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Analysis of Cardiovascular Disease using Cardiac Computed Tomography and Deep Learning 
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 Cardiovascular disease is the leading cause of death in the United States. 30~50% of 

cardiovascular disease is caused by coronary artery disease (CAD). CAD is caused by the 

development of coronary stenosis (the narrowing of the coronary arteries), which restricts blood 

supply to the myocardium and causes myocardial ischemia and eventually heart attack. Accurate 



 xxi 

 

 

quantification of coronary stenosis is crucial to evaluate the severity of CAD and plan 

appropriate treatments. Further, the accurate detection and quantification of impaired myocardial 

function also have great prognostic value in patients with CAD. Computed Tomography (CT) 

was initially focused on evaluating CAD through CT coronary angiography; the recent 

developments in 4D CT allow the acquisition of full 3D volumes across the entire cardiac cycle 

and thus enable the assessment of myocardial function. This dissertation introduces novel 

analytical and deep learning-based techniques to analyze coronary stenosis and myocardial 

dysfunction from CT. For stenosis, we develop a novel quantification algorithm to overcome the 

demanding challenge of quantifying small stenosis below the image resolution and greatly 

enhance the accuracy of the estimates of stenosis severity. For myocardial dysfunction, we 

demonstrate that 3D myocardial regional shortening (RSCT) measured from CT is an outstanding 

quantitative classifier to detect regional myocardial wall motion abnormality (WMA). However, 

the clinical utility of regional myocardial function quantifications such as RSCT measurements is 

limited by the dependence on manual image analysis. To solve this unmet need, we develop a 

deep learning (DL) framework to automatically and simultaneously accomplish two essential 

image processing tasks: (1) segmenting heart chambers and (2) reformatting CT volumes into 

clinically standard planes. Furthermore, regional myocardial function analysis is computationally 

expensive to perform for each patient, whereas a trained DL model can be easily deployed and 

can quickly generate results. Thus, we present the first DL approach to detect regional WMA 

from high-resolution 4DCT empowered by unique features available from dynamic volume 

rendering. Overall, these novel techniques have outstanding promise to replace time-consuming 

manual work and lead to automatic, fast, and accurate diagnosis of cardiovascular disease. 
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Chapter 1: Background 

 

1.1    Cardiovascular Disease 

 Cardiovascular disease is the leading cause of death for men, women, and people of most 

racial and ethnic groups in the United States, accounting for 1 in every 4 deaths1. It also remains 

the most common cause of death across European Society of Cardiology countries2. Of all the 

cardiovascular disease cases,  30% -50% were caused by coronary artery disease (CAD)3,4, with 

five major risk being: high blood pressure, high cholesterol, diabetes, obesity and smoking5,6. 

CAD is caused by the development of the thickening or hardening of the coronary arteries due to 

the buildup of atherosclerotic plaque made of fats, cholesterol, calcium, and other substances. 

The plaque buildup leads to coronary stenosis (meaning the narrowing of blood vessels), 

restricting the blood supply to the heart muscle (myocardium) and causing myocardial ischemia7. 

If a coronary artery becomes completely blocked by the plaque or if the plaque ruptures, it can 

lead to myocardial infarction (commonly called heart attack) which is an acute medical 

emergency.  

 The gold-standard test for assessing the functional significance of CAD is invasive 

fractional flow reserve (FFR). FFR is calculated as the ratio of mean pressure downstream of a 

coronary stenosis to the pressure in the aorta under conditions of maximal hyperemia to dilate 

the coronary microcirculation and increase coronary blood flow. An FFR value of 0.80 or less 

(i.e., a drop in maximal blood flow of 20% or more caused by stenosis) indicates the stenosis is 

causal of myocardial ischemia8 and may need to be treated by revascularization. A multi-center 

trial shows9 that FFR-guided revascularization significantly improved the clinical outcome in 

patients with stable CAD when compared with medical therapy alone; and the same trial shows 
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that FFR-guided revascularization significantly improved the outcome when compared with 

coronary angiography-guided revascularization10. 

 

1.2    Left Ventricle and its Function 

 The left ventricle (LV) is the chamber of the heart which pumps blood to the body and its 

function can be impaired by coronary artery disease. Accurate and reproducible morpho-

functional assessment of the LV is crucial as LV morphology, volumes, ejection fraction (EF) 

and regional function are critical parameters used in the diagnosis11, clinical management, 

prognostication, and follow-up of numerous cardiovascular diseases12,13. The assessment of LV 

parameters is included in clinical guidelines11–13 and is used for both inclusion criteria and 

endpoints in clinical trials14. 

 Myocardial ischemia caused by CAD reduces the heart muscle’s ability to pump blood. 

Thus, the LV walls (including an inner endocardium,  the “mid-wall” myocardium and an outer 

epicardium) do not contract normally during the heartbeat. LV ejection fraction (EF) is the most 

used clinical LV parameter to assess the global LV function to pump blood and is defined as the 

Equation 1.1: 

𝐸𝐹 =  
(𝐸𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒) − (𝐸𝑛𝑑 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒)

(𝐸𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒)
 ×  100%      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.1) 

where end-diastolic volume and end-systolic volume refer to the volume of blood just prior to 

the heartbeat and at the peak contraction of the heartbeat, respectively. The reduced LVEF (<= 

45%) is correlated with an increase in poor cardiovascular outcome in patients with CAD15,16. 

Unfortunately, LVEF has a number of important limitations including geometric assumptions 

and load dependency17, and the significant reduction in EF is usually a late consequence of 

disease. Instead, researchers have started to use myocardial deformation parameters such as 
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global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain 

(GRS), which directly measure the myocardial contractility along different directions during the 

LV contraction. These parameters serve as superior prognostic predictors in patients with 

myocardial ischemia than LVEF18–21.  

 However, in patients with highly regional dysfunction, or myocardial dyssynchrony (the 

lack of synchrony of contraction in different ventricles/ different myocardial segments of LV), or 

patients with heart failure symptoms and preserved EF (LVEF > 50%)22,23, these global metrics 

are no longer effective in capturing LV function. Regional assessment of myocardial function is 

needed to understand the extent of myocardial infarction and to locate the regional abnormality. 

In fact, the presence of regional LV wall motion abnormality (WMA) is an independent predictor 

of adverse cardiovascular events in patients with cardiovascular diseases24,25; further, it has 

greater prognostic values after acute myocardial infarction than global metrics26,27. A 

standardized model for the interpretation of regional LV abnormalities is the 17-segment model 

(see Figure 1.1) proposed by the American Heart Association (AHA)28. These individual 

myocardial segments are assigned to different coronary artery territories (LAD, left anterior 

descending; LCX, left circumflex; RCA, right coronary artery) to indicate which artery has a 

stenosis. A detailed correspondence of the 17 segments with each coronary artery can be found 

in these references29,30. Wall motion index (WMI) is one qualitative metric to classify the 

regional LV wall motion into a score of 1 to 4 where 1 means normal, 2 means hypokinesia, 3 

means akinesia and 4 means dyskinesia. Further, the measurement of physical parameters of 

myocardium such as regional myocardial strain can provide a quantitative and more sensitive 

assessment of the regional LV wall motion. 
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1.3    Non-invasive Cardiac Imaging: Different Modalities 

 It’s important to detect CAD at an early stage to guide optimal patient management. In 

section 1.1 the invasive FFR has been introduced as a gold-standard way to detect functionally 

significant CAD while its drawback is obvious. It is an invasive method requiring diagnostic 

cardiac catheterization. Therefore, a number of non-invasive imaging techniques have been 

developed and used extensively. Currently, two non-invasive imaging approaches for the 

diagnosis of CAD are utilized: (1) anatomical imaging, to visualize the anatomy of the coronary 

stenosis; and (2) functional imaging, to assess the hemodynamic consequences of a coronary 

stenosis and to assess the resultant myocardial function. In the following two sub-sections, I 

introduce the common non-invasive imaging techniques for each of these two approaches. 

 

Figure 1.1 AHA 17-segment model.  

 

1.3.1    Anatomical Imaging 

 The three most developed non-invasive coronary imaging modalities are coronary 

computed tomography angiography (CCTA), magnetic resonance coronary angiography 

(MRCA) and positron emission tomography (PET). Here the first two are introduced.  

number name

Basal 

Segments

1 basal anterior (A)

2 basal anteroseptal (AS)

3 basal inferoseptal (IS)

4 basal inferior (I)

5 basal inferolateral (IL)

6 basal anterolateral (AL)

Mid-

cavity 

Segments

7 mid anterior (A)

8 mid anteroseptal (AS)

9 mid inferoseptal (IS)

10 mid inferior (I)

11 mid inferolateral (IL)

12 mid anterolateral (AL)

Apical 

Segments

13 apical anterior (A)

14 apical septal (S)

15 apical inferior (I)

16 apical lateral (L)

17 apex
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 CCTA is a noninvasive 3D imaging test that is used to visualize and identify coronary 

artery disease. Before CCTA examination, the intravenous iodinated contrast agent at a rate of 5-

7mL/sec is injected into the patient. The contrast agent significantly increases the attenuation of 

the blood and thus makes the coronary vessels bright in the image. CCTA is usually performed 

on ≥64-detector row computed tomography (CT) scanners. There are two main advantages of 

CCTA. First, it provides the direct visualization of coronary artery plaque including non-

calcified, partially calcified and completely calcified plaques. From CCTA, one can also detect 

the features of a vulnerable plaque with a high risk of rupture, including the presence of positive 

remodeling, spotty calcification, low attenuation plaque and/or the “napkin ring” sign31,32. 

Second, CCTA can be used to measure the degree of luminal diameter narrowing (in the other 

words, percentage of stenosis) resulting from the coronary artery plaque. Based on the 

percentage, the stenosis can be classified into five grades: no stenosis (0%), minimal (1-24%), 

mild (25%-49%), moderate (50-69%), severe (70-99%), or occluded (100%)33. Since 2016, a 

more standardized grading and reporting system called CAD-RADS31 has been implemented in 

some clinics. CCTA has demonstrated the high diagnostic accuracy of detecting obstructive 

coronary stenosis at both thresholds of 50% and 70% stenosis. In the well-known prospective 

multi-center trial ACCURACY (Assessment by Coronary Computed Tomographic Angiography 

of Individuals Undergoing Invasive Coronary Angiography)34 with a total of 230 subjects 

underwent both CCTA and invasive coronary angiography (which served as the clinical ground 

truth for the presence of a stenosis), CCTA demonstrated sensitivity, specificity, positive and 

negative predictive values to detect ≥50% or ≥70% stenosis of: 95%, 83%, 64% and 99%, 

respectively, and 94%, 83%, 48% and 99%, respectively. The 99% negative predictive value 

makes CCTA an excellent test to rule out CAD.  



 6 

 Subsequently, a series of large randomized clinical trials have been performed to 

rigorously determine the clinical utility of CCTA. The PROMISE35 (Prospective Multicenter 

Imaging Study for Evaluation of Chest Pain, n =10,003) trial shows that there is no difference in 

the primary composite endpoint after the cardiovascular procedure between the CCTA testing 

group and the stress testing group in patient with intermediate-risk symptom. The SCOT-

HEART36 (Scottish Computed Tomography of the HEART, n = 4146) trial has reported the use 

of CCTA in addition to standard care in patients with stable chest pain leads to a significantly 

lower rate of death or nonfatal myocardial infarction at 5 years than standard care alone. Several 

trials conducted in the Emergency Department including the CT-STAT37 (Coronary Computed 

Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment, n = 

1370), ROMICAT-II38 (Rule Out Myocardial Infarction/ischemia Using Computed Assisted 

Tomography, n = 100) and ACRIN-PA39 (CT Angiography for Safe Discharge of Patients with 

Possible Acute Coronary Syndromes, n = 699) have shown that compared with the standard care, 

CCTA reduces both the time required to establish a diagnosis and the overall length of stay. 

These trials also show a negative CCTA result in low- to intermediate-risk patient safely 

excluded CAD.  

 The main challenges of CCTA examinations include cardiac motion artifacts related to 

high heart rate or arrhythmia and the high radiation exposure. For motion artifacts, the 

administration of 𝛽-blocker can lower the heart rate before imaging. The motion-correction 

postprocessing algorithms such as SnapShot-Freeze40 or ResyncCT41 can also be used to reduce 

the motion artifacts after image acquisition. To reduce the radiation exposure, the prospective 

electro-cardiographic (ECG)-gating (x-ray only turned on during the part of the cardiac cycle) is 

introduced to reduce the exposure by up to 90%42,43. Furthermore, despite the high diagnostic 
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sensitivity of CCTA, better CCTA techniques are needed to improve the current low specificity 

(around ~85%34,44) by avoiding calling non-obstructive coronary as obstructive stenosis. 

 MRCA can depict the lumen of the artery without the ionizing radiation. A multi-center 

study45 showed that the MRCA has 93% sensitivity and 42% specificity to identify patients with 

CAD. Due to the limitations in spatial resolution and long-scan times, MRCA remains a topic or 

research. 

 

1.3.2    Functional Imaging 

 Stress myocardial perfusion imaging is the most widely used to assess the hemodynamic 

consequences of CAD. A stress image is obtained at peak exercise stress and a rest image is 

obtained once the myocardial perfusion demand has returned to baseline. The difference of two 

images determines the effect of physical stress on the flow of blood through the coronary arteries 

and the heart muscle. Stress perfusion imaging can be performed with various imaging 

modalities such as MR, CT, PET or SPECT. 

 In section 1.2, the prognostic value of the myocardial function and regional LV wall 

motion abnormality in patient with cardiovascular diseases has been demonstrated. CAD is a 

regional disorder that may affect some territories of the heart more than others. Thus, several 

non-invasive imaging techniques have been developed to enable the measurement of regional 

myocardial function: echocardiography, cardiac magnetic resonance imaging (MRI), and cardiac 

CT. 

 Echocardiography is currently the most used in clinics to evaluate myocardial function - 

it can be performed at the bedside and experienced readers obtain extremely useful information 

about LV function rapidly. Unfortunately, it is operator dependent and can be limited by poor 
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acoustic windows46. Foreshortening in the long axis47 and  through-plane motion can lead to 

errors in quantitative measurements. A newer technology called speckle-tracking 

echocardiography provides new insights in the objective quantitative assessment of global and 

regional LV and RV function. By tracking the displacement of the speckles during the cardiac 

cycle, strain and strain rate can be measured. The detailed explanation of this technique can be 

found in this reference48. It has been extensively studied to show its clinical applications in 

evaluation of CAD49. The ongoing development of 3DE (three dimensional) speckle tracking 

echocardiography includes the ability to track speckles in 3-dimensions and thus enables the 

measurement of 3D myocardial strains50.  

 MRI tagging is considered as the gold standard for accurate myocardial deformation 

measurements. By altering the longitudinal magnetization of some regions of the samples before 

imaging, the contrast between these regions and the rest of sample is created, resulting in the 

dark lines (“tags”) on the image. Researchers realized the usefulness of MRI tagging  in cardiac 

imaging since the 90s51,52. The deformation of trackable tags is the direct depiction of the 

regional myocardium deformation and thus is accurate to detect wall motion abnormalities in 

myocardial ischemia25,53. Despite its usefulness, MR tagging has not been used in clinical 

practice due to the lack of use of cardiac MRI in general, its long scan times (the requirement of 

several breath holds is not ideal for very sick patients), complicated image analysis , and the 

contraindications for patients with implanted devices. 

 As shown in the previous section, CT was initially utilized to evaluate coronary artery 

stenosis. Recently, the single-heartbeat CT scan enables the assessment of myocardial function 

by acquiring a series of functional images spanning the full cardiac cycle in just one heartbeat. 

CT data acquired in one R to R interval (two successive R-waves of the QRS signal on the ECG) 
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are usually reconstructed into 10 to 20 phases (every 5% ~ 10% R to R interval) to show the 

deformation of the heart at each cardiac phase of the entire cardiac cycle. We call this type of CT 

scanning which records multiple images over time as “4DCT”. In clinics, myocardial wall 

motion is usually visualized on movies of 4DCT data reformatted into a set of two-dimensional 

(2D) long-axis and short-axis planes28. Three-dimensional (3D) visualization techniques such as 

surface rendering or volume rendering54 can be used to visualize more complex 3D motion of 

myocardium. 

 Compared with echocardiography, CT has shown a strong correlation (Pearson r ≥0.8) in 

measuring global function of left ventricle both in terms of LVEF55–57 and GLS58,59; Nasis et 

al.55, Ko et al.60 have shown the substantial agreement (kappa k ≥ 0.70) for the visual detection 

of regional LV wall motion abnormality (WMA). Strong correlation/agreement has also been 

shown both in global and regional LV function assessment between cardiac CT and MRI61,62.  

Because of its outstanding advantages such as high spatial resolution (see Table 1.1), fast and 

reproducible image acquisition, and relatively low cost (when compared to MRI), CT has now 

become increasingly available as an alternative to assess myocardial function in clinics. 

However, the quantitative measurement of regional myocardial function is particularly 

challenging in CT since it does not have an inherent texture (e.g., tags in MRI or speckles in 

echocardiography) to track over the cardiac cycle for local function.  

 So far, the non-invasive image modalities to evaluate myocardial function including 

echocardiography, MR and CT have been introduced. Their resolution, advantages and 

limitations are listed in Table 1.1. This dissertation focuses on CT. In the next section, the 

existing techniques to quantify coronary stenosis and myocardial function from CT will be 

briefly reviewed. 
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Table 1.1. Non-invasive image modalities to evaluate myocardial function. 

 Echocardiography Cardiac MR Cardiac CT 

spatial 

resolution 
0.8×0.8×1.5mm 1.8×1.8×8mm63 0.5×0.5×0.625mm 

temporal 

resolution 
10-25msec 25-50msec 85-175msec64 

advantages 

• High temporal 

solution 

• Low cost 

• Wide availability 

• Performed by 

cardiologists 

• Reimbursement is 

attractive 

• Gold standard of 

strain imaging 

• Highly accurate 

• Reproducible  

• Reproducible 

• High spatial 

resolution 

• Single heartbeat 

acquisition 

• 4DCT acquires 

full 3D volumes  

limitations 

• Limited 

acquisition 

window 

• Operator 

dependent (non-

reproducible) 

• Foreshortening 

• Quantitative 

measures are not 

reproducible 

• Long scan time  

• Several breath 

holds 

• Complex image 

analysis 

• Contraindicated 

for patients with 

metal devices 

• Only use in 

research settings 

• Not available in 

cardiology 

departments  

• Radiation 

exposure 

• No inherent image 

textures to track 

the myocardial 

motion 

• Not available in 

cardiology 

departments 

• Reimbursement is 

too inexpensive 

 

1.4    Quantification Techniques 

 Accurate assessment of the coronary stenosis as well as the myocardial dysfunction from 

CT imaging is important to minimize the misinterpretation of the disease and to tailor the 

treatment planning. Qualitative classification by visualization is routinely used in clinics to 

classify the severity of the coronary stenosis and of the myocardial dysfunction. For example, 

clinicians visually classify stenosis into mild, moderate, or severe (see section 1.3.1) and classify 
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myocardial dysfunction into normal, hypokinetic, akinetic, or dyskinetic (see section 1.2). 

However, the results are subject to interobserver variability due to different  experience and 

behavior of the readers65. Instead, quantification of these abnormalities from reproducible image 

analyses results in more sensitive and objective investigation, especially for the borderline cases 

(such as the case with borderline LVEF around 50%). Quantification is also the prerequisite of 

some computer-aided assessments such as computational fluid dynamics66. This section will give 

a brief overview of existing quantification techniques for (1) coronary stenosis and (2) 

myocardial function. 

 

1.4.1   Coronary Stenosis Quantification 

 Most commonly, an estimate of vessel luminal diameter is used to quantify the 

anatomical significance of stenoses. The accurate vessel lumen segmentation is important for the 

measurement. Most cardiac CT workstations (e.g., Medis QAngio CT, MeVisLab) perform the 

luminal diameter measurement either manually (by drawing internally-calibrated ruler on the 

image) or semi-automatically (by automatically generated lumen contour followed with manual 

refinement of the contour)67. There also exists fully automatic vessel extraction and segmentation 

algorithms for CCTA, which avoid interobserver variability.  

 The most straightforward segmentation strategy is thresholding. Coronary vessels with 

contrast agent in the CCTA images have higher attenuation than the surrounding soft tissues. 

Dey et al.68 proposed a thresholding algorithm based on the scan-specific thresholds of different 

tissues. Renard et al.69 and Lavi et al.70 combined region-growing with thresholding, setting a 

seed point in each segment of the vessel and growing with the threshold set based on the regional 

attenuation distribution. The morphological properties of the coronary vessel can be utilized in 
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addition to attenuation. Bouraoui et al.71 and Lueogo-Oroz et al.72 utilized the morphological 

operators to determine the expansion criteria of region growing. The segmentation task can also 

be done by solving the likelihood of a voxel being the lumen or the background. This likelihood 

problem of a binary labeling can be formulized by a binary Markov Random Field which is 

solved using graph cuts73,74. Furthermore, Schaap et al. proposed to use Gaussian kernel 

regression to remove the falsely labeled regions by graph cuts73. Another category of 

segmentation algorithms try to find the optimized contour function to delineate vessel lumen 

boundary. Wang et al.75 proposed a model-guided level set algorithm to find the lumen contour 

function, plus using the convex priors to assures the tubular structure of coronary lumen. 

Similarly, Lugauer et al.76 proposed a learning-based level set algorithm using probabilistic 

boosting trees. A complete review of classical coronary segmentation algorithms can be found in 

this reference77.  With the recent success of deep learning-based segmentation78, it is unclear if 

any of these current algorithms will be used in the future. 

 One challenge in these segmentation methods is the presence of calcium. Calcium shows 

high attenuation in the CCTA and affects the attenuation of surrounding voxels; having the 

greatest impact on the attenuation-based algorithm. It is also challenging when a small stenosis 

diameter is below the image resolution79. In Chapter 2, a new quantification algorithm80 that 

significantly enhances the accuracy of the quantification of small stenoses developed by the 

author will be introduced. 

 Apart from the anatomical significance of coronary stenoses (measuring diameter 

narrowing), CCTA has also been used to estimate the FFR (FFRCT) to quantify the functional 

significance. FFRCT is based on the computational fluid dynamics (CFD)81,82, simulating the 
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blood flow in a coronary tree model extracted from CCTA. It has been shown that accurate 

lumen diameter measurement is the most important factor to ensure the accuracy of FFRCT
66. 

 

1.4.2   Regional Myocardial Strain Quantification 

 As mentioned in section 1.3.2, the quantification of regional myocardial strain is 

challenging in CT due to the lack of inherent image texture that can be tracked through the 

cardiac cycle. One solution to track regional myocardium deformation is through image 

registration techniques83,84. Patches of myocardium at different time frames are registered based 

on the local pixel information. The motion vector (used to calculate strain) is determined by the 

motion of corresponding patches at sequential frames. For most existing applications the method 

is usually applied in 2D CT slices rather than 3D CT volumes, ignoring the velocity components 

perpendicular to the 2D planes. The performance of this method is also heavily dependent on the 

manual refinement of 2D contours of the endocardial and epicardial boundaries of the 

myocardium. 

 Biomechanical models85,86 have been used to quantify 3D motion of myocardium. The 

biomechanical heart model takes the tissue mechanics of myocardium such as linear elasticity, 

myocardial incompressibility, and myocardial fiber orientation into account. The model is 

initially registered to the reference time frame and then the deforming forces are estimated for 

rest time frames.  

 Recently McVeigh et al.87 has created a promising surface feature tracking technique 

called “Stretch Quantifier for Endocardial Engraved Zones” (SQUEEZ) to quantify the 3D 

regional shortening (RSCT) of myocardium from 4DCT. A 3D model of the endocardium surface 

is created by LV blood-pool segmentation followed by the extraction of triangular meshes from 
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the surface to encode the surface features. Thereafter, a 3D non-rigid point registration 

algorithm88 is performed to register the mesh at a “template” time frame to a deformed mesh at 

any other time frame. The RSCT is calculated by the computing the local area changes of 

corresponding meshes at two time frames. The technical details of RSCT will be elaborated in 

Chapter 3. The accuracy of this technique has been validated in an anthropomorphic LV 

phantom89 and with tagged cardiac MRI in canines90 and with cine MRI in humans91. In Chapter 

3, we will investigate the clinical utility of RSCT to detect LV regional wall motion abnormalities 

from 4DCT.  

 

1.5    Deep Learning in CT  

 Recently, deep learning techniques have been widely used in medical imaging research. 

One main area of the research in this thesis is the application of deep learning techniques in 

cardiac CT image analysis.  

 Deep learning (DL) is a subfield of machine learning (ML) that includes a class of 

algorithms called neural networks. A neural network recognizes underlying relationships in data. 

It maps the network input to the output by a series of stacked layers performing alternating linear 

and nonlinear transformations. Deep neural networks are “deep” in terms of its large number of 

stacked layers, and the development of deep learning techniques has the potential to change CT 

image analysis and reconstruction substantially. 

 The most common deep neural network architecture used in medical image analysis is the 

convolutional neural network (CNN). CNN is a type of DL model for the data that has a grid 

pattern (e.g., images) and is designed to automatically and adaptively learn the image features 

from low- to high-level patterns. An overview of CNN techniques and their application in 
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medical imaging is given by Yamashita et. al. 92. Another type of neural network used in medical 

images is the recurrent neural network (RNN). The unique feature of a RNN is that it can store 

and pass knowledge learned from the previous instance in a sequence to the learning process of 

the current instance in that sequence. Therefore, RNN successfully decodes the dynamic 

behavior of the sequence data and is useful to work for image data that involves sequential time 

series such as echocardiography, cine-MRI and 4DCT. One of the challenges of deep learning in 

medical imaging, especially cardiac CT, is the lack of labeled data. For example, if we expect to 

train a DL model to remove the noise from the image, we usually do not have the noise-free (the 

reference) images from the same patients of the noisy image. The solution is to use unsupervised 

learning that does not require the labeled data for training. Generative adversarial network 

(GAN) is the most popular unsupervised DL algorithm. It consists of one network acting as a 

generator (e.g.., to generate a high-dose noise-free CT image from a low-dose noisy CT image) 

and the other network acting as a discriminator assessing whether the generated image is 

realistic. GAN is typically useful for image enhancement (e.g., noise reduction93, high-resolution 

images from low-resolution images94) or generation (e.g., inter-modality conversion). 

 DL has changed the way we do CT image reconstruction. Researchers have applied the 

CNN to automatically output the reconstructed CT image from the raw sinogram as the input95,96. 

CT denoising is also an important field where CNN becomes very useful97–99. The more practical 

use of DL is to remove the “false positive” in the reconstructed image which are those artifacts 

such as metal artifacts100–102, limited-angle artifacts103,104, truncation artifacts105 and cone-beam 

CT artifacts106. One challenge of DL reconstruction is to minimize the “false negative” which is 

the missing of features that are tiny but substantially important in clinical diagnosis (e.g., a very 

severe coronary stenosis with small diameter). The other challenge is that DL as a data-driven 
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method is highly dependent on the data distribution of the training dataset and is vulnerable to 

the outliers and adversarial attack (e.g., image noise)107. Recent research work on combining DL 

and iterative reconstruction ensuring data fidelity108–110 shows promise to overcome these 

challenges. A thorough review of deep learning for CT image reconstruction can be found in this 

reference111.  

 Deep learning also shines in the evaluation of cardiovascular disease from CT images. 

The current development of DL in CAD evaluation and myocardial function analysis will be 

reviewed in the following sections. 

  

1.5.1    Deep Learning in CAD 

 A survey of machine learning & deep learning for assessment of coronary artery disease 

in cardiac CT has been published in Frontiers in Cardiovascular Medicine78. The authors have 

surveyed the DL methods for localization of coronary artery calcification (CAC), automatic 

CAC scoring and localization of non-calcified plaque. They also reviewed the DL methods to 

quantify the anatomical significance (by lumen segmentation and lumen diameter measurement) 

and functional significance (by DL-based FFRCT) of the stenosis. 

 Recently, a machine learning-aided software to perform automated analysis of CCTA 

called Cleerly LABS (Cleerly, New York, New York) has been cleared by FDA112. It uses a 

series of validated CNNs for image quality assessment, coronary segmentation and labeling, 

lumen wall evaluation, vessel contour determination and plaque characterization. A recent multi-

center international study named CLARIFY (CT Evaluation by Artificial Intelligence for 

Atherosclerosis, Stenosis and Vascular Morphology, n = 232) has been conducted to compare the 

results of Cleerly LABS with the ground truth of consensus by three L3 readers113. It showed that 
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the ML-based software has accuracy, sensitivity, specificity to detect >70% stenosis as 99.7%, 

90.9%, 99.8% respectively and to detect >50% stenosis as 94.8%, 80.0%, 97.0%, respectively. 

The mean difference in percent maximal stenosis measured by the ML and by readers is -0.8% 

with 95% confidence interval as -15.3% to 13.8%. It also showed the high degree of agreement 

between the ML and the readers with kappa coefficient equal to 0.812 per patient and 0.723 per 

vessel. Discordance was primarily seen for minimal and mild (<25%) diameter stenoses. Further 

study to compare ML results from CT with the invasive approaches (e.g., intra-vascular 

ultrasound or optical coherence tomography) is ongoing.  

 

1.5.2    Deep Learning in Myocardial Function Analysis 

 DL is useful to perform cardiac image segmentation. Cardiac image segmentation is a 

critical first step in a variety of applications. Specifically in myocardial function analysis, we 

need to perform the segmentation of the LV chamber, based on which quantitative measures can 

be obtained. Doing this segmentation in CT images manually is time-consuming and leads to 

interobserver variability. There have been a number of  published DL techniques for heart 

chamber segmentation in CT. These techniques provide automatic, fast and reproducible 

chamber segmentations, and they can be categorized based on the type of DL model inputs. First, 

the CT images can be divided into many small patches of interest 114,115, which are used as inputs 

for the DL model to label pixels in the patch that belong to cardiac chambers. Second, three 

orthogonal projections (axial, coronal and sagittal)116,117 have been used as model inputs and the 

predicted segmentations in three projections are fused together to make an intact 3D 

segmentation. Third, a 2D “U-Net”118 takes one 2D CT slice each time to do the segmentation in 

a slice-by-slice fashion. Baskaran et al.119 successfully applied a 2D U-Net to segment four 
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chamber images in CT in a slice-by-slice fashion with high accuracy (Dice > 0.91). Based on our 

experience, a 2D approach may miss the segmentation in some slices (especially the apical 

slices) and the resultant segmentation may not have a smooth boundary for the intersecting 

planes between chambers such as the mitral valve plane. Fourth, a 3D U-Net may avoid 

problems of 2D U-Net by taking the entire 3D CT volume as the input and thus have more 

consistent segmentation results across slices. Unfortunately, 3D approaches significantly 

increase the memory demands. As a result, input image volumes are typically cropped or 

downsampled and networks have less features. Some of the current efforts120,121 using 3D U-Nets 

combined a localization network for a coarse pre-detection of heart and then applied 3D U-Net to 

the detected region for the fine segmentation. Recently, a new DL algorithm called 

“transformers” using self-attention122 mechanism has been shown to improve the medical image 

segmentation by modeling long-range dependencies123,124. A thorough review of different DL 

segmentation algorithms can be found in Chen et al125. In Chapter 4, the dissertation author will 

propose a 3D U-Net approach that performs the multi-chamber segmentation and cardiac 

imaging plane prediction simultaneously126,127.  

 After the DL segmentation, one can apply those analytical techniques introduced in 

section 1.4.2 to quantify the regional myocardial function. Researchers also invented end-to-end 

DL algorithms that can quantify the function directly from the image. The algorithms usually 

start with a localization network to extract the region of interest of the heart from the image to 

minimize data size. Ferdian et al.128 inputs the cropped frames into CNN+RNN (CNN to extract 

features from each frame, RNN to decode the temporal information) to predict a set of 

myocardial landmark points for strain calculation in cardiac MRI. Both Zhang et al.129 and Salte 

et al.130 use a DL optimal flow predictor to obtain the motion vector field (MVF) for strain 
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calculation in cardiac MRI and echocardiography. Morales et al.131 uses two CNN in parallel for 

strain in MRI, one to predict the motion vector field and the other to predict the segmentation of 

the LV used to reposit the strain map according to the 17-segment model28.  

 There has not been DL algorithms for 3D myocardial function analysis in cardiac CT due 

to two unsolved challenges. First, unlike 2D analysis in MRI and echocardiography, 3D function 

analysis is a much harder task for DL networks to learn. Second, 3D function analysis requires 

4DCT data that is too large to fit on current graphic processing units (GPUs). In Chapter 5, the 

dissertation author will tackle these challenges and propose the first DL framework to detect 3D 

regional LV wall motion abnormality from 4DCT data132,133. 

 

1.6    Thesis Outline 

 This thesis is broken into 4 subsequent chapters: 

 Chapter 2 focuses on quantification of coronary stenoses. We introduce a new 

quantification algorithm to overcome the measurement challenges in estimating stenosis severity 

with vessel diameter below the CT image resolution. In this chapter, we first derive a 

mathematical relationship between the vessel diameter and the vessel intraluminal maximum CT 

number. We then show this relationship is dependent on the point-spread-function of the CT 

image. Utilizing this relationship, we propose a new quantification algorithm (called “CT-

number-Calibrated Diameter”) which maps measured intraluminal maximum CT number to the 

estimated vessel diameter. We evaluate the quantification accuracy of our algorithm in an 

anthropomorphic stenosis phantom consisting of coronary stenoses with smallest diameter below 

the image resolution.   
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 Chapter 3 focuses on regional myocardial function evaluation. We investigate whether 

myocardial regional shortening (RSCT) computed from 4DCT can serve as an objective decision 

classifier to detect the presence of local LV wall motion abnormality (WMA). The RSCT is 

measured via a previously validated surface feature tracking technique. We also define an 

optimal thresholding of the RSCT classifier and compare its performance with the visual detection 

performed by cardiovascular imaging experts. 

 Chapters 4 and 5 focus on how to use deep learning techniques to solve existing 

challenges in myocardial function analysis from 4DCT. Chapter 4 focuses on automating the 

image processing tasks required for function analysis. The author proposes a DL approach to 

perform multiple chamber segmentations (left ventricle and left atrium) and cardiac imaging 

plane re-slicing automatically and simultaneously in a shared DL framework. This framework is 

modified from a 3D U-Net and a special training strategy is designed. The framework is 

evaluated using a 5-fold cross-validation cohort and a large independent testing cohort. 

Concretely, we compare the DL predictions with the manual annotations in terms of numerical 

metrics such as Dice coefficient and LVEF correlation (for segmentations), as well as location 

and angular orientation errors (for planes). We also provide DL-predicted planes to two imaging 

experts to score the diagnostic adequacy of these planes. 

 Chapter 5 introduces the first deep learning technique to detect regional LV wall motion 

abnormality from 4DCT using dynamic volume rendering. We generate dynamic volume 

renderings of the LV across the entire cardiac cycle (i.e., a video of the function of a volume-

rendered LV blood-pool) from six different regional views of the LV. We then design a DL 

classification framework using a pre-trained CNN and a RNN sequentially to predict the 

presence or absence of WMA in the regional LV view in each video. Both the per-regional (per-
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video) and per-patient detection accuracy of this framework is evaluated using a 5-fold cross-

validation cohort and an independent testing cohort.  
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Chapter 2: Precise Measurement of Coronary Stenosis Diameter with CCTA Using CT 

Number Calibration 

 

2.1    Introduction 

 Since the introduction of 64-detector row CT scanners, coronary CT angiography 

(CCTA) has emerged as a promising non-invasive method for direct visualization of coronary 

artery disease (CAD)134,135 and demonstrated an excellent ability to rule out CAD due to its high 

negative predictive value136. However, even with new CCTA technologies accurate 

quantification of lesion diameter remains challenging because the vessel diameter of severe 

lesions (>70% stenosis, or < 2mm)137 often approaches the limit of the scanner resolution. The 

uncertainty of lesion diameter reduces the specificity of CCTA diagnoses of significant coronary 

disease138. Furthermore, new non-invasive techniques for estimating disease severity such as 

FFRCT
139 (FFR defined as fractional flow reserve) require highly accurate vessel geometry in 

order to obtain accurate coronary blood flow simulations140. In this study, we introduce a new 

technique to improve the accuracy of vessel diameter measurements with CCTA called CT-

number-Calibrated Diameter (DC). 

 We define CT number of a voxel (described in Hounsfield Unit, HU) as the normalized 

linear attenuation coefficient and “intraluminal maximum voxel value” (abbreviation as IMVV) 

as the maximum voxel CT number found inside the vessel lumen. Our CT-number-Calibrated 

Diameter technique is motivated by a simulation study done by Contijoch et al.141 in which they 

show that the IMVV does not depend on vessel size for large vessels but decreases rapidly with 

decreasing vessel diameter for small vessels and small diameter stenoses. This reduction has a 

straightforward explanation using the point spread function of the imaging system142,143, and in 

this study we derive the mathematical function of this reduction.  They also demonstrated that 
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the full width half maximum (FWHM) estimate of the vessel, DFWHM, which is commonly used 

in vessel segmentation, approximates the true vessel diameter for large vessels, but can 

significantly overestimate vessel diameter for small vessels.  

 Based on the two characteristics of small vessel stated above, we have designed a CT-

number-Calibrated diameter technique to estimate vessel diameter. The algorithm uses a 

different process in each of two vessel size domains: (1) for large vessels with IMVV that is 

independent of the vessel size, the FWHM estimate of vessel diameter is used, and (2) for small 

vessels with IMVV that is dependent on the vessel size, the algorithm maps the IMVV to vessel 

diameter directly using a calibration curve measured for each imaging and reconstruction 

protocol.  

 

2.2     Materials and Methods 

2.2.1     Hole phantom 

 A hole phantom was 3D-printed using a Form 2 stereolithography system with  

clear photopolymer resin (Formlabs Inc, Somerville, MA) with 24 cylindrical holes in a 

cylindrical disk of diameter 8.5-cm and height 2.5-cm. The diameter of the cylindrical holes was 

programmed to span 4.0 mm through 2.2 mm with 0.2-mm intervals, and 2.2 mm through 0.8 

mm with 0.1-mm intervals (Figure 2.1, programmed diameter). This array of holes captured 

the range of diameters found in human coronary vessels. We used a benchtop high-resolution 

imaging system consisting of a cone-beam CT test bench (using a Paxscan 4343CB flat-panel 

detector and Rad-94 x-ray tube (Varex, Salt Lake City)) and a penalized-likelihood 

reconstruction algorithm144 to confirm the correct printed diameter (Figure 2.1, printed 
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diameter, may different from programmed diameter due to the intrinsic offset of 3D printer) of 

all holes in 3D printed phantoms used in this study. 

 

Figure 2.1. The 3D printed hole phantom. The phantom is a cylinder of photopolymer resin with 24 

cylindrical holes whose programmed diameters range from 0.8mm to 4.0mm. The correct printed 

diameter was measured to be slightly smaller than programmed. Holes programmed to be 0.9 and 

0.8mm were excluded because their printed size was below the range of sizes where high-resolution 

imaging system could accurately measure. The HU of the resin was ~100 as the background of CT 

images, and the holes were filled with 10% iodixanol mixed with water giving a Hounsfield Unit value 

of approximately 1000 in the 3~4mm holes for 100kVp images.  

 

2.2.2    Patient derived vessel stenosis phantom 

 Eight high quality 3D meshes of human coronary anatomy were created by automated 

segmentation of CCTA images with manual correction. Initial automated coronary 

segmentations were generated using a deep learning technique; these automated segmentations 

were then visually assessed and edited as necessary.  Surface reconstruction was then performed 

to generate surface meshes from these segmentations. We isolated 18 lesions from the coronary 
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tree meshes using Blender. The ground truth sizes for the printed coronary vessel stenosis were 

measured from high-resolution cone-beam CT images mentioned in section 2.2.1. We excluded 

one lesion from the dataset since it contained a minimum diameter less than 0.8mm. A vessel 

stenosis phantom was 3D printed with resin to be a 2.5cm high disk with 18 tubular channels that 

represent the vessel lumen having the exact geometry of the 18 lesions (Figure 2.2). About Six 

lesions for each degree of severity (severe, moderate, and mild) were included as shown in 

Figure 2.2E.  

 

Figure 2.2. A vessel stenosis phantom.  (A) 3D mesh of a human coronary tree derived from patient 

CT data. (B) isolation of one lesion from the coronary tree; the “proximal diameter” and “lesion 

diameter” are labeled. (C) A 3D-printed vessel stenosis phantom as a disk with 18 tubular channels 

having the exact geometry of the 18 lesions. The light grey represents the resin in the disk and the holes 

represent the vessel lumina. (D) CT 3D rendered image of the vessel stenosis phantom. (E) Distribution 

of severity and size of the 17 lesions shown as the relationship between “proximal diameter” and 

“lesion diameter” as shown in Fig 2B; there are 6 severe, 6 moderate and 5 mild lesions. The smallest 

lesion diameter is 0.8mm and the largest diameter is 2.4mm.   
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2.2.3    CT imaging protocols 

 The channels in both the 3D printed hole phantom and the vessel stenosis phantom were 

filled with 10% iodixanol mixed with water to approximate the CT number of a coronary artery.  

Each phantom was inserted into a sealed plastic bag with additional contrast solution. Two 

phantoms were placed end to end inside a tissue equivalent Extension Ring (QRM GmBh, 

Extension Ring L). Two phantoms placed end to end were scanned together on a GE Revolution 

CT with clinical coronary protocols: common scanner settings included: axial scan, gantry 

rotation time 280ms, exposure time 162ms, FOV of 20cm, with a 512x512 matrix resulting in an 

x-y pixel size of 0.391 x 0.391mm, 256 contiguous slices with a slice thickness of 0.625mm. All 

reconstructions were performed with ASiR-V=50% to reproduce what is used clinically for 

CCTA at our institution. Seven different CT acquisitions were obtained with the same common 

settings stated above but different tube energies, tube currents, focal spot sizes and 

reconstruction kernels (see Table 2.1). To create a high signal-to-noise-ratio (SNR) image for 

examining the nature of the CT number calibration, 5 equivalent acquisitions were obtained for 

each set of parameters and the 5 images were averaged to obtain the final image (standard 

deviation = ~10HU, measured in the resin as the background of the image). For examining the 

ability of the CT number calibration technique to obtain accurate diameters in the morphological 

stenosis phantom, single images without averaging were also used (standard deviation ~ 25HU). 

If not specifically noted, the images mentioned in the study are the averaged images with higher 

SNR. 
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2.2.3.1    CT imaging during phantom motion 

 A motorized platform using a Thorlabs NRT100 stepper motor (Thorlabs, Newton NJ) 

moved the entire phantom along the horizontal “left-right” axis of the scanner, with a constant 

velocity of 15mm/s simulating slow coronary vessel motion during diastasis141,145.  CT data was 

acquired with 120kV, 350mA, 280ms rotation, small spot size, and standard reconstruction 

kernel, with ASiR-V = 50%; a single acquisition was used for analysis, no averaging was done. 

We then implemented a post processing motion-correction algorithm (Snapshot Freeze; GE 

Healthcare)146–148 on the motion corrupted images to yield a set of corrected images.  Analysis of 

the IMVV was performed on the corrected and uncorrected images. 

 

Table 2.1. Seven sets of CT parameters used in the CT examinations. Focal spot size = 1.0 x 0.7mm 

for Small, and 1.6 x 1.2mm for Large, and 2.0 x 2.1mm for Extra Large. 

 

Set 

No. 

Tube 

energy 

(kV) 

Tube 

current 

(mA) 

focal spot size 

(mm) 

reconstruction 

kernel 

CTDIvol 

(mGy) 

Marker in 

the plot 

1 100 640 Large(L) Standard(std) 4.69 ☐ 

2 100 640 Large(L) Bone 4.69 + 

3 100 645 
Extra Large 

(XL) 
Bone 4.60 * 

4 100 420 Small(S) Bone 3.11 × 

5 120 350 Small(S) Standard(std) 4.12 ◇ 

6 100 420 Small(S) Standard(std) 3.11 △ 

7 80 580 Small(S) Standard(std) 2.11 ◁ 
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2.2.4     Creation of calibration curves from the 3D printed hole phantom 

2.2.4.1    Measurement of vessel intraluminal maximum voxel value - IMVV 

 The vessel intraluminal maximum voxel value of each cylindrical hole was measured as 

the highest CT number of a single voxel within a 4mm  4mm regional-of-interest (ROI) 

symmetrically positioned around the center of the hole in a DICOM image processing 

application (OsiriX).   

 

2.2.4.2     Full Width at Half Maximum Determination, DFWHM 

 To measure the FWHM diameter of each cylindrical hole, the FWHM region of the hole 

was identified as the boundary within which all voxel values were greater than 50% of the 

maximum voxel value in the ROI. The diameter was calculated as the average of the major and 

minor axis of an ellipse fit to the FWHM boundary contour and yielded the FWHM estimate of 

the vessel, DFWHM.  The IMVV and the DFWHM were calculated for each cylindrical hole in hole 

phantom at 10 slices separated by 1.25 mm (every other slice in the 3D stack), and mean values 

were reported to plot calibration curves.   

 

2.2.4.3     Theoretical derivation of CT number calibration curve  

 The IMVV for each circular hole in the phantom representing circular vessel with true 

radius R (diameter D = 2R) is equal to the peak value when a circular vessel with radius R is 

convolved with the two-dimensional (2D) isotropic Gaussian point spread function (PSF). The 

PSF can be expressed as a normalized Gaussian function in polar coordinates: 

PSF = g(𝑟) =
1

2𝜋𝜎2
exp (−

𝑟2

2𝜎2
)                                  (Equation 2.1) 
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where r is the distance of a point to the center of Gaussian, 𝜎 is the standard deviation 

determined by the spatial resolution of the imaging system and  
1

2𝜋𝜎2
 is the normalizing constant. 

The peak value of the convolution of a disk of radius R with the PSF is equal to the volume 

under the 2D PSF curve within radius R; thus, equal to the polar integral of Equation 2.1 from 

r=0 to r=R: 

IMVV(R) =  𝐼𝑜 ∫ ∫
1

2𝜋𝜎2
exp (−

𝑟2

2𝜎2
)

𝑅

0

2𝜋

0

∙ r ∙ drdθ 

IMVV(R)/𝐼𝑜 = 1 − exp (−
𝑅2

2𝜎2
)                                (Equation 2.2) 

Note that Io and 𝜎 are constants representing the maximum voxel value of a large vessel in the 

proximal section and the standard deviation of PSF respectively. Comparing Equation 2.1 and 

2.2, we conclude that the theoretical normalized CT number calibration curve is IMVV(R)/Io = 

1 − k×PSF, where k is 2𝜋𝜎2. 

 

2.2.4.4     Empirical calibration curves 

 For each set of CT parameters in Table 2.1, we generated the empirical CT number 

calibration curve IMVV(R) (Figure 2.4, 2.5 and 2.6) by measuring the corresponding IMVV for 

each hole size in the hole phantom. We compared the theoretical and empirical curves for the 

same CT acquisition (Figure 2.5) to demonstrate that any CT number calibration curve can be 

characterized by the standard deviation 𝜎 of the 2D Gaussian PSF.  The relation between 𝜎 and 

the vessel diameter that has a 50% drop of the constant IMVV of a large vessel in the proximal 

section, D50, is as follows: 

0.5 = 1 − exp (−
（𝐷50/2)

2

2𝜎2
) 
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𝐷50 =  √−ln(0.5) ∙ 8𝜎2 

𝐷50 =  2.355 𝜎                                               (Equation 2.3) 

 Therefore, for each system and reconstruction we can find the characteristic 𝜎 and 

corresponding PSF by measuring D50 in the empirical CT number calibration curve. A more 

precise method to find 𝜎 would be to perform a least square fit of Equation 2.2 to the empirical 

curves, but the simplicity of D50 gives the user a very simple and robust method that can be 

performed on graph paper at the scanner. 

 

2.2.5    Segmentation of lesions in the vessel stenosis phantom 

 The true diameter was measured as a function of position along each vessel perpendicular 

to a curve connecting segmented center points along the vessel in high-resolution cone-beam CT 

images. The center points of the vessel were automatically generated in MATLAB by a 3-D 

medial surface thinning algorithm149 followed by manual pruning (Figure 2.3A). For each vessel 

lesion that has the length of ~14mm, approximately 35 center points were generated, resulting in 

the distance between two center points of 0.4mm on average (this was close to the image pixel 

size). The vessel “direction” at each center point was computed from a smooth line fitted through 

the point and neighboring center points. Figure 2.3B shows that for each center point, we found 

five proximal and five distal adjacent center points, resulting in an 11-center-point sliding 

window. A quadratic polynomial exhibiting the centerline’s limited curvature150 was fitted on 

this window using a least square method. The distance between two center points was thus 

calculated as the path length of the fitted line between the two. 
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Figure 2.3. Computation of center points and the cross-sectional planes of the vessel. (A) 

Computation of center points of the vessel by 3-D medial surface thinning algorithm. (B) Computation 

of cross-sectional plane of the vessel. 

 

 Each query center point c and its fitted line yielded a normal vector �⃗� . A plane (2020 

pixels) perpendicular to �⃗�  was constructed, with point c as its center. This plane was viewed as 

the cross-sectional plane of the vessel. An upsampling processing by linear interpolation was 

then applied to the plane to increase the resolution to 200×200, smoothing the voxel value 

change in the plane. 

 

2.2.6    Estimation of the vessel diameter using the CT-number-Calibrated diameter 

technique, DC 

 In section 2.2.5, we constructed all the cross-sectional planes along the vessel. The 

IMVV was then measured as the maximum CT number in the cross-sections. The corresponding 

contrast (= IMVV - background, background≈100HU) was normalized to the averaged contrast 

in the proximal large vessel region to compensate for different overall signal intensities between 

acquisitions.  In the phantoms these differences were principally caused by different x-ray 
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contrast for different x-ray tube energy. Based on the normalized contrast, our technique uses 

one of the two different approaches to measuring the diameter described in detail below.   

 

2.2.6.1    Vessel diameter estimation in larger vessels: FWHM estimate of vessel 

 For vessels whose IMVV was independent of the vessel size (i.e., vessels with larger 

diameters), we utilized the FWHM estimate of vessel, DFWHM stated in section 2.2.4.2. Thus, for 

larger vessels, DC is equal to DFWHM. This decision was made based on the results shown both in 

Contijoch et. al. with simulations141 and Figure 2.8 with phantom data. For example, the 

calibration curve with the square sign (1st set of CT parameters) in Figure 2.8 showed a 3.08mm 

vessel was measured to be 3.0mm with negligible error.  

 

2.2.6.2    Vessel diameter estimation in smaller vessels: CT number Calibration method 

 For smaller vessels, the IMVV is influenced by vessel size. We utilized the CT number 

calibration curve for each set of CT parameters to map the normalized contrast to the vessel 

diameter for that acquisition. For example, if we use the calibration curve in Figure 2.4 (1st set of 

CT parameters), when the contrast is measured as 400HU (IMVV=500HU, ~40% of proximal 

large vessel amplitude), we understand that it is in the partial volume region and thus can 

estimate DC as 1.1mm. It is important to note that the calibration of IMVV vs diameter was 

provided using an independent phantom which comprises vessel segments of known constant 

diameter – this should not be confused with a “training” step in a machine learning algorithm. 
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2.2.7    Comparison of Dgt, DFWHM and DC 

 We compared the ground truth diameter Dgt, FWHM estimate of the vessel DFWHM and 

CT-number-Calibrated diameter DC of the same lesion in the stenosis phantom to assess the 

accuracy of DC. The Dgt was calculated by benchtop high-resolution imaging system. The DFWHM 

of the lesion was measured by FWHM estimate of vessel. The DC was calculated by applying our 

technique stated in section 2.2.6 to the entire lesion. Both DFWHM and DC were measured in the 

CT image with the same acquisition setting.  

 We assessed the accuracy of DC along the entire lesion by plotting the three estimates of 

diameter (Dgt, DFWHM, DC) together as a function of distance along the vessel. A Pearson 

correlation coefficient r was computed to quantify the accuracy of the DC estimate. 

 

2.3    Results 

2.3.1    Example CT number calibration curve derived from the hole phantom 

 The background value of the polymer resin was found to be 100HU10HU. Figure 2.4, 

as an example of the empirical CT number calibration curve, shows the contrast between the 

vessel IMVV and the background in Hounsfield Units (ΔHU) plotted against vessel diameter. 

The IMVV does not depend on vessel size for large vessel diameters but decreases with 

decreasing vessel diameter for small vessels. In Figure 2.4, we define the “cutoff diameter” 

which divides the calibration curve into two regions: the constant amplitude region above the 

cutoff diameter and the partial volume region below the cutoff diameter.  The cutoff diameter is 

the diameter value at the intersection of a straight line that fits the reduction of IMVV with 

decreasing diameter (line fit to points that have an amplitude < 80% of the constant amplitude) 

with the level of the constant amplitude region; this is shown as a bold black dot. 
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Figure 2.4. An example of the empirical CT number calibration curve obtained from the CT data 

of the hole phantom. The CT acquisition parameter is the 1st set in Table 2.1.  

 

2.3.2     Comparison of theoretical and empirical CT number calibration curve  

 For the 5th CT acquisition setting in Table 2.1, we measured the corresponding PSF from 

the image of a Titanium bead with 0.25mm diameter averaged from 8 acquisitions to increase the 

signal-to-noise ratio. We found the standard deviation of this PSF, σ = 0.45mm by fitting 

Equation 2.1 to the PSF (Figure 2.5A). By plotting Equation 2.2 with σ = 0.45mm, we 

generated the theoretical CT number calibration curve and compared it with the normalized 

empirical CT number calibration curve of the same acquisition setting (Figure 2.5B). The two 

curves overlap closely, indicating that we can characterize the calibration curve with a suitable σ 

and thus find the underlying PSF. 
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Figure 2.5. Comparison of theoretical and empirical CT number calibration curve. (A) is the 

normalized PSF of the 5th CT acquisition (120kVp, small focal spot, standard reconstruction). The 

standard deviation σ is found as 0.45mm. Note: while we only plot it in one dimension, this is actually 

a two-dimensional isotropic PSF. (B) shows the comparison of the measured values with predicted 

values from Equation 2.2 with σ = 0.45mm. The error bars from 5 equivalent and repeated scans are 

shown in the empirical curve to show the robustness. 

 

2.3.3    CT number calibration curve is CT acquisition parameter dependent 

 Figure 2.6 is a collection of all CT number calibration curves for different image 

acquisitions and reconstruction parameters. All curves follow the same basic pattern.  

 Figure 2.6A shows three contrast vs. diameter curves for three different x-ray tube 

current energies (kVp) with fixed spot size (small) and reconstruction kernel (standard). As 

expected, the CT number in the constant amplitude region becomes greater with lower kVp. The 

slope of the ΔHU vs. diameter relationship increases with decreasing tube current energy. The 

measured cutoff diameter for each curve is approximately equal (~2.0mm). Figure 2.6B shows 

the normalization of the ΔHU values from Figure 6A to the constant amplitude region yields 

essentially three equivalent calibrations characterized by σ = 0.45mm, indicating that x-ray 

energy, as expected, has no effect on the normalized calibrations. 
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 Figure 2.6C shows three contrast vs. diameter curves for three different x-ray focal spot 

sizes with fixed x-ray tube energy (100kVp) and reconstruction kernel (Bone). As expected, for 

the constant reconstruction kernel a smaller spot size produces a smaller cutoff diameter; after 

the normalization, the difference between small size and large size still exists in Figure 2.6D. 

 Figure 2.6E shows two contrast vs. diameter curves for two different reconstruction 

kernels with fixed x-ray tube energy (100kVp) and focal spot size (Large). As expected for 

constant spot size the “Bone” kernel which passes greater high frequency data through the 

reconstruction has a significantly smaller cutoff diameter (~1.4mm) than the standard 

reconstruction kernel (~2mm). The normalized curves in Figure 2.6F can be characterized by σ 

= 0.36mm and σ = 0.48mm for “Bone” and “Standard” kernel respectively. 

 The important message we can derive from the plots in Figure 2.6 is that the CT number 

calibration curve is CT-acquisition parameter dependent. X-ray energy, x-ray focal spot size and 

reconstruction kernels all can determine the constant amplitude of large vessels as well as the 

slope of reduction in calibration curves; however, the effect of x-ray energy no longer exists after 

the normalization. 
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Figure 2.6. CT number calibration curve is CT-acquisition-parameter-dependent. All characterized 

σ were calculated by Equation 2.3 (𝐷50 =  2.355 𝜎), where 𝐷50 is the vessel diameter that has a 50% 

drop of constant amplitude in the curve. (A) shows the influence of x-ray tube current energies on the raw 

calibration curves. (B) After normalization to the constant amplitude in large vessels, the three curves 

essentially become equivalent with a characteristic width of σ = 0.45mm. (C) and (D) show the 

difference between curves for different focal spot sizes exist both before and after the normalization. The 

calibration of small, large and extra-large focal spot size can be characterized with σ = 0.33, 0.36, 

0.37mm respectively. (E) and (F) show the effect of reconstruction kernels both before and after the 

normalization. The high-resolution Bone kernel has σ = 0.36mm, a cutoff diameter as 1.43mm and 

cutoff contrast as 88% of the constant amplitude; while the low-resolution standard kernel has σ =
0.48mm, a cutoff diameter as 1.99mm and cutoff contrast of 89% of the constant amplitude. 
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2.3.4     Motion artifacts and motion correction in CT number calibration curve 

 Figure 2.7 illustrates the loss of vessel IMVV and thus contrast with small vessel motion 

during acquisition (15mm/s in the “left-right” direction, which gives a total displacement of 

~2.7mm over the half-scan acquisition). The small motion causes a significant reduction in voxel 

values for the smaller vessels as shown previously141 and can lead to an overestimation of the 

degree of stenosis because of the increased loss of voxel values.  For example, the reduction of 

IMVV makes a 2mm vessel (corresponding to a mild ~30% stenosis of a 3mm proximal vessel) 

appear to have the IMVV of a 1.5mm stationary vessel (corresponding to a significant 50% 

stenosis of a 3mm vessel).  It is clear from this data that the voxel values of smaller vessels (< 

2.5mm) are more sensitive to motion, which is expected. Figure 2.7 also demonstrates the 

observed vessel voxel values in moving vessels returns to the value measured in stationary 

vessels when a post processing motion-correction algorithm (Snapshot Freeze) is applied to 

correct the motion corrupted image.  This implies that the original calibration curve measured in 

stationary vessels is valid in motion-corrected vessels for this particular motion correction 

method. 

 

2.3.5    FWHM calibration curve from hole phantom 

 Figure 2.8 demonstrates that the reconstruction kernel determines the shape of the 

FWHM calibration curve since the kernel changes the spatial resolution. The FWHM estimate of 

the vessel, DFWHM has a linear relationship (DFWHM = true size×0.989-0.025) with the true vessel 

diameter for those vessels that are larger than the cutoff diameter defined above. Based on the 

fitted linear relationship, we can state that the FWHM estimate of the vessel can measure the 

vessel diameter larger than cutoff diameter correctly with negligible error. For vessels smaller 
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than the cutoff diameter, the DFWHM overestimates the size of the vessel, and the curve 

approaches an asymptotic value. 

 

Figure 2.7. Normalized CT number calibration curve of stationary, moving and motion-corrected 

phantom CT images. CT data was acquired with 5th set of CT parameters from Table 2.1 (120kV, 

350mA, 280ms rotation, small spot size, and standard reconstruction kernel). The velocity of vessel 

was set to be constant (15mm/s). Using Snapshot Freeze (SSF), the observed vessel voxel values in 

moving vessels essentially returns to the value measured in stationary vessels. 

 

 

Figure 2.8. FWHM calibration curve. The measured diameter, DFWHM has a linear relationship 

(dashed line represents a linear fit, function: DFWHM=0.989×true diameter-0.025, r2>0.999) with the 

true diameter for vessels larger than the cutoff diameter. When vessel diameter is smaller than cutoff 

diameter, the DFWHM will gradually approach an asymptotic value, causing an overestimation of lesion 
size. The shape of the FWHM calibration curve is significantly dependent on the choice of 

reconstruction kernel and thus spatial resolution. 
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2.3.6    Estimation of vessel diameter in the vessel stenosis phantom  

 Figure 2.9 uses the measurement result of one stenosis as an example. The ground truth 

diameter is measured as proximal 4.10mm, lesion 0.90mm, 78.0% severe stenosis. The 

acquisition parameter is the 1st set in Table 2.1: 100kVp, 640mA, Large focal spot size, standard 

reconstruction. It is clear from the result: (1) DFWHM (proximal 4.14 mm, lesion 1.40mm, 66.2% 

moderate stenosis) yields an overestimation of the smaller caliber diameter in the lesion and thus 

underestimation of the percentage stenosis. (2) The CT-number-Calibrated diameter DC 

(proximal 4.14mm, lesion 0.88mm, 78.7% severe stenosis) accurately estimates the ground truth 

diameter over the entire range of the vessel segment. We also applied our technique onto 3 sets 

of single images without averaging of the same stenosis (see section 2.2.3) as shown in Figure 

2.9D.  These results indicate that the high accuracy measurement shown in the averaged image 

can also be reproduced in single images with higher noise. 

 In Figure 2.10 we gathered the measurement results of the smallest diameter in each of 

17 lesion models in the stenosis phantom scanned by the 1st set of CT parameters (100kV, 

640mA, large focal spot size, standard reconstruction kernel) and computed a Pearson correlation 

coefficient between DC and Dgt for this set (r=0.998). The DFWHM lies on or nearby the FWHM 

calibration curve, and the estimates are clearly inaccurate when compared with Dgt. This graph 

also shows a very strong linear correlation between the DC and the ground truth diameter Dgt: 

DC=0.951×Dgt+0.023, r=0.998. The 95% confidence bounds for the slope and y-intercept are 

(0.921, 0.981) and (-0.017,0.064) correspondingly. We also computed the average percentage 

error of the smallest diameter measured by DC and Dgt (
|𝐷𝑐−𝐷𝑔𝑡|

𝐷𝑔𝑡
× 100%) over the 17 lesions as 

5.06%. 
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Figure 2.9. Estimation of vessel diameter as a function of position through a particular stenosis 

(ground truth diameters: proximal 4.10mm, lesion 0.90mm, 78.0% stenosis).  The stenosis was 

imaged with standard clinical imaging parameters: 100kVp, large x-ray focal spot, standard 

reconstruction kernel. (A) shows the 2D rendering of the structure of the exemplar stenosis. (B) shows 

both the original contrast ΔHU values and the normalized contrast as a function of position along the 

vessel. (C) The estimated diameter as a function of position along the vessel. Three diameters are 

plotted: the ground truth diameter Dgt, the diameter estimated with FWHM DFWHM, and the CT-number-

Calibrated diameter DC.  The dashed lines in both B and C figures represent the cutoff diameter 

(1.99mm) and cutoff contrast (89% of maximum) for the standard kernel. As shown in the graph, the 

CT-number-Calibrated diameter estimates are very close to the ground truth for all range of sizes but 

FWHM diameter underestimates the percentage stenosis. (D) shows the measurement results when 

Calibrated diameter technique was applied onto 3 sets of single images without averaging (CTsingle) of 

the same stenosis. CTsingle represents the CT images of one acquisition with higher noise (standard 

deviation= ~25HU) and CTaverage represents the averaged CT images with lower noise (standard 

deviation= ~10HU). It is clear to see that the high measurement accuracy shown in CTaverage can also be 

reproduced in CTsingle. 
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Figure 2.10. Comparison of the CT-number-Calibrated diameter estimates, DC (open squares) 

and FWHM estimates, DFWHM (open triangles) with each ground truth diameter, Dgt for the 

smallest diameter in each lesion in the stenosis phantom. The DFWHM lies very close to the FWHM 

calibration curve for 100kV, 640mA, standard kernel, large focal spot, as expected. There is a very 

strong linear correlation between DC and ground truth diameter (DC=0.951*Dgt+0.023, r=0.998) with a 

slope very close to 1.0 and intercept very close to 0. 

 

2.4     Discussion 

2.4.1     Main Findings 

 In this study, we introduce a new technique to accurately measure the vessel diameter, 

called CT-number-Calibrated Diameter. It takes advantage of both the FWHM segmentation for 

vessel segments of “larger” diameter (> cutoff diameter) and the vessel IMVV for vessel 

segments with “smaller” diameter (<cutoff diameter). Results shown in Figure 2.9 and 2.10 

demonstrate the accuracy of this technique on a particular clinical scanner (GE Revolution CT) 

with the reconstruction parameters used for clinical CCTA in a range of diameters expected in 

CCTA images.  
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2.4.1.1     The Definition of cutoff diameter 

 We define the “cutoff diameter” as the diameter value at the intersection of a straight line 

fit to points that have an amplitude < 80% of constant amplitude region with the constant 

amplitude of large vessels. Note that this 80% was chosen empirically for all CT number 

calibration curves of different imaging protocols because the straight-line fit was simple and 

accurate for the points below this amplitude threshold.  A possible alternative is to use 4σ as the 

cutoff diameter once σ  is known by measuring D50. If we plug diameter = 4σ in Equation 2.2, 

the cutoff will be ~86% of the constant amplitude of large vessels, which is also a reasonable 

threshold separating two regions. 

 

2.4.1.2    Calibration curves are CT acquisition parameter dependent 

 In all cases vessel IMVV vs. diameter was found to have a simple functional form: a 

constant region above a cutoff diameter, and a decreasing IMVV vs. decreasing diameter below a 

cutoff diameter. The reason for the reduction is the partial volume effect151. Different CT 

acquisition parameter settings can affect the value of the constant region and the slope of 

reduction. After the normalization of different curves, the constant region is always equal to 1 

and only the slope of reduction varies, which is characterizing the spatial resolution of the system 

with all of the particular scanning parameters, reconstruction smoothing, and detection task 

included.  

 From the mathematical derivation, we state that every calibration curve can be 

characterized by just one parameter, the σ of the 2D PSF. We also define a “cutoff” diameter to 

divide the curve into two parts in which different measurement methods are used. It is easy to 
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deduce that a calibration curve of higher resolution imaging system has a smaller cutoff diameter 

and can be characterized by smaller σ. 

 We include three parameters in this study: x-ray tube energy, focal spot size and 

reconstruction kernel. While different raw IMVV vs diameter curves were obtained at different 

beam energies, the normalized calibration curves essentially overlap for the three energies tested 

(80, 100, 120 kVp) shown in Figure 2.6B. As shown in Figure 2.6C and 2.6D, larger focal spot 

size causes greater blurring, and the cutoff diameter is larger for larger focal spot size; however, 

the slope of reduction is smaller for larger focal spot size. Interestingly, the extra-large focal spot 

size in Figure 2.6C shows a lower constant amplitude for large vessels compared with the small 

and large focal spot sizes.  This is likely due to the interaction of the point spread function from 

different focal spots with the shape of the vessels giving higher “peaks” in the vessels imaged 

with the small and large focal spot sizes. The reconstruction kernels with higher spatial 

resolution have smaller cutoff diameters and smaller characteristic σ as shown in Figure 2.6F. 

  It is clear that calibration curves are CT-parameter-dependent.  This implies that 

individual calibration curves for the set of possible CCTA imaging parameters should be 

obtained for each imaging system.  While somewhat cumbersome, the calibration curves should 

only need to be obtained once for each set of parameters on each system.  Importantly, we show 

the mathematical relation between calibration curves and 2D isotropic PSF, which suggests that 

if we empirically measure one, we can analytically derive the other. 

 

2.4.1.3     CT-number-Calibrated diameter in moving objects      

 The motion sensitivity measurements performed in this study using the anthropomorphic 

phantom recapitulate the same result shown by Contijoch et. al. with simulations141. The small 
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“drift” motion causes a significant reduction in voxel values for the smaller vessels and can lead 

to an overestimation of the degree of stenosis because the motion causes an increased loss of 

voxel values. The stenosis in larger vessels, however, might be underestimated due to motion152 

resulting in a blurring of the edges of the vessel and conservation of the voxel values in the 

central voxels of the vessels. 

 In this study we used Snapshot Freeze (SSF), a newly developed motion-correction 

algorithm, which has been shown to improve the image quality of moving objects by Fuchs153 

and Li154. It is clear in Figure 2.7 that the voxel value in the moving vessel is increased by SSF 

to the value measured in the same vessel when the vessel is stationary; after motion correction 

we can therefore apply the CT-number-calibrated diameter technique. 

 

2.4.2     Accuracy of vessel diameter measurement is important for FFRCT of stenoses 

 Recently, FFRCT has emerged as a non-invasive method to assess lesion significance in 

CCTA. FFRCT
 uses computational fluid dynamics to evaluate coronary blood flow139 and 

FFRCT used with CT among stable patients with suspected or known CAD lead to improved 

diagnostic accuracy and discrimination vs CT alone155.  Sankaran et. al. 140 demonstrated that the 

effect of uncertainty in lumen diameter exceeds that of the other model variables in determining 

the accuracy of FFRCT.  Hence, the CT-number-calibrated diameter, which accurately measures 

the vessel diameters in a range of values important for CCTA will have a positive impact on the 

accuracy of FFRCT. 

 

 

 



 47 

2.4.3     Limitations 

 This study only measured and validated the CT number calibration curves on a single 

imaging system (GE Revolution CT) and a finite number of protocols used for CCTA in our 

institution.  Further work is needed to generalize the technique to other systems and other 

reconstruction algorithms.  Also, there are a number of papers that address the question of 

diameter estimation using various techniques150,156; while we did not compare CT-number-

Calibrated Diameters against these methods, the absolute precision and accuracy of the technique 

is fully reported here and stands on its own.   

 The phantom which comprised 17 coronary artery stenoses did not simulate the effect of 

coronary artery calcium in any of the lesions. A new phantom will need to be designed to include 

a realistic representation of calcified coronary arteries, which is a common condition. The 

background CT number in the phantom used is around 100HU, which is similar to soft tissue, but 

unlike fat attenuation normally found around epicardial coronary arteries; however, we believe 

the results reported here would scale to different uniform background values. Further study 

would be needed to fully characterize the effect of non-uniform background such as the co-

existence of fat and muscle around arteries. 

 The CT number calibration measurement requires the normalization of IMVV to the 

proximal amplitude in the constant zone; it is assumed that the contrast agent concentration in 

the blood is constant along the vessel. We assumed that the images were obtained at a phase of 

the injection that produced a relatively low gradient in contrast from the proximal vessel to the 

center of the lesion157. A modified algorithm could use an expected amplitude that is linear 

interpolation of the proximal and distal vessels; however, a drop in the flow distal to the lesion 

may also affect this value. Normalization to the proximal amplitude seemed to be the simplest 
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choice and is easily measured by an observer. The CT number calibration also assumes the disk 

shape of vessel and we designed our vessel stenosis phantom to have vessels with all convex 

cross sections. However, we understand that patient stenoses could have the non-convex shapes, 

and Equation 2.2 approximates these other more complex shapes. Classifying these more 

complex shapes with a simple “percent stenosis” becomes challenging as the flow modeling also 

becomes more complex.  

 The CT number calibration measurement relies on the CT number of a single voxel in the 

coronary artery, which is a weakness. However, by definition, it is difficult to derive a technique 

that uses an “average” CT number inside the vessel lumen, because for significant stenoses the 

target vessel has a diameter that is at the limits of the resolution of the system.  Hence, the 

simplest and most reproducible measurement was intraluminal maximum voxel value (IMVV); 

this measurement has a correlation with neighboring voxels that are driven by the blur of the 

point spread function, and has a very simple analytical behavior as shown in Equation 2.2. This 

work builds on the original simulations of Contijoch et. al.141 by adding actual measurements 

using modern coronary imaging protocols; however, moving the technique into humans will 

likely require validation studies involving independent measurements of the coronary diameter 

such as OCT, intravascular US, or QCA from biplane fluoroscopy. Unfortunately, all of these 

other techniques suffer from their own limitations. 

 

2.4.4    Conclusion 

 CT-number-Calibrated Diameter is an effective method to enhance the accuracy of the 

estimate of small vessel diameters and degree of coronary stenosis in CCTA.  
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Chapter 3: Thresholding of Regional Shortening Measured from 4D Cardiac CT 

Angiograms Accurately Detects the Presence of LV Wall Motion Abnormalities 

 

3.1    Introduction 

 As stated in section 1.2, the presence of left ventricular (LV) wall motion abnormalities 

(WMA) has been demonstrated to be an independent predictor of adverse cardiovascular events 

in patients with cardiovascular diseases such as myocardial infarction(MI)24,158, 

dyssynchrony159,160 and congenital heart disease161,162. Further, regional WMA have greater 

prognostic value after acute MI than global metrics such as LV ejection fraction (EF)26,27. An 

overview of different imaging modalities to analyze LV wall motion can be found in section 

1.3.2. Briefly, most clinical cardiac wall motion analysis is performed using echocardiography, 

which is operator dependent, can be limited by poor acoustic windows and has been shown to be 

poorly reproducible46. Cardiac magnetic resonance (CMR) is considered the reference standard, 

but it is expensive and may be contraindicated. Multidetector cardiac computed tomography 

(CT) has been repeatedly shown in large clinical trials to be an effective non-invasive imaging 

modality to evaluate suspected coronary arteries35,36,80. Recently, the single-heartbeat CT scan 

enables the assessment of cardiac wall motion by acquiring a series of functional images 

spanning the full cardiac cycle in just one heartbeat163,164.  It has also been shown that regional 

WMA detection via CT agrees with echocardiography56 as well as CMR62. 

 Recently, a new surface feature tracking technique, called “Stretch Quantifier for 

Endocardial Engraved Zones” (SQUEEZ)87, has been developed to quantify the 3D myocardial 

regional shortening (RSCT) from 4DCT acquired with routine clinical protocols. This technique 

derives the deformation and displacement of endocardial surface point patches via nonrigid 3D 

point set registration88 and thus obtains the RSCT of the endocardium. Section 3.2.3 will 
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introduce the technical details of SQUEEZ. The accuracy of RSCT has been validated in the 

anthropomorphic LV phantom89 with known ground truth and has been compared with the 

circumferential shortening measured by tagged CMR in canines90. Recently, RSCT has been used 

to derive the baseline RSCT values in the normal human LV164, to quantify regional LV function 

in patients before and after transcatheter mitral valve implantation165, to identify regional RV 

systolic dysfunction in patients with Tetralogy of Fallot166, and to predict the response of cardiac 

resynchronization therapy167. 

 The overarching goals of this research are first to investigate the effectiveness of RSCT as 

a decision classifier to detect the presence of LV WMA from 4DCT studies and second to derive 

an optimal threshold of RSCT that achieves accurate and reproducible detection performance. 

preliminary study168 has been presented at the annual scientific meeting of Society of 

Cardiovascular Computed Tomography in 2021. 

 

3.2    Materials and Methods 

3.2.1    CT data collection 

 This study was approved by the institutional review board with waiver of informed 

consent. 505 ECG-gated contrast enhanced cardiac CT studies that had: (1) the full R-wave to R-

wave (RR) coverage and (2) had an imaging report including the explicit demonstration of 

cardiac function as normal or abnormal (either globally or regionally) between Apr 2018 and 

Dec 2020 were retrospectively collected within a single institution. Note that the imaging reports 

were used only to pre-screen the studies in order to maintain the class balance between patients 

with normal function versus with abnormal function in the study cohort. 163 studies were then 

excluded due to the exclusion criteria, and the purpose of class balancing (see Figure 3.1 for 
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details). Due to the extensive labor required to manually score the per-segment wall motion in a 

large cohort, we further reduced our study population by randomly selecting 100 studies from the 

remaining 342 studies while ensuring these 100 studies were from unique patients. 

 

Figure 3.1. Inclusion and Exclusion Criteria. 

 

A total of 505 ECG-gated contrast enhanced cardiac CT studies were retrospectively collected

within a single institution between Apr 2018 and Dec 2020.

Inclusion criteria:

(a) Have full RR coverage.

(b) Have an imaging report that includes the explicit demonstration of cardiac function as

normal or abnormal.

277 studies with reports saying normal function.

228 studies with reports saying abnormal function.

Exclude 97 studies.

Exclusion criteria:

(a) Have pacing lead artifacts in the LV chamber

(b) Have limited field-of-view failing to capture the entire LV

(c) Inadequate image quality

246 studies with reports saying normal function.

162 studies with reports saying abnormal function.

Exclude 66 studies with reports saying normal function from Aug

2020 to Dec 2020.

Exclusion Reason: To maintain the class balance.

180 studies with reports saying normal function.

162 studies with reports saying abnormal function.

Further narrow the study group due to the extensive labor to do

manual labeling of segmental wall motion in a large cohort:

(a) Randomly select 100 studies

(b) Ensure these 100 studies were from unique patients.

Final study cohort = 100 studies.

54 studies with reports saying normal function.

46 studies with reports saying abnormal function.
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 All CT studies were acquired by a single, wide detector CT scanner with 256 detector 

rows (Revolution scanner, GE Healthcare, Chicago IL) allowing for a single heartbeat axial 

16cm acquisition across the cardiac cycle. All studies have functional images reconstructed 

every 10% RR internal using the vendor default cardiac function image reconstruction method. 

Images were reconstructed on a 512×512 pixel matrix in the axial plane over a field of view of 

24 +-2 cm with 0.625 mm slice thickness.  

 

3.2.2    Segmental Wall Motion Abnormality Visual Labels 

 The wall motion classification in each segment was made via visual labeling by three 

imaging experts after retrospective blinded review of the cases (not via the imaging reports). For 

this review every study was reformatted into a set of cardiac imaging planes including three 

long-axis views and a short-axis stack (9 short-axis planes evenly spaced from the mitral valve 

plane to the LV apex). After these 12 planes were re-formatted, cine movies of these planes were 

made to show the cardiac function across the cardiac cycle. Three cardiovascular imaging 

experts (Expert 1: author A.K, >15 years of experience; Expert 2: author S.K, >14 years; and 

Expert 3: author H.N, >5 years) independently scored the wall motion for each segment (segment 

1 through 16 in the AHA 17-segment model28, see Figure 1.1) by visual inspection of wall 

motion. The scores were: 0 for normal motion, 1 for hypokinetic, 2 for akinetic and 3 for 

dyskinetic. Scores 1-3 were further grouped as abnormal wall motion and score 0 was normal 

motion. The evaluations from three experts were combined into a single visual label of WMA for 

each segment based on majority voting (e.g., if two “abnormal” and one “normal”, the final label 

is “abnormal”). 
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 In this chapter 3 we used the term “segment” to refer to a single LV myocardial segment 

in one CT study (e.g., 10 CT studies will have 160 segments); we used the phrase “AHA 

segment” to denote a particular AHA segment (e.g., the detection accuracy found in the basal 

anterior AHA segment). 

 

3.2.3    Quantitative Image Analysis – Pipeline of RSCT Measurement 

3.2.3.1    Image Processing 

 Several image processing steps were done. First, the voxel-wise LV blood-pool 

segmentation was done in ITK-SNAP (Philadelphia, PA, USA)169 using the active contour 

regional growing module. Two planes delineating the mitral valve and the left ventricular 

outflow tract (LVOT) were defined as previously described165. The full LV endocardium was 

defined from the mitral valve plane to the endocardial apical tip. Second, the CT image volume 

was rotated to align the LV long axis with the z axis of the image. Third, the image was 

resampled to 2mm3 isotropic voxel resolution according to the published RSCT analyses90,164–166. 

The details in image processing can be found in this reference165. 

 

3.2.3.2    Image Analysis 

 After image processing, a temporal sequence of the binary LV volumes across the entire 

cardiac cycle was sent to SQUEEZ pipeline87 for automatic quantitative analysis. Concretely, 

triangular meshes of the endocardial surface were extracted by isosurface in MATLAB 

(MathWorks Inc., Natick, MA). Then, a 3D non-rigid point set registration88 with tuned 

parameters89 was performed to register every endocardial mesh at template time frame (here, 

defined as end-diastole, ED) to the meshes created for other time frames. Technical details of 
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“RSCT” can be found in this reference87. Regional shortening (RSCT) at a systolic time frame t 

was calculated at each triangular mesh on the endocardial mesh by the Equation 3.1: 

𝑅𝑆𝐶𝑇  =  √
𝐴𝑟𝑒𝑎𝑡

𝐴𝑟𝑒𝑎𝐸𝐷
  − 1      (Equation 3.1) 

where Areat is the area of an endocardial mesh at time frame t and AreaED is the area of the same 

mesh at ED. RSCT for an endocardial surface voxel was calculated as the average RSCT value of a 

patch of meshes directly connected with this voxel.  

 We computed a segmental RSCT as the average RSCT for all the voxels that belong to each 

segment. We defined a segmental “peak RSCT” as the maximum absolute value of segmental 

RSCT across all time frames. Note that the peak RSCT is not the RSCT at the end-systole but refers 

to the segmental maximum strain in the cardiac contraction. 

 

3.2.4    Data Split 

 We randomly and evenly split the dataset (n=100) into a training cohort (n=50) and a 

validation cohort (n=50). The training cohort was used to answer two questions: (1) can the peak 

RSCT used as a quantitative decision classifier to detect segmental WMA? (2) what is the optimal 

threshold of peak RSCT that can maximize the summation of sensitivity and specificity? The 

validation cohort was used to answer one question: (1) can the optimal threshold achieve the 

same high detection performance in an independent new cohort?  

 

3.2.5    RSCT Optimal Threshold 

 50 CT studies, each with 16 segments, led to 800 segments in the training cohort. A 

segment was defined as abnormal or normal by the selected threshold value of the peak RSCT: 
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𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 =  {
𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑖𝑓 𝑖𝑡𝑠 𝑝𝑒𝑎𝑘 𝑅𝑆𝐶𝑇  ≥  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑖𝑓 𝑖𝑡𝑠 𝑝𝑒𝑎𝑘 𝑅𝑆𝐶𝑇  <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

       (Equation 3.2) 

 since RSCT always had a negative value, RSCT larger than a threshold indicated a smaller strain. 

 In the main study, these 800 segments were used to construct a ROC curve showing the 

corresponding sensitivity and specificity of peak RSCT as a decision classifier at different 

classification thresholds when compared to expert visual evaluation. The area-under-curve 

(AUC) was calculated. From the ROC curve, the optimal threshold of peak RSCT, noted as 

RSCT*, was defined as the threshold value that maximized the summation of sensitivity and 

specificity. Here RSCT* is a single threshold that we propose to apply to all 16 AHA segments. In 

the validation cohort, we applied the RSCT* threshold to the 800 segments in 50 CT studies not 

used for training and evaluated its detection performance. 

 Given prior studies on MRI170 and SPECT171 that have shown heterogeneity of 

myocardial wall motion between different AHA segments, we performed an exploratory analysis 

to define an individual optimal threshold for each of the 16 AHA segments. We use the notation 

RSCT,AHA* to represent these AHA-segment-specific optimal thresholds that maximized the sum 

of sensitivity and specificity of detecting WMA in that AHA segment. To maximize the amount 

of data for each AHA segment, we used the entire dataset (N = 100) for each segment.  

 

3.2.6    Data Adequacy  

 One important question to answer is whether the number of CT studies as well as the 

class ratio in the training cohort is adequate to derive RSCT* values that generalize to the patient 

population. Insufficient studies or a large class imbalance in the training data will lead to a 

highly biased threshold. On the other hand, the marginal impact of collecting additional studies 

on the threshold and performance of RSCT is unknown. 
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 The adequacy of our training cohort (50 CT studies, 800 segments) was evaluated by the 

variability of the optimal threshold picked using random subsampling of the dataset. Intuitively, 

if one has very few studies (e.g., n =5), a random subsampling (e.g., using 4 randomly picked 

studies to obtain a threshold) will lead to very different RSCT*. However, as the dataset 

increases, the variability will decrease, implying that the current dataset adequately represents 

the patient population. We evaluated the variability of RSCT* by simulating the random sampling 

of 80% of the training dataset for dataset sizes of: n = 10, 20, 30, 40 and 50 studies (160, 320, 

480, 640, and 800 segments, respectively).  

 The generalizability of the RSCT* obtained by the training cohort can also be shown by 

the similar performance in the independent validation cohort (50 independent studies, 800 

segments).  

 

3.2.7    Interobserver Agreement  

 We calculated the interobserver agreement of classifying a segmental wall motion into 

normal or abnormal between three experts using Fleiss’s Kappa172 (the Kappa used when there 

are more than two raters). We also calculated the interobserver agreement of further classifying 

abnormal segments into hypokinetic (score 1), akinetic (score 2) and dyskinetic (score 3). 

 

3.2.8    Statistical Evaluation 

 The AUC was reported to evaluate performance of RSCT as a decision classifier. Two-

tailed categorical z-test was used to compare data proportions in the training and validation 

cohorts. Statistical significance was set at P ≤ 0.05. The accuracy, sensitivity, specificity, true 

positive rate and Cohen’s Kappa value of the RSCT* to detect segmental WMA when compared 
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with the expert visual labels were reported for both cohorts. We also evaluated the performance 

of RSCT* on each of 16 AHA segments. 

 We also defined AHA-segment-specific optimal thresholds RSCT,AHA*. To investigate 

whether using RSCT,AHA* improves the detection performance, we calculated the net re-

classification improvement (NRI)173 by using RSCT,AHA* instead of RSCT* on the validation 

cohort. A segment labeled as abnormal by experts was considered an “event”, and a segment 

labeled as normal by experts was considered a “nonevent” such that the NRI could be calculated 

as: 

𝑁𝑅𝐼 

=
𝑁𝑒𝑣𝑒𝑛𝑡,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦  −  𝑁𝑒𝑣𝑒𝑛𝑡,𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦  

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
 

+ 
𝑁𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦  −  𝑁𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡,𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦  

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡𝑠
  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.3) 

The NRI was calculated for each AHA segment and across the entire validation cohort. 

 

3.3    Results 

3.3.1    Data Info 

 The entire dataset had 100 CT studies. The mean age was 59 ±14 and the male 

percentage was 61%. The LV blood-pool had a median intensity of 530 HU (IQR: 435 to 663). 

The median LV EF by CT was 62.4% (IQR: 45.4 to 69.4). 22 studies with EF ≤ 40%, 11 with 

EF between 41 to 49% and 67 studies with EF above 50%. From these 100 studies a set of 1600 

segments were extracted with 432 (27%) segments labeled as “abnormal” by experts. 54 studies 

were globally normal (meaning all segments were labeled as normal), 12 studies were globally 
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abnormal (meaning all segments were labeled as abnormal), and the remaining 34 studies were 

regionally abnormal (meaning some of 16 segments were abnormal).  

 The information of the training cohort and validation cohort can be found in Table 3.1. 

The number of abnormal segments that belongs to each of 16 AHA segments is in Table 3.3. 

Two-tailed categorical z-test showed that there were no significant differences (all P > 0.05) in 

data proportions between two cohorts in terms of the percentage of sex and abnormal segments. 

 

Table 3.1: Patient Cohort Information. N means the number of CT studies; n means the number 

of segments. 

 

  Entire Dataset Training Cohort Validation Cohort 

Cohort Size N = 100 N = 50 N = 50 

Age 59 ± 14 59 ± 15 59 ± 13 

Male % 61% 58% 64% 

LVEF median 62.4% 62.1% 63.8% 

  <=40% N = 22 N = 12 N = 10 

  41-49% N = 11 N = 4 N = 7 

  >=50% N = 67 N = 34 N = 33 

abnormal segments 
n = 432  

(out of 1600, 27%) 

n = 219 

 (out of 800, 27%) 

n = 213  

(out of 800, 27%) 

globally normal studies N = 54 N = 28 N = 26 

globally abnormal studies N = 12 N = 7 N = 5 

regionally abnormal 

studies 
N = 34 N = 15 N = 19 

 

3.3.2    Performance of RSCT for detection of wall motion abnormality 

3.3.2.1    Histograms of peak RSCT in the training and validation cohorts 

 Figure 3.2 shows the histogram of peak RSCT for both cohorts. We observed that all 

RSCT intervals had one class dominating at least 80% of the data within the 0.05 bin width, 

except the interval from -0.20 to -0.15 where the two classes are nearly evenly distributed 
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(normal: abnormal = 37:27 in training and 44:33 in validation).  No significant structure within 

this bin was seen when the bin width was reduced as shown by the insert figure. 

 

3.3.2.2    ROC curves for RSCT, Definition of optimal RSCT Threshold 

 Figure 3.3 is the ROC curve of the training cohort that shows the corresponding 

sensitivity and specificity at different classification thresholds of RSCT. AUC = 0.991 suggests 

RSCT is an outstanding classifier. 

 From the curve, we defined the optimal threshold RSCT* = -0.20 which maximized the 

summation of sensitivity and specificity. This RSCT* led to sensitivity = 0.95, specificity = 0.95, 

true positive rate = 0.87 and accuracy = 0.95 (see Table 3.2). The Cohen’s kappa value = 0.87 

(95% CI = [0.89,0.85]) also indicates strong agreement with expert labeling.  

 We demonstrated high performance of RSCT* on each of 16 AHA segments (see Table 

3.3), with 1 AHA segment (basal anteroseptal) having accuracy below 0.90 (=0.84), 5 AHA 

segments having accuracy between 0.90 to 0.95 and the remaining 10 segments having accuracy 

above 0.95. 
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Figure 3.2. Histogram of the number of segments for peak RSCT intervals for (a) training and (b) 

validation cohort. A zoomed-in histogram was made for RSCT interval with the highest overlap in 

class (-0.20 to -0.15). The optimal threshold RSCT*= − 0.20 is also shown.  
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Table 3.2. Classification performance of RSCT* in the training and validation cohorts. SE = 

sensitivity, SP = specificity, TPR = true positive rate, AC = accuracy, Kappa = Cohen’s Kappa value. 

 

    Training Validation 

    Expert Visual Label Expert Visual Label 

    Abnormal Normal Abnormal Normal 

RSCT 
Abnormal 209 31 190 36 

Normal 10 550 23 551 
  SE 0.954 SE 0.892 
  SP 0.947 SP 0.939 
  TPR 0.871 TPR 0.841 
  AC 0.949 AC 0.926 
  Kappa 0.874 Kappa 0.815 

 

3.3.2.3    RSCT* performance on validation data 

 The same RSCT* was applied to all 800 segments in the validation cohort and 

demonstrated high performance as well (sensitivity = 0.89, specificity = 0.94, true positive rate = 

0.84, and accuracy = 0.93). The Cohen’s kappa value = 0.82 (95% CI = [0.80, 0.84]) indicated 

 

Figure 3.3. ROC curve of RSCT as a decision classifier in the training cohort. The threshold ranges 

from -0.6 at the most left to 0 at the most right. AUC = 0.991. The optimal threshold RSCT* (black dot) 

was -0.20 leading to sensitivity = 0.95 and specificity = 0.95. SE = sensitivity. SP = specificity. 
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strong agreement with expert labeling. For the performance of RSCT* on each of 16 AHA 

segments, 3 AHA segments (basal anteroseptal, basal inferoseptal, apical septal) had accuracy 

between 0.86 to 0.90, 9 AHA segments had accuracy between 0.90 to 0.95 and the remaining 4 

AHA segments had accuracy above 0.95. 

 

3.3.3    Exploratory Analysis of AHA-segment-specific optimal RSCT,AHA* 

 In the preceding analyses, we defined a single optimal threshold RSCT* for all AHA 

segments. In further exploratory analysis, we sought to test the improvement when different 

thresholds (RSCT,AHA*) were used for each specific AHA segment. Figure 3.4 illustrates that 

RSCT,AHA* ranged from -0.16 to -0.23 across different AHA segments and lower values occurred 

in the basal anteroseptal (= -0.16), basal inferoseptal (= -0.18) and basal inferior (= -0.17) AHA 

segments. The AUC was ≥0.97 for all AHA segments. 

 Table 3.4 shows the improvement in sensitivity and specificity as well as the net re-

classification improvement (NRI, according to Equation 3) for each AHA segment in the 

validation cohort obtained by using RSCT,AHA*. NRI ≥0 for all AHA segments and is higher in 

AHA segments with relatively lower performance using RSCT. For example, in the basal 

anteroseptal segment, RSCT,AHA* correctly reclassified 6 expert-labeled normal segments, 

improving specificity from 0.81 to 1.00 (NRI = 0.132). Similarly, in the apical septal segment, 

RSCT,AHA* correctly reclassified 4 expert-labeled abnormal segments, improving sensitivity from 

0.75 to 1.00 (NRI = 0.191). Overall, using RSCT,AHA* improved the total sensitivity in the 

validation cohort from 0.89 to 0.94 and NRI = 0.049 (last row of Table 3.4). 
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Table 3.3 Classification performance of RSCT* for each AHA segment. A = Anterior, AS = 

Anteroseptal, IS = Inferoseptal, I = inferior, IL = Inferolateral, AL = Anterolateral. 

 

RSCT* -0.20 Training Validation 

    
No. of 

abnormal 

No. of 

normal 
SE SP AC 

No. of 

normal 

No. of 

abnormal 
SE SP AC 

Basal 

A 8 42 1.00 0.95 0.96 12 38 1.00 0.92 0.94 

AS 16 34 1.00 0.77 0.84 18 32 1.00 0.81 0.88 

IS 16 34 0.94 0.94 0.94 18 32 0.89 0.84 0.86 

I 11 39 1.00 0.95 0.96 8 42 0.88 0.91 0.90 

IL 12 38 1.00 0.97 0.98 9 41 0.78 1.00 1.00 

AL 10 40 1.00 0.95 0.96 9 41 1.00 0.90 0.92 

Mid 

A 11 39 1.00 1.00 1.00 14 36 0.86 0.97 0.94 

AS 17 33 0.94 1.00 0.98 16 34 0.94 0.91 0.92 

IS 15 35 1.00 0.94 0.96 14 36 0.86 0.94 0.92 

I 14 36 0.86 0.97 0.94 12 38 0.83 1.00 0.96 

IL 14 36 0.93 0.94 0.94 11 39 0.91 0.95 0.94 

AL 14 36 0.93 0.92 0.92 12 38 1.00 0.97 0.98 

Apical 

A 13 37 0.92 0.97 0.96 15 35 0.87 1.00 0.96 

S 16 34 0.94 0.97 0.96 16 34 0.75 0.94 0.88 

I 18 32 0.94 1.00 0.98 14 36 0.86 0.94 0.92 

L 14 36 0.93 0.89 0.90 15 35 0.87 0.97 0.94 

  

3.3.4    Data Adequacy 

 Adequacy of our training cohort was evaluated via the variability of the optimal threshold 

RSCT* picked when randomly sampling 80% of the dataset. Figure 3.5 shows that the variability, 

represented by the width of the 95% CI (= CI upper boundary – CI lower boundary), decreased 

from 0.032 to 0.015 when of the cohort increased from 10 studies (160 segments) to 50 studies 

(800 segments). The mean values of the threshold were always approximately -0.20. 
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Figure 3.4. ROC curves of regional shortening RSCT,AHA* for each of 16 AHA segment. The entire 

dataset (n=100) was used here. Black dots represent the individual optimal threshold RSCT,AHA* for 

different AHA segments. 

 

 

Figure 3.5. Data adequacy. Line with circular dots represent the change of mean value of optimal 

thresholds and the line with asterisks represent upper and lower boundary of 95% confidence interval 

(CI). 
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3.3.5    Interobserver Agreement 

 Our three readers had an interobserver agreement of classifying a segmental wall motion 

into normal vs. abnormal, measured via Fleiss’s Kappa, of 0.746, which indicates strong 

agreement. When including the degree of dysfunction function (scores 1, 2 and 3 for a segment), 

the Kappa dropped to 0.291, which reflects “fair” agreement in sub-classify an abnormal 

segment into hypokinetic, akinetic and dyskinetic. 

 

Table 3.4. Re-Classification in validation cohort by using RSCT,AHA* instead of RSCT*. The 8th, 9th, 

10th and 11th columns correspond to 𝑁𝑒𝑣𝑒𝑛𝑡,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 , 𝑁𝑒𝑣𝑒𝑛𝑡,𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 , 

𝑁𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦  and 𝑁𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡,𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦−𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦  in the Equation 3.3 respectively. SE = 

sensitivity, SP = specificity. A = Anterior, AS = Anteroseptal, IS = Inferoseptal, I = inferior, IL = 

Inferolateral, AL = Anterolateral. 

 

    
use RSCT* 

 = -0.20 
use RSCT,AHA* 

              

Event: 

expert label 

abnormal 

Non-event: 

expert label 

normal 

  

    SE SP RSCT,AHA* SE SP 
correct 

relabel 

incorrect 

relabel 

correct 

relabel 

incorrect 

relabel 
NRI 

Basal 

A 1.00 0.92 -0.19 1.00 0.92 0 0 0 0 0.000 

AS 1.00 0.81 -0.16 0.94 1.00 0 1 6 0 0.132 

IS 0.89 0.84 -0.18 0.89 0.91 0 0 2 0 0.063 

I 0.88 0.91 -0.17 0.88 0.98 0 0 3 0 0.071 

IL 0.78 1.00 -0.22 1.00 0.98 2 0 0 1 0.198 

AL 1.00 0.90 -0.19 1.00 0.93 0 0 1 0 0.024 

Mid 

A 0.86 0.97 -0.23 1.00 0.92 2 0 0 2 0.087 

AS 0.94 0.91 -0.20 0.94 0.91 0 0 0 0 0.000 

IS 0.86 0.94 -0.20 0.86 0.94 0 0 0 0 0.000 

I 0.83 1.00 -0.20 0.83 1.00 0 0 0 0 0.000 

IL 0.91 0.95 -0.21 0.91 0.95 0 0 0 0 0.000 

AL 1.00 0.97 -0.21 1.00 0.97 0 0 0 0 0.000 

Apical 

A 0.87 1.00 -0.22 0.93 0.94 1 0 0 2 0.010 

S 0.75 0.94 -0.23 1.00 0.88 4 0 0 2 0.191 

I 0.86 0.94 -0.22 0.93 0.89 1 0 0 2 0.016 

L 0.87 0.97 -0.19 0.87 1.00 0 0 1 0 0.029 

total 0.89 0.94   0.94 0.94 10 1 13 9 0.049 
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3.4    Discussions 

3.4.1    Main Findings 

 The primary result from this work is that regional shortening RSCT derived via 4DCT 

surface feature tracking87 can be used as an outstanding quantitative decision classifier to detect 

segmental LV WMA from routine 4DCT scans (AUC = 0.991). An optimal classification 

threshold RSCT* =-0.20 (applied to all 16 AHA segments) led to high detection accuracy (= 0.95) 

and strong agreement (kappa = 0.87) with expert visual detection. Using an independent 

validation cohort, we validated the threshold by high detection accuracy = 0.93 and strong 

agreement with experts (kappa = 0.82). 

 

3.4.1.1    AHA-segment-specific optimal threshold 

 We obtained a secondary result from an exploratory analysis using all 100 studies to 

evaluate the improvement in performance via the use of AHA-segment-specific RSCT thresholds. 

There are two key results. First, the small range of RSCT,AHA*  values (from -0.16 to -0.23) 

suggests that the uniform RSCT* = -0.20 chosen in our main study is broadly appropriate. The 

variance in RSCT,AHA*  may be explained by (1) different mechanical properties of the LV septal 

wall and free wall, (2) variance in the performance of the point registration algorithm in basal 

segments since the meshes are missing trabecular tracking features in the left ventricular outflow 

tract (LVOT) and (3) limited sample size.  

 Second, this exploratory analysis shows the promise of AHA-segment-specific threshold 

to further improve the detection performance. Table 3.4 shows that re-classification using 

RSCT,AHA* (instead of a single RSCT*) improved the detection performance for some AHA 

segments (e.g., basal anteroseptal, apical septal, NRI>0) and for the entire validation cohort (NRI 
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= 0.049). However, due to the small numbers the clinical significance of this NRI remains 

unclear. It is possible that these findings represent an overfitting of the values observed in our 

population. Thus, a larger study in which each AHA segment has sufficient normal and abnormal 

cases is needed to fully evaluate the need for segment-specific thresholding. 

 

3.4.2    Data adequacy 

 We showed that the mean value of the optimal threshold using random sampling always 

remained around -0.20. By increasing the number of studies in the training cohort, we could 

stabilize the optimal threshold by decreasing width of the 95% CI. However, the overall 

performance did not change significantly. 

 

3.4.3    Limitations 

 The first limitation is that we defined a threshold to separate normal wall motion from all 

three categories of hypokinetic wall motion since we combined expert scores 1-3 (hypokinetic, 

akinetic and dyskinetic) into one “abnormal” class. This was done because (1) the small number 

of akinetic and dyskinetic segments would lead to severe class imbalance, (2) the interobserver 

agreement in classifying an abnormal motion as hypokinetic, akinetic or dyskinetic was poor 

(Kappa = 0.29). This poor interobserver agreement result highlights the need for an objective, 

non-biased classifier to be developed for this task. Future work is planned to evaluate appropriate 

thresholds to classify LV wall motion into all four classes. 

 Second, disagreement between RSCT and expert evaluation may be partially due to the 

way the images are evaluated. RSCT quantitatively evaluated the 3D shortening only on the 

endocardial surface, while the experts viewed 2D cardiac imaging planes and could evaluate both 



 69 

epi- and endocardial surface motions. Therefore, differences (1) between 3D motion and 2D 

motion and (2) between endocardial surface and full myocardial evaluation may partially explain 

the small rate of disagreement between RSCT and expert visual labels.  

 

3.4.4    Clinical Significance 

 Our study has shown that RSCT measured from cardiac 4DCT studies not only provides 

quantitative evaluation of the LV segmental wall motion, but also can serve as an objective 

method to detect LV WMA. Both segmental RSCT values and the classification of wall motion 

based on RSCT threshold (RSCT*) used as an objective classification tool. To further validate and 

optimize RSCT threshold values, future studies that include larger patient cohorts from multiple 

centers are required. 

 

3.4.5   Conclusion 

 Regional myocardial shortening from CT (RSCT) is a highly accurate classifier to detect 

segmental LV wall motion abnormalities from 4DCT studies. An optimal classification threshold 

of RSCT > -0.20 was defined to obtain high detection performance in all 16 AHA segments both 

in a training and validation cohort. Using AHA-segment-specific optimal thresholds may further 

improve detection performance but requires further evaluation. 
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Chapter 4: Automated Cardiac Volume Assessment and Cardiac Long- and Short-Axis 

Imaging Plane Prediction from ECG-gated CT Volumes Enabled By Deep Learning 

4.1    Introduction  

 As reviewed in Chapter 1, accurate and reproducible assessment of LV morphology and 

function is crucial as LV volumes, ejection fraction (EF), global and regional myocardial strain 

are critical parameters used in the diagnosis11, clinical management, prognostication, and follow-

up of numerous cardiovascular and systemic diseases12,13. In addition, regional LV wall motion 

abnormalities for 17 AHA LV segments are assessed using standardized views and are important 

for the evaluation of cardiac pathology, including coronary artery disease (CAD)164,166. Beyond 

the LV, the assessment of the left atrium (LA) provides additional insight into cardiovascular 

disease and function, and is particularly important in evaluating patients with atrial fibrillation, 

valvular disease, and diastolic heart failure174.  

 Cardiac CT is a safe and cost-effective non-invasive imaging modality for the evaluation 

of suspected CAD175 and acute chest pain176. Cardiac CT is an important prognostic tool in CAD 

and can be used to follow-up patients with atherosclerosis who are at increased risk of worsening 

stenosis severity and number of coronary vessels involved177. While qualitative morpho-

functional assessment is possible by reviewing phases of the cardiac cycle in a cine loop, 

quantitative assessment requires accurate segmentation, often requiring manual annotation of the 

images, which is time-consuming and highly dependent on user’s training and experience. 

Further, as images are acquired volumetrically, visualization of wall motion abnormalities 

requires re-slicing standard cardiac imaging planes such as multiple long-axis (LAX) planes and 

one short-axis (SAX) stack178. Currently, this requires specialized viewing software179 and 

manual processing which may lead to inter-reader variability, limiting clinical use. 
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 Several deep learning (DL) algorithms have been developed for cardiac image 

segmentation125,180 but an approach that can perform segmentation and re-slice standard cardiac 

imaging planes simultaneously has not been described. For segmentation, section 1.5.2 has 

included an overview of different DL-based segmentation techniques. These techniques can be 

classified based on their inputs. First, CT image is divided into small patches114,115, which are 

used as inputs for the DL model to label pixels in the patch that belong to cardiac chambers. 

Second, three orthogonal projections (axial, coronal and sagittal)116,117 have been used as model 

inputs and the predicted segmentations in three projections are fused together to make an intact 

3D segmentation. Third, 2D “U-Net”118 takes each CT slice as the input to provide the pixel-wise 

segmentation in a slice-by-slice fashion. Baskaran et al.119 successfully applied a 2D U-Net to 

segment four chamber images in cardiac CT with high accuracy (Dice > 0.91). Fourth, Some of 

the current efforts120,121 in the 3D U-Net takes the entire CT volume as the input. These 3D U-

Net approaches combined a localization network for a coarse pre-detection of heart and then 

applied 3D U-Net to the detected region for the segmentation. For plane re-slicing, Vigneault et 

al181 modified a conventional U-Net to predict scaling and rotation of 2D MRI images. 

Predicting short and long-axis imaging planes of CT requires significant global context, so 

probably the entire CT volume should be learnt by the DL model. 

 We propose a variant of a 3D U-Net that performs pixel-wise segmentation and 

simultaneously predicts vectors which define the short and long-axis imaging planes. We 

hypothesized that down-sampled 3D volumes will maintain sufficient network complexity and 

image information for accurate blood-pool segmentation and plane slicing. Further, our approach 

leverages similarities between the tasks and provides a fast, automatic and reproducible method 

to both assess left-sided heart chamber volumes and function and generate standard cardiac 
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imaging planes from volumetric cardiac CT images. This would increase clinical utility and 

reproducibility by avoiding the need for manual interaction. In this study, we test the ability of 

this DL framework to perform automated multi-chamber segmentation and long- and short-axis 

plane re-slicing of cardiac CT image volumes. 

 

4.2    Materials and Methods  

4.2.1    Training Population 

 Studies for training were identified from an existing cohort of patients with available 

expert segmentations. Under institutional review board approval, 100 ECG-gated contrast 

enhanced, cardiac CT studies between June 2012 and June 2018 were retrospectively identified 

as meeting the inclusion criteria defined below. 

 Strict inclusion criteria were utilized to maximize training quality: each study had (a) 

reconstructed images across the entire cardiac cycle at 10% intervals and (b) sufficient quality 

for blood-pool segmentation as determined by image analysis expert (author D.M.V.) and slice 

planning as determined by a cardiovascular imaging expert (author M.R.). Manual segmentations 

of LV and LA blood-pool were generated using a standardized processing pipeline (described 

below). For each patient, two frames (end-diastole (ED) and end-systole (ES)) served as training 

samples for the DL model. 

 Training images were collected at 2 institutions (67 UCSD, 33 NIH) with 3 CT systems. 

Two were long z-axis scanners with 256 detector rows (GE Revolution, n=41 studies) and 320 

detector rows (Toshiba AquilionONE, n=47) allowing for a single heartbeat axial 16cm 

acquisition throughout the cardiac cycle. Retrospective gating using a conventional low-pitch 

(0.18 ± 0.02, range 0.16 - 0.22) helical acquisition over several heart beats was used with the 
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third scanner (Siemens SOMATOM Force, n=12). The training studies were performed for 

clinical cardiac indications: preoperative assessment of patients undergoing transcatheter aortic 

valve replacement (TAVR, n=39), suspected coronary artery disease (CAD, n=38), and pre-

operative assessment of pulmonary vein ablation (PVA, n=23). 

 

4.2.2    Manual Segmentation and Volumetric assessment 

 Pixel-wise manual segmentations of the LV and LA blood volumes, LVm and LAm 

respectively were confirmed by an image analysis expert (author D.M.V.) with 7 years of 

experience in cardiac image segmentation using ITK-SNAP (Philadelphia, PA USA)169. From 

each segmentation, blood chamber volumes were obtained, and the function of each chamber 

was measured via ejection fraction (LVEFm and LAEFm, respectively). 

 

4.2.3    Manual Imaging Planes and Plane Vectors 

 Manual cardiac imaging planes were defined from the volumetric scans according to 

standardized guidelines182 by a fellowship-trained cardiovascular imaging expert (author M.R.). 

A SAX plane at the level of the mitral valve (MVm), a two-chamber plane (2CHm), a three-

chamber plane (3CHm) and a four-chamber plane (4CHm) were identified for each patient. The 

short-axis stack (SAXm) of images was defined to span from the MVm to the LV apex using 

8mm slice spacing. Each plane was described by three vectors: 𝑥 m and 𝑦 m (defining the plane’s 

orientation) and 𝑡 m (defining the plane’s center). These vectors are illustrated in Figure 4.1A. 
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4.2.4    Model Architecture 

 The DL model is an adaptation of the standard U-Net architecture118 with two 

modifications: 1) 3D convolution, maxpooling and upsampling layers were utilized to 

accommodate 3D CT image volumes as the input and 2) a fully-connected layer was added after 

the last max-pooling layer in the down-sampling path to regress the plane vectors (Figure 4.1B). 

3D CT images at ED and ES were resampled to 1.5 mm isotropic voxels for all patients. The DL 

model labels each voxel as one of three classes (LV, LA or background). The three vectors (𝑡 DL, 

𝑥 DL and 𝑦 DL) were predicted using three individual fully-connected layers. The total loss of the 

model was defined to be: 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝑤𝑠𝑒𝑔𝐿𝑠𝑒𝑔  + 𝑤𝑡𝐿𝑡  + 𝑤𝑥𝐿𝑥  + 𝑤𝑦𝐿𝑦  

with wi (i = seg, t, x, y) the weight assigned to each loss: 𝐿𝑠𝑒𝑔 the categorical cross-entropy loss 

of the segmentation, 𝐿𝑡 the mean square error of the predicted translation vector 𝑡 DL, 𝐿𝑥 the 

cosine proximity error for 𝑥 DL, and 𝐿𝑦 the cosine proximity error for 𝑦 DL.  

 

4.2.5    Model Training 

 Training was performed in stages. The first stage (“Model-S”) was trained to perform LV 

and LA segmentations (LVDL and LADL, respectively) by assigning wseg = 1, wt = wx= wy = 0. 

“Model-S” served as the initialization for the training of subsequent cardiac plane models. For 

each plane, two models were trained: one predicted the translation vector 𝑡 DL (“Model-T”: wseg = 

wt = 1, wx= wy = 0) while another predicted directional vectors 𝑥 DL and 𝑦 DL (“Model-D”: wseg = 

wx = wy =1, wt = 0). Each plane (2CH, 3CH, 4CH, and MV) was trained individually which led to 

4 translation-vector models and 4 direction-vector models, and independent prediction of planes. 

Models were trained on ED and ES image volumes. Training and validation were performed 
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using 5-fold cross-validation with random shuffling for robust unbiased evaluation. As a result, 

each model was trained on 80 studies (160 volumes) and evaluated on 20 validation studies (40 

volumes). We report model performance across all folds.  

 

4.2.6    Model Evaluation and Statistics 

Chamber Segmentation and Assessment of Function 

 DL segmentation accuracy was evaluated using the Dice coefficient (a volumetric metric) 

and Hausdorff distance (a surface-based metric). Dice coefficient is defined as 2(|Vmanual ∩ VDL|) 

/ (|Vmanual + VDL) and measures the overlap between manual and DL segmentation. The 

Hausdorff distance measures the local maximum distance between two surfaces Smanual and SDL. 

Differences in segmentation accuracy between CT vendors and between different clinical 

indications were evaluated using one-way analysis of variance (ANOVA) for Dice scores. 

 Accuracy of the segmentation-derived functional assessment was evaluated by comparing 

EFDL to manually derived EFm.  
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Figure 4.1. DL model training approach and model architecture. (A): 3D CT volumes were first 

resampled to uniform spatial resolution (1.5mm isotopically) and uniform dimension (160x160x96) and 

then served as an input to all models. Step 1: Model-S was trained to predicted LVDL (red) and LADL 

(green). Step 2: Model-T and Model-D were initialized by Model-S and then trained to predict imaging 

plane vectors 𝑡 DL, 𝑥 DL and 𝑦 DL. A graphic illustration of these three vectors in relationship to the image 

volume is shown. The blue cube represents the CT volume with a re-sliced plane in black. The blue dot is 

the center of volume and black dot is the center of plane. 𝑡  is the displacement between the blue and black 

dot and 𝑥  and 𝑦  are directional vectors of the two-dimensional plane in the volume’s coordinate system. 

(B) U-Net architecture with added branch consisting of 4 fully-connected layers after the last max-pooling 

layer in the down-sampling path was used. Conv3D = 3D convolution layer. 
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Quantitative Evaluation of DL-predicted Imaging Plane Vectors 

 2CHDL, 3CHDL, 4CHDL, and MVDL planes were derived from three predicted vectors 

output by “Model-T” and “Model-D”. SAXDL was defined to be parallel to MVDL and span the 

LV as defined by the DL segmentation. For each plane, the differences between DL prediction 

PlaneDL and the manual plane Planem was assessed via the displacement error ∆𝑑 between center 

of PlaneDL and that of Planem and angulation error ∆𝜃 of PlaneDL: 

∆𝑑 = √∑(𝑡 𝑚,𝑖  −  𝑡 𝐷𝐿,𝑖)
2

3

𝑖=1

           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1) 

∆𝜃 = 𝑐𝑜𝑠−1 (
�⃗� 𝑚 ∙ �⃗� 𝐷𝐿

‖�⃗� 𝑚‖ × ‖�⃗� 𝐷𝐿‖
)         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.2) 

where normal vectors �⃗�  were calculated as the cross product of 𝑥  and 𝑦  and ‖�⃗� ‖ is the vector 

length. 

 

Inter and Intra-reader Differences in Imaging Plane Vectors 

 10 studies were randomly selected to assess inter- and intra-reader differences in manual 

delineation of cardiac planes. Reader 1 was the cardiac imaging expert mentioned above (author 

M.R.) who generated the plane annotations for DL training and Reader 2 was a fellowship-

trained cardiothoracic radiologist with 12 years of experience (author S.K.). Inter-reader 

differences were assessed by comparison of this 10-study subset of Planem1 defined by Reader 1 

to Planem2 defined by Reader 2. Intra-reader differences were assessed via repeat delineation by 

Reader 1 six months after initial plane definition. 

 The DL algorithm was trained on annotations made by Reader 1. Therefore, two tests 

were used to evaluate DL predicted planes. First, the difference between the DL and Reader 1 on 
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the study subset described above was compared to intra-reader differences. Second, the 

difference between DL planes and those defined by Reader 2 was compared to inter-reader 

differences.  

 

Visual Assessment of Plane Quality 

 For unbiased assessment of the DL performance, Reader 2 assessed, in a randomized, 

blinded fashion, both the manual planes used for training (Planem, defined by Reader 1) and 

resulting DL-predicted planes (PlaneDL). The example of images provided to the expert reader 

for visual assessment can be found in Figure 4.2. Each plane was scored as one of four classes: 

perfect, excellent, good and inadequate with the first three classes considered as diagnostically 

adequate. The first three classes were considered as diagnostically adequate. Perfect was defined 

when planes were ideal and did not require any adjustment; excellent was defined when planes 

were nearly optimal without loss of diagnostic quality but might need slight adjustment in 

location or angulator; good was defined when planes had mild loss of diagnostic quality and 

might need moderate adjustment. LAX planes were labeled inadequate if the correct anatomy 

was not visualized or if planes did not cut through the appropriate myocardial walls. SAX planes 

were labeled inadequate if planes had incorrect angulation or incomplete ventricular coverage. 
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Figure 4.2. Example of images provided to the expert reader for visual assessment. (A) The three 

LAX planes (red: 2CH, green: 3CH, and blue: 4CH) were displayed in the first column and were 

plotted as solid lines on the manually defined SAX stack with the corresponding colors. (B) The SAX 

stack derived from MV plane (cyan) were displayed as a stack of solid lines in manually defined two- 

and four-chamber planes. Note that the LAX planes in figure A and SAX planes in figure B were either 

Planem or PlaneDL, and their positions were shown as lines in the manually defined SAX/LAX planes to 

aid the cardiologist for better visualization. (C) Annotation of AHA segment visualization. 6 AHA 

segments were identified at the mid-ventricle SAX plane, and lines representing three LAX planes 

were overlaid to identify whether the planes satisfied the following criteria: 2CH plane must bisect the 

mid inferior (bottom red arc) and mid anterior (top red arc) walls; the 3CH plane must bisect the mid-

inferolateral (bottom green arc) and mid anteroseptal (top green arc) walls; the 4CH must bisect the 

mid-inferoseptal (left blue arc) and mid-anterolateral (right blue arc) walls. CH = chamber. 

 

Quantitative assessment of slice position: AHA wall assessment 

 The AHA 17-segment model was used to assess whether manual and DL-predicted long-

axis planes intersected the corresponding AHA segment at the mid-ventricular slice (Figure 

4.2C).  

 

 

 

 

2CH plane

3CH plane

4CH plane

A B C
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Run-time for DL-based Approach  

 We performed all DL trainings by using Keras (https://keras.io/) with TensorFlow 

(https://www.tensorflow.org/) on an 8-core Ubuntu (version: 18.04.3) workstation with 32 GB 

RAM equipped with a GeForce GTX 1080 Ti (NVIDIA Corporation, Santa Clara CA). 

 The times needed to train the models and to predict the DL chamber segmentations at ED 

and ES as well as vectors for four planes (three LAX and one MV plane) were recorded for each 

study.  

 

4.2.7    Testing Population 

 We tested our approach on 144 consecutive ECG-gated cardiac cine CT studies acquired 

at our institution between January and December 2019 under the same IRB approval. Studies 

were independent from training data. All studies had complete cardiac cycle reconstructions, 

radiology reports which assessed cardiac function, and a field-of-view which captured the entire 

LA and LV chambers. Studies were not included if the patients had congenital heart disease, 

images were taken for lead extraction planning, or they had metal implants in the LA or LV (e.g., 

mitral valve or leads in the LV chamber). Studies with coronary stents were not excluded. The 

testing studies were performed for the following clinical cardiac indications: suspected CAD (n = 

74), pre-operative assessment of PVA (n = 48), TAVR (n = 10), and others (n = 12). For each 

case, the diagnostic utility of DL-predicted frames was scored independently by Reader 2 and 

Reader 3 (author L.H., a fellowship-trained cardiovascular radiologist) using the same criteria 

defined above. In addition, each reader made a visual prediction of LV ejection fraction (to the 

nearest 5%) which was compared to the automated segmentation value. 

https://keras.io/
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To highlight the utility in evaluation of segmental LV wall motion abnormality (WMA), 

we show four studies with radiologically confirmed diagnosis of coronary artery disease: 1) right 

coronary artery stenosis with inferior wall WMA, 2) left anterior descending stenosis with 

anterior, anteroseptal wall and apical cap WMA, 3) left circumflex stenosis with mild WMA in 

the inferolateral wall, and 4) three vessel stenosis with globally reduced cardiac function. All 

stenoses and corresponding WMA were identified on clinical radiologic assessment. To assess 

the utility of PlaneDL in longitudinal CT imaging, we show the PlaneDL generated for two CT 

studies obtained 71 days apart in the same patient (before and after chemotherapy) as part of 

cardio-oncology evaluation. 

 

4.2.8    Statistical Evaluation 

 Unless otherwise indicated above, data are reported as median (with interquartile range) 

given non-normality on Shapiro-Wilk testing. Pearson correlation and two-tailed paired 

Student’s t-test were performed to test agreement between the DL- and manually-derived EF. 

Two-tailed categorical z-test was used to evaluate differences in the proportion of successful 

intersecting between PlaneDL and Planem. Spearman correlation was used to assess visual and 

DL-derived EF in the validation cohort. Statistical significance was set at a p≤0.05. All analyses 

were performed in Python version 3.6 with scipy (version 1.1.0). 

 

4.3    Results 

 Of the 100 patients used for training, 60 (60%) were male (age: 67±16) and 40 (40%) 

were female (age 69±18). The blood-pool in the training data had a median intensity of 495 HU 

(IQR: 401,607, range: 277-885 HU) for the LV and 541 HU (IQR: 429,664, range: 257-1014 

HU) for the LA. 
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 Of the 144 patients used for testing, 89 (61.8%) were male (age: 59±16) and 55 (38.2%) 

were female (age: 63±15). The blood-pool in the testing data had a median intensity of 525 HU 

(IQR: 433,616, range: 320-1022 HU) for the LV and 544 HU (IQR: 451,632, range: 295-1207 

HU) for the LA. 

 

4.3.1    Chamber Segmentation and Assessment of Function 

 DL-predicted segmentations had median Dice coefficients of 0.907 (IQR: 0.884,0.932) 

and 0.931 (IQR: 0.913,0.954) (Figure 4.3A), and median Hausdorff distances of 6.2mm (IQR: 

3.7,8.2) and 7.3mm (IQR: 5.6,9.6) for the LV and LA, respectively (Figure 4.3D). There were 

no statistically significant differences (p>0.05) in Dice across vendors, but Dice in the LA did 

vary with respect to clinical indications (p=0.001) on ANOVA testing (Figure 4.3B and 4.3C). 

 There was close agreement in LV EF (Pearson correlation r=0.95, p=0.49) as well as 

between LA EF (r=0.92, p=0.29) (Figure 4.3E and 4.3F).  

 

4.3.2    Quantitative Evaluation of DL-predicted Imaging Plane Vectors 

 The median displacement error ∆𝑑 between Planem and PlaneDL was 7.0mm (IQR: 

5.0,9.5) across all planes, 6.3mm (IQR: 4.3,8.5) for 2CH, 6.2mm (IQR: 4.3,8,8) for 3CH, 7.2mm 

(IQR: 5.5,9.6) for 4CH and 7.6mm (IQR: 5.3,11.0) for MV. The median orientation error ∆𝜃 

between planes was 8.0° (IQR: 5.0, 11.7) across all planes, 9.5° (IQR: 6.0,13.9) for 2CH, 8.3° 

(IQR: 4.8,13.0) for 3CH, 7.2° (IQR: 4.6,11.2) for 4CH and 7.5° (IQR: 4.8,9.4) for MV.  
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Figure 4.3. Close agreement between DL and manual chamber segmentation and function 

assessment. (A) Dice coefficient for two chambers of interest, the LV and LA was high. (B) Dice 

coefficient for three CT scanners. (C) Dice coefficient for three types of clinical indications (D) 

Hausdorff distance for LV and LA. (E) Correlation of LV EF derived using manual and deep-learning 

segmentation was close to identity (dashed) line with a fit (solid) of LV EFDL = 0.92EFm + 6.64 and 

Pearson correlation r = 0.95 with p <0.001. (F) LA EF correlation was close to identity (dashed) line 

with fit (solid) of LA EFDL = 1.09EFm + 0.96, and Pearson correlation r = 0.92 with p <0.001. 

 

 

4.3.3    Intra and Inter-reader Differences in Imaging Plane Vectors 

 DL-reader orientation differences ∆𝜃 were not significantly different (p>0.05) compared 

with the corresponding inter- and intra-reader difference (Figure 4.4, Table 4.1). In terms of 

displacement differences ∆𝑑, the 3CH and 4CH DL-reader1 difference was significantly smaller 

(p<0.05) than the intra-reader difference (Figure 4.4A).  

A B C

D E F
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Figure 4.4. Comparison of LAX plane location and angulation differences between readers and 

DL. Plane displacement (A) and orientation (B) differences between DL and Reader 1 (first red 

boxplot) were compared to intra-Reader 1 differences (first blue boxplot) and differences between DL 

and Reader 2 (second red boxplot) were compared to inter-Reader differences (second blue boxplot) 

for each LAX plane. The asterisk (*) indicates significant differences.  
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Table 4.1. Comparison of LAX Plane Location and Angulation Differences between Readers and 

Deep Learning. Intra-reader1 differences represent variation in planes planned by the same reader six 

months apart. Given that the DL approach was trained on slice planning by reader 1, DL-reader 1 

differences were compared to intra-reader1 differences. Inter-reader variation captures variation in slice 

planning by two different readers. DL-reader2 differences were compared to inter-reader values. 

Differences were reported as median (IQR). * indicates a significant difference (p<0.05). Unit for ∆𝑑 is 

mm, unit for ∆𝜃 is degree. 

 

  
Intra-Reader 1 

Difference 

DL-Reader 1 

Difference 

p- 

value 

Inter-

Reader 

difference 

DL-Reader 2 

Difference 

p- 

value 

2CH 
∆𝑑 

8.3 

(7.3,13.3) 

5.9 

(5.0,7.0) 
0.20 

14.4 

(7.1,21.8) 

13.4 

(7.9,20.0) 
0.91 

∆𝜃  
7.8 

(5.4,14.1) 

7.3 

(4.7,11.2) 
0.57 

10.6 

(7.2,11.8) 

10.9 

(5.1,14.2) 
0.75 

3CH 
∆𝑑  

11.2 

(8.0, 14.2) 

6.9 

(6.0,7.5)* 
0.04 

15.3 

(9.2,18.4) 

15.5 

(10.8,18.7) 
0.76 

∆𝜃 
8.6 

(5.7,10.3) 

9.3 

(7.7,12.5) 
0.35 

12.2 

(11.9,18.4) 

15.5 

(11.4,21.2) 
0.71 

4CH 
∆𝑑 

15.9 

(10.6,19.5) 

6.5 

(3.7,7.5)* 
0.003 12.1 

(8.5,13.7) 

9.6 

(9.1,12.7) 
0.84 

∆𝜃 
7.3 

(6.0, 10.1) 

7.0 

(4.0,8.8) 
0.35 

10.6 

(5.3,13.4) 

11.1 

(8.7,12.9) 
0.82 

 

4.3.4    Visual Assessment of Plane Quality 

 The deep-learning approach yielded diagnostically adequate imaging planes for a large 

percentage (≥94%) of cases across all slice plane locations (Table 4.2, representative patient 

shown in Figure 4.5A). 

 

4.3.5    Quantitative assessment of slice position via AHA wall assessment 

 The proportion of cases with correct AHA segment inclusion was not significantly 

different between Planem and PlaneDL for all AHA walls (two-sided z test, p>0.05) except 

anterior wall which had a lower likelihood of being visualized by the 2CH plane (p=0.02) 

(Figure 4.5B, Table 4.3). 
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Table 4.2. Diagnostic Adequacy of Manual and Deep-Learning Imaging Planes as Scored by 

Cardiothoracic Imaging Expert 

 

 Planem PlaneDL 

2CH 100% 100% 

3CH 100% 94% 

4CH 100% 98% 

SAX 100% 100% 

 

 

Table 4.3. Assessment of AHA Wall Visualization for Manual and DL-based Cardiac Planes. 

Percentage of cases in which the LAX plane correctly intersects corresponding AHA wall was shown. 

Significant p-values are shown by asterisk. 

 

    Planem PlaneDL p value 

2CH 
Inferior 100% 97% 0.08 

Anterior 99% 92% 0.02* 

3CH 
Inferolateral 84% 84% 1 

Anteroseptal 100% 97% 0.08 

4CH 
Inferoseptal 100% 97% 0.08 

Anterolateral 98% 97% 0.65 
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Figure 4.5. DL agrees with manual slice planning and correctly visualizes corresponding AHA 

segments. (A): Rows 1-3: For each long-axis imaging plane, Column 1 shows the slice location on the 

SAX slice (mid-ventricular slice for 2CH and 4CH and basal slice for 3CH). Columns 2-4 depict the 

corresponding images. Row 4-5: For the short-axis mitral valve and mid-ventricular plane, Column 1 

shows the slice position of the plane on the 2CH long-axis. Columns 2 – 4 depict the short-axis images: 

Planem1, (plane resliced by Reader 1), Planem2, (plane resliced by Reader 2) and PlaneDL (DL-derived 

slice). (B): 6 mid-ventricular AHA segments are shown as arcs on a mid-ventricular SAX slice. The 

percentage of cases in which a wall was correctly intersected by the associated LAX plane are shown 

for the 2CH (red solid line, lower left), 3CH (green solid line, top left), and 4CH (blue solid line, right) 

planes. There is close agreement between the manual planes (reported in cyan) and DL (yellow).  A = 

Anterior, I = Inferior, AS = Anteroseptal, IS = Inferoseptal, AL = Anterolateral, IL = Inferolateral. 

 

4.3.6    Run-time for DL-based Approach  

 Each model was trained for 50 epochs with each epoch using approximately 170 seconds 

in our workstation. The time needed to predict two segmentations (ED and ES) as well as four 

imaging planes (2CHDL, 3CHDL, 4CHDL, and MVDL) was 29.7±4.0 seconds. 
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4.3.7    Assessment of the utility of DL-predicted planes on test cases 

 DL yielded diagnostically adequate imaging planes for a large percentage (≥99% by 

Reader 2 and ≥94% by Reader 3) of cases across all slice plane locations (Table 4.4). 

 There was close agreement between visual estimation of ejection fraction by readers and 

quantification via automated segmentation. Specifically, linear regression demonstrated strong 

correlation (Spearman 𝜌=0.93 and 0.95 for Reader 2 and 3, respectively). In addition, 

classification of EF<40%, 40-50%, and >50% with the DL approach agreed with visual 

prediction in 88.9% and 80.5% of cases for Reader 2 and 3, respectively (Table 4.5).  

 DL-predicted planes of four test CT studies with CAD provided visualization of both 

regional and global LV wall motion abnormalities recorded in the radiology report (Figure 4.6A, 

see supplemental video 1 in the paper126). The DL model generate similar planes two CT studies 

of the same patient acquired as part of a longitudinal study (Figure 4.6B, see supplemental video 

2 in the paper126). 

 

Table 4.4. Diagnostic Adequacy of Deep-Learning Imaging Planes in the Testing Group as Scored 

by Imaging Experts 

 

 Reader 2 Reader 3 

2CH 99% 99% 

3CH 100% 94% 

4CH 100% 95% 

SAX 100% 100% 
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Table 4.5. The Close Agreement of Classification of EF Between Visual Estimation by Expert 

Readers and Automated Quantification via DL LV Segmentation. The classification of EF into <40%, 

40-50%, and >50% with the DL approach agreed with visual prediction in 88.9% and 80.5% of cases for 

Reader 2 and 3, respectively. 

 

 

 

Figure 4.6. Utility of deep-learning slice planning in evaluation of regional wall motion 

abnormalities and longitudinal assessment of patients. (A) Four exemplar cases were selected based 

on radiologically observed with either global (bottom right) or regional (the rest three) LV wall motion 

abnormality due to CAD. Yellow arrows point out the walls with regional dysfunction where the 

readers can refer to in the supplemental video 1 in the paper126. (B) shows DL-predicted planes for the 

same patient imaged before chemotherapy and two months after the therapy which shows high 

reproducibility. The videos for these planes showing the cardiac function in one cardiac cycle are 

submitted as supplementary video 2 in the paper126. Window level = 500 HU, width = 900 HU. 

 

 

RCA occlusion

Hypokinesia of Inferior wall

LAD occlusion

Hypokinesia of Anterior & Anteroseptal wall

LCX occlusion

Hypokinesia of Inferolateral wall

Multi-vessel disease

severe global LV dysfunction

A B

Pre chemotherapy

Same patient two months (71 days) post 

chemotherapy

  Reader 2 Reader 3 
  <40% 40~50% >50% <40% 40~50% >50% 

DL 

predict 

<40% 30 3 0 31 1 1 

40~50% 0 7 4 8 2 1 

>50% 0 9 91 2 15 83 
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4.4    Discussions 

4.4.1    Main Findings  

 Cardiac chamber segmentation and cardiac imaging plane re-slicing are two important 

image processing steps required to do the functional analysis of cardiac CT. Currently, doing 

these steps manually is time consuming and leads to inter-observer variability. In this study, we 

developed and evaluated a DL network that automatically predicts cardiac chamber volumes as 

well as re-slices standardized cardiac imaging planes from volumetric CT data using a shared 

model architecture. The DL approach generated high quality segmentations (median Dice=0.907 

and 0.931 for LV and LA, respectively) and had a strong correlation (Pearson r>0.9) with 

manually-derived EF. Furthermore, DL-predicted planes had low errors in spatial displacement 

and angulation and intersected the relevant midventricular myocardial segment in a high 

proportion of cases. Testing the DL network in a series of 144 consecutive cine CT cases 

demonstrated our approach generates diagnostically adequate imaging planes and automated 

segmentation leads to EF estimation that is in agreement with visual interpretation. We highlight 

the utility of our DL-predicted planes in the evaluation of LV wall motion abnormality and for 

reproducible longitudinal assessment in a sample of test cases with known pathological findings.  

 The main findings have been made into a graphical abstract (Figure 4.7) showing the 

high performance of both DL segmentation and plane prediction. For predicted planes, the final 

product of our DL framework is shown in Figure 4.7 (a static view) as a 12-panel video of 

cardiac function in both LAX planes and a SAX stack. Example of the videos can be found in the 

supplemental materials in the paper126. 
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4.4.2    Existing Approaches 

 In our approach, a 3D image volume (at 1.5mm isotropic voxel size) was utilized as the 

input for blood pool segmentation and image plane re-slicing. While a 3D approach significantly 

increases the memory utilization, the choice was intended to preserve volumetric context to 

enable accurate slicing of the long- and short-axis imaging planes. Other DL approaches for CT 

chamber segmentation have utilized portions of the volume as the image input; Dormer et al.114 

and Zreik et al.115 input patches and performed patch-wise image classification while Mortazi et 

al.116 and Wang et al.117 used three orthogonal projections (axial, coronal and sagittal) as inputs. 

Despite the feature vector depth being limited due to memory constraints, our 3D approach led to 

segmentation accuracy comparable to recent work by Baskaran et al.119 which applied a 2D U-

Net to segment CT in a 2D slice-by-slice fashion and achieved Dice >0.91 for all four chambers. 

 The feasibility of predicting imaging planes was previously shown in 2D by Vigneault et 

al183 in which a conventional U-Net was modified to predict a scaling and rotation of MRI 

images. Other efforts to use DL for plane prediction have focused on cardiac MRI. Le et al184 

and Blansit et al185 recently presented DL-based cardiac MRI plane prescription by using DL to 

localize the anatomical landmarks that mimic how an expert performs slice planning on 2D MR. 

However, this is not required during CT acquisitions as they are volumetric. 

 

4.4.3    Clinical Importance 

 Compared with manual annotation, our approach automatically and quickly analyzed the 

series of 3D CT image volumes (~30s for volumes at ED and ES). This represents a significant 

improvement as it usually takes a trained expert around 20 minutes to obtain volumes from two 

3D image volumes at ED and ES186 and it leads to interobserver variability. Furthermore, the 
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processing time of our approach can be readily improved through parallelization, as we currently 

predict imaging planes sequentially. While optimization of prediction time was not the focus of 

this study, the fast computation time increases the likelihood of clinical translation. 

 Robust and automated prediction of cardiac volumes and imaging planes could be used to 

measure multiple important clinical parameters. Apart from EF, the availability of LAX planes 

can enable assessment of additional measures such as contour-based global longitudinal and 

circumferential strain. Furthermore, labeling of other cardiac chambers or the myocardium in the 

training data would enable measurements such as RV volumes or myocardial masses. 

 Our fully automated approach may enable rapid and reproducible assessment of global 

function as well as regional wall motion abnormalities in patients, such as those with CAD and 

other cardiomyopathies who are frequently evaluated with cardiac CT. In addition, automatic 

slicing of standardized cardiac planes can be used for reproducible longitudinal assessment of 

patients undergoing serial cardiac exams and in clinical trials.  

 

4.4.4    Limitations  

 Our approach has limitations. First, we observed lower performance for 3CH plane 

predictions relative to 2CH and 4CH planes. However, the success rate for the inferolateral wall 

was decreased in both 3CHm and 3CHDL. This could be explained by the difficulty in planning 

3CH views as there is a balance between correct visualization of the left ventricular outflow tract 

and the intersection of the inferolateral wall. This suggests that anatomical variability may be 

limiting the performance of the DL approach. Second, the time and effort needed to derive both 

cardiac planes and blood chamber segmentations limited our training size. However, the 

achieved accuracy suggests clinical utility is possible even with the limited training data that was 
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available. Lastly, the accuracy of the algorithm in patients with a wider range of phenotypes 

including implanted medical devices, significant changes in iodine contrast timing/intensity, and 

decreases in overall image quality was not studied but is planned for future work. 

 

4.4.5    Conclusion 

 In conclusion, DL can automatically perform multi-chamber volumetric assessments and 

generate standardized cardiac imaging planes from CT images. This approach has the promise 

for regional cardiac visualization and reproducible assessment of cardiac function. 

 

 

Figure 4.7. Graphical Abstract showing high performance of both segmentation and plane 

prediction by our DL framework. 

 

4.5    GitHub Repository 

 The GitHub Repository of our DL pipeline can be found at https://github.com/ucsd-

fcrl/AI_chamber_segmentation_plane_re-slicing. 
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Chapter 5: Detection of Left Ventricular Wall Motion Abnormalities from Volume 

Rendering of 4DCT Cardiac Angiograms Using Deep Learning 

5.1    Introduction 

 The clinical importance of left ventricular (LV) regional wall motion abnormalities 

(WMA) has been stated in section 1.2 and 3.1. Cardiac 4DCT enables the assessment of LV wall 

motion by acquiring a series of functional images spanning the full cardiac cycle. Dynamic 

information of the 3D cardiac motion and regional WMA is encoded in 4DCT data. 

Visualization of regional WMA with CT usually requires reformatting the acquired 3D data 

along standard 2D short- and long-axis imaging planes. However, it requires experience in 

practice to resolve the precise region of 3D wall motion abnormalities from these 2D planes. 

Further, these 2D planes views may be confounded by through-plane motion and foreshortening 

artifacts47. We propose to directly view 3D regions of wall motion abnormalities through the use 

of volumetric visualization techniques such as Volume rendering (VR)187, which can preserve 

high resolution anatomical information and visualize 3D54,188 and 4D189 data simultaneously over 

large regions of the LV in cardiovascular CT. In VR, the 3D CT volume is projected onto a 2D 

viewing plane and different colors and opacities are assigned to each voxel based on intensity. It 

has been shown that VR provides a highly representative and memory efficient way to depict 3D 

tissue structures and anatomic abnormalities190,191. In this study, we performed dynamic 4D 

volume rendering by sequentially combining the VR of each CT time frame into a video of LV 

function (we call this video a “Volume Rendering video”). We propose to use volume rendering 

videos of 4DCT data to depict 3D motion dynamics and visualize highly local wall motion 

dynamics to detect regional WMA. 
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 Analytical approaches to quantify 3D motion from 4DCT using image registration and 

deformable LV models have been developed86,87,192. However, these approaches usually require 

complex and time-consuming steps such as user-guided image segmentation and point-to-point 

registration or feature tracking. Further, analysis of multiple frames at the native image 

resolution/size of 4DCT can lead to significant memory limitations193. Volume rendering (VR) 

videos provide a high-resolution representation of 4DCT data which clearly depicts cardiac 

motion at a significantly reduced memory footprint (~1 Gigabyte when using original 4DCT for 

motion analysis and only 100 kilobytes when using volume rendering video). Given the lack of 

methods currently available to analyze motion observed in VR videos, we sought to create an 

objective observer that could automate VR video interpretation. Doing so would facilitate 

clinical adoption as it would avoid the need for training individuals on VR video interpretation 

and the approach could be readily shared. Deep learning approaches have been successfully used 

to perform classification of patients using medical images129,194. Further, DL methods, once 

trained, are very inexpensive and can be easily deployed.  

 Therefore, in this study, we propose a novel framework which combines volume 

rendering videos of clinical cardiac CT cases with a DL classification to detect WMA. We 

outline a straightforward process to generate VR videos from 4DCT data and then utilized a 

combination of a convolutional neural network (CNN) and recurrent neural network (RNN) to 

assess regional WMA observable in the videos. 
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5.2    Materials and Methods 

5.2.1     CT Data Collection 

 Under institutional review board approval, 343 ECG-gated contrast enhanced cardiac CT 

patient studies between Jan 2018 and Dec 2020 were retrospectively collected with waiver of 

informed consent. Inclusion criteria were: each study (a) had images reconstructed across the 

entire cardiac cycle, (b) had a field-of-view which captured the entire LV, (c) was free from 

significant pacing lead artifact in the LV and congenital heart disease, and (d) had a radiology 

report including assessment of cardiac function. Images were collected by a single, wide detector 

CT scanner with 256 detector rows (Revolution scanner, GE Healthcare, Chicago IL) allowing 

for a single heartbeat axial 16cm acquisition across the cardiac cycle. The CT studies were 

performed for range of clinical cardiac indications including suspected coronary artery disease (n 

= 153), pre-procedure assessment of pulmonary vein ablation (n = 126), preoperative assessment 

of transcatheter aortic valve replacement (n = 42), preoperative assessment of left ventricular 

assist device placement (n = 22). 

 

5.2.2    Production of Volume Rendering Video of LV blood-pool  

 Figure 5.1 step 1-4 shows the pipeline of VR video production. The CT images were first 

rotated using visual landmarks such as the RV insertion and LV apex, so that every study had the 

same orientation (with the LV long axis along the z-axis of the images and the LV anterior wall 

at 12 o’clock in cross-sectional planes). Structures other than LV blood-pool (such as LV 

myocardium, ribs, the right ventricle, and great vessels) were automatically removed by a pre-

trained DL segmentation U-Net119 which has previously shown high accuracy in localizing the 

LV in CT images 119,126. If present, pacing leads were removed manually.  
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 The resultant grayscale images of the LV blood-pool (as shown in Fig. 23 step 2) were 

then used to produce Volume renderings (VR) via MATLAB (MathWorks, Natick MA). The LV 

endocardial surface shown in VR was defined by automatically setting the intensity window 

level (WL) equal to the mean voxel intensity in a small ROI placed at the centroid of the LV 

blood pool and setting the window width (WW) equal to 150HU (thus WL is study-specific, and 

WW is uniform for every study). We pre-set a list of rendering parameters applied across the 

entire dataset. Due to a uniform orientation in the dataset, a same set of camera-related 

parameters could be used. Concretely, “CameraPosition” was [6,0,1], “CameraUpVector” was 

[0,0,1], “CameraViewAngle” was 15o. A built-in colormap (“hot”) and a linear alpha map 

(opacity vs. voxel intensity) were applied to the normalized CT image, assigning colors and 

opacities to each voxel according to its intensity. The background color was set to be black, and 

the lighting effect was turned on. Volume rendering of all frames spanning one cardiac cycle was 

then saved as a video (“VR video”, Figure 5.1). 

 Each VR video shows the LV blood-pool from one specific projection view angle 𝜃. 

Therefore, to evaluate all AHA segments, 6 VR videos were generated per study, with six 

different projection views 𝜃60×𝑛,   𝑛∈[0,1,2,3,4,5] corresponding to 60-degree rotations around the 

LV long axis. Practically, this rotation of views was done by the rotation of the camera around 

the z-axis of the image. We applied a rotation matrix R to the rendering parameter 

“CameraPosition” for each video: 

𝑅 =  [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

] 

[

𝑝𝑥′

𝑝𝑦′

𝑝𝑧′

]  =  𝑅 × [

𝑝𝑥
𝑝𝑦
𝑝𝑧

]        (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.1) 
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where [px, py, pz] is the pre-set “CameraPosition” equal to [6,0,1], and [px’, py’, pz’] is the 

derived “CameraPosition” for each rotated view. All other rendering parameters kept constant 

for every video. 

 With our design, each projection view had a particular mid-cavity AHA segment shown 

on the foreground (meaning this segment was the nearest to and in front of the ray source-point 

of rendering) as well as its corresponding basal and apical segments. Two adjacent mid-cavity 

AHA segments and their corresponding basal and apical segments were shown on the left and 

right boundary of the rendering in that view. In standard regional terminology, the six projection 

views (n = 0, 1, 2, 3, 4, 5 in 𝜃60×𝑛) looked at the LV from the view with mid-cavity 

Anterolateral, Inferolateral, Inferior, Inferoseptal, Anteroseptal and Anterior segments on the 

foreground, respectively. In this paper, to simplify the text we call them six “regional LV views” 

from anterolateral to anterior.  In total, a large dataset of 2058 VR videos (343 patients × 6 

views) with unique projections were generated. 

 

5.2.3    Classification of Wall Motion  

 Figure 5.1 steps a-d shows how the ground truth presence or absence of WMA at each 

location on the endocardium was determined. It is worth clarifying first that the ground truth is 

made on the original CT data not the volume rendered data. First, voxel-wise LV segmentations 

obtained using the U-Net were manually refined in ITK-SNAP (Philadelphia, PA, USA)195. 

Then, regional shortening (RSCT)89,164,165 (see Chapter 3 for more research work on RSCT) of the 

endocardium was measured using a previously-validated surface feature tracking87 technique. 

The accuracy of RSCT in detecting WMA has been compared to strain measured by tagged MRI90 
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(a validated non-invasive approach for detecting wall motion abnormalities in myocardial 

ischemia53,158). Regional shortening was calculated at each face on the endocardial mesh as:  

𝑅𝑆𝐶𝑇  =  √
𝐴𝑟𝑒𝑎𝐸𝑆

𝐴𝑟𝑒𝑎𝐸𝐷
 − 1      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.2) 

where AreaES is the area of a local surface mesh at end-systole (ES) and AreaED is the area of the 

same mesh at end-diastole (ED). ED and ES were determined based on the largest and smallest 

segmented LV blood-pool volumes, respectively. RSCT for an endocardial surface voxel was 

calculated as the average RSCT value of a patch of meshes directly connected with this voxel.  

 Per-voxel RSCT values were projected to pixels in each VR video view as a quantitative 

map of endocardial function, which was then used to label the WMA presence/absence. The 

protocol of projection and labeling is followed by three steps: 

 Step 1. Binarize the per-voxel RSCT map using a threshold RSCT = -0.20, which was set 

empirically to separate normal and abnormal wall motion. 

 Step 2. Project the binarized per-voxel RSCT map to the pixels in VR video. Use the 

MATLAB built-in function “labelvolshow” to render the labeled (binary) RSCT map (see 

examples of rendered RSCT map  in Fig.23 step b). All rendering parameters keep the same as 

those for the VR video. As a result, the rendered RSCT map displays the same endocardial surface 

as the VR video. The abnormal pixels (with color red in the map) are pixels with RSCT ≥ -0.20 

and the normal pixels (with color black in the map) are pixels with RSCT < -0.20.  

 Step 3. Calculate the percentage of abnormal pixels = 
𝑛𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠

𝑛𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠+𝑛𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
 ×

 100%, which shows the percentage of endocardial surface that has impaired RSCT. 
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 In our study A VR video was classified as abnormal (WMA present) if >35% of the 

endocardial surface shown in that video had impaired RSCT (RSCT≥-0.20). >35% approximated 

that at least one of the three AHA segments in the video have abnormal wall motion. 

 To do per-study classification in this study, we defined that a CT study is abnormal if it 

has more than one VR videos labeled as abnormal (Nab_videos ≥ 2). 
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Figure 5.1. Automatic Generation and Quantitative Labeling of Volume Rendering Video. This 

figure contains two parts: Rendering Generation. automatic generation of VR video (left column, white 

background, step 1-4 in red) and Data Labeling: quantitative labeling of the video (right column, light 

grey background, step a-d in blue). Rendering Generation: Step 1 and 2: Prepare the greyscale image of 

LV blood-pool with all other structures removed. Step 3: For each study, 6 volume renderings with 6 view 

angles rotated every 60 degrees around the long axis were generated. The mid-cavity AHA segment in the 

foreground was noted under each view. For example, the first image with “anterolateral” means it has 

mid-cavity anterolateral and its corresponding basal and apical segments in the foreground. Step 4: For 

each view angle, a volume rendering video was created to show the wall motion across one heartbeat. 

Five systolic frames in VR video were presented. ED = end-diastole, ES = end-systole.  Data Labeling: 

Step a: LV segmentation. LV = green. Step b: Quantitative RSCT was calculated for each voxel. Step c: 

The voxel-wise RSCT map was binarized and projected onto the pixels in the VR video. See supplemental 

material 2 for more details. In rendered RSCT map, the pixels with RSCT ≥ -0.20 (abnormal wall motion) 

were labeled as red and those with RSCT < -0.20 (normal) were labeled as black. Step d: a video was 

labeled as abnormal if >35% endocardial surface has RSCT ≥ -0.20 (red pixels). 
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5.2.4    DL Framework Design 

 The DL framework (see Figure 5.2) consists of three components, (a) a pre-trained 2D 

convolutional neural network (CNN) used to extract spatial features from each input frame of a 

VR video, (b) a recurrent neural network (RNN) designed to incorporate the temporal 

relationship between frames, and (c) a fully connected neural network designed to output the 

classification.  

 Given our focus on systolic function, four frames (ED, two systolic frames, and ES) were 

input to the DL architecture. This sampling was empirically found to maximize the performance. 

Given the CT gantry rotation time, this also minimizes view sharing present in image frame 

while providing a fuller picture of endocardial deformation. Each frame was resampled to 

299×299 pixels to accommodate the input size of the pre-trained CNN. 

 Component (a) is a pre-trained CNN with the Inception architecture (Inception-v3)196 and 

the weights obtained after training on the ImageNet197 database. The reason to pick Inception-v3 

architecture can be found in this reference132. This component was used to extract features and 

create a 2048-length feature vector for each input image. Feature vectors from the four frames 

were then concatenated into a 2D feature matrix with size = (4, 2048).  

 Component (b) is a long short-term memory198 RNN with 2048 nodes, tanh activation 

and sigmoid recurrent activation. This RNN analyzed the (4, 2048) feature matrix from 

component (a) to synthesize temporal information (RNN does this by passing the knowledge 

learned from the previous instance in a sequence to the learning process of the current instance in 

that sequence then to the next instance). The final component (c), the fully connected layer, 

logistically regressed the binary prediction of the presence of WMA in the video. 
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Figure 5.2. Deep Learning Framework. Four frames were input into a pre-trained inception-v3 

individually to obtain a 2048-length feature vector for each frame. Four vectors were concatenated into 

a feature matrix which was then input to the next components in the framework. A Long Short-term 

Memory followed by fully connected layers was trained to predict a binary classification of the 

presence of WMA in the video. CNN = convolutional neural network. RNN = recurrent neural 

network. 

 

5.2.5    Cross-validation and Testing 

 In our DL framework, component (a) was pre-trained and directly used for feature 

extraction whereas components (b) and (c) were trained end-to-end as one network for WMA 

classification. Parameters were initialized randomly. The loss function was categorical cross-

entropy. 

 The dataset was split randomly into 60% and 40% subsets. 60% (205 studies, 1230 

videos) were used for 5-fold cross-validation, meaning in each fold of validation we had 164 

studies (984 videos) to train the model and the rest 41 studies (246 videos) to validate the model. 
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We report model performance across all folds. 40% (138 studies, 828 videos) were used only for 

testing.  

 

5.2.6    Experiment Settings 

 We performed all DL experiments using TensorFlow on an 8-core Ubuntu workstation 

with 32 GB RAM and with a GeForce GTX 1080 Ti (NVIDIA Corporation, Santa Clara, CA, 

USA). The file size of each 4DCT study and VR video were recorded. 

 

5.2.7    Model Performance and LVEF 

 The impact of systolic function, measured via LVEF on DL classification accuracy was 

evaluated in studies with LVEF <40%, LVEF between 40-60%, LVEF >60%. We hypothesized 

that the accuracy of the model would be different for different LVEF intervals since because the 

“obviously abnormal” LV with low EF, and the “obviously normal” LV with high EF would be 

easier to classify.  The consequence of a local WMA in hearts with LVEF between 40-60% 

might be a more subtle pattern and harder to detect. These subtle cases are also difficult for 

human observers.  

 

5.2.8    Comparison with Expert Visual Assessment 

 While not the primary goal of the study we investigated the consistency of the DL 

classifications with the results from two human observers using traditional views.  100 CT 

studies were randomly selected from the testing cohort for independent analysis of WMA by two 

cardiovascular imaging experts with different levels of experiences: expert 1 with >20 years of 

experience (author A.K.) and expert 2 with >5 years of experience (author H.K.N.)  The experts 
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classified the wall motion in each AHA segment into 4 classes (normal, hypokinetic, akinetic and 

dyskinetic) by visualizing wall motion from standard 2D short- and long-axis imaging planes, in 

a blinded fashion.  Because of the high variability in the inter-observer classifications of 

abnormal categories we: (1) combined the last three classes into a single “abnormal” class 

indicating WMA detection, and (2) we performed the comparison on a per-study basis. A CT 

study was classified as abnormal by the experts if it had more than one abnormal segment. The 

interobserver variability is reported in the result section 5.3.3. It should be noted that our model 

was only trained on ground truth based on quantitative RSCT values; the expert readings were 

performed as a measure of consistency with clinical performance. 

 

5.2.9    Statistical Evaluation 

 Two-tailed categorical z-test was used to compare data proportions (e.g., proportions of 

abnormal videos) in two independent cohorts: cross-validation cohort and testing cohort. 

Statistical significance was set at P≤0.05.  

 DL Model performance against the ground truth label was reported via confusion matrix 

and Cohen’s kappa value. Both regional (per-video) and per-study comparison were performed. 

A CT study is defined as abnormal if it has more than one VR videos labeled as abnormal 

(Nab_videos ≥ 2). As stated in section 5.2.2, every projection view of the VR video corresponded to 

a specific regional LV view. Therefore, we re-binned the per-video results into 6 LV views to 

test the accuracy of the DL model when looking at each region of the LV. 
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5.3    Results 

 Of the 1230 views (from 205 CT studies) used for 5-fold cross-validation, 732 (from 122 

studies, 59.5%) were male (age: 63±15) and 498 (from 83 studies, 40.5%) were female (age: 

62±15). The LV blood pool had a median intensity of 516 HU (IQR: 433 to 604). 40.0% 

(492/1230) of the videos were labeled as abnormal based on RSCT analysis, and 45.4% (93/205) 

of studies had WMA in ≥2 videos. 104 studies had LVEF > 60%, 54 studies had LVEF < 40% 

and the rest 47 (47/205 = 22.9%) studies had LVEF between 40-60%. 

 Of the 828 views (from 138 CT studies) used for testing, 504 (from 84 studies, 60.9%) 

were male (age: 57±16) and 324 (from 54 studies, 39.1%) were female (age: 63±13). The LV 

blood pool had a median intensity of 520 HU (IQR: 442 to 629). 37.0% (306/828) of the videos 

were labeled as abnormal, and 45.0% (62/138) of studies had WMA in ≥2 videos. 72 studies had 

LVEF > 60%, 25 studies had LVEF < 40% and the rest 41 (41/138 = 28.7%) studies had LVEF 

between 40-60%. 

 There were no significant differences (all P values > 0.05) in data proportions between 

the cross-validation and testing cohorts in terms of the percentages of sex, abnormal videos, 

abnormal CT studies. 

 

5.3.1    Model Performance – Per-video and Per-study Classification 

 Per-video and per-study DL classification performance for WMA were excellent in both 

cross-fold validation and testing. Table 5.1 shows that the per-video classification for the cross-

validation had high accuracy = 93.1%, sensitivity = 90.0% and specificity = 95.1%, Cohen’s 

kappa 𝜅 = 0.86 with 95% CI as [0.83,0.89]. Per-study classification also had excellent 
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performance with accuracy = 93.7%, sensitivity = 93.5% and specificity = 93.8%, 𝜅 = 

0.87[0.81,0.94]. 

 Table 5.1 also shows that the per-video classification for the testing cohort had high 

accuracy = 90.9%, sensitivity = 90.2% and specificity = 91.4%, 𝜅 = 0.81[0.77,0.85]. With 

Nab_videos ≥2, we obtained per-study classification accuracy = 93.5%, sensitivity = 91.9% and 

specificity = 94.7%, 𝜅 = 0.87[0.78,0.95].  

 Figure 5.3 shows the relationship between DL classification accuracy and LVEF in the 

cross-validation. Table 5.2 shows that CT studies with LVEF between 40 and 60% in the cross-

validation cohort were classified with per-video accuracy = 78.7%, sensitivity = 78.0% and 

specificity = 79.8%. In the testing cohort, per-video classification accuracy = 80.1%, sensitivity 

= 82.9% and specificity = 75.5% accuracy for this LVEF group remained relatively high but was 

lower (P < 0.05) than the accuracy for patients with LVEF < 40% and LVEF > 60% due to the 

more difficult nature of the classification task in this group with more “subtle” wall motion 

abnormalities. 

 

5.3.2    Model Performance – Regional LV views 

 Table 5.3 shows that our DL model was accurate for detection of WMA in all 6 regional 

LV views both in cross-validation cohort (mean accuracy =93.1% ± 0.03) and testing cohort 

(mean accuracy=90.9% ± 0.06).   
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Figure 5.3. DL classification accuracy vs. LVEF. The per-video (black) and per-study (grey) 

accuracy are shown in studies with  (LVEF<40%), (40≤LVEF ≤60%) and  (LVEF>60%). * indicates 

the significant difference 

 

5.3.3    Model Performance – Comparison with Expert Assessment 

 First, we report the interobserver variability of two experts. The Cohen’s kappa for the 

agreement between observers on per-AHA-segment basis was 0.81[0.79,0.83] and on the per-

CT-study basis was 0.88[0.83,0.93].  For those segments labeled as abnormal by both experts, 

the Kappa for the two experts to further classify an abnormal segment into hypokinetic, akinetic 

and dyskinetic dramatically dropped to 0.34.  

 Second, we show in the Table 5.4 that per-study comparison between DL prediction and 

expert visual assessment on 100 CT studies in the testing cohort led to Cohen’s Kappa 𝜅 = 

0.81[0.70,0.93] for expert 1 and 𝜅 = 0.73[0.59,0.87] for expert 2. 

 

 

 

 

Per-video accuracy

Per-study accuracy

* *



 113 

5.3.4    Data-size Reduction 

 The average size of the CT study across one cardiac cycle was 1.52±0.67 Gigabytes. One 

VR video was 341±70 Kilobytes, resulting in 2.00±0.40 Megabytes for 6 videos per study. VR 

videos led to a data size that is ~800 times smaller than the conventional 4DCT study. 

 

Table 5.1. DL Classification Performance in Cross-validation and Testing. 205 CT studies and 1230 

Volume Rendered (VR) videos were used for 5-fold cross-validation. 138 CT studies and 828 VR videos 

were in the testing. The four confusion matrices correspond to per-video classification (light gray) and 

per-study classification (dark gray) for cross-validation (left) and testing (right). Nab_videos ≥2 (number of 

views classified as abnormal) was used to classify a study as abnormal. Sens = sensitivity, Spec = 

specificity, Acc = accuracy. Cohen’s kappa 𝜅 is also reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Cross-Validation Testing 

  Per-video 
Per-study 

(Nab_videos≥2) 
Per-video 

Per-study  

(Nab_videos≥2) 

  Ground Truth Ground Truth Ground Truth Ground Truth 

  Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal 

DL 
Abnormal 443 36 87 7 276 45 57 4 

Normal 49 702 6 105 30 477 5 72 

  Sens 0.900 Sens 0.935 Sens 0.902 Sens 0.919 

  Spec 0.951 Spec 0.938 Spec 0.914 Spec 0.947 

  Acc 0.931 Acc 0.937 Acc 0.909 Acc 0.935 

  𝜅 0.855 𝜅 0.872 𝜅 0.808 𝜅 0.868 
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Table 5.2. DL Classification Performance in CT studies with 40 < LVEF <60%. 47 CT studies with 

40%<LVEF<60% were in the cross-validation and 41 CT studies were in the testing.  

 

 

 
Table 5.3. Results re-binned into Six Projection Views. This table shows the per-video classification of 

our DL model when detecting WMA from each regional view of LV. See the definition of regional LV 

views in section 5.2.2. Sens = sensitivity, Spec = specificity, Acc = accuracy 

 

    Per-video Classification 

    Cross-validation Testing 

Projection 

View 

𝜃 

Regional  

LV view 
Sens Spec Acc Sens Spec Acc 

0 Anterolateral 0.845 0.964 0.922 0.886 0.936 0.920 

60 Inferolateral 0.938 0.952 0.946 0.909 0.915 0.913 

120 Inferior 0.879 0.974 0.932 0.917 0.910 0.913 

180 Inferoseptal 0.882 0.946 0.917 0.847 0.861 0.855 

240 Anteroseptal 0.963 0.944 0.951 0.927 0.952 0.942 

300 Anterior 0.893 0.931 0.917 0.932 0.904 0.913 

 

 

 
 

 

 

 

 

 

 

 

 

  Cross-validation Testing 

  Per-video 
Per-study 

(Nab_videos≥2) 
Per-video 

Per-study  

(Nab_videos≥2) 

  Ground Truth Ground Truth Ground Truth Ground Truth 

  Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal 

DL 
Abnormal 131 23 33 5 126 23 32 3 

Normal 37 91 4 5 26 71 1 5 

  Sens 0.780 Sens 0.892 Sens 0.829 Sens 0.970 

  Spec 0.798 Spec 0.500 Spec 0.755 Spec 0.625 

  Acc 0.787 Acc 0.809 Acc 0.801 Acc 0.902 
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Table 5.4. Comparison between DL and Expert Visual Assessment. Per-study comparison were run 

on 100 CT studies randomly selected from the testing cohort.  

 
  Expert Visual Assessment 

  Expert 1 Expert 2 

  Abnormal Normal Abnormal Normal 

DL 
Abnormal 37 5 33 9 

Normal 4 54 4 54 

  𝜅 0.815 𝜅 0.729 

 

5.4    Discussion 

5.4.1    Main Findings 

 In this study, we developed and evaluated a DL framework that detects the presence of 

WMA in dynamic 4D volume rendering (VR videos) depicting the motion of the LV endocardial 

boundary. VR videos enabled a highly compressed (in terms of memory usage) representation of 

large regional fields of view with preserved high spatial-resolution features in clinical 4DCT 

data. Our framework analyzed four frames spanning systole extracted from the VR video and 

achieved high per-video (regional LV view) and per-study accuracy, sensitivity and specificity 

(≥0.90) and concordance (𝜅 ≥0.8) both in cross-validation and testing. By re-binning per-video 

results into the 6 regional views of the LV we showed DL was accurate (mean accuracy = 

92.0%) for every region. DL classification strongly agreed (accuracy = 91.0%, 𝜅: 0.81) with 

expert visual assessment. 

 

5.4.2    Benefits of the Volume Visualization Approach 

 Assessment of regional WMA with CT is usually performed on 2D imaging planes 

reformatted from the 3D volume. However, 2D approaches often confuse the longitudinal bulk 

displacement of tissue into and out of the short-axis plane with true myocardial contraction. 
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Various 3D analytical approaches86,89,192 to quantify 3D motion using image registration and 

deformable LV models have been developed; our novel use of regional VR videos as input to DL 

networks has several benefits when compared to these traditional methods. First, VR videos 

contain 3D endocardial surface motion features which are visually apparent. This enables 

simultaneous observation of the complex 3D motion of a large region of the LV in a single VR 

video instead of requiring synthesis of multiple 2D slices. Second, our framework is extremely 

memory efficient with reduced data size while preserving key anatomical and motion 

information; a set of 6 VR videos is ~800 times smaller in data size than the original 4DCT data. 

The use of VR videos also allows our DL experiments to run on the current graphic processing 

unit (GPU), whereas the original 4DCT data is too large to be imported into the GPU. Third, our 

framework is simple as it does not require complex and time-consuming computations such as 

point registration or motion field estimation included in analytical approaches. The efficiency of 

our technique will enable retrospective analysis of large numbers of functional cardiac CT 

studies; this cannot be said for traditional 3D tracking methods which require significant 

resources and time for segmentation and analysis. 

 

5.4.3    Model Performance for each LV view 

 We re-binned the per-video results into 6 projection views corresponding to 6 regional 

LV views and showed that our DL model is accurate to detect WMA from specific regions of the 

LV. The results shown in Table 5.3 indicate that all results for classification can be labeled with 

a particular LV region.  For example, to evaluate the wall motion on the inferior wall of a CT 

study, the classification from the VR video with the corresponding projection view 𝜃 (=120) 

would be used. 
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5.4.4    Concerns about Expert Comparison Study 

 To evaluate the consistency of our model with standard clinical evaluation, we compared 

DL results with two cardiovascular imaging experts and showed high per-study classification 

correspondence.  This comparison study has its limitations. First, we did not perform a per-

AHA-segment comparison. Expert visual assessment was subjective (by definition) and had 

greater inter-observer variability on per-AHA-segment basis than the per-study basis the 

variability (Kappa increased from 0.81 for per-segment to 0.88 for per-study).  Second, the 

interobserver agreement for experts to further classify an abnormal motion as hypokinetic, 

akinetic or dyskinetic was also too poor (Kappa = 0.34) to use expert visual labels for three 

severities as the ground truth; therefore, we used one “abnormal” class instead of three levels of 

severity of WMA. Third, experts could only visualize the wall motion from 2D imaging planes 

while our DL model evaluated the 3D wall motion from VR videos. A future study using a larger 

number of observers, and a larger number of cases could be performed in which trends could be 

observed; however, it is clear that variability in subjective calls for degree of WMA will likely 

persist in the expert readers.   

 

5.4.5    Limitations 

 There are limitations in our work. First, direct visualization of wall motion abnormalities 

in volume rendered movies from 4DCT is a truly original application; hence, as can be expected 

there are no current clinical standards/guidelines for visual detection of WMA from volume 

rendered movies. In fact, we believe our study is the first to introduce this method of evaluating 

myocardial function in a formal pipeline. In our recent experience, visual detection of patches of 
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endocardial “stasis” in these 3D movies highly correlates with traditional markers of WMA such 

as wall thickening, circumferential shortening and longitudinal shortening. However, guidance 

on how to clinically interpret VR movies is not yet available. We expect human interpretation to 

depend on both experience and training. Thus, we used previously validated quantitative 

myocardial shortening (RSCT) derived from 3D tracking to delineate regions of endocardial 

WMA. RSCT has been previously shown to be a robust method for quantifying 

function89,90,164,165. In addition, the large number of subjects included for DL training required a 

fast and highly automated method for evaluating quantitative function. Second, tuning the 

inceptionV3 (the CNN) weights to extract features most relevant to detection of WMA is 

expected to further increase performance as it would further optimize how the images are 

analyzed. However, given our limited training data, we chose not to train weights of the 

inception network and the high performance we observed seems to have supported this choice. 

Last, as stated above, we currently perform binary classification of the presence of WMA in a 

large region; specifically, VR views enable broad assessment of WMA in particular walls. Future 

research with larger numbers of studies will aim to estimate the boundary of the WMA regions 

with spatial resolution equivalent to AHA segments, as well as estimate the severity of the 

WMA. 

 

5.4.6    Conclusion 

 In conclusion, we developed a framework that combines the video of the volume 

rendered LV endocardial blood pool with deep learning classification to detect WMA and 

observed high per-region (per-video) and per-study accuracy. This approach has promising 
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clinical utility to screen for cases with WMA simply and accurately from highly compressed 

data. 

 

5.5    GitHub Repository 

 The GitHub Repository of our DL technique can be found at https://github.com/ucsd-

fcrl/DL_WMA_by_VR_Final_v_ZC. 
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Chapter 6: Conclusions and Future Directions 

 

6.1    Contributions 

 Recent developments in 4D CT allows the evaluation of both coronary artery disease and 

myocardial function. This dissertation introduces novel analytical-based and deep learning-based 

techniques to analyze coronary stenosis and myocardial dysfunction from CT. These techniques 

have remarkable promise to replace existing manual work and lead to automatic, fast, and 

accurate diagnosis of cardiovascular disease. 

 In Chapter 2, we introduced a novel quantification algorithm to tackle the challenge of 

accurately quantifying the coronary stenosis with sizes on the order of or below the image 

resolution. We first demonstrated two important observations: (1) traditional full-width-at-half-

maximum (FWHM) can only accurately measure the diameter of larger vessels (above the image 

resolution) ; the FWHM significantly overestimates the diameter of small vessels; (2) 

intraluminal maximum CT number reduces rapidly with decreasing vessel diameter for smaller 

vessels and small diameter stenoses. We then derived a mathematical explanation of this CT 

number reduction (Equation 2.2) and plotted the relationship between intraluminal maximum 

CT number vs. vessel diameter as a CT-number calibration curve (Figure 2.4). One important 

discovery we made is that the calibration curve is dependent on the point-spread-function (PSF) 

of the CT image. Therefore, we should make an individual calibration curve for each imaging 

acquisition setting with unique PSF. The final product of this study we developed is a new 

quantification algorithm (called “CT-number-Calibrated diameter”) that utilizes FWHM to 

measure vessels above a critical diameter related to the image resolution and the calibration 

curve to measure vessels below the critical diameter. We validated this algorithm using a 
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stenosis phantom showing only ≈5% error from ground truth stenosis diameter. Looking into the 

future, we believe our algorithm will have great clinical importance to achieve accurate 

quantification of severe stenoses and thus estimates of the anatomical significance of stenoses. 

Further, incorporating our algorithm into the FFRCT pipeline may have a positive impact on the 

accuracy of FFRCT (functional significance of stenoses).  

 In Chapter 3, we turned our focus to the evaluation of impaired myocardial function via 

4DCT. Subjective evaluation from clinicians leads to interobserver variability and can only 

provide a qualitative assessment. The overarching purpose of this research is to investigate the 

effectiveness of a developed quantitative metric (RSCT) as an objective decision classifier to 

detect the presence of segmental LV wall motion abnormality (WMA) from 4DCT. RSCT is the 

myocardial regional shortening measured via 4DCT using a validated surface feature tracking 

algorithm87. We showed that RSCT is an outstanding decision classifier to detect WMA (AUC = 

0.991). A defined optimal threshold of RSCT (RSCT* =-0.20) was defined to maximize the 

summation of detection sensitivity and specificity. Using this threshold, we achieved high 

detection performance in all 16 AHA segments when compared with expert visual detection both 

in the method development (training) cohort and in an independent validation cohort. Driven by 

the heterogeneity of wall motion in different AHA segments, we evaluated whether using varied 

AHA-segment-specific thresholds (RSCT,AHA*) can improve the performance. We showed that 

RSCT,AHA* took on values in a small interval from -0.16 to -0.23 with relatively low value in the 

basal segments. Using RSCT,AHA* slightly improves the detection sensitivity in the validation 

cohort (from 0.89 to 0.94) but requires a further dedicated study to increase the number of 

samples in each AHA segment. Overall, we accomplished our purpose and proved that the 
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quantitative metric RSCT with optimal threshold = -0.20 is an outstanding decision classifier to 

detect segmental WMA from 4DCT. 

 In Chapter 4, we utilized deep learning to solve an unmet need in image processing 

required for myocardial function analysis. First, quantitative assessment of myocardial function 

requires accurate heart chamber segmentation. It often requires manual annotation of the images, 

which is time-consuming and highly dependent on the user’s training and experience. Second, as 

images are acquired volumetrically, visualization of wall motion abnormalities requires re-

slicing the volume data along standard cardiac imaging planes. Currently, this requires 

specialized viewing software and manual processing which may lead to inter-reader variability, 

limiting clinical use. Thus, the unmet need is a fully automatic technique to accomplish these 

two image processing tasks. To fulfill this need, we developed a DL framework to perform 

multi-chamber segmentation and cardiac imaging plane prediction automatically and 

simultaneously. DL segmentation showed close agreement with manual LV (Dice = 0.91) and 

LA (Dice = 0.93) segmentations and a strong correlation with manual ejection fraction (Pearson 

r = 0.95). DL predicted planes had low localization and angular orientation errors, and more 

importantly, ≥94% of the reformatted planes were assessed to be diagnostically adequate by two 

imaging experts. The final product of our DL framework contains (1) accurate chamber 

segmentations for CT volumes and (2) adequate visualization of myocardial function from a 

movie of three LAX planes and a SAX stack (see Figure 4.7). We recorded that the time to make 

the reformatted movies in one 4DCT dataset is below 30 seconds, which is dramatically shorter 

than the time required for manual annotations (usually 15-20 minutes per 4DCT case). We 

believe our DL framework is capable to replace manual image processing required in routine 

research and clinics and provides automatic, reproducible and accurate segmentation and planes. 
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 In Chapter 5, we made a novel breakthrough in deep learning-driven myocardial 

function analysis in 4DCT. Myocardial function analysis in 4DCT was an unsolved problem for 

deep learning due to two primary difficulties: (1) the complexity of 3D LV wall motion and (2) 

the massive data size of 4DCT which cannot fit into current GPUs. To solve this problem, we 

turned our attention to a modern computer vision technique: dynamic volume rendering (VR). 

Dynamic VR has circumvents the primary difficulties. First, the complicated 3D wall motion can 

be clearly visualized from the dynamic VR, thus it should be easier for the DL model to detect 

wall motion abnormality by learning the obvious image features of VR. Second, VR is very 

efficient in data memory usage (only few megabytes) to represent the large 4DCT dataset 

(usually gigabytes). The compressed data size enables the DL experiments to fit into current 

GPU memory. Empowered by dynamic VR, we invented the first DL framework to accurately 

detect regional LV WMA from high-resolution 4DCT133. Concretely, the raw 4DCT images are 

input into our framework to first generate a set of 6 videos of dynamic volume-rendered LV 

automatically, corresponding to the LV endocardial wall visualized from 6 regional LV views. 

Then, a CNN+RNN DL model takes the video as the input and outputs a binary classification of 

the presence of WMA in the LV wall shown in that video. We showed our technique achieved 

both high per-region and per-study classification performance in both a large cross-validation 

cohort and an independent testing cohort. Apart from the benefits of using VR, this DL technique 

is simple and fast (prediction is made in <1 second) as it does not require complex and time-

consuming computations included in traditional analytical approaches. The efficiency of our 

technique will enable retrospective screening for studies with WMA from large functional 

cardiac CT datasets. 
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6.2    Future Directions and Outlook 

 In this dissertation we introduced innovative analytical-based and DL-based techniques to 

analyze coronary stenosis and myocardial function via CT. Despite their remarkable promise, 

there remains more work to do before implementing them into routine clinical use.  

 For coronary stenosis quantification, the main challenge of testing our “CT-number-

Calibrated Diameter” technique on the clinical patient study is how to define the “true” stenosis 

diameter. Invasive imaging modalities such as optical coherence tomography (OCT) and 

intravascular ultrasound (IVUS) provide in vivo measurement of stenosis diameter, but they 

suffer from their own limitations. Several studies have shown that OCT has smaller measurement 

than IVUS for the same stenosis199–201, and the correlation between FFR and parameters (e.g., 

minimal luminal diameter) derived from both OCT200,202 and IVUS200 is poor. One potential 

direction we can follow: instead of comparing the vessel dimension directly, we could compare 

the ground truth functional significance of a stenosis (invasive FFR) with the functional 

significance derived from FFRCT
66,81 technique that simulate the blood flows using a vessel 

diameter map adjusted/corrected by our “CT-number-calibrated diameter”. Our vision is that 

with enhanced accuracy of stenosis quantification for all range of vessel sizes, “CT-number-

calibrated diameter” will generate a more accurate vessel diameter map and thus more accurate 

FFRCT measurements, avoiding patients from suffering from unnecessary invasive treatments. 

Furthermore, the impacts of coronary calcification and the per-patient variability in fat and soft 

tissue attenuation need to be further evaluated. 

 For myocardial function analysis, our ultimate goal is to accurately quantify the regional 

three-dimensional myocardial strain that help clinicians understand the 3D complicated wall 

motion across the entire myocardium and better guide the diagnosis and treatment such as CRT 
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pacing lead implantation167 and LV arrhythmia ablation. Driven by this goal we have developed 

the technique to quantify RSCT and showed the effectiveness of RSCT to be an outstanding 

objective classifier to detect regional LV wall motion abnormality. The detection performance is 

comparable with a trained imaging expert. One missing piece in the current RSCT pipeline is that 

it only measures the deformation on the endocardium but not the epicardium while a clinician 

evaluates both endo- and epicardium in the diagnosis. Thus, the measurement of wall thickness 

change or epicardial strain can be integrated with RSCT to make the analysis more consistent with 

clinical standard. 

 Currently, the RSCT pipeline requires the accurate manual segmentation of the entire LV 

blood-pool (usually done in ITK-SNAP) that is time-consuming and user dependent, therefore its 

clinical utility is unfortunately limited. In Chapter 4 we described our solution: deep learning 

segmentation. A trained DL model can generate the pixel-wise segmentation of multiple heart 

chambers for a 4DCT dataset in few seconds. There has been commercial software (e.g., 

Terarecon, Simpleware) in the market to provide DL segmentation services. However, DL 

segmentation still has room for improvement. First, we have observed in our experiments that 

DL performance dramatically decreases in CT images with lead artifacts. The existence of metal 

changes the attenuation of local tissues. The clear attenuation boundary between high-attenuation 

blood-pool and low-attenuation myocardium no longer exists when the lead artifacts overlap 

these regions, therefore it’s much harder for the DL model to capture the correct boundary. 

Potential solutions are to incorporate a metal artifact reduction algorithm101,102,203 as the image 

preprocessing or to develop an end-to-end DL model that removes the artifacts and returns the 

accurate segmentation in one model. Second, researchers will have data memory concerns when 

running the DL segmentation on their local GPU station. One value of CT is its high spatial 
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resolution, but the entire high-resolution CT volume cannot be fitted into most of the current 

GPUs. The researchers have to choose from two options which both have their limitations. First, 

they can use a 2D DL model (using 2D CT slices as the model input) which does the 

segmentation in a slice-by-slice fashion, but this approach suffers from the inconsistent 

performance across different slices (e.g., DL usually returned a jagged surface for valve planes 

based on our experience). Second, they can use a 3D DL model (using 3D CT volume as the 

input) which generates more smooth and consistent segmentation across slices due to the 

knowledge of global context, but this approach can only take the down-sampled CT volume 

(e.g., pixel dimension down-sampled to 1.5mm in our study in Chapter 4) as the input and 

generate low-resolution segmentation with the loss of the high-resolution features. Approaches 

that both reduce the data memory and maintain the high-resolution features are needed. For 

example, the recent work of Octree representation by Gupta et al.193 provides a promising DL 

solution to represent the CT volume used for DL with significantly reduced data memory (87.5% 

reduction) while maintaining the high segmentation fidelity (LV Dice = 0.97). Cheaper cloud 

computing services with powerful GPU ability should also be more easily available to 

researchers. Third, a major limitation of the DL approach is the need for a large volume of 

training data that captures the full spectrum of inputs (e.g., patients with various kinds of 

diseases) to ensure the generalizability when dealing with heterogeneous clinical data.  

Unfortunately, the current DL models are often trained on single-institution datasets and suffer 

from poor performance when transferred to other institutions (with different vendors, protocols 

or patient populations)204. Federated learning204,205 is a hopeful direction for multi-institutional 

deep learning that does not require the assembly of the real data from different centers and thus 

avoid the consequential ethical and legal challenges. 
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 Apart from the requirement of manual segmentation, current 3D regional myocardial 

function analyses also suffer from complex inverse problems and expensive computation cost. 

For instance, RSCT measurement requires the 3D point-to-point registration which takes around 

10 minutes per 4DCT case to run locally in the Mac laptop. Large data sizes of 4DCT also 

requires the use of external hard drive. Our invention of the first DL technique (DL + volume 

rendering) to detect LV WMA successfully solved the problem (see benefits of our technique in 

section 5.4.2). A trained DL framework can be easily deployed (in any system with a compatible 

GPU) and generate predictions in <1 second. Volume rendering videos also dramatically 

decrease the required data memory. We plan to keep improving this technique in four directions. 

First, the prototype of this DL framework can only predict a binary classification of the presence 

of WMA in the video (this is a video classification problem) while we envision that the next 

generation should be able to delineate the boundary of WMA in the video (this is a video object 

detection problem) and predict the severity of WMA into one of hypokinetic, akinetic and 

dyskinetic. Second, a much larger volume of training data should be prepared. Especially, we 

hypothesize that by preparing more borderline CT studies with LVEF from 40~60% for the 

training, the DL can increase its performance in these challenging studies. Third, there are many 

medical image visualization software packages such as OsiriX that provide high-quality volume 

rendering visualization. A very practical use of our technique is to embed our technique into the 

existing volume rendering feature in the software so that the user can obtain both the volume 

rendering and WMA indication simultaneously. Fourth, currently the generation of dynamic 

volume rendering and the prediction of WMA are two separate sequential steps in our pipeline, 

but it is possible to design one DL framework to accomplish two things at the same time. State-
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of-art DL-driven volume rendering technology206 directly outputs the volume rendering from the 

input object, and we may add the WMA detection feature by using its latent space. 
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