B(2)-F1(2)	1.330(10) ^a		
B(2)-F2(2)	1.276(10)		i
B(3)-F1(3)	1.319(6)	· · · · · · · · · · · · · · · · · · ·	
B(3)-F2(3)	1.293(7)	1.30	$\operatorname{BF}_{3}^{d}$
average	$1.305 \pm .015^{b}$	1.32 ± .035	B2F4
(thermal correct	$cion = .009, .051)^{c}$		
B(1)-B(2)	1.685(10)		
B(1)-B(3)	1.668(7)		
average	1.677 ± .015	$1.67 \pm .045$	^B ₂ ^F ₄
(thermal correct	tion = .001, .013		
B(1)-P	1.825(7)		
	1.825 ± .015	1.836 ± .012	$H_{3}BPF_{3}f$
(thermal correct	tion = .005, .026)		
P - F1(P)	1.525(6)		
P-F2(P)	1.496(4)	1•535 ± •02	$\operatorname{PF}_{3}^{g}$
average	1.511 ± .015	1.538 ± .008	H ₃ BPF ₃
(thermal correct	tion = .013, .066)		
	• • •		

Table III. Distances and Angles in B_4F_6PF_3 and Comparison Compounds

intra-molecular, non-bonded 2.719(9)

B(2)-B(3)

Table III, continued

B(3)-B(3)	2.725(11)
F1(2)-F2(2)	2.180(7)
F1(3)-F2(3)	2.176(4)
F1(P)-F2(P)	2.339(7)
F2(P)-F2(P)	2.321(7)
F2(2)-F2(3)	3.217(5)
F2(3)-F2(3)	3.181(7)
F1(2)-F2(P)	3.299(6)
F1(3)-F1(P)	3.246(4)
F1(3)-F2(P)	3.210(5)

inter-molecular F-F contacts

F2(P)-F2(3)	3.088(5)	[3.09 ₅]
F1(P)-F2(3)	3.092(5)	[3.11]
F1(2)-F1(3)	3.174(4)	[3.12 ₅]
F2(P)- F2(2)	3.178(6)	[3.22]
F2(2)-F1(3)	3.183(3)	[3.27]
F1(2)-F1(3)	3.209(4)	[3.28]
F2(P)-F2(3)	3.236(5)	[3.28]
F1(P)-F1(2)	3.244(7)	[3.30]
F1(3)-F1(3)	3.271(2)	[3.34]
F1(3)-F2(3)	3.292(5)	[3.37]

^B2^F4

^B2^F4

2.23 ± .024
	Table III, continued		
F2(P)-F2(P)	3.343(7)	[3.45]	
F1(2)-F2(3)	3.413(5)		
all others	> 3.5		
	bond angl	e s	
F1(2)-B(2)-F2(2)	113.6(7)		
F1(3)-B(3)-F2(3)	112.8(5)		
average	$113.2^{\circ} \pm 1^{\circ}$	[115 [°]]	^B ₂ ^F ₄
B(1)-B(2)-F1(2)	123.6(7)	•	
B(1)-B(2)-F2(2)	122.8(7)		
B(1)-B(3)-F1(3)	124.5(5)		
B(1)-B(3)-F2(3)	122.7(5)		
average	$123.4^{\circ} \pm 1^{\circ}$	[122.5 ⁰]	^B 2 ^F 4
B(2)-B(1)-B(3)	108.3(4)		
B(3)-B(1)-B(3)	109.5(5)		
B(2)-B(1)-P	111.1(5)		
B(3)-B(1)-P	109.8(3)		
average	$109.7^{\circ} \pm 1^{\circ}$	109.5 ⁰	(tetrahedral)
B(1)-P-F1(P)	115.2(3)		
B(1)-P-F2(P)	117.2(2)		
average	$116.2^{\circ} \pm 1^{\circ}$		

Table III, continued

F1 (P)-P-F2(P)101.5(2)F2(P)-P-F2(P)101.8(3) $100^{\circ} \pm 2^{\circ}$ average $101.7^{\circ} \pm 1^{\circ}$ $99.8^{\circ} \pm 1^{\circ}$

- (a) The number in parentheses is the standard deviation in the least significant digit as calculated from the standard deviations of coordinates.
 - (b) The standard deviations of .015 A and 1^o listed for average values are based upon comparisons of distances expected to be the same and the author's past experience. They are believed to be better representations of the accuracy of these results than those calculated from the standard deviations of coordinates.
 - (c) The two corrections for thermal motion given are a minimum correction and a "riding-model" correction, respectively. Both are much less than the maximum possible correction. (see text and reference 9).
 - (d) "Tables of Interatomic Distances and Configuration in Molecules and Ions", Special Publication No.11, The Chemical Society, Burlington House, London, W.1, 1958, page M18.
 - (e) L. Trefonas and W. N. Lipscomb, <u>J. Chem. Phys.</u>, <u>28</u>, 54 (1958).
 Numbers in square brackets are the author's calculation from cell dimensions and positional parameters given. (X-ray crystallographic study)
 - (f) R. L. Kuczkowski and D. R. Lide, Jr., <u>ibid</u>., <u>46</u>, 357 (1967). (microwave study)

65

PF3

H₂BPF₂

Table III, continued

(g) Q. Williams, J. Sheridan, and W. Gordy, <u>ibid</u>., <u>20</u> 164 (1952).
 (microwave and electron diffraction study)

explanation for the apparent difference (~ .04 A) between the axially and equatorially directed B-F distances. Since this difference could have arisen from a small (~ .02 A $\leq 2\sigma$) shift of the two borons, the author is not willing to assert that it is real in the absence of supporting evidence. The up-and-down orientations of the ${\rm BF}_2$ groups was unexpected because the F-F distances between different groups would be greater if the BF₂ groups were in a propeller-like configuration. The observation that each fluorine has at least two inter-molecular F-F contacts shorter than any intra-molecular one (except between two fluorines bonded to the same atom) shows that the fluorine contacts within the molecule are not short enough to control the configuration. The BF2 orientations are evidently governed by the meshing together of fluorines on adjacent molecules (see Figure 2). The existence of inter-molecular F-F contacts shorter than the intra-molecular ones also indicates that the B-P distance is not controlled by F-F interactions. This, and the fact that the B-P distance found here is not significantly different from that found for H_3BPF_3 , indicates that BF_2 will not only formally replace hydrogen,¹ but is quite similar to hydrogen in its electronic effects on the rest of the molecule.

Figure 2. - Molecular Packing in $B_4F_6PF_3$. This is one layer, approximately $\frac{1}{2}$ a thick, seen in perspective. The other layers are related to the one shown by the <u>a</u> glide perpendicular to <u>c</u>.

References and Footnotes

- (1) P. L. Timms, J. Am. Chem. Soc., 82, 1629 (1967). (2) A description of this work is to be submitted to <u>Inorganic</u> Chemistry for publication. J. Karle and I. L. Karle, Acta Cryst., 21, 849 (1966). (3) (4)R. E. Long, Ph. D. thesis, University of California, Los Angeles, 1965. (5) "International Tables for X-ray Crystallography", vol. III, The Kynoch Press, Birmingham, England, 1962, pp. 202-3, 214-5. D. T. Cromer and J. T. Waber, <u>Acta Cryst.</u>, <u>18</u>, 104 (1965). (6)(7)D. T. Cromer, <u>ibid</u>., <u>18</u>,17 (1965). (8)No significant changes in either the structural parameters or the quality of agreement were found as a result of the change in scattering factors. (9) W. R. Busing and H. A. Levy, <u>Acta Cryst.</u>, <u>17</u>, 142 (1964).

ł

Acknowledgments

I thank Professor David H. Templeton for his continued interest, guidance, and instruction during the course of this work. I also thank Dr. Allan Zalkin for the use of his computer programs and his constant effort in maintaining and improving them. Mrs. Helena Ruben is thanked for her too-often unrecognized attention to the details of supply and maintainence necessary to the performance of this work. Dr. Michael G. B. Drew is thanked for his aid in the application of statistical methods of phase determination. All of the above, as well as Dr. Ted E. Hopkins, Dr. Roger C. Petterson, Mr. David J. St. Clair, and Mr. Mark S. Fischer are thanked for their warm friendship and many stimulating, instructive conversations.

I thank Professor M. F. Hawthorne for supplying crystals of $\operatorname{Rb}_2\operatorname{B}_{20}\operatorname{H}_{18}$ and $\operatorname{N(CH}_3)_4[(\operatorname{B}_9\operatorname{C}_2\operatorname{H}_8\operatorname{Br}_3)_2\operatorname{Co}]$, and for helpful discussions regarding these substances. I thank Professor P. L. Timms for providing samples of $\operatorname{B}_4\operatorname{F}_6\operatorname{PF}_3$ and for providing them in such a convenient form. Both Professor Timms and Mr. Ralph Kirk are thanked for discussions regarding the $\operatorname{B}_4\operatorname{F}_6\operatorname{PF}_3$ results.

Particular thanks go to my wife, Barbara, for typing numerous drafts and the final copy of this report.

I thank the National Science Foundation for a graduate fellowship (1964-1967) and the U. S. Atomic Energy Commission, under whose auspices this work was performed.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.