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Abstract

Learning to write is characterized by bottom-up mimicking of
characters and top-down writing from memory. We introduce
a CNN-RNN model that implements both pathways: It can (i)
directly write a letter by generating a motion trajectory given
an image, (ii) first classify the character in the image and then
determine its motion trajectory ‘from memory’, or (iii) use a
combination of both pathways. The results show that, in one-
shot and few-shot learning, the model profits from different
combinations of the pathways: The generation of different char-
acter variants works best when the top-down is supported by
the bottom-up pathway. Refilling occluded images of efficiently
learned characters works best when using the top-down pathway
alone. Overall, the architecture implies that a weighted merge
of bottom-up and top-down information into a latent, genera-
tive code fosters the development of compositional encodings,
which can be reused in efficient learning tasks.
Keywords: top-down processing; bottom-up processing; one-
shot learning; compositional encodings; efficient learning; RNN

Introduction
Different philosophers and psychologists disagreed for a long
time about bottom-up and top-down explanations of human
learning (Gopnik, 2019). To name a few, Aristotle, Hume,
Mill, Pavlov, and Skinner defended a behavioristic, bottom-
up approach that assumes that humans do not need any prior
knowledge. Instead, they are supposed to learn simply by
extracting associations and patterns from the incoming sen-
sory stream. In contrast, Plato, Descartes, Kant, and Chomsky
suggested that humans must have basic knowledge of abstract
concepts to be able to form testable predictions and hypotheses
in a top-down manner (Gopnik, 2019). Nowadays, most re-
searchers agree that those two strands can be integrated, which
is why we expect artificial models of cognition to profit from
the inclusion of bottom-up and top-down processes.

When children learn to write, they first try to copy the
characters they see. Meanwhile, they learn to classify those
characters, such that they can later on write a character from
memory. While the first is a bottom-up process, the latter
is a top-down process, which generates a trajectory from a
compact, internal encoding. Over time, the proportion of both
processes may vary from the mere copying to writing from
an idea on how a character is usually written, leading to the
development of one’s own handwriting style. The proportion
of bottom-up versus top-down character writing might further
vary depending on the task. Even after developing one’s own
handwriting style, in some occasions, it might be necessary

to copy characters, for example, when trying to copy another
person’s handwriting. In other occasions, such as when recog-
nizing characters that are partially occluded, it is necessary to
complete the full character from memory.

This work is based on previous work on the artificial gen-
eration of handwritten characters. Particularly the learning
of characters in a one-shot manner has been investigated in
depth over recent years (Lake, Salakhutdinov, & Tenenbaum,
2019). Fabi, Otte, Wiese, and Butz (2020) have shown how a
one-shot inference mechanism can tap into compressed, com-
positional generative structures in RNN models. The approach
was inspired by human cognition, which is able to divide
objects into components and to thus rearrange them at will
later on when confronted with or when imagining related ob-
jects. In particular, Fabi, Otte, and Butz (2021b) investigated
the inner workings of generative long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) networks while
producing character trajectories, providing evidence that the
model was successful in several one-shot tasks because it
extracted character components during training that it could
reuse when confronted with new characters. In detail, the
incorporation of an embedding layer and inverse latent state
inference (Otte, Schmitt, Friston, & Butz, 2017; Butz, Bilkey,
Humaidan, Knott, & Otte, 2019) enabled the system to flex-
ibly recombine previously learned compositional encodings.
As a result, one- and few-shot learning becomes possible, ef-
fectively generating handwritten character trajectories out of
one-hot encoded inputs.

Because of this earlier success and the demand to include
compositional capabilities into machine learning algorithms
(Battaglia et al., 2018; Franklin, Norman, Ranganath, Zacks,
& Gershman, 2020; Gopnik, 2019; Lake, Ullman, Tenenbaum,
& Gershman, 2017), here we investigate whether similar one-
and few-shot learning abilities can be elicited in a more com-
plex RNN model that is inspired by human bottom-up and
top-down processes. The new model is able to generate hand-
written character trajectories out of images. It consists of (i)
a bottom-up, direct pathway that mimics the redrawing pro-
cess in humans and (ii) a top-down pathway, which classifies
the image before generating a class-corresponding trajectory.
Both routes can be merged at will.

After introducing the full model, we investigate whether
the model is able to generate characters in a one-shot manner.
With the help of a particular one-shot inference mechanism,
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we show that it is possible to directly infer a suitable, com-
pact encoding of a novel motion trajectory. We furthermore
evaluate the model in the generation of various variants of
particular letter concepts or in refilling character parts, which
are occluded in the input image. We conclude that similar
learning architectures may be used to model imitation behav-
ior upon the observation of interaction events, because our
model essentially learns to compactly and compositionally
encode interaction events, and, meanwhile, learns to generate
observed interaction events conceptually, by mimicry, or by
blended versions of the two.

Method
Our generative model includes an image processing pathway,
which is used both to classify the shown letter and to produce
a compact code embedding ebottom−up for subsequent trajec-
tory generation. A small subnetwork projects one-hot encoded
letter classifcations onto the same compact code embedding
space, yielding the top-down embedding etop−down. The com-
pact code, from either or a combination of both embeddings,
then is passed through a long short-term memory recurrent
neural network (LSTM, Hochreiter & Schmidhuber, 1997).
After providing the details of our model, we specify the con-
sidered dataset and our performance evaluation approaches.

Model
The CNN-RNN model is depicted in Figure 1. It gets an im-
age of a character as input and outputs the change in x and
y position of the pen at every time step, thus generating a
full trajectory. The first advancement in comparison to the
simple LSTM model of Fabi et al. (2021b) is that the current
model does not get a one-hot encoded vector, which encodes
the character, but the image itself as an input. First, the input
image is processed in a convolutional neural network with two
convolutional layers with a kernel stride of 5x5 and 32 and 64
filters, respectively. Both convolutional layers are followed by
a 2x2 pooling layer with stride 2. Dropout is applied with a
probability of 0.5, the activations are flattened and fed into a
dense layer of 100 units. Next, the two pathways are split up:
While the first one transforms the output of the CNN directly
into another fully-connected embedding layer ebottom−up with
100 neurons, the other pathway converts the output of the CNN
via a softmax layer into a classification layer of size 26 (be-
cause of the 26 characters in the Latin alphabet). The layer’s
output is converted into a one-hot encoded vector, specifying
the highest activation of the classification layer. The one hot
code is transferred into the embedding etop−down with 100 neu-
rons via a fully-connected layer. The activations of both layers
are added neuron-wise with a fusion factor of w and (1−w),
such that either one of the layers or different combinations
of them are processed further. This results in the embedding
layer etotal , whose activities are then passed onto an LSTM
(Hochreiter & Schmidhuber, 1997) layer with 100 units as a
constant input. Starting from zero-initalized recurrent states,
the LSTM layer then generates the output, that is, changes in x
and y position. During training, the network was fed with pixel

images of drawn letters and had as target output the class of
the letter as well as the trajectory, which generated the image
in the first place. To train via backpropagation, we calculated
the cross-entropy loss between the correct and predicted clas-
sification vector plus the L2 loss between the original and the
generated trajectory, which was weighted by a factor of 0.1 to
adjust its range.

During training, the model learned to generate trajectories
out of images of a subgroup of characters—in our case the first
half of the Latin alphabet. The factor w, which determines the
weighting of the bottom-up ebottom−up and top-down etop−down
embedding adding up to etotal , is either fixed or randomly
selected during training. In this way, the network has to be
able to rely on both pathways, as well as combinations of them,
essentially fostering the development of a common code for
the embedding e, which is attempted to be generated by either
pathway. All models were trained for 20 epochs, except for the
model with only the top-down pathway which overfitted earlier
and was therefore only trained for 10 epochs (cf. Figure 2).
For the one-/few-shot generation, after training, the model
was presented with one (in case of one-shot learning) or three
(in case of few-shot learning) examples of a new character
concept that had not been part of the training—in our case
characters from the second half of the Latin alphabet. To
let the network compositionally reassemble representations,
which it had learned during training, for the generation of new
trajectories, we allowed the three weight matrices into the
classification layer and the two embedding layers to adapt for
2000 iterations. This is an adaptation of the one-shot inference
mechanism applied to less complex models in previous work
(Fabi, Otte, & Butz, 2021a; Fabi et al., 2021b). To avoid an
unlearning of the training characters ‘a’ to ‘m’, 10 images
of each character were presented at every 100th of the 2000
steps. All learning was performed using the L2 loss function
at the trajectory output and the cross-entropy loss function
in the classification layer. The Adam optimizer was used
with standard parameters (η = 0.0005, β1 = 0.9, β2 = 0.999).
Training batches had size 1.

Dataset
We used a dataset of 440 handwritten character trajectories
of each character of the Latin alphabet recorded in our lab
(Fabi et al., 2020). The characters were produced by experts
(university students) of the alphabet using a dedicated pen on
a touch-sensitive surface, leading to consistent and natural
trajectories. The dataset provides natural variability from 10
different subjects, including script and print characters. For
training, 80 % of the stimuli were randomly included in the
training dataset and 20 % in the test set.

Hypotheses
We were not only interested in the overall performance in terms
of prediction error of the bottom-up and top-down model, but
also in the question which path combinations were most help-
ful for different tasks. Therefore, we looked at the performance
of the two pathways separately as well as of an equal, biased,
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Figure 1: Illustration of the CNN-RNN model that takes a picture of a character as an input and outputs the change in x and y
position for every timestep, thereby regenerating the trajectory. The upper part of the model shows the top-down pathway, which
classifies the characters before generating the trajectory, whereas the lower part shows the more direct, bottom-up pathway. In
order to flexibly use one or a combination of both pathways their embeddings are weighted by a factor w and 1−w.
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Figure 2: Classifier and trajectory loss for the train (solid line) and test (dashed line) sets for the models using only one pathway
(top-down or bottom-up) or an equally weighed (50:50) or randomly chosen combination of both pathways.
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and a random weighing of both pathways.
The first important question we wanted to answer was

whether compositionality could also be incorporated in this
complex system, that is, whether the model was able to extract
components out of the basic training dataset of ‘a’ to ‘m’ in
order to recombine them in a meaningful manner when con-
fronted with new characters. We have previously shown that
this is possible for a model that projects a one-hot encoded
character into an embedding space, whose activities are then
passed on as constant inputs to an LSTM module, which then
generates the trajectory (Fabi et al., 2021b). This network
corresponds to the top-down component used in our current
architectures with weighting w = 1. Here, our goal was to ad-
ditionally investigate whether compositional letter generation
would also be possible with the current model, which gener-
ates trajectories out of pictures with the help of a top-down
and a bottom-up pathway.

Next, we wanted to test whether the advancement of the
model was in fact able to learn several instead of just one vari-
ant of characters in a few-shot manner. Here, we investigated
whether the bottom-up pathway alone or a combination of
both would lead to the best results. This task can be compared
to learning new handwriting styles of a character, for which
we hypothesize that humans use a combination of copying and
drawing from memory.

Lastly, we hypothesized that even though we expected that
adding the bottom-up pathway to the model should lead to
advancements in performance, there might also exist tasks
for which applying only the top-down pathway was more
promising. In humans, classifying characters and writing
them from memory might be most helpful when needing to
refill characters that are partially occluded. This is why we
introduced a new task where character trajectories had to be
created from partially occluded images.

Results
One-shot Regeneration of New Characters
After the successful basic training on ‘a’ to ‘m’, we presented
the model with one variant of characters ‘n’ to ‘z’. In order to
learn those characters in an efficient manner, we wanted the
network to recombine components like curves, straight strokes
etc., which it had extracted previously in an unsupervised
manner when trained on the first half of the alphabet. This
is why we applied a variation of the previously employed
one-shot inference mechanism (Fabi et al., 2021b): when
presented with the second half of the Latin alphabet, instead
of training the whole network, we kept everything the same
except for the weight matrices into the classification layer
and into the two embedding layers ebottom−up and etop−down.
Those were adapted by aiming at minimizing the standard
loss, which we also used during training. In Figure 3, the
model’s versions of the one-shot learned characters can be
seen below the original characters. Shown are the results of
the model using the two paths separately, as well as an equal
or biased weighting of them. (Note that we used the same

weighing during basic training and one-shot learning). Almost
all characters are easily readable, with the equal combination
of both paths leading to results that appear most similar to
the original characters. Thus, the compositional structures,
which develop in the latent states of the LSTM-based trajectory
generator, can be efficiently exploited to learn new letters and
to improve their similarity with novel letters—at least as long
as they are drawn in a style that is comparable to the styles
present during initial training (Fabi et al., 2021b). This is
true for all pathways and combinations of those. We reported
the results of models that had the same pathway combination
during training and one-shot generation, but results looked
similar when the pathway combination during training was
random.

original

top-down

90:10

50:50

10:90

bottom-up

Figure 3: Original and efficiently generated trajectories of one
variant of the characters of the second half of the Latin alpha-
bet by reusing components extracted during training on the
first half, when either using the top-down or bottom-up path-
ways separately, or a combination of them with equal (50:50)
or biased weights (90:10 for a stronger focus on the top-down
and 10:90 for a stronger focus on the bottom-up pathway).
Results look most promising for the equal combination.

Generating Various Character Variants
In previous work, reusing previously extracted components
was only possible when confronted with one variant of a char-
acter (Fabi et al., 2021b), because the input just encoded one
particular character. Alternatively, the handwriting style had
to be indicated as an additional input (Fabi et al., 2022). With
the current model, the input could be any image of a character
variant. To generate multiple character variants, the learning
mechanism was expanded to few-shot learning, where the
model received three versions per new character as learning
input. As previously in one-shot learning, the characters pre-
sented in Figure 4 show the characters generated as a result
of the few-shot learning process. Generating several variants
was very good for the combination of the two pathways but
not very well-suited for just a single pathway, leading to the
conclusion that it is their interplay, which is really important
in this architecture. While the top-down pathway secures that
the correct character is drawn, the bottom-up pathway adds
additional information about the specifics of this character
variant. The three ‘n’s show nicely that the top-down path tries

3083



to generate one single version for all variants. The notable
variation between the different character versions produced
by the top-down pathway can be attributed to the different tra-
jectory lengths of the original characters. As the architecture
uses the same amount of time steps needed to generate the
original characters in the character regeneration, the characters
generated by the top-down path seem to differ from each other,
when in fact they follow the same trajectory, which is simply
cut off at different time steps. The bottom-up path, on the
other hand, differentiates but is not able to grasp the details
as good as the equal combination of both pathways, which
regenerates all ‘n’s perfectly well.

When the character variants are too dissimilar, though, the
model sometimes fails to generate appropriate output. For
example, the second ‘q’ is written very differently from the
others, which is why not all combinations but the equal combi-
nation of pathways is able to generate it in a readable manner.
What is interesting here is that the top-down pathway gener-
ates a readable ‘q’, which looks very similar to the other ‘q’s.
Just the difference in sequence length allows the extra curve.
The letters would look the same if the underlying character
sequences would be equally long.

Coming back to the equal combination of both pathways,
even though there are limits, it is quite remarkable what the
model is able to learn in this efficient manner, reusing previ-
ously extracted components. For example, the original second
’s’ looks very dissimilar from the others. Nevertheless, the
model with the equal path combination is able to generate it
very accurately. Also the ‘w’s or ‘y’s have very specific char-
acteristics, which the combinatorial approach seems to catch.
As can be seen in Figure 5, the model does not perform badly,
even for a random path combination for each new picture stim-
ulus, forcing it to deal with every possible combination of the
two pathways.

Refilling Occluded Images
To further test model generalizability, we occluded one fourth
of the picture stimuli during inference (either bottom or top).
The task of the models, which were trained on the unoccluded
versions of the stimuli in the one-shot learning process, was
to refill the occluded portions. Our hypothesis was that this
would work best if the network did not try to redraw the
pictures with the bottom-up pathway, but if it identified the
character and used the top-down pathway to generate it. The
results for the different paths are presented in Figure 6. In-
deed, the model seems to be especially good at this task when
using the top-down pathway, indicating that the occlusions
disrupt the information flow that attempts to convert image
information into generative trajectory information directly.

Conclusion
The results of our analyses indicate that depending on the
tasks at hand, the network performs best when using either
one processing pathway or a combination of both. Our ANN
architecture thus mimics how humans may learn to write,

original

top-down

90:10

50:50

10:90

bottom-up

original

top-down

90:10

50:50

10:90

bottom-up

Figure 4: Original and efficiently generated trajectories of sev-
eral variants of the characters of the second half of the Latin
alphabet by reusing components extracted during training on
the first half, when either using the top-down or bottom-up
pathways separately, or a combination of them with equal
(50:50) or biased (90:10 and 10:90) weights. The top-down
pathway naturally generates only very similar looking vari-
ants, while the bottom-up pathway catches more fine-grained
nuances, although in extreme cases of the input image, the
output trajectory does not mimic the input letter type. Again,
the combination of both pathways works best.

original

random
75:25 12:89 46:54 55:45 80:20 86:14 60:40 43:57 23:77 44:56 22:78 88:12 42:58 71:29 58:42 68:32 20:80 41:59 36:64 57:43

original

random
41:59 89:11 37:63 06:94 08:92 77:23 15:85 30:70 30:70 80:20 65:35 10:90 23:77 38:62 61:39 67:33 59:41 51:49 22:78

Figure 5: Original and efficiently generated trajectories of
several variants of the characters of the second half of the Latin
alphabet by reusing components extracted during training on
the first half, using a random combination of the top-down and
bottom-up pathways. Given above the generated characters
are the randomly generated w-values determining the weight
of the top-down pathway. The results confirm that smooth
integrations of the two pathways are possible.

where in some situations (e.g., when imitating another per-
son’s handwriting) we copy the depicted characters with some
information about how the character is normally written, while
in other situations (when refilling occluded images) we draw
the identified character from memory.

In line with the Omniglot challenge (Lake, Salakhutdinov,
& Tenenbaum, 2015; Lake et al., 2017, 2019), we have shown
that our architecture is able to efficiently learn, most probably
by recombining previously extracted components in a one-shot
and few-shot manner even when starting from a pixel image
(Fabi et al., 2021a). Thus, on top of our previous investigations
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Figure 6: Occluded original input images (either top or bottom occluded) and refilled trajectories, when either using the top-down
or bottom-up pathways separately, or a combination of them with equal (50:50) or biased (90:10 and 10:90) weights. The
top-down path worked best for this task.

on compositional structures (Fabi et al., 2021b), we show that
the development of internal, latent, compositional structures
can also be elicited in more complex architectures, which com-
bine convolutional neural networks that process images with a
classification-based compact code for the generation of target
trajectories. This leads the way to tapping into compositional
structures in generative artificial neural network models on a
larger scale, promising to improve their encoding efficiency
even further.

While the combination of the bottom-up and top-down path-
way worked well by weighing them task-suitably, future re-
search should investigate whether the model can learn to select
pathways flexibly and adaptively given a particular task at
hand. In fact, the fusion weight w may depend on the current
system intention, which would correspond to emphasizing to
draw a letter from memory or to portray a given character
image.

Overall, we hope that our work will be useful also in other
tasks, where behavioral dynamics need to be generated top-
down or interpreted, and possibly mimicked, bottom-up from
sensory information about a particular interaction trajectory.

The generation of a particular trajectory, as investigated herein,
closely corresponds to all kinds of event-based interactions,
which have been emphasized to be of paramount importance
for the development of conceptual cognition and language
competencies (Baldwin & Kosie, 2021; Butz, Achimova,
Bilkey, & Knott, 2021; Elman & McRae, 2019; Franklin
et al., 2020). When considering the development of imitation
behavior in infants, our model may, for example, be used to se-
lectively mimic the trajectory of an observed human behavior,
or rather imitate the behavior conceptually in a goal-directed
manner (Gergely, Bekkering, & Kiraly, 2002; Cuijpers, van
Schie, Koppen, Erlhagen, & Bekkering, 2006). Along these
lines, an important lesson from this model is that the fusion
of top-down classification-based information and bottom-up
sensory information can lead to the formation of common
compositionally-embedded encodings. These encodings can
then be used flexibly and adaptively to both infer compact
interaction interpretations and selectively generate either con-
ceptual goal-directed or stimulus mimicking trajectories as
well as combinations thereof.
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