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Abstract 

One of the pinnacles of human cognition is the creative insight 
of expert mathematics. While its concepts are abstract, the 
actual practice of mathematics is undeniably material and 
embodied. Mathematicians draw, sketch, write; having created 
these inscriptions, they interact with them. This iterated process 
of inscription is the engine of mathematical discovery. But how 
does this engine work? Here, using a new video corpus of 
mathematical experts working on proofs, and deploying tools 
from network and complexity science, we characterize the 
structure and temporal dynamics of how mathematical experts 
create and interact with blackboard inscriptions. We find 
regularities in the structure of this activity (e.g., emergent 
‘communities’ of inscriptions) and its temporal dynamics (e.g., 
‘bursty’ shifts in attention). By characterizing this activity, we 
gain a better understanding of the distributed ecosystem in 
which mathematical creativity occurs — including the ways that 
mathematicians actively construct their own notational niches.  

Keywords: mathematical cognition; networks; complex 
systems; inscription; distributed cognition; embodiment 

Introduction 
One of the pinnacles of human cognition is the creative 

insight of expert mathematics. Often working alone, 
sometimes for years, mathematicians generate new 
knowledge about completely abstract objects, from infinite 
sets to imaginary numbers. The actual practice of 
mathematics, on the other hand, is undeniably concrete, 
material, and embodied. Mathematicians draw. They sketch. 
They write out derivations, erase them, start again. Having 
created these inscriptions, mathematicians interact with 
them: shifting their attention, talking about and gesturing at 
them, elaborating them further. This iterated process of 
inscription is the engine of mathematical discovery.  

But how does this engine work? While philosophers, 
historians, and sociologists have argued that notations, 
diagrams, and the process of inscription are central to 
mathematical practice (Barany & MacKenzie, 2014; Mialet, 
2012; Muntersbjorn, 2003), we know surprisingly little 
about the details of this process. Here, we use tools from 
network and complexity science to characterize the structure 
and temporal dynamics of expert mathematical activity—in 
particular, the process by which experts create and interact 
with inscriptions while working on mathematical proofs.  

Notations in mathematical cognition 
Past work in a range of disciplines has explored the role of 
notations and inscription in mathematical reasoning. Within 
mathematics education, for instance, it has long been 
recognized that choosing the right notation is often half the 
battle (Polya, 2004). This is true among experts just as much 
as it is true for schoolchildren (Muntersbjorn, 2003). Indeed, 
there is now a growing body of qualitative and theoretical 
research on the centrality of inscription in mathematical 
reasoning (Barany & MacKenzie, 2014; Greiffenhagen, 
2014; Muntersbjorn, 2003; Roth & McGinn, 1998).  

More controlled, quantitative studies have established 
that notations are a critical part of the distributed system of 
mathematical reasoning. In particular, there are bidirectional 
influences between, on the one hand, the specific notations 
used to solve mathematics problems, and, on the other, the 
psychological processes used to solve problems (Goldstone, 
Marghetis, Weitnauer, Ottmar, & Landy, 2017). Both 
undergraduate students and more expert reasoners, for 
instance, rely on the correspondence between spatial 
proximity and algebraic precedence in standard algebraic 
notation; algebraic performance is improved when this 
correspondence is maintained, harmed when it is violated 
(Landy & Goldstone, 2007). Conversely, experience with 
mathematical notations can reshape the psychological 
processes used to interact with them. Marghetis and 
colleagues (2016) found that, among adults who had 
mastered the syntax of algebra, the visual system had 
learned to perceive syntactically-related elements as unified 
visual objects. How we think about a mathematical domain 
shapes how we interact with inscriptions, and interacting 
with those inscriptions shapes how we see the problem.  

Most of this past work, however, has focused on 
contexts where the notations are supplied rather than created 
by the participant. In real-world mathematical activity, by 
contrast, the reasoner must often explore multiple 
approaches to representing a problem—sketching out 
specific examples, pursuing different algebraic derivations, 
drawing a variety of different graphs—before settling on the 
final approach. Focusing only on the end product of this 
practice hides the dynamic messiness of mathematical 
reasoning. As mathematician Reuben Hersh put it, this 
confuses the clear, organized, pristine ‘front stage’ of 
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published or textbook mathematics for the messy, dynamic 
‘backstage’ of real mathematical practice (Hersh, 1991).  

Describing expert inscription activity 
In this paper, we zoom in on this messy ‘backstage’ of 

mathematical reasoning, to try to characterize the dynamic 
contexts of mathematical creativity. To do so, we draw on 
tools from network science and complex systems. We 
describe a video corpus of mathematical experts working on 
non-trivial mathematical proofs. While this corpus offers 
endless possibilities for qualitative analysis, here we adopt a 
quantitative approach that allows us to measure how experts 
create and interact with mathematical inscriptions by 
identifying the ‘inscription objects’ that each expert created 
(e.g., equations, graphs, etc.) and then creating a timeseries 
of when, exactly, the expert attended to these objects, from 
their first creation to their final glance. We use this dense 
timeseries to describe the structure and dynamics of 
inscription.  

To do so, we adapt tools from network science to offer a 
new methodology for studying situated cognitive activity: 
representing each expert’s activity as a directed network, in 
which individual inscription objects are represented as 
nodes, and transitions between objects (e.g., shifting 
attention from one graph to another) are represented as 
directed edges (see Methods and Figure 1). This approach is 
a way to ‘coarse-grain’ the messy, chalk-covered reality of 
expert inscription, to better reveal the deeper regularities 
that characterize expert notational practices.  

Methods 

Corpus 
We created a video corpus of experts solving non-trivial 
mathematics problems in a naturalistic setting (total corpus 
length: 4 hours and 40 minutes). Doctoral students in 
mathematics  (N = 7, 4 men and 3 women) were recruited 
through the website of the mathematics department at a 
major research university and compensated $10/hour.    

These experts solved up to three non-trivial problems in 
a natural setting: either their own office or a nearby seminar 
room within the mathematics department. They were 
encouraged to talk out loud as they solved the problems. All 
participants made ample use of the blackboard.  

Videos were recorded with a Sony HDR-CX405 high-
definition digital. The camera was positioned such that the 
board and the participant were visible.  

Mathematics problems 
Problems were drawn from the William Lowell Putnam 

Mathematics competition, an annual mathematics 

competition for undergraduate students. These problems are 
typically too difficult for even advanced undergraduate 
students, but tractable for mathematics experts at the 
doctoral level or above. Problems were selected to include a 
range of content areas (i.e., set theory, geometry, analysis): 
(1) Find an uncountable subset, S, of the power set of a 

countable set, such that the intersection of each pair of 
elements in S is finite.  

(2) Let f : R2→R be a function such that f(x, y) + f(y, z) + 
f(z, x) = 0 for all real numbers x, y, and z. Prove that 
there exists a function g: R→R such that f(x, y) = g(x) 
- g(y) for all real numbers x and y. 

(3) Let d1, d2, … d12 be real numbers in the interval (1, 
12). Show that there exist distinct indices i, j, k such 
that di,dj, dk are the side lengths of an acute triangle. 

Each participant worked for approximately an hour on the 
problems, depending on their availability. Most participants 
were only able to complete two of the problems in that time.  

Video Coding  
Each participant created dozens of inscriptions on the 

blackboard and then interacted with those inscriptions—by 
talking about them, gesturing towards them, or elaborating 
them with further inscriptions. We conducted a fine grained 
coding of the video corpus, at a nearly frame-by-frame 
resolution, to track the creation of and interaction with 
‘inscription objects’ on the blackboard.  

Blackboard inscriptions naturally clustered together into 
objects. For instance, a graph of a function might consist of 
two axes, labels for those axes (‘x,’ ‘y’), and then a line 
representing the function. Each of those components, 
however, naturally cluster together in both meaning (they 
are all part of the same graph) and in spatial location (they 
are all located close together, with only minimal blank space 
in between). We used these two criteria—semantic 
relatedness and spatial proximity—to identify cohesive 
‘inscription objects’ on the blackboard. 

A coder viewed each video and annotated the onset and 
offset of inscription events: either the creation of a new 
inscription object, or subsequent interactions with that 
object (via talk, gaze, gesture, further elaboration, or 
erasing). This generated a timeseries of events for each 
inscription object, from its initial creation to the final time 
that the expert attended to it. For instance, if an expert 
created a graph at the very start of a session, the timeseries 
would include the onset and offset times for that process of 
initially drawing the graph; if the expert later looked at the 
graph, the timeseries also included that event. All coding 
was conducted in ELAN, software designed for annotating 
audio and video (Lausberg & Sloetjes, 2009). 
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Network representation of inscription activity  
To characterize the structure and temporal dynamics of 

experts’ inscription activity, we used tools from network 
science. For each attempt to solve a problem, we used the 
timeseries of inscription events to generate a directed 
network, in which nodes represent inscription objects and 
directed edges represent transitions between objects.  

As a simplified illustration, consider a scenario where an 
expert begins to solve a problem by creating and interacting 
with four inscription objects: three number-lines and one 
triangle (Fig. 1). The final network representation of this 
inscription activity would consist of four nodes, one for 
each inscription object, with a directed edge between two 
nodes whenever the expert attended first to one object and 
then to the other. For instance, if the expert started by 
creating a number-line (Fig. 1A), before abandoning that 
number-line to draw a triangle (Fig. 1B), the network 
representation of their activity up to that point would consist 
of two nodes — one for each inscription object — and a 
single directed edge from the first object to the second. As 
the expert creates new objects on the blackboard, the 
network grows (Fig. 1C, D), with their shifts in attention 
represented by directed edges between nodes 1 and 2, then 
from 2 to 3, then from 3 to 4, and then back to 2 again as 
they return their attention to an earlier inscription. This 
abstract graphical representation thus captures how the 
expert created and shifted their attention between inscription 
objects over the course of solving the problem.  

Results 
We first describe the network structure that emerged from 
the experts’ inscription activity, then the temporal dynamics 
of their inscription activity, and finally the relations between 
the structure and dynamics of their notational activity.  

Network structure of inscription activity 
Experts created 360 distinct inscription objects, which they 
interacted with 4718 times. On average, solving an 
individual problem involved creating 24 inscription objects 
(SD = 16) and interacting with them 315 times (SD = 191). 

Despite working on the same set of problems, experts in 
the corpus exhibited considerable variability in how they 
created and then shifted their attention among inscription 
objects. Figure 2, for instance, illustrates two different 
approaches to solving the same problem (problem #3, 
quoted above). For one individual (left), edges between 
nodes are distributed more or less randomly; nodes do not 
group together into interconnected clusters. By contrast 
(right), another individual interacted with inscriptions in 
interconnected clusters, and were much more likely to 
transition from one object to another within these clusters. 
This reflects a strategy where attention is likely to move to 
another inscription within the same cluster, creating pockets 
of activity wherein attention jumps between the same subset 
of inscriptions.  

To identify these “communities” of inscriptions, we used 
the Girvan–Newman algorithm for community detection 
(Girvan & Newman, 2002), which identifies highly 
interconnected clusters of nodes using “edge betweenness” 
— the number of shortest paths between pairs of nodes that 
go through the edge — to identify highly central edges. In 
Figure 2, a node’s community is identified by its color.  

One way of describing the structure of inscription 
activity, therefore, is by how strongly shifts of attention 
defined communities of highly interconnected nodes — that 
is, the modularity of the network of inscription activity 
(Clauset, Newman, & Moore, 2004). Overall, inscription 
activity was significantly modular (M = 0.18, t14 = 4.1, p = 
.001; positive values indicate modularity, while 0 indicates 

Figure 1. Illustration of a network representation of inscription activity. Blackboard images (top row) 
capture four consecutive stages in the process of developing a mathematical proof. The network 
representation of this process (bottom row) includes a node for each inscription object and an edge for 
transitions in attention from one object to another. We have added colored dots to the blackboard to indicate 
the location of each inscription object.  (Node locations do not correspond to the objects’ spatial locations.) 

1

(A) (B) (C) (D)

1 2 1 2

3 4

1 2

3 4
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no modularity). Modularity exhibited both diversity and 
regularity. The participant illustrated on the left in Figure 2, 
for instance, generated a network with below average 
modularity compared to other experts who solved the same 
problem (modularity =  0.14), while the participant 
illustrated on the right had the second highest (modularity = 
.47). The modularity of individuals’ activity varied 
considerably between problems (correlation in modularity 
between problems: r = 0.31); the individual who had the 
most modular activity on one problem, for instance, had the 
second-lowest modularity on another. By contrast, the two 
problems completed by most of the experts elicited reliably 
different modularity in inscription activity (Mtriangle = 0.26 
vs. Mfunction = 0.08, t13 = 2.4, p = .03). While modular 
clustering of inscriptions seems to be a recurring pattern in 
inscription activity, therefore, the precise amount of 
modularity likely reflects both the demands of the particular 
problem and stochastic, situated decisions. 

In addition to the reliably modular structure of 
inscription activity overall, we also found finer grained 
regularities in the structure of communities themselves. 
Among communities, we observed two recurring ‘motifs’ or 
subgraph structures. One such motif was the ‘cluster’ motif, 
in which most nodes within a community were connected to 
each other (Fig. 3, right). These ‘clusters’ captured cases 
where a subset of inscription objects were all ‘in 
conversation’ with each other, with the expert shifting their 
attention among all inscriptions within that community. In 
contrast to these clusters, other ‘loop’ communities 
consisted entirely of a single, recurring route from one node, 
to another, to another, etc. in a straight, non-branching path 
(Fig. 3, left). These loops reflect inscriptions with a 
canonical pathway of attention—such as an algebraic 
derivation, where the experts attention would typically flow 
from the first expression to the last, in a set order.  

 
Figure 2. Different approaches to solving the same 
problem. Two different experts (left and right) solved the 
same problem, using approximately the same number of 
inscription objects (nodes). However, they interacted with 
those inscriptions in different ways, producing networks 
with different topological properties (see text). (Edge 
thickness indicates transition probabilities. Node color 
indicates community membership, as detected using the 
Girvan–Newman algorithm.)  

 

 
Figure 3. Recurring motifs in network communities. 
(left) Multiple communities involved only a single, 
recurring route from one node, to another, to another, etc. 
in a straight, non-branching path. (right) Other 
communities were highly interconnected, with most nodes 
connected to most other nodes.  

Temporal dynamics of shifts in attention 
We next characterized the temporal dynamics of 

inscription activity. To do so, we focused on the sequence of 
inter-event intervals — that is, the amount of time between 
the onset of attention towards one inscription object and the 
onset of attention towards the next object. A similar 
approach has been used to study the temporal dynamics of 
other human and human-technical systems (Barabasi, 2005; 
Goh & Barabási, 2008), such as email wait-times and 
dynamics of phone calls.  

Here, we use a measure that have been used previously 
to characterize complex systems of social and cognitive 
activity, and to distinguish those systems from natural (e.g., 
earthquakes) and autonomous physiological activity (e.g., 
heartbeats): the ‘burstiness’ of the activity (Goh & Barabási, 
2008). Past work has established that human activity 
systems often exhibit heavy-tailed dynamics — for instance, 
bursts of high activity followed by long periods of 
inactivity, with longer periods of inactivity than expected 
(e.g., assuming a Poisson or Gaussian distribution). This 
‘burstiness’ may reflect interaction-dominant dynamics, 
with multiple processes combining in non-additive ways, or 
by an underlying process that involves priority queuing 
(Barabasi, 2005). The burstiness of a distribution of inter-
event intervals {t} is typically measured by:  

𝐵 =  
𝜎 −𝑀!

𝜎 +𝑀!
 

where 𝜎 is the standard deviation and Mt is the mean inter-
event interval. More recently, this measure has been found 
to be sensitive to the size of finite samples, and the 
following elaboration has been adopted:  
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𝐵 =  
𝑛 + 1𝑟 − 𝑛 − 1

( 𝑛 + 1 − 2)𝑟 − 𝑛 − 1
 

where r is the coefficient of variation, 𝜎/ Mt, and n is the 
sample size. Both these measures are designed to equal 0 for 
random, Poisson distributions; -1 for regular, periodic 
distributions; and +1 for bursty distributions. Past work has 
found that human activity systems typically exhibit 
significant burstiness (Goh & Barabási, 2008). 

Overall, inscription activity was significantly bursty (B = 
0.17, p < .0001, bootstrapped with n = 1000 samples). The 
burstiness was even more pronounced when we considered 
the distribution of times spent within a community of 
inscriptions — that is, the time between attending to one 
inscription object that belonged to a new community, and 
attending to a new object that belongs to a new community. 
This timeseries of inter-community dynamics was extremely 
bursty (B = .47, p < .0001, bootstrapped with n = 1000 
samples), comparable to the most bursty human systems 
(Goh & Barabási, 2008). Inscription activity, therefore, was 
marked by with long periods of time spent within a 
community of inscriptions, followed by ‘bursty’ periods 
with rapid transitions between communities.   

Relationship between structure and dynamics 
Finally, we sought to characterize the relationship 

between the topological structure of experts’ inscription 
activity (e.g., community structure and modularity) and the 
temporal dynamics of that activity.   

First, we examined when, exactly, experts transitioned 
from one community of inscriptions to another. To do so, 
we took our timeseries of inscription object attention and 
determined whether the new object of attention belonged to 
the same or a different community— that is, a community 
transition. We then tried to predict the transition to a new 
community, using a generalized linear mixed-effects model 
of whether the new object belonged to a different 
community. We included as fixed effects the cumulative 
time spent on the problem; the amount of time spent 
attending to the current object; and, critically, the amount of 
time spent in the current community since most recently 
beginning to attend to that community (‘sticking time’). We 
included random intercepts and slopes by participants, and 
random intercepts by problem.  

There was no reliable relationship between the 
cumulative amount of time spent on the problem and the 
probability of transitioning to a new community of 
inscriptions (b = 0.22 ± 0.30 SEM, p = .46). By far the 
strongest predictor, however, was the amount of time spent 
within the current community, which had a large and 
negative relationship to the probability of transitioning to a 
new community (b = -2.29 ± 0.40 SEM, p < .0001). In other 
words, communities of inscriptions were themselves 
‘sticky,’ so that the longer an expert spent within a 
community of inscriptions, the more likely they were to stay 
there going forward. This thus helps explain the highly 

bursty dynamics of transitions between communities, 
reported above: experts become fascinated with a particular 
cluster of inscriptions and spend considerable time, before 
suddenly transitioning to different inscription, and perhaps 
then undergoing a ‘bursty’ period of rapid transition 
between communities.  

Finally, we looked at the relationship modular structure 
and between bursty dynamics. We used a linear mixed-
effects model of the burstiness of the inscription activity 
used to solve each problem, and included predictors for the 
problem, the total number of events, the total number of 
inscription objects, the mean duration of an inscription 
event, a measure of the ‘memory’ of the activity dynamics 
(Goh & Barabási, 2008), and, crucially, our measure of 
modularity. The predictor with the largest relationship to 
burstiness, and the only one that was statistically significant 
was modularity (b = 1.29 ± 0.52 SEM, p < .04). More 
modular inscription activity—with communities of densely 
interconnected inscriptions—was associated with more 
bursty temporal dynamics (Fig. 4).  

Discussion 
Drawing on a corpus of mathematical experts working on 
non-trivial problems, and deploying tools from network and 
complexity science, we set out to characterize the ‘manual 
labor’ of mathematics (Marghetis, Edwards, & Núñez, 
2014). We found that expert mathematical practice involved 
actively creating dozens of inscriptions and navigating 
between them, shifting attention from one to another. These 
shifts in attention were not random, however, but exhibited 
systematic modularity; inscriptions clustered together into 
‘communities,’ subgroups of inscriptions that were likely to 
follow each other in a cascade of attention. This structure of 
inscription activity was related to the temporal dynamics of 
inscription, with a systematic relationship between 
inscription modularity and temporal burstiness (a hallmark 
of complex human activity). Overall, our network analysis 
of mathematical activity revealed both diversity and 
regularity in the inscription activity of experts.  

The complex ‘ecosystem’ of cognition 
By transforming raw video of situated problem solving 

into a directed network of inscription activity, we created a 
tractable representation of an otherwise prohibitively 
nuanced practice. This allowed us to adopt a quantitative 
approach without sacrificing a systems-level analysis. This 
approach shifts the focus away from individuals and skull-
confined brain, and toward the ecosystem of mathematical 
practice, spanning brains, bodies, and blackboards.  

From this perspective, the engine of mathematics is not 
the mathematicians’ brain, locked away inside their skull. 
The brain is undeniably part of that engine. But equally 
important is the system of notations to which the 
mathematician has recourse, the particular inscriptions she 
creates in the moment, and the way her body allows her to 
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bring all those parts into coordination—by looking, 
pointing, sketching. The mathematician’s creative insights 
are the product, not of solitary brains, but of a socially and 
materially distributed cognitive system (Hutchins, 1995). 
Indeed, this was true even of the physicist Stephen 
Hawking, who was famously confined to a wheelchair; 
instead of creating his own inscriptions, he worked closely 
with his able-bodied students, who created inscriptions on 
his behalf (Mialet, 2012). 

This shift away from traditional intracranial processes to 
the larger complex system involved in creative mathematics 
puts a new emphasis on the material context of 
mathematical discovery. How should we characterize the 
endless inscriptions that mathematicians produce daily? 
How do those inscriptions change over the course of their 
mathematical training? How important are the inscriptions 
that a mathematician produces for herself, compared to 
those produced by her colleagues?  

These questions suggest an analogy with another context 
of insight and learning: The early development of infants’ 
visual and linguistic systems. Recent work has begun to 
characterize the rich visual and linguistic input that is 
received by the developing child—including how the child 
actively shapes that input to facilitate learning (e.g., Smith, 
Jayaraman, Clerkin, & Yu, 2018). Understanding the larger 
ecosystem in which learning occurs—whether by a pre-
verbal child or a highly trained mathematician—will be 
critical to understanding how, exactly, that learning occurs.  

Indeed, this analogy with early child learning highlights 
another critical component of situated mathematical 
practice: Mathematicians do not receive carefully formed 
representations of their problems. They must figure out how 
to represent their ideas. In this way, the mathematician is 
like the child who actively shapes their visual input. 
Children shape their visual context to facilitate learning. 
Mathematicians transform their material context to facilitate 
creative insight. By sketching, drawing, graphing, and 
writing various algebraic expressions, they engage in a form 
of niche construction: ‘notational niche construction.’  

Limitations 
Our analysis has a number of limitations.  

For one, naturally occurring inscriptions need not 
necessarily cluster into objects defined by semantic 
relatedness and spatial proximity. In our corpus, however, 
the inscriptions did typically fall into unambiguous clusters, 
and the few unclear cases were resolved through discussion 
among the authors (e.g., deciding whether a vertical stack of 
equations should count as one object or multiple, distinct 
objects). Second, one modality by which experts could 
engage with an object was through gaze; however, since our 
data consisted only of a single camera, it was not always 
possible to determine where a participant was looking. Gaze 
toward an object was only coded when there was 
unambiguous evidence that the participant had shifted their 
gaze toward an object, such as when they turned their entire 

head to look at an inscription that was relatively isolated on 
the blackboard. As a result of this conservative approach, 
we may have underestimated the number of transitions 
between objects. To address both these issues, future work 
will need to establish the reliability of the coding scheme by 
using multiple coders and calculating inter-coder reliability.  

Third, the methodology introduced here is very time-
consuming, both when initially collecting the data (which 
requires recruiting highly trained experts) but especially 
when coding the video data afterwards. As a result, the 
current corpus consists of hundreds of inscriptions and 
thousands of interactions, but these were drawn from the 
activity of only seven experts. Were are currently working 
to expand our corpus in order to investigate the generality of 
the current findings.  

Future Directions and Conclusions  
We have not even begun to look at how the structure and 

dynamics of inscription might change over the course of a 
problem solving episode. For instance, are there distinct 
phases of activity—perhaps early exploration of different 
inscriptions, followed by later exploitation of successful 
ones?  

Relatedly, we have yet to investigate the association 
between the structure and dynamics of inscription and 
various other outcome measures. For instance, does the 
network structure of inscription activity predict the 
creativity or completeness of the final proof? On a more 
granular level, what happens immediately before the expert 
has a sudden insight—can we predict the onset of a critical 
transition in understanding (e.g., Setzler, Marghetis, & Kim, 
2018; Stephen, Boncoddo, Magnuson, & Dixon, 2009)?  

Third, future analyses will look in more detail at the kinds 
of inscriptions that experts are creating. Does inscription 
activity differ between, say, algebraic equations  versus 
Cartesian plots? Might the structure and dynamics of 
inscription offer insights into how individuals tend to use 
different kinds of inscriptions—or perhaps reveal that 
superficially dissimilar inscriptions are actually treated 
similarly by experts?  

Finally, we are curious about which aspects of inscription 
activity are specific to highly-trained mathematical experts, 
and which might also occur among novices. Work on other 
complex systems has found that the temporal dynamics of a 
complex system can predict the system’s health or resilience 
(Kleiger, Miller, Bigger Jr, & Moss, 1987). One possibility, 
for instance, is that bursty dynamics during inscription is 
diagnostic of mathematical expertise. 

Answering these questions will bring us closer to 
understanding how one of the most abstract forms of human 
understanding is so undeniably concrete: Covered in chalk, 
gesturing emphatically at the blackboard, the thinking 
mathematician is engaged in manual labor — and then, 
suddenly, she understands infinity.  
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