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A B S T R A C T

When a thin liquid film flows down on a vertical fiber, one can observe the
complex and captivating interfacial dynamics of an unsteady flow. Such dy-
namics are applicable in various fluid experiments due to their high surface
area-to-volume ratio. Recent studies verified that when the flow undergoes
regime transitions, the magnitude of the film thickness changes dramatically,
making numerical simulations challenging. In this paper, we present a com-
putationally efficient numerical method that can maintain the positivity of the
film thickness as well as conserve the volume of the fluid under the coarse
mesh setting. A series of comparisons to experimental data and previously
proposed numerical methods supports the validity of our numerical method.
We also prove that our method is second-order consistent in space and satis-
fies the entropy estimate.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Fiber coating has complex dynamical properties due to various body forces and the Rayleigh instability from
surface tension. An initially uniform flow quickly breaks up into regularly spaced beads, and forms traveling waves
in the presence of gravity along the fiber direction [1, 2]. The beaded morphology creates a high surface area-to-
volume ratio making it ideal for designing heat and mass transfer devices along the liquid-gas interface [3]. This
technique has applications in gas absorption [4, 5, 6], heat exchangers [7, 8], microfluidics [9], and desalination [10].
The practical applications consequently attracted more comprehensive theoretical studies over the last few decades
[11, 2, 12, 13, 14, 15, 1, 16]. The fundamental component determining the profile of the thin liquid film on a vertical
fiber is surface tension, which has a stabilizing effect on the axial curvatures, and destabilizing effect on the azimuthal
curvatures of the interface [17]. In addition, other factors increasing the flow’s complexity are the cylindrical geometry
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Fig. 1: Illustration of a thin liquid film flowing down a vertical fiber

of the fiber and the gravitational force. Experimentally, interfacial instabilities of the flow have been studied over
decades [1, 16]. Kliakhandler et al. experimentally characterized the three distinct regimes of interfacial patterns
(a)-(c) [17]. In this paper, we use the convention by Ji et al. [18] and call (a)-(c) regimes convective, Rayleigh-
Plateau, and isolated droplet regimes. The convective regime, observed when the flow rate is high, corresponds to
the flow profile where irregular droplets collide with each other. The Rayleigh-Plateau regime corresponds to the
flow profile where beaded traveling waves propagate nearly constantly. The isolated droplet regime, observed when
the flow rate is low, corresponds to the flow profile where small wavy patterns follow well-separated large droplets.
The distinct dynamics of each regime and its transition is extensively studied, both theoretically and experimentally
[16, 19, 2, 20, 18, 21].

In this paper, we consider reduced-order models of the Navier-Stokes equations incorporating linear and nonlinear
effects of the flow. Li and Chao [22] summarize a few notable methods: the gradient expansion method [23, 24, 25,
18], the integral method [26, 27], the weighted residual method [14, 20, 13], and the energy integral method [28].
The models are often classified according to the size of the Reynolds number. For the low Reynolds number cases,
the flow profile is approximated by the Stokes equations combined with the lubrication approximation [18, 24].
For moderate Reynolds number cases, one incorporates inertial terms in the governing equation using the weighted
residual boundary integral method [14, 13]. Many of the models are verified against the experimental data [14, 13].
For example, a recent study by Ji et al. shows a good agreement with experimental data by correctly predicting bead
velocities, flow profiles, and regime transition bifurcation [18].

A major challenge is that fiber coating equations are extremely difficult to solve both numerically and analytically.
They are typically fourth-order degenerate nonlinear parabolic equations due to the surface tension in the dynamics.
We consider the following model from [18].

∂

∂t

(
h +
α

2
h2

)
+
∂

∂x
M(h) +

∂

∂x

[
M(h)

∂p
∂x

]
= 0,

M(h) = O(hn), p =
∂2h
∂x2 −Z(h).

(1)

Equation (1) is an evolution equation of the film thickness h(x, t). From left to right,

• ∂
∂t (h+

α
2 h2) denotes the mass change over time where α = H/R ≥ 0 is the aspect ratio between the characteristic

length scale of film thicknessH to the fiber radius R.

• M(h) is often referred to as the mobility function that describes the hydrodynamic interactions of the transverse
waves. Many times, M(h) = O(hn). For example, setting M(h) to M(h) = h3 corresponds to the no-slip
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boundary condition, and settingM(h) to h3 + βhn for n ∈ (0, 3) corresponds to various Navier-slip conditions.
The smoothness ofM(h) near h = 0 determines the qualitative behavior of solutions at zero.

• The pressure p consists of two terms - the linearized curvature ∂
2h
∂x2 , representing the streamwise surface tension,

and theZ(h), representing other nonlinear pressure effects. Z(h) often contains a destabilizing surface tension
term that arises from the azimuthal curvature but can also include other terms.

Equation (1) is considered state of the art for this problem because it quantitatively agrees with bead velocities,
flow profiles, and regime transition bifurcations as compared to experiments. Previously, the model by Kliakhandler et
al. [17] incorporated fully nonlinear curvature to capture the qualitative behavior of the Rayleigh-Plateau and isolated
droplet regime. Nevertheless, this model overestimated the beads’ velocity by 40%. Craster & Matar’s model [24]
revisited this idea and presented an asymptotic model describing Rayleigh-Plateau and isolated droplet regime but
again overestimated the bead velocity. Their model also identified the Rayleigh-Plateau regime to be transient rather
than a stationary state. Duprat et al. [29], and Smolka et al. [30] further studied regime transitions but predicting
the regime transitions remained challenging. Ji et al.’s film stabilization model (FSM) [18] improved the preceeding
models by incorporating a film stabilization term among generalized pressure terms. This stabilization term was
inspired by the attractive part of the long-range apolar van der Waals forces, which are carefully studied for the well-
wetting liquids [31, 32]. One can see that simulating such complex models is a delicate procedure. Thus, it is vital to
have a robust numerical method for simulating complex spatiotemporal dynamics to predict flow profiles and regime
transitions.

The degeneracy of the mobility function M(h) and the complex nonlinear pressure terms Z(h) are two hurdles
one needs to clear to construct a robust numerical method. First, the degeneracy of the mobility function presents a
substantial challenge in numerically solving equation (1) since the solution may lose regularity as h → 0. Second,
the nonlinear term Z(h) in pressure p complicates the problem further since it is often relatively large in magnitude
as h → 0. As a result, the numerical method can suffer from instabilities as h → 0. Therefore, keeping h positive
is not only crucial for the solution to be physically meaningful but also important for the solution to be accurate.
Fortunately, we found similarities between equation (1) and many lubrication-type equations and realized we could
view equation (1) as a variant of a lubrication-type equation with generalized pressure [33, 34].

∂h
∂t
+
∂

∂x

(
M(h)

∂p
∂x

)
= 0 p =

∂2h
∂x2 −Z(h) where f (h) ∼ hn as h→ 0. (2)

One may see that setting α = 0 and ∂
∂xM(h) = 0 in equation (1) results in equation (2). Setting α = 0 would mean

neglecting the effect of the fiber, and ∂
∂xM(h) = 0 would mean neglecting the advection effect by liquid traveling

downward. Such experimental and theoretical settings are discussed in various studies devoted to the lubrication
theory so that we can take advantage of them [35, 36, 37, 33, 38]. We know the solution of (2) is smooth whenever
the solution is positive but typically loses its regularity as the solution h → 0 due to the degeneracy of the equation
[39, 40]. We also know that the nonlinear pressure terms often introduce a large numerical instability as h → 0,
making it challenging to maintain the positive numerical solution [33, 38]. Examples of fiber coating problems
include Z(h) = −(α/ϵ)2h in [41], assuming the thickness of the film is much smaller than the fiber radius (H ≪ R).
Craster & Matar [24] usedZ(h) = α

η(1+αh) , assuming the film thickness comparable to the fiber radius (α = O(1)). Ji et
al. [18] used thatZ(h) = α

η(1+αh) −
A
h3 . In both the Craster & Matar model and Ji et al. model, we can expect numerical

challenges when h is small. Indeed, we show in section 4 that the numerical method used in [18] can generate a false
singularity of the form h → 0 when the spatial grid size is underresolved. In other words, although the analytical
solution of (1) is positive everywhere, the solution produced by a naive numerical method can produce negative values
within some range of the solution when the grid size is underresolved. Such numerical methods can be quite difficult
to extend to higher dimensions where grid refinement is computationally expensive. We also show that the negativity
further prevents calculating the solution after the singularity. Thus, it is desirable to have a positivity-preserving
numerical method that can perform well at different grid resolutions without spurious numerical singularities.

Constructing positivity preserving methods for partial differential equations (PDEs) is addressed in a wealth of
literature yet most of them are limited to the first or second-order equations [42, 43, 44, 45]. Equations above the
second order have no maximum or comparison principles, and higher-order spatial derivatives make the numerical
system extremely stiff. Numerical methods for fourth or higher-order equations with positivity-preserving properties
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have received far less attention. Early works include [46, 47, 48, 38] and make use of entropy estimates to prove
positivity. Some of the recent approaches use cut-off, or Lagrange multiplier methods which have a limitation in
conserving mass or maintaining smoothness [49, 50]. Here we introduce a convex-splitting method that preserves
physical quantities like energy, entropy, and mass [51, 52, 53, 33] which treats the stabilizing stiffest terms implicitly
and the destabilizing terms explicitly. A few methods are unconditionally stable [54, 55] which include the scalar
auxiliary variable (SAV) method by Huang et al. [56]. The applications of these methods are to solve Cahn-Hilliard
or Hele-Shaw cell-type equations.

This paper presents a positivity-preserving numerical scheme that works on a general family of lubrication-type
equations on cylindrical geometries. Positivity-preserving numerical methods have not been studied in the context
of fiber coating, especially in the regime that is most relevant to physical experiments. The structure of the paper
follows. In section 2, we prove properties that the PDE (1) holds and discuss how the PDE imparts such properties
to our numerical methods. In section 3, we introduce our numerical method and the state of art method in [18]. In
section 4, we present proofs on the positivity and the consistency of our method. In section 5, we compare numerical
simulations of our method to simulations of the state of the art method and experimental data. In section 6, we
conclude our paper with a few remarks.

2. Properties of the partial differential equation

This section investigates two essential properties of the continuous fiber coating equation (1). We ensure that
our numerical method preserves the discrete equivalent of the properties. We consider the following initial-boundary
value problem:

(P)



∂

∂t

(
h +
α

2
h2

)
+
∂

∂x

[
M(h)

(
1 +
∂p
∂x

)]
= 0 in LT = (0, L) × (0,T ) ⊂ R2,

p =
∂2h
∂x2 −Z+(h) −Z−(h),

[0, L] − periodic boundary conditions,
h(x, 0) = h0(x) > 0.

The main difference from previous equation (1) is that we split Z(h) into two parts: Z+(h) and Z−(h), where
Z′+(h) ≥ 0 and Z′−(h) ≤ 0. Such splittings are not generally unique but useful in the design of stable numerical
schemes. An example is discussed in Section 4. We assume periodic boundary conditions for simplicity and a positive
initial condition to match the physical setting.

Here we assume that a smooth positive solution exists to the problem (P). The existence of a solution to problems
such as (P) has been studied in depth [57, 58, 21]. The general procedure is like this. First, one applies a regularization
technique to a problem (P) to overcome the degeneracy and make the problem uniformly parabolic. The boundary
condition can be extended to the whole line using a proper continuation technique such as the one suggested in [59].
The well-known parabolic Schauder estimates [60, 59, 61] guarantees a unique solution in a small time interval say,
Lτ = (0, L)× (0, τ). In the end, the limit of the regularized solution results is a smooth, positive solution. We direct our
readers to [57, 21] for the full derivation. We believe a similar derivation is possible through the canonical approach
although continuation of solutions past the initial small time interval requires a priori bounds on certain norms. A full
discussion of this problem is beyond the scope of this paper.

The key idea of developing a positivity-preserving numerical method is to formulate an entropy estimate for the
continuous problem (P). Such an estimate guarantees the positivity of solutions in the continuous setting. Therefore,
one may yield a positivity-preserving numerical method by constructing a numerical method that satisfies the discrete
equivalent of the entropy estimate. For our problem (P), we define entropy G(h) so that its derivative satisfies

G′(h) = (1 + αh)
∫ h

A

1
M(s)

ds, for some fixed A > 0.

We note that the numerical methods to be developed in Section 3 do not explicitly involve the constant A > 0, and we
will show that the analytical proof of the algorithm in sections 2 and ?? does not depend on any particular choice of
A. We claim that solutions to the problem (P) satisfy conservation of mass and an entropy estimate.
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Proposition 2.1. Suppose that there exists a solution h ∈ C4(LT ) of (P), where LT = [0, L) × [0,T ). Suppose we
further assume

M(h) = O(hn),M(h) ≥ 0

Z+,Z− ∈ C2(R+), and Z′+(h) ≥ 0,Z′−(h) ≤ 0.

Then, the solution h satisfies the following two properties;

(I)
∫ L

0
h(x,T ) +

α

2
h2(x,T ) dx =

∫ L

0
h(x, 0) +

α

2
h2(x, 0) dx (conservation of mass),

(II)
∫ L

0
G(h(x,T )) dx ≤

∫ L

0
G(h(x, 0)) dx +

∫
LT

(
Z−(h)

2

)2

dxdt, for some fixed A > 0. (entropy estimate)

Proof. The conservation of mass (I) is achieved by integrating the problem (P) on LT .

∫
LT

∂

∂t

(
h +
α

2
h2

)
dxdt = −

∫
LT

∂

∂x

[
M(h)

(
1 +
∂p
∂x

)]
dxdt

=⇒

∫ L

0

(
h(x,T ) +

α

2
h2(x,T )

)
dxdt −

∫ L

0

(
h(x, 0) +

α

2
h2(x, 0)

)
dxdt = 0

Note that the periodic boundary condition removes the complex expression surrounded by ∂
∂x [...].

The entropy estimate (II) is achieved by directly calculating the time derivative of G(h).

d
dt

∫ L

0
G(h)dx =

∫ L

0
G′(h)htdx

=

∫ L

0

{
(1 + αh)ht

∫ h

A

1
M(s)

ds
}

dx

= −

∫ L

0

{
∂

∂x

[
M(h)

(
1 +
∂p
∂x

)] ∫ h

A

1
M(s)

ds
}

dx

=

∫ L

0
hx

(
1 +
∂p
∂x

)
dx.

The equalities are justified by the integration by parts. Note that the periodic boundary plays a crucial role in sim-
plifying expressions on the boundary. We use the definition p = hxx − Z(h) = hxx − Z+(h) − Z−(h) to continue our
calculation.

d
dt

∫ L

0
G(h)dx =

∫ L

0
hxdx +

∫ L

0
hx
∂

∂x
(hxx −Z(h)) dx

= −

∫ L

0
h2

xx +

∫ L

0
hxxZ−(h)dx −

∫ L

0
h2

xZ
′
+(h)dx

= −

∫ L

0

(
hxx −

Z−(ui)
2

)2

dx +
∫ L

0

(
Z−(ui)

2

)2

dx −
∫ L

0
h2

xZ
′
+(h)dx

≤ −

∫ L

0

(
hxx −

Z−(ui)
2

)2

dx +
∫ L

0

(
Z−(ui)

2

)2

dx.

Again, the periodic boundary is crucial in eliminating
∫ L

0 hxdx in the first line. We use the Completing the Square
trick in the third line to simplify the expression. We get the inequality in the last line becauseZ′+(h) ≥ 0. Integrating
the consequent expression over time gives us
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∫ L

0
G(h(x,T )) dx +

∫
LT

(
hxx −

Z−(h)
2

)2

dxdt ≤
∫ L

0
G(h(x, 0)) dx +

∫
LT

(
Z−(h)

2

)2

dxdt.

Finally, one can drop the second term on the left side of the inequality since it is nonnegative.

The above properties allow us to create a positivity-preserving numerical method due to the entropy estimate.
Lubrication-type equations are well-known to satisfy entropy dissipating properties. Bernis et al. recognized the
significance of the entropy dissipation property in third-order or higher degenerate parabolic equations and used it
to prove the nonnegativity of weak solutions [57] with sufficiently high degeneracy in one space dimension. They
also proved that the solution is unique and strictly positive if the mobility order n ≥ 4. Following their work, several
articles regarding lubrication-type equations discussed the importance of entropy estimates in numerical and analytical
contexts [39, 62, 47, 46, 48, 33]. These ideas have largely been lacking in the fiber coating problem, except for the
generalized entropy analysis done by Ji et al. [21], which proves the existence of a nonnegative weak solution of a
fiber-coating model with fully nonlinear curvature terms. In this paper, we use these ideas to develop a positivity-
preserving numerical solution.

3. Positivity-preserving Finite difference method

In this section, we present a positivity-preserving finite difference method, the Bounded Entropy Method (BEM),
and compare it to the current state of the art method General Method (GM) used in fiber coating models [18]. Our
method is second-order accurate in space and first-order accurate in time while preserving the positivity of a numerical
solution at each time step. Our method is motivated by prior work by Zhornitskaya et al. [47] and Grun et al. [33]
for a simple lubrication model without the geometry and physics of fiber coating. Before introducing our method, we
define the following notation.

Notation. Suppose we divide our domain [0, L] into N equally spaced grids of size ∆x = L/N. Assume ui(t) to be a
solution of a numerical method at time t and the i-th grid. Define the forward difference in space and the backward
difference in space as

ui,x =
ui+1(t) − ui(t)

∆x
, ui,x̄ =

ui(t) − ui−1(t)
∆x

.

Respectively, higher-order differences in space can be defined as

ui,x̄x =
ui+1,x̄ − ui,x̄

∆x
, ui,x̄xx̄ =

ui,x̄x − ui−1,x̄x

∆x
.

We define our discrete mobility function to satisfy the following criteria.

Definition 3.1 (Discretization of Mobility). The mobility termM(s) in the problem (P) is discretized to satisfy the
following criteria [47].

(a) m(s, s) =M(s),

(b) m(s1, s2) = m(s2, s1),

(c) m(s1, s2) ∈ C4((0,∞) × (0,∞)) ∩C([0,∞] × [0,∞]),

(d) ∀δ > 0, there exists γ > 0 such that s1, s2 > δ =⇒ m(s1, s2) ≥ γ > 0.

Note that the discretized mobility m(s1, s2) is symmetric and continuously differentiable everywhere except at 0.
m(s1, s2) is continuous at 0 but does not have to be differentiable. Condition (d) allows the m(s1, s2) to be degenerate
if one of the arguments h → 0 but guarantees positivity if both of the arguments are greater than 0. We define our
positivity-preserving finite difference method BEM to satisfy the above definition.
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Bounded Entropy Method (BEM). The finite difference discretization of the problem (P) with continuous time
is written by the following equations.

(1 + αui)
dui

dt
+ [m(ui−1, ui)(1 + pi,x̄)]x = 0, pi = ui,x̄x −Z+(ui) −Z−(ui),

ui(0) = u0(i∆x), i = 0, 1, 2 · · ·N,

m(s1, s2) =

M(s1) if s1 = s2

(s2 − s1)/
∫ s2

s1

1
M(s) ds if s1 , s2.

(3)

In section 4, we show that the above discretization ofM(h) guarantees a discrete equivalent of the conservation
of mass (I) and the entropy estimate (II). We can also write the numerical method of Ji et al. [18] as the following,
which we refer to as Generic Method (GM).

Generic Method (GM). The finite difference discretization of the problem (P) with continuous time is written
by the following equations.

(1 + αui)
dui

dt
+ [m(ui−1, ui)(1 + pi,x̄)]x = 0, pi = ui,x̄x −Z+(ui) −Z−(ui),

ui(0) = u0(i∆x), i = 0, 1, 2 · · ·N,
(4)

where m(s1, s2) satisfies Definition 3.1.

For example, one can use m(s1, s2) = M(0.5(s1 + s2)) and m(s1, s2) = 0.5(M(s1) +M(s2)) for GM. Note that
m(s1, s2) in BEM and GM is center-difference, allowing the numerical method to conserve flux at each time step. To-
gether with second-order consistency, both numerical methods are “shock capturing,” which is a desirable property to
have in conservation law type of equations [63]. In the following section, we show that BEM satisfies the conservation
of mass and entropy estimate, which allows us to prove the positivity of the numerical method.

4. Positivity of Numerical solutions

In the previous section, we claim that discretizing m(s1, s2) using Definition 3.1 allows us to preserve the conser-
vation of mass and the entropy estimates discussed in section 2. In this section, we show how such a discretization
preserves the positivity of BEM. Specifically, we prove discrete conservation of mass and the entropy estimate in
Proposition 4.1 and show the positivity preserving property of BEM in Theorem 4.1. Our method is inherently more
complex than entropy dissipating schemes for traditional lubrication-type equations because of three reasons. First,
the time derivative of (1) involves the geometry of the cylindrical fiber α2 h2. Second, a nonlinear advection ∂

∂xM(h)
is incorporated. Lastly, nonlinear pressure p entails a destabilizing azimuthal curvature α

η(1+αh) . The coupled entropy
estimate expression in Proposition 2.1 is consequently more complicated than “entropy dissipation”, which is the case
for the conventional lubrication-type equations. We prove the discrete analog of Proposition 2.1.

Proposition 4.1. Suppose ui(t) is a solution of the BEM (3) at time t and i-th grid in space. Suppose we further
assume

M(h) = O(hn),M(h) ≥ 0

Z+,Z− ∈ C2(R+), and Z′+(h) ≥ 0,Z′−(h) ≤ 0.

We remind the readers that the derivative of entropy G(h) satisfies

G′(h) = (1 + αh)
∫ h

A

1
M(s)

ds, for some fixed A > 0.
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Then, ui(t) satisfies the following two properties given T > 0;

(I)
∑

i

(
ui(T ) +

α

2
ui(T )2

)
∆x =

∑
i

(
ui(0) +

α

2
ui(0)2

)
∆x (Discrete conservation of mass),

(II)
∑

i

G(ui(T ))∆x ≤
∑

i

G(ui(0))∆x +
∫ T

0

∑
i

(
Z−(ui(s))

2

)2

∆xds (Discrete entropy estimate).

Proof. The proof of the statements is very similar to the proof of Proposition 2.1. The only difference is that we
multiply by ∆x and sum over i = 0, 1, 2...N − 1 instead of integrating over space. Discrete conservation of mass (I) is
achieved by integrating the first line of (3) by time and summing over i = 0, 1, 2...N − 1.

∫ T

0

∑
i

(1 + αui)
dui

dt
∆x = −

∫ T

0

∑
i

[m(ui−1, ui)(1 + pi,x̄)]x∆x.

=⇒
∑

i

(
ui(T ) +

α

2
ui(T )2

)
∆x −

∑
i

(
ui(0) +

α

2
ui(0)2

)
∆x = 0.

As we saw in the continuous case, the periodic boundary condition removes the expression surrounded by [...]x.
Discrete entropy estimate (II) is achieved by direct calculation.

d
dt

∑
i

G(ui)∆x =
∑

i

G′(ui)
dui

dt
∆x

= −
∑

i

∫ ui

A

1
M(s)

ds[a(ui−1, ui)(1 + pi,x̄)]x∆x

=
∑

i

1
∆x

(∫ ui

ui−1

1
M(s)

ds
)

a(ui−1, ui)(1 + pi,x̄)∆x

=
∑

i

ui,x̄(1 + pi,x̄)∆x

=
∑

i

{
−(ui,x̄x)2 − ui,x̄[Z′+(ui)]x̄ + ui,x̄xZ−(ui)

}
∆x

≤ −
∑

i

(
ui,x̄x −

Z−(ui)
2

)2

∆x +
∑

i

(
Z−(ui)

2

)2

∆x.

Until the 4th line, the equalities are justified by integration by parts. Note that the periodic boundary plays a crucial
role in simplifying expressions on the boundary and eliminating

∑
i ui,x̄∆x in the 4th line. We obtain the inequality

in the last line after using Completing the Square trick and using the fact that Z′+ ≥ 0. From the inequality, one
integrates over time from 0 to T .

∑
i

G(ui(T ))∆x +
∫ T

0

∑
i

(
ui,x̄x(s) −

Z−(ui(s))
2

)2

∆xds ≤
∑

i

G(ui(0))∆x +
∫ t

0

∑
i

(
Z−(ui(s))

2

)2

∆xds

Finally, one can drop the second term on the left side since it is nonnegative and the desired entropy estimate is
achieved.

We have two versions of theorems on the positivity: (a) a priori bound - depending on ∆x and (b) a posteriori
bound assuming a uniform Lipschitz condition on the numerical solution. We note that the solution is observed
to have a uniform Lipschitz bound in all of our numerical simulations. Thus, the uniform Lipschitz assumption is
logically coherent. We leave proving the smoothness of PDE, such as establishing a uniform Lipschitz bound, as
future work.
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Theorem 4.1. (Positivity of BEM) Suppose we have the same assumptions as Proposition 4.1. We further assume that
(Z−(s))2 ≤ C1 for any s ≥ 0 and the initial data ui(0) > 0. Then, the solution of BEM at time T > 0, ui(T ), satisfies
the following conditions;

(a) if n ≥ 2, there exists δ such that ui(T ) ≥ δ(∆x) > 0 for all i,

(b) if n > 2 and ui(t) is uniformly Lipchitz on [0,T ], i.e. |ui(s) − u j(s)| ≤ CL|(i − j)∆x|, ∀i, j, ∀0 ≤ s ≤ T,
for some CL > 0, there is a posteriori lower bound δ such that ui(T ) ≥ δ > 0. In this case, δ is independent of
∆x.

Proof. Notice that we assume that M(h) = O(hn) and consider cases where n ≥ 2. Thus, for simplicity, we take
M(h) = hn throughout the proof. More general cases can be proved as in similar fashions. Let us first prove the
statement (a). The given assumptions allow us to use the discrete entropy estimate (II) from Proposition 4.1. First,
we claim that

∑
i G(ui(T ))∆x ≤ C for some fixed constant C. We express the entropy function G(h) as

G(h) =


− ln h + O(h) + O(1) if n = 2,

1
(n−1)(n−2) h

−(n−2) + O(h3−n) + O(1) if 2 < n < 3,
1

2h −
α
2 ln h + O(h) + O(1) if n = 3,

1
(n−1)(n−2) h

−(n−2) + α
(n−1)(n−3) h

−(n−3) + O(h) + O(1) if n > 3,

Here, the choice of A only affects the coefficients of the higher order terms but not the leading order term. Because
we have fixed positive initial data ui(0), each G(ui(0)) is well defined. This leads us to conclude∑

i

G(ui(0))∆x ≤ C0.

We also have the assumption (Z−(ui(s)))2 ≤ C1 so∫ T

0

∑
i

(
Z−(ui(s))

2

)2

∆xds ≤ C2T

Hence, we get ∑
i

G(ui(T ))∆x ≤
∑

i

G(ui(0))∆x +
∫ T

0

∑
i

(
Z−(ui(s))

2

)2

∆xds ≤ C0 +C2T ≤ C.

Next, we show that δ(T ) = mini ui(T ) ≥ 0 using the boundedness of
∑

i G(ui(T ))∆x. Note that

G(δ) =


− ln δ + O(δ) + O(1) if n = 2,

1
(n−1)(n−2)δ

−(n−2) + O(δ3−n) + O(1) if 2 < n < 3,
1
2δ −

α
2 ln δ + O(δ) + O(1) if n = 3,

1
(n−1)(n−2)δ

−(n−2) + α
(n−1)(n−3)δ

−(n−3) + O(δ) + O(1) if n > 3,

Notice that all the leading order terms of G(δ) is positive as δ → 0, up to constant differences. Thus, δ → 0
implies G(δ)→ +∞, which contradicts

∑
i G(ui(T ))∆x ≤ C. Hence, we achieve mini ui(T ) = δ > 0.

To prove (b), we use
∑

i G(ui(T ))∆x ≤ C as well. From part (a), we have nonnegativity of ui(T ) so

G(ui(T )) =
∫ ui

B
(1 + αv)

∫ v

A

1
M(s)

dsdv + O(1) ≥
∫ ui

B

∫ v

A

1
M(s)

dsdv + O(1), for some B > 0.

Therefore,

C ≥
∑

i

G(ui(T ))∆x ≥
∑

i

∫ ui

B

∫ v

A

1
M(s)

dsdv∆x + O(1) ≥
∑

i

∫ ui

B

∫ v

A

1
sn dsdv∆x + O(1) =

∑
i

u2−n∆x + O(1).
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Suppose δ(T ) = mini ui(T ) occurs at i∗. Due to the uniform Lipschitzness, ui ≤ δ +CL|(i∗ − i)∆x|, ∀i.

C̃ ≥
∑

i

1
un−2

i

∆x ≥
∑

i

∆x
(δ +CL|(i − i∗)∆x|)n−2 ≥

∑
i

∆x
(δ +CL(i∆x))n−2

≥

∫ L

0

dx
(δ +CLx)n−2 ≥

1
CLδn−1

∫ LCL/δ

0

ds
(1 + s)n−2

If LCL
δ
≤ 1 =⇒ δ ≥ LCL so we have lower bound for δ independent of ∆x. In the case when LCL

δ
≥ 1,

C̃ ≥
1

CLδn−1

∫ 1

0

ds
(1 + s)n =

C′

δn−1 .

=⇒ δ ≥

(
C′

C̃

)1/n−1

.

Corollary 4.2. Numerical solutions of Craster-Matar model [24] and Film Stabilization Model (FSM) [18] are
positivity preserving if we use the BEM.

Proof. For both cases, the same mobility functionM(h) is used but differentZ(h) are used.

M(h) =
h3

3
ϕ(αh)
ϕ(α)

+
h2(αh + 2)2λ

4ϕ(α)
,

ϕ(x) =
3

16x3

[
(1 + x)4(4 ln(1 + x) − 3) + 4(1 + x)2 − 1

]
,

ZCM(h) = ZCM−(h) =
α

η(1 + αh)
,

ZFS M(h) = ZFS M+ +ZFS M− = −
AH

h3 +
α

η(1 + αh)
.

We prove that the assumptions for Theorem 4.1 are satisfied by showing thatM(h) = O(h2) as h→ 0 and (Z−(s))2 ≤(
α
η

)2
. To simplify the calculation, let y = αh. Then,

h3ϕ(αh)
3ϕ(α)

=
1

16α3ϕ(α)

[
(y + 1)4(4 ln(y + 1) − 3) + 4(y + 1)2 − 1 + 4λαy2(y + 2)2

]
=

1
C

[
A4y4 + A3y3 + A2y2 + A1y + A0

]
,

where

A4 = 4αλ + 4 ln(y + 1) − 3, A3 = 16αλ + 16 ln(y + 1) − 12, A2 = 16αλ + 24 ln(y + 1) − 14,
A1 = 16 ln(y + 1) − 4, A0 = 4 ln(y + 1).

As y→ 0, ln(y + 1) = O(y). Thus,

h3ϕ(αh)
3ϕ(α)

= O(y2) +
1
C

[A1y + A0] = O(y2) + 16y2 − 4y + 4y = O(y2) = O(s2).

Finally, for any s ≥ 0,

Z−(s) =
α

η(1 + αs)
≤
α

η
.

To finish the proof, we apply Theorem 4.1. and see that the numerical solutions of both Craster-Matar Model and
FSM are positive.
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Theorem 4.3 (Consistency). GM and BEM are second-order consistent in space. That is, given a smooth solution
u(x, t) of the problem (P), a local truncation error τi(t) is O(∆x2). Where

τi(t) = (1 + αui)ui,t + [m(ui−1, ui)(1 + pi,x̄)]x.

Proof. Let us denote ui = u(i∆x, t) to simplify the notation. First, note that both GM and BEM have very similar
formulations and satisfy Definition 3.1. Thus, we can use an approach similar to [47]. After Taylor expansion,

m(s1, s2) = m(s + ∆s, s − ∆s) = m(s, s) +
∂m
∂s1

(s, s)∆s −
∂m
∂s2

(s, s)∆s + β(s)∆s2 + O(∆s2)

=M(s) + β(s)∆s2 + O(∆s2),

where s = s1+s2
2 ,∆s = s1−s2

2 , and

β(s) =
1
2

∂2m(s, s)
∂s2

1

− 2
∂2m(s, s)
∂s1∂s2

+
∂2m(s, s)
∂s2

2


We canceled out O(∆s) terms by using the symmetry of m(s1, s2), according to (b) from Definition 3.1. We also obtain

pi,x̄ = ui,x̄xx̄ − [Z(ui)]x̄

ui,x̄xx̄ =
ui+1 − 3ui + 3u−1 − ui−2

∆x3 = u(3)
i− 1

2
+ α(xi− 1

2
)∆x2 + O(∆x4)

[Z(ui)]x̄ = Z
′(ui− 1

2
)
ui − ui−1

∆x
+Z′′(ui− 1

2
)
(ui − ui− 1

2
)2 − (ui−1 − ui− 1

2
)2

2∆x
+ O(∆x2) + O(∆x4)

= Z′(ui− 1
2
)
[
u′i− 1

2
+
∆x2

24
u(3)

i− 1
2
+ O(∆x4)

]
+Z′′(ui−1/2)

[
∆x2

8
u′i− 1

2
u′′i− 1

2
+ O(∆x4)

]
.

After a simplification,

pi,x̄ = u(3)
i− 1

2
+Z′(ui− 1

2
)u′i− 1

2
+ γ(xi− 1

2
)∆x2 + O(∆x4)

for some smooth function γ(x). As a result,

[m(ui−1, ui)(1 + pi,x̄)]x =
1
∆x

[
m(ui, ui+1)(1 + pi+1,x̄) − m(ui−1, ui)(1 + pi,x̄)

]
=

1
∆x

{
M

(ui + ui+1

2

)
+ β

(ui + ui+1

2

) (ui+1 − ui

2

)2
+ O(∆x3)

} {
1 + u(3)

i+ 1
2
+Z′(ui+ 1

2
)u′i+ 1

2
+ γ(xi+ 1

2
)∆x2 + O(∆x4)

}
−

1
∆x

{
M

(ui + ui−1

2

)
+ β

(ui + ui−1

2

) (ui−1 − ui

2

)2
+ O(∆x3)

} {
1 + u(3)

i− 1
2
+Z′(ui− 1

2
)u′i− 1

2
+ γ(xi− 1

2
)∆x2 + O(∆x4)

}
,

Note that for any continuously differentiable function g(s)

g
(ui + ui+1

2

)
= g(ui+ 1

2
) + g′(ui+ 1

2
)
u′′i+ 1

2

2

(
∆x
2

)2

+ O(∆x4),(ui+1 − ui

2

)2
= (u′i+ 1

2
)2

(
∆x
2

)2

+ O(∆x4).

The above properties can be applied toM(s) and β(s). Hence we conclude

[m(ui−1, ui)(1 + pi,x̄)]x =
[
M(ui)(1 + u(3)

i − Z′(ui)u′i)
]′
+ O(∆x2).
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5. Numerical Simulation

In this section, we illustrate the benefit of using the BEM over GM after comparing the performance of the two
methods. Suppose we solve the problem (P) with

M(h) =
h3ϕ(αh)
3ϕ(α)

, ϕ(X) =
3

16X3 [(1 + X)4(4 log(1 + X) − 3) + 4(1 + X)2 − 1],

Z+(h) = −
AH

h3 , and Z−(h) =
α

η(1 + αh)
,

which corresponds to (FSM) in Ji et al.[18] with λ = 0. In their work, setting λ = 0 matched the experimental data
better than setting λ > 0. Thus, this is a good example to demonstrate our method on. We assume the initial data to be

u0(x) = 1.471(1 + 0.01sin(πx/L)), L = 23.0,

with dimensionless parameters α = 10.6, η = 0.223227, AH = 0.001. The dimensionless parameters and the initial
data are chosen to be in the range of the physical values.

The numerical schemes presented in Section 4 are continuous in time so we must discretize the time step for the
implementation. We use θ-weighted time step with θ = 1

2 (semi-implicit).

Bounded Entropy Method (Semi-Implicit BEM).1 + αuk+1
i + uk

i

2

 uk+1
i − uk

i

∆t

 + [m(uk+1
i−1 , u

k+1
i )(1 + pk+1

i,x̄ )]x = 0, pk+1
i = uk+1

i,x̄x −Z+(uk+1
i ) −Z−(uk

i )

ui(0) = u0(i∆x), i = 0, 1, 2 · · ·N

m(s1, s2) =

M(s1) s1 = s2

(s2 − s1)/
∫ s2

s1

1
M(s) ds s1 , s2

(5)

While other terms involving spatial differences including Z+, are discretized implicitly, we point out that Z− is
discretized explicitly. Such discretization is a well-known technique that increases the stability of a numerical method
by treating a concave term and a convex term separately [33, 38]. One may apply a fully implicit method, but
this typically requires ∆t to be very small. On the other hand, one can incorporate adaptive time stepping when
applying the semi-implicit method. This concept will be discussed in depth in Section 5.2.We also note that one
has to numerically calculate

∫ s2

s1

1
M(s) ds while evaluating m(s1, s2). We used the Simpson’s method with 2-4 grids to

numerically integrate 1/M(h) on [ui−1, ui].
We compare the above semi-implicit BEM to the fully implicit GM used in [18].

Generic Method (Implicit GM with average mobility).1 + αuk+1
i + uk

i

2

 uk+1
i − uk

i

∆t

 + [m(uk+1
i−1 , u

k+1
i )(1 + pk+1

i,x̄ )]x = 0, pk+1
i = uk+1

i,x̄x −Z+(uk+1
i ) −Z−(uk+1

i )

ui(0) = u0(i∆x), i = 0, 1, 2 · · ·N

m(s1, s2) =

M(s1) s1 = s2

M

(
uk+1

i +uk
i

2

)
s1 , s2

(6)

As mentioned previously, the method is fully implicit so ∆t needs to be kept small. Thus, when we compare the
performance of BEM with GM, we do not use adaptive time comparison. The calculation of m(s1, s2) for GM is
relatively simple since it does not require numerical integrations. We used Newton’s iterations at each time step
for both methods to solve discrete nonlinear equations. As long as ∆t was kept small enough for each system, the
iterations converged within 3-4 iterations. When the convergence was not quadratic, we decreased the ∆t by 50%.
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Figure 2 and Figure 3 show a comparison of numerical simulation results of the GM and the BEM methods. In
Figure 2, one can observe a classic evolution of isolated droplets dynamic. The bigger droplet collides with a smaller
one and merges into one droplet as the solution propagates. One can observe that the droplets merge earlier in GM
than in BEM. GM cannot handle instability in an underresolved mesh setting, so the numerical solution results in a
negative value. BEM maintains positivity after merging.

In figure 3, one can observe what happens at the singularity. At time t = 1.6998, GM coarse hits a negative value
while BEM coarse and GM fine does not. One can see that the singularity affects the shape of the solution after the
singularity point. We can see that BEM coarse still ensures the smoothness at near zero height of the solution. The
singularity at the time prevents further numerical simulation from this time.

(a) GM (b) BEM

Fig. 2: PDE simulation results on a coarse grid using (a) Generic Method (GM) and (b) Bounded Entropy Method (BEM), illustrating the difference
between the evolution profiles of the two methods when droplets merge. At t = 1.652s, GM prematurely fuses two droplets while BEM does not.
As a result of this instability, GM develops negativity at t = 1.678s, indicated by the blue square marker. On the other hand, BEM can handle such
instability and maintain the positivity of the film thickness.

(a) Simulation comparison (b) Simulation comparison (enlarged)

Fig. 3: PDE simulation using Generic Method (GM) and Bounded Entropy Method (BEM), at the negativity t = 1.6698s. This is a snapshot of
Figure 2 at t = 1.6698s. GM coarse and BEM coarse use 3072 points to discretize [0, 24] which is equivalent resolution of discretizing [0, 1] with
128 grid points. GM fine uses twice as many as grid points as the coarse grid for discretization following the standard presented in [47]. Besides
the phase shift, BEM coarse agrees better with the GM fine despite the error caused by using different schemes.

5.1. Comparison with experiment
Figure 4 illustrates a schematic of experimental setup for the fiber coating. A programmable syringe pump intro-

duces the liquid into the nozzle. Next to the coating flow, a high-speed camera was placed to operate at a frame rate
of 1000 frame/second. A well-wetting liquid with low surface energy, Rhodorsil silicone oil v50 is used for the ex-
periment. The detailed physical parameters are following: density ρ = 963kg/m3, kinematic viscosity ν = 50mm2/s,
surface tension σ = 20.8mN/m at 20◦C and capilary length lc = 1.5mm. The flow rate of the liquid is carefully moni-
tored by a weight scale connected to a computer so that it would range between 0.02g/s to 0.09g/s. add a paragraph
on experimental set up.

We consider two cases. In the first case, the flow rate is 0.08 g/s for a fiber radius of 0.1 mm with nozzle inner
diameter ID = 0.8mm. This one corresponds to the Rayleigh-Plateau instability case. In another case, the flow rate
is 0.04g/s for a fiber radius of 0.1mm with nozzle inner diameter ID = 1.8mm. This one corresponds to the Isolated
Droplets regime.
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Fig. 4: Experimental setup. Same as the one used in [18].

The experimental data was extracted after image processing the high-quality resolution images. Such image
analysis lets us calculate the nondimensional average thickness of h̄ and period L. After finding h̄ and L, we simulated
BEM and GM with an initial data

u0(x) = h̄(1 + 0.01 sin(πx/L))

Fig. 5: Comparison between experimental data and the numerical methods. The experimental profile (the black solid line) follows the Rayleigh-
Plateau regime, a flow rate of 0.08g/s, fiber radius of 0.1mm with nozzle ID = 0.8mm. GM and BEM were shifted horizontally to match the
phase.

Fig. 6: Comparison between physical experimental data and the numerical methods. The experimental profile (the black solid line) follows the
Isolated droplet regime, a flow rate is 0.04g/s, a fiber radius of 0.1mm with nozzle ID = 1.8mm. GM and BEM were shifted horizontally to match
the phase. replace the photo so that the droplet is in the middle?

5.2. Adaptive time stepping

still need to finish writing The adaptive time step algorithm can optimize the performance of the numerical method
while accurately capturing the droplet propagation [39, 64]. In the early stage of the computation, we expect to see
a lot of change in the shape of the graph. Therefore, one wishes to keep the time step very small to capture the
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Fig. 7: Isolated Droplet Sample

accurate profile of the solution. However, as the computation progress, the algorithm approach a nearly steady state.
It becomes costly to implement small time step calculation for many iterations while such small step iteration doesn’t
contribute much to the change of the profile or the phase. Here we use an adaptive time stepping scheme [64] for the
efficiency of the computation.

We use a dimensionless local truncation error for every time step and see if it surpasses a tolerance value that we
impose. The dimensionless local truncation error is calculated by the following formula.

LT E(tk+1) =
∥∥∥∥∥ek+1 −

∆t
∆told

ek
∥∥∥∥∥

L2

We defined ek+1 = uk+1−uk

uk and ek = uk−uk−1

uk−1 whereas ∆t = tk+1 − tk and ∆told = tk − tk−1. Note that we have to store
information of previous data uk−1 to calculate the error. After the calculation, if the error is less than tol1,

Algorithm 1: Adaptive timestepping

Data: numerical solution uk−1, uk, uk+1, the current time step ∆t, the old time step ∆told, adaptive time
tolerance tol1.

Result: the next time step ∆t, previous time step ∆told

while t < tend do
if newton’s method succeed then

calculate LT E(tk+1);
∆told = ∆t;
if LT E(tk+1) < tol1 then
∆t = 1.1∆t ; /* Increase ∆t by 10% */

else
∆t = 1.01∆t ; /* Increase ∆t by 1% */

end
else
∆t = 0.5∆t ; /* Try newton’s method with 50% of ∆t */

end
end

Include a figure demonstrating adaptive time stepping

5.3. Computational Efficiency

still need to finish writing Given the following parameter setting, we calculated the CPU time of each method. We
let AH = 0, η = 0.005, α = 5.0 with initial data

h0(x) = 0.45 + 0.01 sin(πx), on [0, 1]

Positivity l2 error CPU time (s)
GM with ∆x = 0.01 fails 0.17 N/A

BEM ∆x = 0.01 success 0.15 1.08
GM with ∆x = 0.0014 success 0.12 1.296
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6. Conclusion

In this paper, we introduce a positivity-preserving finite difference method for the problem fiber-coating a vertical
cylindrical fiber. While the current state-of-the-art method (GM) achieves close agreement with experiments and
successfully captures regime transitions, it struggles to match the flow profiles as the film thickness becomes small.
In particular, the GM needs significant grid refinement to resolve a false premature rupture of the solution. We prove
that our BEM preserves positivity given M(h) = O(hn) for n ≥ 2 and furthermore that there exists a lower bound
independent of grid size given an a posteriori Lipschitz bound on the solution (something that is always observed in
experiments). By constructing a generalized entropy estimate, we extend the idea of positivity-preserving methods
for basic lubrication equations to the problem involving cylindrical geometry, gravity, and nonlinear pressure. This
technique can potentially be used for thin liquid film equations with complex geometry, advection effect, and other
surface tension effects.

There are a number of directions one can pursue from this work. One obvious direction is to examine the con-
vergence of the BEM. Such work would benefit from additional theoretical results for the continuum PDE. Another
direction is to generalize the method to the fully 2D fiber coating problem e.g. using ADI methods such as [65] or
to consider more general geometries as in [66]. Finally, it would be interesting to consider other types of boundary
conditions since the experiment is not done in a periodic geometry. The boundary conditions on an inlet and an outlet
of the flow can change if other models are considered, such as one that includes a nozzle geometry [67] or a thermal
effect [68].
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