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Generalized Lie symmetries and almost regular Lagrangians: a link
between symmetry and dynamics
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E-mail: ads@berkeley.edu
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Abstract
The generalized Lie symmetries of almost regular Lagrangians are studied, and their impact on the
evolution of dynamical systems is determined. It is found that if the action has a generalized Lie
symmetry, then the Lagrangian is necessarily singular; the converse is not true, as we showwith a
specific example. It is also found that the generalized Lie symmetry of the action is a Lie subgroup of
the generalized Lie symmetry of the Euler–Lagrange equations ofmotion. The converse is once again
not true, and there are systems forwhich the Euler–Lagrange equations ofmotion have a generalized
Lie symmetrywhile the action does not, as we once again show through a specific example.Most
importantly, it is shown that each generalized Lie symmetry of the action contributes one arbitrary
function to the evolution of the dynamical system. The number of such symmetries gives a lower
bound to the dimensionality of the family of curves emanating from any set of allowed initial data in
the Lagrangian phase space.Moreover, if second- or higher-order Lagrangian constraints are
introduced during the application of the Lagrangian constraint algorithm, these additional constraints
could not have been due to the generalized Lie symmetry of the action.

1. Introduction

The symmetries of the Euler–Lagrange equations ofmotionwere recently used to study the constrained
dynamics of singular Lagrangians [1]. The focuswas on almost regular Lagrangians [2–5], and it was found that
for these Lagrangians the Euler–Lagrange equations ofmotion admit a generalized Lie symmetry (also known as
a local gauge symmetry). The generators ym of this symmetry group Gr ym were determined in the Lagrangian
phase space approach to Lagrangianmechanics, andwere found to lie in the kernel of the Lagrangian two-form
ΩL.While it is well-known that the solutionsXE of the energy equation,

E id0 , 1LXEW= - ( )

is not unique for almost regular Lagrangians, it was shown in [1] that the action of ym on a general solution to
this equation—and in particular, on the second-order, Lagrangian vector field (SOLVF)—will result in a vector
field that is no longer a solution of equation (1). Thus, not all solutions of the energy equation have Gr ym as a
symmetry group. It is, however, possible to construct solutions to equation (1) for whom ym does generate a
group of symmetry transformations [1]. These vector fields are called second-order, Euler–Lagrange vector
fields (SOELVFs). As the evolution of the dynamical system for singular Lagrangiansmust lie on Lagrangian
constraint surfaces [5], a Lagrangian constraint algorithm for SOELVFswas also introduced in [1] to construct
such solutions to the energy equation. It was then shown that these SOELVFs, alongwith the dynamical
structures in the Lagrangian phase space needed to describe and determine themotion of the dynamical system,
are projectable to theHamiltonian phase space. In particular, the primaryHamiltonian constraints can be
constructed fromvectors that lie in the kernel ofΩL, and the Lagrangian constraint algorithm for the SOELVF is
equivalent to the stability analysis of the totalHamiltonian (we follow the terminology found in [6]; see also
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[7–9]) obtained using constrainedHamiltonianmechanics. Importantly, the end result of this stability analysis
gives aHamiltonian vector field that is the projection of the SOELVF obtained from the Lagrangian constraint
algorithm. The Lagrangian andHamiltonian formulations ofmechanics for almost regular Lagrangians were
thereby shown to be equivalent.

While [1] focused on the generalized Lie symmetries of the Euler–Lagrange equations ofmotion and
whether the dynamical structures constructed in the Lagrangian phase space are projectable to theHamiltonian
phase space, in this paper the focus is on the symmetries of the action itself and the impact these symmetries have
on the evolution of dynamical systems. This impact is found to be quite broad, surprisingly restrictive, and
unexpectedly subtle. Indeed, even the seemingly reasonable expectation that any generalized Lie symmetry of
the Euler–Lagrange equations ofmotion should be a reflection of the symmetries of the action itself is not
borne out.

Wefind that if the action has a generalized Lie symmetry, then its Lagrangian is necessarily singular; the
converse need not be true, as we show through a specific example.We also find that the generators of the
generalized Lie symmetry of the action form a Lie sub-algebra of the generators of the generalized Lie symmetry
of the Euler–Lagrange equation ofmotion; once again, the converse is not true.We give an example of a
dynamical system for which the Euler–Lagrange equations ofmotion has a generalized Lie symmetry, while its
action does not.Most importantly, for systemswhere the Lagrangian is almost regular and forwhich its
Lagrangian two-formΩL has constant rank, we show that each generalized Lie symmetry of the action
contributes one arbitrary constant to the SOELVF. The dimensionality of the space of solutions to the energy
equation that have Gr ym as a symmetry group is thus at least as large as the number of generalized Lie
symmetries of the action.Moreover, if second- or higher-order Lagrangian constraints are introduced during
the application of the Lagrangian constraint algorithm, these additional constraints cannot be due to the
generalized Lie symmetry of the action.

Symmetries of Lagrangian systems have been studied before. However, such analyses have been focused on
time-dependent Lagrangians [10–17]; on systems offirst-order evolution equations [18–22]; or on general
solutions of equation (1) [23] (see also [24]). Importantly, the greatmajority of these studies have been done
usingfirst-order prolongations onfirst-order jet bundles with a focus on the Lie symmetries offirst-order
evolution equations. Our interest is in the symmetries of the action, which naturally leads us to consider
generalized Lie symmetries and second-order prolongations. To our knowledge, such symmetry analysis of the
action has not been done before. (The framework for k th-order prolongations on k th-order jet bundles have been
introduced before [16, 17, 23, 25, 26], but theywere not applied to the action or to the Euler–Lagrange equations
ofmotion).

The rest of the paper is arranged as follows. In section 2 the conditions underwhich the action for a
dynamical system, and the conditions underwhich the Euler–Lagrange equations ofmotion for this action, have
a generalized Lie symmetry are determined. To compare the conditions for each, the analysis for the two are
done separately, with each self-contained. In section 3 properties of the Lagrangian phase space are reviewed,
and the notation used here established. The generators of the generalized Lie symmetry group for the Euler–
Lagrange equations ofmotionwere determined in [1], and a summary of the results found therein that are
needed here is given. In section 4 the generators of the generalized Lie symmetry group for the action is found
within the Lagrangian phase space approach, and their relation to the generators for the symmetry group of the
Euler–Lagrange equations ofmotion is determined. The impact of the symmetries of the action on the SOELVF
is then analyzed by applying the Lagrangian constraint algorithm introduced in [1] to these SOELVF. The results
obtained in this paper is then applied to three different dynamical systems in section 5. In particular, an example
of a dynamical system that has no generalized Lie symmetries and yet is still singular, and another examplewhere
the action has no symmetries and yet the Euler–Lagrange equations ofmotion do, are given. Concluding
remarks can be found in section 6.

2.Generalized lie symmetries and Lagrangianmechanics

In this sectionwe determine the conditions under which the action of a dynamical system, and the conditions
underwhich the Euler–Lagrange equations ofmotion for this system, has a generalized Lie symmetry.While the
determination for both is donewithin Lagrangianmechanics, the analysis for the action is completed separately
from that of the equations ofmotion—with each self-contained—so that the two conditions can be compared.
Wewill later show that every generator of the generalized Lie symmetry of the action is a generator of a
generalized Lie symmetry of the Euler–Lagrange equations ofmotion. Interestingly, the converse is not true.

2
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2.1. Symmetries of the action
Webeginwith Lagrangianmechanics, and an analysis of the generalized Lie symmetry [27] of the action

S L q t q t dt, ,
t

t

1

2

ò≔ ( ( ) ( ))

for a dynamical systemon aD-dimensional configuration space. Here, L q t q t,( ( ) ( )) is the Lagrangian along a
path q t q t q t,..., D1=( ) ( ( ) ( )) onwith end points given byQ1≔ q(t1),Q2≔ q(t2). These points are chosen at
the same time the choice of S ismade, and are fixed.

As L q t q t,( ( ) ( )) depends on both the position q(t) and the velocity q t( ) of the path, we consider a
generalized Lie symmetry that is generated by

q q
q

g , ,L Lr
¶
¶

≔ ( ) ·

where q q,Lr ( ) does not depend explicitly on time. Evolution along the path gives the total time derivative


t

q
q

q
q

d

d
. 2

¶
¶

+
¶
¶

≔ · ̈ · ( )

This in turn gives  td dL Lr r≔ , and the second-order prolongation vector [27],


q q q

pr g , 3L L L Lr r r
¶
¶

+
¶
¶

+
¶
¶

≔ · · ̈ ·
̈

( )

on the second-order jet space t q q q, , ,2 = {( )̈}( ) where this pr g TL
2Î ( ).

Under this generalized Lie symmetry, the action varies by

S L q t q t dtpr g , ,
t

t

L
1

2

òd = [ ( ( ) ( ))]

with the requirement that  q t q t q t q t, 0 ,L L1 1 2 2r r= =( ( ) ( )) ( ( ) ( )). Then after an integration by parts,


S

L

q

d

dt

L

q
dt. 4

t

t

L
1

2

òd r=
¶
¶

-
¶
¶

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥· ( )

It is important to realize that the actionmay be evaluated along any path on. As such, if gL generates a
symmetry of the action, then equation (4)must vanish for all paths q(t) on, and not just for those that
minimize the action.

Tomake connectionwith the Lagrangian phase space approach used in the rest of the paper, wemake use of

 



E q q q

L q q

q
L q q, :

,
, ,a

a
=

¶
¶

-( ) ( ) ( )

alongwith




 








M q q
L q q

q q
F q q

L q q

q q

L q q

q q
,

,
, and ,

, ,
,ab a b ab a b b a

2 2 2¶
¶ ¶

¶
¶ ¶

-
¶
¶ ¶

( ) ≔ ( ) ( ) ≔ ( ) ( )

to express equation (4) as

  S
E

q
F q q q M q q q dt, , . 5

t

t

L
a

a ab
b

ab
b

1

2

òd r= -
¶
¶

+ +⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ̈ ( )

Here, Latin indices run from1 toD, and Einstein’s summation convention is used.We then arrive at ourfirst
result.

Lemma1.An action S of a dynamical system has a generalized Lie symmetry generated by gL if and only if there exists
a MkerL abr Î such that

  q q
E

q
F q q q0 , , , 6L

a
a ab

br=
¶
¶

+⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )

on T.

Proof. If gL generates a generalized Lie symmetry of S, then equation (5)must vanish for all paths on. For an
arbitrary path on the curvature of the path q ̈will not depend on either the q(t) or the q t( ) for the path,
however. As such, for S 0d = itmust be that M q 0L

a
ab

br =̈ for any choice of q ,̈ and thus MkerL
a

abr Î . The
remaining terms in equation (5) gives the condition equation (6). ,

3

J. Phys. Commun. 7 (2023) 015001 ADSpeliotopoulos



The set of all vector fields gL that satisfy lemma 1 is denoted by Lg , while pr pr g gL L L LÎg g≔ { ∣ } is the set
of their prolongations. This pr Lg is involutive [27], and the conditions underwhich pr Lg generates a
generalized Lie symmetry group are given in [27].

We see from lemma 1 that if the action has a generalized Lie symmetry, then the Lagrangian is necessarily
singular, and as such the Lagrangian two-formΩLwill not havemaximum rank. It is also important to note that
while equations of the form equation (6) often appear in the Lagrangian phase space description ofmechanics
[1], they appear as Lagrangian constraints, conditions thatmust be imposed for evolution under the Euler–
Lagrange equations to bewell defined.Here, equation (6) is not a constraint. Rather, because the actionmust
have this symmetry for all possible paths on, and since the set of all possible paths cover, equation (6) is a
condition on ρL thatmust be satisfied identically on all of T—and thus, on the Lagrangian phase space—for gL
to be a generator of the symmetry group.Wewill see that not all the vectors in Mker ab satisfy the identity
equation (6), however, and thus not all of these vectors will generate a generalized Lie symmetry of the action.

2.2. Symmetries of the Euler–Lagrange equations ofmotion
While in section 2.1 the focuswas on arbitrary paths on the configuration space and the symmetries of the
action, in this section the focus is on the trajectories thatminimizes the action and the generalized Lie
symmetries of them. These trajectories are solutions of the Euler–Lagrange equations ofmotion, and for almost
regular Lagrangians such solutions form a family of curves. It is, in fact, the presence of this family of curves that
gives rise to the generalized Lie symmetry. The treatment here follows closely to that given in [1].

For almost regular Lagrangians the solutions of the Euler–Lagrange equations ofmotion

  M q q q
E

q
F q q q, , , 7ab

b
a ab

b= -
¶
¶

-( ) ̈ ( ) ( )

arenotunique.While for theseLagrangians the rankof M q q D N,ab 0= -( ) —with N M q qdim ker ,ab0 = ( ( ))—
is constant, this rank is notmaximal, and thus equation (7)doesnothave aunique solution for q .̈ Instead, for a chosen
set of initial data  q q t q q t,0 0 0 0= =( ( ) ( )), the solution to equation (7) results in a family of solutions that evolve from
this q q,0 0( ). Aswith thepaths in section2.1, these solutions are related toone another through ageneralizedLie
symmetry [27].

Following [27], the collection of functions




  q q q
E q q

q
F q q q M q q q, ,

,
, , , 8a a ab

b
ab

bD
¶

¶
+ +( )̈ ≔ ( ) ( ) ( ) ̈ ( )

defines a set of surfaces q q q, , 0aD =( )̈ on 2( ), while the family of solutions to equation (7)

   q q q t q q q q t q q t q, , , 0 with , ,a0 0 0 0 0 0D = = =( ) ≔ { ( ) ∣ ( )̈ ( ) ( ) }

that evolve from the same initial data q q,0 0( ) gives the collection of trajectories that lie on these surfaces. Indeed,
for any two such solutions q a(t) andQa(t) there exists a  q q M q q, ker ,abÎz( ) ( ) such that Q qa a a- = z̈ ̈ .
Importantly, because az depends on both q and q, the symmetry group thatmaps onemember of to another
must be a generalized Lie symmetry.We therefore take the generator of this symmetry group to be

q q
q

g , ,r
¶
¶

≔ ( ) ·

with the corresponding the second-order prolongation vector for g being,


q q q

pr g: ,r r r= ⋅
¶
¶

+ ⋅
¶
¶

+ ⋅
¶
¶

‥
‥

with this pr g T 2Î ( ). Aswith the above, the total time derivative is given by equation (2), but unlike the
analysis in section 2.1, the evolution of the path—and indeed, for all the trajectories in q q,0 0( )—here is given
by the Euler–Lagrange equations ofmotion.

The action of this prolongation onΔa on theΔa= 0 surface gives,

    q q q
q

q
M q q

d

dt
F q q M q qpr g , , , , , .a

b

a bc
c

ab
b

ab
br r rD = -

¶
¶

+ +[ ( )̈] ̈ ( ) [ ( ) ( ) ]

SinceN0> 0, q ̈ is not unique on this surface, and yet gmust generate the same symmetry group for all the
trajectories in q q,0 0( ). Necessarily,  q q M q q, ker ,abr Î( ) ( ). It then follows that q q qpr g , , 0aD =[ ( )̈] if and
only if (iff) there are constants ba such that b F Ma ab

b
ab

br r= + . The solutions in q q,0 0( ) all have the same
initial data, however, and thus necessarily   q q q q, 0 ,0 0 0 0r r= =( ) ( ).We conclude that ba= 0. The following
result,first proved in [1], then follows.

Lemma2. If g is a generalized infinitesimal symmetry of aD , then  q q M q q, ker ,a
abr Î( ) ( ), and  q q,ar ( ) is a

solution of

4
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    F q q q q M q q q q0 , , , , . 9ab
b

ab
br r= +( ) ( ) ( ) ( ) ( )

As before, we denote the set of all vector fields g that satisfy lemma 2 by g, while pr pr g g Îg g≔ { ∣ } is the set
of their prolongations. Once again pr g is involutive, and the conditions under which pr g generates a
generalized Lie symmetry group are given in [27]. Note, however, that while ρ= 0 and r = z for any

M q qker ,abÎz ( ) is a solution of equation (9), we require that  td d ;r r= these solutions cannot be generators
of the generalized Lie symmetry. Next, if r is a solution of equation (9), then  ar + z is a solution of equation (9)
aswell, and thus these solutions are not unique. This, alongwith the previous observation, leads us to generators
that are constructed from equivalence classes of prolongations. Finally, equation (8) gives for any

M q qker ,abÎz ( ),

 E

q
F q q q0 , , 10a

a ab
b=

¶
¶

+z ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

on the solution surface q q q, , 0aD =( )̈ . If equation (10) does not hold identically, itmust be imposed, leading
to Lagrangian constraints [5].More importantly, because each q t 0Î u( ) ( )must lie on the Lagrangian
constraint submanifold, any symmetry transformation of q(t) generated bypr gmust give a pathQ(t) that also
lies on the constraint submanifold.

Not all vectors in pr gwill be generators of the generalized Lie symmetry group for 0u( ). Determining
which of these vectors are, and the relationship between the generators of symmetries of the Euler–Lagrange
equations ofmotion and those of the action, is best donewithin the Lagrangian phase space framework. To
accomplish this, wewill need the following generalization of lemma 2.

Consider the vector




c
q

c
q

k ,
¶
¶

+
¶
¶

≔ · ·

with a c M q qker ,abÎ ( ) alongwith the quantity

  l F c q q M c q q, , .a ab
b

ab
b+≔ ( ) ( )

After an integration by parts,

 
 

 
   

l c q q F q q
t

L

q q

c q q F q q
t q

L

q q t

L

q

d

d

d

d

d

d

, , ,

, , , .

a
b

ab a b

b
ab a b a b

2

= -
¶

¶ ¶

= -
¶
¶

¶
¶

-
¶
¶

¶
¶

⎜ ⎟

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫
⎬⎭

( ) ( )

( ) ( )

Using equation (2)wehave

     t q

L

q

L

q q

q

q

L

q q

d

d
, .

a b a b

c

a c b

2 2¶
¶

¶
¶

= -
¶

¶ ¶
-

¶
¶

¶
¶ ¶

⎡
⎣⎢

⎤
⎦⎥

̈

As q(t) is a solution of the Euler–Lagrange equations ofmotion, wefind that

 
    

l c q q F q q
L

q q

L

q q

q

q

L

q q
, , .a

b
ab a b a

b

c

a c b

2 2 2

= +
¶

¶ ¶
-

¶
¶ ¶

+
¶
¶

¶
¶ ¶

⎧
⎨⎩

⎫
⎬⎭

( ) ( ) ̈

This last expression vanishes after the definition of F q q,ab ( ) is used alongwith the requirement that
c M q qker ,abÎ ( ).We then have the following result.

Lemma3. For any vector




c
q

c
q

k ,=
¶
¶

+
¶
¶

· ·

such that c Mker abÎ ,

  F c q q M c q q0 , , .ab
b

ab
b= +( ) ( )

3.Generators of the generalized lie symmetry for the Euler–Lagrange equations ofmotion

The generators of the generalized Lie symmetry for both the Euler–Lagrange equations ofmotion and the action
are best found using the Lagrangian phase space approach tomechanics. This phase space and its concomitant
mathematical structure provide the tools needed to determine both the generators of the symmetry and the
solutions to the energy equation onwhich they act. For the Euler–Lagrange equations ofmotion this
determinationwas done in [1]. In this sectionwewill review the Lagrangian phase space approach, establish the
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notation used in this paper, and summarize the results obtained in [1] that are needed here. (Wewill also take the
opportunity to correct typographical errorsmade in [1].)Proofs of themajority of the assertions listed in this
sectionwill not be given; the reader is instead referred to [1]where the proofs and the context of their
development can be found.

3.1. The Lagrangian phase space
For a configuration space the Lagrangian phase space L is the tangent space TL = , with the coordinates
on L denoted as q q v v,..., , ,...D D1 1=u ( ). Integralflows on L , t t t, L0Î ¥  Îu [ ) ( ) [28], for a set of
initial data q v,0 0 0=u ( ) are given as solutions to

d

dt
X ,

u
u≔ ( )

whereX is a smooth vector field in T T TL = ( ). The two tangent spaces T and T L have the bundle
projections: T:t   and T T T:Tt   ( ) . They can be used to construct two other projectionmaps:

T T:Tt t   ◦ ( ) and the prolongation of Tt  to T T( ) (see [3] and [28]). This prolongation is themap
T T T T:t   ( ) , and is defined by requiring that the twomaps Tt t ◦ and Tt t ◦ map any point in
T T( ) to the same point in. The vertical subbundle T L

v[ ] of T T( ) is T TkerL
v t= [ ] [3]; a X Tv

L
vÎ u[ ]

above a point LÎu  is called a vertical vector field. The horizontal subbundle T L
q[ ] of T T( ) is

T TImage ;L
q t= [ ] a X Tq

L
qÎ u[ ] is called a horizontal vector field. Consequently, each X T LÎ u consists of

a X Tq
L

qÎ u[ ] and a X Tv
L

vÎ u[ ] withX=Xq+ Xv. In terms of local coordinates,

X
q

X
v

X X, and .q qa
a

v va
a

¶
¶

¶
¶

≔ ≔

Of special interest is the second order Lagrangian vector fieldXL. This vector field is the particular solution of
equation (1) for which T XLt◦ is the identity on T (see [28]). In terms of local coordinates

v
q

X
v

X .L
a

a
va

a
=

¶
¶

+
¶
¶

The space of one-forms on L is the cotangent space *T L . For a one-form *T La Î u , and a vector field
X T LÎ u , the dual prolongationmap *T t is defined as

*T X T X ,a at tá ñ = á ñ ∣ ∣

after a useful adaptation ofDirac’s bra and ket notation. In addition, for a general k-formω in the k-formbundle
k

LL ( ),

 x xY Y Y Y: ,k k1 1w wÄ Ä  á Ä Ä ñ Î ( ) ( )∣

with Y Tj LÎ u for j= 1,...,k. The vertical one-form subbundle *T L
v[ ] of *T L is * *T Tker ;L

v t [ ] ≔ a
*Tv L

va Î u[ ] is called a vertical one-form. The horizontal one-form subbundle *T L
q[ ] of *T L is

* *T TImage ;L
q

L= [ ] a *Tq
qa Î u[ ] is called a horizontal one-form. Each one-form *T Lj Î u consists of a

*Tq L
qj Î u[ ] and a *Tv L

qj Î u[ ] such thatj=jq+jv. In terms of local coordinatesjq≔ jqa dq
a and

jv≔ jvadv
a.

Following [3, 4], the Lagrangian two-form is defined asΩL≔− ddJL, where dJ is the vertical derivative (see
[3]). This two-form can be expressed asΩL≔ΩF+ΩM such that for any X Y T, LÎ u .

X Y T X T Y, , ,F L t tW W  ( ) ≔ ( )

and is thus the horizontal two-formofΩL. AsΩM(X,Y)=ΩL(X,Y)−ΩF(X,Y),ΩM is then amixed two-form
ofΩL. In terms of local coordinates,

L

v
qd d, where ,L L L a

aq qW = -
¶
¶

≔

while

F q q M q vd d d d
1

2
, and .F ab

a b
M ab

a bW W ≔ ≔

For regular LagrangiansXL is the unique solution of equation (1). For almost regular Lagrangians, on the
other hand, this solution is not unique, but instead depends on

iK Tker 0 .L L LKW WÎ =u u( ) ≔ { ∣ }

From section 2we expect this kernel to play a role in determining the generators of the generalized Lie symmetry
of both the Euler–Lagrange equations ofmotion and the action. Indeed, consider the natural isomorphism

iso t q q q t q v X: , , , , , , L
va2Î ( )̈ ( )( ) defined in [1], and the prolongation pr g of a generator g Î g of a

generalized Lie symmetry of the Euler–Lagrange equations ofmotion. This pr g contains the vector
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q q

k .r r=
¶
¶

+
¶
¶

· ·

The collection of all such vectors has been shown to be involutive (see [1]). The isomorphismmaps iso k k:  ¢
where


q v

k .r r¢ =
¶
¶

+
¶
¶

· ·

Then k T L¢ Î  , and from lemma 2, k ker LW¢ Î u( ) as well. A similar result holds for the generators in Lg after
lemma 1 and lemma 3 are used.

The two-formΩL gives the loweringmap *T T:L L LW u u  , with iXL LXWW ≔ . Thismap consists of

L F M
v

M
qW = W + W + W    , with *X T T: ;F L L

qW Î u u  [ ] *X T T: ;M
q

L L
qW Î u u  [ ] and

*X T T:M
v

L L
vW Î u u  [ ] . In terms of local coordinates, F X qX dF ab

qa bW = , M X qX dM
q

ab
va bW = - ,

and M X vX dM
v

ab
qa bW = .

For almost regular Lagrangians Tker M
v

L
v

uW = Å  [ ] while Tker M
q

L
q

uW = Å  [ ] . Here

iC T 0 ,q L
q

MCWÎ = ≔ { [ ] ∣ }

and

iG T 0 .q L
v

MGWÎ = ≔ { [ ] ∣ }

As Mab u( ) has constant rank on L , there exists a basis,

M n N, , 0, 1, , ,n n n
D

ab n
b1

0= ¼ = = ¼z u z u z u u z u{ ( ) ( ( ) ( ))∣ ( ) ( ) }( ) ( ) ( ) ( )

for Mker ab u( ) at each LÎu  . Spans of both

n N

n N

U

U

span , 1 ,..., , and

span , 1 ,..., ,

n
q

n q

n
v

n v

0

0

= = =

= = =

¶
¶

¶
¶

z

z





{ }
{ }

·

·

( ) ( )

( ) ( )

can then be constructed. Importantly,  is involutive [5], andwhen the rank of LW u( ) is constant on L ,
ker LW u( ) is involutive aswell.

Corresponding to U n
q
( ) and U n

v
( ) wehave the one-forms q

mQ( ) and v
mQ( ) where Uq

m
n

q
n
mdQá ñ =∣( )

( ) ( )
( ) and

Uv
m

n
v

n
mdQá ñ =∣( )

( ) ( )
( ). Then T L

q = Å ^u  [ ] and T L
v = Å ^u  [ ] , where

n N

n N

X T X

X T X

0, 1, , , and

0, 1, , .

L
q

q
n

L
v

v
n

0

0

Q

Q

Î á ñ = = ¼

Î á ñ = = ¼

^

^

u

u








≔ { [ ] ∣ ∣ }

≔ { [ ] ∣ ∣ }

( )

( )

The vectors that lie in ker LW u( ) can be determined by using the reducedmatrix F Fnm n
a

ab m
bz z≔ ( ) ( ) to define

F CC: 0 .
m

N

nm
m

1

0

å= Î = Ì
=

  ⎧
⎨⎩

⎫
⎬⎭

¯ ¯ ¯ ¯ ( )

Then,

Theorem4.The vectors K K K kerq v
LW= + Î are given by,

K C K G C, ,q v= = +

where, C Î ¯
¯
, G Î  , and Ĉ Î ̂ is the unique solution of M C F Cab

b
ab

b= - .

We found in [1] that N Ddim ker ,L 0W = +u( ( )) ¯ where D N: dim 0= 
¯ ¯

(see [1] for proof). However, the
results of lemma 3 show that we can construct from any vector Uq Î  a vector that lies in the ker LW u( ), and as
dim N0=( ) , it follows that dim Nker 2L 0W =u( ( )) .

3.2. First-order Lagrangian constraints
For singular Lagrangians solutions of the energy equationXE are not unique. It is well known that they also do
not, in general, exist throughout L , but are instead confined to a submanifold of the space given by Lagrangian
constraints.

With X X XE E
q

E
v= + , it is convenient to use the one formΨ

X .M
q

E
v YW =

constructed from the energy equation. Thefirst-order constraint functions are then U 0n n
q1g Yá ñ =≔ ∣[ ]
( ) for

n= 1,K,N0. In terms of local coordinates,

7
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U
E

q
F v .n n

qa
a ab

b1g =
¶
¶

+⎜ ⎟
⎛
⎝

⎞
⎠

[ ]
( )

Theymay also be expressed [3, 4] as E Ed P Pn n n
1g = á ñ =|[ ]

( ) ( ) for any basis {P(n)} of ker LW u( ) for which
Pq

m
n n

mdQá ñ =∣( )
( ) ( )

( ). In general, 0n
1g ¹[ ] on L . Instead, the condition 0n

1g =[ ] must be imposed, and this in turn

defines a set of submanifolds of L given by the collectionC , ,L N
1

1
1 1

0
g g¼≔ { }[ ] [ ] [ ] . The collection of these surfaces,

n N0, 1, ,L L n
1 1

0gÎ = = ¼u u ≔ { ∣ ( ) }[ ] [ ] is called thefirst-orderLagrangianconstraint submanifold, and

has D Idim 2L
1

1= -[ ]
[ ].Here I 1[ ] is thenumberof independent functions in CL

1[ ] with I Ndrank n1
1

0g= { }[ ]
[ ] .

The constraint one-form

E iX d ,E LXEb W-[ ] ≔

was introduced in [1]with the conditionβ[XE]= 0 giving both the solution of the energy equation and the
submanifold L

1[ ]. As U n
q

n
1b gá ñ =∣ ( )

[ ], thisβ[XE] can also be expressed as

X . 11E
n

N

n q
n

1

1
0

åb g Q=
=

[ ] ( )[ ] ( )

3.3. The generalized lie symmetry group for the Euler–Lagrange equations ofmotion
The generalized Lie symmetry group for 0u( ) is determined using

P G P T Gker : ker , , 12L L L
vW W= Î Î " Îu u u ⎧

⎨⎩
⎫
⎬⎭

( )¯ ( ) [ ] [ ] ( )

alongwith the following collection of functions on L ,

f C fG G: on 0 .L= Î = " Î¥  { | }

This ker LW u( ) is also involutive.
The following results were proved in [1].

Lemma5. Let X T LÎ u and G Î  such that G X, ker LWÎ u[ ] ( ). Then G X T, L
vÎ u[ ] [ ] iff G X, Î [ ] .

It then follows that G P, Î [ ] for all P ker LWÎ u( ). As  is involutive and as ker LWÌ u ( ),

ker LWÌ u ( )
¯

aswell, and thus  is an ideal of ker LW u( )
¯

.

Lemma6.There exists a choice of basis for ker LW u( ) that is also a basis of ker LW u( ).

As  is an ideal of ker LW u( ), wemay define for any P P, ker L1 2 WÎ u( ) the equivalence relation:P1 ∼ P2 iff
P P1 2- Î  . The equivalence class,

P Y Y Pker , 13LWÎ ~u[ ] ≔ { ( ) ∣ } ( )

can be constructed alongwith the quotient space ker LW u /( )
¯

. (For the sake of notational clarity wewill
suppress the square brackets for equivalence classes when there is no risk of confusion.)This space is a collection

of vectors that lie in the kernel ofΩL, but with the vectors in  removed; ker LW u /( )
¯

thereby addresses thefirst
two observations listed at the end of section 2.2.

We now turn our attention to the third observation. Because the integral flow tXu ( ) of any solutionX of the
energy equationmust lie on L

1[ ], a symmetry transformation of tXu ( )must result in an integral flow tYu ( ) of
another solutionY of the energy equation, whichmust also lie on L

1[ ]. Implementing this condition is done
throughβ[XE].

As 〈β[XE]|G〉= 〈dE|G〉=GE= 0 for all G Î  on L
1[ ], the Lie derivative GL ofβ alongG is,

X G .E
n

N

n q
n

G
1

1
0

åb g Q=
=

L [ ] ( )[ ] ( )

Given a P kern LWÎ u( )( ) such that P U U Gn n
q

n= + + ¢( ) ( ) ( ) with G¢ Î  , E EG G P P G,n n n
1g = +[ ][ ]

( ) ( ) . But 

is an ideal of ker LW u( ), and thus G 0n
1g =[ ] on thefirst-order constraintmanifold. It follows that 0Gb =L on

L
1[ ]. The collection of vectors,

P X d X Pym: ker on ,L E E LP
1b bW= Î = á ñu / L  { ( ) | [ ] [ ] | }[ ]

is therefore well defined, and is involutive. It follows that P ymÎ  iff 〈dβ[XE]|P⊗ X〉= 0 for all X T LÎ  .We
are then able to construct from each P ymÎ  a one-parameter subgroupσP(ò, x) defined as the solution to
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d

d
P ,P

P
s s


≔ ( )

where 0,Ps =u u( ) for LÎu  . The collection of such subgroupswill give the Lie group Gr ym .

3.4. Euler–Lagrange solutions of the energy equation
Wedenote the set of general solutions to the energy equation as

i EX T dol on .E L L LX
1

EWÎ =u  ≔ { ∣ }[ ]

If tu( ) is the integral flowof a vector in ol whose projection onto corresponds to a solution of the Euler–
Lagrange equations ofmotion, then Gr ym mustmap one of suchflows into another one.However, while

X G X, kerL L LG W= ÎL u[ ] ( ), in general XLG ÏL  . The action ofσP on theflow XL
u will in general result in a

flow Yu generated by aY that is not a SOLVF. It need not even be a solution of the energy equation. By necessity,
general solutions of the energy equationmust be considered, leading us to consider the collection of solutions

X G X T Gol: ol , .EL EL L
v

u= Î Î " Î  { | [ ] [ ] }

This collection generates the family of integral flows

t
d

dt
tX X: , ol, and .EL EL EL0 0 0= = Î =u u

u
u u u ⎧

⎨⎩

⎫
⎬⎭

( ) ( ) ( ) ( )

Importantly, if P ymÎ  , then

i i d X 0.L EX P P,E bW = =[ ][ ]

As such, wefind that

Lemma7. X P, kerEL LWÎ u[ ] ( ) for all P ymÎ  .

It then follows that

Theorem8. Gr ym forms a group of symmetry transformations of EL 0u ( ).

Proof of both assertions can be found in [1].
The generators of the generalized Lie symmetry for EL 0u ( ) are thus given by ym . The corresponding

solutions to the Euler–Lagrange equations that have this symmetry are given by ol , and a vector X olEL Î ¯ is
called a second-order, Euler–Lagrange vector field (SOELVF). It has the general form,

uX X P , 14EL L
m

N
m

m
1

0

å= +
=

u( )[ ] ( )( )

where um Îu ( ) and {[P(n)], n= 1,...,N0} is a choice of basis for ker LW u /( ) . The vector field XL is
constructed from the second order Lagrangian vector fieldXL and vectors in ker LW u( ) by requiring X olL Î ¯ .
This construction is described in [1]; wewill only need the existence of such a vector field in this paper.

4.Generalized lie symmetries of the action and its impact on dynamics

Wenow turn our attention to the generators of the generalized Lie symmetry of the action, and the impact this
symmetry has on the evolution of dynamical systems.

4.1. The generalized lie symmetry of the action
In determining the conditions (as listed in lemma 1) underwhich the action admits a generalized Lie symmetry,
the understanding that the actionmust have this symmetry for all possible paths on played an essential role.
By necessity, these conditions could only be placed on ρL, and not on  ;Lr unlike ρL, Lr depends explicitly on the
evolution of a particular path, while the symmetrymust hold for all paths.We note, however, that the family EL
of trajectories determined by the Euler–Lagrange equations ofmotion also consists of paths on, and as such
the generalized Lie symmetry of the action is also a symmetry of EL . Importantly, how these trajectories evolve
with time is known, and as such, the Lr for a given ρL is also known for these trajectories.With this
understanding, and after comparing lemma 1 and the results of lemma 3with lemma 2, we conclude that the
generators of the generalized Lie symmetry of the actionmust also be generators of the generalized Lie symmetry
of the Euler–Lagrange equations ofmotion. This leads us to consider the following collection of vectors.
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P Pym ker 0 on .L LP
1 bgW= Î = á ñ =u /   { ( ) | | }[ ]

Wewill also need N dim ymym =    ( ) in the following.

Lemma8. ym ymÌ   .

Proof. Let l NP , 1 ,...,l 0={ }( ) be a basis of ker LW u /( ) such that P yml Î  ( ) for l N1 ,..., ym=  .Wemay

choose the basis of  such that Pq
m

l l
mdQá ñ =∣( )

( ) ( )
( ). Then for any P ymn Î ( ) , we see from equation (11) that,

d P Y d P Y d Y P d P Y ,n
m

N

m n q
m

m q
m

n m q
m

n
1

1 1 1
0

åb g g gQ Q Qá Ä ñ = á ñá ñ - á ñá ñ + á Ä ñ
=

∣ ( ∣ ∣ ∣ ∣ ∣ )( )
[ ]

( )
( ) [ ] ( )

( )
[ ] ( )

( )

for any Y T LÎ  . The last term vanishes on thefirst-order constraintmanifold L
1[ ], while for the second term,

d Y P d Ym q
m

n n n
m1 1g g dQá ñá ñ = á ñ∣ ∣ ∣[ ] ( )

( )
[ ]

( )
( ). But as P ymn Î  ( ) , 0n

1g =[ ] on L , and this term vanishes aswell.

Finally, for thefirst term, E E Ed P P P P P P P,m n n m n m m n
1gá ñ = = +∣ [ ][ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) . But EP 0n n
1g = =[ ]

( ) on L ,

while kerW u( ) is involutive. There then exists a P kernm WÎ u( )( ) such that P P P,nm n m= [ ]( ) ( ) ( ) . As
EP nm nm

1g≔( ) ( )
[ ] , this nm

1g ( )
[ ] must be a linear combination of first-order constraint functions, and they also vanish

on L
1[ ]. It then follows that d P Y 0nbá Ä ñ =∣ ( ) on L

1[ ], and P ymn Î ( ) . ,

If P P, ym1 2 Î  , then E EP P P P P P 0P P P P,
1

1 2 2 1 1 2
1 2 2 1

g g g= - = - =[ ]
[ ] , and thus ym  is involutive. Then

for each P ymÎ  we once again have the one-parameter subgroup ,P
yms u ( ) define as the integral flowof

d

d
P,P

yms


 

≔

with 0,P
yms =u u ( ) for LÎu  . The collection of such subgroups gives the Lie group Gr ym . As

ym ymÌ   , Gr ym  is a Lie subgroup of Gr ym . It then follows from theorem 8 that Gr ym  also forms a
group of symmetry transformations of EL 0u ( ). As the family EL 0u ( ) of trajectories are paths on, and as the
symmetry transformation of the actionmust be the same for all paths on, it also follows that,

Theorem10. Gr ym  forms the group of symmetry transformations of the action S.

4.2. Symmetries and dynamics
While EL 0u ( ) gives the family of integral flows onwhich both Gr ym and Gr ym  act, a generalflow in EL 0u ( )
need not be confined to L

1[ ] , and yet this is the submanifold onwhich the solutions X olEL Î  of the energy
equations exist. In such cases it is necessary to jointly choose a SOELVF XEL and a submanifold of L

1[ ] onwhich
the resultantflow XEL

u will be confined. This is done through the implementation of a constraint algorithm, one
of whichwas proposed in [1]. In that paper the product of this algorithmwas themost that could be said about
the general structure of SOELVFs that have integral flowfields which lie on L

1[ ]. Here, with the results obtained
in section 4.1, we can saymuchmore, andwewill see that the presence of a generalized Lie symmetry of the
action greatly restricts the structure of the SOELVFs that such systems can have.

Following [1], we introduce for a X olEL Î  the notation

u u N NX X X X P P, , , , ,EL EL L L n n
m m1 1 1
1 0

1
0≔ ≔ ≔ ≔ ≔[ ] [ ]

( )
[ ]

( ) [ ]
[ ]

when the constraint algorithm is implemented,with the superscript [1]denoting thefirst iterationof this algorithm.
(This notation is onlyused in this section.) In addition,we chooseP ymn

1 Î  ( )
[ ] for n N1, , ym= ¼  .

For the integral flowfield of XEL to lie on L
1[ ],

0, 15XELb =L ( )

which reduces to 0nX
1

EL
g =L [ ] on L

1[ ]. This is called the constraint condition. As both u ,n
n1
1g Î [ ]

[ ] ,

P Pn m n m
1 1 1g g=[ ]( )

[ ] [ ]
( )

[ ], and aftermaking use of the general formof a SOELVF given in equation (14), equation (15)
reduces to

u d X d P, with . 16
m

N

nm
m

n L nm n m
1

1
1

1 1 1 1 1
0

å g gG = -á ñ G á ñ
=

∣ ≔ ∣ ( )[ ]
[ ]

[ ] [ ] [ ] [ ]
( )
[ ]

Since E Ed P P P P P,n m m n m n mn
1 1 1 1 1 1 1gá ñ = = + G∣ [ ][ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ] [ ] . But ker LW u( ) is involutive, and thus EP P,m n

1 1[ ]( )
[ ]

( )
[ ] is

a linear combination offirst-order Lagrangian constraints. As these constraints vanishes on L
1[ ], nm mn

1 1G = G[ ] [ ] on
thefirst-order constraintmanifold.

Next, when n N1 ,..., ym=  , P ymn
1 Î  ( )

[ ] , and 0n
1g =[ ] . Thus, 0nm

1G =[ ] when n N1 ,..., ym=  , and as

nm
1G[ ] is a symmetricmatrix on L

1[ ], 0mn
1G =[ ] for these values of n aswell. Thuswhile nm

1G[ ] is aN0×N0matrix, the
only nonzero components of thismatrix lie in the N N N N0 ym 0 ym- ´ -   ( ) ( ) submatrix
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d P:nm n N m N
1 1 1

ym ym
gG =á ñ+ +   

|[ ] [ ] [ ] where n m N N, 1, ..., 0 ym= -  . As d X 0n L
1 1gá ñ =|[ ] [ ] as well when

n N1 ,..., ym=  , equation (16) reduces to

u d X . 17
m

N N

nm
m N

n N L
1

1
1

1 1
0 ym

ym

ymå gG = -á ñ
=

-
+

+

 
 

 
| ( )[ ]

[ ]
[ ] [ ]

It is then readily apparent that the N ym  arbitrary functions u m
1[ ] for m N1 ,..., ym=   are not determined at this

iteration, while r rank nm
1 1= G[ ] [ ]

of the u m
1[ ] for m N ym>   are. There are then N N r0

2
0

1 1-≔[ ] [ ] [ ] second-order
Lagrangian constraint functions

n Nd X , 1, , ,n n L
2 1 1

2 0
2

2 2
g gá ñ =≔ ∣[ ] [ ] [ ]

[ ]
[ ]

[ ] [ ]

with the conditions 0n
2

2
g =[ ]

[ ]
imposed if necessary. In general therewill be I d drank ,n n2

1 2
1 2

g g{ }≔[ ]
[ ] [ ]

[ ] [ ]

independent functions in n NC C 1 ,...,L n
2 1 2

2 0
2

2
È g ={ }≔ ∣[ ] [ ] [ ]

[ ]
[ ]

[ ]
, and L

1[ ] is reduced to the second-order

constraint submanifold,

n N: 0, 1, ..., ,L L n
2 1 2

2 0
2

2
g= Î = =u u  }{ | ( )[ ] [ ]

[ ]
[ ]

[ ]
[ ]

where dim D I2L
2

2= -[ ]
[ ]. At this point, there are two possibilities. If I[2]=I[1] or I[2]=2D, the iterative process

stops, and no newLagrangian constraints are introduced. If not, the process continues.
For the second iteration in the constraint algorithm, we choose a basis P n

2{ }( )
[ ] for ker LW u /( ) and the

arbitrary functions u m
2{ }[ ] such that for m N1 ,..., 0

2= [ ], u m
2[ ] are linear combinations of u m

1[ ] that lie in the kernel

nm
1G[ ] .We once again require that P ymn

2 Î  ( )
[ ] for n N1 ,..., ym=  . Then

uX X P ,EL L
m

N
m

m
2 2

1
2

2
0

2

å= +
=

[ ][ ] [ ]
[ ] ( )

[ ]
[ ]

with

uX X P .L L
m N

N
m

m
2 1

1
2

2

0
2

0
1

å= +
= +

[ ][ ] [ ]
[ ] ( )

[ ]

[ ]

[ ]

Here, the functions u m
2[ ] for m N N1 ,...,0

2
0

1= +[ ] [ ]have been determined through the constraint analysis of
n
1g[ ].

As shown in [1], uG 0m
1 =[ ] . Similarly, G d 0n nG X

2
,

2
EL

g g= =L[ ]
[ ]

[ ] . Clearly n
2g Î [ ] andwemay require

u m
2 Î [ ] aswell. It then follows that P Pn m n m

2 2 2 2g g=[ ]( )
[ ] [ ]

( )
[ ] [ ], and imposing equation (15) on

n
2g[ ], gives

u n Nd X d P, where , 1 ,..., . 18
m

N

nm
m

n L nm n m
1

2
2

2 2 2 2 2
0
2

0
2

å g gG = -á ñ G á ñ =
=

∣ ≔ ∣ ( )[ ]
[ ]

[ ] [ ] [ ] [ ]
( )
[ ] [ ]

[ ]

Once again, nm mn
2 2G = G[ ] [ ] , but nowon the constraintmanifold L

2[ ].Moreover, since 0n n
2 1g g= =[ ] [ ] for

n N1 ,..., ym=  , 0nm mn
2 2G = = G[ ] [ ] , and d X 0n L

2 2gá ñ =∣[ ] [ ] . There is once again a reduction of equation (18), and
we are left with

u d X .
m

N N

nm

m N

n N L
1

2
2

2 2
0
2

ym
ym

ym
å gG = -á ñ
=

-
+

+

 
 

 

|[ ]
[ ]

[ ] [ ]
[ ]

¯ ¯

¯

¯

where d P:nm n N m N
2 2 2

ym ym
gG =á ñ+ +   

|[ ] [ ]
( )
[ ] . As before, the N ym  arbitrary functions u m

2[ ] are not determined, while

r rank nm
2 2G≔ ¯[ ]

¯ ¯
[ ]

of the remaining u m
2[ ] for m N ym>   are. There are now N N r0

3
0

2 2= -[ ] [ ] [ ] third-order
Lagrangian constraint functions,

n Nd X , 1 ,..., ,n n L
3 2 2

3 0
3

3 3
g g= á ñ =∣[ ] [ ] [ ]

[ ]
[ ]

[ ] [ ]

with the conditions 0n
3

3
g =[ ]

[ ]
imposed if necessary.With

I d d drank , , ,n n n3
1 2 3

1 2 3
g g g{ }≔[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

independent functions in n NC C , 1 ,...,L L n
3 2 3

3 0
3

3
È g ={ }≔[ ] [ ] [ ]

[ ]
[ ]

[ ]
, we nowhave the third-order constraint

submanifold,

n N0, 1 ,..., .L L n
3 2 3

3 0
3

3
gÎ = =u u  }{≔ ∣ ( )[ ] [ ] [ ]

[ ]
[ ]

[ ]

Once again, the process stopswhen I[3] = I[2] or I[3] = 2D. However, if I[2]<I[3]< 2D, the process continues
until at the nF-iterationwhen either I In n 1F F

= -[ ] [ ] or I D2nF
=[ ] .

Following [1], the end result of this algorithm is
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1. A submanifold L
n

L
F Ì [ ] onwhich dynamics takes place.

2. A collection CL
nF Ì [ ] of constraint functions of order 1 to nF.

3. A second-order, Euler–Lagrange vector field

uX X P ,EL
n

L
n

m

N

n
m

m
n

1

F F

nF

F
F

0

å= +
=

u( )[ ][ ] [ ]
[ ] ( )

[ ]
[ ]

with N Nn
0 ym

F   
[ ] arbitrary functions u n

m
F

Îu ( )[ ] for m N1 ,..., n
0

F= [ ], and

uX X P ,L
n

L
m N

N

n
m

m
n1

1

F

nF
F

F

0

0
1

å= +
= +

u( )[ ][ ] [ ]
[ ] ( )

[ ]
[ ]

[ ]

where the N N n
0

1
0

F-[ ] [ ] functions u n
m

F
Îu ( )[ ] , m N N1 ,...,n

0 0
1F= +[ ] [ ], have been uniquely determined

through the constraint algorithm.

We assume that the rank of nm
lG[ ] is constant on L for each l= 1,...,nF, and that L

nF[ ] is non-empty.
The end result of the constraint algorithm XEL

nF[ ] is still a SOELVF, andwe define the collection of such vector
fields as

Xol ol 0 .EL XL
nF

ELbÎ =L ≔ { | }[ ]

Importantly, Ndim ol ymL
nF   

[ ] .

5. The generalized lie symmetries of three dynamical systems

Three examples of dynamical systemswith almost regular Lagrangianswere introduced in [1]. In that paper the
focus of these examples was on the explicit construction of the dynamical structures needed to describe and
predictmotion in the Lagrangian phase space, and to show that these structures are projectable to the
Hamiltonian phase space.We return to these examples here, but with the focus nowbeing on the generalized Lie
symmetries of each, and the application of the results we have found in this paper. In particular, we are in
interested in the dimensionality of the symmetry groups for each of the systems as compared to the
dimensionality of ol

L
nF [ ] of each. A summary of our results can be found in table 1.

5.1. A lagrangianwith andwithout a generalized lie symmetry
Whether the action


S m

dq

dt
V q dt

1

2
,a

1

2

ò -⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

≔ ( )

with q q qa
a=∣ ∣ and q q qa a≔ ∣ ∣, a= 1,...,D, has a generalized Lie symmetry depends on the choice of

potentialV(q).With one choice both the Lagrangian and the Euler–Lagrange equations ofmotion have a
generalized gauge symmetry; with a second choice the equations ofmotion has a generalized Lie symmetrywhile
the Lagrangian does not; andwith a third choice neither the action nor the equations ofmotion have a symmetry.
Irrespective of the choice ofV(q), however, L is singular, demonstrating that while all actions with a generalized
Lie symmetry have a singular Lagrangian, not all singular Lagrangians have a generalized Lie symmetry.

Table 1.A summary of the symmetries of the three examples considered in this paper.With the exception of the I[1]
column, the numerical entries are the dimensionality of the vector spaces listed along the first row.Notice the case
where the Euler–Lagrange equations ofmotion has a generalized Lie symmetry while the action itself does not. In all
three examples, dim ym dim ol

L
nf=   ( ) ( )[ ] .

Action Potential ker LW / ym ym  I 1[ ] ol
L
nF [ ]

V qAS
a( ˆ ) 1 1 1 0 1

S1 V q V qsph AS
a+(∣ ∣) ( ˆ ) 1 1 0 1 0

V(q a) 1 0 0 1 0

S2 q

q

d

dt

q

q

q

q

d

dt

q

q2

a
a

a
a1

2

2

1

2

1

1

2

l
-⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

2 1 1 1 1

S3 0 2 2 2 0 2

12

J. Phys. Commun. 7 (2023) 015001 ADSpeliotopoulos



Defining  q q qab ab a bdP -( ) ≔ , we find

m

q
q q v

m

q
q q v q qd d d d, .M ab

a b
F2 3

W W= P  =  P
∣ ∣

( )
∣ ∣

( · ) ( · ( ) · )

Then  and  are spanned by q qUq
1 = ¶ ¶·( ) and q vUv

1 = ¶ ¶·( ) , respectively, while ker LW u( ) is spanned
by Uv

1( ) and

P q
q q

v
v

1
.1 =

¶
¶

+
¶
¶

·
∣ ∣

·( )

That dim ker 1LW =u /( ( ) ) then follows.
The energy is

E
m

q
v q v V q

1

2
,

2
= P +

∣ ∣
· ( ) · ( )

and there is only onefirst-order Lagrangian constraint,

VU , 19q1
1g = ( )[ ]

( )

so that XEL q
1 1b g Q=[ ] [ ] ( ), where q qdq

1Q = ·( ) . Using equation (19),




V
q

q
q

q
V

q
qd U d

1
. 20q

a
b

b
a

P 1 21 b = -
¶
¶

P
¶
¶

L ⎜ ⎟
⎛
⎝

⎞
⎠

[ ]
∣ ∣

· ( ) ( )( )( )

Whether or not ym or ym  is empty therefore depends on the symmetries ofV(q), as wewould expect.
It was found in [1] that


v q

q

q v

q
v

v

q

m

V

q
q

v
X ,L

2

= P
¶
¶

+
¶
¶

-
¶
¶

P
¶
¶

· ( ) · ( · )
∣ ∣

· ∣ ∣ · ( ) ·

and a general SOELVF is given by uX X PEL L 1= + u( )[ ]( ) , where u Îu ( ) . As the constraint algorithm gives

v
q

u U , 21q
X

1
1

1
1

ELg
g

g= P
¶
¶

+L u· · ( ) ( )[ ]
[ ]

( )
[ ]

whether or not u u( ) (which in turn determines the dimensionality of ol
L
nf [ ] ) is determined by the constraint

condition also depends on the symmetries ofV(q).
There are three cases to consider.
The symmetric potential
ForP(1) to generate a generalized Lie symmetry of the Euler–Lagrange equations ofmotion,


q

q
q

q
V

q
0

1
,a

b
b2

=
¶
¶

P
¶
¶

⎜ ⎟
⎛
⎝

⎞
⎠∣ ∣

· ( )

and as such the potentialmust satisfy





V

q

V q

q
,

a

AS
a

a

¶
¶

=
¶

¶
( )

whereVAS is a function of q a only. It follows thatP(1) generates a generalized Lie symmetry iffV qa =( )
V q V qSph AS

a+(∣ ∣) ( ), whereVSph is a function of |q| only. For this potential, ym is one-dimensional, and is
spanned byP(1).

The constraint condition equation (21) for this potential reduces to

u
d V q

d q
0 ,

Sph
2

2
= u( )

( )
∣ ∣

whichmust be satisfied on L
1[ ]. There are two possibilities.

Case 1: 0
d V

d q

Sph
2

2 =
∣ ∣

.

ThenVSph(|q|)= a|q|+ b, but since

dV

d q
a,

Sph1g = =
∣ ∣

[ ]

the condition γ[1] = 0 requires a= 0. It then follows that γ[1] = 0 on L , and thus ym  is one-dimensional; it
also is spanned byP(1). The potential is then V q b V qAS

a= +( ) ( ), and the Lagrangian is invariant under the
transformation q a→ αq a, whereα is an arbitrary, nonvanishing function on L . This Lagrangian therefore has a
local conformal symmetry. Importantly, the function u u( ) is not determined, and thus the dynamics of the
particle is given only up to an arbitrary function. Then dim ol 1

L
nF =( )[ ] as well, and is also spanned byP(1).
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Case 2: 0
d V

d q

Sph
2

2 ¹
∣ ∣

.

In this case u 0=u( ) , and the dynamics of the particle is completely determined by its initial data;
Xol LL

nF = { }[ ] . Thefirst-order Lagrangian constraint γ[1] does not vanish automatically, but instead defines a
surface onPL, and it follows that ym = Æ  . Indeed, the action’s lack of a local gauge symmetry in this case can
be seen explicitly. Equation (19) reduces to

q
V

q
0 ,

sph=
¶

¶
·

and for dynamics to be possible the set of solutions

R
dV

d q
0 ,i

Sph

Ri

Î =⎧
⎨
⎩

⎫
⎬
⎭∣ ∣

must be non-empty. Dynamics are on the surfaces |q|− Ri= 0where the potential reduces to
V q V R V qSph i AS

a= +( ) ( ) ( ). This reduced potential has the same symmetry as the potential V qAS
a( ) inCase 1,

and it is for this reason that the Euler–Lagrange equations ofmotion have the same generalized Lie symmetry for
the two cases. This is explicitly shown in the appendix.

InCase 1 the action has a local conformal symmetry, while inCase 2 it does not. (In [1] it was erroneously
stated that in this case the action has a global rotational symmetry.)The Lagrangian for the two cases do not have
the same invariances, resulting in one case dynamics that are determined only up to an arbitrary u u( ), and in the
other case to a u 0=u( ) and dynamics that are instead completely determined by the choice of initial data.

The asymmetric potential
For a generalV the second term in equation (20)does not vanish,P(1) does not generate a symmetry of the

equations ofmotion, and ym = Æ { }. As before, γ[1] does not vanish, and thus ym = Æ  { }as well.
Furthermore, as equation (21) results in

v

q
X X

U
P ,E L

q
q2
1

1 1

1

g
= -

⋅ P ⋅ g¶
¶ [ ]

( )
[ ] ( )

[ ]

the dynamics of the particle is uniquely determined by its initial data, and Xol ELL
nF = { }[ ] once again consists of

a single point.

5.2. A lagrangianwith local conformal symmetry
The action,

 
S m

dq

dt
m

dq

dt

q

q

d

dt

q

q

q

q

d

dt

q

q
dt

1

2

1

2 2
,

a
a

a
a

2
1

2
2

2
1

2

2

1

2

1

1

2
ò

l
+ + -⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭

≔
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

where a= 1,..., d,D= 2d, describes an interacting, two particle system that is invariant under the local
conformal transformation q qa a

1 1a u( ) and q qa a
2 2a u( ) .

With

 

   

m

q
q q v

m

q
q q v

m

q
q q v q q

m

q
q q v q q

q q
q q q q q q q q q q

q
q q q q q

q
q q q q q

d d d d

d d d d

d d d d d d

d d d d

, and

,

M ab
a b

ab
a b

F

a
a a

a a
a

1
2 1 1 1

2
2 2 2 2

1
3 1 1 1 1 1

2
3 2 2 2 2 2

1 2
1 2 2 1 1 2 1 1 2 2

1
2 1 1 2 1 1

2
2 2 2 1 2 2

l

l l

W

W

= P  + P 

=  P +  P

-  P + P  - P  P

-  P +  P

∣ ∣
( )

∣ ∣
( )

∣ ∣
( · ) ( · ( ) · )

∣ ∣
( · ) ( · ( ) · )

∣ ∣∣ ∣
[ ( ( ) · ) ( ( ) · ) ( ( ) · ) ( ( ) · ) ]

∣ ∣
( · ) ( · ( ) · )

∣ ∣
( · ) ( · ( ) · )

 and  are two-dimensional, and are spanned by

   q
q

q
q

q
v

q
v

U U U U, , and , ,q q v v
1 1

1
2 2

2
1 1

1
2 2

2

=
¶
¶

=
¶
¶

=
¶
¶

=
¶
¶

· · · ·( ) ( ) ( ) ( )

respectively. The reduced F 0=¯ , and ker LW u( ) is spanned by U U,v v
1 2( ) ( ) ,

q
q

q
q

v
v

v
v

P ,1
1

2
2

1
1

2
2

= ⋅
¶
¶

+ ⋅
¶
¶

+ ⋅
¶
¶

+ ⋅
¶
¶

+( )
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and

q
q

q
q

v
v

v
v

m

q

q
q

v

q

q
q

v

P

2
.

1
1

2
2

1
1

2
2

1

2
2

1

2

1
1

2

l

= ⋅
¶
¶

- ⋅
¶
¶

+ ⋅
¶
¶

- ⋅
¶
¶

- ⋅
¶
¶

+ ⋅
¶
¶

-

⎡
⎣⎢

⎤
⎦⎥

| |
| |

| |
| |

( )

As such, dim ker 2LW =/( ) .
The energy is

E
m

q
v q v

m

q
v q v

1

2

1

2
.

1
2 1 1 1

2
2 2 2 2= P + P

∣ ∣
· ( ) ·

∣ ∣
· ( ) ·

Wefind that 01g =+( )
[ ] while

q q
q q v q q v

2
,1

1 2
2 1 1 1 2 2g

l
= - P + P- ∣ ∣∣ ∣

( · ( ) · · ( ) · )( )
[ ]

giving,

q q
X

1

2
.EL

q q1
1

1

2

2

b g
Q Q

= --
⎛

⎝
⎜

⎞

⎠
⎟[ ]

∣ ∣ ∣ ∣( )
[ ]

( ) ( )

Then ym  is one-dimensional and spanned byP(+). As expected, 0P b =+L ( ) . Because

^ ^
m

q q
q q

4
1 ,

q q
P 1 2

2
1

1

2

2

b l Q Q
= - - ⋅ --L

⎛

⎝
⎜

⎞

⎠
⎟[ ( ) ]

| | | |

( ) ( )

( )

ym is also one-dimensional, and is also spanned byP(+).
A general SOELVF is

 
m

q q
uX X

X
P P

8 1
, 22EL L

L

2

1

1 2l

g
= -

-
+-

-
+

+u
[ ( · )]

[ ] ( )[ ] ( )( )
[ ]

( )
( )

( )

where u Î+ u ( )( ) , and from [1],

 

v q
q

v q
q

q v

q
v q

v

q v

q
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v
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q

q
v q q

v

q

q
v q q

v

X

,
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1 1
1
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2 2 1
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¶
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¶
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after the constraint algorithm is applied. Equation (22) is a consequence of the identity d X 0L
1gá ñ =+ ∣( )

[ ] and

^ ^

^ ^ ^ ^

q q v q q v

q q q q q q

d X 2

.

L
E

m q q

m

v

q

v

q

1

2
1

1 2
2

1 1 2 2

1 2 2 1 1 2

1 2

2

2

1

1
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l
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| || |
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We see that ol
L
nF [ ] is also one-dimensional, and is also spanned byP(+).

5.3. A lagrangianwith local conformal and time-reparametization invariance
The action


S sm s

dq

dt
dt,3

2 1 2

ò ⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

≔

where s=± 1, is invariant under both the local conformal transformations, q qa aa u( ) , and the
reparametization of time t→ τ(t)where τ is amonotonically increasing function of t. Then

m

q

P u

sv q v
q vd d ,L

ab a bW =
P


∣ ∣

( )
· ( ) ·
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andΩF= 0.Here, a= 1....,D,

u
q v

sv q v
,a

ab
b

=
P

P

( )
· ( ) ·

so that u2= s, whilePab(u)=Πab(q)− suaub. As such, ker LW =u( ) ker MW u( ). Both  and  are two-
dimensional, and are spanned by

 q
q

u
q

q
v

u
v

U U U U, , and , ,q q v v
1 2 1 2=

¶
¶

=
¶
¶

=
¶
¶

=
¶
¶

· · · ·( ) ( ) ( ) ( )

respectively. It follows that dim ker 2LW =/( ) .
Because this system is fully constrained, E= 0. AsΩF= 0 aswell, there are no Lagrangian constraints. It

follows that ym  is two dimensional and spanned by Uq
1( ) and Uq

2( ) . Asβ= 0 aswell, ym is also two

dimensional, and is also spanned by Uq
1( ) and Uq

2( ) .

We found in [1] that X 0L = . A general SOELVF is then u uX U UEL
q q1
1

2
2= +u u( )[ ] ( )[ ]( ) ( ) , with un Îu ( )

for n= 1, 2. It follows that ol
L
nF [ ] is also two-dimensional, and is spanned by Uq

1( ) and Uq
2( ) aswell.

6. Concluding remarks

That each generalized Lie symmetry of the action contributes one arbitrary function to the SOELVF for a
dynamical system is known anecdotally, and is a result expected on physical grounds. For almost regular
Lagrangians, the appearance in physics of a generalized Lie symmetry is due to a local gauge symmetry of the
dynamical system, and thus to the absence of a gauge—the length of vectors for local conformal invariance, or a
measure for time for time-reparametization invariance—for some dynamical property of the system. As the
generalized Lie symmetries of the action for an almost regular Lagrangianwould have N ym  of these gauge
freedoms, it is reasonable that the absence of these gaugeswill result in an equal number of arbitrary functions in
the SOELVF. An equal number of terms tofix these gauges would then be needed to determine the dynamics of
the systemuniquely. Butwhile these expectations are reasonable, up to now they have been fulfilled only on a
case-by-case basis. This is in great part because the analysis of dynamical systemswith a local gauge symmetry
has traditionally been done using constrainedHamiltonianmechanics. Such analysis relies on the canonical
Hamiltonian, however, and the connection between the canonical Hamiltonian and the symmetries of the
Lagrangian is indirect at best, in contrast to the Lagrangian approach followed here.Moreover, the process of
determining the totalHamiltonian for the system is often prescriptive, with results that are specific to the system
at hand. By focusing on the Lagrangian and on the Lagrangian phase space, we have been able to show for all
systemswith an almost regular Lagrangian that has a constant rank Lagrangian two-form, a direct link between
local gauge symmetries and its dynamics. In particular, it establishes a link between the number of gauge
symmetries of the action and the number of arbitrary functions that naturally appear in the evolution of such
dynamical systems.

As 0P
1g =[ ] for any choice of P ymÎ  , the vectors in ym  do not contribute to thefirst-order constraint

manifold L
1[ ], and as such do not contribute to the Lagrangian constraint algorithm at this order, or at any

higher orders. It is for this reason that the N ym  arbitrary functions u m
1[ ] are not determined by the algorithm,

andwhy these functionswill still contribute to XEL even after the algorithmhas been completed. It alsomeans
that if second- and higher-order Lagrangian constraints are introduced, they are accidental and cannot be due to
the local gauge symmetries of the action. Interestingly, we have yet tofind a dynamical systemwith a Lagrangian
that is both almost-regular and has a Lagrangian two-formwith constant rankwhere second- or higher-order
Lagrangian constraints are introduced.

This impact of generalized Lie symmetries on the dynamics of particles illustrates the inherent differences
between the analysis of the symmetries of regular Lagrangians and that of almost regular Lagrangians. For
regular Lagragians, the generator of the generalized Lie symmetry (at times referred to as a global symmetry)
gives rise to a prolongation vector, and the action of this prolongation on the Lagrangian gives the variation of
the action, δS, under this symmetry.When the Euler–Lagrange equations ofmotion are then imposed, the
conserved quantity for this symmetry along the path given by the solution of these equations ofmotion is then
obtained.While the generator of the generalized Lie symmetry for the almost regular Lagrangian gL does give a
prolongation vector pr gL equation (3), andwhile the action ofpr gL on L does give δS, imposing the Euler–
Lagrange equations ofmotion on δS in equation (4) gives the vacuous statement δS= 0. Instead, the
requirement that δS=0 for all paths on gives the conditions that the generators of the symmetrymust satisfy.
This in turn shows that the existence of these generators is due solely to the Lagrangian being singular. These
conditions then affect the dynamics of the system through 0P

1g =[ ] , and in doing so, sets a lower bound to the

dimensionality of ol
L
nf [ ] .
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Wehave found it quite difficult to constructmore than one example of a dynamical system that has an
almost regular Lagrangianwith both a generalized Lie symmetry and a Lagrangian two-formwith constant rank
on L .We have, on the other hand, found it quite easy to construct examples of dynamical systems that have an
almost regular Lagrangianwith a generalized Lie symmetry and a Lagrangian two-formwhose rank varies across

L . Indeed, it is the latter case that is themore prevalent one, and yetmuch of the results of this paper and a good
portion of the results of our previous one [1] relies on the condition that the rank of the Lagrangian two-formbe
constant on L . This is evenmore concerningwhenwe realize that thesemore prevalent systems are expected, by
their nature, to havemuch richer dynamics andmathematical structures (indeed, we have found that such
systems often require the introduction of second- or higher-order Lagrangian constraints), and yet it is not
knownwhich of the results that have been shown to hold for systemswith constant rank Lagrangian two-forms
will still holdwhen the rank varies across L . Determining the generalized Lie symmetries of these systems;
showing that the passage from the Lagrangian to theHamiltonian phase space is possible; andfinding the links
between symmetry and dynamics is a necessity for future research.
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Appendix

The Euler-Lagrangian equations ofmotion for the action S1 is

 m

q
q q

m

q
q q q q
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q
0

2
. A.1ab

b
ab

b
a3 3

= P - P +
¶
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( ) ̈
∣ ∣

( · ) ( ) ( )

Contracting both sides of this equationwith q results in thefirst-order Lagrangian constraint equation (19), and
it is clear that dynamics is only possible on this constraint surface. Acting on equation (A.1)withΠab(q) gives
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q q
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while the identity
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¶
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ensures that

q
V

q

V

q
,a

b AS
b
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a

P
¶
¶

=
¶
¶

( )

equation (A.2) thereby reduces to the same equations ofmotion for the system as found forCase 1. It is for this
reason that the two cases have same generalized Lie symmetry.
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