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Abstract

Experimental Frequency Response Methods for the Demonstration of Thermal Hydraulic
Similitude Between Molten Fluoride Salt and Surrogate Fluid Scaled Experiments

by

Omar Ashraf Alzaabi

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Professor Per F. Peterson, Chair

This dissertation presents the design, development, and experimental results of the Scaled
Heat Exchange Frequency Response Analysis (SHEFRA) experiment, which aimed to in-
vestigate the use of frequency response methods for measuring quasi-steady Nusselt number
values in forced convection of a surrogate fluid for molten fluoride salt in circular ducts.
The dynamic response in the flow channel was initiated by a periodically-varying fluid tem-
perature at the inlet. Initial experimental results obtained from the SHEFRA experiment
suggest that quasi-steady conditions are achievable for laminar flow conditions, showing good
agreement with steady-state analytical predictions. The theoretical modeling and frequency
scaling analysis provided insights into the relevant dimensionless parameters and their im-
pact on the system’s behavior, allowing for optimal experimental parameters and conditions
to be determined. Quasi-steady state heat transfer conditions are best approximated at high
or low values of a dimensionless parameter, b∗, defined as the dimensionless frequency mul-
tiplied by the ratio of wall thermal capacitance and fluid thermal conductivity. At the limit
of high frequency, the quasi-steady regime approximates the analytically-predicted steady
state heat transfer with an isothermal wall temperature boundary condition. Meanwhile, at
the limit of low frequency, the quasi-steady state conditions approximate steady state pre-
dictions for a constant flux boundary condition. In comparison, high frequency tests resulted
in a better approximation of quasi-steady state near the inlet of the test section. The most
deviation in the instantaneous Nusselt number exists in the middle frequency range. The
results suggest that additional experimental data, covering a range of Prandtl and Reynolds
numbers of interest for molten fluoride salt reactor operation, can be used to create Nusselt
number correlations that can be compared with prototypical molten salt experiment data
and hence qualify the use of surrogate fluids in scaled experiments. Additionally, frequency
response parameter estimation techniques presented in this dissertation offer promising av-
enues for future research in improving the accuracy of Nusselt number measurements with
the potential of estimating other system parameters such as thermophysical properties. The
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SHEFRA experiment demonstrates the potential of using surrogate fluids and frequency re-
sponse methods to obtain high-fidelity heat transfer data measurements relevant for molten
salt reactor development.
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Chapter 1

Introduction and SHEFRA
Experiment Design

1.1 Introduction

Motivation

Experimental use of surrogate fluids for molten fluoride salt reactor development enables
faster iteration at lower costs compared to prototypical fluid separate and integral effects
tests. This is possible due to operation at reduced scales, including lower temperatures.
The ability to retire development risk in stages mitigates the challenges associated with
building a first-of-a-kind nuclear reactor, such as the fluoride salt-cooled high temperature
reactor [2]. Qualification of surrogate fluids such as Dowtherm A includes the task of ex-
perimentally obtaining relevant heat transfer correlations for use in higher fidelity modeling.
Dowtherm A can be made to match the Reynolds, Prandtl, and Grashof numbers of Flibe,
simultaneously [26]. The present work investigates the use of frequency response methods to
measure quasi-steady Nusselt number values for forced convection of Dowtherm A in circular
ducts. This is accomplished by time-wise variation of the inlet fluid temperature. Under
quasi-steady conditions, the Nusselt number measurements can be compared to steady state
forced convection analytical solutions. The experimental and analytical methods used to
accomplish this benchmark of thermal hydraulic similitude between quasi-steady surrogate
fluid and steady state Flibe conditions may also be extended to match unsteady heat transfer
conditions of interest.

Experiment Overview

The test section is a vertical copper tube that is two meters in length, with an outer diameter
of 6.35 mm (0.25”), and a wall thickness of 1.24 mm. Unsteady forced convection is initiated
in the tube by a periodically-varying fluid inlet temperature entering from the bottom of the
test section. This chapter details the test system design process resulting in the described
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features. Chapter 2 describes the experiment instrumentation and control platform, focus-
ing on software architecture and programming, that was developed to facilitate arbitrary
periodic power inputs to a heater located just upstream of the tube inlet. A mesh screen is
placed after the heater to encourage mixing before the fluid enters the test section. At the
inlet, a thermocouple is inserted in the flow to obtain an approximate measurement of bulk
temperature. Surface thermocouples are placed on the tube wall exterior to measure wall
temperature oscillations at different axial coordinate locations. The wall is approximated
as a lumped capacitance in the radial direction, i.e. the wall temperature is assumed to be
radially uniform.

The system design process prioritized the creation of conditions that would make appro-
priate this and other approximations as a means to limit the complexity of the selected heat
transfer problem. To be more specific, the distortion from the unsteady flow temperature
conditions would ordinarily produce an instantaneous spatially-dependent Nusselt number
that deviates with respect to time. This distortion however, can be made tractable by identi-
fying limited conditions in which the system is in a quasi-steady state. Reducing the physical
complexity of the system facilities the model-based identification of quasi-steady state heat
transfer conditions.

The present chapter explains how the test-section was designed utilizing a spatially-
independent solution to the unsteady heat transfer problem, i.e. the fluid and wall tempera-
ture oscillations are not dampened as they travel through the test section. Chronologically,
the design and construction of the SHEFRA experiment precedes the development of a space-
dependent transient model described in Chapter 3. A few minor missed opportunities as a
result of the incomplete theoretical framework at the design stage are discussed in Section
1.5.

In Chapter 3, the appropriate steady state forced convection Nusselt number analyti-
cal predictions and correlations are first identified for both laminar and turbulent flow in
the SHEFRA test section. Steady state model assumptions are chosen to match those of
both the space-independent and space-independent transient models. Section 3.2 proceeds
to derive a the space-dependent quasi-steady model using a solution to the unsteady heat
transfer problem as a starting point [22]. This quasi-steady model can be used to obtain
optimal experimental parameters and conditions for laminar flow conditions only. A sim-
ilar treatment would be necessary to apply to the unsteady turbulent flow heat transfer
problem for determining quasi-steady conditions in turbulent flow, which is not covered in
this dissertation. Chapter 4 describes the general time-domain model used for experimental
data reduction that does not assume any imposed fluid inlet temperature boundary condi-
tion. The data reduction model is applicable for both laminar and turbulent flow however
the analysis focused on the laminar regime. This is because the theoretical framework for
determining quasi-steady conditions in the given problem covers only the laminar regime.
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1.2 Background

Heat Transfer Problem

The problem of interest is that of forced convection in a circular duct with a periodically-
varying inlet fluid temperature. Many experimental and theoretical investigations consider
thermal transients can be initiated by timewise variation of wall temperature, wall heat flux,
or internal heat generation. Investigations of such problems satisfy the need to understand
the transient behaviour of heat exchange components. To a lesser extent, studies can be
found in the literature of thermal transients imposed in regenerative heat exchangers by
timewise variation of the fluid temperature at the inlet.

1.3 Fields of Application

Thermal Transients in Nuclear Power Plants

In a nuclear power plant, thermal transients can occur as a result of design-basis events, which
are conditions of normal operation including anticipated operational occurrences (AOOs)
and design-basis accidents. Categorization of events extend to anticipated transients with-
out scram, which are AOOs that are followed by a failure of the reactor trip portion of reactor
protection systems, and beyond design-basis events or accidents. The U.S. Nuclear Regu-
latory Commission (NRC) groups AOOs and postulated accidents in Light Water Reactors
into the following seven types [15]:

1. Increase in heat removal by the secondary system

2. Decrease in heat removal by the secondary system

3. Decrease in Reactor Coolant System (RCS) flow rate

4. Reactivity and power distribution anomalies

5. Increase in reactor coolant inventory

6. Decrease in reactor coolant inventory

7. Radioactive release from a subsystem or component

Examples of events that would produce such AOOs include but are not limited to loss
of power to recirculation pumps, tripping of the turbine generator, isolation of the main
condenser, and loss of all offsite power. While these categorizations and examples are derived
from LWR regulatory guidance, they are anticipated to be similar for molten salt reactors.

Thermal hydraulic phenomena that become important to consider in a molten salt reactor
include heat transfer interactions between fluids and solid structures due to a similar thermal
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inertia between the two. The primary working fluid in the reactor primary loop is of a high
Prandlt number compared to water, and is designed to be single-phase during nominal
operation and postulated accidents.

A simple channel geometry was chosen as the test-section and subject of the SHEFRA
experiment to simplify the development of quantitative analysis methods but also because
variations of this geometry can be found in molten salt reactors. A drop in temperature in
the hot leg of the primary loop could be an example of thermal transient and AOO in a
prototypical system. There is interest in developing accurate predictions of convection heat
transfer in twisted tube geometries.

The utility of accurate predictions of thermal transients is to prevent degradation of
structural materials, economic optimization of design and control parameters for nominal
operation, and to perform safety analyses for design-basis and beyond design-basis accidents.

1.4 SHEFRA Experiment

Scaled separate effects tests (SETs) using surrogate fluids to study molten salt phenomena
offer the opportunity to conduct a broad scope of experiments at lower temperatures, re-
duced height and area, reduced cost and with increased options for instrumentation. The
scaled heat exchange frequency response analysis experiment (SHEFRA) conducted at the
University of California, Berkeley aims to demonstrate the use of frequency response testing
to obtain high fidelity convective heat transfer data for geometries and thermal hydraulic
conditions that when scaled, are relevant to the operation of molten salt-cooled reactors. In
contrast to steady-state or step-change tests, frequency response or dynamic testing enables
the separation of effects due to processes with different time constants. This chapter doc-
uments the system design, and provides a description of the experimental platform. The
experimental objective is to obtain measured Nusselt number values which will be compared
to correlation predictions from literature, as well as existing data from molten salt exper-
iments, and can be used to validate convective heat transfer constitutive models used in
system-level codes. To facilitate this analysis, bulk fluid temperature and wall tempera-
ture data at five equidistant nodes along the channel are collected. Initial data captured
showed wall temperature fluctuations that are progressively dampened as a function of axial
distance.

Previous separate effects tests at UC Berkeley (UCB) made use of Drakesol 260AT min-
eral oil, which when used as a surrogate fluid, can approach the Prandtl number of flibe
coolant in prototypical conditions relevant to the UCB Mark 1 Pebble-Bed Fluoride Salt-
Cooled Reactor (Mk. 1 PB-FHR) and other fluoride salt-cooled molten salt reactors [3, 2, 11,
9]. An existing experimental facility, the pebble-bed heat transfer experiment (PB-HTX),
was modified to deliver sinusoidal power frequency inputs to a low-thermal-inertia nichrome
wire heater installed just upstream of the test-section in a forced convection oil loop. Be-
cause it is challenging to heat pebble beds uniformly, frequency response methods can use
the thermal inertia of pebbles to provide a surrogate heat source. The resulting high-fidelity
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data was expected to enable the characterization of convective heat transfer coefficients more
accurately compared to data from a steady-state or step-change tests [9]. The experimental
facility was restarted and upgraded with improved power control capabilities. Previously,
pulse power inputs was manually controlled by turning the power supplies on an off by an
operator. After the upgrades, additional pebble bed forced convection data was collected
using a sinusoidal frequency response to supplement previous data. Pulsed power inputs
were used as an approximation of a sinusoidal inputs as a compromise due to the hardware
and software complexity of implementing sinusoidal inputs. A single frequency input pro-
vides Nu number parameter estimation opportunities that are explored in Chapter 5. A full
description of the versatile analog control platform is presented in Chapter 2.

This experimental platform was then repurposed to study transient convection heat trans-
fer in cylindrical channels using DOWTHERM A surrogate fluid, which between the temper-
atures of 50°C to 120°C, can be made to simultaneously match the Prandtl, Reynolds, and
Grashof numbers of the molten fluoride salt coolant flibe (Li2BeF4) at prototypical reactor
conditions. See Figure 4.7. The SHEFRA experiment is the focus of this chapter and the
dissertation as a whole.

1.5 System Design

SHEFRA was designed before the development of a comprehensive theoretical framework
for the dynamics of the physical system . This section documents the design objectives and
constraints as they were perceived at the project’s inception. This will be supplemented
with retrospective commentary as necessary. Chapter 3 also provides an in-depth analysis
with the aid of an analytical model for the dynamic system and specifically, the ability to
determine under what conditions can the frequency response tests approximate steady state
operation.

Surrogate Fluid Selection

Key design decisions such as the selection of loop fluid, the heating method, and the de-
termination of important nondimensional parameters where informed by the experience and
outcomes of past scaled experiments conducted at the Thermal Hydraulics Lab. Notable
examples are the Compact Integral Effects Test (CIET) and PB-HTX. Dowtherm A, also
branded as Therminol VP-1, was chosen for its ability to match the appropriate dimension-
less parameters.

Dimensionless Parameters

Table 1.1 summarizes the relevant dimensionless groups for testing and the respective ranges
of interest. Empirical correlations for forced convection in ducts typically predict Nusselt
number as a function of Prandtl and Reynolds number. This is studied at a more fundamental



CHAPTER 1. INTRODUCTION AND SHEFRA EXPERIMENT DESIGN 6

Table 1.1: Experimental parameters of interest for SHEFRA experiment testing. The
Reynolds number range spans both laminar and turbulent flow regimes. The Prandtl number
range is selected to match prototypical Flibe temperatures of interest, as shown in Figure
4.7. Mixed convection scaling, Gr/Re, was not considered at the initial design stage be-
yond creating the facility of a rotating test section for future investigations in a horizontal
orientation. Mixed convection effects were later investigated in Section 3.1. For inlet temper-
ature oscillation frequency, simulations of the space-dependent model derived in this section
showed that higher frequencies resulted in greater temperature differences between the fluid
and wall as shown in Figure 1.1. In the limit of low frequency, the wall temperature oscil-
lation amplitudes approach that of the fluid. Through simulation, the range of frequencies
from 0 to 0.5 Hz were sufficient to initiate the entire range of dynamic response for candidate
test-section parameters. In practice, the upper frequency limit was set by power and control
hardware specifications and candidate parameters were selected such that the entire range
of possible dynamic response could be captured within the frequency limit. Dimensionless
frequency was investigated at a later stage after the test-section was built (Chapter 3).

Parameter Designed Experimental Range
Reynolds 500-10,000+
Prandtl 22-9
Grashof Undefined
Frequency 0 < f < 0.5 Hz
Biot ≤ 0.1

level in Chapter 3. The Prandtl numbers of interest in the prototypical system determine
the target surrogate fluid temperature ranges as shown in Figure 4.7. The Reynolds number
ranges of interest span both laminar and turbulent flow. This creates a design constraint
related to the inner diameter of the circular channel test-section. A variable frequency
drive enables the collection of data at variable mass flow rates. A channel that can be
approximated as lumped capacitance is desirable to achieve quasi-steady operation using the
chosen heating method and to simplify the modeling and data reduction process. To ensure
the validity of this approximation, a maximum Biot number constraint was imposed. Other
relevant dimensionless parameters specific to forced convection with periodically-varying
inlet temperatures were discovered after construction.

Signal-To-Noise

After determining the main design constraints, a dynamic model for the heat transfer in the
test-section was derived to estimate optimal geometry and materials for high gain in the out-
put. A system response with high gain reduces uncertainties propagated from measurement
error. The derived model did not account for spatial-dependence and applies only near the
inlet. In other terms, it would model a hypothetical channel where the fluid temperature os-
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cillations are not dampened as they travel downstream. There were not a major consequence
to this simplification, since the optimal maximum temperature delta between the fluid input
and wall output response at the inlet of the test-section would also result in the maximum
delta at the outlet. There were however some drawbacks to not having a spatial model. The
optimization resulted in a wide range of materials and geometries combinations that were
capable of achieving the maximum possible delta at the inlet. Had the model been able to
predict the temperature delta at the farthest point downstream of the inlet, there would have
been a smaller set or potentially a single optimal combination. Ultimately, a final decision
was made from the potential combinations by selecting for a small Biot number, and also
based on how close a geometry was to standard tube sizes readily available for order.

Quasi-Steady Approximation

The optimization would have been improved has it considered that quasi-steady forced con-
vection is best approximated at either or low frequency inputs. The most Nusselt number
distortion is expected within a middle range of frequencies that is determined by the exper-
imental parameters (Chapter 3 and Appendix 4).

At the limit of very high frequency, the amplitude of the wall temperature oscillation
converges to zero. To prevent high error propagation, an updated objective function would
ensure that not only is the temperature delta between the fluid and solid temperature is
maximized, but that the minimum oscillation amplitudes for each of the bulk fluid and wall
temperatures do not fall below a certain value proportional a desired error tolerance.

The conditions for quasi-steady heat transfer were not fully defined at this stage beyond
a general intuition. Despite this, an analysis of experimental results in Appendix 4 showed
that the as-configured system was ultimately able to reach frequencies high enough for a
satisfactory approximation of quasi-steady heat transfer.

Modelling and Optimization Implementation

Using an energy balance,

−Ėin = −Ėout (1.1)

where Ėin and Ėout is the energy flow into and out of the test-section. Assuming a lumped
capacitance for the copper tube wall we get,

dT

dt
=
hAs

ρV c
[T − T∞(t)] (1.2)

where h is the heat transfer coefficient, As is the heat transfer area, T is the solid
temperature, and T∞ is the fluid temperature. The input can be described as a function of
heater signal frequency, f , a baseline temperature Tb, and scaling parameter K.

T∞(t) = −K sin 2πft+ Tb (1.3)



CHAPTER 1. INTRODUCTION AND SHEFRA EXPERIMENT DESIGN 8

Time [s] Time [s]

Figure 1.1: Transient heat transfer simulation of Dowtherm A surrogate fluid to a single
axial location at the inlet of a cylindrical copper channel at two different sinusoid heater
input frequencies.

This is a linear non-homogeneous system which can be solved to obtain a function for
the temperature difference distribution as a function of time.

(1.4)

The model was used to simulate the heat transfer interaction between the tube wall
and fluid at various frequencies. As mentioned, the model is imperfect because it does not
account for axial variation in the tube solid temperature and does not show an expected
dampening effect of the solid wall temperature along a long tube. Figure 1.1 quantifies the
difference of fluid and solid temperatures possible for a candidate combination of surrogate
fluid, solid structure material and test-section geometry.

A simplified search algorithm written in MATLAB was used to simulate the model and
select an optimal combination of SHEFRA test-section geometric and material parameters
to maximize the difference in solid to fluid temperatures. The test-section would also have to
pass model constraints that are derived from model assumptions and approximations made,
such as a lumped capacitance approximation for the tube wall.

1.6 Test-section Detailed Design

Material Selection and Geometry

The optimization model described in the previous section led to the selection of a two meter
long, 0.25” outer diameter, 0.049” thick wall copper tube test-section. Standard copper tube
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size was found to be too thin to provide sufficient thermal inertia for our application. A Navy-
specification standard copper tube was found to be closer to the target geometry for initial
scoping experimental studies. The length of the test-section was chosen to be sufficiently
long to acquire a measurable temperature distribution and to study axial dispersion effects.
This decision would limit our ability to compare experimental results with equivalent forced
convection experiments conducted at Oak Ridge National Lab (ORNL) for laminar flibe flow,
as the molten salt results were provided as averaged heat transfer coefficients over an entire
entrance region and for fully developed flow. Later calculations, confirmed by experimental
results, estimated that laminar flow is still thermally developing at the outlet of the SHEFRA
test-section.

Structural Considerations, Plumbing, and Instrumentation

To support the test-section and to facilitate the routing of thermocouple wiring, the loop
features a strong-back that rotates along the same axis. The strong-back has a dual-purpose
as return plumbing in the form of a rigid pipe. This lends itself to a compact design and a
reduction of complexity that was initially introduced due to the rotating test-section feature.

The test-section assembly consists of the copper tube and stainless-steel Swagelok elbow
tube fittings on either side. The Swagelok fittings are threaded into a stainless-steel tri-clamp
straight adapter. At the test-section outlet, the tri-clamp tube fitting is connected to a 1.7”
tube extension, which serves as an instrumentation node. Similarly, other nodes are located
at other loop locations as part of a modular “drop-in” instrumentation system. A series of
tri-clamp pipe fittings make up the return plumbing, utilizing PTFE for the gasket material.

The wall temperature of the test section is measured at different locations along its
length using cemented surface thermocouples. To measure the inlet fluid temperature, a
thermocouple is inserted into a modified Swagelok adapter at the test-section inlet. This
was done to minimize the parasitic heat loss distortion of a bulky instrumentation node and
to minimize transport delays.

1.7 Experimental Setup

Loop Overview

The loop consists of several components. There is a heater placed immediately before the
inlet of the test section. An oil-to-water plate heat exchanger is used, an Ameridex Plate
Exchanger, Model No. AMDX-10-8 to cool the oil after it exits the test-section.

Flow is provided by centrifugal pump from Price Pump Co., Model no. LT25SS-344-
21276R-33-36-3T7, with 0.33 HP with a variable frequency drive. A reservoir tank provides
room for thermal expansion and prevents oscillation signals echoing back into the test-section.
A Coriolis mass flow meter is used to measure flow (Siemens Coriolis Flow Sensor SITRANS
FCS400).
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Figure 1.2: This figure shows the CAD models of the glass and Nichrome wire heater, the
copper test-section and the return plumbing that has a dual-purpose as a strong-back for
structural integrity and the routing of thermocouple wiring.

Specialized fittings and ports are used for thermocouples and pressure gauges. A cover
gas system was incorporated into the design to prevent DOWTHERM A/Therminal VP-1
degradation and to control fumes. This system is integrated as part of a gas pressurization
system for filling and draining.

Fill/Drain and Cover Gas System

The 3 meter height of the experimental facility necessitated the design and construction of
a pressurization system to fill and drain the loop. The fill/drain tank was fabricated out
of a 12” nominal 304SS pipe and was fitted with two fill/drain points that connect to the
experimental loop and a quick-connect hose fitting for pressurization. Argon gas flows from
a pressurized gas cylinder regulated to 20 psi through a series of valves and a rotometer,
used to control the direction and flow of gas. During a fill procedure, the pressure exerted
by the gas transports the oil out of the tank and into the loop. The oil moves from the
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bottom of the tank through vertical dip tubes and out through the fill/drain points. During
high temperature operation (above 80F), a constant flow of gas is routed to the reservoir
tank to prevent chemical degradation of the oil from exposure to air. A standard operating
procedure for filling and draining was drafted. The pressure needed fill the loop to the
required height was calculated to be about 5 psi using the relationship for static pressure
P = ρgh. A pressure safety valve rated at 10 psi was installed on the drain tank. During
the filling, 9 psi of pressure was used to speed up the procedure.

Heating

Sinusoidal heater DC electrical power inputs are used to heat the oil before it entered the
copper test-section. A range of mass flow rates is possible with the variable frequency
drive-controlled centrifugal pump to collect convective heat transfer data across a range of
Reynolds numbers. For frequency response experiments, the DAQ must be able to send and
receive signals to A DC power supply at the desired high control frequencies. The heater
is a custom-made component made of Pyrex glass with an internal nichrome wire heating
element, pictured in Figure 1.4. The heater element was adapted from a 10 kW electric
water heater and features a low thermal inertia. This allows the element to respond rapidly
to changes in power. With the fast-acting heater design, the sampling and control rates
can be increased, hence increasing Nyquist frequency and allowing for the investigation of
heat transfer at higher frequencies. Previous experience with digital control of the hardware
power supplies achieved control rates that were insufficient for the time scales of interest.
Instead, analog controls are used to interface the DAQ and power supply. The control system
is discussed in detail in Chapter 2

Multiple iterations of the heater design were fabricated before arriving at the final version,
starting with its initial use as an off-the-shelf residential electric instant water heater. In
these previous experiments, the heating element was used in its original plastic housing.
Researchers noted that the plastic was decomposing when coming into contact with the heat
transfer fluids used [10]. The new glass design was chemically compatible but it was also
more susceptible to breakage. A metal frame was designed and fabricated to eliminate any
potential mechanical stresses. However, the design neglected the possible stress on the glass
at the connections between the heating element terminals and the electrical leads from the
power supply. In one instance, the heater was broken as the terminal screws were being
tightened. The design could be improved extending an insulated rigid structure to the
electrical leads, or by eliminating the use of glass completely.

Reservoir Tank

The reservoir is an off-the-shelf stainless-steel tank with tri-clamp fittings. It is located at
the highest point in the loop where there is a free surface of oil. A vent to ambient air first
travels through Teflon tubing down to an oil overflow drum and then out through a second
opening.
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Figure 1.3: Fast-response Pyrex glass heater CAD render

Figure 1.4: Fast-response Pyrex glass heater, (left) improved heater design with vacuum
fittings and sightglass frame. (right)
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Assembly and Construction

A CAD model was used to plan the layout and positioning of the various loop components.
The oil pipe section lengths and sizes were also determined using this method. Further,
the fittings selected were tested directly in the model for compatibility. A combination of
stainless-steel flexible tubing and tri-clamps fittings were used (sometimes referred to as
sanitary quick-clamp fittings) to simplify the assembly process. The frame was constructed
out of 80/20 T-slot aluminum extrusions. A parts list for each sub-assembly was prepared
as well as a master build document for reference during construction. Engineered safety
controls were incorporated into the design to protect operators. Acrylic sheet panels were
fitted to the front of the experimental loop to protect personnel from hot oil in the event
of a high flow leak. The loop was placed into a welded stainless-steel drip tray of sufficient
volume to contain a leak.

1.8 SHEFRA Data Collection

SHEFRA was successfully used to collect transient temperature data using five surface-
thermocouples cemented to the copper tube wall. The bulk fluid temperature of the fluid
entering and exiting the test section was also recorded. A sample of the collected data is
shown in Figure 1.7. While the data shown is for a single frequency, a range of heater sinu-
soidal input frequencies were collected to capture the frequency-dependent dynamic system
behavior.

Flow Meter Measurements

A Coriolis mass flow meter is a highly accurate instrument for measuring flow rate. The
unit outputs a 4-20 mA current signal that is sent to the DAQ that is proportional to
the measurement value. The signal is read using a DAQ voltage input channel. A known
resistance placed in parallel configuration with the two flow meter leads, enabling the current
value to be estimated using the DAQ voltage measurement in the LabVIEW project.

The SHEFRA experiment has been designed and constructed to measured heat transfer
in a smooth tube with the objective of demonstrating thermal hydraulic similitude using a
surrogate fluid for molten fluoride-based salt. A frequency response testing technique is used
to characterize the dynamic system in both the time and frequency-domains. Experimental
data will be compared with past molten salt experiments and predictions from the literature.
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Figure 1.5: Detailed loop diagram that includes a pressurized gas fill and drain system, cover
gas manifolds, safety pressure relief mechanisms and the primary oil loop.
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Figure 1.6: The SHEFRA experimental loop after construction.
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Figure 1.7: Solid temperatures measured at five equidistant thermocouple locations along
the tube outer wall, and the bulk fluid temperature at the test-section inlet as a function of
time. A mesh screen is placed to encourage mixing of the flow before the bulk temperature
measurement. T-1 is the thermocouple closest to the test-section input. It can be observed
how the temperature signals are progressively dampened along the tube towards thermocou-
ple T-5.
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Chapter 2

Instrumentation and Control:
Versatile Test Bay

2.1 Development of a Modular Platform for Scaled

Separate Effects Tests

The application of surrogate fluids for scaled Separate Effects Tests (SETs) broadens the
scope of experiments that can be conducted in a university setting by allowing for relatively
low-temperature operation and increased options for instrumentation and control. An unan-
ticipated benefit has been the ability to conduct quasi-steady heat transfer experiments under
periodic forcing that would not be possible to implement using molten salt and graphite with-
out significant distortion. For example, heat transfer data obtained by submerging graphite
spheres in Flinak, coupled with an analysis of the characteristic time constants for forced
convection flow over a sphere showed that the quasi-steady condition could not be achieved
[9]. The unique ability of Dowtherm A surrogate fluid and copper pebbles of a specific ge-
ometry to approximate quasi-steady heat transfer under periodic forcing was the foundation
for the Pebble-bed Heat Transfer Experiment (PB-HTX). Similarly, we expect to be able
to use Dowtherm A and copper to measure quasi-steady heat transfer in a circular channel
under the right conditions.

The PB-HTX was chosen for conversion into the Versatile Test Bay (VTB) due to its
modular construction. The VTB is a SET facility capable of quick analog control of hardware
power supplies for simulating transient conditions and performing frequency response testing
in the installed test-section. This test-section can be easily swapped out for future scaled
experiments. It is capable of sending a variety of power profile inputs into the system
through the heater. Utilizing the VTB, the collection of pebble-bed and circular channel
heat transfer data using sinusoidal power inputs was demonstrated. This chapter serves as
a detailed technical guide to the Instrumentation and Control in the VTB.



CHAPTER 2. INSTRUMENTATION AND CONTROL: VERSATILE TEST BAY 18

Versatile Test Bay

The Versatile Test Bay (VTB) is separate effects test (SET) facility was previously host to
the pebble-bed heat transfer experiment (PB-HTX) at the University of California, Berkeley
[9]. The pebble-bed was constructed using a dimpled glass cylinder filled with copper pebbles
in which heat transfer to circulating oil was measured using temperature measurements at
different radial and axial locations within the test section. A heater and oil-to-water plate
heat exchanger were used to vary the temperature of the oil before it entered the pebble-
bed. The most basic procedure involves using a periodic function to control the power to
the heater to create the required transients. Sinusoidal heater inputs, at different mass
flow rates achieved with a variable frequency drive-controlled centrifugal pump, were used
to collect packed-bed convective heat transfer data across a range of Prandtl and Reynolds
numbers. Although PB-HTX was designed for use with DOWTHERM A mineral oil, the
completed experiments were done with Drakesol 260AT mineral oil, which is easier to work
with compared to DOWTHERM A. However, it is not capable of reaching the UC Berkeley
Mark 1 pebble-bed fluoride salt-cooled high temperature reactor (Mk1 PB-FHR) prototypical
ranges for Prandtl and Reynolds numbers. This was not a concern, as the aim of the
experiment was simply to demonstrate a scaled pebble-bed heat transfer experiment using
a surrogate fluid. The major technical challenges were to develop a robust, fast-responding
resistance heater system and to implement robust control of the heater power supply using
LabVIEW and data acquisition (DAQ) hardware. In the past, the procedure required an
operator to manually turn the power supply on and off at timed intervals for a pulsed
test. For frequency response experiments to be possible, the DAQ must be able to send
and receive signals to the power supply at high control frequencies. With the fast-acting
heater design, the improved sampling and control rate increased the Nyquist frequency,
allowing for the investigation of heat transfer at higher frequencies. Previous experience
with digital control with these power supplies achieved a maximum control rate of 1 Hz,
which would be insufficient for the time scales of interest. Instead, analog controls are used
to interface the DAQ and power supply. An overview of the design of the VTB in addition
to a detailed description of the hardware and software implementation for analog control for
high-frequency dynamic signal input is included in this technical paper.

2.2 Experimental Set-up

The heater is a custom-made component made of Pyrex glass with an internal nichrome wire
heating element. The heater element has a very low thermal inertia and responds rapidly
to changes in power. The electrodes are connected to a TDK-Lambda GEN 250-40 power
supply capable of delivering 40 A at 250 V (10 kW).



CHAPTER 2. INSTRUMENTATION AND CONTROL: VERSATILE TEST BAY 19

Figure 2.1: Photograph of copper pebble-bed test section.

Figure 2.2: Photograph of the original VTB oil loop before it was disassembled to construct
the SHEFRA loop.
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Figure 2.3: Flow schematic of PB-HTX, with unidirectional flow in the direction of the
arrow. [11]

2.3 Data Acquisition and Control

Equipment

A Windows PC is connected through USB serial to a National Instruments (NI) SCXI-1000
data acquisition (DAQ) chassis including a NI SCXI-1600 module for the collection of system
data. The thermocouples and flow meter are connected to a SCXI-1102 voltage input module
via a SCXI-1303 32-channel isothermal terminal block. Analog input and output modules
were used for the control of the power supply. SCXI-1124 and SCXI-1102B +/- 10 V analog
output and input modules were installed with SCXI-1325 and SXCI-1300 terminal blocks,
respectively.
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Figure 2.4: Simplified data and signal flow diagram of the VTB.

Resistance Feedback Control

The power is programmed using resistance feedback with four connections between the DAQ
and the power supply. Two of these connections are voltage and current monitoring signals
from the power supply. The remaining two connections are voltage and current programming
signals. Resistance feedback is implemented by first using the voltage and current monitor
readings to calculate the estimated resistance in the circuit using Equation 2.1,

Rmonitor = Vmonitor/Imonitor (2.1)

then solving for the required voltage output to produce a user-specified desired power
using Equation 2.2.

Vout =
√
Pdesired ×Rmonitor (2.2)

The programming is implemented using LabVIEW and NI MAX. See Section IV for more
details. The calculated value is scaled to a range of 0-10 V, where 10 V corresponds to the
maximum voltage output of the power supply. The Vmonitor and Imonitor analog input signals
are scaled similarly. A current limit is set at the power supply maximum of 40 A by assigning
this value to Iout (which translates to a 10 V signal). The power supply documentation
provided instructions on the J1 wiring configuration for remote analog control operation.
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Figure 2.5: Simplified diagram of the main LabVIEW VI.

2.4 LabVIEW

The LabView programming architecture consists of one main graphical program, called a
Virtual Instrument (VI), with three main loops running simultaneously. In one loop, the
program reads the acquired analog signals and also determines what programming signals to
send back to the power supply. The calculations are done in a nested SubVI called Hardware
Power Supplies. A second loop continuously updates a local variable called Desired Power.
This variable is an input into Hardware Power Supplies. In the third loop, the data is logged
in a CSV file and sent to a front panel that is displayed during operation. A simplified
representation of the VI can be found in Figure 2.5
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Figure 2.6: NI MAX is used to create and configure LabVIEW Tasks. This figure shows the
virtual channels included in the analog input task.

Task Configuration Using NI MAX

LabVIEW tasks, which are “software entities that encapsulate the physical channel along
with other channel specific information—range, terminal configuration, and custom scal-
ing—that formats the data,” are generated using NI MAX. It is important that the latest
NI-DAQmx drivers are installed on the PC for NI MAX to detect the DAQ hardware. The
SCXI chassis is found and configured under Devices and Interfaces. NI-DAQmx tasks are
created under Data Neighborhood. One task was created to handle all analog inputs includ-
ing flow, thermocouple, and power supply monitor data. Thermocouples may be calibrated
using the NI MAX calibration wizard. Flow and monitor data signals were configured with
a 0-10 V input signal range and no scaling. The appropriate timing settings depend on
the software or hardware limitations of the set-up. Another task is created for analog write
channels Vout and Iout. The timing settings for these channels are set to “1 Sample (On
Demand)”.
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Desired Power Loop

Three operation modes were implemented: a power profile can be imported, generated using
controls on the front panel or the desired power can set to a single value using a manual
control. A while loop constantly checks the user-selected operation mode and generates the
correct values of Desired Power. In the case of power profile import or generation, a for
loop can be used to loop through a comma separated value file or a generated sequence,
respectively. A manual time pause is added to the for loop to produce the correct period.
The for loop is replaced with a sequence block for manual control operation, to force a pause
before assigning the user input to Desired Power.

Analog Read and Write Loop

Outside of the second while loop, the analog input and analog write tasks are initiated and
brought into the loop and enter a sequence block at different points. In the first step, an
“Analog 1D DBL NChan 1Samp” read block is used to read the analog input task. In the
second step a custom SubVI called Hardware Power Supplies is used to generate current and
voltage analog output signals using various inputs, including the power monitor signals from
the previous step. In a single loop iteration, the SubVI reads Vmonitor and Imonitor, calculates
an estimated resistance in the circuit, and determines how much voltage the power supply
must provide to meet the desired power.

SUBVI: Hardware Power Supplies

Hardware Power Supplies takes in the Desired Power local variable, in addition to an in-
put resistance, maximum power limit, power monitor analog inputs, and the analog write
task. The outputs of this SubVI are the completed analog write task, an output resistance
local variable, and the output power for front panel display and data logging. The output
resistance becomes the input resistance in the next loop iteration by using a shift register.

Inside the SubVI, the resistance feedback control is implemented. The input resistance
and the desired power is used to calculate Vout which is then scaled to a 0 to 10 V range
by dividing by 25. This scaling factor is calculated by dividing the power supply maximum
Vout by the maximum threshold for analog out voltage. Similarly, for Iout 40 A (the current
limit) is divided by 4 (the maximum current in Amps divided by 10 V). For safety purposes,
coercion blocks may be used to constrain variables to be within appropriate bounds. For
example, the desired power input is coerced to be between the maximum power limit (10,000
W) and zero. In addition, analog output signals are coerced to stay within 0 to 10 V before
being written out using an analog write block. The SubVI also calculates a new estimated
output resistance using Vmonitor and Imonitor , after being scaled similarly in reverse. The
output resistance is manually bounded using a coercion block to typical operational values
to prevent instabilities.
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Figure 2.7: Simplified diagram of Hardware Power Supplies, a SubVI implementation of
resistance feedback control.

Data Logging

Data logging is implemented in a timed loop that is configured to run in 100ms intervals.
The same loop is also used to display different readings on the VI front panel. Data is saved
to a comma separated value file after the VI is stopped. It is best practice to save data
during operation to prevent any loss of data.

2.5 Results

The capability to produce periodic pulsed and sinusoidal heater inputs using analog controls
was implemented for the purpose of collecting pebble-bed heat transfer data. Sample inputs
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Figure 2.8: Pulsed power input.

Figure 2.9: Sinusoidal power input.

for power can be seen in Figures 2.8 and 2.9.
The conversion of the PB-HTX facility into VTB was accomplished by the implementa-

tion of high frequency dynamic analog controls, and thanks to modular construction that
will allow the installation of test sections of various geometries. Resistance feedback con-
trol using LabVIEW was used to generate dynamic heater inputs which may be used for
collecting heat transfer data and for frequency response experiments.

Additional details are provided on how the desired heater input signals are generated in
Appendix B.
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Chapter 3

Theoretical Modeling and Frequency
Scaling

Initial scoping studies on the SHEFRA experiment and chosen test-section resulted in Nus-
selt number measurements that needed to be interpreted using an appropriate predictive
analytical framework. A review of steady-state analytical models was conducted to obtain a
comparable reference depending on the flow development conditions. The rest of the chapter
outlines the development of a theoretical framework for the problem of transient forced con-
vection in circular channels with periodically-varying inlet temperatures. Recognizing the
potential for analysis of this particular problem in the frequency domain, a solution method
from the literature was chosen for its use of the Laplace Transform technique; resulting in

Figure 3.1: Data reduction after initial SHEFRA experimental runs for a transitional-
turbulent flow showed Nusselt number measurements that appear to be distorted as shown
in the plotted sample data. Similar distortions were observed during PB-HTX experiments,
where they were assumed to be due to instrumentation error. The findings presented in the
chapter show that the contribution of instrumentation errors was most likely overstated.
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nondimensional mathematical expressions for the channel wall temperature, bulk fluid tem-
perature, and wall heat flux in the frequency domain. The solutions were extended by the
application of a quasi-steady model to obtain an expression for the Nusselt number as a
function of longitudinal distance and other system parameters. Quasi-steady state can be
predicted using the transient model by assessing if the Nusselt number for a fixed point is flat
over an oscillation cycle within some tolerance. This prediction capability, in coordination
with the scaling terms detailed in this chapter, can be used to to design frequency response
test-sections and operating parameters tailored for various flow development conditions, wall
thermal capacitance effects. The model was applied to the existing SHEFRA test-section
and used to select optimal experimental operating conditions for the purposes of model vali-
dation. The analysis revealed that the validity of quasi-steady had high sensitivity to natural
convection to ambient. This is a likely cause for the distorted Nusselt number measurements
made in initial SHEFRA experimental runs that were performed without external insula-
tion, as illustrated in Figure 3.1. Higher inlet fluid temperature oscillation frequencies into
the SHEFRA test section result are favorable for adherence to quasi-steady state but only
to a certain extent. In the limit of very high frequencies, the wall temperature oscillations
amplitudes are small compared to measurement uncertainties. While initial experimental
runs were conducted in the transitional flow regime, the described transient model in its
current form is only applicable for laminar flow. Model-predicted optimal inlet fluid temper-
ature frequency for laminar flow are when quasi-steady heat transfer is best approximated.
This occurs at the limit of either high or low frequencies. At the low range, such as at an
oscillation frequency of 0.025 Hz (a 40 sec period), the quasi-steady heat transfer will approx-
imate steady-state heat transfer with a uniform heat flux boundary condition. At the high
frequency limit, beyond 0.25 Hz (a 4 second period), the quasi-steady heat transfer approx-
imates steady-state forced convection a with uniform wall temperature boundary condition.
The most deviation in the Nu number is expected for frequencies in the mid-range.

The optimal frequency can be reliably found by incrementally increasing or decreasing
the relevant scaling term only to the extent that requirements for quasi-steady state are
met. At quasi-steady state, minimal deviation in the Nu number is present, depending on
the amount of ambient convection distortion. Further, quasi-steady Nu values are expected
to approach the steady-state values predicted by the literature.

3.1 Review of Steady-state Models and Relevant

Applications

To help assess the validity of the transient analytical solutions presented further in this
chapter, steady-state models that are relevant to SHEFRA experimental parameters and
operating conditions are reviewed to be used as a reference and compared with transient
predictions when appropriate. Recalling that the objective of the experiments is to measure
the Nusselt number for the forced convection of high Prandtl number flow, the heat transfer
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Table 3.1: Dimensional group ranges for the quasi-steady and space-dependent SHEFRA
experiment model. The Reynolds number range of applicability covers only the laminar flow
regime. The Prandtl number range is selected to match prototypical Flibe temperatures
of interest, as shown in Figure 4.7. Mixed convection scaling, Gr/Re, was neglected in the
derived model. Mixed convection effects are expected to be negligible for small values of
Gr/Re. This is discussed further in Section 3.1. Quasi-steady state conditions are best
approximated at the limit of relatively low and high values of b∗, which is the product of
dimensionless frequency and the ratio of wall thermal capacity to fluid thermal conductiv-
ity. The quasi-steady condition was determined by finding b∗ values at which predicted Nu
numbers asymptotically converge for a simulated test-section. The plotted Nu number pre-
dictions in 3.11 and 3.12 show no change beyond and below threshold b∗ values. This is put
in terms of dimensional frequency for the SHEFRA test-section.

Parameter Model Applicable Range

Reynolds < 2300

Prandtl 22− 9

Gr/Re ≲ 1

b∗ b∗ ≲ 10, b∗ ≳ 100

Frequency f < 0.025 Hz, f > 0.25 Hz

Biot ≲ 0.1

characteristics of the transient problem in a quasi-steady state is expected to be comparable
to that of a steady state version of a system where the inlet fluid temperature is not being
varied. This section proceeds through simulating the behavior of an equivalent steady-state
system to benchmark the SHEFRA quasi-steady model results.

Before applying the steady state models from the literature to the SHEFRA system,
simplifying assumptions and approximations must be made and justified. Some of these
approximations will be applicable in both the quasi-steady and steady state models. To
accomplish this, the section will start from the relevant fundamental governing equations.

Selecting the appropriate steady state analytical model first requires determining how
the fluid in the test section is thermally and hydraulically developing along the entrance
region. The following analysis shows that the fluid is thermally developing for the entire two
meter SHEFRA test section and hydraulically developing for a portion of it during laminar
flow. The thermal entrance region is predicted to be three meters. Exact analytical solutions
for the Nusselt number in the thermal and combined entrance regions are presented. For
turbulent flow, the entrance regions are significantly shorter. Correlations for steady state
turbulent flow for developed flow are chosen and presented.
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Thermal Development Transition

For fluids with Pr ≫ 1, scale analysis can be used to show that the flow in the test-section
can be assumed to be thermally developing. The following analysis was mostly adapted from
chapters of Bejan’s Convection Heat Transfer [5].

The steady-state conservation of mass, momentum, and energy at every point in a two-
dimensional, incompressible, flow field with constant properties can be described by the
mathematical equations 3.1, 3.2, 3.3, and 3.4, respectively.

∂u

∂x
+
∂v

∂y
= 0 (3.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ v

(
∂2u

∂2x
+
∂2u

∂2y

)
(3.2)

u
∂v

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂y
+ v

(
∂2v

∂2x
+
∂2v

∂2y

)
(3.3)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂2x
+
∂2T

∂2y

)
(3.4)

The boundary layer equation for energy, neglecting thermal diffusion in the x direction,
can be written as

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂2y
(3.5)

Let δT be the order of magnitude of the distance in which T changes from T0 at the wall
to T∞ in the free stream. For the boundary region of height δT and length L, we determine
the following scales for x, y, and u.

x ∼ L, y ∼ δT , u ∼ U∞ (3.6)

where U∞ is the flow velocity in the free stream. We define ∆T = T0 − T∞ to represent
the temperature difference in the thermal boundary region as defined. The free stream is the
flow region outside of the boundary layer region that is no longer affected by solid obstruction
and heating effects.

Substituting the order of magnitude scale terms into the boundary layer equation 3.5,
we can show a balance between conduction from the wall into the stream and convection
parallel to the wall.

u
∆T

L
, v

∆T

δT
∼ α

∆T

δ2T
(3.7)

We can estimate δt in the limit of a thick thermal boundary layer, where δt ≫ δ and
where δ is the velocity boundary layer defined as the order of magnitude distance between
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Figure 3.2: Velocity and temeprature boundary layers near a plate parallel to a uniform flow.
Convection Heat Transfer. [5]

u = 0 at the wall and u = U∞ in the free stream. In this limit, the u scale outside the
velocity boundary layer is U∞. From the mass continuity equation 3.1 we can determine
that the v scale goes by

v = δ
U∞

L
(3.8)

Using this, we can rewrite the second term of the energy balance 3.5 as

v
∆T

δT
∼ U∞

∆T

L

δ

δT
(3.9)

As δ/δT is small, the first term of 3.5 dominates the convection component (the entire left
side) of the energy balance.

U∞
∆T

L
∼ α∆T

δ2T
(3.10)

Rearranging we get
δT
L

∼ Pe−1/2 ∼ Pr−1/2Re
−1/2
L (3.11)

where the Peclét number is defined as Pe = U∞L/α. Extending this result to apply for
internal duct flow instead of external flow on a flat plate,

δT (x) ∼ xPr−1/2Re
−1/2
L (3.12)

At the transition between thermally developing and developed flow, x ∼ XT and δT ∼ Dh.
Substituting into Equation we obtain,
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XTPr
−1/2Re

−1/2
XT

∼ Dh (3.13)

From which we get the dimensionless group governing the transition in thermal develop-
ment: (

XT/Dh

Pr ReDh

)1/2

∼ 1 (3.14)

Dividing by the dimensionless group that governs the hydrodynamic development tran-
sition, (

X/Dh

ReDh

)1/2

∼ 1 (3.15)

we obtain the scaling,

XT

X
∼ Pr (3.16)

This scaling can be shown to be valid for all ranges of Pr for internal flow in a duct,
which is not the case for external flow on a flat plate.

The Prandtl number range of interest for the lab surrogate fluid and prototypical molten
salt is between approximately 22 and 9. This range roughly corresponds to a Flibe tempera-
ture between 600 and 800 degrees Celsius. Meaning that the thermal entry region would be
22 to 9 times the hydrodynamic entrance length. This confirms that the flow in the entire
test-section is thermally developing.

Mixed Convection

This scaling does not include buoyancy forces. The temperature differences from the wall
to the bulk, in some cases, are large enough that mixed convection would occur. The
nondimensional group Gr/Re represents the importance of buoyancy-induced flow relative
to forced flow in internal mixed convection [12]. Where,

Gr =
gβ (Tw − Tb)D

3
h

ν2
(3.17)

The buoyancy-aided heat transfer effect scaling is plotted for a range of hypothetical ex-
perimental parameters in Figure 3.3. We find that for mixed convection effects become
significant at mass flow rates below 30 kg/h with a temperature delta between the bulk fluid
and wall of 30◦C; using Gr/Re = 1 as a boundary. For context, the complete experimental
data set discussed in Chapter 4 is recorded at a mass flow rate of ∼80 kg/h. The chosen
boundary is to some degree arbitrary. To predict flow regime boundaries, it is recommended
to examine flow regime maps constructed using theory and experimental data. Using a flow
regime map, the Re number and the value of Gr4PrDh/L can be used to locate flow regime
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Figure 3.3: Buoyancy-aided heat transfer effect distortion for a range of possible temperature
differences between the bulk fluid and channel wall. Mixed convection effects are predicted
for very low mass flow rates. Temperature differences greater than 40◦C are not anticipated
in the experiment. A temperature difference of some value can be obtained by different
Tb and Tw combinations, resulting in a range of possible film temperatures that the fluid
properties are evaluated at, and hence the range of possible Gr/Re values for any given x-
coordinate value. The existing SHEFRA experimental data-set covers a range of temperature
differences at a mass flow rate of ∼ 80 kg/h.
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boundaries where the mixed convection heat transfer was found to not deviate more than
10% from pure forced convection [14, 12].

Gr4 =
gβ

(
T̄w − T̄b

)
D3

h

ν2
(3.18)

Here, T̄w is the circumferential average wall temperature, and T̄b is the fluid bulk mean
temperature from x = 0 to x. Conservatively using a non-oscillating input, we find that
over the entire length of the tube, the averaged Nu values are expected to not deviate
from that of a pure convection regime. This leaves open the possibility that local mixed
convection effects may be present. Future work will experimentally confirm the presence of
any significant buoyancy-aided heat transfer effects by testing high values of Gr/Re in both
vertical and horizontal flow configurations.

Hydrodynamic Entry Length

To determine if and where along the test-section the flow is hydrodynamically developed,
the hydrodynamic entry length is calculated.

Laminar Flow Velocity Entrance Region

Using Schlichting’s solution for the entrance region characteristic length [17],

X/D

ReD
∼= 0.04 (3.19)

For the existing test-section channel (ID: ”channel 1”) corresponding to an inner radius
of 0.06 inches the characteristic length for selected Reynolds numbers are provided in Table
3.2. A mass flow rate of 80 kg/h was included to compare how much longer the velocity
entrance region would be for a hypothetical laminar flow at a Reynolds number of 7036.
The motivation to include this mass flow rate is that, at the time of writing, it matched
the flow rate of initial experimental data collected from SHEFRA. At a Reynolds number of
7036, the flow might be characterized as in the transitional regime and not fully turbulent.
This in part motivated applying laminar flow models and associated analytical solutions for
the Nusselt number to check whether the experimentally measured Nusselt numbers were
comparable. Hence, determining the velocity entrance region for this flow rate was required
to determine whether to compare using a hydraulically developed or developing solution for
the Nusselt number. In the end, experimentally measured Nusselt numbers at 80 kg/h were
found to be at least an order of magnitude higher than the estimates found in this section.
These results are presented in more depth in a subsequent chapter.

The initial set of runs on SHEFRA had a mass flow rate of 80 kg/h corresponding to a
Reynolds number of approximately 7000, which indicates that the flow is likely transition-
turbulent. Despite this, an imaginary laminar regime is assumed for the experimental data
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Re X [m] D [mm] Flow rate [kg/h] U [m/s]
440 0.05 m 3.05 5 0.05
880 0.11 m 3.05 10 0.38
1759 0.21 m 3.05 20 0.75
7036* 0.85 m 3.05 80 3.01

Table 3.2: The hydrodynamic entry lengths, X, in the SHEFRA test-section for varying mass
flow rates are listed. The scale analysis shows that laminar flow is estimated to be hydrauli-
cally developed less than or equal to 0.2 m downstream of the channel inlet. *Hypothetical
laminar flow for model comparison purposes

Re X [m] XT [m] D [mm]
Turbulent 0.03 m 0.03 m 3.05
Turbulent 0.06 m 0.06 m 6.10

Table 3.3: The thermal and velocity entrance lengths for a 3 and 6 mm inner diameter flow
channels are less than or equal to than 6 cm.

set in order to apply laminar flow heat transfer models. Results will be overlaid with steady-
state turbulent flow heat transfer models that are predicted to be within match the experi-
mental Nusselt numbers, for a periodically-varying inlet condition, in order of magnitude.

For the initial runs at 80 kg/h, the hydrodynamic entry length for an imaginary laminar
regime is 3.01 m, which is equivalent to the entire length of the SHEFRA channel. Laminar
flow regimes can be achieved at lower mass flow rates with entry lengths ranging from 0 to
approximately 0.25 m. The practical takeaway from this analysis is that laminar models for
both hydraulically-developed and developing flow should be applied where appropriate.

Turbulent Flow Entry Length

The hydrodynamic and thermal entry region is very short compared to that of laminar flow.

X

D
∼= 10 ∼=

XT

D
(3.20)

Laminar Duct Flow Analytical Solutions

The energy equation for a steady, axisymmetric circular duct is
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1
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In the case of non-negligible buoyancy forces, the axisymmetric flow assumption would not
apply. Having determined the thermal development condition of the flow in the test-section,
we proceed to the solve for the steady state solution analytically for the case of hydrody-
namically developing and fully developed flow.

Hydrodynamically Fully Developed

For fully developed velocity regions, v = 0 and u = u(r). Equation 3.21 becomes

u(r)

α

∂T

∂x
=
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2
(3.22)

The velocity distribution is parabolic, subject to a no-slip condition at the wall, u(r0) = 0.
The convection and conduction energy flow scales can be extracted as follows.
By applying an energy balance over a control volume of length dx in a fully developed

cylindrical duct it can be shown that

dTm
dx

=
2

r0

q′′

ρcpU
(3.23)

where U is the average axial velocity. Substituting this relation for the longitudinal temper-
ature variation of the stream into the energy equation we obtain the convection scale.

Convection :
U

α

(
q′′

DρcpU

)

Radial conduction :
∆T

D2
, Longitudinal conduction :

1

x

(
q′′

DρcpU

)
Multiplying byD2/∆T and applying the definition of the heat transfer coefficient h = q′′/∆T
we arrive at

Convection :
hD

k
, Radial conduction : 1, Longitudinal conduction :

(
hD

k

)2( α

UD

)2

The Peclét number appears in the longitudinal conduction scale. For the limit of high
PeD, longitudinal conduction can be safely omitted to arrive at a further simplified energy
equation.

PeD =
UD

α
≫ 1 (3.24)

A representative PeD number of 31,300 for the SHEFRA system is calculated for the exper-
imental variables presented in Table 3.4.
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PeD α [m2/s] D [mm] Flow rate [kg/h] U [m/s]
31,300 7.047× 10−8 3.05 20 0.75

Table 3.4: A representative Peclét number of 31,300 was calculated for the SHEFRA test
section in the laminar flow regime corresponding to the thermal diffusivity of Dowtherm A
at 80◦C

Returning to objective of this section, which is to present an analytical model for steady-
state thermal developing but hydraulically developed flow, Equation 3.25 is solved for the
conditions of a constant and (radially) uniform wall temperature or constant uniform heat
flux, imposing symmetry about the centerline, and isothermal fluid at the inlet. The velocity
distribution is parabolic, indicating Hagen-Poiseulle flow.

u(r)

α

∂T

∂x
=
∂2T

∂r2
+

1

r

∂T

∂r
(3.25)

This problem was first solved by Graetz, however the Lévêque solution is presented for
a simplified alternative [8, 13].

Nux =

{
1.077x

−1/3
∗ − 0.70 x∗ ≤ 0.01

3.657 + 6.874 (103x∗)
−0.488

e−57.2x∗ x∗ > 0.01

Nu0−x =


1.615x

−1/3
∗ − 0.70 x∗ ≤ 0.005

1.615x
−1/3
∗ − 0.20 0.005 < x∗ < 0.03

3.657 + 0.0499/x∗ x∗ > 0.03

(3.26)

For a constant heat flux boundary condition, the solution is,

Nux∗ =


1.302x

−1/3
∗ − 1.00 x∗ ≤ 0.00005

1.302x
−1/3
∗ − 0.50 0.00005 < x∗ ≤ 0.0015

4.364 + 8.68 (103x∗)
−0.506

e−41x∗ x∗ > 0.001

Nu0−x =

{
1.953x

−1/3
∗ x∗ ≤ 0.03

4.364 + 0.0722/x∗ x∗ > 0.03

(3.27)

The dimensionless axial position x∗ is defined

x∗ =
x/D

ReD · Pr
(3.28)

At a temperature of 80◦C, the Prandtl number of Dowtherm A is 13.86. The analytical
Nusselt number values of SHEFRA under a range of laminar flow conditions is plotted in
Figure 3.4. The Nusselt plot is accompanied by the set of Figure 3.5 which convert between
dimensionless and dimensional longitudinal distance in the SHEFRA test section.
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Figure 3.4: Theoretical Nusselt number values for thermally developing, hydraulically de-
veloped flow as a function of dimensionless longitudinal distance for constant heat flux and
isothermal wall boundary conditions. Using the set of plots in Figure 3.5, a distance of 1
cm downstream of the test section inlet is found to correspond to x∗ = 10−4. The Nusselt
numbers therefore range from around 22.5 to 4.364 and 32.1 to 3.657, from 1 cm downstream
of the inlet to the channel outlet, for isothermal wall and constant heat flux boundary con-
ditions, respectively.
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Figure 3.5: The set of figures plot the dimensionless distance along a duct as a function of
other dimensional and dimensionless parameters. The top, middle and bottom plots plot x∗
for ReD = 500, 1250, and 2000, respectively. For reference, the SHEFRA channel is 2 meters
long.
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Figure 3.6: Nusselt number as a function of dimensionless length in the combined entrance
region (thermally and hydraulically developing). Prandtl number was found to have little
effect on the Nusselt number in the range of 27.8 to 9.2, corresponding to the Dowtherm A
temperature range of 50 to 140◦C.

Thermally and Hydraulically Developing Flow

According to the analysis in this section, laminar flow in the SHEFRA channel is typically
both thermally and hydraulically developing. Recommended analytical correlations for the
local Nusselt numbers is steady state convection in simultaneously developing flow are used
to provide a useful reference point to assess experimental measurements [18]. This is not
meant to replacement for a transient analytical model, which will be investigated in Section
3.2.

Nux = 7.55 +
0.024x−1.14

∗
(
0.0179Pr0.17x−0.64

∗ − 0.14
)(

1 + 0.0358Pr0.17x−0.64
∗

)2 (3.29)

Turbulent Duct Flow Correlations

The Nusselt number for steady state conditions in the SHEFRA channel is predicted using
the below Gnielinksi correlation [23] and plotted in Figure 3.7.

NuD = 0.012
(
Re0.87D − 280

)
Pr0.93

(1.5 ≤ Pr ≤ 500, 3× 103 ≤ ReD ≤ 106)
(3.30)
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Figure 3.7: Turbulent duct flow Nusselt number predictions for SHEFRA experimental con-
ditions as a function of Reynolds and Prandtl numbers calculated using the Gnielinksi cor-
relation [23].

3.2 Transient Model Derivation

Introduction

Travelho and Santos obtained an analytical solution for unsteady conjugate heat transfer in
a duct with a periodically varying inlet temperature by using the Laplace transform. This
method circumvents the need to solve the complex eigenvalue problem and also provides a
form of the analytical solution in the frequency domain. The solution was extended by the
same authors to model the same problem for a circular duct with external convective heat
transfer to ambient air.

The solution procedure is replicated and expanded in this section for the purpose of
determining the extensibility of the solution method for modified versions of the problem,
to add contextualizing commentary and to highlight mathematical approximations made.
The first extension of interest is the application of a quasi-steady model for the purpose
of calculating the Nusselt number at the fluid-solid boundary. This will be demonstrated
in the next subsection and the results of which constitute a primary contribution to the
theoretically modeling of this problem. A second objective is to experimentally validate the
results as the cited authors have mentioned that this was not done. During literature review,
no published work was found for the experimental validation of the Travelho and Santos
solution. Thirdly, there is potential value is including this derivation from the literature
to show the process of solving the problem in the frequency domain before transforming
back into the time domain. Here, the complete temperature solution is then evaluated with
the appropriate dimensionless arguments to obtain wall and bulk temperature and heat flux
solutions. This approach could be modified such that the formulations for the temperature,
heat flux and Nusselt number are in their terminal form in the frequency domain. This would



CHAPTER 3. THEORETICAL MODELING AND FREQUENCY SCALING 42

Symbols
A = amplitude

a, a∗ = duct radius, duct wall heat capacity = ρcpa/ρwcwl
b∗, c∗ = dimensionless parameters defined by Equations 3.46
cp, cw = fluid and wall specific heats at constant pressure

ho = heat transfer coefficient
k = thermal conductivity of fluid
l = wall thickness

Nuo = outside Nusselt number = hoa/k
r,R = radial coordinate, dimensional radial coordinate = r/a
s = Laplace transform parameter
t = time

T (r, z, t) = fluid temperature
To, T = cycle mean temperature, reference temperature

U = mean velocity
z, Z = axial coordinate, dimensionless axial coordinate αz/Ua2

α = thermal diffusivity of fluid
∆To = amplitude of inlet oscillations

θ(R,Z, τ) = dimensionless reference temperature = (T (r, z, t)− To)∆To
θ∞ = dimensionless reference temperature (T∞ − To)(1 + i)/∆To

ρ, ρw = fluid density, wall density
τ = dimensionless time = αt/a2

ψ(Z) = dimensional periodic part of ψ
ω = frequency of oscillations
Ω = dimensionless frequency of oscillations = ωa2/α
∼= Laplace transform

Table 3.5: Space-dependent transient model symbols.

allow for opportunities to employ frequency domain analysis methods on the theoretical and
experimental systems. For example, parameters of an analytical transfer function that is
predictive of the Nusselt number can be fitted to experimental data from the same frequency
response tests currently being conducted for SHEFRA. The effect would be that the Nusselt
number could be estimated with higher fidelity having utilized both magnitudes and phase
changes of the dynamic system of oscillating wall and bulk fluid temperatures. This is in
contrast to using only the absolute temperature magnitudes in the case of a conventional
time-domain approach. Finally, the solution presented in this chapter applies to laminar
fluid flow. Replicating the derivation process will hopefully facilitate future work to extend
the solution for turbulent flows.
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Problem Definition

The problem solved is for laminar forced convection with unsteady conjugate heat transfer
in the thermal entrance region of a circular duct with convection from the ambient and
periodically varying inlet temperature. The channel wall heat capacity is accounted for in
the analysis and a slug flow model is assumed. At the time of the paper’s writing, the Laplace
Transform technique was used as means to avoid a complex Sturm-Liouville problem. The
byproduct of this approach is the determination of amplitudes and phase lags for the wall
and fluid bulk temperatures, and wall heat flux as a function of physical parameters. After
the solution is transformed back into the time-domain, the phase lag information is retained
and the solutions for temperature, and heat flux are in the form of complex numbers.

Equation 3.32 is a dimensionless form of Equation 3.25. Axial conduction and viscous
dissipation effects are assumed to be negligible. Negligible axial conduction for the SHEFRA
test-section was determined in Section 3.1. Slug flow is assumed.

Tm =
1

A

∫
A

TdA (3.31)

∂θ(R,Z, τ)

∂τ
+
∂θ(R,Z, τ)

∂Z
=

1

R

∂

∂R

[
R
∂θ(R,Z, τ)

∂R

]
(3.32)

The slug flow approximation is introduced by assuming a uniform velocity distribution
u(r) = U . Eliminating the r dependence simplifies the analytical solution. The velocity term
in the fluid energy equation is found in the dimensionless axial coordinate, Z = αz/Ua2.
Later in the derivation, the slug flow approximation simplifies the expression for obtain-
ing the bulk fluid temperature from the radially-dependent fluid temperature solution. For
constant properties and uniform flow velocity, the bulk temperature is the mean fluid tem-
perature averaged over the flow area, as defined in Equation 3.31. The dimensionless form
of this definition appears in Equation 3.60. The approximation refers to the flow of a solid
material or a fluid with an extremely small Prandtl number. We can expect that the quasi-
steady model will overpredict Nu values compared to the physical system [25]. Despite this
distortion, the results and conclusions obtained remain tractable.

The inlet bulk fluid temperature follows a periodic oscillation mathematically represented
as a complex exponential.

θ(R, 0, τ) = eiΩτ (3.33)

The problem is also subject to the following boundary condition due to symmetry:

∂θ(R,Z, τ)

∂R

∣∣∣∣
R=0

= 0 (3.34)

The convection to ambient air is governed by a constant heat coefficient at the wall boundary.
The channel is modeled with a thin wall, and therefore R = 1 corresponds to the boundary
for both heat flux to the fluid, and to the ambient air on the other side. An energy balance
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on the wall produces the following boundary condition.

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

=
1

a∗
∂θ(1, Z, τ)

∂τ
+Nuo [θ(1, Z, τ)− θ∞] (3.35)

Here a∗ represents the ratio of the effect of duct wall capacitance to heat transfer.

Problem Redefined As Sum of Periodic and Permanent
Components

Next, the problem is split into a periodic and permanent component.

θ(R,Z, τ) = ξ(R,Z) + γ(R,Z, τ) (3.36)

Permanent Problem Statement

The problem’s permanent component ξ(R,Z) is now defined as

∂ξ(R,Z)

∂Z
=

1

R

∂

∂R

[
R
∂ξ(R,Z)

∂R

]
(3.37)

with boundary conditions

ξ(R, 0) = 0 ,
∂ξ(R,Z)

∂R

∣∣∣∣
R=0

= 0 (3.38)

and
∂ξ(R,Z)

∂R

∣∣∣∣
R=1

+Nuo [ξ(1, Z)− θ∞] = 0 (3.39)

Periodic Problem Statement

Similarly, the periodic component γ(R,Z, τ) is defined

∂γ(R,Z, τ)

∂τ
+
∂γ(R,Z, τ)

∂Z
=

1

R

∂

∂R

[
R
∂γ(R,Z, τ)

∂R

]
(3.40)

with boundary conditions

γ(R, 0, τ) = eiΩτ and
∂γ(R,Z, τ)

∂R

∣∣∣∣
R=0

= 0 (3.41)

and
∂γ(R,Z, τ)

∂R

∣∣∣∣
R=1

+
1

a∗
∂γ(1, Z, τ)

∂τ
+Nuoγ(1, Z, τ) = 0 (3.42)
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Periodic Problem Redefined

The periodic temperature function γ(R,Z, τ) can be assumed to be of the form γ(R,Z, τ) =
ψ(R,Z)eiΩ(τ−Z). Replacing this term in Equation 3.40 and its associated boundary conditions
we get

∂ψ(R,Z)

∂Z
=

1

R

∂

∂R

[
R
∂ψ(R,Z)

∂R

]
0 ≤ R ≤ 1, Z ≥ 0 (3.43)

ψ(R, 0) = 1
∂ψ(R,Z)

∂R

∣∣∣∣
R=0

= 0 (3.44)

and
∂ψ(R,Z)

∂R

∣∣∣∣
R=1

+ c ∗ ψ(1, Z) = 0 (3.45)

where the dimensionless parameters are

c∗ = Nuo + ib∗, b∗ =
Ω

a∗
=
ωaρwcwl

k
(3.46)

The dimensionless parameter b∗ is the dimensionless frequency multiplied by the ratio wall
thermal capacity to fluid thermal conductivity. This becomes an important parameter for
the dynamic response of the system, as seen later in this chapter. b∗ can be found in c∗,
a term that includes the effect of ambient convection, and present in the solutions to the
periodic problem solutions presented later in this section.

Permanent Problem Solution Method

Taking the Laplace transform of Equation 3.37 with respect to Z obtains

sξ̃(R, s) =
1

R

∂

∂R

[
R
∂ξ̃(R, s)

∂R

]
(3.47)

∂ξ̃(R, s)

∂R

∣∣∣∣∣
R=0

= 0 (3.48)

∂ξ̃(R, s)

∂R

∣∣∣∣∣
R=1

+Nuo

[
ξ̃(1, s)− θ∞

s

]
= 0 (3.49)

where

ξ̃(R, s) = lim
Z→s

ξ(R,Z) =

∫ ∞

0

ξ(R,Z)e−sZdZ (3.50)

The solution to this problem in the Laplace domain is

ξ̃(R, s) =
Nuoθ∞
s

I0(
√
sR)√

sI1(
√
s) + NuoI0(

√
s)

(3.51)

where I0 and I1 are the modified Bessel functions of the first kind.
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Permanent Wall Dimensionless Temperature

The permanent wall temperature is defined as

ξw(Z) ≡ ξ(1, Z) (3.52)

where ξ(1, Z) is obtained by the inverse transform of ξ̃(1, s), per the transform definition in
Equation 3.50. The inverse transform solution (Equation 3.55) is found for R = 1, and for
small Z, and in turn small values of s, which is applicable for the thermal entrance region
(Refer to [22], [16] and [1]). Setting R = 1 in the Laplace solution to the permanent problem
in Equation 3.51 obtains

ξ̃(1, s) =
Nuoθ∞
s

I0(
√
s)√

sI1(
√
s) + NuoI0(

√
s)

(3.53)

The asymptotic expansion for large arguments for the modified Bessel functions of the first
kind is

Iν(z) ∼
ez√
2πz

{
1− µ− 1

8z
+ . . .

} (
|arg z| < π

2

)
(3.54)

where µ = 4ν2 Using this expansion, the inverse Laplace solution is

ξw(Z) ≡ ξ(1, Z) = θ∞

{
1− 1

(η1 − η2)

[
η1e

η21Z erfc
(
−η1

√
Z
)

−η2eη
2
2z erfc

(
−η2

√
Z
)]}
(3.55)

where η1 and η2 are given by η12 = −Nuo/2± [Nuo/2 (Nuo/ 2− 1)]1/2.
This solution expression is indeterminate for Nuo = 2 due to the two-term approximation.

This is remedied by applying L’Hospital’s rule to obtain

ξw(Z) = θ∞

[
1 + 2

√
Z
π
− (1 + 2Z)eZ erfc(

√
Z)

]
for Nuo = 2

(3.56)

Permanent Wall Dimensionless Heat Flux

The wall heat flux, ξh(Z), is given by the following, as per Equation 3.49.

ξh = −∂ξ(R,Z)/ ∂R|R=1 (3.57)

Applying this definition to the Laplace transform of the permanent solution in Equation 3.51
and obtaining the inverse transform solution results in

ξh(Z) = − Nuoθ∞
(η1 − η2)

[
η1e

η21z erfc
(
−η1

√
Z
)
−η2eη

2
2Z erfc

(
−η2

√
Z
)]

(3.58)

for Nuo ̸= 2

ξh(Z) = 2θ∞

[
2

√
Z

π
− (1 + 2Z)eZ erfc(

√
Z)

]
(3.59)

for Nuo = 2
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Permanent Fluid Bulk Dimensionless Temperature

Starting with the definition of fluid bulk temperature

ξb(Z) = 2

∫ 1

0

Rξ(R,Z)dR (3.60)

The Laplace transform is applied, and utilizing the previously obtained ξ̃(R,Z) from Equa-
tion 3.51, the expression is integrated to get

ξ̃b(s) =
2θ∞Nuo

s3/2
I1(

√
s)√

sI1(
√
s) + NuoIo(

√
s)

(3.61)

In a similar procedure to the permanent wall temperature solution, the inverse transform of
Equation 3.61 is found. The result is, for Nuo ̸= 2

ξb(Z) = 2θ∞

{
2 + Nuo

(η1−η2)

[
1
η1
eη

2
1z erfc

(
−η1

√
Z
)

− 1
η2
eη

2
2z erfc

(
−η2

√
Z
)]} (3.62)

and

ξb(Z) = 4θ∞

[
1− 2

√
Z

π
+ 2ZeZ erfc(

√
Z)

]
(3.63)

for Nuo = 2

Periodic Problem Solution

The authors describe that a similar method is used to solve the periodic dimensionless fluid
bulk temperature, wall temperature and wall heat flux [22]. The dimensionless periodic wall
temperature, wall heat flux and and bulk fluid temperature solutions are given by Equations
3.64, 3.65, and 3.66, respectively.

Periodic Wall Dimensionless Temperature

The periodic wall temperature defined at radial coordinate location R = 1 in the periodic
solution ψ(R,Z).

ψw(Z) ≡ ψ(1, Z) =
1

λ1 − λ2

(
λ1e

λ2
1Zerfc(−λ1

√
Z)

−λ1eλ
2
1Zerfc(−λ2

√
Z)

) (3.64)

Periodic Dimensionless Heat Flux

The periodic dimensionless heat flux is defined at the wall (R = 1) by

ψh(Z) ≡ − ∂ψ(R,Z)

∂R

∣∣∣∣
R=1

= c∗ψ(1, Z) (3.65)
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Periodic Fluid Dimensionless Temperature

ψb(Z) = −3− 2c∗

λ1 − λ2

( 1

λ1
eλ

2
1Zerfc(−λ1

√
Z)

− 1

λ2
eλ

2
1Zerfc(−λ2

√
Z)

) (3.66)

where λ12 = −c∗/2± [c∗/2 (c∗/2− 1)]1/2.

3.3 Quasi-steady Model

Application of Quasi-steady Model

An quasi-steady model to predict the local heat transfer coefficient in the SHEFRA test
section is constructed using the Travelho and Santos solution derived in the previous section
for unsteady conjugate heat transfer in a circular duct with periodically varying inlet tem-
perature [22]. The approach taken is to work backwards from the permanent and periodic
solutions obtained at the end of the previous section to obtain the complete dimensionless
fluid bulk temperature, wall temperature, and wall heat flux solutions. These terms are then
used to formulate an expression that equals to the Nusselt number.

As described in the previous section, the dimensionless temperature solution composed
of a permanent and periodic component.

θ(R,Z, τ) = ξ(R,Z) + γ(R,Z, τ) (3.67)

The solution of dimensionless periodic temperature assumes the form

γ(R,Z, τ) = ψ(R,Z)eiΩ(τ−Z) (3.68)

The dimensionless permanent wall temperature, wall heat flux and and bulk fluid tempera-
ture solutions are given by Equations 3.55, 3.58, and 3.62, respectively. The dimensionless
periodic wall temperature, wall heat flux and and bulk fluid temperature solutions are given
by Equations 3.64, 3.65, and 3.66, respectively. An expression for the heat transfer coefficient
at the wall is formulated. The quasi-steady heat transfer coefficient is defined in relation to
the wall heat flux as follows

q′′ = h(Tb(z)− Tw(z)) (3.69)

In dimensionless terms this becomes

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

= Nu[θb(Z)− θw(Z)] (3.70)

The permanent and peridoic contributions to the dimensionless heat flux are defined as

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

≡ ηh(Z) + λh(Z) (3.71)
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Substituting back into Equation X,

ηh(Z) + λh(Z) = Nu[θb(Z)− θw(Z)] (3.72)

ηh(Z) ≡ ξh(Z) =
∂ξ(R,Z)

∂R

∣∣∣∣
R=1

(3.73)

Recalling that the temperature solution was split into the following terms

θ(R,Z, τ) = ξ(R,Z) + γ(R,Z, τ) (3.74)

∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

=
∂ξ(R,Z)

∂R

∣∣∣∣
R=1

+
∂γ(R,Z, τ)

∂R

∣∣∣∣
R=1

(3.75)

Recalling that the periodic temperature solution was assumed to have the form in Equation
3.68

∂γ(R,Z, τ)

∂R

∣∣∣∣
R=1

= λh =
∂ψ(R,Z)

∂R

∣∣∣∣
R=1

eiΩ(τ−Z) (3.76)

Substituting these terms into the complete expression for the wall heat flux we obtain

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

≡ − ∂ξ(R,Z)

∂R

∣∣∣∣
R=1

− ∂ψ(R,Z)

∂R

∣∣∣∣
R=1

eiΩ(τ−Z) (3.77)

The partial derivative on the right side of the equation are replaced with previously defined
notation for the respective permanent and periodic wall heat flux solutions.

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

≡ ξh(Z) + ψh(Z) e
iΩ(τ−Z) (3.78)

Substituting the Travelho and Santos periodic and permanent wall heat flux solutions we
get

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

≡ − Nuoθ∞
(η1 − η2)

[
η1e

η21Zerfc(η1
√
Z)

−η2eη
2
2Zerfc(η2

√
Z
]
− c∗ψ(1, Z)

(3.79)

Utilizing the the periodic dimensionless wall temperature solution for ψ(1, Z)

− ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

≡

− Nuoθ∞
(η1 − η2)

[
η1e

η21Zerfc(η1
√
Z)− η2e

η22Zerfc(η2
√
Z
]

+
c∗

λ1 − λ2

(
λ1e

λ2
1Zerfc(−λ1

√
Z)− λ1e

λ2
1Zerfc(−λ2

√
Z)

) (3.80)
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In addition to the final form of the wall heat flux term, the complete fluid bulk and wall
temperature solutions are needed.

θw(R,Z, τ) = ξw(R,Z, τ) + ψw(R,Z) e
iΩ(τ−Z) (3.81)

θb(R,Z, τ) = ξb(R,Z, τ) + ψb(R,Z) e
iΩ(τ−Z) (3.82)

Rearranging, we can solve for the Nusselt number in terms of the derived expressions.

Nu =
− ∂θ(R,Z,τ)

∂R

∣∣∣
R=1

θb(Z)− θw(Z)
(3.83)

Transient Model Evaluation

The transient model provides a general theoretical basis for experiment analysis. Capabilities
derived from the analysis in this section include the ability to predict if a system is in
a quasi-steady state, a prerequisite for measuring valid (i.e. constant) values of Nu, and
model-informed design of frequency response experiments and parameter tuning such that
the system is quasi-steady. This lays the groundwork for future work which, as discussed in
Section 3.2, would be be to apply the quasi-steady model in the Laplace domain to enable
the use of both magnitude and phase change data from frequency response experiments to
more reliably estimate constant experimental parameters such as the Nusselt number in a
system transfer function.

The transient model was evaluated for different combinations and ranges of the character-
istic dimensionless parameters to predict the response of a range of hypothetical test-sections
and experimental conditions. The effect of different dimensionless parameters on the analyt-
ically derived Nusselt number is analysed and compared to similar studies in the literature.
Similar trends were observed applying a quasi-steady model on analytical solutions for tem-
perature and heat flux for unsteady transient convection heat transfer between parallel plates
[20]. To bring the dimensionless parameters into context, a scaling analysis is presented in
the subsequent sections. This is followed by model results that demonstrate key trends and
that also reveal potential sources of distortions causing a departure from quasi-steady state
and a non-constant Nusselt number at a fixed longitudinal distance. Table 3.6 provides rep-
resentative experimental parameters specific to the SHEFRA test section to accompany the
scaling analysis. Table 1.1 summarizes the dimensionless group ranges that apply to all of
the analytical model simulations presented in the results section of this chapter.
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Symbol Parameter Value Units
ρw Wall density 1358 kg/m3

k Thermal conductivity of fluid f(T ), Dowtherm A W/(m K)
ks Thermal conductivity of copper 8933, Ref. [6] W/(m K)
cw Specific density of wall 8933 J/(kg K)
cp Specific density of fluid f(T ), Dowtherm A J/(kg K)
a Channel inner radius 0.06 inches
l Wall thickness 0.065 in

∆To Fluid temperature amplitude 50 K
To Cycle mean temperature 400 K
T∞ Ambient air temperature 293.15 K

Table 3.6: Representative experimental parameters for the SHEFRA test section used for
analytical analysis. The thermal conductivity of the copper wall was used to impose an
upper limit of 0.1 to the candidate test section Biot number. The Biot analysis is shown for
the actual test section in Chapter 4.

Symbol Parameter Value
Pr Prandtl number 7 < Pr < 19
Re Reynolds number 1253 < Re < 4522
θ∞ Dimensionless reference temperature −2.33(1 + i)
a∗ Dimensionless parameter (Table 3.5) 0.48
b∗ Dimensionless parameter (Eq. 3.46) Variable
c∗ Dimensionless parameter (Eq. 3.46) Variable
Nuo Nusselt number, ambient convection Variable

Table 3.7: Dimensionless experimental parameters for the SHEFRA test section analytical
model simulation. The Reynolds number exceeds the range of applicability for laminar flow
regime due to temperature dependent fluid properties that fluctuate over a heating cycle.
The simulation Re upper limit is sufficiently close to 2300 such that no significant distortion
is expected to result from assuming a hypothetical laminar regime at a Reynolds number of
4522. However, future work should repeat this analysis with a mass flow rate lower than 30
kg/h for confirmation.
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(a) (b)

Figure 3.8: b∗ dependence on inlet oscillation frequency on a log-log scale (a) and in terms
of oscillation period on a linear scale (b). b∗ becomes infinitely large as the oscillation period
approaches zero.

3.4 Scaling Analysis

Frequency Scaling

Recalling the definition of dimensionless parameter b∗ from Equation 3.46,

b∗ =
Ω

a∗
=
ωaρwcwl

k

we can observe its dependence on the inlet temperature oscillation frequency in Figure 3.8.
The b∗ parameter represents the nondimensional frequency multiplied by the ratio between
the thermal capacity of the wall and the heat transfer by conduction across the fluid. When
b∗ = 0, the wall heat capacitance can be neglected, which results in the equivalent problem
for a non-participating wall.

Parameter b∗ exits the linear regime and becomes exponentially large as the oscillation
period drops below 5 seconds. The remaining variables of b∗ are evaluated using the represen-
tative values in Table 3.6 at a fluid temperature of 100◦C. The inlet temperature oscillation
frequency is converted from Hz to rad/s before evaluating b∗.

Distance Scaling

The dimensionless distance Z is given by

Z = αz/Ua2 (3.84)
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Figure 3.9: Dimensionless distance as a function of dimensional distance downstream of the
SHEFRA test section inlet. A distance of 1 cm, and 3 m downstream of the inlet corresponds
to Z values of 10−4 and 0.079, respectively. The plot on the right covers a section close to
the inlet while the left plot covers a distance that goes beyond the physical channel.

The values of Z are small in the thermal entrance region of a channel, which is the case for
the entire 2 meter length of the SHEFRA test section as shown in Figure 3.9.

Reference Temperature Scaling

The dimensionless reference temperature θ∞ is the reference temperature scale for the SHE-
FRA system as defined in Table 3.5 as,

θ∞ = (T∞ − To)(1 + i)/∆To (3.85)

Figure 1.9 shows the effect of the mean bulk fluid temperature, To in addition to the inlet
bulk fluid temperature amplitude, ∆To. The ranges for each variable were chosen to cover
and extend beyond desired Prandtl scales for Dowtherm A as a surrogate fluid for Flibe
and the amplitudes possible to achieve experimentally based on operational experience with
SHEFRA hardware.

3.5 Analytical Solutions and Results
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Figure 3.10: Effect of inlet bulk temperature amplitude and mean cycle bulk fluid temper-
ature on θ∞ on a log y-axis. A typical amplitude of 30◦C and mean temperature of 90◦C
result in a θ∞ = −2.33(1 + i).
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.11: The quasi-steady model predictions for Nu(Z) for b∗ = 0.1 are plotted in
the top row for two different positions within each of the inlet (a), middle (b) and outlet
(c) regions, respectively. The bottom row shows the same for b∗ = 1.0. Nu values in
the thermally developed outlet region are elevated compared to steady-state predictions,
suggesting that while distances further down the channel are better approximated by the
quasi-steady model, low values of b∗ produce worse approximations compared to much higher
values. The dimensionless parameters that are specific problem are printed on the plot area.
To create this simulation, representative experimental conditions were chosen for which the
Prandtl number range is between 24 and 11. The Reynolds number ranges between 1871
and 4724 for a fixed mass flow rate of 30 kg/h. In practice, the test condition that is being
changed from one b∗
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.12: The quasi-steady model predictions for Nu(Z) for b∗ = 10 are plotted in the top
row for two different positions within each of the inlet (a), middle (b) and outlet (c) regions,
respectively. The bottom row shows the same for b∗ = 100. The highest deviations in Nu
are found for intermediate values of b∗. Quasi-steady operation would be represented by a
horizontal line, which can be found at higher values of b∗ for portions of the cycle time, at
vertical positions that more closely matches steady-state thermally developed conditions in
the outlet region, despite a large distortion added from ambient convection (Nuo = 1.)
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Wall temperature, θw(Z) for b
∗ = 0.1 is plotted in the top row for two different

positions within each of the inlet (a), middle (b) and outlet (c) test-section regions, respec-
tively. The bottom row shows the same for b∗ = 1.0.
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Wall temperature, θw(Z) for b
∗ = 10 is plotted in the top row for two different

positions within each of the inlet (a), middle (b) and outlet (c) test-section regions, respec-
tively. The bottom row shows the same for b∗ = 100.
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Wall heat flux for b∗ = 0.1 is plotted in the top row for two different positions
within each of the inlet (a), middle (b) and outlet (c) test-section regions, respectively. The
bottom row shows the same for b∗ = 1.0.
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.16: Wall heat flux for b∗ = 10 is plotted in the top row for two different positions
within each of the inlet (a), middle (b) and outlet (c) test-section regions, respectively. The
bottom row shows the same for b∗ = 100.
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Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Bulk fluid temperature, θb(Z) for b∗ = 0.1 is plotted in the top row for two
different positions within each of the inlet (a), middle (b) and outlet (c) test-section regions,
respectively. The bottom row shows the same for b∗ = 1.0.



CHAPTER 3. THEORETICAL MODELING AND FREQUENCY SCALING 62

Inlet region Middle region Outlet region

(a) (b) (c)

(d) (e) (f)

Figure 3.18: Bulk fluid temperature, θb(Z) for b∗ = 10 is plotted in the top row for two
different positions within each of the inlet (a), middle (b) and outlet (c) test-section regions,
respectively. The bottom row shows the same for b∗ = 100.
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(a) (b) (c)

(d) (e) (f)

Figure 3.19: Nu and wall temperature, θw, for b
∗ = 1 (a, d) b∗ = 10 (b, e) and b∗ = 100

(c, f) for the case of zero external natural convection to ambient. Distortions are effectively
eliminated by removing the effect of natural convection to ambient surroundings. It remains
that the quasi-steady condition is better approximated at higher values of b∗. However the
trade-off of increasing b∗ can clearly be seen comparing plots (d), (e) and (f) for the wall
temperature. Depending on the accuracy of thermocouples used and absolute dimensional
temperatures, increasing b∗ beyond 10 provides rapidly diminishing returns in terms of sat-
isfying the quasi-steady condition and will lead to higher measurement uncertainty and in
turn, a lower signal-to-noise ratio.
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Wall heat flux and bulk fluid temperature, θb, for b
∗ = 1 (a, d) b∗ = 10 (b, e)

and b∗ = 100 (c, f) with zero external natural convection to ambient.
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(a) (b) (c)

Figure 3.21: Tuning θ∞ can be used to produce a system response that is better approximated
by the quasi-steady condition as shown in shown plots. The tuning is however highly sensitive
to the longitudinal distance being measured and therefore eliminating ambient convection
distortions would be a more effective strategy if possible
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Chapter 4

SHEFRA Experimental Results

4.1 Introduction

SHEFRA is an experimental facility used to investigate the use of frequency response testing
methods and frequency domain analysis to extract high fidelity heat transfer measurements
while minimizing error and uncertainty. These methods have been applied towards the
demonstration of thermal hydraulic similitude between Dowtherm A and Flibe experimental
and prototypical forced convection applications. The governing equations for laminar flow
in circular channel with a periodically-varying fluid inlet temperatures boundary condition
are nondimensionalized and analyzed in the frequency domain. The analytical solutions and
scaling terms can be used to obtain the optimal experiment parameters in terms of error and
the ability to approximate steady state response even as the temperature in the system are
fluctuating.

The first stage of demonstrating thermal hydraulic similitude between a molten salt and
surrogate fluid pair, such as Flibe and Dowtherm A, is to confirm that the respective steady
or quasi-steady state measurements for Nu as a function of Pr and Re are in agreement.
This first phase can be referred to as steady state similitude. Dynamic similitude at higher
dimensions is also theoretically possible, where the quasi-steady model is no longer valid
and the Nu predictions would appear to deviate. This can be referred to as transient or
dynamic thermal hydraulic similitude which would be measured in terms of local heat flux
and temperatures. Instead of a Nu number, a basket of other dimensionless parameters
would be needed for the scaling of the dynamic system from the surrogate fluid lab scale
to prototypical Flibe. An example of this is the group of dimensionless parameters derived
in Chapter 3 for a periodically-varying fluid inlet temperature in a cylindrical channel. At
first impression, the modelling approach and scaling terms appear specialized to a particular
problem. However, there is wide applicability and utility in the modeling of systems with
a periodic forcing function. This is because periodic functions can be expanded as a sum
of sines and cosines. The Fourier series approximation is ideally suited for the continuous
and smooth functions often encountered in physical systems like solutions for heat transfer.
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Consequently, the frequency domain-based scaling and modeling approach could be adapted
to serve as a versatile tool for scaling and modeling dynamic interactions between molten
salt and solid structures for a wide range of arbitrary periodic forcing functions.

The experimental studies presented in this chapter are concerned with confirming ther-
mal hydraulic similitude for steady state operation or for a transient with a quasi-steady
heat transfer coefficient. We expect measured Nusselt numbers in the SHEFRA test-section
under quasi-steady conditions to be in agreement with steady state analytical solutions and
correlations from the literature. This verifies that the equations used for the data reduction
procedure are in alignment with the theoretical and physical system. Using the same data,
we can determine if the transient model can be validated for the quasi-steady case. The
results obtained demonstrate that the transient model has been preliminarily validated for
quasi-steady heat transfer conditions. This indicates that for steady laminar flow, Dowtherm
A surrogate fluid can be used in a scaled experiment as a surrogate for Flibe, for both ther-
mally developing and developed flow.

Forced convection experiments using Flibe would be needed to confirm this similitude.
Laminar and transitional flow experiments were done with Flibe at ORNL in addition to
turbulent flow testing. However, the heat transfer coefficients were calculated by integrating
over the thermal entrance region. The local heat transfer measurements are not listed in the
report [7]. The SHEFRA test section comes about a meter short of allowing flow to become
fully developed for the case of laminar flow, and therefore a direct comparison is not possible
using the ORNL salt data.

Seeing as the transient model is also capable of resolving heat flux and temperature
solutions for when the heat transfer is unsteady, another level of model validation could
lead to an advanced capability to simulate unsteady molten salt thermal hydraulics with
surrogate fluids.

4.2 Data Reduction

To obtain an expression for the local heat transfer coefficient as a function of experimental
parameters and measured values, an energy balance on a channel wall element is used.
Approximations made in Section 3.1 for thermally developing laminar flow and turbulent
flow can be applied here, with the relevant dimensionless groups summarized in Table 4.2.

Lumped Capacitance Approximation

A channel wall element is assumed to be appropriate to approximate as a lumped capacitance.
The following analysis explores the validity of this assumption.

Bi =
hl

ks
(4.1)

Nu =
hD

kf
(4.2)
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Symbol Parameter Value Units
ks Thermal conductivity of copper 385, Ref. [6] W/(m K)
kf Thermal conductivity of fluid f(T ), Dowtherm A W/(m K)
cw Specific heat of wall 8933, Ref. [6] J/(kg K)
cp Specific heat of fluid f(T ), Dowtherm A J/(kg K)
l Wall thickness 0.049 in
D Channel diameter 0.12 in
ρw Wall density 1358 kg/m3

ρf Fluid density f(T ), Dowtherm A kg/m3

Table 4.1: Actual experimental parameters for the SHEFRA test section. The model ac-
counts for the wall thermal capacitance. The wall specific heat and density are represented
in a channel element internal energy term in Equation 4.4. The fluid thermal conductivity
is used to nondimensionalize the local heat transfer coefficient, to calculate the measured
Nusselt number. The solid thermal conductivity is not used in the solid energy model, and
in a Biot number analysis to justify the lumped capacitance approximation.

The Biot number is calculated for the test-section using Equation 4.1. An estimated local
heat transfer coefficient must be used for the calculation. An upper limit for Nu of 500 is
chosen which exceeds that of steady-state turbulent convection heat transfer at Re=10,000
and Pr=15. The conservatively high estimate for the local heat transfer coefficient is cal-
culated using Equation 4.2 to be 20,653 Wm−2K−1. Using this, and parameters found in
Table 4.1 such as the characteristic length, the maximum Biot number is expected to be
no more than 0.064, which satisfies the condition, Bi < 0.1. In other terms, the maximum
Nu for which this approximation is valid is around Nu=800. Table 4.2 summarizes the
dimensionless groups for which the data reduction model applies.

Solid Energy Equation

The energy balance in 4.3 includes the net flow of thermal energy from forced convective
heat transfer and the time-dependent internal energy of a channel element, U .

hA (Tb − Tw) = U (4.3)

The internal energy term is expanded according to the lumped thermal capacitance approx-
imation.

hA (Tb − Tw) = (ρV cp)s
dTw
dt

(4.4)

Dividing by unit volume, V , the equation is formulated to use a specific surface area term,
av.

hav (Tb − Tw) = (ρcp)s
dTw
dt

(4.5)
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Table 4.2: Dimensionless group ranges of applicability for SHEFRA experiment data reduc-
tion model. The Reynolds number range spans both laminar and turbulent flow regimes.
The Prandtl number range is selected to match prototypical Flibe temperatures of interest,
as shown in Figure 4.7. Mixed convection scaling, Gr/Re, was not explicitly represented
in the data reduction model. In the case of buoyancy-aided heat transfer, an increased
measured Nu number would be detected when comparing between operation in vertical and
horizontal tube orientations. The model assumes a large Péclet number that allows longitu-
dinal conduction in the fluid to be neglected, which is the case for the SHEFRA experiment
in both laminar and turbulent conditions according to the relevant analysis in Section 3.1.

Parameter Applicable Experimental Range
Reynolds Laminar and turbulent
Prandtl 0− 22
Gr/Re ≲ 1
Frequency 0− 0.5 Hz
Biot ≲ 0.1
Péclet Large, or ≳ 104

av for a cylindrical channel is obtained using the unit volume and surface area of a channel
wall element.

av =
Awall element

Vwall element

=
2πa dz

[π(l + a)2 − π(a)2] dz

=
2a

l2 + 2al

(4.6)

Solving for the local heat transfer coefficient obtains

h =
(ρcp)s

dTw

dt

av (Tb − Tw)
(4.7)

However, the bulk fluid temperature is not known along the length of the test-section and
for this reason the fluid energy equation must be used.

Fluid Energy Equation

A differential approach is used to create an energy balance model of a channel fluid segment.
The first law of thermodynamics requires that the heat transferred from the wall to the
stream equals the sum of the enthalpy gain of the stream and any change in the stored
energy for a control volume ∂x.

mcp
∂Tm
∂t

+ ṁ(hx+∂x − hx) = q′′ 2πr0 ∂x (4.8)
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Modeling the fluid as an incompressible liquid with negligible pressure changes yields

∂h ≃ cp∂Tm (4.9)

mcp
∂Tm
∂t

+ ṁ ∂h = q′′ 2πr0 ∂x (4.10)

Dimensional analysis:

kg · J

kgK
· K
s
+

kg

s
· J

kgK
·K =

J

m2s
·m ·m (4.11)

ρV cp
∂Tm
∂t

+ ṁcp∂Tm = q′′ 2πr0 ∂x (4.12)

V = πr20 ∂x (4.13)

ṁ = ρcpUA (4.14)

A = πr20 (4.15)

ṁ = ρcpU · πr20 (4.16)

ρcp
∂Tm
∂t

· πr20 ∂x+ ρcpU ∂Tm · πr20 = q′′ 2πr0 ∂x (4.17)

ρcp
∂Tm
∂t

· πr20 ∂x+ ρcpU ∂Tm · πr20 = q′′ 2πr0 ∂x (4.18)

Divide by ∂x

ρcp
∂Tm
∂t

· πr20 + ρcpU
∂Tm
∂x

· πr20 = q′′ 2πr0 (4.19)

Divide by 2πr0 to isolate q′′.

ρcp
r0
2

(
∂Tm
∂t

+ U
∂Tm
∂x

)
= q′′ (4.20)

Dimensional analysis:
kg

m3
· J

kgK
·m

(
K

s
+

m

s

K

m

)
=

W

m2

W

m2
=

W

m2

(4.21)

At this stage, a formula for Tm can be obtained. For a bundle of small streams ρu ∂A, the
first law in Equation 4.18 can be rewritten as

q′′ 2πr0 ∂x = ρcp
∂Tm
∂t

· πr20 ∂x+ ∂

∫∫
A

ρucPT∂A (4.22)
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Combining Equation 4.22 with Equation 4.20, we obtain

ρcp
r0
2

(
∂Tm
∂t

+ U
∂Tm
∂x

)
2πr0 ∂x = ρcp

∂Tm
∂t

· πr20 ∂x+ ∂

∫∫
A

ρucPT∂A (4.23)

ρcpA
∂Tm
∂t

∂x+ ∂TmρcpUA = ρcp
∂Tm
∂t

· πr20 ∂x+ ∂

∫∫
A

ρucpT∂A (4.24)

The time-dependent terms cancel, and after assuming constant-property tube flow, this
expression reduces to the mean temperature definition.

Tm =

∫∫
A
uTdA

UA
(4.25)

Our attention now returns to the fluid energy balance. Recognizing that q′′ = −h(Tb − Tw)
from Equation 4.3, and substituting into Equation 4.20, we get

ρcp
ro
2

(
∂Tm
∂t

+ U
∂Tm
∂x

)
= −h(Tb − Tw) (4.26)

Finite Difference Model

Using finite differences, a local bulk fluid temperature can be estimated using a reference
bulk fluid temperature as shown in Equation 4.27.

ρcp
ro
2

(
∂Tm
∂t

+ U
∆Tm
∆x

)
= −h(Tb − Tw) (4.27)

ρcp
ro
2

(
∂Tm
∂t

)
Node i

+ ρcp
ro
2

(
U
∆Tm
∆x

)
Node i to j

= −h (Tb − Tw)Node i (4.28)

Solving for the local mean or bulk fluid temperature

ρcp
ro
2

(
U
∆Tb
∆x

)
Node i to j

= −h (Tb − Tw)Node i − ρcp
ro
2

(
∂Tb
∂t

)
Node i

(4.29)

ρcp
ro
2
U
Tb,j − Tb,i

∆x
= −h (Tb,i − Tw)− ρcp

ro
2

∂Tb,i
∂t

(4.30)

Tb,j =
2(xj − xi)

ρcpUro

[
−h (Tb,i − Tw)− ρcp

ro
2

∂Tb,i
∂t

]
+ Tb,i (4.31)

The scheme implemented is illustrated in the nodal diagram in 4.1. To calculate the
measured heat transfer at some distance downstream of the inlet represented by node n, it is
first calculated at a node that represents the inlet using Equation 4.7. The code must then
calculate the heat transfer coefficient at each node between the inlet and the desired node.
The heat transfer coefficient from the previous node, is used to estimate the local fluid bulk
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Tb,i
Tw,i

Tb,j
Tw,j

Tb,n
Tw,n

. . .

Tb,N
Tw,N

∆x ∆x

Figure 4.1: Nodal diagram of the finite difference model used to estimate downstream bulk
fluid temperatures

temperature at a node using Equation 4.31. Since there are five thermocouples distributed
along the test section length, there are also five corresponding nodes. The wall temperature
measurements are the anchors to the finite difference model. The inlet bulk temperature is
used rather than an outlet bulk temperature because the temperatures are higher and there-
fore the uncertainty in that measurement becomes relatively smaller. This model neglects
any potential mixed convection effects which may be important for high enough tempera-
ture gradients. Additional model development and testing in a horizontal orientation will be
conducted in the future for further investigation. The code implementation of the described
data reduction is provided in Appendix C.

4.3 Code Development Methodology

Lessons learned from past experiments

Debugging was a major challenge during the development of data reduction codes for the
Pebble-bed Heat Transfer Experiment due to the absence of physical test cases needed to
assess the correctness of the code implementation. The approach taken was to carefully
review and manually test individual units of code, a tedious and error-prone activity. Future
work on the estimation of convective heat transfer coefficients in pebble-beds in the Reynolds
and Prandlt number ranges of interest for PB-FHRs would benefit from using physical test
cases derived from analytical solutions. The lack of physical test cases led to an increased
time burden of manual testing and increased risks of breaking established code behavior
during ongoing development.

SHEFRA code development approach

Object-oriented programming

Anticipating SHEFRA, The PBHTX code base was written with abstractions to allow the
analysis of other transient convection heat transfer experiments. Despite this, when it came
time to extract results from SHEFRA experimental data, the analysis code was restruc-
tured to make the code easier to understand and debug. The rewrite aims to improve on
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the application of the object-oriented programming principles of abstraction, inheritance,
encapsulation, and polymorphism.

To illustrate this in practice, consider the calculation of the flow Reynolds number.
Reynolds numbers were initially evaluated within fluid class instances called fluid objects.
This however required information on the dimensions of the flow channel. To facilitate this,
an interface was made between the fluid and a test-section class. The two classes would
then interface again before the convective heat transfer calculation. The result is a web of
interfaces that are poorly encapsulated and difficult to test and debug. A more logical group-
ing would result if the Reynolds number was to be calculated within a separate node class
instance that would inherit fluid and solid object information. Encapsulation is achieved
as the fluid class is now limited to only provide information on the fluid thermophysical
properties. Multiple inheritance is also achieved with this change, meaning that the node
class is logically derived from the fluid and solid base classes. When the derived information
is combined with channel-specific attributes such as the physical dimensions, it provides an
appropriate and logical place to evaluate the Reynolds number.

Testing and Test-driven development

The simple circular channel geometry of the SHEFRA test-section and the availability of an-
alytical solutions presented an opportunity to develop physical test cases. Assertions on the
expected results of code units are continually tested. Tests are conventionally written after a
unit of code is completed however an emerging best practice is the test-driven development
(TDD). TDD can be summarized in the following steps below [4].

1. Write a test

2. Run all tests. The new test should fail

3. Write the simplest code that passes the new test

4. Verify that all tests are passing

5. Refactor code as necessary, and running tests in between and after.

This sequence is repeated until the required functionality is achieved. Refactoring can
include restructuring, removing hard code, removing duplicate code, etc..

Selection of physical test cases

The data reduction code processes the raw measurement data and provides the inputs needed
for model calculations. Code functionality can be segmented for testing in a modular fashion.
The output of a code module can be validated using a true solution from a known physical
model, or through other assertions. This section will provide examples of code functions and
corresponding test cases.
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Heat transfer coefficient at the inlet

The simplest version of the calculation of the heat transfer coefficient is at the test section
inlet where the bulk fluid temperature is directly measured.

Physical test case 1: steady inlet temperature

The most basic physical test case is for a steady fluid inlet temperature and a wall tempera-
ture initial condition. To create the inputs for the test case, model parameters including the
heat transfer coefficient and mean temperature are chosen and the solution is obtained for
the tube wall temperature. The test will read the solution temperature data, run the code
module, and then check whether the output value for the heat transfer coefficient matches
the value used to generate the test data. The model assumes that the tube wall can be
approximated as a lumped capacitance.

Starting with the tube wall energy model in Equation 4.32

(ρcp)w
av

∂Tw(t, z)

∂t
= h(Tb(t, z)− Tw(z)) (4.32)

av =
2a

l2 + 2la
(4.33)

where, av is the specific surface area, a is the channel inner radius, and l is the wall
thickness.

We impose an initial condition

Tw(0) = Tw,i (4.34)

Introducing the temperature difference,

θ(t, z) ≡ Tw(t, z)− Tb(t, z) (4.35)

Evaluating the time derivative of the temperature difference given a constant mean fluid
temperature, we get

∂θ

∂t
=
∂Tw
∂t

(4.36)

Substituting the temperature difference and its derivative back into the energy balance,
we obtain

(ρcp)w
hav

∂θ

∂t
= −θ (4.37)

Separating variables and integrating over time from the initial condition

(ρcp)w

hav

∫
θi

θ ∂θ

θ
= −

∫ t

0

∂(t) (4.38)
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where

θi ≡ Tw,i − Tb (4.39)

After evaluating the integral we get

(ρcp)w
hav

ln
θi
θ
= t (4.40)

Which can be rearranged as follows

θi
θ
=

Tw − Tb
Tw,i − Tb

= exp

[(
− hav
(ρcp)w

)
t

]
(4.41)

Solving for the tube wall temperature we arrive at

Tw = (Tw,i − Tb) exp

[(
− hav
(ρcp)w

)
t

]
+ Tb (4.42)

We also require the time derivative of the tube wall temperature which is obtained by
rearranging the original energy balance equation.

∂Tw(t, z)

∂t
=

hav
(ρcp)w

(Tb(t, z)− Tw(z)) (4.43)

The following parameters were selected for the test case.

Table 4.3: Parameter values for heat transfer analysis

Symbol Parameter Value (SI units) Units (SI)
h Heat transfer coefficient 2000 W/(m2 K)
Tb Bulk fluid temperature 400 K
Tw,0 Initial wall temperature 300 K
ρ Wall density 8933 kg/m3

cp Specific heat capacity 385 J/(kg K)
a Channel inner radius 0.02 m
l Wall thickness 1E−3 m

The resulting temperature distribution for t = 0 to t = 10s is plotted in Figure 4.2, and
is saved in a .csv formatted table.

Designing a test in practice is often non-trivial, and care must be taken into ensuring
that the functionality of the code unit is actually being tested. For illustrative purposes and
as a practical example for the reader, the first test case as coded in Python is included in
this section below. The input data is first packaged into a form that the WallEnergyBalance
class expects. The test will only pass if the correct heat transfer coefficient is calculated. In
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Figure 4.2: Steady fluid inlet temperature physical test data

following the TDD methodology, this test was written before the energy balance code was
written. Development of the code unit is complete once the test passes. The Pytest package
was used to run the test files.

1 from src.shefra.model import WallEnergyBalance

2 import numpy as np

3 import pandas as pd

4

5 class Test_WallEnergyBalance:

6 def test_WallEnergyBalanceSteadyInlet(self):

7

8 #Prepare test input ’node’ object

9

10 path=("testInputs/WallEnergyBalanceSteadyInlet.csv")
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11 testdata=pd.read_csv(path)

12 time=testdata[’time’]. to_numpy ()

13 solidTemp=testdata[’solidTemp ’]. to_numpy ()

14 solidTempDerivative=testdata[’solidTempDerivative ’]. to_numpy

()

15

16 #expected result

17

18 h=1500

19

20 #test inputs

21

22 density =8933

23 specificHeat =385

24 radiusInner =0.02

25 thickness =1e-3

26

27 # mock a Node instance with input data and parameters

28

29 class Node:

30 def __init__(self ,density ,specificHeat ,radiusInner ,

thickness ,

31 solidTemp ,solidTempDerivative ,time):

32 self.density=density

33 self.specificHeat=specificHeat

34 self.dim={

35 ’radiusInner ’:radiusInner ,

36 ’thickness ’: thickness

37 }

38 self.solidTemp=solidTemp

39 self.solidTempDerivative=solidTempDerivative

40

41 node = Node(density ,specificHeat ,radiusInner ,thickness ,

42 solidTemp ,solidTempDerivative ,time)

43

44

45 solidModel = WallEnergyBalance(node)

46

47 assert (solidModel.h == np.ones(len(time))*h).all

Listing 4.1: Heat transfer coefficient code unit test in Python.
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Physical test case 2: periodically-varying inlet temperature

An additional test case for the tube wall energy balance is designed to ensure the code can ac-
cept non-steady fluid temperature data. This will more closely resemble actual experimental
data. This model was also used in the system design phase of the physical experiment.

The energy balance equation is the same as in the previous test.

∂Tw(t, z)

∂t
=

hav
(ρcp)w

(Tw(z)− Tb(t, z)) (4.44)

However, now the bulk fluid temperature at the inlet boundary is a periodic function
defined as

Tb(t) = −K sin(2πft) + T0 (4.45)

where K is an amplitude factor, f is the frequency of the periodic function, t is the time,
and T0 is the time-averaged or baseline bulk fluid temperature. The i subscript is henceforth
dropped from Tb,i.

This is a linear non-homogeneous differential equation. The solution is the sum of a
homogeneous and a particular solution. The homogenous part is solved as follows.

∂Th
∂t

=
hav

(ρcp)w
(−Th) (4.46)

Th = c0 exp
−havt
(ρcp)w

(4.47)

Next, the particular solution is solved using the method of undetermined coefficients,

Tw(t) = c0 exp
−havt
(ρcp)w

+ c1 cos(2πft) + c2 sin(2πft) + c3 (4.48)

where

c1 =
hav

(ρcp)w2πf

(
K − hav

(ρcp)w2πf

)
(4.49)

c2 =
−hav

(ρcp)w2πf
(4.50)

c3 = T0 (4.51)

Applying an initial condition
Tw(0) = Tw,0 (4.52)

The last constant is determined to be

c0 = Tw,0 − c1 − c3 (4.53)
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Taking the time derivative of the wall temperature solution we obtain

Tw(t) = −Ka2vh
2 sin (2πft)

a2vh
2 + 4π2c2pf

2ρ2
+

2πKavcpfhρe
avht
cpρ

a2vh
2 + 4π2c2pf

2ρ2
− 2πKavcpfhρ cos (2πft)

a2vh
2 + 4π2c2pf

2ρ2
+ T0 (4.54)

∂

∂t
Tw(t) = −Ka2vh

2 sin (2πft)

a2vh
2 + 4π2c2pf

2ρ2
+

2πKavcpfhρe
avht
cpρ

a2vh
2 + 4π2c2pf

2ρ2
− 2πKavcpfhρ cos (2πft)

a2vh
2 + 4π2c2pf

2ρ2
+ T0 (4.55)

The wall temperature solutions can now be used to generate test case data given a set of
test parameters.

Table 4.4: Parameter values for heat transfer analysis

Symbol Parameter Value (SI units) Units (SI)
h Heat transfer coefficient 2000 W/(m2 K)
Tw,0 Initial wall temperature 300 K
ρ Wall density 8933 kg/m3

cp Specific heat capacity 385 J/(kg K)
a Channel inner radius 0.02 m
l Wall thickness 1E−3 m
K Fluid temperature amplitude 50 K
f Frequency 0.1 Hz
T0 Baseline fluid temperature 400 K

The resulting test data set is plotted in Figure 4.3.
The test data generated simulates experimental measurements of the change in wall

temperature in response to a periodic variation in the local bulk fluid temperature. This
model is applicable at any node along the channel length, as long as Tb represents the local
fluid temperature. In the case of SHEFRA, the bulk fluid temperature is only directly
measured at the inlet and must be inferred for node locations along the length of the tube
using a finite difference approximation.

Node construction

The channel test-section is organized into nodes; one for each thermocouple location on the
tube wall. The heat transfer coefficient is measured at each axial node location. The code
test will verify that the fluid and solid class instances are combined to construct a channel
node class that is packaged in a form that the WallEnergyBalance class functions will expect.
Flow parameters of the Channel Node class include flow parameters such as the Reynolds,
and Prandtl numbers. Inputs to the node constructor includes attributes from a Channel
object. These are properties that are common to all nodes along the channel, such as the
channel dimensions.
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Figure 4.3: Space-independent model simulation that shows the dynamic wall temperature
response to a sinusoidally-varying fluid inlet temperature in a circular channel.

For the Node construction test case, the test data from one of the previously described
tests is used to construct mock Channel, Fluid and Solid inputs. The test verifies that the
input attributes can be accessed from the Node output in the specified format.

This test case also introduces the getter and setter design pattern to protect class at-
tributes from inadvertent changes. Class attributes are configured as private, read-only
properties and getter and setter methods expose public interfaces in a controlled and safe
manner. To illustrate the utility of this design pattern, the getter methods for obtaining
material properties is shown here to require a temperature input before the attribute is re-
trieved. The retrieval happens through a predefined function call.

1 class Solid:

2

3 # initialize solid object using constructor method
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4 def __init__(self ,density ,specificHeat ,solidTemp ,

solidTempDerivative ,time):

5 self.__density=density

6

7 # getter method

8 def get_density(self , temp):

9 self.__density=props.solidDensity(temp)

10 return self.__density

11

12 # example of how the getter method is called

13 class Node:

14 def __init__(self ,channel ,fluid ,solid):

15 self.solidDensity=solid.get_density(solid.temp)

Listing 4.2: Getter and setter methods help to prevent unintended changes to object
attributes

If multiple solid materials were present in the properties tables, the above function would
also require an additional argument to identify the material.

Noisy derivatives

The wall energy balance modeled in Equation 4.3 contains the time derivative of the solid
wall temperature. Due to the the noise associated with making physical measurements, the
solid wall temperature is not perfectly smooth. The finite difference method for taking the
derivative by using adjacent time step results in large fluctuations due to error propagation.
A common method is a Savitsky-Golay filter which is applied to increase the precision of the
data without distorting the signal tendency. In a convolution process, successive sub-sets
of adjacent data points are fitted with a low-degree polynomial by the method of linear
least squares. Other options include convolution with a Gaussian in the Fourier space or
multi-pass moving-average filtering.

A study was done to compare different methods for computing the temperature derivative
with respect to time. Solid temperature data from the periodic inlet temperature physical
test case was used and random noise was added to simulate noisy measurement samples.
The differentiation methods were evaluated by comparing the RMS error compared to the
true derivative of the solid wall temperature.

As expected, the Fourier spectral derivative had the least error for computing noisy
derivatives for the SHEFRA system with a sinusoidal forcing function. However, the Fourier
method proved to be inconsistent and the physical test used was not comprehensive to the
types of errors introduced due to the basic cut-off filter used, i.e. all frequencies above a
threshold are zeroed. More sophisticated frequency filters are likely to mitigate this problem.
For the purposes of the experiment, the Savitz-Golay method was chosen due to its acceptable
error, and consistency.
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Figure 4.4: Simulated wall temperature data with random noise added.

Figure 4.5: Savitz-Golay filter result plotted with the true derivative.

Table 4.5: RMS values for different time derivative methods

Method σ = 0 σ = 0.5 σ = 1

Savitz-Golay filter 0.0345 0.3124 0.6094
Fourier spectral derivative (no filter) 3.0426 10.0525 19.4022
Fourier spectral derivative (low pass filter) 0.4052 0.3944 0.3850
Fourier spectral derivative (low pass filter, detrended) 0.1791 0.1796 0.1829

Integration testing

Once the unit tests were written, an end-to-end integration test was written to simulate
the entire data reduction process from file import to the calculation of the final parameter.
To pass, the code must reproduce the actual heat transfer coefficient from the periodically-
varying fluid inlet temperature problem. The input to the integration test is a .csv file that
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(a) Fourier spectral derivative with no filter

(b) Fourier spectral derivative with a low pass filter

(c) Fourier spectral derivative with low pass filter applied after removing the linear trend or drift

Figure 4.6: Fourier spectral derivative result plotted with the true derivative.
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includes the the inlet fluid temperature, solid wall temperature, and mass flow rate and
is formatted similarly to the experiment data files. For clarity, the wallEnergyBalance test
mentioned previously only tests the final equation solving step of the data reduction process,
while the integration test follows the stream of data through the entire process.

4.4 Experimental Apparatus

A comprehensive overview of the experiment design and apparatus is detailed in Chapter
1, however an abbreviated version is provided in this chapter. The SHEFRA test section
is a 2 m long copper tube with an outer diameter dimension of 0.25” and a thickness of
0.049”. The tube conforms to US Navy specification MIL-T-24107B, which features thicker
walls compared to standard specifications. The test section is instrumented with five Type-T
Omega CO3-T ”cement-on” surface thermocouples. The thermocouple pads were cemented
using Omega 400 and further secured with Teflon tape. Bulk fluid temperature is mea-
sured at the inlet of the SHEFRA test section by inserting a Type-T ungrounded, sheathed
thermocouple with a bead diameter of 0.02” to provide a fast response. A Coriolis mass
flowmeter (Siemens SITRANS FC430) is used to measure the flow rate of the heat transfer
fluid through the loop. A National Instruments DAQ was used to deploy the analog power
supply controller which worked by estimating the resistance in the heater Nichrome coiled
wire and proportionally adjusting the voltage to follow the desired power output. The DAQ
was also used to read and store the thermocouple and flow meter measurement data in the
control computer. The fluid used is Therminol VP-1, a heat transfer fluid that can be scaled
to match the Prandtl of Flibe for temperatures expected in a prototypical Mk1 PB-FHR.

4.5 Procedure

Standard operating procedure documents for SHEFRA loop loading, draining and operation
were drafted and approved after a safety review. This section summarizes relevant procedure
steps for the data collected and analyzed in this chapter. After the facility has been prepared
for testing, the variable frequency drive (VFD) is used to gradually increase the centrifugal
pump’s speed until the Coriolis mass flow meter measured a rate of 80 kg/h. Cooling water
is then flowed through the water-to-oil plate heat exchangers. The desired sinusoidal power
profile is loaded into the LabVIEW project to control the power sent to a Nichrome-wire
heater. This heater heats the Dowtherm A before it enters the copper test-section. Each run
consists of a different combination of heater power cycle frequencies, mean and amplitude
values, and pump speed. These operational conditions translate to system parameters that
describe the periodically-varying inlet bulk temperature summarized in Table 4.6.
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Figure 4.7: Prandtl number scaling between Dowtherm A and Flibe. [26, 24, 19, 21].

4.6 Data collection

At the time the experiment was conducted, the analytical model and relevant scaling terms
had not yet been developed. A simple model for the fluid and solid interaction at the inlet
was used to design the test-section, however the model could not predict downstream system
behavior. For this reason, it was not fully understood which system parameters would enable
an optimal response. Nonetheless, a variety of power settings were used to cover the entire
Prandtl range of interest and different inlet oscillations frequencies were used. Table 4.6 lists
the experimental runs in terms of the the important system parameters. Mass flow rate was
steadily increased until the maximum reading on the pressure gauge situated near the pyrex
glass heater was reached. The mass flow rate was then kept constant for all experimental
runs. At the time, the intent was to collect turbulent flow data, however the mass flow rate
was not sufficient to produce consistently turbulent flow. A new pressure gauge was ordered
in order to safely increase the mass flow rate for future turbulent flow measurements. Despite
a constant mass flow rate, the collected data covered flow in the Reynolds range of 3000 to
10,000, and in many cases the estimated Re value shifted by thousands within the same
cycle, creating unpredictable results. A few runs contained data where the fluid remained
in a single flow regime, providing useful data. Ultimately, the SHEFRA theoretical research
shifted towards the modeling of laminar flow, which meant that a sample of the collected
data was sufficient for preliminary assessment of model validity and measuring quasi-steady
Nusselt values.

With the benefit of the scaling terms from Chapter 3, we can nondimensionalize the
experimental run system parameters as seen in Table 4.8.
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Run Mean Cycle Amplitude Inlet Oscillation Mass Flow Time Stamp
Temperature (°C) (°C) Frequency (Hz) Rate (kg/h)

1 50.5 22.5 0.0833 75.5 0508P-111921
2 51.1 11 0.1 75 0344P-111921
3 51.1 22 0.1 75 0405P-111921
4 77.2 40.8 0.1 78.7 0419P-111921
5 100.9 38.3 0.1 80 0435P-111921
6 50.4 20.7 0.125 77.2 0519P-111921
7 50.4 20.8 0.125 77.2 0528P-111921
8 50.6 18.5 0.1667 76 0452P-111921
9 50.3 15 0.25 75.9 0458P-111921

Table 4.6: Experimental runs and cycle parameters.

We can now retroactively apply the guidelines from Chapter 3 for selecting the optimal set
of dimensionless parameters. For this experiment, the system must be in a quasi-steady state.
Larger values of b∗ will converge the system to quasi-steady state. This is discussed further
in Section 4.8. The trade-off is that as b∗ increases, the wall temperature amplitudes become
small. This becomes an issue as the amplitude approaches the measurement uncertainty
of the thermocouple used. Reviewing Table 4.8, the run with the highest inlet oscillation
frequency of 0.25 Hz has the highest b∗ value. This run also happened to produce results that
are in close agreement with known steady state Nu correlations, which cannot be said for
most of the experimental runs which feature much smaller values of b∗. The wall temperature
fluctuations for Run #9 were sub-optimally small and on the same order magnitude as the
thermocouple uncertainty. Despite this shortcoming, the run produced the most significant
results, and the signal-to-noise ratio can be significantly improved in future experiments by
increasing the magnitude of power fluctuations. The power output sinusoid was set at a 1000
W baseline value with an amplitude of 1000 W. As noted previously, the maximum power
output of the heater is 9 kW.

Measurements, Thermophysical Properties and Uncertainty

The data reduction procedure accounted for error propagation due to measurement uncer-
tainties, including a ±1◦C for T-type thermocouples, 1% of the Coriolis Mass Flowmeter
reading, and 10% uncertainty for Dowtherm A fluid property correlations listed in Table
4.9. The relative temperature error for the Prandtl ranges covered is, at most, 3%. All
fluid properties are evaluated at the film temperature, defined as the average of the local
bulk and wall temperatures. The thermocouple limit of error is assumed to be an absolute
error. The standard deviation of the thermocouple error is calculated assuming a normal
distribution. We estimate that the thermocouple absolute error of ±1 overestimates the
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Run Reynolds Range Prandtl Range Time Stamp
1 (2000, 4700) (20, 41) 0508P-111921
2 (2500, 3800) (23, 33) 0344P-111921
3 (2000, 4600) (20, 40) 0405P-111921
4 (2400, 9500) (11, 35) 0419P-111921
5 (4100, 13000) (9, 23) 0435P-111921
6 (2100, 4600) (20, 40) 0519P-111921
7 (2100, 4600) (20, 40) 0528P-111921
8 (2100, 4400) (21, 38) 0452P-111921
9 (2300, 4100) (22, 36) 0458P-111921

Table 4.7: Reynolds and Prandtl ranges for each run. The ranges shown in this table are
slightly exaggerated because the thermophysical properties were evaluated at the bulk fluid
temperature rather than the film temperature. Accurate experimental Prandtl and Reynolds
numbers, using thermophysical properties evaluated at the film temperature, are provided in
Figure 4.15 and plots corresponding to the remaining runs in Appendix A. Additional data
will be collected and analyzed as none of the initial experimental runs satisfy the condition
that the Reynolds number range must not exceed the laminar flow regime (Re< 2300).
Nonetheless, Run #9 was found to be an adequate approximation of quasi-steady state heat
transfer in terms of the oscillation frequency used and the experimentally measured Nu
numbers were found to be a good match to steady state forced convection correlations for
laminar flow despite the test moderately exceeding the applicable Reynold number range.
The Prandtl number range for Run #9 is higher than the Prandtl range of interest for
prototypical molten salt. The present work demonstrates the potential for periodic forcing
under quasi-steady state conditions to match steady state predictions. This provides the
motivation to collect additional experimental data to cover the entire Prandtl and Reynolds
ranges of interest.

error in the context of the SHEFRA experiment. The error in the absolute temperature
measurement is of lesser importance to the measurement of the change in temperature over
each cycle. This depends on the DAQ’s ability to measure the change in voltage coming
from the thermocouple, not the absolute voltage. All thermocouples were calibrated using
the LabVIEW calibration wizard. The calibration procedure required the use of a calibrated
reference RTD probe and consisted of a zero-point calibration step in an ice bath, followed
by a heated Duratherm G oil bath covering the temperatures of operation. After calibra-
tion, negligible deviations in temperature were observed between the thermocouples during
initial isothermal testing at various temperatures. SHEFRA uses Therminol VP-1 which the
same composition as Dowtherm A, and it is assumed that there are negligible differences
in properties for the covered range of temperatures. Copper specific heat and density were
assumed constant with negligible uncertainty. The axial locations of the wall temperature
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Run a∗ b∗ c∗ θ∞ Time Stamp
1 0.78 32.32 (0+32.32j) (-1.36-1.36j) 0508P-111921
2 0.78 38.82 (0+38.82j) (-2.83-2.83j) 0344P-111921
3 0.78 38.82 (0+38.82j) (-1.41-1.41j) 0405P-111921
4 0.79 40.08 (0+40.08j) (-1.40-1.40j) 0419P-111921
5 0.81 41.28 (0+41.28j) (-2.11-2.11j) 0435P-111921
6 0.78 48.49 (0+48.49j) (-1.47-1.47j) 0519P-111921
7 0.78 48.49 (0+48.49j) (-1.46-1.46j) 0528P-111921
8 0.78 64.68 (0+64.68j) (-1.65-1.65j) 0452P-111921
9 0.78 96.97 (0+96.97j) (-2.02-2.02j) 0458P-111921

Table 4.8: Experimental runs and dimensionless parameters.

thermocouples which correspond to the five nodes are assumed have an uncertainty of of
1/4”. The CO3-T variant of the Omega Fast-Response Thermocouples with “Cement-On”
Pads features a 0.010” bead diameter with a 300 ms response time and conforms to Standard
Limits of Error. The response time or time constant is the time required to reach 63.2%
of an instantaneous temperature. An adjustment of 200 ms was made to the collected data
to correct for this. The data acquisition sampling rate was set to 10 Hz. Uncertainties
associated with the time derivative calculation were not accounted for.

The Python uncertainties package is used to calculate the standard deviation of math-
ematical expressions through the linear approximation of error propagation theory.

Property Temperature-dependent correlation [K] Units
Density ρ = −8.91977× 10−1 · T + 1.3261× 103 kg/m3

Specific Heat cp = 2.79813 · T + 7.54676× 102 J/(kg K)
Thermal Conductivity k = 1.85606× 10−1 − 1.60002× 10−4 · T W/(m K)
Dynamic Viscosity µ = 4.31224× 10−6 · exp (2021.208061/T ) Pa s

Table 4.9: Dowtherm A fluid temperature-dependent property correlations based on data in
the 298 and 500 K range. [21, 26]

4.7 Results

The dimensionless parameters that describe Run # 9 in Tables 4.6 and 4.8 indicate that
the system is converging to quasi-steady state. To provide context to interpret results, the
steady state values for thermally developing laminar flow from the correlations in Chapter
3 are shown in Table 4.14. The steady state predictions are evaluated at five Re and Pr
combinations that track the experimental Pr and Re domain ranging from a low-end Re and
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Property Temperature-dependent correlation [◦C] Units
Density ρ = 2279.92− 0.488 · T kg/m3

Specific Heat cp = 2415.78 J/(kg ◦ C)
Thermal Conductivity k = 0.7662 + 0.0005 · T W/(m ◦C)

Dynamic Viscosity µ = 4.638×105

T 2.79 Pa s

Table 4.10: Flibe temperature-dependent property correlations based on data in 600 to 800
◦C range. [21, 26]

Table 4.11: Copper thermophysical properties at 300 K. [6]

Property Value Units
Density ρ =8933 kg/m3

Specific Heat cp = 385 J/(kg K)

high-end Pr flow to a high-end Re and low-end Pr. The measured Nu values for the node at
the inlet for are plotted as a function of Re and Pr in Figure 4.9a. The measurements with the
lowest standard deviation are in agreement with the steady state prediction of Nu=24, with
a measured value of 25±5. Ignoring measurements with uncertainties higher than 11, the
measured Nu is bounded by an upper value of 33±11 which corresponds to the prediction
for thermally developing flow with a constant flux boundary condition. The Nu number
variation for the T-1 and T-2 nodes in Run #9 appear to be correlated with Pr however the
variation is actually correlated to when the measurement is taken on the oscillation cycle.
The Nu number is seen to increase as the difference between the wall and bulk temperature
approaches zero. This can be observed in a plot of the Nu as a function of time in Figure
4.14b. Relying on the analysis in Chapter 3 we hypothesize that this is a distortion to
quasi-steady response from natural convection to ambient air causing a non-zero heat flux
when the temperate gradient is zero. Other external factors that may have contributed
to the deviations in Nu include parasitic heat loss due to the metal fitting and connected
structures that cradle the test-section and that are co-located with the inlet node. Errors
are also introduced due to the data logging sampling rate, and due to the wall temperature
thermocouple time constants. The uncertainty quantification procedure does not account
for these errors. Amending the uncertainty quantification will increase the number of data
points omitted near the intersection point in the bulk and wall temperatures. Mitigation
strategies to dramatically reduce the relative magnitude of these errors are outlined in the
discussion (Section 4.8).

Similar conclusions can be made for nodes T-2 to T-5, shown in Figures 4.9a though
Figure 4.13b. Acceptable agreement is observed between Nu measurements on the lowest-
end of uncertainty error and steady state predictions for thermally developing flow. Table
4.12 is a selection of experimental Nu measurements with the lowest uncertainty compared



CHAPTER 4. SHEFRA EXPERIMENTAL RESULTS 90

Figure 4.8: Experimental temperature measurements for channel nodes with uncertainty
represented as a shaded area. T-1 is the node located at the duct inlet, and T-5 is situated
at the outlet. Reynolds number range: (2300, 4100). Prandtl number range: (22, 36).

with steady state predictions. Due to filtering of Nu measurements of a standard deviation
greater than 80% of the nominal value, Nu measurements of nodes further downstream of the
inlet become progressively sparse in the the grid representations shown. This propagation
of uncertainty is due to the finite difference approximation for estimating the local fluid
temperature at a given node. To calculate the Nu number at T-5, the data reduction code
first calculates the heat transfer coefficient at the inlet, and uses that result to solve at the
adjacent node, and so on until it arrives at T-5. The standard deviation of uncertainty error
must be referenced when assessing the validity of a nominal value in the grid figures. These
higher uncertainty values were not omitted to demonstrate this trend.

The distribution of uncertainty error of the Nu, Re and Pr numbers as a function of their
nominal values are presented in Figures 4.16, 4.17a and 4.17b at each node.

Averaged Nu measurements from all 9 experimental runs as a function of Pr and Re
at each node can be found in Figures 4.18a to 4.19d. A general trend observed is higher
measured Nu numbers for lower values of Pr and higher values of Re. Since the experimental
runs included are not strictly in quasi-steady state, and the flow regimes often cycled between
laminar, transitional and turbulent flow regimes no significant conclusions can be derived
from the overall data for the objective at hand.
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(a) (b)

Figure 4.9: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-1. (f =0.25Hz, To =50◦C, ∆To =15◦C,
76kg/h, timestamp label: 0458-111921)

(a) (b)

Figure 4.10: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-2. (f =0.25Hz, To =50◦C, ∆To =15◦C,
76kg/h, timestamp label: 0458-111921). Node location T-2 is downstream of T-1. The wall
thermocouple measurement nodes are equidistant along the 2 meter vertical copper tube,
with one thermocouple on each of the two ends.
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(a) (b)

Figure 4.11: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-3. (f =0.25Hz, To =50◦C, ∆To =15◦C,
76kg/h, timestamp label: 0458-111921)

(a) (b)

Figure 4.12: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-4. (f =0.25Hz, To =50◦C, ∆To =15◦C,
76kg/h, timestamp label: 0458-111921)
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(a) (b)

Figure 4.13: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-5. (f =0.25Hz, To =50◦C, ∆To =15◦C,
76kg/h, timestamp label: 0458-111921)

(a) (b)

Figure 4.14: Heat transfer coefficient and Nusselt measurements for experimental run
(f =0.25Hz, To =50◦C, ∆To =15◦C, 76kg/h, timestamp label: 0458-111921). Reynolds
number range: (2300, 4100). Prandtl number range: (22, 36).
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Table 4.12: Low uncertainty experimental quasi-steady Nu numbers compared to steady
state Nusselt number predictions for various flow regimes. The distances correspond to the
axial locations of the measurement nodes, T-1 to T-5, relative to the inlet. Upper and lower
bound experimental Nu values with low relative uncertainty are selected. The values are
an average of test data within a limited Pr and Re range. This approach provides more
resolution compared to taking an overall average that will be skewed towards outlier data.
The trade-off is that the selected measured values represent a small fraction of the entire
data set. The experimental parameters and instrumentation can be optimized to increase
the percentage of usable data.

Re Pr Nu Flow Type

0.029 m 0.528 m 0.988 m 1.484 m 1.960 m

3600 30 24 9 7 6 5 T.D., Iso. Wall
34 11 9 8 7 T.D., Const. Flux

2500-4000 25-31 25±5 11±7 6±3 4±2 3±1 Exp. (lower-end)
33±11 21±8 12±5 8±5 8±4 Exp. (upper-end)

4.8 Discussion

The experimental measurements are in agreement with the transient model predictions that
quasi-steady state is achieved at high frequencies, corresponding to higher values of b∗. How-
ever, quasi-steady state can also be approximated in both limits as b∗ approaches zero and
infinity. Therefore low frequencies should also be able approach quasi-steady heat transfer,
with the largest deviations in Nu number results are expected in between high and low values
of b∗. Sparrow and Farias arrived at this conclusion after applying a quasi-steady model to
a solution for periodically varying inlet temperature between participating parallel plates.
This can be reasoned by imagining what is happening to the thermal boundary layer. At the
limit of low frequencies, the thermal boundary is not changing much over time, satisfying
quasi-steady state conditions. At the limit of a very high frequency, the thermal boundary
layer is unable to shift substantially, due to the rapid cycling, and on average the system
converges to a quasi-steady state.

An experiment run at the limit of a very low frequency provides a smaller delta between
fluid and solid temperatures and the potentially for more noise. The lowest frequency run
for SHEFRA was at 0.0833 Hz, and Figure A.23b shows that at least at the inlet node,
the Nu number is in close agreement with steady state predictions for constant flux. This
is in contrast to the high frequency run (0.25 Hz) that more closely match steady state
predictions for uniform wall temperature. Using the SHEFRA transient model to analyze
a variant of Run #1 (0.0833 Hz) in the limit of a very low frequency such as 0.01 Hz, we
find that the predicted Nu numbers at each node are 49, 12, 9, 8, and 7, respectively. Each
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Table 4.13: Comparison of percent errors for low uncertainty experimental quasi-steady Nu
numbers compared to steady state Nusselt number predictions for the covered flow regimes.
The lower-end and higher-end of experimental measurements at each node for Run #9 are
abbreviated as L.E. and H.E., respectively. The steady-state predictions for thermally de-
veloping laminar flow with isothermal wall and constant heat flux boundary conditions are
abbreviated as I.W. and C.F., respectively. Referring to Figures 4.9a though Figure 4.13b,
we see a distribution of experimental Nu numbers that is concentrated at the upper and
lower bounds of the measurement data. The pattern that emerges is that the high end mea-
surements more closely match the steady state thermally developing Nu predictions with a
constant flux boundary condition, and low end measurements generally more closely match
the predictions for an isothermal wall temperature boundary condition. The experimental
measurements overlap most in the range between the constant flux and isothermal wall steady
state predictions, indicating general quasi-steady state heat transfer. The uncertainties are
likely exaggerated here due to the conservative temperature measurement error uncertainty.

Nu Percent Error Comparison

0.03 m 0.53 m 0.99 m 1.48 m 1.96 m

4%±21% 22%±78% -14%±43% -33%±33% -40%±20% L.E. to I.W.
-26%±32% 0%±64% -33%±33% -50%±25% -57%±14% L.E. to C.F.
38%±46% 133%±89% 71%±71% 33%±83% 60%±80% H.E. to I.W.
-3%±32% 91%±73% 33%±56% 0%±63% 14%±57% H.E. to C.F.

of those Nu number predictions except for that of the inlet node is a very close match to
the steady state predictions for uniform wall temperature. This is consistent with Sparrow
and Farias’ conclusion that in all cases, quasi-steady state by a transient model of a similar
construction is better approximated at locations downstream of the inlet. Looking at the
SHEFRA experimental results, it appears that higher frequencies are able to better approx-
imate quasi-steady near the inlet which is an intuitive result. The measured Nu numbers
for the downstream nodes during Run #1 (0.0833 Hz) persist at higher values compared to
steady state predictions, which could be due to a transition from laminar flow as the Re
approaches 5000.

While the Nu data collected during the single 0.25 Hz run was observed to match the
steady state analytical solutions for laminar flow, the test only covered Pr values from 22 to
34. The preliminary agreement observed in the results shown provide an incentive to collect
additional data for Pr numbers 8 to 22, and Re numbers 100 to 10,000. After determining
the optimal baseline and power settings for sections of Pr, the experiment can be repeated
for multiple mass flow rate to sweep through the entire domain of interest. Special care
must be taken to avoid a flow regime transition within a single oscillation cycle to ensure
predictable results. Experiments for forced convection of Flibe in a smooth tube at ORNL
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(a) (b)

Figure 4.15: Prandtl and Reynolds measurements for experimental run (f =0.25Hz,
To =50◦C, ∆To =15◦C, 76kg/h, timestamp label: 0458-111921)

determined that Flibe behaved like normal fluids. For this reason, we anticipated that addi-
tional Dowtherm A experiments will show steady state thermal hydraulic similitude between
the surrogate fluid and Flibe. This conclusion does not upend any existing expectations, and
attention should be instead be drawn to how the frequency domain derived analytical model
has provided the tools to intelligently select experiment parameters that will produce data
with optimally high signal-to-noise ratio. To be more specific, the analytical model solves the
problem of determining which combination of channel material, inner radius, wall thickness,
length, mass flow rate, mean cycle temperature, cycle amplitude, and oscillation frequency,
produce data with the lowest uncertainty in conjunction with Dowtherm A between a fixed
range of temperatures. Further, the model can be used to determine if the system is in
quasi-steady state. The analytical model predictions of Run #9 can be used to demonstrate
this. Although the run was conducted before the model was developed, the steps required
to increase the accuracy of experimental measurements are easily apparent.

It is useful to separate the application of the analytical model to the objective of col-
lecting Nu measurements into two categories. The model can be used to determine if the
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Figure 4.16: Nusselt uncertainty distribution for range of nominal values. (f =0.25Hz,
To =50◦C, ∆To =15◦C, 76kg/h, timestamp label: 0458-111921)

(a) (b)

Figure 4.17: Reynolds and Prandtl uncertainty distributions for range of nominal values.
(f =0.25Hz, To =50◦C, ∆To =15◦C, 76kg/h, timestamp label: 0458-111921)
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(a) (b)

(c) (d)

Figure 4.18: Nusselt number measurements and associated uncertainty for the series of ex-
perimental runs summarized in Table 4.6 at node location T-1 (inlet) and T-2. Measurements
with an uncertainty greater than 25% were omitted from these plots.
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(a) (b)

(c) (d)

Figure 4.19: Nusselt number measurements and associated uncertainty for the series of
experimental runs summarized in Table 4.6 at node location T-3 and T-4. Measurements
with an uncertainty greater than 25% were omitted from these plots.
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Table 4.14: Steady state Nusselt number predictions for various flow regimes. The combined
entrance region prediction is unlikely to be observed in experiment due to a mesh screen
inserted upstream of the inlet for mixing. The distances correspond to the axial locations of
the measurement nodes relative to the inlet.

Re Pr Nu Flow Type

0.029 m 0.528 m 0.988 m 1.484 m 1.960 m

3600 30 24 9 7 6 5 T.D., Iso. Wall
34 11 9 8 7 T.D., Const. Flux
9 8 8 8 8 Combined

273 Turbulent

6000 20 24 9 7 6 5 T.D.,Iso. Wall
36 11 9 8 7 T.D., Const. Flux
9 8 8 8 8 Combined

322 Turbulent

9000 14 25 9 7 6 6 T.D.,Iso. Wall
36 11 9 8 7 T.D., Const. Flux
9 8 8 8 8 Combined

346 Turbulent

10000 13 25 9 7 6 6 T.D.,Iso. Wall
37 11 9 8 8 T.D., Const. Flux
9 8 8 8 8 Combined

357 Turbulent

14000 11 27 10 8 7 6 T.D.,Iso. Wall
40 12 10 9 8 T.D., Const. Flux
9 8 8 8 8 Combined

420 Turbulent

hypothetical or physical experiment will be in a quasi-steady state. A system in quasi-steady
state has a thermal boundary layer than does not change with time, and therefore the Nu
value is expected to remain constant. Secondly, the experimental parameters can be tuned
to produce smaller uncertainties.

Quasi-steady state predictions

The model-predicted Nu is equal to 36 for when the dimensionless parameter b∗ = 97, which
is the case for a frequency of 0.25 Hz. As we increase b∗ we find the Nu converges to 31 as
the inlet frequency is increased. This value is about midway between steady state analytical
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solutions’ predictions of 34 for constant flux and 25 for isothermal wall temperature found in
Table 4.14. Given that the wall temperature is oscillating it would be reasonable to assume
that the quasi-steady prediction and the experimental values would match the constant heat
flux steady state analytical solution prediction. However, the wall temperature oscillations
in this case are much smaller in magnitude compared to the fluid temperature oscillations.
This leads to the likely conclusion that the quasi-steady state prediction will vary between
the constant heat flux and isothermal wall steady state predictions depending on the ratio of
oscillation amplitudes between the fluid and wall. The model assumes constant properties,
and the predictions evaluated in the table are for a fixed Re and Pr value that is representative
of the experimental run; this is expected to introduce a limited amount of error. This
factor aside, increasing the inlet frequency would make the system a better approximation of
quasi-steady state. For the SHEFRA test-section, increasing the inlet oscillation frequency
provides rapidly diminishing returns in terms of reaching model-predicted Nu convergence.
Doubling the frequency to 0.5 Hz, and again to 1 Hz would lead to a Nu of 31.5 and 31.1,
respectively. While the current setup’s maximum frequency of 0.25 Hz provides an acceptable
approximation of quasi-steady state, this could be improved by modifying the tube geometry
to increase b∗. Increasing the b∗ parameter without increasing the inlet frequency avoids over
dampening the wall temperature oscillations.

Model disrepancies

The Sparrow and Farias model showed deviations in the Nu number results and discontinu-
ities when the wall and bulk temperatures are equal, but the heat flux was not zero. This
trend was observed in Chapter 3, but only in the presence of heat transfer to ambient air,
dictated by Nuo.

Reduction of uncertainties

If the wall temperature oscillations are dampened too far, thermocouple measurement error
will lead to large propagated uncertainties. Without significantly modifying the test-section,
this is best mitigated by increasing power. Alternatively, the geometry of the test-section may
be modified to achieve the same effect. Since b∗ is proportional to r/l, increasing the radius
and decreasing the wall thickness slightly can be a substitute of higher inlet frequencies.

In general, error and uncertainty associated with thermocouple measurements can be
minimized by meeting the following criteria.

1. Ensure a large delta between wall and fluid temperatures, θb − θw), relative to the
measurement uncertainty. See Figure 4.21.

2. Ensure that the amplitudes for both the cycle fluid and wall temperatures are large
compared to the measurement uncertainty.
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As noted above, the uncertainty in measurement of the change in temperature is lower than
the uncertainty in the measurement of the absolute temperature.

Depending on the DAQ hardware and control cycle speed, a lower inlet frequency can
lead to smaller time sampling errors and less error from thermocouple time constants. In-
strumentation improvements that would reduce error and uncertainty include the use of
thermocouples with time constants on the order of 1 to 10 ms. T-type thermocouples that
conform to the Special Limits of Error are also available, which have an error of ±0.5. In-
stalling more wall thermocouples, especially near the inlet would reduce the propagation of
error due to the finite difference method. If possible, it would be desirable to thermally
insulate the inlet of the test-section from the metal structures that support it to mitigate
parasitic heat loss distortion. Error introduced due to parasitic heat loss is suspected in the
high power (lower frequency) runs in Appendix A especially at the first node. It is possible
that the low power used for the experimental run #9 presented in this chapter is the reason
that the parasitic heat loss has not created a large distortion. Higher power is needed to
amplify wall temperature oscillation, and to reach lower Pr numbers, but this should not
come at the cost of distorted wall temperature near the inlet. Such an error at the inlet is
propagated through to other nodes. Additional experimental and theoretical investigations
are suggested to confirm this and to rule out model error. With a long channel, it would
be advantageous to be able to non-intrusively measure the bulk fluid temperature along
the channel. This would anchor any finite difference approximations made to the physical
system.

4.9 Future work

Using the recommendations outlined in the Discussion section, additional data will be col-
lected to cover the entire Pr and Re range of interest. For laminar flow, a direct comparison
with ORNL salt data would ideally require the SHEFRA channel to be a little over 1 m
longer in order to obtain the heat transfer coefficient integrated over the entire entrance
region. Alternatively, a curve can be fitted to the available measurements and axially ex-
trapolated beyond the physical channel without incurring too high of an uncertainty penalty.
The uncertainty analysis can be improved by accounting for time sampling errors. This can
be done by using the samples before and after a measurement to scale the timing uncertainty
that is inherent to the experimental set-up.

Turbulent flow is of significant interest in the application of molten salt reactors. The
frequency scaled analytical model for laminar flow can be adapted for turbulent flow. The
model would be used to provide guidance on the optimal set of experimental parameters
for quasi-steady operation and for low uncertainty. The results of these experiments could
then be compared to steady state turbulent flow empirical correlations and to the salt forced
convection experiments such as the mentioned ORNL study. Turbulent flow data collected
without the appropriate analytical framework is not guaranteed to be in quasi-steady state.
At a minimum, a simplified, low fidelity criteria for turbulent flow quasi-steady state can be
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(a) (b)

Figure 4.20: Transient laminar model-predicted Nusselt numbers and dimensionless heat
flux for experimental run (f =0.25Hz, To =50◦C, ∆To =15◦C, 76kg/h, timestamp label:
0458-111921)

derived, or trends from the laminar model can be extrapolated.
The above steps would provide the steps to conclusively demonstrate steady state thermal

hydraulic similitude between the surrogate heat transfer oil and Flibe. Theoretically, the
similitude should extended to unsteady or non-quasi steady flows. If proving unsteady
similitude is deemed to be important for design purposes or safety-related assessments, this
could be proved experimentally with unsteady forced convection Flibe experiments using the
same frequency response methods.

Finally, there is a pathway for extending the experimental methods used for more complex
inlet boundary conditions that can be approximated as a Fourier series.
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(a) Transient model-predicted delta between
wall and local bulk temperature.

(b) Transient laminar model-predicted wall
temperature.

(c) Transient laminar model-predicted bulk
temperature.

Figure 4.21: Bulk temperature and wall temperature measurements and transient laminar
model predictions for experimental run (f =0.25Hz, To =50◦C, ∆To =15◦C, 76kg/h, times-
tamp label: 0458-111921)
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Chapter 5

Frequency Response Parameter
Estimation

A simplified model of the SHEFRA experiment is constructed in the form of a transfer
function that describes the system response to a forcing function input. Additional layers
of model complexity are added incrementally, including nonlinearity due to temperature
dependent thermophysical properties. This approach provides the ability to verify more
complex, higher order transfer function models. For example, the response at the inlet of
the channel in a model with axial spatial dependence should match the response for the
spatially-independent model.

5.1 Spatially-Independent Bulk Temperature

To determine the transient response in a channel wall to a periodically-varying bulk fluid
temperature, we perform an overall energy balance on the solid. In this case, the balance
relates the rate of heat loss at the wall to the rate of change of the internal energy. We assume
that the channel wall can be approximated as a lumped capacitance, physical properties are
constant, and the bulk fluid temperature is the same everywhere along the channel. In the
physical experiment, the input signal is dampened as it travels downstream.

−Ėout = Ėst (5.1)

−hAs(Tw − Tb(t)) = (ρcp)wV
dTw
dt

(5.2)

Rearranging, and employing a specific volume term, av, we get

∂Tw
∂t

= − hav
(ρcp)w

(Tw − Tb(t)) (5.3)
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av for a cylindrical channel is obtained using the per unit length volume and surface area of
a channel wall element.

av =
As

V
=

2πa dz

[π(l + a)2 − π(a)2] dz

=
2a

l2 + 2al

(5.4)

The periodic time-varying fluid temperature is represented by a sinusoidal function.

Tb(t) = To +∆To sin(Ωτ) (5.5)

The problem is now nondimensionalized to produce a solution that can be scaled between
different systems. Conveniently, this also simplifies the the problem to be solved. The
dimensionless wall temperature is put in terms of the fluid temperature cycle parameters.

θw(τ) = (Tw(t)− To) /∆To (5.6)

Nu =
h(2a)

kf
(5.7)

τ = αt/a2 (5.8)

α =
kf

(ρcp)f
(5.9)

Ω = ωa2/α (5.10)

Replace h with Nu
∂Tw
∂t

= − Nu kfav
(ρcp)w(2a)

(Tw − Tb(t)) (5.11)

Expand bulk fluid temperature

∂Tw
∂t

= − Nu kfav
(ρcp)w(2a)

(Tw − (∆To sin(ωt) + To)) (5.12)

Non-dimensionalize time and frequency

∂Tw
∂(τa2/α)

= − Nu kfav
(ρcp)w(2a)

(Tw −∆To sin(Ωτ)− To) (5.13)

α

a2
∂Tw
∂τ

= − Nu kfav
(ρcp)w(2a)

(Tw −∆To sin(Ωτ)− To) (5.14)

Expand thermal diffusivity, α.

kf
(ρcp)f a

2

∂Tw
∂τ

= − Nu kfav
(ρcp)w(2a)

(Tw −∆To sin(Ωτ)− To) (5.15)
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Divide both sides by kf .

1

(ρcp)f a
2

∂Tw
∂τ

= − Nu av
(ρcp)w(2a)

(Tw −∆To sin(Ωτ)− To) (5.16)

Rearrange
∂Tw
∂τ

= −
Nu (ρcp)fa av

(ρcp)w(2)
(Tw −∆To sin(Ωτ)− To) (5.17)

Non-dimensionalize wall temperature using Equation 5.6.

∂(∆Toθw(τ) + To)

∂τ
= −

Nu (ρcp)fa av

(ρcp)w(2)
((∆Toθw(τ) + To)−∆To sin(Ωτ)− To) (5.18)

Simplify the right-side of the equation.

∂(∆Toθw(τ) + To)

∂τ
= −

Nu (ρcp)fa av

(ρcp)w(2)
(∆Toθw(τ)−∆To sin(Ωτ)) (5.19)

Utilize the chain rule to simplify the left-side partial derivative.

∆To
∂θw(τ)

∂τ
= −

Nu (ρcp)fa av

(ρcp)w(2)
(∆Toθw(τ)−∆To sin(Ωτ)) (5.20)

Divide both sides by ∆To

∂θw(τ)

∂τ
= −

Nu (ρcp)fa av

(ρcp)w(2)
(θw(τ)− sin(Ωτ)) (5.21)

Define a new nondimensional parameter, where a is the characteristic length of the flow and
av is the specific volume.

α∗ ≡
(ρcp)f
(ρcp)w

ava

2
(5.22)

The final non-dimensionlized form of the equation becomes

∂θw(τ)

∂τ
= −Nuα∗(θw(τ)− sin(Ωτ)) (5.23)

with the initial condition,
θw(0) = 0 (5.24)

Take the Laplace transform of the equation. Starting with the left-side.

L
{
∂θw(τ)

∂τ

}
= sθ̃w(s)− θw(0) (5.25)
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On the right side we have

L{−Nuα∗(θw(τ)− sin(Ωτ))} = −Nuα∗
(
θ̃w(s)−

Ω

s2 + Ω2

)
(5.26)

The transformed equation becomes

sθ̃w(s) = Nuα∗
(
−θ̃w(s) +

Ω

s2 + Ω2

)
(5.27)

This can be simplified further by expanding the right side of the equation.

sθ̃w(s) = −Nuα∗θ̃w(s) + Nuα∗ Ω

s2 + Ω2
(5.28)

Solving for the dimensionless wall temperature we get the final response function in the
Laplace domain.

θ̃w(s) =
Nuα∗

(Nuα∗ + s)

Ω

s2 + Ω2
(5.29)

To obtain an expression for the forcing function input, we must nondimensionalize and
transform the bulk fluid temperature separately.

θb(τ) = (Tb(t)− To) /∆To (5.30)

This dimensionless bulk temperature becomes

θb(τ) = sin(Ωτ) (5.31)

We take the Laplace transform to obtain the input function.

L{θb(τ)} = L{sin(Ωτ)} (5.32)

θ̃b =
Ω

s2 + Ω2
(5.33)

A transfer function for the system is defined, where the bulk temperature forcing function
is the input θ̃b(s) = X(s), and the wall temperature response is the output, θ̃w(s) = Y (s).

G(s) =
Y (s)

X(s)
(5.34)

The system transfer function simplifies to

G(s) =
Nuα∗

s+Nuα∗ (5.35)
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Variable Value
Nuα∗ 2
Ω 10

Sample time (∆τ) 0.01
Total time (τrun) 6

Table 5.1: Initialization parameters for spatially independent, constant properties frequency
domain model

Parameter Estimation

One of the potential applications of frequency domain analysis is parameter estimation. A
primary question for this work is to explore whether it is possible to leverage frequency
response testing as a tool to more accurately measure thermal hydraulic system parameters
such as the Nusselt number or potentially thermophysical properties such as the thermal
conductivity of Flibe.

To test this hypothesis, discrete time series or frequency domain data for the the exper-
imental input and output response can be inserted into parameter estimation algorithms.
The MATLAB System Identification Toolbox was used to accomplish this task.

The parameter estimation starts with performing a baseline estimation of simulated time-
series data. Time series data is generated using the derived transfer function in Equation
5.35. Code Listing 5.1 shows how this is set up in MATLAB. In this case, Nu and α∗

are combined into one coefficient, a. Table 5.1 shows the initialization parameters used for
example system.

1 a=2

2 Omega =10

3 sampleTime =0.01

4 totalTime =6

5 system=tf([a],[1, a])

6 timeVector =[0: sampleTime:totalTime ]’;

7 initialState =[0];

8 inputSine=sin(Omega*timeVector)

9 [simulatedOutputSine , timeVectorSimulatedSine ]=lsim(system ,inputSine

,timeVector ,initialState);

Listing 5.1: Simulate transfer function response.

To get a baseline accuracy for the parameter estimation process, a transfer function is
estimated using the simulated discrete time series data as shown in Listing 5.2. Here, the
initial condition variable provides the model structure, which consists of the number of zeros
and poles, initial guesses, and the specification of which zeros and poles are constrained. It
is advantageous to fix coefficients if there is prior knowledge of their values. The constrained
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parameter estimation reduces the degrees of freedom and typically leads to more accurate
results. In this example, the higher order pole is fixed to be equal to one, however the other
coefficients must be allowed to freely float.

1 %% perform parameter estimation by using the sine response to test

the basic accuracy

2

3 % prepare the parameter estimation data

4 parameterEstimationDataSine = iddata(simulatedOutputSine , inputSine ,

sampleTime);

5

6 %% set the model structure and constrained parameters

7 init_sys = idtf(a, [1 a]);

8 init_sys.Structure.Denominator.Free (1) = false; % Constrain the

first denominator coefficient

9

10 estimatedSystemSine = tfest(parameterEstimationDataSine , init_sys)

11

12 % Get list of model parameters and their uncertainties

13 [pvecSine , dpvecSine] = getpvec(estimatedSystemSine , ’free’);

14 covSine = getcov(estimatedSystemSine , ’value’, ’free’);

Listing 5.2: Parameter estimation from simulated true transfer function response.

This baseline accuracy for the estimated system was calculated to be 97.39% relative to
the estimation data. This accuracy metric is slightly misleading, as one of the estimated co-
efficients in the continuous-time transfer function, seen in the denominator of Equation 5.36
has a relative error of 18% compared to the true value of a = 2. Further, the algorithm
converges on two different values for what should be the same coefficient in the numera-
tor and the denominator. This happens because the estimation algorithm is inadequately
constrained. This is an apparent limitation with the MATLAB transfer function estimation
tool, tfest. This issue was resolved by exploring other parameter estimation methods later
in this Chapter.

Gtrue(s) =
2

s+ 2
, Gbaseline(s) =

2.015

s+ 2.355
(5.36)

The next step is to add normally distributed random error to simulate noisy physical
measurements. The noisy response data is then used to estimate the transfer function given
the same model structure as before. The estimated transfer function was calculated to be an
85% fit compared to the true system simulation. The estimates for a sample run are show
in Equation 5.37

1 % test the sine response results with noise

2 simulatedOutputSineNoise = simulatedOutputSine + 0.02 * randn(size(

simulatedOutputSine));
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3

4 parameterEstimationDataSineNoise = iddata(simulatedOutputSineNoise ,

inputSine , sampleTime);

5

6 estimatedSystemSineNoise = tfest(parameterEstimationDataSineNoise ,

init_sys)

7

8 % Get list of model parameters and their uncertainties

9 [pvecSineNoise , dpvectNoise] = getpvec(estimatedSystemSineNoise , ’

free’);

10 covSineNoise = getcov(estimatedSystemSineNoise , ’value’, ’free’)

11

12 % simulate the estimated model and compare it with the noisy data

13 [simulatedOutputSineEstimated , timeVectorSimulatedSineEstimated] =

lsim(estimatedSystemSineNoise , inputSine , timeVector ,

initialState);

Listing 5.3: Parameter estimation from simulated noisy response.

Gnoisy(s) =
2.008

s+ 2.36
(5.37)

We can attempt to unpackage the estimated coefficients by using a fixed value for α∗. Given
a hypothetical α∗ value of 0.85, the Nusselt number is estimated to be either 2.36 or 2.78.
This uncertainty may still be within acceptable bounds given that the true value is 2.35.
However, this can be improved significantly if an equality constraint can be set between the
two coefficients or if the parameters that make up each coefficient in the transfer function
can be fixed independently. The latter approach was achieved and demonstrated later in the
next section. The model order can also influence the error between the measured data and
the predicted model. A higher order model has more flexibility, allowing it to fit the data
with increasing accuracy with the trade-off of higher uncertainty and a risk of over fitting.
However, if the model order is too low, it could lead to systematic errors due to measurement
noise. The estimated and true transfer function simulated time domain responses are plotted
with respect to dimensionless time in Figure 5.1.

5.2 Temperature-Dependent Spatially-Independent

Linearization

The assumption of constant properties in the above example might be an oversimplification
depending on the system. This can be remedied by introducing temperature dependent
properties, although this now results in a nonlinear problem. This is incompatible with
transfer function models which must be linear and time-invariant. To work around this,
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Figure 5.1: Spatially-independent transfer function parameter estimation. Simulated exper-
imental data was generated using the following dimensionless groups: Nuα∗ = 2, and Ω = 10

the equation will be linearized using a Taylor series approximation before being transformed
into the Laplace domain. The nondimensional parameter α∗ temperature dependence can be
fitted to a combined correlation using interpolation and linear regression analysis. Assuming
a first order polynomial is a sufficient approximation, the parameter takes the form of the
function in Equation 5.38. Depending on the temperature dependence trend, a second order
polynomial or exponential function might be more appropriate. Since the thermophysical
properties must be evaluated at the film temperature, the average of the bulk and fluid
temperatures is used.

α∗(θfilm) = p1

(
θb + θw

2

)
+ p2 (5.38)

Substituting in the nondimensional bulk fluid temperature we have.

α∗(θfilm) = p1

(
sin (Ωτ) + θw

2

)
+ p2 (5.39)
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This temperature dependent form of α∗ can now be replaced into the energy equation.

∂θw(τ)

∂τ
= −Nu

[p1
2
(sin (Ωτ) + θw) + p2

]
(θw(τ)− sin(Ωτ)) (5.40)

The expression is expanded to consolidate the dependent variable terms.

∂θw(τ)

∂τ
= −Nu

[p1
2

(
sin(Ωτ)θw − sin2(Ωτ) + θ2w − sin(Ωτ)θw

)
+ p2(θw − sin(Ωτ))

] (5.41)

Simplifying we get

∂θw(τ)

∂τ
= −Nu

[p1
2

(
θ2w − sin2(Ωτ)

)
+ p2(θw − sin(Ωτ))

]
(5.42)

The equilibrium point must be found and this is done by setting ∂θw(τ)/∂τ = 0 and by
ignoring all explicit functions of time. The equation is then solved for the dependent variable.

0 =
p1
2
θ2w + p2θw (5.43)

θ̄w =

(
0, −2p2

p1

)
(5.44)

While a negative dimensionless temperature is valid, it is reasonable to center the expansion
around zero due to the sinusoidal periodicity. Linearizing we obtain

θ2w ≈ 2θ̄w(θw − θ̄w) = 0 (5.45)

The linearized equation is put in terms of the incremental deviation

θw = θ̄w + θ̂w(τ) (5.46)

Substituting into the nonlinear energy equation we get

∂θ̂w(τ)

∂τ
= −Nu

[
− p1

2
sin2(Ωτ) + p2(θ̂w − sin(Ωτ))

]
(5.47)

The linearized energy balance can now be transformed to the Laplace domain. It can be
determined that

L
{
sin2(Ωτ)

}
=

2Ω2

s(s2 + 4Ω2)
(5.48)

Using this, and referencing a table of Laplace transforms we obtain

sθ̃w(s)− θw(0) = −Nu
[
− p1

2

2Ω2

s(s2 + 4Ω2)
+ p2

(
θ̃w(s)−

Ω

s2 + Ω2

)]
(5.49)
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Variable Value
Nu 2

α∗ = p1θfilm + p2 -
p1 0.2
p2 0.85
Ω 10

Sample time (∆τ) 0.01
Total time (τrun) 6

Table 5.2: Initialization parameters for spatially independent, temperature dependent prop-
erties frequency domain model

The dependent variable is consolidated as follows

sθ̃w(s) + Nu p2θ̃w(s) = Nu

[
p1
2

2Ω2

s(s2 + 4Ω2)
+ p2

Ω

s2 + Ω2

]
(5.50)

θ̃w(s) =
Nu

s+Nu p2

[
p1
2

2Ω2

s(s2 + 4Ω2)
+ p2

Ω

s2 + Ω2

]
(5.51)

Similarly to before, the transfer function with linearized temperature dependent thermo-
physical properties is obtained by dividing the system output by the input forcing function.

G(s) =

Nu
s+Nu p2

[
p1

Ω2

s(s2+4Ω2)
+ p2

Ω
s2+Ω2

]
Ω

s2+Ω2

(5.52)

This was further simplified using the Python sympy package.

G(s) =
Nu (p2s

3 + Ωp1s
2 + 4Ω2p2s+ Ω3p1)

s4 +Nup2s3 + 4Ω2s2 + 4NuΩ2p2s
(5.53)

The transfer function system has four poles and three zeros, which also means in this case
is that there are more coefficients that can be solved for the Nu number. The same testing
procedure was conducted wherein the parameters of the transfer function were estimated
using a noisy measurements simulation of the true model. Table 5.2 shows the initialization
parameters and variables.

Gtrue(s) =
1.7s3 + 4s2 + 680s+ 400

s4 + 1.7s3 + 400s2 + 680s
(5.54)

Gbaseline(s) =
1.71s3 + 6.55s2 + 680s+ 399.97

s4 + 1.7s3 + 400s2 + 680s
(5.55)

Gnoisy(s) =
1.79s3 + 7.45s2 + 680s+ 399.97

s4 + 1.68s3 + 400s2 + 638.74s
(5.56)
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Figure 5.2: Transfer function parameter estimation for temperature dependent thermophys-
ical properties case. Simulated experimental data was generated using the following dimen-
sionless parameters: Nu = 2, α∗ = p1θfilm + p2, where p1 = 0.2 and p2 = 0.85, and Ω = 10

A sample result for the estimated transfer function is provided in Equation 5.56. Comparing
the true, baseline and noisy estimated transfer function, it is clear that coefficients that
should be equal do not always match. As a result, and depending on the simulated experi-
mental run, the estimated Nu number can deviate as much as 18% from the true value. The
MATLAB function tfest does not provide the option to fix individual parameters or to set
equality constraints on the model coefficients. A different numerical method is needed to
improve this result. The Newton-Raphson method was implemented with a custom objective
function that minimizes the error between the noisy measured data and a simulation of the
estimated transfer function. The Newton-Raphson method is an iterative root-finding algo-
rithm. Given an initial guess, the method calculates successive approximations or estimates
of the root by linearizing the function at the current estimate. The mathematical expression
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for the method is shown in Equation 5.57.

xn+1 = xn −
f(xn)

f ′(xn)
(5.57)

where xn is the current estimate, f(xn) is the output at the current estimate, and f ′(xn) is
the derivative of the output at the current estimate. The gradient is computed numerically
using the central difference method defined in Equation 5.58. The step size, h, of 1E-6 was
used.

f ′(xn) ≈
f(xn + h)− f(xn − h)

2h
(5.58)

The algorithm was provided an initial guess for the Nu number value (Nu = 0) and during
each iteration, the estimated output is simulated using the transfer function model. The
transfer function output is evaluated using the current estimate for Nu and the known
parameters Ω, p1 and p2, as per Table 5.2. This method takes advantage of both model
structure and parameters known a priori.

A Monte Carlo simulation of n = 1000 experiments was conducted to obtain an estimate
of the method’s uncertainty.

Parameter Estimation Results

The Monte Carlo simulaton produced an estimated Nu number of 1.9940 with a standard
deviation of 0.0199. This corresponds to a relative error of 0.3%±1%. This level of accuracy
appears to be much higher compared to more conventional data reduction procedures imple-
mented for the SHEFRA experiment and also compared to typical heat transfer experiments.
The magnitude of random noise in the simulations is scaled to match the uncertainty from
SHEFRA wall thermocouples when the amplitude of temperature fluctuations is equal to 5.
Lower amplitudes scale to higher measurement noise. The simulations do not account for
any other source of measurement uncertainty such as for the bulk fluid temperature input.
To compensate for this, an additional Monte Carlo simulation was run with three times the
wall temperature uncertainty. The higher noise simulation produced an estimated Nu with
a relative error of 0.04%±2.8%. This result suggests that higher Gaussian noise might lead
to smaller relative error in the nominal value, but with more uncertainty. The MATLAB
code is provided in the Appendix. Figure 5.2 shows the simulated transfer function esti-
mated from the noisy linearized temperature dependent response. An additional benefit of
the optimization algorithm used, is that it is capable of solving nonlinear systems without
resorting to linearization. The MALTAB code implementation of the parameter method is
provided in Appendix D.

5.3 Spatially-Dependent Channel

In the physical SHEFRA experiment, the bulk fluid temperature oscillations are dampened
as the flow travels downstream of the channel inlet. This effect is important to capture
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in order to measure the Nu number as a function of axial distance. This section will use
a dynamic model for unsteady conjugate heat transfer in a circular duct with convection
from ambient and periodically varying inlet temperature. The problem was solved using
the Laplace Transform by Travelho and Santos [22]. In the present work, in Chapter 3, a
quasi-steady model was applied to approximate the Nu number using the exact wall and
bulk fluid temperature, and heat flux solutions. This will be the starting point for a transfer
function model for parameter estimation.

Nu(Z) =
− ∂θ(R,Z,τ)

∂R

∣∣∣
R=1

θb(Z, τ)− θw(Z, τ)
(5.59)

The expression for the quasi-steady Nu number in Equation 5.59 is rearranged to solve for
the dimensionless wall temperature. Equation 5.61 expresses the output as a function of the
bulk fluid temperature input, the solution to the heat flux, and the Nu number.

Nu θb(Z, τ)− Nu θw(Z, τ) = − ∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

(5.60)

θw(Z, τ) =
1

Nu

∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

+ θb(Z, τ) (5.61)

Taking the Laplace transform of Equation 5.61 with respect to τ provides an expression for
the quasi-steady model in the Laplace domain.

θ̃w(Z, s) =
1

Nu

(
sθ̃(R = 1, Z, s)− ∂θ(R,Z, τ = 0)

∂R

∣∣∣∣
R=1

)
+ θ̃b(Z, s) (5.62)

The terms in Equation 5.62 are simplified and put in terms of the dependent variable or as
functions of R, Z and the Laplace variable s. The problem solution, θ when evaluated at
R = 1 is the dimensionless wall temperature solution. When transformed into the Laplace
domain, we recognize that this is our dependent variable.

θ̃(R = 1, Z, s) = θ̃w(Z, s) (5.63)

Next, the solution to the dimensionless heat flux is evaluated at the initial condition. The
solutions of the dimensionless heat flux, wall and bulk temperature are each a sum of a
permanent and periodic solution, ξ(R,Z) and γ(R,Z, τ), respectively.

θ(R,Z, τ) = ξ(R,Z) + γ(R,Z, τ) (5.64)

The periodic solution assumes the form

γ(R,Z, s) = ψ(R,Z)eiΩ(τ−Z) (5.65)
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Recognizing that the exponential term is not a function of R, taking the partial derivative
produces this expression for the dimensionless heat flux.

∂θ(R,Z, τ)

∂R

∣∣∣∣
R=1

= ξh(R,Z) + ψh(R,Z)e
iΩ(τ−Z) (5.66)

where the permanent and periodic dimensionless heat flux are defined as

ψh(Z) ≡ − ∂ψ(R,Z)

∂R

∣∣∣∣
R=1

= c∗ψ(1, Z) (5.67)

ξh(Z) = − Nuoθ∞
(η1 − η2)

[
η1e

η21Zerfc(η1
√
Z)

−η2eη
2
2Zerfc(η2

√
Z
] (5.68)

By assuming no convection to ambient, the permanent solution is eliminated. Evaluating at
the initial condition we get

∂θ(R,Z, τ = 0)

∂R

∣∣∣∣
R=1

= c∗ψ(1, Z)eiΩ(0−Z) (5.69)

where ψ(1, Z) is the periodic dimensionless periodic wall temperature.

ψw(Z) ≡ ψ(1, Z) =
1

λ1 − λ2

(
λ1e

λ2
1Zerfc(−λ1

√
Z)

−λ2eλ
2
2Zerfc(−λ2

√
Z)

) (5.70)

Instead of using the provided solution, the model can be reduced by representing ψ(1, Z) in
terms of the dependent variable. To obtain this relationship, the time-domain form of the
dependent variable is expanded into it’s periodic and permanent components.

θw(Z, τ) = ξw(R,Z) + ψw(Z)e
iΩ(τ−Z) (5.71)

Similarly as before, the permanent dimensionless wall temperature is eliminated. The
Laplace transform with respect to τ is then applied.

θ̃w(Z, s) = L
{
ψw(Z)e

iΩ(τ−Z)
}

= L
{
ψw(Z)

eiΩτ

eiΩZ

}
=
ψw(Z)

eiΩZ

1

s− iΩ

(5.72)

After rearranging, we obtain an expression that can be subsituted into the heat flux initial
condition term in Equation 5.69.

ψw(Z) = θ̃w(Z, s)e
iΩZ(s− iΩ) (5.73)
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After substitution, the dimensionless heat flux initial condition becomes

∂θ(R,Z, τ = 0)

∂R

∣∣∣∣
R=1

= c∗θ̃w(Z, s)e
iΩZ(s− iΩ)e−iΩZ (5.74)

The exponential terms cancel and we are left with

∂θ(R,Z, τ = 0)

∂R

∣∣∣∣
R=1

= c∗θ̃w(Z, s)(s− iΩ) (5.75)

The last term needed to construct the transfer function ouput in Equation 5.62, is the
dimensionless bulk fluid temperature in the Laplace domain.

θ̃b(Z, s) = L
{
ψb(Z)e

iΩ(τ−Z)
}

=
ψb(Z)

eiΩZ

1

s− iΩ

(5.76)

The solution to periodic dimensionless bulk temperature is provided.

ψb(Z) = −3− 2c∗

λ1 − λ2

( 1

λ1
eλ

2
1Zerfc(−λ1

√
Z)

− 1

λ2
eλ

2
2Zerfc(−λ2

√
Z)

) (5.77)

where λ12 = −c∗/2 ± [c∗/2 (c∗/2− 1)]1/2. Substituting Equations 5.63, 5.76 and 5.75 into
Equation 5.62 we obtain

θ̃w(Z, s) =
1

Nu

(
sθ̃w(Z, s)− c∗θ̃w(Z, s)(s− iΩ)

)
+
ψb(Z)

eiΩZ

1

s− iΩ
(5.78)

The expression is solved for θw(Z, s).

θ̃w(Z, s)−
1

Nu

(
sθ̃w(Z, s)− c∗θ̃w(Z, s)(s− iΩ)

)
=
ψb(Z)

eiΩZ

1

s− iΩ
(5.79)

θ̃w(Z, s)

(
1− s

Nu
+

c∗

Nu
(s− iΩ)

)
=
ψb(Z)

eiΩZ

1

s− iΩ
(5.80)

θ̃w(Z, s) =
ψb(Z)

eiΩZ

1

(s− iΩ)
(
1− s

Nu
+ c∗

Nu
(s− iΩ)

) (5.81)

θ̃w(Z, s) =
ψb(Z)

eiΩZ

Nu

(s− iΩ) (Nu− s+ c∗(s− iΩ))
(5.82)

The input to the system is inlet bulk fluid temperature boundary condition represented as
a complex exponential.

θ(R, 0, τ) = eiΩτ (5.83)
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Transforming into the Laplace domain, we get the transfer function input function.

L
{
eiΩτ

}
=

1

s− iΩ
(5.84)

θ̃(R, 0, s) =
1

s− iΩ
(5.85)

The spatially dependent transfer function can now be constructed using the output and
input functions.

G(Z, s) =
θ̃w(Z, s)

θ̃(R, 0, s)
(5.86)

Using the Python sympy symbolic math package the expression for the following transfer
function is obtained.

G(s) = − Nuψb(Z)e
−iΩZ

−Nu + c∗ (iΩ− s) + s
(5.87)

The dimensionless parameters are originally defined in Equation 3.46.

c∗ = Nuo + ib∗, b∗ =
Ω

a∗
=
ωaρwcwl

k
(5.88)

Neglecting convection to ambient, c∗ simplifies to ib∗. This is substituted into the transfer
function to obtain its final form.

G(s) =
Nuψb(Z)e

−iΩZ

Nu + Ωb∗ + s (ib∗ − 1)
(5.89)

We can also update the solution for periodic dimensionless bulk temperature by replacing
c∗.

ψb(Z) = −3− 2ib∗

λ1 − λ2

( 1

λ1
eλ

2
1Zerfc(−λ1

√
Z)

− 1

λ2
eλ

2
1Zerfc(−λ2

√
Z)

) (5.90)

where, λ12 = −ib∗/2± [ib∗/2 (ib∗/2− 1)]1/2.

Results and Conclusion

The derived transfer function was found to be unstable, as evident in the simulation plotted
in Figure 5.3. This is determined by seeing that the system pole, or the root of the denomi-
nator, has a positive real component. The unstable transfer function is most likely due to a
derivation error as the solutions have been proven to be stable in Chapter 3.

This result prompted the search of simpler or more versatile approaches to estimate the
spatially-dependent Nu number using the same error-minimizing optimization method. The
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Figure 5.3: Spatially-dependent transfer function model parameter estimation. Simulated
experimental data was generated using the following dimensionless parameters: Nu = 4.8,
b∗ = 97 (f = 0.25 Hz), Z = 0.02355 (z = 1.96 meters), Ω = 75

first possibility is to shift the problem boundary so that the forcing input is the local bulk
fluid temperature at some axial location Z. The new input function could be obtained by
using the dimensionless bulk temperature solution, ψb(Z). The dimensionless inlet bulk
temperature function is simply multiplied by ψb(Z) to result in the local bulk temperature
function at the appropriate scale. We can now reuse the linearized transfer function derived
for the temperature dependent case in Equation 5.53. The estimated Nu using this method
should have a similar accuracy as was seen in the previous example. Additional testing is
needed to demonstrate the validity of this method.

Yet another approach would be to represent the time-domain partial differential equa-
tions in state space form and to then employ a similar grey-box parameter estimation scheme
as implemented for the temperature dependent model. The accuracy improvement in esti-
mating the Nusselt number using the current parameter estimation method is not reliant on
the model being a transfer function. The transfer function serves two main purposes: (1)
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simulating the system in the time-domain during each iteration of the Newton-Raphson tech-
nique, and (2) providing the model structure in the objective function. System parameters
such as b∗ and Ω can then be fixed to reduce the flexibility of the model, hence improving
the accuracy. A time-domain model representation should fulfill both of these requirements.
State-of-the-art nonlinear solvers for PDEs such as those available in MATLAB’s System
Identification Toolbox would also avoid the need to linearize temperature dependent param-
eters. These functions have the ability to ingest time or frequency domain data from multiple
experiments simultaneously.

The error minimization arises from estimating the Nusselt (Nu) number value over the
entire data set instead of calculating it at each time step. Additionally, the accuracy of the
estimation procedure is contingent on the intrinsic characteristics of the response, such as
high gain, low distortion, and minimal bias. High fidelity data can be represented in both
frequency and time-domains interchangeably. This highlights the importance of selecting
the optimal experimental parameters and conditions. This can be achieved by examining
the system’s response data in the frequency domain through the use of empirical Bode plots.
With SHEFRA, the strategy implemented involved integrating periodic forcing into the
physical model, as detailed in Chapter 3. This offers a potent means for identifying optimal
frequencies and experimental conditions. When possible, this method holds benefits over the
empirical frequency domain analysis technique, as it enables the theoretical prediction of a
specific parameter’s influence on the system response.

After gathering the data, the performance of the parameter estimation technique is antic-
ipated to be comparable, irrespective of whether the data is in the time or frequency domain.
However, acquiring the frequency response through a single known frequency sinusoidal in-
put is the critical factor enabling highly accurate estimates. In more tangible terms, the
optimization algorithm is well-conditioned to converge to the true Nu value by knowing or
being constrained to the system’s characteristic frequency. This as a key advantage derived
from application of the frequency response method using sinusoidal inputs.

As seen in the temperature-dependent case, providing model structure and constraining
system parameters that are known a priori, such as the input frequency, results in Nu number
estimates with low variance despite high measurement noise.
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Chapter 6

Conclusions

The design, development, and experimental results of the Scaled Heat Exchange Frequency
Response Analysis (SHEFRA) experiment were presented in this dissertation, focusing on
the investigation of frequency response methods for measuring quasi-steady Nusselt number
values in forced convection of a surrogate fluid for molten fluoride salt in circular ducts.
The study’s primary motivation is to provide Nu correlations that can be compared with
prototypical molten salt experiment data to qualify the use of surrogate fluids in scaled
experiments.

The theoretical modeling and frequency scaling analysis provided insights into the rel-
evant dimensionless parameters and their impact on the system’s behavior, allowing for
optimal experimental parameters and conditions to be determined. The study revealed that
quasi-steady heat transfer conditions could be achieved for the laminar flow regime, enabling
the accurate prediction of Nusselt numbers using the frequency response technique.

The initial experimental results obtained from the SHEFRA experiment suggest that
quasi-steady conditions were validated for laminar flow conditions, showing good agreement
with steady-state analytical predictions. Based on this result, additional data will be col-
lected in the laminar regime to cover a range of operating conditions that go beyond the
narrow band of Prandlt and Reynolds numbers presented in this work. Further work is
needed to extend the analysis and experimental data collection to cover the turbulent flow
regime. Additionally, the frequency response parameter estimation techniques presented
in this dissertation offer promising avenues for future research in improving the accuracy
of Nusselt number estimation and potentially estimating other model parameters including
thermophysical properties. Instead of conventionally estimating the Nusselt number at each
time step, as done in Chapter 4, a ”grey-box” optimization utilizing a frequency domain
model of the test section is used to find an estimate time-independent Nusselt number that
minimizes the overall error between experimentally measured values and the grey-model
simulation.

The SHEFRA experiment demonstrates the potential of using surrogate fluids and fre-
quency response methods to obtain high-fidelity heat transfer data measurements relevant
for molten salt reactor development.
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Appendix A

SHEFRA Experimental Data and
Results

A.1 Series 0

Run parameters:
f = 0.1Hz, To = 101◦C, ∆To = 38◦C, 80 kg/h, timestamp : 0435P− 111921

(a) (b)

Figure A.1: Heat transfer coefficient and Nusselt measurements for experimental run
(f =0.1Hz, To =101◦C, ∆To =38◦C, 80kg/h, timestamp label: 0435P-111921)
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(a) (b)

Figure A.2: Transient laminar model-predicted Nusselt numbers and dimensionless heat flux
for experimental run (f =0.1Hz, To =101◦C, ∆To =38◦C, 80kg/h, timestamp label: 0435P-
111921)

(a) (b)

Figure A.3: Prandtl and Reynolds measurements for experimental run (f =0.1Hz,
To =101◦C, ∆To =38◦C, 80kg/h, timestamp label: 0435P-111921)
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(a) Experimental measurements with uncer-
tainty.

(b) Transient model-predicted delta between
wall and local bulk temperature.

(c) Transient laminar model-predicted wall
temperature.

(d) Transient laminar model-predicted bulk
temperature.

Figure A.4: Bulk temperature and wall temperature measurements and transient laminar
model predictions for experimental run (f =0.1Hz, To =101◦C, ∆To =38◦C, 80kg/h, times-
tamp label: 0435P-111921)
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(a) (b)

Figure A.5: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-1. (f =0.1Hz, To =101◦C, ∆To =38◦C,
80kg/h, timestamp label: 0435P-111921)

(a) (b)

Figure A.6: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-2. (f =0.1Hz, To =101◦C, ∆To =38◦C,
80kg/h, timestamp label: 0435P-111921)
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(a) (b)

Figure A.7: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-3. (f =0.1Hz, To =101◦C, ∆To =38◦C,
80kg/h, timestamp label: 0435P-111921)

(a) (b)

Figure A.8: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-4. (f =0.1Hz, To =101◦C, ∆To =38◦C,
80kg/h, timestamp label: 0435P-111921)
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(a) (b)

Figure A.9: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-5. (f =0.1Hz, To =101◦C, ∆To =38◦C,
80kg/h, timestamp label: 0435P-111921)

Figure A.10: Nusselt uncertainty distribution for range of nominal values. (f =0.1Hz,
To =101◦C, ∆To =38◦C, 80kg/h, timestamp label: 0435P-111921)
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(a) (b)

Figure A.11: Reynolds and Prandtl uncertainty distributions for range of nominal values.
(f =0.1Hz, To =101◦C, ∆To =38◦C, 80kg/h, timestamp label: 0435P-111921)
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Run parameters:
f = 0.167Hz, To = 51◦C, ∆To = 19◦C, 76 kg/h, timestamp : 0452P− 111921

(a) (b)

Figure A.12: Heat transfer coefficient and Nusselt measurements for experimental run
(f =0.167Hz, To =51◦C, ∆To =19◦C, 76kg/h, timestamp label: 0452P-111921)
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(a) (b)

Figure A.13: Transient laminar model-predicted Nusselt numbers and dimensionless heat
flux for experimental run (f =0.167Hz, To =51◦C, ∆To =19◦C, 76kg/h, timestamp label:
0452P-111921)
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(a) Experimental measurements with uncer-
tainty.

(b) Transient model-predicted delta between
wall and local bulk temperature.

(c) Transient laminar model-predicted wall
temperature.

(d) Transient laminar model-predicted bulk
temperature.

Figure A.14: Bulk temperature and wall temperature measurements and transient laminar
model predictions for experimental run (f =0.167Hz, To =51◦C, ∆To =19◦C, 76kg/h, times-
tamp label: 0452P-111921)
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(a) (b)

Figure A.15: Prandtl and Reynolds measurements for experimental run (f =0.167Hz,
To =51◦C, ∆To =19◦C, 76kg/h, timestamp label: 0452P-111921)
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(a) (b)

Figure A.16: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-1. (f =0.167Hz, To =51◦C, ∆To =19◦C,
76kg/h, timestamp label: 0452P-111921)

(a) (b)

Figure A.17: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-2. (f =0.167Hz, To =51◦C, ∆To =19◦C,
76kg/h, timestamp label: 0452P-111921)
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(a) (b)

Figure A.18: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-3. (f =0.167Hz, To =51◦C, ∆To =19◦C,
76kg/h, timestamp label: 0452P-111921)

(a) (b)

Figure A.19: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-4. (f =0.167Hz, To =51◦C, ∆To =19◦C,
76kg/h, timestamp label: 0452P-111921)



APPENDIX A. SHEFRA EXPERIMENTAL DATA AND RESULTS 138

(a) (b)

Figure A.20: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-5. (f =0.167Hz, To =51◦C, ∆To =19◦C,
76kg/h, timestamp label: 0452P-111921)

Figure A.21: Nusselt uncertainty distribution for range of nominal values. (f =0.167Hz,
To =51◦C, ∆To =19◦C, 76kg/h, timestamp label: 0452P-111921)
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(a) (b)

Figure A.22: Reynolds and Prandtl uncertainty distributions for range of nominal values.
(f =0.167Hz, To =51◦C, ∆To =19◦C, 76kg/h, timestamp label: 0452P-111921)
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Run parameters: f = 0.0833Hz, To = 51◦C, ∆To =
23◦C, 76 kg/h, timestamp : 0508P− 111921

(a) (b)

Figure A.23: Heat transfer coefficient and Nusselt measurements for experimental run
(f =0.0833Hz, To =51◦C, ∆To =23◦C, 76kg/h, timestamp label: 0508P-111921)
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(a) (b)

Figure A.24: Transient laminar model-predicted Nusselt numbers and dimensionless heat
flux for experimental run (f =0.0833Hz, To =51◦C, ∆To =23◦C, 76kg/h, timestamp label:
0508P-111921)
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(a) Experimental measurements with uncer-
tainty.

(b) Transient model-predicted delta between
wall and local bulk temperature.

(c) Transient laminar model-predicted wall
temperature.

(d) Transient laminar model-predicted bulk
temperature.

Figure A.25: Bulk temperature and wall temperature measurements and transient laminar
model predictions for experimental run (f =0.0833Hz, To =51◦C, ∆To =23◦C, 76kg/h,
timestamp label: 0508P-111921)
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(a) (b)

Figure A.26: Prandtl and Reynolds measurements for experimental run (f =0.0833Hz,
To =51◦C, ∆To =23◦C, 76kg/h, timestamp label: 0508P-111921)
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(a) (b)

Figure A.27: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-1. (f =0.0833Hz, To =51◦C, ∆To =23◦C,
76kg/h, timestamp label: 0508P-111921)

(a) (b)

Figure A.28: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-2. (f =0.0833Hz, To =51◦C, ∆To =23◦C,
76kg/h, timestamp label: 0508P-111921)
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(a) (b)

Figure A.29: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-3. (f =0.0833Hz, To =51◦C, ∆To =23◦C,
76kg/h, timestamp label: 0508P-111921)

(a) (b)

Figure A.30: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-4. (f =0.0833Hz, To =51◦C, ∆To =23◦C,
76kg/h, timestamp label: 0508P-111921)



APPENDIX A. SHEFRA EXPERIMENTAL DATA AND RESULTS 146

(a) (b)

Figure A.31: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-5. (f =0.0833Hz, To =51◦C, ∆To =23◦C,
76kg/h, timestamp label: 0508P-111921)

Figure A.32: Nusselt uncertainty distribution for range of nominal values. (f =0.0833Hz,
To =51◦C, ∆To =23◦C, 76kg/h, timestamp label: 0508P-111921)
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(a) (b)

Figure A.33: Reynolds and Prandtl uncertainty distributions for range of nominal values.
(f =0.0833Hz, To =51◦C, ∆To =23◦C, 76kg/h, timestamp label: 0508P-111921)
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Run parameters:
f = 0.125Hz, To = 50◦C, ∆To = 21◦C, 77 kg/h, timestamp : 0528P− 111921

(a) (b)

Figure A.34: Heat transfer coefficient and Nusselt measurements for experimental run
(f =0.125Hz, To =50◦C, ∆To =21◦C, 77kg/h, timestamp label: 0528P-111921)
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(a) (b)

Figure A.35: Transient laminar model-predicted Nusselt numbers and dimensionless heat
flux for experimental run (f =0.125Hz, To =50◦C, ∆To =21◦C, 77kg/h, timestamp label:
0528P-111921)
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(a) Experimental measurements with uncer-
tainty.

(b) Transient model-predicted delta between
wall and local bulk temperature.

(c) Transient laminar model-predicted wall
temperature.

(d) Transient laminar model-predicted bulk
temperature.

Figure A.36: Bulk temperature and wall temperature measurements and transient laminar
model predictions for experimental run (f =0.125Hz, To =50◦C, ∆To =21◦C, 77kg/h, times-
tamp label: 0528P-111921)
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(a) (b)

Figure A.37: Prandtl and Reynolds measurements for experimental run (f =0.125Hz,
To =50◦C, ∆To =21◦C, 77kg/h, timestamp label: 0528P-111921)
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(a) (b)

Figure A.38: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-1. (f =0.125Hz, To =50◦C, ∆To =21◦C,
77kg/h, timestamp label: 0528P-111921)

(a) (b)

Figure A.39: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-2. (f =0.125Hz, To =50◦C, ∆To =21◦C,
77kg/h, timestamp label: 0528P-111921)
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(a) (b)

Figure A.40: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-3. (f =0.125Hz, To =50◦C, ∆To =21◦C,
77kg/h, timestamp label: 0528P-111921)

(a) (b)

Figure A.41: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-4. (f =0.125Hz, To =50◦C, ∆To =21◦C,
77kg/h, timestamp label: 0528P-111921)



APPENDIX A. SHEFRA EXPERIMENTAL DATA AND RESULTS 154

(a) (b)

Figure A.42: Nusselt measurements and uncertainty over the range of the experimental run
Reynolds and Prandtl values at node location T-5. (f =0.125Hz, To =50◦C, ∆To =21◦C,
77kg/h, timestamp label: 0528P-111921)

Figure A.43: Nusselt uncertainty distribution for range of nominal values. (f =0.125Hz,
To =50◦C, ∆To =21◦C, 77kg/h, timestamp label: 0528P-111921)
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(a) (b)

Figure A.44: Reynolds and Prandtl uncertainty distributions for range of nominal values.
(f =0.125Hz, To =50◦C, ∆To =21◦C, 77kg/h, timestamp label: 0528P-111921)
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Appendix B

Analog Power Control Programming
in LabVIEW

In this section, further details are provided on how the desired heater input signals are
generated. On the front panel of the VI, there are three options for controlling heater power.
Manual control is implemented by setting the heater power value in Watts, by typing a value
between 0 and 10,000 under “Manual Power Control”. “Power Profile” allows the user to
input a pre-made CSV file of their choice, which dictates the heater power values over time.
“Pulse Control” is similar to “Power Profile” mode, except users are able to create and edit a
custom periodic power profile “on the fly” (i.e., during actual operation), instead of needing
to create an Excel file ahead of time.

By switching between the three options on the front panel, the state of the LabVIEW
case structure changes to produce the desired functionality.

Figure B.1: Desired Power controls on the front panel in LabVIEW.



APPENDIX B. ANALOG POWER CONTROL PROGRAMMING IN LABVIEW 157

Figure B.2: Manual Control Mode in LabVIEW.

Figure B.3: Component 1 of Manual Control Mode in LabVIEW.

Manual Control

This operation mode is straightforward. Inside the case structure is a sequence structure.
In the first panel of the sequence structure, a 100-millisecond wait statement ensures that
there is a brief pause between signals sent to the heater, so as not to bog down the VI and to
keep consistent with the 100-millisecond measurement intervals. This wait statement could
be changed as desired to achieve higher resolutions. Inside the second panel of the sequence
structure are two components. Figure X. shows the first component.

Component 1 feeds the user-typed value of “Manual Power Control” into the local variable
Desired Power, so it can be sent to the “Analog Read-and-Write Loop” and fed into the PB-
HTX Analog Sub-VI. However, if the stop button has been pressed and a “stop” signal was
sent out, this component will instead feed a value of 0 to Desired Power in order to shut the
heater off.

Figure B.3 shows Component 2 of Manual Control Mode which only activates if there
is a temperature warning message sent out by the Data Logging Loop. (The data logging
loop includes programming that reads the thermocouple measurements every iteration to
ensure that no temperature values have exceeded a set maximum, and if any have exceeded
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Figure B.4: Component 2 of Manual Control Mode in LabVIEW.

the maximum, it sends out the warning message.) Component 2 is a case structure which is
empty if the Boolean “Temperature Warning” is false, but if it is true, code appears inside
the case structure which feeds a value of 0 to Desired Power as well as automatically changing
the value of the user-controlled “Manual Power Control” field to 0.

Import Power Profile

Unlike Manual Control, the Power Profile functionality makes use of a for loop. This for
loop is used to iterate over each element in an array of heater power values from an Excel or
CSV file imported by the user, with a wait statement used to set the time step. Component
1 of Power Profile mode, shown in Figure B.6, is very similar to Component 1 from Manual
Control mode.

The main difference is that the value being fed to “Desired Power” is taken from the
Excel file chosen by the user, and this value is updated continuously by the for loop as it
iterates. Once the for loop has run through all of the values in the Excel file, it terminates
the for loop, which has the effect of restarting the process all over again from the first index.

Component 2 of Power Profile mode, shown in Figure B.7, is also similar to Component
2 from Manual Control with one key difference. Instead of sending a “0” to Desired Power
when Temperature Warning is true, it changes the Operation Mode to Manual Control, so
that Manual Control can handle the temperature shutdown. This is because if the user had
been alternating between Manual Control mode and the other two modes, and a nonzero
value typed into Manual Control when the Temperature Warning was issued, it is useful for
the program to set the value under Manual Control to 0 before shutting down so that it is
clear that the power being sent to the heater is actually 0 after shutdown. Since Manual
Control mode already has this functionality, it makes sense for the Power Profile to pass
control of the high temperature safety shutdown to Manual Control.
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Figure B.5: Power Profile Mode in LabVIEW.

Figure B.6: Component 1 of Power Profile Mode in LabVIEW.

Figure B.7: Component 2 of Power Profile Mode in LabVIEW.
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Figure B.8: Pulse Control Mode in LabVIEW.

Figure B.9: Component 1 of Pulse Control Mode in LabVIEW.

Pulse Control

At this time, the Pulse Control functionality is only able to support square waves. For this
reason, it makes use of a sequence structure with two panels, where the first panel represents
the “valleys” of the square waves and the second panel represents the “crests” of the square
waves. This is why the two panels look similar, and the only difference between the two is
the use of the variable “Base Power” in the first panel and “Max Power” in the second.

The user can control three key variables in Pulse Control mode: Base Power (the power
level of the square wave “valleys”), Max Power (the power level of the square wave “crests”),
and Period, the period of the wave.

This Operation Mode works almost exactly the same as Power Profile mode. Component
1 of Pulse Control looks almost the same as Component 1 of Power Profile except that
instead of values for Desired Power being fed in from an Excel spreadsheet, they are instead
fed in from the Base Power variable, which can be changed at any time by the user during
operation.

In the first panel of the sequence structure, the value of “Base Power” is fed to Desired
Power in 100-millisecond intervals by the for loop, for i = 1 to N, where N is the period
specified by the user. It is worth noting that the user specifies the period in seconds, and the
loop executes in 100-millisecond intervals, so Period is actually multiplied by 10 before being
assigned to N. Once this process ends, control passes to the second panel of the sequence
structure, where the process is repeated using “Max Power” instead of “Base Power”. This
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forms the crests of the square waves.



162

Appendix C

SHEFRA Experiment Data
Reduction Code

1 ’’’

2 data reduction

3

4 objective:

5 calculate local heat transfer coefficient along test-section spatial

dimension

6

7 ’’’

8 import matplotlib

9 from matplotlib import pyplot as plt

10 import numpy as np

11 import pandas as pd

12 import derivative

13 from uncertainties import ufloat , unumpy , UFloat

14 from scipy import signal

15 from copy import deepcopy

16 import os

17 import logging

18 import re

19

20 root_logger = logging.getLogger ()

21 root_logger.setLevel(logging.INFO)

22

23 # Remove existing handlers and add a new StreamHandler with the

desired format

24 for handler in root_logger.handlers [:]:

25 root_logger.removeHandler(handler)

26
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27 formatter = logging.Formatter(’%( asctime)s - %( levelname)s - %(name)

s - %( message)s’)

28 stream_handler = logging.StreamHandler ()

29 stream_handler.setFormatter(formatter)

30 root_logger.addHandler(stream_handler)

31

32

33 class Experiment:

34 def __init__(self , testsectionID):

35 self.logger = logging.getLogger(__name__)

36 self.logger.info("Experiment initialized")

37

38 match testsectionID:

39 case ’test_channel ’:

40 radiusInner = 0.02

41 thickness = 1e-3

42 case ’channel_1 ’:

43 # radiusInner = (0.12/2)*0.0254

44 radiusInner =(0.25-(0.049*2))*0.0254/2

45 # thickness = 0.065*0.0254

46 thickness = 0.049*0.0254

47 case _:

48 raise Exception("Test section ID not found")

49 self.__channel = Channel(radiusInner , thickness)

50

51 @property

52 def channel(self):

53 return self.__channel

54

55 def getMeasurements(self , path , frequency_in_Hz , startTime ,

endTime):

56 ’’’extracts measurement data from csv file given path , and

start and end times in seconds ’’’

57 raw = pd.read_csv(path)

58 rawSlice = raw[(raw["Time"] >= startTime * 1000) & (raw["

Time"] <= endTime * 1000)].copy()

59 rawSlice[’Time’] = (rawSlice[’Time’]) / 1000

60 self.logger.debug("shifting wall TC measurements 200 ms

ahead in time due to 300 ms response time")

61 # Shift the T-1, T-2, T-3, T-4, and T-5 columns 3 rows

earlier

62 columns_to_shift = ["T-1", "T-2", "T-3", "T-4", "T-5"]

63 for col in columns_to_shift:

64 rawSlice[col] = rawSlice[col].shift(-2)
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65

66 # Drop the last 3 rows to truncate the total number of time

steps

67 rawSlice = rawSlice.iloc[:-2]

68

69 f = frequency_in_Hz

70 self.logger.debug(’time range multiple of period?’)

71 # mod=(time[-1]-time [0]) %(1/f)

72 mod=( rawSlice[’Time’].iloc[-1]-rawSlice[’Time’].iloc [0]) %(1/

f)

73 if mod !=0:

74 self.logger.debug(False)

75 self.logger.debug(’remainder = {}’.format(mod))

76 self.logger.debug(’truncate {} seconds ’.format(mod))

77 rows_to_truncate=round(mod/timeStep)

78 self.logger.debug(’truncating data by {} rows , given a

time step of {} seconds ’.format(rows_to_truncate ,

timeStep))

79 rawSlice = rawSlice.iloc[:-rows_to_truncate]

80 else:

81 self.logger.debug(True)

82 self.logger.debug(’time range {} is a multiple of the

period , {}’.format(rawSlice[’Time’][-1]-rawSlice[’

Time’][0], (1/f)))

83

84

85 self.__data = rawSlice [["Time", "T-1", "T-2", "T-3", "T-4",

"T-5", "BT-inlet", "Flow rate"]]

86 self.logger.debug("measurements extracted from csv")

87 return self.__data

88

89 def plotTemperatureData(self , data):

90 data.plot(x="Time", y=["BT-inlet","T-1","T-2","T-3","T-4","T

-5"], figsize =(4, 12), subplots=True , sharey=True)

91 plt.ylabel(’Temperature [deg C]’)

92 plt.xlabel(’Time [s]’)

93 data.plot(x="Time", y=["BT-inlet","T-1","T-2","T-3","T-4","T

-5"], figsize =(16, 8))

94 def buildNodeFiniteDiff(self , data , nodeLabel):

95 # CO3-T uncertainty of Omega T-type thermocouples

96 utemp =1*0.341

97

98 # find index of requested node

99 nodeList =[’T-1’,’T-2’,’T-3’,’T-4’, ’T-5’]
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100 for i, n in enumerate(nodeList):

101 if nodeLabel ==n:

102 endNodeIndex=i

103 stepIndex =0

104 nodes =[]

105 heats =[]

106 while stepIndex <= endNodeIndex:

107 if nodeList[stepIndex ]==’T-1’:

108 # extract thermocouple data with assoc. uncertainty

109 fluidData = np.array([ ufloat(t, utemp) for t in data

[’BT-inlet’]. to_numpy ()])

110 fluid = Fluid(fluidData , data[’Time’]. to_numpy ())

111 else:

112 prevNode=nodes[stepIndex-1]

113 prevHeat=heats[stepIndex-1]

114 fluidEnergyBalance = FluidEnergyBalanceFiniteDiff(

prevNode , prevHeat , nodeList[stepIndex ])

115 fluid = Fluid(fluidEnergyBalance.localFluidTemp ,

data[’Time’]. to_numpy ())

116 solidData = np.array([ ufloat(t, utemp) for t in data[

nodeList[stepIndex ]]. to_numpy ()])

117 solid = Solid(solidData , data[’Time’]. to_numpy ())

118 film=Fluid(( fluid.temp+solid.temp)/2, fluid.time)

119 uflowRateFactor =0.01

120 flowRateHour=np.array([ ufloat(t, uflowRateFactor) for t

in data[’Flow rate’]. to_numpy ()])

121 node=Node(self.channel , fluid , solid , film , flowRateHour

, nodeList[stepIndex ])

122 heat=self.calcHeat(node)

123 nodes.append(node)

124 heats.append(heat)

125 self.logger.info("{} calculated".format(node.label))

126 self.logger.debug(’stepIndex = {}’.format(stepIndex))

127 stepIndex +=1

128

129 return nodes[-1], nodes , heats

130

131 def calcHeat(self ,node):

132 return WallEnergyBalance(node)

133

134 class FluidEnergyBalanceFiniteDiff:

135 def __init__(self , prevNode , prevHeat , nodeLabel):

136 self.logger = logging.getLogger(__name__)

137 a=prevNode.dim[’radiusInner ’]



APPENDIX C. SHEFRA EXPERIMENT DATA REDUCTION CODE 166

138 xInlet=self.axialPos(prevNode.label)

139 xLocal=self.axialPos(nodeLabel)

140 self.logger.debug(’xLocal = {}’.format(xLocal))

141

142 self.__localFluidTemp =((2*(xLocal-xInlet))/(

143 prevNode.film.get_density(prevNode.film.temp)*prevNode.

film.get_specificHeat(prevNode.film.temp)*prevNode.

velocity*a

144 ))*(

145 (-1*prevHeat.h*(prevNode.fluid.temp-prevNode.solid.temp)

)

146 - (prevNode.film.get_density(prevNode.film.temp)*

147 prevNode.film.get_specificHeat(prevNode.film.temp)*

148 a*(1/2)*

149 prevNode.fluid.get_tempDerivative(prevNode.fluid.time))

150 )+prevNode.fluid.temp

151

152 def debug(self , prevNode , prevHeat , nodeLabel):

153 a=prevNode.dim[’radiusInner ’]

154 xInlet=self.axialPos(prevNode.label)

155 xLocal=self.axialPos(nodeLabel)

156 self.logger.debug(’local fluid temperature calculation

components for {}’.format(nodeLabel))

157 A=(2*(xLocal-xInlet))

158 B=Util.nominal(prevNode.fluidDensity*prevNode.

fluidSpecificHeat*prevNode.velocity*a) # this also

shouldn ’t change

159 C=Util.nominal ((-1*prevHeat.h*(prevNode.fluidTemp-prevNode.

solidTemp))) #this won’t change

160 D=Util.nominal (( prevNode.fluidDensity*

161 prevNode.fluidSpecificHeat*

162 a*(1/2)*

163 prevNode.fluidTempDerivative)) #this shoudn ’t change

164 Z=Util.nominal (((2*(1))/(

165 prevNode.fluidDensity*prevNode.fluidSpecificHeat*

prevNode.velocity*a

166 ))*(

167 (-1*prevHeat.h*(prevNode.fluidTemp-prevNode.solidTemp))

168 - (prevNode.fluidDensity*

169 prevNode.fluidSpecificHeat*

170 a*(1/2)*

171 prevNode.fluidTempDerivative)

172 ))

173 tt=prevNode.time
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174 self.logger.debug("A = {}".format(A))

175 self.logger.debug("xLocal-xInlet = {}".format(xLocal-xInlet)

)

176 fig , ax = plt.subplots ()

177 ax.plot(tt , B, label=’B’)

178 ax.plot(tt , C, label=’C’)

179 ax.plot(tt , D, label=’D’)

180 plt.legend ()

181 plt.ylim ([0 ,20000])

182 fig , ax = plt.subplots ()

183 ax.plot(tt , Z, label=’Z’)

184 ax.plot(tt , Z*(1)*(xLocal-xInlet), label=’Z*{}’.format ((

xLocal-xInlet)))

185 plt.legend ()

186 self.logger.debug("A = {}".format(A))

187 fig , ax = plt.subplots ()

188 ax.plot(tt , Util.nominal(prevNode.fluidTemp), label=’T-1

fluidTemp ’)

189 ax.plot(tt , Util.nominal(self.__localFluidTemp), label=

nodeLabel)

190 plt.legend ()

191

192 @property

193 def localFluidTemp(self):

194 return self.__localFluidTemp

195

196 def axialPos(self , nodeLabel):

197 axialPosDictInchesFromOutletExposedSection ={

198 ’T-1’: (76+1/2) ,

199 ’T-2’: (56+7/8) ,

200 ’T-3’: (38+3/4) ,

201 ’T-4’: (19+1/4) ,

202 ’T-5’: (1/2)}

203 channelLengthInchesExposed =77

204 NonExposedOutlet =0.0138

205 NonExposedInlet =0.01675

206 axialPosDict ={}

207 for key , value in axialPosDictInchesFromOutletExposedSection

.items():

208 positionInchesFromInlet = channelLengthInchesExposed-

value

209 #convert from inches to meters

210 positionFromInlet=positionInchesFromInlet*0.0254
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211 positionFromInletNonexposed=positionFromInlet+

NonExposedInlet

212 axialPosDict[key]= round(positionFromInletNonexposed ,3)

213 position = axialPosDict[nodeLabel]

214 position_with_uncertainty = ufloat(position , 0.25*0.0254)

215 return position_with_uncertainty

216 # return axialPosDict[nodeLabel]

217

218 class Fluid:

219 def __init__(self ,fluidTemp , time):

220 self.logger = logging.getLogger(__name__)

221 self.__temp=fluidTemp

222 self.__time=time

223

224 def get_tempDerivative(self , time):

225 # tempDerivativeAlt=Util.get_tempDerivativeFourier(self ,

time)

226 tempDerivative = Util.get_tempDerivative(self , time)

227 return tempDerivative

228

229 @property

230 def temp(self):

231 return self.__temp

232

233 @temp.setter

234 def temp(self , new_value):

235 self.__temp = new_value

236

237

238 @property

239 def time(self):

240 return self.__time

241

242 def get_density(self , temp):

243 tempKelvin=temp +273.15

244 return (-8.91977e-1*tempKelvin + 1.3261 e3)*ufloat(1,

0.1)

245

246 def get_specificHeat(self , temp):

247 tempKelvin=temp +273.15

248 return (2.79813*tempKelvin + 7.54676 E2)*ufloat(1, 0.1)

249

250 def get_thermalCond(self , temp):

251 tempKelvin=temp +273.15
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252 return (1.85606E-1 - 1.60002E-4 * tempKelvin)*ufloat(1,

0.1)

253

254 def get_dynamicVis(self ,temp):

255 tempKelvin=temp +273.15

256 return 4.31224E-6*unumpy.exp (2021.208061/ tempKelvin)*

ufloat(1, 0.1)

257

258 def get_prandtl(self , temp):

259 return self.get_dynamicVis(temp)*self.get_specificHeat(

temp)/self.get_thermalCond(temp)

260

261 class Solid:

262 def __init__(self ,solidTemp ,time):

263 self.logger = logging.getLogger(__name__)

264 self.__time=time

265 self.__temp=solidTemp

266

267 def get_tempDerivative(self , time):

268 # tempDerivativeAlt=Util.get_tempDerivativeFourier(self ,

time)

269 tempDerivative = Util.get_tempDerivative(self , time)

270 return tempDerivative

271 @property

272 def time(self):

273 return self.__time

274

275 @property

276 def temp(self):

277 return self.__temp

278

279 @temp.setter

280 def temp(self , new_value):

281 self.__temp = new_value

282

283 def get_density(self , temp=None):

284 # Density @300 K, kg/m^3, Incropera Appendix A

285 return 8933

286

287 def get_specificHeat(self , temp=None):

288 # Specific heat capacity @300 K,J/kg K, Incropera

Appendix A

289 return 385

290
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291 class Node:

292 ’’’

293 defines model state at specified axial locations

294 composed of a fluid and solid component

295 instantiates nodes and nodal data from Experiment.getMeasurments

296 inherits Channel class

297 ’’’

298 def __init__(self ,channel , fluid , solid , film , flowRateHour ,

label):

299 self.label=label

300 self.fluid=fluid

301 self.film=film

302 self.solid=solid

303 if (solid.time == fluid.time).all:

304 self.time=solid.time

305 else:

306 raise Exception("Mismatch between solid and fluid time

arrays within node")

307 self.dim=channel.dim

308

309 kgh_to_kgs =1/3600

310 self.__prandtl=self.film.get_prandtl(self.film.temp)

311 self.__flowRate=flowRateHour*kgh_to_kgs

312 self.__reynolds = (self.film.get_density(self.film.temp)*

self.velocity*(self.dim[’radiusInner ’]*2))/self.film.

get_dynamicVis(self.film.temp)

313

314 @property

315 def velocity(self):

316 flowArea=np.pi*self.dim[’radiusInner ’]**2

317 self.__velocity = self.flowRate /(self.film.get_density(self.

film.temp)*flowArea)

318 return self.__velocity

319

320 @property

321 def flowRate(self):

322 return self.__flowRate

323

324 @property

325 def reynolds(self):

326 return self.__reynolds

327

328 @reynolds.setter

329 def reynolds(self , new_value):
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330 self.__reynolds = new_value

331

332 @property

333 def prandtl(self):

334 return self.__prandtl

335

336 @prandtl.setter

337 def prandtl(self , new_value):

338 self.__prandtl = new_value

339

340 class WallEnergyBalance:

341 def __init__(self , node):

342 self.__label=node.label

343

344 a=node.dim[’radiusInner ’]

345 l=node.dim[’thickness ’]

346

347 #specific surface area

348 a_v =(2*a)/(l**2+(2*a*l))

349 self.a_v=a_v

350 self.__h = (node.solid.get_density(node.solid.temp)*node.

solid.get_specificHeat(node.solid.temp))*node.solid.

get_tempDerivative(node.solid.time)/a_v/(node.fluid.temp-

node.solid.temp)

351 self.__Nu = self.__h * node.dim[’radiusInner ’] * 2 / node.

film.get_thermalCond(node.film.temp)

352

353

354 @property

355 def h(self):

356 return self.__h

357

358 @h.setter

359 def h(self , new_value):

360 self.__h = new_value

361

362 @property

363 def Nu(self):

364 return self.__Nu

365

366 @Nu.setter

367 def Nu(self , new_value):

368 self.__Nu = new_value

369
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370 @property

371 def label(self):

372 return self.__label

373

374 class Channel:

375 ’’’

376 define model behaviour that is consistent throughout the channel

component

377 copper and fluid materials will be inherited by node objects

from the component object

378 channel geometry

379 ambient conditions if recorded

380 inherits Experiment class

381 ’’’

382 def __init__(self ,radiusInner ,thickness):

383 self.__dim={

384 ’radiusInner ’:radiusInner ,

385 ’thickness ’: thickness

386 }

387

388 @property

389 def dim(self):

390 return self.__dim

391

392 import numpy as np

393 import matplotlib.pyplot as plt

394 import itertools

395

396 class Util:

397 def __init__(self , filename , runLabel , frequencyHz ,

tempInletMean , tempInletAmplitude , meanMassFlow):

398 self.foldername=Util.get_prefix(filename)

399 self.runLabel = runLabel

400 self.tempInletMean = tempInletMean

401 self.tempInletAmplitude = tempInletAmplitude

402 self.meanMassFlow = meanMassFlow

403 self.frequencyHz = frequencyHz

404 self.logger = logging.getLogger(__name__)

405 self.logger.info("Starting run {}".format(filename))

406 class Plotter:

407 def __init__(self , parent_util , data):

408 self.logger = logging.getLogger(__name__)

409 self.parent_util = parent_util

410 self.data = data
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411 self.foldername = parent_util.foldername

412 self.runLabel = parent_util.runLabel

413 self.tempInletMean = parent_util.tempInletMean

414 self.tempInletAmplitude = parent_util.tempInletAmplitude

415 self.meanMassFlow = parent_util.meanMassFlow

416 self.frequencyHz = parent_util.frequencyHz

417

418 def unique_color_linestyle(self):

419 combinations = [

420 (’b’, ’-’),

421 (’g’, ’--’),

422 (’r’, ’-.’),

423 (’c’, ’:’),

424 (’m’, (0, (3, 5, 1, 5))),

425 (’y’, (0, (5, 5))),

426 (’k’, (0, (1, 1))),

427 (’orange ’, (0, (3, 10, 1, 10))),

428 (’purple ’, (0, (3, 5, 1, 5, 1, 5))),

429 (’brown ’, (0, (3, 1, 1, 1))),

430 ]

431 return itertools.cycle(combinations)

432

433 def warm_color_linestyle(self):

434 combinations = [

435 (’darkred ’, ’-’),

436 (’orangered ’, ’--’),

437 (’goldenrod ’, ’-.’),

438 (’darkorange ’, ’:’),

439 (’tomato ’, (0, (3, 5, 1, 5))),

440 ]

441 return itertools.cycle(combinations)

442

443 def cold_color_linestyle(self):

444 combinations = [

445 (’mediumblue ’, ’-’),

446 (’teal’, ’--’),

447 (’dodgerblue ’, ’-.’),

448 (’cornflowerblue ’, ’:’),

449 (’darkturquoise ’, (0, (3, 5, 1, 5))),

450 ]

451 return itertools.cycle(combinations)

452

453 def plot_with_uncertainty(self , property_name , xlabel ,

ylabel , xlim , ylim):
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454 unique_labels = self.data[’label ’]. unique ()

455 color_linestyle_gen = self.unique_color_linestyle ()

456 fig , ax = plt.subplots(figsize =(3.25 , 4), dpi =300)

457

458 for label in unique_labels:

459 node_data = self.data[self.data[’label ’] == label]

460 x = node_data[’fluid_time ’] # Accessing fluid_time

directly since it doesn ’t have subcolumns

461 y = node_data[property_name ][’nominal_value ’]

462 yerr = node_data[property_name ][’std_dev ’]

463

464 color , linestyle = next(color_linestyle_gen)

465 plt.plot(x, y, label=f’{self.formatStringsShort ([

property_name ])}, {label}’, color=color ,

linestyle=linestyle)

466 plt.fill_between(x, y - yerr , y + yerr , color=color ,

alpha =0.2)

467

468 ax.set_xlabel(xlabel)

469 ax.set_ylabel(ylabel)

470 ax.set_xlim(xlim)

471 ax.set_ylim(ylim)

472

473 ax.legend(loc=’upper center ’, bbox_to_anchor =(0.5, -

0.25), ncol=2, frameon=True)

474 plt.subplots_adjust(bottom =0.1)

475 # rect=[0, 0.1, 1, 1]

476 rect=None

477

478 # plt.title(f ’{property_name} vs. {xlabel}’)

479 # plt.tight_layout(rect=[0, 0, 0.75, 1]) # Adjust

layout to fit the legend

480 # Util.saveFig (’{} time series ’.format(property_name), ’

results ’, plt , self.foldername))

481 measurements_string = self.formatStrings ([ property_name

])

482 plot_name=’{} time series ’.format(measurements_string)

483 plotLabel=’{} - {} time series for {}’.format(self.

runLabel , measurements_string , label)

484 caption="{} measurements for experimental run with a

mean cycle bulk temperature at the inlet of {}$^{{\
circ}}$C , with amplitude equal to {}$^{{\ circ}}$C ,
and mass flow rate of {} kg/h. The shaded area

visualizes the estimated propagated uncertainty. (run



APPENDIX C. SHEFRA EXPERIMENT DATA REDUCTION CODE 175

timestamp label: {})".format(measurements_string.

capitalize (), self.tempInletMean , self.

tempInletAmplitude , self.meanMassFlow , self.runLabel)

485 Util.saveFig(plot_name , ’results ’, plt , self.foldername ,

rect)

486 Util.append_latex_code(plot_name , caption , plotLabel ,

self.foldername , width =0.45, tex_file=’plots.tex’)

487

488 self.logger.debug(’executed save fig’)

489 # plt.show()

490 plt.close()

491

492 def formatStrings(self , property_names):

493 # Mapping dictionary

494 name_mapping = {

495 ’fluid_temp ’: ’bulk temperature ’,

496 ’h’: ’Heat transfer coefficient ’,

497 ’solid_temp ’: ’wall temperature ’

498 }

499

500 # Replace property names if they exist in the mapping

dictionary and check if the list has more than one

item

501 if len(property_names) > 1:

502 formatted_string = "{} and {}".format(name_mapping.

get(property_names [0], property_names [0]),

name_mapping.get(property_names [1],

property_names [1]))

503 else:

504 formatted_string = name_mapping.get(property_names

[0], property_names [0])

505 return formatted_string

506

507 def formatStringsShort(self , property_names):

508 # Mapping dictionary

509 name_mapping = {

510 ’fluid_temp ’: ’bulk’,

511 ’solid_temp ’: ’wall’,

512 ’prandtl ’: ’Pr’,

513 ’reynolds ’: ’Re’,

514 ’nusselt ’: ’Nu’

515 }

516
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517 # Replace property names if they exist in the mapping

dictionary and check if the list has more than one

item

518 if len(property_names) > 1:

519 formatted_string = "{} and {}".format(name_mapping.

get(property_names [0], property_names [0]),

name_mapping.get(property_names [1],

property_names [1]))

520 else:

521 formatted_string = name_mapping.get(property_names

[0], property_names [0])

522 return formatted_string

523

524

525 def plot_multiple(self , property_names , xlabel , ylabel , xlim

, ylim):

526 fig , ax = plt.subplots(figsize =(3.25 , 4.5),dpi =300)

527

528 linestyle_gens = [self.cold_color_linestyle (), self.

warm_color_linestyle ()]

529

530 for p, property_name in enumerate(property_names):

531 unique_labels = self.data[’label ’]. unique ()

532

533 for label in unique_labels:

534 node_data = self.data[self.data[’label ’] ==

label]

535 x = node_data[’fluid_time ’] # Accessing

fluid_time directly since it doesn ’t have

subcolumns

536 y = node_data[property_name ][’nominal_value ’]

537 yerr = node_data[property_name ][’std_dev ’]

538

539 color , linestyle = next(linestyle_gens[p])

540 ax.plot(x, y, label=f’{self.formatStringsShort ([

property_name ])}, {label}’, color=color ,

linestyle=linestyle)

541 ax.fill_between(x, y - yerr , y + yerr , color=

color , alpha =0.2)

542

543 ax.set_xlabel(xlabel)

544 ax.set_ylabel(ylabel)

545 ax.set_xlim(xlim)

546 ax.set_ylim(ylim)
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547

548 ax.legend(loc=’upper center ’, bbox_to_anchor =(0.5, -

0.20), ncol=2, frameon=True)

549 plt.subplots_adjust(bottom =0.2)

550

551 measurements_string = self.formatStrings(property_names)

552 plot_name=’{} time series ’.format(measurements_string)

553 plotLabel=’{} - {} time series for {}’.format(self.

runLabel , measurements_string , label)

554 caption="{} measurements for experimental run with a

mean cycle bulk temperature at the inlet of {}$^{{\
circ}}$C , with amplitude equal to {}$^{{\ circ}}$C ,
and mass flow rate of {} kg/h. The shaded area

visualizes the estimated propagated uncertainty. (run

timestamp label: {})".format(measurements_string.

capitalize (), self.tempInletMean , self.

tempInletAmplitude , self.meanMassFlow , self.runLabel)

555 Util.saveFig(plot_name , ’results ’, plt , self.foldername)

556 Util.append_latex_code(plot_name , caption , plotLabel ,

self.foldername , width =0.45, tex_file=’plots.tex’)

557

558 #plt.show()

559 plt.close()

560

561 def nominal(objectAttribute):

562 return np.array ([t.nominal_value for t in objectAttribute ])

563

564 def uncertainty(objectAttribute):

565 return np.array ([t.std_dev for t in objectAttribute ])

566

567 def rmse(predictions , true_values):

568 squared_errors = (predictions - true_values) ** 2

569 mean_squared_error = np.mean(squared_errors)

570 root_mean_squared_error = np.sqrt(mean_squared_error)

571 return root_mean_squared_error

572

573 def get_nested_attr(obj , attr):

574 for level in attr.split(’.’):

575 obj = getattr(obj , level)

576 return obj

577

578 def get_tempDerivative(self , time):

579 self.logger.debug(’using SG derivatives ’)

580 method=’SG’
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581 sg = derivative.SavitzkyGolay(left=2, right=2, order=3,

periodic=False)

582 self.logger.debug(’NEGLECTING UNCERTAINTY FROM TEMP TIME

DERIVATIVE ’)

583 temp_nominal = np.array([t.nominal_value for t in self.temp

])

584 temp_uncertainty = np.array([t.std_dev for t in self.temp])

585 temp_nominal_detrended=signal.detrend(temp_nominal)

586 tempDerivative_nominal = sg.d(temp_nominal_detrended , time)

587 tempDerivative = np.array([ ufloat(t, temp_uncertainty [0])

for t in tempDerivative_nominal ])

588 # if self.__class__.__name__==’Solid ’:

589 # ri=600

590 # re=800

591 # plt.plot(time[ri:re], tempDerivative_nominal[ri:re],

label=’{}, {}, {}’. format(round(np.max(temp_nominal)),

method , np.max(tempDerivative_nominal[ri:re])))

592 # plt.legend(loc=’upper left ’, bbox_to_anchor =(1.05 , 1))

593 return tempDerivative

594 def get_tempDerivativeFourier(self , time):

595 method=’Fourier ’

596 self.logger.info(’using fourier domain derivatives ’)

597 yes_filter = derivative.Spectral(filter=np.vectorize(lambda

f: 1 if abs(f) < 0.11 else 0))

598 self.logger.info(’NEGLECTING UNCERTAINTY FROM TEMP TIME

DERIVATIVE ’)

599 temp_nominal = np.array([t.nominal_value for t in self.temp

])

600 temp_uncertainty = np.array([t.std_dev for t in self.temp])

601 temp_nominal_detrended=signal.detrend(temp_nominal)

602 tempDerivative_nominal = yes_filter.d(temp_nominal_detrended

, time)

603 tempDerivative = np.array([ ufloat(t, temp_uncertainty [0])

for t in tempDerivative_nominal ])

604 return tempDerivative

605

606 def create_multilevel_dataframe(Nodes , Heats):

607 data = []

608 for node , heat in zip(Nodes , Heats):

609 fluid_temp = node.fluid.temp

610 film_temp = node.film.temp

611 solid_temp = node.solid.temp

612 nodeLength=len(node.time)

613
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614 row_data = {

615 (’label ’, ’’): np.repeat(node.label ,nodeLength),

616 (’dim’, ’’): np.repeat(node.dim ,nodeLength),

617 (’velocity ’, ’nominal_value ’): unumpy.nominal_values

(node.velocity),

618 (’velocity ’, ’std_dev ’): unumpy.std_devs(node.

velocity),

619 (’flowRate ’, ’nominal_value ’): unumpy.nominal_values

(node.flowRate),

620 (’flowRate ’, ’std_dev ’): unumpy.std_devs(node.

flowRate),

621 (’reynolds ’, ’nominal_value ’): unumpy.nominal_values

(node.reynolds),

622 (’reynolds ’, ’std_dev ’): unumpy.std_devs(node.

reynolds),

623 (’prandtl ’, ’nominal_value ’): unumpy.nominal_values(

node.prandtl),

624 (’prandtl ’, ’std_dev ’): unumpy.std_devs(node.prandtl

),

625 (’nusselt ’, ’nominal_value ’): unumpy.nominal_values(

heat.Nu),

626 (’nusselt ’, ’std_dev ’): unumpy.std_devs(heat.Nu),

627 (’h’, ’nominal_value ’): unumpy.nominal_values(heat.h

),

628 (’h’, ’std_dev ’): unumpy.std_devs(heat.h),

629 (’fluid_temp ’, ’nominal_value ’): unumpy.

nominal_values(fluid_temp),

630 (’fluid_temp ’, ’std_dev ’): unumpy.std_devs(

fluid_temp),

631 (’fluid_time ’, ’’): node.fluid.time ,

632 (’fluid_density ’, ’nominal_value ’): unumpy.

nominal_values(node.fluid.get_density(fluid_temp)

),

633 (’fluid_density ’, ’std_dev ’): unumpy.std_devs(node.

fluid.get_density(fluid_temp)),

634 (’fluid_specificHeat ’, ’nominal_value ’): unumpy.

nominal_values(node.fluid.get_specificHeat(

fluid_temp)),

635 (’fluid_specificHeat ’, ’std_dev ’): unumpy.std_devs(

node.fluid.get_specificHeat(fluid_temp)),

636 (’fluid_thermalCond ’, ’nominal_value ’): unumpy.

nominal_values(node.fluid.get_thermalCond(

fluid_temp)),
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637 (’fluid_thermalCond ’, ’std_dev ’): unumpy.std_devs(

node.fluid.get_thermalCond(fluid_temp)),

638 (’fluid_dynamicVis ’, ’nominal_value ’): unumpy.

nominal_values(node.fluid.get_dynamicVis(

fluid_temp)),

639 (’fluid_dynamicVis ’, ’std_dev ’): unumpy.std_devs(

node.fluid.get_dynamicVis(fluid_temp)),

640 (’film_temp ’, ’nominal_value ’): unumpy.

nominal_values(film_temp),

641 (’film_temp ’, ’std_dev ’): unumpy.std_devs(film_temp)

,

642 (’film_time ’, ’’): node.film.time ,

643 (’film_density ’, ’nominal_value ’): unumpy.

nominal_values(node.film.get_density(film_temp)),

644 (’film_density ’, ’std_dev ’): unumpy.std_devs(node.

film.get_density(film_temp)),

645 (’film_specificHeat ’, ’nominal_value ’): unumpy.

nominal_values(node.film.get_specificHeat(

film_temp)),

646 (’film_specificHeat ’, ’std_dev ’): unumpy.std_devs(

node.film.get_specificHeat(film_temp)),

647 (’film_thermalCond ’, ’nominal_value ’): unumpy.

nominal_values(node.film.get_thermalCond(

film_temp)),

648 (’film_thermalCond ’, ’std_dev ’): unumpy.std_devs(

node.film.get_thermalCond(film_temp)),

649 (’film_dynamicVis ’, ’nominal_value ’): unumpy.

nominal_values(node.film.get_dynamicVis(film_temp

)),

650 (’film_dynamicVis ’, ’std_dev ’): unumpy.std_devs(node

.film.get_dynamicVis(film_temp)),

651 (’solid_temp ’, ’nominal_value ’): unumpy.

nominal_values(solid_temp),

652 (’solid_temp ’, ’std_dev ’): unumpy.std_devs(

solid_temp),

653 (’solid_time ’, ’’): node.solid.time ,

654 (’solid_density ’, ’nominal_value ’): unumpy.

nominal_values(node.solid.get_density(solid_temp)

),

655 (’solid_density ’, ’std_dev ’): unumpy.std_devs(node.

solid.get_density(solid_temp)),

656 (’solid_specificHeat ’, ’nominal_value ’): unumpy.

nominal_values(node.solid.get_specificHeat(

solid_temp)),
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657 (’solid_specificHeat ’, ’std_dev ’): unumpy.std_devs(

node.solid.get_specificHeat(solid_temp))

658 }

659

660 row_df = pd.DataFrame(row_data)

661 data.append(row_df)

662

663 df = pd.concat(data , ignore_index=True)

664 df.columns = pd.MultiIndex.from_tuples(df.columns)

665 return df

666

667 def drop_uncertain(df: pd.DataFrame , percentage: float) -> pd.

DataFrame:

668 """

669 Drop rows in which the nusselt value standard deviation is

above a specified percentage of the nominal value.

670

671 :param df: The input multilevel dataframe

672 :param percentage: The specified percentage (e.g., 0.1 for

10%)

673 :return: The filtered dataframe

674 """

675 # Assuming the nusselt nominal value and standard deviation

are located at ’nusselt ’, ’nominal_value ’ and ’nusselt ’,

’std_dev ’ respectively.

676 nusselt_nominal = df[(’nusselt ’, ’nominal_value ’)]

677 nusselt_std = df[(’nusselt ’, ’std_dev ’)]

678

679 # Calculate the threshold value for the standard deviation

680 threshold = nusselt_nominal * percentage

681

682 # Filter the rows based on the threshold

683 filtered_df = df[nusselt_std <= threshold]

684

685 return filtered_df

686

687 def filter_uncertain(df: pd.DataFrame , percentage: float) -> pd.

DataFrame:

688 """

689 Replace rows in which the nusselt value standard deviation

is above a specified percentage of the nominal value with

NaN values.

690

691 :param df: The input multilevel dataframe
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692 :param percentage: The specified percentage (e.g., 0.1 for

10%)

693 :return: The filtered dataframe

694 """

695 # Assuming the nusselt nominal value and standard deviation

are located at ’nusselt ’, ’nominal_value ’ and ’nusselt ’,

’std_dev ’ respectively.

696 nusselt_nominal = df[(’nusselt ’, ’nominal_value ’)]

697 nusselt_std = df[(’nusselt ’, ’std_dev ’)]

698

699 # Calculate the threshold value for the standard deviation

700 threshold = nusselt_nominal * percentage

701

702 # excluded columns

703 # excluded_cols =[’ fluid_time ’, ’solid_time ’, ’film_time ’, ’

label ’]

704 excluded_cols = [

705 (’fluid_time ’, ’’),

706 (’solid_time ’, ’’),

707 (’film_time ’, ’’),

708 (’label’, ’’),

709 (’solid_temp ’, ’nominal_value ’),

710 (’solid_temp ’, ’std_dev ’),

711 (’fluid_temp ’, ’nominal_value ’),

712 (’fluid_temp ’, ’std_dev ’),

713 ]

714

715 # Create a boolean mask that filters rows where ‘nusselt_std

‘ > ‘threshold ‘

716 mask = nusselt_std > threshold

717

718 # Select the columns to update using ‘.loc ‘, and exclude the

columns in ‘excluded_cols ‘

719 # update_cols = ~df.columns.get_level_values (0).isin(

excluded_cols)

720 update_cols = ~df.columns.isin(excluded_cols)

721 df.loc[mask , update_cols] = np.nan

722 return df

723

724 def plot_2D_color_grid(self , dataframe , label , x_grid_length ,

y_grid_length , value_type=’nominal_value ’, figsize =(4, 3.5)):

725 # Filter the DataFrame by the given label

726 df_label = dataframe[dataframe[’label ’] == label]

727
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728 # Create x and y grid edges using ’nominal_value ’ for the x

and y axes

729 x_edges = np.linspace(df_label [(’reynolds ’, ’nominal_value ’)

].min(), df_label [(’reynolds ’, ’nominal_value ’)].max(),

x_grid_length + 1)

730 y_edges = np.linspace(df_label [(’prandtl ’, ’nominal_value ’)

].min(), df_label [(’prandtl ’, ’nominal_value ’)].max(),

y_grid_length + 1)

731

732 # Create an empty grid for the average Nusselt values

733 nusselt_grid = np.zeros(( y_grid_length , x_grid_length))

734

735 fig , ax = plt.subplots(figsize=figsize , dpi =300)

736 # Iterate through the grid and compute the average Nusselt

value for each grid cell

737 for i in range(y_grid_length):

738 for j in range(x_grid_length):

739 cell_data = df_label [( df_label [(’reynolds ’, ’

nominal_value ’)] >= x_edges[j]) &

740 (df_label [(’reynolds ’, ’

nominal_value ’)] < x_edges[j

+1]) &

741 (df_label [(’prandtl ’, ’

nominal_value ’)] >= y_edges[i

]) &

742 (df_label [(’prandtl ’, ’

nominal_value ’)] < y_edges[i

+1])]

743 nusselt_value = cell_data [(’nusselt ’, value_type)].

mean()

744 nusselt_grid[i, j] = nusselt_value

745 if not np.isnan(nusselt_value): # This line has

been added

746 ax.text(( x_edges[j] + x_edges[j+1])/2, (y_edges[

i] + y_edges[i+1])/2, f’{nusselt_value :.0f}’,

color=’lightgrey ’, fontsize=6, ha=’center ’,

va=’center ’) # Modified color to ’lightgrey ’

747

748 # ax.text(( x_edges[j] + x_edges[j+1])/2, (y_edges[i]

+ y_edges[i+1])/2, f ’{nusselt_value :.0f}’, color

=’white ’, fontsize=6, ha=’center ’, va=’center ’)

749

750 # Check if there are any finite values in the nusselt_grid

751 if not np.any(np.isfinite(nusselt_grid)):
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752 logging.warning(’No finite Nusselt values found in the

grid for label: %s’, label)

753 return

754

755 # Choose the color palette based on the value_type

756 colormap = ’inferno ’ if value_type == ’nominal_value ’ else ’

cividis ’

757

758 # Plot the 2D color grid

759 pcm = ax.pcolormesh(x_edges , y_edges , nusselt_grid , shading=

’auto’, cmap=colormap , vmin=np.nanmin(nusselt_grid), vmax

=np.nanmax(nusselt_grid))

760 cbar = fig.colorbar(pcm , ax=ax , label=f’Nusselt {value_type.

capitalize ()}’)

761 ax.set_xlabel(’Reynolds ’)

762 ax.set_ylabel(’Prandtl ’)

763 ax.set_title(f’{label}’)

764

765 plot_name=’nusselt grid for {} {}’.format(label , value_type)

766 plotLabel=’{} - nusselt grid for {} {}’.format(self.runLabel

, label , value_type)

767 if value_type =="nominal_value":

768 caption="Nusselt measurements over the range of the

experimental run Reynolds and Prandtl values. Values

are averaged within each grid."

769 elif value_type =="std_dev":

770 caption="Uncertainty in Nusselt measurements over the

range of the experimental run Reynolds and Prandtl

values."

771 Util.saveFig(plot_name , ’results ’, plt , self.foldername)

772 Util.append_latex_code(plot_name , caption , plotLabel , self.

foldername , width =0.35 , tex_file=’plots.tex’)

773 plt.close()

774

775

776

777 def plot_2D_color_grid_depr(self , dataframe , label ,

x_grid_length , y_grid_length , value_type=’nominal_value ’,

figsize =(4, 3.5)):

778 # Filter the DataFrame by the given label

779 df_label = dataframe[dataframe[’label ’] == label]

780

781 # Create x and y grid edges using ’nominal_value ’ for the x

and y axes
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782 x_edges = np.linspace(df_label [(’reynolds ’, ’nominal_value ’)

].min(), df_label [(’reynolds ’, ’nominal_value ’)].max(),

x_grid_length + 1)

783 y_edges = np.linspace(df_label [(’prandtl ’, ’nominal_value ’)

].min(), df_label [(’prandtl ’, ’nominal_value ’)].max(),

y_grid_length + 1)

784

785 # Create an empty grid for the average Nusselt values

786 nusselt_grid = np.zeros(( y_grid_length , x_grid_length))

787

788 # Iterate through the grid and compute the average Nusselt

value for each grid cell

789 for i in range(y_grid_length):

790 for j in range(x_grid_length):

791 cell_data = df_label [( df_label [(’reynolds ’, ’

nominal_value ’)] >= x_edges[j]) &

792 (df_label [(’reynolds ’, ’

nominal_value ’)] < x_edges[j

+1]) &

793 (df_label [(’prandtl ’, ’

nominal_value ’)] >= y_edges[i

]) &

794 (df_label [(’prandtl ’, ’

nominal_value ’)] < y_edges[i

+1])]

795 nusselt_grid[i, j] = cell_data [(’nusselt ’,

value_type)].mean()

796

797 # Check if there are any finite values in the nusselt_grid

798 if not np.any(np.isfinite(nusselt_grid)):

799 logging.warning(’No finite Nusselt values found in the

grid for label: %s’, label)

800 return

801

802 # Choose the color palette based on the value_type

803 colormap = ’inferno ’ if value_type == ’nominal_value ’ else ’

cividis ’

804

805 # Plot the 2D color grid

806

807 fig , ax = plt.subplots(figsize=figsize , dpi =300)

808 pcm = ax.pcolormesh(x_edges , y_edges , nusselt_grid , shading=

’auto’, cmap=colormap , vmin=np.nanmin(nusselt_grid), vmax

=np.nanmax(nusselt_grid))
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809 cbar = fig.colorbar(pcm , ax=ax , label=f’Nusselt {value_type.

capitalize ()}’)

810 ax.set_xlabel(’Reynolds ’)

811 ax.set_ylabel(’Prandtl ’)

812 ax.set_title(f’{label}’)

813

814 plot_name=’nusselt grid for {} {}’.format(label , value_type)

815 plotLabel=’{} - nusselt grid for {} {}’.format(self.runLabel

, label , value_type)

816 if value_type =="nominal_value":

817 caption="Nusselt measurements over the range of the

experimental run Reynolds and Prandtl values. Values

are averaged within each grid."

818 elif value_type =="std_dev":

819 caption="Uncertainty in Nusselt measurements over the

range of the experimental run Reynolds and Prandtl

values."

820 Util.saveFig(plot_name , ’results ’, plt , self.foldername)

821 Util.append_latex_code(plot_name , caption , plotLabel , self.

foldername , width =0.35 , tex_file=’plots.tex’)

822 plt.close()

823

824

825 def plot_nominal_vs_std_dev_single_node(self , dataframe , label ,

variable_name):

826 # Filter the DataFrame by the given label

827 df_label = dataframe[dataframe[’label ’] == label]

828

829 # Extract the nominal values and standard deviations for the

given variable

830 nominal_values = df_label [( variable_name , ’nominal_value ’)]

831 std_dev_values = df_label [( variable_name , ’std_dev ’)]

832

833 # Plot the nominal values against the standard deviations

834 fig , ax = plt.subplots(figsize =(3.25 , 3.25), dpi =300)

835 xlabel=f’{variable_name.capitalize ()} Nominal Value’

836 ylabel=f’{variable_name.capitalize ()} Std Dev’

837 title=f’{label}’

838 ax.set_xlabel(xlabel)

839 ax.set_ylabel(ylabel)

840 ax.set_title(title)

841

842 ax.scatter(nominal_values , std_dev_values , s=1, color=’k’)
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843 plot_name=’nom vs std dev {} for {}’.format(variable_name ,

label)

844 plotLabel=’{} - nom vs std dev {} for {}’.format(self.

runLabel , variable_name , label)

845 caption=’{} uncertainty distribution for range of nominal

values in node location {}’.format(variable_name.

capitalize (), label)

846 Util.saveFig(plot_name , ’results ’, plt , self.foldername)

847 Util.append_latex_code(plot_name , caption , plotLabel , self.

foldername , width =0.45 , tex_file=’plots.tex’)

848

849 #plt.show()

850 plt.close()

851

852 def plot_nominal_vs_std_dev(self , dataframe , labels ,

variable_name):

853 markers = [’o’, ’s’, ’^’, ’v’, ’p’, ’*’, ’X’, ’D’, ’h’, ’8’]

854 colors = plt.cm.tab10(np.linspace(0, 1, len(labels)))

855

856 fig , ax = plt.subplots(figsize =(3.25 , 3.5), dpi =300)

857 for idx , label in enumerate(labels):

858 # Filter the DataFrame by the given label

859 df_label = dataframe[dataframe[’label ’] == label]

860

861 # Extract the nominal values and standard deviations for

the given variable

862 nominal_values = df_label [( variable_name , ’nominal_value

’)]

863 std_dev_values = df_label [( variable_name , ’std_dev ’)]

864

865 # Plot the nominal values against the standard

deviations

866 ax.scatter(nominal_values , std_dev_values , s=1, color=

colors[idx], marker=markers[idx % len(markers)],

label=label)

867 xlabel=f’{variable_name.capitalize ()} Nominal Value’

868 ylabel=f’{variable_name.capitalize ()} Std Dev’

869 title=f’{label}’

870 ax.set_xlabel(xlabel)

871 ax.set_ylabel(ylabel)

872

873

874 # ax.legend ()
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875 ax.legend(loc=’upper center ’, bbox_to_anchor =(0.5, -0.3),

ncol=2, frameon=True)

876 plt.subplots_adjust(bottom =0.3)

877 # ax.legend(fontsize=’x-small ’, ncol=2, loc=’lower center ’,

bbox_to_anchor =(0.5, -0.6))

878 plot_name = ’nom vs std dev {}’.format(variable_name)

879 plotLabel = ’{} - nom vs std dev {}’.format(self.runLabel ,

variable_name)

880 caption = ’{} uncertainty distribution for range of nominal

values ’.format(variable_name.capitalize ())

881 Util.saveFig(plot_name , ’results ’, plt , self.foldername)

882 Util.append_latex_code(plot_name , caption , plotLabel , self.

foldername , width =0.45 , tex_file=’plots.tex’)

883

884 #plt.show()

885 plt.close()

886

887

888 def plot_variables_with_error_bars(self , dataframe , label , x_var

, y_var , third_var , third_var_range):

889 # Filter the DataFrame by the given label

890 df_label = dataframe[dataframe[’label ’] == label]

891

892 # Filter the DataFrame by the specified range for the third

variable

893 df_filtered = df_label [( df_label [(third_var , ’nominal_value ’

)] >= third_var_range [0]) &

894 (df_label [(third_var , ’nominal_value ’)]

<= third_var_range [1])]

895

896 # Extract the nominal values and standard deviations for the

x and y variables

897 x_nominal_values = df_filtered [(x_var , ’nominal_value ’)]

898 x_std_dev_values = df_filtered [(x_var , ’std_dev ’)]

899 y_nominal_values = df_filtered [(y_var , ’nominal_value ’)]

900 y_std_dev_values = df_filtered [(y_var , ’std_dev ’)]

901

902 # Plot the nominal values with error bars

903 plt.figure(figsize =(4, 4))

904 plt.errorbar(x_nominal_values , y_nominal_values , xerr=

x_std_dev_values , yerr=y_std_dev_values , fmt=’ok’,

markersize =1, alpha =0.5, ecolor=’grey’)

905 plt.xlabel(f’{x_var.capitalize ()} Nominal Value’)

906 plt.ylabel(f’{y_var.capitalize ()} Nominal Value’)
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907 # plt.title(f’{x_var.capitalize ()} vs {y_var.capitalize ()}

with Error Bars for {label}’)

908 plt.title(f’{label}’)

909 Util.saveFig(’{} vs {} with error’.format(x_var , y_var), ’

results ’, plt , self.foldername)

910 #plt.show()

911 plt.close()

912

913 def saveFig(figName , subfolderName , fig , subsubfolderName=None ,

legendBox=None):

914 fname = "{}.png".format(figName)

915 current_directory_path = os.getcwd ()

916 subfolder_path = os.path.join(current_directory_path ,

subfolderName)

917

918 if subsubfolderName:

919 subfolder_path = os.path.join(subfolder_path ,

subsubfolderName)

920

921 if not os.path.exists(subfolder_path):

922 os.makedirs(subfolder_path)

923

924 path = os.path.join(subfolder_path , fname)

925 if legendBox != None:

926 fig.tight_layout(rect=legendBox)

927 else:

928 fig.tight_layout ()

929 # fig.show()

930 fig.savefig(path , bbox_inches=’tight’)

931

932 def append_latex_code(plot_name , caption , label , subfolder ,

width =0.45 , tex_file=’plots.tex’):

933 latex_code = f"""\t\\begin {{ subfigure }}[b]{{{ width }\\

textwidth }}

934 \\ centering

935 \t\\ includegraphics[width =\\ textwidth ]{{ chap-shefra-exp/

results /{ subfolder }/{ plot_name }.png}}

936 \t\\ caption {{{ caption }}}

937 \t\\ label{{fig:{ label }}}

938 \\end{{ subfigure }}

939 \\ hfill

940 """

941

942 with open(tex_file , ’a’) as file:
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943 file.write(latex_code)

944

945 def get_dataPath(subfolderName , fname):

946 # obtains a csv file given a subfolder and file name

947 current_directory_path = os.getcwd ()

948 subfolder_path = os.path.join(current_directory_path ,

subfolderName)

949 path = os.path.join(subfolder_path , fname)

950 return path

951 def get_prefix(filename):

952 return filename.split(’.’)[0]

953

954 def extract_filenames(folder_name):

955 # Get the current directory where the script is located

956 current_directory = os.path.dirname(os.path.abspath(__file__

))

957

958 # Build the full path of the target folder

959 folder_path = os.path.join(current_directory , folder_name)

960

961 # Check if the folder exists

962 if os.path.exists(folder_path) and os.path.isdir(folder_path

):

963 # Get the list of filenames in the folder

964 all_filenames = os.listdir(folder_path)

965 # Filter out filenames starting with a period

966 filenames = [filename for filename in all_filenames if

not filename.startswith(’.’)]

967 return filenames

968 else:

969 print(f"Folder ’{folder_name}’ not found in the current

directory.")

970 return []

971

972 # return temp_inlet_mean , temp_inlet_amplitude ,

freq_inlet_hz , mass_flow_kgh

973 def extract_variables_from_filename(filename):

974 temp_inlet_mean_regex = r"mean_ ([\d]+-[\d]+)"

975 temp_inlet_amplitude_regex = r"amp_ ([\d]+(?:-[\d]+)?)"

976 freq_inlet_hz_regex = r"f_([\d]+(?:-[\d]+)?)"

977 mass_flow_kgh_regex = r"flow_ ([\d]+(?:-[\d]+)?)"

978

979 temp_inlet_mean = float(re.search(temp_inlet_mean_regex ,

filename).group (1).replace(’-’, ’.’))
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980 temp_inlet_amplitude = float(re.search(

temp_inlet_amplitude_regex , filename).group (1).replace(’-

’, ’.’))

981 freq_inlet_hz = float(re.search(freq_inlet_hz_regex ,

filename).group (1).replace(’-’, ’.’))

982 mass_flow_kgh = float(re.search(mass_flow_kgh_regex ,

filename).group (1).replace(’-’, ’.’))

983

984 return temp_inlet_mean , temp_inlet_amplitude , freq_inlet_hz ,

mass_flow_kgh

985

986 def dataInfo(fname):

987 # return experiment time in seconds for clean splices of

periodically-steady state data and the frequency of inlet

temperature

988 cases = {

989 ’mean_51-1_amp_11_flow_75_f_0-1_range_783012-to-1218713

_datetime_11_19_21_03_44_04_PM.csv’: ([783 , 1218] ,

0.1, ’0344P-111921 ’),

990 ’mean_51-1_amp_22_flow_75_f_0-1_range_181700-to-5054

_datetime_11_19_21_04_05_14_PM.csv’: ([181 , 505],

0.1, ’0405P-111921 ’),

991 ’mean_77-2_amp_40-8_flow_78-7_f_0-1_range_172200-to-

879602 _datetime_11_19_21_04_19_57_PM.csv’: ([172,

879], 0.1, ’0419P-111921 ’),

992 ’mean_100-9_amp_38-3_flow_80_f_0-1_range_103800-to-

690101 _datetime_11_19_21_04_35_25_PM.csv’: ([103,

690], 0.1, ’0435P-111921 ’),

993 ’mean_50-6_amp_18-5_flow_76_f_0-1667 _range_114200-to-

358200 _datetime_11_19_21_04_52_02_PM.csv’: ([114,

358], 0.16666666667 , ’0452P-111921 ’),

994 ’mean_50-3_amp_15_flow_75-9_f_0-25 _range_173800-to-

530701 _datetime_11_19_21_04_58_32_PM.csv’: ([173,

530], 0.25, ’0458P-111921 ’),

995 ’mean_50-5_amp_22-5_flow_75-5_f_0-0833 _range_119500-to-

640001 _datetime_11_19_21_05_08_24_PM.csv’: ([119,

640], 0.83333333333 , ’0508P-111921 ’),

996 ’mean_50-4_amp_20-7_flow_77-2_f_0-125 _range_115300-to-

552801 _datetime_11_19_21_05_19_25_PM.csv’: ([115,

552], 0.125, ’0519P-111921 ’),

997 ’mean_50-4_amp_20-8_flow_77-2_f_0-125 _range_71000-to-

552801 _datetime_11_19_21_05_28_55_PM.csv’: ([71,

552], 0.125, ’0528P-111921 ’),

998 }
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999

1000 if fname in cases:

1001 time_range , freq_inlet_hz , timestamp = cases[fname]

1002 temp_inlet_mean , temp_inlet_amplitude , _, mass_flow_kgh

= Util.extract_variables_from_filename(fname)

1003 return time_range , freq_inlet_hz , timestamp ,

temp_inlet_mean , temp_inlet_amplitude , mass_flow_kgh

Listing C.1: SHEFRA experiment data reduction and plotting Code written in Python
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Appendix D

Parameter Estimation Code

The following code was used for parameter estimation for the space-independent model of
SHEFRA described in Chapter 5.

1 ’’’%% initialize

2 clear , clc , close all

3 set(groot , ’DefaultAxesFontSize ’, 12);

4

5 Nu = 2;

6 Nu0=0;

7 p1 = 0.1; % Define p1 value

8 p2 = 0.85; % Define p2 value

9 Omega = 10;

10

11 sampleTime = 0.01;

12 totalTime = 40;

13

14 % Transfer function coefficients

15 numerator_coeffs = [Nu*p2 , Nu*Omega*p1 , 4*Nu*Omega^2*p2 , Nu*Omega^3*

p1];

16 denominator_coeffs = [1, Nu*p2, 4*Omega^2, 4*Nu*Omega ^2*p2, 0];

17 system = tf(numerator_coeffs , denominator_coeffs);

18

19 timeVector = [0: sampleTime:totalTime ]’;

20

21 input_sine = sin(Omega * timeVector);

22 [simulatedOutputSine , timeVectorSimulatedSine] = lsim(system ,

input_sine , timeVector);

23

24 % Define initial parameter values

25 par0 = [Nu0 , p1 , p2 , Omega];

26 fixed_p1 = par0 (2);
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27 fixed_p2 = par0 (3);

28 fixed_Omega = par0 (4);

29

30 num_runs = 1000;

31 Nu_est_all = zeros(num_runs , 1);

32

33 for i = 1: num_runs

34 % Add noise to the simulated output

35 thermocoupleUncertainty = 3; % absolute error

36 lowestAmplitude = 5; % celsius

37 dimensionlessUncertainty = thermocoupleUncertainty /

lowestAmplitude;

38 noise = dimensionlessUncertainty * 0.341 * (randn(size(

simulatedOutputSine)));

39 simulatedOutputSineNoise = simulatedOutputSine + noise;

40

41 % prepare the system identification data

42 systemIdentificationDataSine = iddata(simulatedOutputSineNoise ,

input_sine , sampleTime);

43

44 % Estimate Nu using Newton-Raphson method

45 Nu_est = fsolve(@(Nu) grad_obj_fun(Nu , fixed_p1 , fixed_p2 ,

fixed_Omega , systemIdentificationDataSine), par0 (1));

46 Nu_est_all(i) = Nu_est;

47 end

48

49 % Calculate mean and standard deviation of Nu_est

50 mean_Nu_est = mean(Nu_est_all);

51 std_Nu_est = std(Nu_est_all);

52

53 disp(’Mean of Estimated Parameters :’);

54 disp(mean_Nu_est);

55 disp(’Standard Deviation of Estimated Parameters :’);

56 disp(std_Nu_est);

57

58 %% Gradient of the objective function

59 function grad = grad_obj_fun(Nu, p1, p2, Omega , data)

60 % Compute the gradient of the objective function with respect to

Nu

61 delta = 1e-6;

62 err_plus = obj_fun(Nu + delta , p1, p2, Omega , data);

63 err_minus = obj_fun(Nu - delta , p1, p2, Omega , data);

64 grad = (err_plus - err_minus) / (2 * delta);

65 end
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66

67 %% Objective function

68 function err = obj_fun(Nu, p1, p2, Omega , data)

69 sys = tf_with_constraints(Nu , p1 , p2 , Omega);

70 y_sim = lsim(sys , data.InputData , data.SamplingInstants);

71 err = mean(( y_sim - data.OutputData).^2); % Calculate mean

squared error

72 end

73

74 %% Custom model function

75 function sys = tf_with_constraints(Nu, p1, p2, Omega)

76 numerator_coeffs = [Nu*p2 , Nu*Omega*p1 , 4*Nu*Omega^2*p2 , Nu*

Omega^3*p1];

77 denominator_coeffs = [1, Nu*p2, 4*Omega^2, 4*Nu*Omega ^2*p2, 0];

78 sys = tf(numerator_coeffs , denominator_coeffs);

79 end

Listing D.1: Parameter estimation for space-independent SHEFRA model written in
MATLAB using the System Identification Toolbox.
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