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ABSTRACT OF THE DISSERTATION 
 
 
 

Time series prediction  

for Electric Vehicle Charging Load and Solar Power Generation 

in the context of Smart Grid 

 
 

by 
 
 

Mostafa Majidpour 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2016 

Professor Rajit Gadh, Co-Chair 

Professor Jason L. Speyer, Co-Chair 

 

 

In view of the success of machine learning based prediction algorithms in the recent years, in 

this study, we have employed a selection of these algorithms on some time series prediction 

problems in the context of smart grid. We have used real world data from the UCLA campus solar 

PV panels and parking lots. In the process of applying these algorithms on the Electric Vehicle 

(EV) charging load prediction problem, two new prediction algorithms have been proposed, 

namely Modified Pattern Sequence Forecasting (MPSF) and Time Weighted Dot Product Nearest 

Neighbor (TWDP NN). One of the objectives when predicting the EV charging load is speed of 

prediction since it is intended to be used in a real time application (smartphone application for EV 

customers). Using our dataset, TWDP NN decreased the processing time by a third.  
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As missing data is a significant concern in real world data, the effect of missing values on the 

prediction quality has been investigated. Six different imputation methods have been applied to 

compensate for missing values in EV charging data. Based on non-parametric statistical tests, 

suitable (or unsuitable) imputation methods for each prediction algorithm are recommended.   

Forecasting of the Electric Vehicle (EV) charging load can be done based on two different 

datasets: data from the customer profile (charging record) and data from outlet measurements 

(station record). We found that charging records provide relatively faster prediction while putting 

customer privacy at jeopardy. On the other hand, station records provide relatively slower 

prediction while respecting the customer privacy. In general, both datasets generate comparable 

prediction error.   

Forecasting solar power generation with application on real-time control of energy system 

has also been investigated. Since predictions are made on every minute for one minute ahead 

values, the designed system has to be rapidly responsive. This has been pursued by: first, we have 

solely relied on past values of solar power data (rather than external data), hence lowering the 

volume of input data; second, the investigated algorithms are capable of generating predictions in 

less than a second. The results show that kNN and SVR show lower error. 
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1   Introduction 

1.1   Electric Vehicles 

Electric Vehicles (EVs) and Plug-in Hybrid Electric Vehicles (PHEVs) will be an important part of 

the Smart Grid. In this study, PHEVs are considered EVs as they influence the smart grid and power grid 

in a similar way. The U.S. market share of plug-in electric passenger cars increased from 0.14% in 2011, 

to 0.37% in 2012, 0.62% in 2013, and 0.75% in 2014 [1]. Although the market share is still less than 1%, it 

has experienced a rapid growth.  

 

 Figure 1-1     US Market Share of EVs in New Car Sales (%)  

There are countries with more penetration of EVs in their new car market. For instance, Norway’s 

auto market share for EVs in the similar years of 2011-2014, has been 1.6%, 3.1%, 5.6%, 13.8% [2].  
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Figure 1-2 Norway’s Market Share of EVs in New Car Sales (%) 

The common fact in both graphs is that the number of EVs are growing in both countries and this 

growth is considerably rapid.  

1.2   Charging Infrastructure 

The big challenge for EVs is charging them within the existing distribution system infrastructure. 

According to the EV33 rule (33 miles driving range for a single charge [3]), the minimum battery size in 

EVs varies from 8.6 kWh to 15.2 kWh [4]. Charging batteries with the aforementioned size will take 

between four and eight hours in a Level 1 household charger (120V, 16 A). As an alternative, EV owners 

can charge their vehicle at their place of employment, provided that the employer has installed EV 

chargers in the parking lot. Other than workplace parking lots, cities and private operators have invested in 

charging stations for public use. As of April 2016, the number of these stations in the US has reached 

13,431 stations (with 33,056 outlets) which is roughly an eighth of the number of gas stations in the US 

[5].   
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1.3   Forecasting and Smartphones 

Electric power has to be consumed simultaneously upon generation. As a result, the EV charging 

station needs to have a good idea of how many vehicles will need charging at each moment. On the other 

hand, since a  reasonable amount of charging will take tens of minutes, it would be useful for a customer to 

know when and how much energy is expected to be available at a given charging station in a given time 

window. Both the customer and moderator will substantially benefit from an algorithm that can predict the 

power consumption at charging stations. 

Other than the availability of outlets in a charging station, there is another complexity: Each charging 

station has multiple outlets and in view of the upper limit on the available power, the charging is 

multiplexed among the outlets. Due to this multiplexing, the expected charging time for each outlet can 

vary depending on the number of EVs being charged simultaneously; therefore, by predicting the available 

power at each outlet, the charging time for such multiplexed outlets can be computed. In the situation 

pictured above, EV owners are most likely forced to wait for a considerable amount of time in charging 

stations to get their EV batteries charged. Therefore, an estimation of how long they have to wait in order 

to charge their EV can be very beneficial information. With accessibility to online data through 

smartphones, EV owners can look up the expected waiting time for different charging stations in the area 

and optimize their time spent at charging stations. Predicting the charging demand for charging stations 

could be useful for the EV charging station owners too, thus helping them to adjust their inventory in 

advance. Both of these valuable pieces of information, namely waiting time for charging the battery for 

EV owners and demand forecast for station owners, rely on forecasting the energy consumption at EV 

charging stations.  

The next chapter discusses prediction algorithms that can run in less than a few seconds, so that EV 

users can query the system and get the results in a reasonable time on their smartphones. To our 
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knowledge, our work is the first research that discusses fast prediction of the available energy and/or 

expected charging finishing time at the charging outlet level for use in a smartphone application.  

1.4   Missing Values 

In the process of analyzing almost any data, there is the possibility of encountering corrupted data 

points. These corrupted data points might be missing their value or data might have been altered due to 

measurement errors and is therefore considered a meaningless outlier. We treat all these values that need to 

be repaired as missing values.  

The process of missing value substitution is called imputation. In chapter four, we will go over some 

imputation methods and show how imputation affect the quality of prediction. The suggested imputation 

methods to pair with forecasting algorithms are also discussed.  

1.5   Privacy Issues 

The most distinct feature of the smart grid is its extensive use of information and communication 

technologies to improve the efficiency and reliability of the generation and distribution of electricity. A 

large volume of information is gathered from different meters that might be sufficient to reveal the 

behavior of different players such as suppliers and consumers.  This calls for a privacy concern as pointed 

out in [6].  

Electric Vehicle (EV) charging related data is no exception to privacy issues and has its own 

problems. One such problem is the large battery size in today’s EVs, which may require a relatively large 

amount of charging time depending on the charging station capabilities. The long charging time may 

obligate EV owners to charge their EVs in places other than their household, including public charging 

stations or charging stations at their work place. This implies that not only utilities have access to charging 

data through household chargers, but also charging station administrators in work places and public 

stations have access to them.  These data, when used for analysis in utility or public charging station 
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operation or planning, might expose information such as the pattern of entrance and exit times of the 

customers from charging lots or their home, hence risking their privacy.  

One might claim since the charging records are anonymized, there is no threat to customer’s privacy. 

However, anonymizing might not be enough, as in a famous incident, the medical record for the then 

governor of Massachusetts was easily extracted from anonymous medical records when combined with 

voter registration rolls [7]. The medical records were anonymous but they had sex, ZIP code, and birth-

date of patients. This incident shows that even anonymity is not enough, and anonymous data might still be 

revealing when combined with other datasets. 

In chapter five, we use two different datasets to forecast the energy consumption/availability at the EV 

charging station: charging record that comes from anonymous customer profiles and station record that 

comes from measurements (voltage, current, etc.). Either one of them can be used for building a load time 

series and hence forecasting at the outlet level; however, due to the fact that the charging record is driven 

from customer profiles (although anonymous), it is a potentially privacy-jeopardizing dataset. We compare 

the accuracy and speed of the forecasting process using these two types of records. To our knowledge, this 

type of comparison has not been done in this context. 

1.6   Prediction of Solar power Generation for Real-time Control of Energy Storage 

Chapter six investigates another application of forecasting in the smart grid context: forecasting solar 

power generation to control the energy storage system. This time, predictions are a minute ahead 

predictions performed at each minute; therefore, once again, the whole process has to be fast. The speed of 

the forecasting is improved in two different ways: only historical solar generation data has been used rather 

than other external sources such as weather prediction and hence the input size is reduced, also the 

investigated algorithms are capable of generating the forecasted output in less than a second.   
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1.7   Data Source 

All the simulation and analysis in this dissertation uses real world data acquired from different 

measurement devices installed and monitored by the Smart Grid Energy Research Center (SMERC) at 

UCLA. This involves all the EV historical charging related data in the station record and charging record 

format, as well as solar generation power data.  

EV charging stations are installed in UCLA Parking Structure 2, 3, 4, 6, 8, and 9. The solar data 

comes from solar PV panels located on the UCLA Ackerman Union building. 

  



 

 

 

7 

2   Instance-based Algorithms: Fast Prediction 

2.1   Overview 

In this chapter, we propose a new smartphone application algorithm which has been implemented for 

the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this 

interactive user application, the total time for accessing the database, processing the data and making the 

prediction needs to be within a few seconds so that it could be used by a smartphone user. 

 Other than the speed of generating output for a given input, the process should complete without any 

offline training, which is useful when the network administrator did not allow for an offline training 

process for the forecasting algorithm. 

Consequently, the only family of Machine Learning algorithms that are relatively fast and postpone 

the training to when a query has been received (i.e. no offline training) are Lazy Learning algorithms 

which are also called Instance-based algorithms, or Memory-based algorithm [8]. 

We first analyze three relatively fast Machine Learning based time series prediction algorithms (from 

the Instance-based algorithms family) and find that the Nearest Neighbor (NN) algorithm (k Nearest 

Neighbor with k=1) yields better accuracy. Considering the sparseness of the time series from the charging 

records, we then discuss a new algorithm based on the proposed Time Weighted Dot Product (TWDP) 

dissimilarity measure to improve the accuracy and processing time. Two applications have been designed 

on top of the proposed prediction algorithm: one predicts the expected available energy at the outlet and 

the other one predicts the expected charging finishing time. The total time, including accessing the 

database, data processing, and prediction is approximately one second for both applications. The 

granularity of the prediction is one hour and the horizon is 24 hours. 
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The work described in this chapter differs from other previous works in the literature in that: 1) we 

have used just one type of recorded data, Charging Records, which only contains the start and end of the 

charging transaction and the total amount (a scalar value; not time dependent) of energy received in the 

charging transaction rather than any geographical or driving habit related data; 2) our predictions is at the 

charging outlet level (not parking lot or building level); 3) our method is online and fast with the whole 

process taking about a second. Indeed, the reason that we do not use other sources of data is our speed 

requirement and the fact that adding more data will slow the process. Other state-of-the-art methods which 

have been applied on this same data take substantially more time. Specifically, depending on the parameter 

selection process, Support Vector Regression and Random Forest take respectively 3900 seconds and 306 

seconds to produce the results [9].   

The rest of this chapter is organized as follows: Section 2.2 provides a brief review of existing 

literature, Section 2.3 formulates the problem, and Section 2.4 explains the methods that are evaluated in 

order to compare with the proposed method. Section 2.5 reports and analyzes the result of applying the 

algorithms on the University of California, Los Angeles (UCLA) parking structures’ data. Section 2.6 

explains the proposed algorithm, Section 2.7 talks about the implementation of the smartphone 

applications using the proposed algorithm, and Section 2.8 provides the summary of the chapter. 

2.2   Literature Review 

Time series prediction (forecasting) methods predict the future of a certain variable given its past 

history. There is a rich literature on different methods of time series prediction that has evolved from 

statistics, mathematics, computer science, economics, and engineering [10]-[12]. Probably, the most 

famous model in time series prediction is the ARIMA model with Box-Jenkins approach [11] which has 

been widely used in economics and statistics [12] and is considered to be the traditional approach in time 
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series prediction. Selecting the correct parameters for the ARIMA model is not a trivial task, and, 

depending on the approach, it might be time consuming.  

Prediction algorithms are part of most modern smart grid technologies [13] such as Wind Turbines 

[14], Photovoltaic Systems [15], and Smart Buildings [16]. Reference [17] combines probability and fuzzy 

systems concepts to propose a method for predicting the wind speed. A similar problem involving wind 

power forecasting was addressed with implementing an Artificial Neural Network (ANN) based on the 

predictions of Global Forecast System. A new optimal type reduction for the interval type-2 Fuzzy logic 

systems along with ANN has been proposed for load forecasting in [18]. 

Extensive research has focused on EV charging algorithms and charging station infrastructures [19]-

[22]; as a next step, EV related research has started to utilize forecasting algorithms [23]-[29]. Some 

studies apply forecasting algorithms to EV driving habits in order to predict the State of Charge (SOC) of a 

particular EV and when it needs to be charged [24][25]. Authors in [23] have applied ANN forecasting 

algorithms to predict the charging profile of the EV within the Building Energy Management System 

(BEMS) in order to improve the overall energy efficiency of the building.  Reference [26] and [27] discuss 

the prediction of the EV charging profile while taking into account various sources of data, such as vehicle 

driving and usage data. Authors in [28] and [29] consider forecasting at the charging station level based on 

the EV user classification and Monte Carlo simulations method. Reference [30] discusses an energy 

management system for EVs that takes advantage of prediction in different levels through hierarchical 

Model Predictive Control. A more comprehensive scenario of combining prediction of solar energy (using 

Radial Basis Function Networks) and optimizing the cost of PHEVs based on factors such as daily 

distance driven, electricity market price, and load values (by using Genetic Algorithms), has been studied 

in [15]. Some researchers have facilitated prediction and access to EV related information by aggregating 

several sources of data [31]. 
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As mentioned above, the aim of this chapter is to focus on relatively fast time series forecasting 

algorithms in which the whole process of prediction (including preprocessing) takes a reasonably short 

amount of time for a user that sends prediction-related queries from a smartphone. Machine Learning 

(ML) based heuristic methods have been shown to provide a good performance in forecasting [32]. Some 

of these methods such as k-Nearest Neighbor (kNN) and weighted kNN, depending on the number of 

neighbors, could be pretty fast. However, the selection of parameters for these ML methods still remains a 

challenge. 

For our predictor application, we are interested in the ML based algorithms that have low computation 

requirements and are relatively faster. A brief introduction of these methods will follow in Section 2.4.  

2.3   Problem Statement 

The objective is to predict the available energy in the next 24 hours at each charging outlet with a 

minimum time for processing. Formally, we assume there is some function relating future available energy 

and the past consumed energy: 

𝐸 𝑡 = 𝑓 𝐸 𝑡 − 1 , 𝐸 𝑡 − 2 ,… ,	
   (2-1) 

where 𝐸(𝑡) is the actual energy consumption at time t, 𝐸(𝑡) is the prediction of the energy consumption at 

time t, and (𝐸 𝑡 − 𝑖 ) indicates the past energy consumption at time (𝑡 − 𝑖). 

As is usual in forecasting, we are interested to find an estimation of 𝐸(𝑡) according to a particular 

performance (or error) criteria. For the error measurement, we have chosen Symmetric Mean Absolute 

Percentage Error (SMAPE). For the day i, the SMAPE is defined as: 

𝑆𝐴𝑀𝑃𝐸 𝑖 = 	
  
1
𝐻

𝐸 𝑡 − 𝐸 𝑡
𝐸 𝑡 + 𝐸 𝑡

×100,
8	
  ∈	
  :;<	
  =

	
  	
   (2-2) 

where 𝐻 is the horizon of prediction in a given day (𝐻=24 in this chapter).  
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Since there is no access to future data in real life, the last portion of the data (last 10% in this 

dissertation) is set aside as the test set to evaluate the performance of the algorithm. Thus, our goal is to 

find an algorithm that minimizes the error between the actual value and its prediction in the test set. Note 

that the test set is not used in either the parameter selection or training phase. 

We use the notation 𝑬 𝑡 	
  as the vector of prediction values for the next 24 hours ending at t (Fig. 2-

1.a). In order to use Machine Learning algorithms, each sample (training, test or validation) is composed of 

input and output pairs. The output is the energy consumption for the next 24 hours,	
  𝒚 𝑡 = 𝑬 𝑡  and the 

input is the concatenation of the consumption records for up to 𝐷 prior days, 	
  𝒙 𝑡 = 	
   {𝑬 𝑡 − 24 , 𝑬 𝑡 −

48 ,… , 𝑬 𝑡 − 24𝐷 } (Fig. 2-1.b). This concatenation repeats for all days: if there are 𝑁 days in the 

dataset, we will need 𝐷 days to make the first prediction; therefore, there will be 𝑁 − 𝐷 + 1 of these input 

and output (𝒚 𝑡 , 𝒙 𝑡 ) pairs (Fig. 2-1.c). The total number of data points is	
  𝑛 = 24𝑁. Note that  𝑆8G =

{1,2, … , 𝑁8G} and 𝑆8H = {𝑁8G + 1,… ,𝑁} are the set of indices for the training and test sets, respectively. 

Later, in the parameter selection phase, parts of the training set will be treated as the validation set. The 

different methods used to select the validation set are further explained in the parameter selection section 

of this chapter. 

2.4   Applied Algorithms 

Four prediction algorithms have been briefly described here.  These algorithms were employed to 

compare and demonstrate the effectiveness of the proposed approach. A detailed description can be found 

in [33]. 
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2.4.1   Historical Average 

This algorithm is one of the simplest algorithms that is sometimes referred to as the naïve approach 

and is used only for comparison with other methods. According to this approach, the predicted charging 

energy in the future is the average of the charging energy consumption in the past. Formally: 

 

Figure 2-1 a) energy consumption vector (E) for 24 hours, b) labeling inputs as 𝒙 and outputs as 𝑦, c) input-output pairs 
and division of data into training and test sets. 

 

. 

a) 

 

b) 

 

c) 
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𝐸 𝑡 =
1
𝐷 𝐸(𝑡 − 24𝑑)

J

:KL

,	
   (2-3) 

where D is the depth of the averaging. For instance, the predicted energy consumption for 3pm on the next 

day is equal to the average of the energy consumed at 3pm of today, yesterday…, and up to the past D 

days. D is a parameter that needs to be selected before the evaluation on the test set. 

2.4.2   K-Nearest Neighbor 

This algorithm is a well-known algorithm in the Machine Learning community [8]. Based on the k-

Nearest Neighbor (kNN) algorithm, each sample (training, test or validation) is composed of input and 

output pairs. In our application, as seen in Fig. 2-1.b, the output is the predicted energy consumption for 

the next 24 hours: 

𝒚 𝑡 = 𝑬 𝑡 , (2-4) 

and the input is the concatenation of the consumption records for up to D previous days: 

𝒙 𝑡 = 	
   {𝑬 𝑡 − 24 , 𝑬 𝑡 − 48 ,… , 𝑬 𝑡 − 24𝐷 }.  (2-5) 

This concatenation repeats for all days: if there are N days in the dataset, there will be N-D+1 of these 

input-output pairs (Fig. 2-1.c). The total number of data points is	
  𝑛 = 24𝑁. Now, in order to find an 

estimate for 𝒚(𝑡H∗) where 𝑡H∗ ∈ 𝑆8H is an instance of test set indices, first, the dissimilarity between 𝒙(𝑡H∗) 

and all other 𝒙(𝑡G) that belong to the training set is computed. We have used the Euclidian distance as the 

measure of dissimilarity here. After determining the k closest	
  𝒙 𝑡G  to	
  𝒙(𝑡H∗), the average of their 

corresponding 𝒚(𝑡G) is generated as	
  𝒚(𝑡H∗). In this algorithm, the parameter k needs to be determined. Fig. 

2-2 illustrates the algorithm where 𝑑𝑖𝑠[𝑗] refers to dissimilarity between	
  𝒙 𝑡H∗  and 𝒙 𝑗 . 
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Figure 2-2 k-Nearest Neighbor Algorithm. 

2.4.3   Weighted k-Nearest Neighbor 

Weighted kNN is based on the idea that closer points to the query should contribute more to the 

output, and this increased contribution of closer points will improve the accuracy of the prediction 

compared to kNN [34]. 

This algorithm is very similar to the original kNN algorithm with the exception that instead of 

averaging the k closest training outputs (Fig. 2-2, step 5) their weighted average is used, where the weights 

are a function of the dissimilarity between input pairs. The weights are defined based on Dudani’s weights 

[34] which give better results compared to other similar weight assigning methods according to both 

literature [35] and our simulations. Thus, the following two steps will substitute for Step 5 in Fig. 2-2: 

 

k-Nearest Neighbor Algorithm 

Inputs: 𝒙(𝑡G), 𝒚(𝑡G), 𝒙(𝑡H∗), 𝑘 

Output: 𝒚(𝑡H∗) 

1.    for 𝑗	
   ∈ 𝑆8G  

2.  𝑑𝑖𝑠[𝑗] = ‖𝒙(𝑡H∗) − 𝒙(𝑗)‖ 

3.    for 𝑖	
   ∈ {1, … , 𝑘} 

4.    𝑖𝑑𝑥[𝑖] = index	
  of	
  𝑖8] smallest(𝑑𝑖𝑠)  

5.	
  	
  	
  	
  𝒚(𝑡H∗) =
L
c
∑ 𝒚(𝑖𝑑𝑥[𝑖])=∈{L,…,c}  
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𝑤f =
𝑑𝑖𝑠[𝑘 + 1] − 𝑑𝑖𝑠[𝑝]
𝑑𝑖𝑠[𝑘 + 1] − 𝑑𝑖𝑠[1] 	
  	
  	
  	
  	
  	
  𝑝 = 1, . . , 𝑘,	
  

𝒚 𝑡H∗ =
1
𝑤hh∈=:i

𝑤f𝒚 𝑝
f∈=:i

. 

(2-6) 

 

(2-7) 

2.4.4   Lazy Learning 

Lazy Learning (LL) is a generic term which refers to algorithms that postpone the learning until a 

query is submitted to the system. In fact, weighted kNN and kNN are simple forms of LL. A version of LL 

from [36] has been implemented in this chapter. This version of the LL algorithm is similar to the kNN 

algorithm in principle, with the difference that for each query, the optimum number of neighbors (k) is not 

fixed and is estimated separately. The idea is that for some queries it seems better to look at more 

neighbors and for some others, fewer neighbors would be enough. For each query, kNN is performed 𝑘j;i 

times for	
  𝑘 = {1,2, … , 𝑘j;i}. Then, based on Leave-One-Out (LOO) cross validation, the error for each k 

is estimated, and the output corresponding to the k with a lower LOO cross validation error is selected. We 

use the PRESS statistic [37] to estimate LOO for each k. For a fixed	
  𝑘	
   ∈ 1,2, … , 𝑘j;i , suppose 𝑗∗ ∈

1,2, … , 𝑘  indicates the index of the jth closest neighbor to the query	
  𝒙(𝑡H∗). For each	
  𝑗∗, we define an 

error term 

𝒆𝒌 𝑗∗ = 𝑘
𝒚 𝑗∗ − 𝒚(𝑖)

𝑘 − 1 ,	
  	
   (2-8) 

which gives the LOO cross validation error for the specific 𝑘: 

	
  	
  	
  	
  	
  	
  	
  	
  𝒆𝑳𝑶𝑶 𝑘 =
1
𝑘 (𝒆𝒌 𝑗∗ o ∗ (𝒆𝒌 𝑗∗ )

c

p∗KL

.	
   (2-9) 

The k with smallest 𝒆𝑳𝑶𝑶 will be selected as the optimum k. 

The steps are detailed in Fig. 2-3.  
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Figure 2-3 Lazy Learning Algorithm. 

2.5   Simulation Setup and Preliminary Results 

2.5.1   Data and Preprocessing 

The algorithms described above are applied to charging stations located on the UCLA campus. The 

data used in this chapter were recorded from December 7, 2011 to February 28, 2014; however, for each 

day, not all outlets were in use. Among all the charging outlets at UCLA, 20 outlets have charging data for 

more than 60 effective days (days that some nonzero charging has been reported) which have been used in 

our implementation. The number of effective days for each outlet is reported in Table 2-I.  

Lazy Learning Algorithm 

Inputs: 𝒙(𝑡G), 𝒚(𝑡G), 𝒙(𝑡H∗), 𝑘j;i	
   

Output: 𝒚(𝑡H∗) 

1.    for 𝑗	
   ∈ 𝑆8G  

2.  𝑑𝑖𝑠[𝑗] = ‖𝒙(𝑡H∗) − 𝒙(𝑗)‖ 

3.    for 𝑖	
   ∈ {1, … , 𝑘j;i} 

4.    𝑖𝑑𝑥[𝑖] = index	
  of	
  𝑖8] smallest(𝑑𝑖𝑠)  

5.    for 𝑘	
   ∈ {2, … , 𝑘j;i} 

6.  𝒚(𝑘) = L
c
∑ 𝒚(𝑖𝑑𝑥[𝑖])=∈{L,…,c}  

7.  Calculate 𝒆𝑳𝑶𝑶(𝑘) according to Eq. (2-9)  

8. 𝑘∗ = arg	
  ( min
c	
  ∈{s,…,ctuv}

𝒆𝑳𝑶𝑶(𝑘)) 

9.	
  	
  	
  	
  𝒚(𝑡H∗) = 𝒚(𝑘∗) 
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Data for each outlet comes in a format which is referred to as Charging Records. Each Charging 

Record contains the beginning and end of the charging time as well as the acquired energy. 

The Charging Records are converted to time series by uniformly dividing the acquired energy to the 

charging interval. For example, if the charging interval is 3 hours and the acquired energy is 3kWh, it is 

assumed that the EV received 1kWh of energy in each hour. In preprocessing the data, if all the values in 

an input-output pair (𝒙(𝑖), 𝒚(𝑖)) are zero or not reported, the pair was removed from the dataset. 

There was no normalization or feature extraction from the data. The only implemented preprocessing 

was to force energy records that were mistakenly recorded as more than the physical maximum of the 

charging device (𝐸j;i) and less than zero to the interval of	
  [0, 𝐸j;i]. 

2.5.2   Parameter Selection 

The following parameters need to be determined for our algorithms: Depth,	
  𝐷, for all algorithms, 

which is the number of previous days considered in the input vector, and the number of neighbors,	
  𝑘, in 

kNN and weighted kNN. 

There are different options for performing parameter selection through validation in time series [38]. 

One of the popular methods is the k-fold cross validation. In k-fold cross validation, for evaluating a 

certain set of candidate parameters, the training data is divided into k parts (𝑃=, 𝑖 = 1,… , 𝑘). The algorithm 

trains on k-1 parts (𝑃w= = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	
  𝑠𝑒𝑡 − 𝑃=) while the error is calculated on the remaining part (𝑃=), i.e., 

the validation set. This process iterates k times, and each time one of the parts will be the validation set and 

the other k-1 parts will make up the training set. The average error of the algorithm on these k iterations 

will determine the final error for the current selection of parameters. The whole process is repeated for 

different combinations of parameters and the combination that yields the least final error is selected as the 

algorithm parameters. 
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 However, [39] discusses how k-fold cross validation in its original form might not be appropriate for 

time series since it does not respect the order. It proposes a “time series cross validation” in which, for 

cross validation, we are only allowed to use training data prior to the validation set, i.e., if validation set is 

𝑃=, then the training data would be 𝑃p, 𝑗 = 1,… , 𝑖 − 1  instead of 𝑃w=. Another approach taken in [40] is to 

use the last portion of the training data for validation and parameter selection purposes. In this approach, 

the validation set is the last block of training data, 𝑃c, and the data prior to it, 𝑃p, 𝑗 = 1,… , 𝑘 − 1, is used 

for training; hence, it is less computationally expensive since it evaluates parameters on just one block 

rather than k blocks.  

 

  

 

Figure 2-4 Separating validation data from training data in the last block validation method. 

We have tried all of the three mentioned validation methods: k-fold cross validation, time series cross 

validation, and last block validation. We found that they lead to similar behavior in the final results; 

therefore, in this chapter, we are going to dedicate the last block of training data to validation data which is 

relatively less computationally expensive, and therefore more appropriate for our fast prediction 
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application. This method basically partitions the data to non-overlapping training, validation and test 

datasets as depicted in Fig. 2-4. 

The length of the validation block is the next matter of importance. We must determine how much of 

the last portion of the available data is a good representative of the behavior of all the data for specific 

parameters. In order to answer this question, we picked different percentages of the last part of the training 

data for each outlet and each algorithm, and we compared it with the whole dataset in terms of similarity in 

response to change in parameters.  

The smallest percentage of data that could represent the whole training dataset for all algorithms is 

selected as the final validation set for each outlet. Table 2-I shows the percentage of the data that is used as 

the validation set for each outlet. The candidate percentages were: 10%, 15%, 20%, 25%, and 30%. 

For parameter selection, the depth parameter, D, is varied between 1 to 60 (equal to looking only at 

yesterday or up to the past two months); in order to make the process faster, a subset of 1 to 60, namely {1, 

2, …, 9, 10, 15, 20, …, 60} is employed. The number of neighbors varies between 1 to 5 for kNN and 2 to 

5 for weighted kNN (weighted kNN with k=1 is the same as kNN with k=1). 

2.5.3   Preliminary Results 

Table 2-II and 2-III show the depth (D) and number of neighbors (k) parameters, selected according to 

the previous section, for each site and each parameter. 

After selecting the parameters, the union of the training data and validation data are treated as the new 

training dataset and used for predicting the first day in the test dataset. For predicting the second day in the 

test dataset, the union of training dataset, validation dataset, and the first day in the test data is used; 

similarly, for predicting the ith day in the test set, all the data prior to it (training dataset, validation dataset, 

and test dataset up to (i-1)th day) are employed. 
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TABLE 2-I Number Of Effective Days For Each Outlet And Percentage Of Data Used For Training, Validation, And 
Test Sets 

No 
Outlet Effective Days Training Set (%) Validation Set (%) Test Set (%) 

1 PS2L201LIA4 125 75 15 10 

2 PS3L401LIA3 95 75 15 10 

3 PS8L201LIA1 105 75 15 10 

4 PS8L201LIA3 116 75 15 10 

5 PS8L201LIA4 192 80 10 10 

6 PS8L202LIIA1 184 75 15 10 

7 PS8L202LIIA2 189 80 10 10 

8 PS8L202LIIA3 179 80 10 10 

9 PS8L203LIA1 154 80 10 10 

10 PS8L203LIA2 153 75 15 10 

11 PS8L203LIA3 159 80 10 10 

12 PS8L203LIA4 158 80 10 10 

13 PS9L401LIA1 196 70 20 10 

14 PS9L401LIA2 147 65 25 10 

15 PS9L401LIA3 328 80 10 10 

16 PS9L401LIA5 210 70 20 10 

17 PS9L401LIA6 290 70 20 10 

18 PS9L601LIA1 227 60 30 10 

19 PS9L601LIA3 199 70 20 10 

20 PS9L601LIA4 145 75 15 10 
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TABLE 2-II Selected Depth (D) And Number Of Neighbors (K) Parameter For Each Algorithm Based On Validation 
Results  

No 
Outlet 

Historical 

Average 
kNN Weighted kNN 

Lazy 

Learning 

D D k D k D 

1 PS2L201LIA4 1 60 1 6 2 15 

2 PS3L401LIA3 1 60 1 60 2 60 

3 PS8L201LIA1 1 55 1 8 2 60 

4 PS8L201LIA3 1 50 1 60 2 60 

5 PS8L201LIA4 2 55 1 4 2 20 

6 PS8L202LIIA1 1 40 1 1 2 40 

7 PS8L202LIIA2 1 60 1 1 2 35 

8 PS8L202LIIA3 1 20 1 1 2 20 

9 PS8L203LIA1 1 15 1 1 2 9 

10 PS8L203LIA2 1 7 1 1 2 9 

11 PS8L203LIA3 1 25 1 40 2 30 

12 PS8L203LIA4 1 40 1 7 2 7 

13 PS9L401LIA1 1 15 1 1 2 2 

14 PS9L401LIA2 1 15 1 4 2 15 

15 PS9L401LIA3 1 35 1 15 2 25 

16 PS9L401LIA5 1 45 1 45 2 45 

17 PS9L401LIA6 1 60 1 1 2 60 

18 PS9L601LIA1 1 60 1 60 2 60 

19 PS9L601LIA3 1 60 1 55 2 55 

20 PS9L601LIA4 1 30 1 30 2 50 
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Interestingly, as can be seen in Table 2-III, for all outlets, the optimum number of neighbors is chosen 

by cross-validation to be equal to 1 for the kNN algorithm. This shows that, regardless of the optimum 

number of days prior to the forecast (the D parameter), it is always better to look at the most similar event 

in the past and copy its future energy consumption values as the prediction. Also, the optimum number of 

neighbors for weighted kNN in all outlets is 2; considering that k ranges from 2 to 5 and the kNN 

algorithm with k=1 shows better performance, one can conclude that k=1 is the optimum parameter. 

Table 2-IV shows the average and standard deviation of SMAPE on test days for each algorithm and 

each outlet. 

The historical average has the worst performance by far. Comparing LL results with kNN, it seems 

that LL was not successful in choosing the best number of neighbors (k) for each query; otherwise, it 

would have better results compared to kNN (which has a constant k). For better comparison, we have 

applied non-parametric statistical tests to compare the algorithms according to [38]. First, the null 

hypothesis of these four algorithms having the same error distribution is rejected by the Friedman test (p-

value= 9.80 × 10-11). Then the Friedman post-hoc test was performed with Hommel’s procedure for 

adjusting p-values. Table 2-IV shows the z-values, as well as the unadjusted and adjusted p-values when 

considering the kNN algorithm as a control method. As can be seen, adjusted p-values are significantly 

less than 𝛼=0.05, thus kNN has significantly better performance than the other three algorithms. 

All simulations were run with RStudio Version 0.97.551 on an Intel Core i-7 CPU at 3.40 GHz with 

16 GB RAM.  
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TABLE 2-III Average And Standard Deviation (In Parentheses) Of SMAPE (%) On Test Days For Each Algorithm  

No 
Historical Average kNN Weighted kNN Lazy Learning 

1 72.71 (12.50) 15.93 (18.64) 23.20 (19.86) 21.42 (20.12) 

2 96.45 (1.89) 3.54 (6.60) 3.64 (6.45) 4.13 (7.20) 

3 97.87 (1.39) 16.14 (33.90) 34.68 (45.24) 16.61 (29.41) 

4 97.50 (1.11) 48.65 (30.95) 49.71 (33.00) 49.72 (32.47) 

5 94.88 (3.97) 2.59 (2.81) 14.04 (17.34) 15.10 (11.85) 

6 87.52 (8.43) 28.91 (19.47) 36.04 (23.43) 35.45 (15.06) 

7 83.28 (10.87) 35.85 (11.87) 26.98 (15.49) 38.79 (13.16) 

8 87.07 (11.61) 28.87 (16.99) 23.17 (15.65) 38.93 (14.04) 

9 89.28 (6.84) 23.80 (13.37) 37.05 (17.25) 34.47 (17.48) 

10 83.67 (6.75) 32.01 (16.30) 27.93 (15.69) 32.26 (18.30) 

11 79.91 (13.64) 33.17 (16.87) 34.06 (16.30) 33.86 (17.95) 

12 81.59 (7.72) 29.83 (16.41) 33.68 (16.56) 35.20 (17.45) 

13 81.26 (13.72) 21.36 (27.17) 22.39 (21.16) 26.12 (26.89) 

14 96.06 (2.44) 13.02 (8.04) 18.92 (8.33) 16.12 (10.20) 

15 93.42 (9.83) 9.44 (14.30) 12.36 (18.08) 13.31 (17.56) 

16 88.09 (11.33) 7.45 (11.49) 12.72 (12.72) 13.74 (13.61) 

17 76.78 (12.14) 4.16 (13.22) 19.12 (16.96) 4.16 (13.33) 

18 92.03 (4.80) 11.38 (9.42) 16.41 (10.65) 16.77 (9.89) 

19 91.70 (4.52) 10.06 (11.85) 14.75 (12.16) 15.52 (12.04) 

20 88.44 (4.96) 8.88 (12.09) 10.27 (14.58) 12.10 (15.60) 

Mean 87.68 (7.82) 19.08 (15.94) 23.24 (18.16) 23.29 (17.00) 
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TABLE 2-IV Post-Hoc Freidman Test With Hommel’s Method Of Adjusting p-values. kNN Is Considered The Control 
Method 

 

 

 

 

 

 

2.6   Proposed Algorithm: Time Weighted Dot Product based Nearest Neighbor 

In the previous section, we found that the Nearest Neighbor (NN) algorithm has the best performance 

as the fast predictor algorithm on the examined data. However, there is still a room to improve the results 

since the results for some of the outlets is not yet satisfactory, e.g. outlet no 3 (Table 2-III). 

Looking at the kNN algorithm in Fig. 2-2, it turns out that after selecting k (which, through parameter 

selection, is equal to 1), there is not much room for modifying the algorithm except step 2 which is the 

dissimilarity calculation step. The dissimilarity that has been used in this chapter is Euclidean distance. 

Thus, we are focusing on modifying the dissimilarity measure in step 2 of the kNN algorithm in order to 

improve the performance. 

2.6.1   Dissimilarity measures  

In applying the NN algorithm, we used Euclidian distance to measure the dissimilarity between two 

data points and determine the nearest neighbor of each input query. However, the EV charging data is 

sparse, meaning that in significant chunks of time, e.g. during the night in the government or official 

Post-hoc  

Friedman Test 

Historical Average Weighted kNN Lazy Learning 

z-value 6.919809 2.510727 3.551760 

Unadjusted p-value   4.522545 × 10-12	
   0.012048 0.000382 

Adjusted p-value 
(Hommel’s method) 

1.356764 × 10-11 0.012048 0.000765 
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parking spaces, there is no charging in progress and the consumed power is zero. When the data is sparse, 

it might be beneficial to employ dissimilarity measures other than Euclidian distance.  

One way to define the dissimilarity measure is to use the inverse or negative of a similarity measure. 

A candidate for similarity measure is the dot product of two vectors since it is zero when the two vectors 

are orthogonal to each other and is maximum when they are equal. Specifically, the dot product of two 

signals that have non-zero elements in different indices is equal to zero. This fits well to sparse time series 

prediction applications, since the similarity between two pieces of signals with different indices of non-

zero elements should be the least as less as possible. 

2.6.2   Kernelized similarity 

Upon using the dot product as similarity measure, one can use kernelized similarity measures to get 

more flexibility and to compute similarity in higher dimensions [41]. In particular, polynomial kernels are 

of interest for us since it is the natural extension of the dot product. A polynomial kernel for similarity 

between x and y is often defined as the following [33]: 

 

where 𝑐 ≥ 0 is a constant that is trading off the influence of higher-order terms versus lower order ones 

and d is the degree of the polynomial kernel. Now, we can define the dissimilarity measure based on the 

polynomial kernel: 

𝑑𝑖𝑠 𝒙 𝑡L , 𝒙 𝑡s = −𝐾 𝒙 𝑡L , 𝒙 𝑡s .	
   (2-11) 

Another alternative for defining dissimilarity based on kernels is to find the distance of two inputs in 

the kernel space which can be obtained from the following equation:  

𝑑𝑖𝑠 𝜑 𝒙 𝑡L , 𝜑 𝒙 𝑡s
s
= 𝐾 𝒙 𝑡L , 𝒙 𝑡L + 𝐾(𝒙(𝑡s), 𝒙(𝑡s)) − 2𝐾(𝒙(𝑡L), 𝒙(𝑡s)).  (2-12) 

𝐾 𝒙, 𝒚 = 𝒙8𝒚 + 𝑐 :,	
  	
   (2-10) 
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It, however, needs more computation because of self-mapping terms, and it does not improve our 

results in practice. 

2.6.3   Time weighted dissimilarity  

Another intuitive modification of the dissimilarity measures could be time weighting; for instance, 

outputs 𝒚 𝑡L  and 𝒚(𝑡s) are more similar if the recent values of their corresponding inputs 𝒙 𝑡L  and 𝒙(𝑡s) 

are more similar.  In order to weight the recent values for an input that has been defined in (2-5), we have 

used linear time weighting: 

𝑻𝑾 = 1 + 𝐷	
  , … ,1 + 2∆,1 + ∆,1 , 

where ∆= 1/(24𝐷 − 1) and D is the depth of input. Also, we have tried other weighting methods such as 

exp(TW) but we did not see improvement in the final results. 

Combining all the modifications together, the dissimilarity measure used in kNN algorithm will be 

substituted with: 

𝑑𝑖𝑠 𝒙 𝑡L , 𝒙 𝑡s = − 𝒙 𝑡L 8	
  𝑑𝑖𝑎𝑔 𝑻𝑾 	
  𝒙 𝑡s + 𝑐 :.  (2-13) 

We name this dissimilarity Time Weighted Dot Product (TWDP) dissimilarity. Our modified Nearest 

Neighbor algorithm which uses this dissimilarity measure would be Time Weighted Dot Product based 

Nearest Neighbor (TWDP NN). The algorithm is detailed below. 

2.6.4   Results 

We used the same settings as discussed in Section 2.5, and the only difference in this section is the 

modification of the dissimilarity measure. Note that this modification adds two more parameters c and d 

according to (2-10) which, like other parameters, need to be determined with cross validation. However, in 

different simulations we did not see much of a difference in the final results of the NN algorithm with the 
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change in c or d. Therefore, we set 𝑐 = 0 and 𝑑 = 1 and use dot product instead of higher order kernels. 

The conclusion is that the similarity in higher order terms are not necessary for finding the prediction 

related similarity in our application, and only the linear terms’ contribution is enough for prediction. This 

is good news computational wise since there is no need to try higher order terms. Combining dot product 

and time weighting, our dissimilarity measure will be Time Weighted Dot Product (TWDP). 

 

Figure 2-5 Nearest Neighbor Algorithm with TWDP similarity measure 

Fig. 2-5 shows a sample test day from Outlet 1 and its prediction. The SMAPE for this specific day is 

16.93%. The results for all outlets are presented in Table 2-V. According to the Table 2-V, the average 

SMAPE has been improved in all methods compared with the Euclidean distance case. It’s notable that 

maximum SMAPE for all methods has been decreased to less than 35%.  

TWDP based Nearest Neighbor (TWDP NN) Algorithm  

Inputs: 𝒙(𝑡G), 𝒚(𝑡G), 𝒙(𝑡H∗) 

Output: 𝒚(𝑡H∗) 

1.    for 𝑗	
   ∈ 𝑆8G  

2.             𝒅𝒊𝒔[𝑗] = −	
  𝒙8(𝑡H∗). 𝑑𝑖𝑎𝑔(𝑻𝑾). 𝒙(𝑗) 

3.   𝑖𝑑𝑥 = arg(min
p
(𝒅𝒊𝒔[𝑗]))  

4.	
  	
  	
  	
  𝒚(𝑡H∗) = 𝒚(𝑖𝑑𝑥) 
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Figure 2-6 Actual enrgy consumption (green) and its prediction with TWDP based NN algorithm (red) for a sample test 

day in Outlet 1. The SMAPE for this day is 16.93%. 

In order to test for statistical significance, we use the same method as in Section 2.5.3: Friedman test 

to reject the null hypothesis that all these algorithms have similar power, and if the null hypothesis is 

rejected, then we apply the post-hoc procedures to compare the statistical significance of the power of 

these algorithms [38]. The p-value is 0.000118 for the Friedman test; therefore, there is a statistical 

significance between the methods, and we can apply the post-hoc Friedman test and consequently adjust 

the p-values. The statistics have been displayed in Table 2-VI. Accordingly, the adjusted p-values are less 

than 𝛼=0.05 which shows the statistical significance of the proposed TWDP NN method over weighted 

kNN and Lazy Learning. 

The interesting difference in the pattern of SMAPE errors between results from two different 

dissimilarity measures has been depicted for NN case in Fig. 2-7. As this figure shows, for outlets that the 

Euclidean dissimilarity has relatively high errors such as outlet no. 4, the TWDP dissimilarity has 

relatively low errors and vice versa. The fact that SMAPE error in outlet no. 4 has decreased from 48.65% 

(NN with Euclidean distance) to 1.04% (NN with dot product dissimilarity) illustrates that TWDP was 

extremely successful in finding similar points in the time vectors and making the prediction based on that. 

This phenomenon shows that, depending on the characteristic of the time series in hand, we might need to 
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change our point of view (from measuring Euclidean dissimilarity to measuring the dissimilarity with 

TWDP) to be able to see the similar points in the training data to our test query.  

TABLE 2-V Average And Standard Deviation (In Parantheses) Of SMAPE (%) On Test Days For Each Algorithm With 
TWDP Dissimilarity Measure 

No 
Outlet kNN (k=1) 

Weighted kNN 

(k=2) 
Lazy Learning 

1 PS2L201LIA4 13.60  (16.55) 18.15  (16.58) 19.41  (14.63) 

2 PS3L401LIA3 3.37 (6.95) 3.28 (6.04) 4.12 (6.13) 

3 PS8L201LIA1 0.62 (2.27) 0.62 (2.39) 0.90 (2.20) 

4 PS8L201LIA3 1.04 (3.90) 1.85 (4.43) 1.85 (5.06) 

5 PS8L201LIA4 9.24 (9.87) 19.07 (13.06) 19.07 (12.48) 

6 PS8L202LIIA1 20.23 (18.92) 23.43 (20.84) 22.00 (17.59) 

7 PS8L202LIIA2 30.07 (16.41) 35.00 (9.26) 33.79 (10.05) 

8 PS8L202LIIA3 23.83 (18.97) 26.04 (18.83) 26.59 (20.23) 

9 PS8L203LIA1 22.03  (13.37) 24.78  (22.20) 25.24  (15.03) 

10 PS8L203LIA2 20.84  (14.90) 24.32  (16.81) 23.92  (16.86) 

11 PS8L203LIA3 31.20  (11.54) 36.57  (17.52) 35.54  (16.90) 

12 PS8L203LIA4 26.53  (15.27) 24.69  (13.35) 26.56  (12.34) 

13 PS9L401LIA1 22.85 (21.03) 32.94 (28.15) 31.91 (27.97) 

14 PS9L401LIA2 11.93 (7.62) 13.56 (8.61) 13.88 (10.04) 

15 PS9L401LIA3 6.40 (13.14) 6.40 (13.35) 6.40 (13.89) 

16 PS9L401LIA5 14.49 (12.88) 16.17 (13.84) 15.72 (13.62) 

17 PS9L401LIA6 19.09 (17.69) 14.23 (21.82) 14.23 (21.96) 

18 PS9L601LIA1 13.69 (12.87) 16.62 (14.67) 16.42 (14.03) 

19 PS9L601LIA3 7.58 (11.72) 8.15 (10.89) 8.84 (10.71) 

20 PS9L601LIA4 6.44 (11.43) 6.61 (11.16) 6.84 (11.43) 

Mean  15.27  (13.24) 17.52  (14.56) 17.59  (14.01) 
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TABLE 2-VI Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-values. TWDP NN Is Considered The 

Control Method.  

 

 

 

 

 

 

Figure 2-7 Comparing the accuracy of TWDP and Euclidean based dissimilarities in NN. 

In fact, the effective characteristic here seems to be the sparseness of the time series.  Fig. 2-8 shows 

the percentage of the sparseness of the time series (number of zero entries divided by the total number of 

entries in the times series) calculated with the optimum depth for each outlet. Comparing the orange and 

blue bars shows an interesting relationship: The time series in which TWDP dissimilarity does better are 

mostly sparser ones.  

In order to take advantage of both dissimilarity measures, we implement the best method for each 

outlet with the best dissimilarity measure. For example, from Fig. 2-8, for outlet no. 4 we use the NN with 

the TWDP dissimilarity while for outlet no. 17, we use the NN with Euclidean dissimilarity. 
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Figure 2-8 Sparseness of the time series of each outlet calculated at the optimum depth. Orange and blue bars are for 
outlets that Euclidean and TWDP dissimilarity has better accuracy, respectively. 

2.7   Smartphone Applications Based on Proposed Algorithm 

Based on the results, NN with the TWDP dissimilarity measure has higher accuracy on most of the 

outlets with sparser time series and NN with the original Euclidean distance dissimilarity performs better 

on outlets with less sparse time series. Since the number of outlets that have better accuracy with TWDP is 

in majority, we select it to be implemented in the smartphone applications. We implemented two 

applications on top of the prediction algorithm: 

One application takes the outlet name, required energy (in kWh) needed to charge the vehicle, and the 

start of charging time as input. The output is the predicted end time of charging. 

Another application takes the outlet name, starting time and ending time for the charging as input. The 

output is the predicted amount of available energy in kWh. 

The total time for the algorithm to run is about a second (less than a second for less crowded outlets), 

which is composed of the time to (a) run in C# under Microsoft Visual Studio 2012, (b) access the 

database through Microsoft SQL Server 2012, and (c) generate the output. This is well within the 
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acceptable time for a mobile application response time. The algorithm is now running on the mobile 

application and is available to UCLA EV owners. 

2.8   Summary 

In this chapter, we have developed an approach for fast demand prediction of the sparse time series in 

general, and specifically EV charging outlets.  

Data has been recorded from EV owners that charge their vehicle at UCLA campus parking lots. Any 

EV can use any parking lot on the campus and each outlet might be used by different EVs during the day. 

The entrance and exit time of each EV to the parking lot and the total acquired energy from each outlet 

have been recorded as a Charging Record datum. Also, there is a multiplexing of current at each station 

(station is a group of outlets sharing one source of current); therefore, not all the outlets can be supplied 

simultaneously and their consumption is dependent on each other.  

Since the algorithms have been applied at the outlet level, the complexity of the algorithm is not the 

function of the total number of EVs or the total number of outlets in the system. For each outlet, the 

complexity of the algorithm is a function of the size of Charging Record data per day which is a bounded 

number (it take a few hours to charge an EV, thus the number of EVs getting charged per day per outlet is 

bounded). 

An accurate prediction will enable station owners to provide a realistic time to charge which is 

essential to customer satisfaction. The more accurate algorithm will help the EV charging outlet owner to 

predict the energy consumption of his/her facility in the future, thus the station owner can utilize all the 

capacity of charging stations and therefore obtain more profit. Depending on which factor is more 

important for a certain EV station owner, s/he can penalize the over prediction of consumption (which 

translates to empty stations in some hours of the day) or under prediction of the consumption (which 

translates to a disappointed EV owner whose car was not charged in the predicted time frame) in an 



 

 

 

33 

appropriate way. Here, the SMAPE accuracy measure introduced in (2-2) is a symmetric one and does not 

penalize either over prediction or under prediction. However, algorithms can be easily modified for 

asymmetric error measurement criteria. 

We found that, in general, Nearest Neighbor based predictions generate better predictions than kNN 

and weighted kNN. We modified the dissimilarity measure in NN from standard Euclidean distance to 

TWDP (Time Weighted Dot Product) in two ways: 1) changing Euclidean distance to (negative) dot 

product and 2) adding time weightings to the dissimilarity measure so that recent similar indices in time 

series get more weight than older ones. Each of these modifications improves the accuracy by itself and 

their combination improves the results more. 

We have implemented this method in the smartphone application system that is used by UCLA EV 

owners. 
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3   Non Instance-based Algorithms 

3.1   Overview  

One assumption that we made in the last chapter was that the system administrator does not allow for 

using offline computation or storing any training related data in the server, which leads to the selection of 

Instance-based, or Memory-based algorithms. In this chapter, we want to investigate whether removing 

this constraint will affect the forecasting performance, i.e. if we can use prediction algorithms other than 

Instance-based learning methods, what would be the change in the forecasting accuracy?    

To remind the reader, the work presented here is different from the other studies in the literature, in 

the sense that we use just one type of recorded data, called Charging Records, which contains only the start 

and end time of the charging transaction and the total amount of energy received in the charging 

transaction (a scalar value; not time dependent). Geographical or driving habit related data was not used in 

our prediction. Our predictions are at the charging outlet level (not charging station, parking lot or city 

level) which makes it a more difficult problem as it does not have the aggregated behavior of charging 

stations, parking lots, or cities. 

The rest of this chapter is organized as follows: Section 3.2 reviews the literature, Section 3.3 

describes the problem, and Section 3.4 briefly explains the Auto Regressive Integrated Moving Average 

(ARIMA), Pattern Sequence-based Forecasting (PSF), Support Vector Regression (SVR), and Random 

Forest (RF) methods. Section 3.5 reports and analyzes the result of applying these algorithms on the 

University of California, Los Angeles (UCLA) parking structures’ EV charging data. Section 3.6 proposes 

a new algorithm, Modified PSF (MPSF), and analyzes its application to our data, and Section 3.7 

summarizes this chapter. 
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3.2   Literature Review 

As mentioned in the Introduction, forecasting EV loads is of recent interest to researchers.  In [42], 

authors have proposed a method to forecast the EV charging load in China based on the Monte Carlo 

simulation. Reference [43] discusses three daily-load forecasting methods, namely BP and RBF Neural 

Networks, and GM(1,1) from the Gray model families on one charging station and concluded that each 

method is more accurate for some specific times during the day. Another method has been proposed in 

[44] based on Support Vector Regression for forecasting EV charging loads at the city level. Four 

forecasting methods including Decision Tables, Decision Trees, MPL Neural Networks, and Support 

Vector Machines (SVM) have been compared in [45] on the US aggregated residential data; however, no 

conclusion was made regarding the preference of each method over the other ones. 

3.3   Problem Statement 

The Problem Statement remains the same as the previous chapter. The objective continues to be the 

prediction of the available energy in the next 24 hours at each charging outlet. However, in this chapter, 

we look into whether removing the constraint on offline computation will affect the forecasting accuracy. 

3.4   Applied Algorithms 

The four prediction algorithms used in this chapter have been described here briefly [33]. 

3.4.1   Support Vector Regression (SVR) 

SVR is an expansion of the Support Vector Machines (SVMs) idea, thus moving from classification in 

SVMs to regression in SVR [46]. The idea is that for classification, there is no need to use all training 

samples to construct the decision boundaries, rather a few samples, called Support Vectors, are important. 
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The 𝜀-SV regression algorithm is one of the extensions of SVMs to regression problems. For our problem 

here, the 𝜀-SV formulation can be defined as following: 

𝑬 𝑛 = 𝑓 𝒙 𝑛 =< 𝒙 𝑛 ,𝝎 > +𝑏, (3-1) 

where 𝒙 𝑛 	
  is the input vector (as shown in Fig. 2-1. b). 𝝎 ∈ ℝs�J and 𝑏 ∈ ℛ are the solutions to the 

following optimization problem: 

min 	
  	
  	
  
𝝎

1
2 𝝎 s + 𝐶 𝜎=

���

=KL

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	
  𝑡𝑜	
  	
  	
   < 𝒙 𝑛 ,𝝎 > +𝑏 − 𝐸 𝑖 ≤ 𝜀 + 𝜎=
𝜎= ≥ 0 	
  	
  . 

(3-2) 

It is not always possible to find 𝝎, 𝑏 such that all the	
  𝐸 𝑖  and 	
  𝐸 𝑖  lie in 𝜀 distance of each other. By 

adding slack variables 𝜎= and the coefficient	
  𝐶, 𝜔 will be as follows [46]: 

𝝎 = (𝛼= − 𝛼=∗)
���
=KL 𝒙 𝑛 , (3-3) 

where 𝛼=, 𝛼=∗ are Lagrange multipliers. Note that 𝛼=, 𝛼=∗ are nonzero only for training samples that violate 

the 𝜀 proximity constraint. Therefore, 𝝎 only depends on a few training samples that are in fact support 

vectors. 

Thus far, 𝑓 was a linear function of the training samples, but it can be extended to include nonlinear 

functions of the training samples through kernel trick [46]: 

𝑬 𝑛 = 𝑓 𝒙 𝑛 = 𝛼= − 𝛼=∗ 𝐺(
���
jKL 𝒙 𝑛 , 𝒙 𝑖 ) + 𝑏, (3-4) 

where 𝐺 𝒙=, 𝒙p  is a kernel function. Examples of popular kernels are polynomial,	
  𝐺 𝒙=, 𝒙p =

< 𝒙=, 𝒙p > +𝑐 f
, hyperbolic tangent, 𝐺 𝒙=, 𝒙p = tanh 𝑎 < 𝒙=, 𝒙p > +𝑐  (for some positive 𝑎), and 

Gaussian radial basis function, 𝐺 𝒙=, 𝒙p = exp(−𝛾 𝒙= − 𝒙p s) for 𝛾 > 0.   

In this chapter, we used function ‘svm’ in the package ‘e1071’ of the R programming language. 
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3.4.2   Random Forest (RF) 

The Random Forest algorithm is an aggregated version of decision trees [47]. A decision tree tries to 

learn a set of rules to predict the output value for an unseen input. To this end, at each node, a decision 

criteria is defined. For instance, in our application, the first rule (corresponding to the root node of the tree) 

could be that if current consumption is less than 1 kW, the hour ahead consumption will be 1.2 kW. Most 

probably this rule is not enough for precise prediction, so another rule (corresponding to another node) will 

be added which creates the new rule: if current consumption is less than 1 kW and last hour’s consumption 

is more than 0.75 kW, then the hour ahead consumption is 1.4 kW. This process will keep going until there 

is no undecided input variable, the desired precision has been met, or other stopping criteria (such as 

maximum number of terminal nodes for the tree) has been observed. At each node, selecting the input 

variable to split is usually done to optimize some criteria. Two common criteria are entropy and Gini 

impurity [48]. For instance, if we use the entropy criteria, at each node, we will split an input variable that 

reduces the uncertainty as much as possible. In other words, we will pick a variable to split that gives us 

the most certain decision. 

Decision trees suffer from overfitting; that is, they are high variance models for data. This problem 

leads to decision trees having poor generalization and hence poor prediction accuracy. One way to solve 

this problem is using the Random Forest (RF) algorithm. RFs do not use just one tree but many decision 

trees where the training set of each tree is made of 𝑁8G training data points, sampled with replacement from 

the original training set of size 𝑁G. Also, when finding a variable to split at each node of each tree, instead 

of all input variables, we look at a random subset of variables. Consequently, Random Forest is a 

randomized and forested version of the decision trees.  

An interesting property of RF is its ability to assign “importance” to each input variable. The idea is 

based on the average difference in the performance of the RF when some input variable has been selected 
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to split; intuitively, if selecting that variable to split improves the results further that variable is more 

important [47].  RF has been shown to be very powerful in classification and regression problems [49], and 

we include it in this chapter as one of the state of the art methods. 

In this chapter, we used function ‘randomForest’ in the package ‘randomForest’ of the R 

programming language. 

3.4.3   Auto Regressive Integrated Moving Average (ARIMA)  

This model for time series behavior, which is also called Box-Jenkins models [11] (because of Box 

and Jenkins’ fundamental work in this area), models the behavior of future variables as a linear 

combination of the past values and noise terms. The Auto Regressive (AR) portion models the contribution 

of the past values of the variable, while the Moving Average (MA) portion models the contribution of 

noise terms. The Integrated (I) portion models the number of differences needed in order to transform the 

time series to a stationary time series [50]. The ARIMA model is often specified by ARIMA(p,d,q); p, d 

and q are the order of the AR, I, and MA terms respectively. Mathematically ARIMA(p,d,q) for 

variable	
  𝑋(𝑡) can be written as: 

1 − 𝜑=
f
=KL 𝐿= 1 − 𝐿 :𝑋 𝑡 = 1 − 𝜃=

h
=KL 𝐿= 	
  𝜀(𝑡), (3-5) 

where 𝐿 is the lag operator such that 𝐿𝑋 𝑡 = 𝑋 𝑡 − 1 , 𝜀(𝑡) is a representative of the noise (or shock or 

error) contribution, and 𝜑, 𝜃 are the coefficients of the model that need to be determined. For our problem, 

the formula can be rewritten as follows: 

𝐸 𝑡 = 1 − 𝐿 w: 1 − 𝜃=
h
=KL 𝐿= 	
  𝜀 𝑡 + 𝜑=

f
=KL 𝐿= 𝐸 𝑡 . (3-6) 
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Notice that instead of forecasting for the next 24 hours all at once, each hour is forecast based on the 

previously forecast hour(s) and the past actual values. This process iterates 24 times to complete the 

prediction of the next 24 hours.  

Estimation of 𝜑s and 𝜃s is usually less challenging and is done by some sort of fitting method like 

Maximum Likelihood (ML) estimation once the order of the model (i.e., p, d, and q) is determined. 

Selecting the proper order for the model is usually difficult, and there is no unique method for it. One 

approach is to use the correlation analysis of the time series and error terms through Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF). There are suggested tips for determining p 

and q based on ACF and PACF plots, but it does not always give the best model [50]. After selecting the 

model and estimating the parameters, the fitness of the model to data is examined with criteria such as 

Akaike Information Criterion (AIC), or Bayesian Information Criterion (BIC). It is worth mentioning that 

better AIC or BIC does not mean that model has the least SMAPE. Therefore, we have used cross 

validation to select the best model parameters.  

In this study, we used the ‘auto.arima’ function of the ‘forecast’ toolbox in the R programming 

language to select the model and estimate the parameters [51]. Cross validation was used to determine the 

(p,d,q) triple that reduces the SMAPE the most. The 𝜑 and 𝜃 parameters were estimated on the training 

data for the optimum selected model to forecast on the test dataset. 

3.4.4   Pattern Sequence-based Forecasting (PSF) 

This method was first introduced in [53] and an improved version was published later in [54]. The 

idea is based on assigning each 24 hour set, i.e., a day, to a cluster and then the forecast is based on the 

cluster labels rather than actual values in each day. By clustering, the dimension of each day reduces to one 
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(label of the day) instead of 24 (values for 24 hours). It also adds the robustness by substituting real values 

(e.g., power consumption) with integer numbers (cluster labels). 

The first step in applying this algorithm is to find the clustering method and the optimum number of 

clusters. In this study, we use the k-means clustering algorithm similar to the one in [53]. In order to 

determine the optimum number of clusters, k-means clustering is performed on the training dataset for a 

range of k and the one with the higher validity index is selected. The value of k varies from 2 to the 

number of unique days in the dataset. The validity index is a clustering statistic that helps to find the 

optimum number of clusters. The silhouette index,	
  𝑆𝐼, is the validity index used in [53]. If the total number 

of data points is	
  𝑁8G, for each data point	
  𝑬(𝑖) (i.e., a day in the training dataset) 	
  which belongs to cluster 𝐶 

with 𝑛¢ members, the silhouette value is defined as follows: 

𝑠𝑖𝑙 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max	
  {𝑎 𝑖 , 𝑏 𝑖 }	
  , 
(3-7) 

where   

𝑎 𝑖 =
1

𝑛¢ − 1
𝑑(𝑖, 𝑗)

p¤=,p∈¥

, 𝑏 𝑖 =
1

𝑁8G − 𝑛¢
𝑑(𝑖, 𝑗)

p∉¥

, (3-8) 

and 𝑑(𝑖, 𝑗) denotes the dissimilarity or distance between 𝑬(𝑖) and 	
  𝑬(𝑗). The value of 𝑠𝑖𝑙(𝑖) can range 

between -1 and +1 where a negative value (𝑎 𝑖 > 𝑏(𝑖)) indicates a poor clustering for data point 	
  𝑬(𝑖) 

(the average distance of 𝑬(𝑖) from other data points in the same cluster is more than the average distance 

of 𝑬(𝑖) from all other data points belonging to other clusters), and similarly, a positive value indicates a 

suitable clustering for 𝑬(𝑖). The silhouette index is then calculated as the average of 𝑠𝑖𝑙(𝑖) on all the data 

points. Evidently, the number of clusters that maximizes the silhouette index is selected as optimum. 



 

 

 

41 

In order to improve the finding of the true optimum number of clusters, it has been proposed in [54] to 

use three different validity indices for clustering, namely silhouette, Dunn, and Davies-Bouldin. The 

optimum number of clusters is then picked based on a voting mechanism which is very similar to majority 

voting. However, in our simulations, these three indices rarely agreed (even on the top five number of 

clusters), so we decided to only use silhouette index as in [53].  

After clustering, a 24 hour vector of each day is substituted by a cluster number; therefore, the real 

valued time series of {𝑬 24 , 𝑬 48 ,… , 𝑬 𝑛 − 24 , 𝑬 𝑛 } is replaced with an integer valued time series of 

{𝑐 1 , 𝑐 2 , … , 𝑐(§ws�
s�
), 𝑐 §

s�
} where 𝑐 =

s�
 indicates the cluster label for data point	
  𝑬(𝑖). Now, in order 

to find	
  	
  𝑬(𝑡H∗), where 𝑡H∗ ∈ 𝑡H is an instance of the test set indices, a template of cluster labels for the 

previous days {𝑐 𝑡H∗ − 𝐷 ,… , 𝑐 𝑡H∗ − 2 , 𝑐 𝑡H∗ − 1 } is created where similar to kNN, (explained in 

Section 2.4.2),  𝐷 is the depth of comparison (which is called window length in [54]). Then, the time series 

of all the preceding days of	
  𝑡H∗, i.e. {𝑐 1 , 𝑐 2 , … , 𝑐 𝑡H∗ − 2 , 𝑐 𝑡H∗ − 1 }, is matched against the 

aforementioned template. 	
  𝑬(𝑡H∗) is then equal to the corresponding cluster center of the day immediately 

following the most recent matched template index.  If there is no match for the template with the length 

of	
  𝐷, the template length is shortened to 𝐷 − 1 and algorithm iterates until there is some match in the time 

series. Similar to kNN, parameter 𝐷 is determined through cross validation. 

The steps of PSF are detailed in Fig. 3-1.  

3.5   Simulation Setup and Preliminary Results 

3.5.1   Data and Preprocessing 

The data and preprocessing for this chapter is similar to the previous chapter. The data used in this 

chapter were recorded from December 7, 2011 to October 16, 2013; however, not all outlets were in use all 

days. Among charging outlets at UCLA, 15 outlets have charging data for more than 60 effective days 
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(days that some nonzero charging has been reported); these outlets have been used in our implementation. 

The number of effective days for each outlet is reported in Table 3-II.  

 

Figure 3-1 PSF Algorithm according to [53]. 

Data for each outlet is in the format that is called Charging Records. Each charging record contains 

the beginning and end of the charging time as well as the acquired energy. The Charging Records are 

converted to time series by uniformly dividing the acquired energy to the charging interval; e.g., if 

Pattern Sequence-based Forecasting (PSF) Algorithm 

Inputs: {𝑬(𝑡G)} = {𝑬(24), 𝑬(48), … , 𝑬(𝑛 − 24), 𝑬(𝑛)}	
  , 𝐷	
   

Output: 𝑬̈(𝑡H∗) 

1.    for 𝑘	
   ∈ {2,3,…, |𝑢𝑛𝑖𝑞𝑢𝑒	
  {𝑬(𝑡G)}|} 

2. Perform k-means clustering with 𝑘	
   → 𝐶c  with cluster centers 𝑪𝑪L, 𝑪𝑪s, … , 𝑪𝑪c  

3.         Calculate 𝑆𝐼[𝑘] 

4.    𝑘∗ = arg	
  (min
c	
  

𝑆𝐼[𝑘]) 

5.    Replace {𝑬(𝑡G)}	
  with {𝑐(8�
s�
)} according to 𝐶c∗  

6.    while 𝑖𝑑𝑥 = 	
  ∅ 

7.               𝒕𝒆𝒎𝒑(𝑡H∗) 	
  = 	
   {𝑐(𝑡H∗ − 𝐷), … , 𝑐(𝑡H∗ − 2), 𝑐(𝑡H∗ − 1)}   

8.              𝑖𝑑𝑥 = 𝑓𝑖𝑛𝑑(𝒕𝒆𝒎𝒑
=∈8�

(𝑖) == 𝒕𝒆𝒎𝒑(𝑡H∗)) 

9.              𝐷 = 𝐷 − 1 

10.	
  	
  	
  	
  𝑬̈(𝑡H∗) =
L

H=²³(=:i)
∑ 𝑪𝑪¢(=:i[=])=∈=:i  
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charging interval is 3 hours and the acquired energy is 3kWh, it is assumed that the EV received 1kWh of 

energy in each hour.  

There was no normalization or feature extracting from the data. The only implemented preprocessing 

was to force energy records that were mistakenly recorded as more than the physical maximum of the 

charging device (𝐸j;i) and less than zero to the interval of	
  [0, 𝐸j;i]. 

3.5.2   Parameter Selection 

The following combinatorial parameters need to be determined for our algorithms via cross validation: 

Depth (𝐷) for SVR, RF and PSF algorithms, and (p,d,q) for ARIMA. Minimum number of terminal nodes, 

number of trees, and number of variables randomly sampled at each split for the RF algorithm need to be 

determined as well. Also for the 𝜀-SV algorithm, tradeoff coefficient	
  𝐶, desired	
  𝜀, type of the kernel, and 

its corresponding parameters need to be determined via cross validation.  

There are some challenges with cross validation when applying machine learning methods to time 

series forecasting problems [55],[56]. On one hand, in the machine learning community, methods such as 

k-fold cross validation are popular. In k-fold cross validation, for evaluating a certain set of candidate 

parameters, the training data is randomly divided into k blocks. Then the algorithm trains on k-1 blocks 

while the error is calculated on the remaining part, i.e., the validation set. This process iterates for total of k 

times, where each time one of the blocks will be the validation set and the other k-1 blocks will make up 

the training set. The average error of the algorithm on these k iterations will determine the final error for 

the current selection of parameters. The whole process is repeated for different combinations of parameters 

and the combination that yields the least final error is selected as the algorithm parameters. For k-fold 

cross validation, 5 or 10 is a typical choice for k [57]. 
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On the other hand, in time series forecasting literature, in order to recognize the temporal order of the 

data, methods similar to last block validation are more popular. In this method, only the last block of the 

training data is considered as validation data and the performance of different parameters are reported on 

it. It is similar to k-fold cross validation, except that the data is not selected randomly and only the last 

folder is being treated as validation set. 

The advantage of k-fold cross-validation is to use all the training data for validation whereas the 

advantage of last block validation is respecting the temporal order. However, it has been shown that last 

block validation has a poor estimation of the error on the test set [55]. In order to take advantage of these 

two methods, we are using a modified form of blocked cross validation method. Blocked cross validation 

[55] is similar to k-fold cross validation, except that the order of the samples in each block has been 

preserved. Now, since the first block does not have any preceding values, the modification (similar to [39]) 

is to select cross validation blocks after a minimum training data (which is used for training the first 

block). Fig. 3-2 illustrates the modified blocked cross validation with five validation blocks. First, the 

algorithm is trained on {T1, T2} blocks and validated on V1 block, then it is trained on {T1, T2, V1} 

blocks and validated on V2 block, and so on. This cross validation method uses the maximum possible 

data (in comparison with last block validation) while respecting the temporal order of time series data.  

 

Figure 3-2 Modified blocked cross vailadtion. Training data is divided to minimum training data {T1,T2} and 
validation data {V1,…V5}. Model is first trained on minimum training data {T1,T2} and evaluated on V1, then it is trained on 

{T1,T2,V1} and evaluated on V2, up until training on {T1,T2,V1,…,V4} and evaluating on V5. 
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In cross validation, the depth parameter (𝐷) ranges from 1 to 60 (equal to looking only at yesterday up 

to the past two months). The kernel type for SVR was selected from linear, radial basis, sigmoid, and 

polynomial. Other parameters for SVR and their ranges are (the bold parameter is the default in the 

relevant R package):  𝜀 ∈ {0.01, 𝟎. 𝟏} and	
  𝐶 = {0.1, 𝟏}. Similarly for RF, the parameters are the number of 

trees,	
  𝑛𝑡 ∈ {200, 𝟓𝟎𝟎}, number of variables to consider for splitting at each node, 𝑚 ∈ L
¸
, 𝟏
𝟑
, s
º
×𝐷, and 

minimum size of terminal nodes, 𝑛𝑠 ∈ {𝟓, 10}. There are lots of other parameters for SVR and RF for 

which we used their default value in the relevant R package. Also, in the auto.arima function, the 

maximum of p and q was set to 5 and 8 respectively. Parameter d was picked by the auto.arima function 

based on the KPSS test [51]. 

3.5.3   Preliminary Results 

The training set in our simulation was the first 90% of the data which makes the test set the last 10% 

of the data. The minimum training data was 30% of the training data (30% of 90%=27% of the whole data) 

and the validation data consists of 70% of the training data. The results were not that sensitive to less or 

more minimum training data. We used five blocks in cross validation. 

Table 3-I and 3-II show different parameters selected through cross validation, for each site and each 

algorithm. 

Table 3-III shows the average and standard deviation of SMAPE on test days for each algorithm and 

each outlet. 

As it was reported in our earlier work [52], the optimum k (number of neighbors) is chosen to be equal 

to 1 for the kNN algorithm in all outlets. This shows that for our data, regardless of the optimum number 

of previous days to forecast, when dealing with algorithms based on nearest neighbors, it is always better 
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to look at the most similar event in the past and copy its future energy consumption values as the 

prediction.   

 

TABLE 3-I  Selected Parameters For Each Algorithm Based On Cross Validation 

No Outlet 

SVR 

(𝐷, Kernel, 𝜀, 𝐶) 

RF 

(𝐷, 𝑛,𝑚, 𝑛𝑠) 

ARIMA 

(p,d,q) 

PSF 

(Depth) 

MPSF 

(Depth) 

1 PS3L401LIA3 1 Radial 0.1 1 1 200 2/3 5 5,1,5 20 1 

2 PS8L201LIA1 10 Polynomial 0.1 0.1 10 500 2/3 5 1,1,8 53 1 

3 PS8L201LIA3 4 Radial 0.1 0.1 3 200 2/3 5 0,1,8 60 1 

4 PS8L201LIA4 2 Radial 0.1 0.1 3 200 2/3 5 3,1,8 49 1 

5 PS8L202LIIA1 10 Radial 0.1 0.1 10 500 1/6 5 2,1,6 59 1 

6 PS8L202LIIA2 15 Radial 0.1 1 10 200 1/3 10 5,1,7 7 1 

7 PS8L202LIIA3 10 Radial 0.1 1 10 500 1/3 10 5,0,8 59 1 

8 PS9L401LIA1 30 Linear 0.01 1 25 200 1/6 5 4,1,6 5 1 

9 PS9L401LIA2 1 Polynomial 0.01 1 1 200 1/6 5 5,1,5 12 1 

10 PS9L401LIA3 25 Polynomial 0.01 1 20 500 2/3 5 1,1,2 60 1 

11 PS9L401LIA5 5 Radial 0.01 0.1 5 200 2/3 5 4,1,5 33 1 

12 PS9L401LIA6 20 Radial 0.1 0.1 15 500 2/3 5 5,1,6 11 2 

13 PS9L601LIA1 3 Polynomial 0.1 0.1 1 200 1/6 5 4,1,8 14 1 

14 PS9L601LIA3 1 Linear 0.01 1 2 200 1/3 10 4,1,5 17 1 

15 PS9L601LIA4 1 Radial 0.1 1 1 500 1/6 5 5,1,8 25 1 
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TABLE 3-II Selected Number Of Clusters For PSF And MPSF Based On Cross Validation Results And Number Of 
Effective Days For Each Charging Outlet  

No 

PSF 

(Clusters) 

MPSF 

(Clusters) 
Effective Days 

1 29 28 95 

2 20 33 84 

3 38 47 97 

4 29 24 171 

5 98 89 163 

6 101 101 168 

7 2 90 151 

8 44 65 178 

9 71 88 126 

10 2 130 307 

11 86 86 189 

12 104 127 269 

13 80 74 206 

14 65 54 178 

15 53 28 124 

 

Another interesting observation is the poor average performance of the ARIMA model compared with 

NN (Table 3-III, last row). We speculate the reason for this is lots of irregularities in the data along with 

sparseness (some outlet plugs are not used for a few days and these days do not occur periodically). 

Consequently, ARIMA (which looks for periodic behaviors) will fail in this situation compared to NN 

(looks for local similarities and is able to work around this situation). 
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TABLE 3-III Average SMAPE (%) On Test Days For Each Algorithm  

 

 

All simulations were run with RStudio Version 0.98.507 on an Intel Core i-7 CPU at 3.40 GHz with 

16 GB RAM. 

3.6   Proposed Algorithm: Modified PSF 

Based on the results analyzed in the previous section, the Nearest Neighbor (NN) algorithm has higher 

accuracy on most of the charging outlets and outperforms PSF. However, noticing the way PSF works, it is 

No 
SVR RF ARIMA PSF MPSF 

1 23.72 14.76 9.71 42.50 6.30 

2 21.22 6.25 5.30 8.35 0.90 

3 1.34 0.98 1.13 70.01 0.25 

4 66.18 43.96 26.17 15.85 10.72 

5 88.24 70.07 39.42 38.01 31.99 

6 81.25 74.41 40.39 37.04 26.67 

7 89.02 59.32 84.18 81.81 23.33 

8 78.23 66.80 40.63 27.82 18.38 

9 78.13 79.42 46.65 22.00 13.98 

10 97.03 25.00 11.81 96.87 7.76 

11 65.34 27.20 8.05 49.07 8.40 

12 89.88 35.75 9.34 49.63 23.25 

13 91.04 55.36 27.84 35.85 15.51 

14 37.95 31.95 15.18 39.50 10.72 

15 20.18 19.06 8.57 35.08 8.63 

Mean 61.92 40.69         24.96 43.29 13.78 
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very similar to kNN, with the difference that the number of nearest neighbors (k) is not specified 

beforehand; rather it is equal to the number of template matching incidents. On the other hand, from the 

results in Table 3-II, it is evident that kNN has the best performance when only one nearest neighbor is 

considered. Therefore, we propose a modified PSF (MPSF), such that the PSF considers only the most 

recent match in the previous data and returns the corresponding cluster center as output.  

Also, the optimum cluster size seems to be ill conditioned for some of outlets, e.g. outlet 7 and 10. As 

an example, the silhouette index (as a function of the number of clusters) is depicted in Fig. 3-3 for outlet 

10. This ill conditioned optimum number of clusters is expected since the data is sparse; therefore, the 

number of clusters that maximizes the silhouette index might be only two (one cluster for near zero days 

and one cluster for non-zero days). Two clusters essentially map the time series to a binary one, and it is 

not distinguishing enough for forecasting purposes since it cannot code different possible scenarios. We 

decided to start k (number of clusters in k-means) equal to 10% of distinct days to avoid degenerate 

clustering. 

 
Figure 3-3 Silhouette index for clustering data at outlet 10. At 2 (selected by PSF), there is a cosmetic maximum for the 

index while 130 (selected by MPSF) seems to be a better maximum; clustering and prediction error wise. 

0 50 100 150 200 250 300

0.
5

0.
7

0.
9

Number  of  Clusters

Si
lh
ou
et
te
  In
de
x



 

 

 

50 

Modified Pattern Sequence-based Forecasting (MPSF) Algorithm 

Inputs: {𝑬(𝑡G)} = {𝑬(24), 𝑬(48), … , 𝑬(𝑛 − 24), 𝑬(𝑛)}	
  , 𝐷	
   

Output: 𝑬̈(𝑡H∗) 

1.    for 𝑘	
   ∈ {0.1×|𝑢𝑛𝑖𝑞𝑢𝑒	
  {𝑬(𝑡G)}|, … , |𝑢𝑛𝑖𝑞𝑢𝑒	
  {𝑬(𝑡G)}|} 

2. Perform k-means clustering with 𝑘	
   → 𝐶c  with cluster centers 𝑪𝑪L, 𝑪𝑪s, … , 𝑪𝑪c  

3.          Calculate 𝑆𝐼[𝑘] 

4.    𝑘∗ = arg	
  (min
c	
  

𝑆𝐼[𝑘]) 

5.    Replace {𝑬(𝑡G)}	
  with {𝑐(8�
s�
)} according to 𝐶c∗  

6.    while (𝑖𝑑𝑥 = 	
  ∅	
  &	
  𝐷 > 0) 

7.             𝒕𝒆𝒎𝒑(𝑡H∗) 	
  = 	
   {𝑐(𝑡H∗ − 𝐷), … , 𝑐(𝑡H∗ − 2), 𝑐(𝑡H∗ − 1)}   

8.             𝑖𝑑𝑥 = 	
  max
=
(𝑓𝑖𝑛𝑑(𝒕𝒆𝒎𝒑

=∈8�
(𝑖) == 𝒕𝒆𝒎𝒑(𝑡H∗))) 

9.             𝐷 = 𝐷 − 1 

10.    if 𝐷 = 	
  0 

11.            𝑖𝑑𝑥 = arg	
  (max
=
¼count

=∈8�
𝑐(𝑖)¿) 

12.	
  	
  	
  	
  	
  𝑬̈(𝑡H∗) = 𝑪𝑪¢(=:i) 

 

An issue in the original PSF algorithm is that sometimes there is no matched sequence in the past, 

even when the depth of the template is 1. This means that the last day in the test template, 𝑐 𝑡H∗ − 1 , is a 

member of a cluster with only one member. The algorithm fails in this case. In our modification, we set the 

output in such a case to be the center of the most common cluster. Our modified algorithm is depicted in 

Fig. 3-4.  

 

Figure 3-4 Modified PSF (MPSF) Algorithm. 
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Fig. 3-5 shows the “importance” of the input variables (discussed in Section 3.4.2) computed through 

construction of the RF model for outlet 13. According to this figure, for hour ahead forecasting, the current 

hour and the previous hour are the most important input variables.  This trend was also true for all other 

outlets despite different selected depth: the most recent values are the important ones. This also justifies 

our selection of the most recent template in our MPSF algorithm. 

 
Figure 3-5 Importance of input variables of outlet 13 computed from RF, illustrating that recent values have higher 

importance. Similarly, in all other outlets the most recent values were selected as important ones. 

3.6.1   Statistical Significance of the MPSF results 

Now that we have introduced the MPSF algorithm, the next step would be to compare the results from 

a statistical point of view and see whether there is statistical significance in the performance of MPSF.  As 

pointed out in 2.6.4, we first need to reject the null hypothesis. The null hypothesis shows that, in this case, 

none of the algorithms is statistically significantly different from the other ones. Using the Friedman non-

parametric test, the p-value is equal to 3.033×10wÀ which is well below the significance level of 𝛼 =

0.05. Thus, there is a statistically significant difference between the algorithms. 
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In the second step, by selecting MPSF as the control algorithm, we want to check whether the post-

hoc p-values are also below the 0.05 significance level.   

TABLE 3-IV Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-Values. MPSF Is Considered The Control 
Method.  

 

 

 

 

 

 

As Table 3-IV shows, all adjusted p-values are less than the 0.05 significance level; therefore, MPSF 

not only generates lower errors, but also it does so consistently and with statistically significantly lower 

error than other algorithms. 

3.7   Summary 

In this chapter, we analyzed four algorithms namely SVR, RF, ARIMA, and PSF, for the prediction of 

energy consumption in EV charging stations at the outlet level. We then propose an improved algorithm. 

Considering the advantage of PSF which is its increased robustness to noise in comparison with NN (kNN 

with k=1), and the advantage of NN which has the least SMAPE for our data, we proposed Modified PSF 

(MPSF) where only the most recent match in the previous data is used to generate the prediction. Results 

show that the modification has improved the performance. 

Although MPSF has better prediction accuracy than NN, since NN is faster than MPSF, it would be 

the best choice for the smartphone application. It is important to note, however, that NN has lower error 

Post-hoc  

Friedman Test 

SVR RF ARIMA PSF 

z-value 6.0044 3.6950  1.9629 3.9259 
Unadjusted p-value 1.9199-09 0.0002 0.0496 8.6376e-05 
Adjusted p-value 
(Hommel’s method) 

7.6796e-09 0.0004 0.0496 0.0002 
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than the other four offline algorithms (SVR, RF, ARIMA, and PSF) and is still a fairly good choice. 

Therefore, we have not lost a great deal by excluding non-Instance-based algorithms. 
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4   Missing value and imputations 

4.1   Overview 

Many public places are being equipped with sensors and meters to monitor and record data throughout 

the day. This huge amount of recorded data calls for a special analysis known as Big Data. Among the 

issues with analyzing Big Data, such as the computational complexity of the algorithms and scaling the 

well behaved algorithms for a larger number of data points, there is the problem of missing values in the 

data.  

Missing values might have different causes. Sometimes, data is not reported due to sensor outage. At 

other times, the value that is reported is far outside the expected range, therefore rendering the reported 

value unsuitable. In these scenarios, the value is considered a missing value.  

There are a variety of methods for compensating the missing data values, commonly referred to as 

imputation methods [58]. One might wonder which imputation method is more suitable for a specific 

application or essentially whether there is a practical difference between imputation methods. Another 

factor in deciding on an imputation method is the relative amount of missing values in the data. In this 

chapter, we go over several imputation methods and their effect on a number of prediction algorithms. It is 

important to note that, in the case of time series, some imputation methods such as “case deletion” cannot 

be applied since they will change the relative order of events and make the time series lose its ordinal 

properties such as periodicity.  

One common approach when comparing different algorithms is to look at the performance of the 

algorithms on one specific problem (e.g. prediction performance of k-NN and Random Forest algorithms 

on an electricity load time series) and claiming that the algorithm with higher performance is superior. 

Another popular approach is to look at the average performance of algorithms on a couple of problems 
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(e.g. prediction performance of k-NN method and Random Forest on an electricity load time series and 

weather time series) and claiming that the one with the higher average performance is superior. When 

there is no analytical proof for the ranking of the algorithms, statistical tests should be used in order to 

claim a more general superiority of an algorithm. Also, a demonstration of the algorithm’s performance for 

a variety of prediction problems (i.e. weather prediction, load prediction, etc.) will result in stronger claims 

[38]. In this chapter, we use statistical tests on 13 performance samples (for 13 outlet time series) to 

compare our algorithm and imputations pairs and derive conclusions. We analyze the effect of missing 

values on the prediction of the Electric Vehicle (EV) loads in the University of California, Los Angeles 

(UCLA) parking structures as a sample problem. Forecasting algorithms that we have applied in this 

chapter are kNN, TWDP NN, MPSF, SVR, and RF that all have been discussed in Sections 2.4 or 3.4. 

The work described in this chapter differs from other previous works in the literature in that: 1) most 

of the other works do not consider or report their missing value compensation mechanism; 2) our 

conclusions are based on non-parametric statistical tests on several similar problems rather than just 

looking at the average performance of the methods/algorithms; 3) our predictions are at the charging outlet 

level (not parking lot or building level). 

The rest of this chapter is organized as follows: Section 4.2 provides a brief review of the existing 

literature, while Section 4.3 presents a statement and description of the problem we seek to investigate. 

Section 4.4 explains the imputation methods applied on time series data to compensate for missing values. 

Section 4.5 reports the results of applying the imputation methods and prediction algorithms on the UCLA 

parking structure data. Section 4.6 analyzes the results with non-parametric statistical tests to investigate 

any statistically meaningful difference between imputation methods and prediction algorithm results. 

Finally, Section 4.7 provides the summary. 
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4.2   Literature Review 

Although missing data and imputation methods have been discussed extensively in statistics [59] and 

subsequently in social and human sciences [60], it has not been broadly used for engineering applications. 

This is understandable when considering that data processing was not essential to most engineering 

disciplines until the recent wave of Big Data and the increasing amount of meter and sensor measurements. 

However, there are a few studies discussing the missing data treatment issue in the smart grid context. 

In [61], Chen, et al. use B-Spline smoothing and Kernel smoothing to impute the missing or corrupted data 

with suitable values on electricity load data. Authors in [62] have proposed a linearized load flow model 

based on smart meter data with incomplete or inaccurate values. Then, they used this model to obtain 

voltage sensitivities of the grid and showed that these sensitivities are close to accurate voltage sensitivities 

with complete data. Data acquired from a laboratory grid was used in this study. In another study, [63], a 

weighted average combination of the available data was used to impute the missing data for better 

operation of the grid. The weighting mechanism is a simple one which gives more weight to the samples 

that are closer to the missing value. The imputation method along with other operational mechanisms has 

been applied on the Georgia Tech distribution system. However, the performance of the imputation 

method has not been reported separately. A rather complicated imputation method, namely Distributed 

Principal Components Pursuit method, has been developed in [64], where authors have taken advantage of 

the low dimensionality of spatiotemporal load profiles and the sparsity of missing or corrupted data. The 

algorithm has been evaluated on the load curve of five buildings [64].   

 Time series prediction has been used in the smart grid context in the form of load forecasting, price 

forecasting, wind generation forecasting, solar energy forecasting, etc. Saez, et al. compare fuzzy 

prediction interval models for forecasting load, solar and wind generation [65]. They compare their 

proposed algorithm with linear regression models only in the load forecasting case. Wan, et al. have used a 
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two stage algorithm to perform probabilistic forecasting of energy prices [66]. In the first stage, extreme 

learning machine (ELM) is applied to estimate the point forecasts. In the second stage, they use the 

maximum likelihood method to estimate the noise variance, thus obtaining a probabilistic forecast. 

However, this proposed algorithm has been validated on only one region in the Australia Electricity 

Market. A forecasting algorithm based on an ensemble of Gaussian Processes and Neural Networks has 

been proposed in [67] for short-term wind power forecasting. The average error of this forecasting 

algorithm has been reported on seven wind farms. Another forecasting model for electricity load has been 

developed in [68]. It is a semi-parametric additive model and results have been reported on more than 

2200 substations in the French distribution network; however, the comparison between results is in the 

format of looking at the relative errors without a rigorous statistical analysis. Another research work is [69] 

where authors have combined Empirical Mode Decomposition and Support Vector Regression (SVR) to 

perform long-term load forecast on a publicly available competition dataset and an office building dataset. 

The means of comparison was by simply comparing the errors. In [70], Motamedi, et al. have proposed a 

forecasting engine that combines both price and demand prediction with Data Association Mining 

algorithms. The simulation results are based on the electricity market data of Australia and New England 

where Mean Absolute Percentage Error was used as a comparison measurement. Amajdy, et al. [71] 

propose a two stage algorithm based on feature extraction (with Neural Networks) and forecasting engine 

(with evolutionary algorithm) that has been tested on one dataset from the University of Calgary campus. 

The measure of the performance is the weekly mean error. 

All the works reported above have validated their algorithms by applying it on one problem (dataset) 

or have used simple comparison methods such as average performance on different problems (datasets) to 

show the improved performance with their approach. In this chapter, we apply statistical analysis on 

several datasets to make conclusions on the superiority of a given method. 
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4.3   Problem Statement 

The Problem Statement remains the same as the previous chapters. The objective continues to be the 

prediction of the available energy in the next 24 hours at each charging outlet. However, in this chapter, 

we look into how missing data affects the accuracy of the predictions in the previous chapters, and whether 

the choice of treatment (or substitution) of missing values can significantly influence our predictions. 

Similar to previous chapters, we need to select a means of comparing performance of predictions. 

However, instead of SMAPE, we have chosen Mean Absolute Error (MAE) because of its simplicity and 

the fact that we are interested in the method with lowest absolute error (not percentage error as in SMAPE) 

which allows for a more straightforward comparison. For day i, the MAE is defined as: 

𝑀𝐴𝐸 𝑖 = 	
  
1
𝐻 𝐸 𝑡 − 𝐸 𝑡 ,

8	
  ∈	
  :;<	
  =

	
  	
   (4-1) 

where 𝐻 is the horizon of prediction in a given day (𝐻=24 in this paper), 𝐸(𝑡) is the actual energy 

consumption at time t, and 𝐸(𝑡) is the prediction of the energy consumption at time t. 

4.4   Imputation Methods 

The process of providing the best guess for a missing value is called imputation. Multivariate 

imputation methods such as “Maximum Likelihood” are applicable to datasets with more than one variable 

observed at a time (multivariate).  We will be using four imputation methods which are applicable to both 

multivariate and univariate time series and two imputation methods that are only applicable to multivariate 

time series.  

Our imputation implementations are briefly explained below. A more detailed discussion can be found 

in [58]. 
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4.4.1   Constant (Zero) Imputation 

In this imputation, a single constant value is substituted for all missing values. While this number is 

arbitrary, we have chosen it to be zero in order to preserve the sparsity of our time series. In this method, 

missing power data, due to the missing voltage, current, or power factor, is substituted with zero.  

4.4.2   Mean Imputation 

This imputation is an extension of Constant imputation where the constant number is the mean of the 

available data points. While an advantage of inserting the mean value is that it does not change the mean 

value of the data, one disadvantage of it is that the imputed value (mean) might not be any of the observed 

values; for instance, in our case, the received power by the EV can be zero, the maximum power, or half of 

it, etc. depending on the number of EVs being charged at that specific station. Thus, because of the discrete 

nature of the values, the mean value might not exist as an observed value. 

4.4.3   Median Imputation 

Like Mean imputation, this imputation is an extension of Constant imputation; the constant number 

that is used in this imputation is the median of the available data points. The advantage of this imputation 

is that median is always one of the observed values of the data, making median imputation a good 

candidate for our study. 

4.4.4   Last Observation Carried Forward (LOCF) 

This imputation is one of the so called “hot-deck” imputations. In hot-deck imputation, a missing 

value is copied from another record. Hot-deck imputation methods were popular in the past and are still 

practiced [58]. A proper hot-deck imputation method for time series is the LOCF method since, out of all 
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possible values in the available data, it replaces the missing value with the last observed one. For instance, 

if the voltage is missing, the missing value is replaced with the last observed voltage. 

4.4.5   Maximum Likelihood Imputation 

The idea behind Maximum Likelihood (ML) is to impute the unobserved values by considering the 

other variables at that moment. For instance, the voltage value might be missing but the current value is 

available. Then, the missing value of the voltage can be replaced by considering the corresponding voltage 

for similar current values. This idea is usually implemented through the Expectation Maximization (EM) 

algorithm. 

4.4.6   Multiple Imputation 

A disadvantage of the aforementioned methods is that they underestimate the error by adding more 

data points without adding more information. Consider the standard error in the average of data points 

(sample mean): by adding more data points, the sample mean error (which is inversely proportional to the 

square root of number of data points) reduces, without adding any new information to the available 

dataset.  

The Multiple imputation method is similar to ML with the difference that each missing value is 

imputed by adding an error term so that it estimates the actual values more accurately. This process iterates 

a few times (usually five) and the final imputed value is the average of these iterations [58]. 

4.5   Simulations 

4.5.1   Data and Preprocessing 

The algorithms described above are applied to charging stations located on the UCLA campus. The 

data used in this chapter were recorded from December 7, 2011 to February 28, 2014; however, not all 
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outlets were in use on all days. Among charging outlets at UCLA, 20 outlets have charging data for more 

than 60 effective days (days that some nonzero charging has been reported); among these 20 outlets, 13 of 

them have missing data which makes them suitable for the current study. By missing data, as pointed out 

earlier, we mean either unreported data or the data that is not in the nominal expected range and hence non 

usable.  

Data for each outlet is in a format referred to as Station Records. Each station record contains data 

including voltage, current, and power factor of the charging outlet in three to five minute intervals. In order 

to obtain the real power at each hour to form the time series, we multiply the voltage, current, and power 

factor. Since we are interested in forecasting on an hourly basis, we up-sample the time series to form a 

power time series of one hour granularity for each outlet. For the sake of investigating the effect of the 

missing values, they have not been removed in the up-sampling process.   

Before applying the imputation methods, missing values need to be identified. For voltage, current, 

and power factor, in addition to unreported and negative reported values, the reported values that were 

more than voltage maximum, current maximum and maximum power factor (one) were identified as 

missing values. The total percentage of missing values in the hourly time series for each outlet has been 

depicted in the Fig. 4-1. 

4.5.2   Parameter Selection 

The following discrete parameters need to be determined for our algorithms via cross validation. 

Depth (𝐷) must be determined for all algorithms. For the RF algorithm, we determine the minimum 

number of terminal nodes, number of trees, and number of variables randomly sampled at each split. Also 

for the 𝜀-SV algorithm, the tradeoff coefficient	
  𝐶, desired	
  𝜀, kernel type, and its corresponding parameters 

need to be determined via cross validation. 
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There are some challenges with cross validation when applying machine learning methods to time 

series forecast problems which have been pointed out in [72], and a modified form of the blocked cross-

validation has been chosen since it seems to possess advantages mentioned in both machine learning and 

time series forecasting literature. 

 
Figure 4-1 Percentage of missing values in the hourly time sereis for each outlet 

4.5.3   Simulation Results 

All simulations were run with RStudio version 0.98.1091 on an Intel Core i-7 CPU at 3.40 GHz with 

16 GB RAM. RStudio is running under R version 3.1.2. 

The training set in our simulations was the first 90% of the data which makes the test set the last 10% 

of the data. We used five blocks in the cross validation procedure. Also, half of the training data was 

treated as minimum training data. 
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After selecting the parameters, the union of the training data and validation data are treated as the new 

training dataset and used for predicting the first day in the test dataset. For predicting the second day in the 

test dataset, the union of training dataset, validation dataset, and the first day in the test data is used; 

similarly, for predicting the ith day in the test set, all the data prior to it (training dataset, validation dataset, 

and test dataset up to (i-1)th day) is employed. 

Fig. 4-2 shows part of a day (from 11:00 to 17:00) in the test set with a missing value in voltage at 

14:00 and different imputation methods applied to it. The Zero imputation replaces the voltage value with 

zero and is not visible in the figure (green triangle line). 

 

 
Figure 4-2 Illustrating different imputation methods. Each imputation method substitutes a different value for missing 

value of voltage at 14:00. 

According to the results, the performance of the imputation methods is different for each prediction 

algorithm. In order to conveniently compare the errors between imputation methods, normalized MAEs 

have been employed. Normalized MAE values for each specific outlet are acquired by dividing MAEs by 

the maximum MAE for that outlet. Fig. 4-3 shows the average normalized MAE of each algorithm on test 

days for each imputation method and outlet. 
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Figure 4-3 Average normalized Mean Absolute Error (MAE) on test days for each imputation method and outlet for 

Euclidean NN, TWDP NN, MPSF, SVR, and RF algorithms. 

4.6   Analysis 

In this section, we want to identify the best imputation method for each algorithm (or for all 

algorithms) that yields a minimum MAE for the forecasting algorithm. In this section, we investigate 

whether we can recommend an imputation method to pair along with each algorithm. In order to make 

such suggestions, it is not enough to compare the error average for each combination of imputation method 

and forecasting algorithm, rather it needs to be based on statistical guarantees that also provide some 

quantitative measure of confidence. 

Our approach here is inspired from [38] and has three steps of non-parametric statistical tests.  First, 

we need to reject the null hypothesis, which is to make sure there is a meaningful difference between 

results. Second, we will perform a comparison for each pair of imputation methods per forecasting 
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algorithm to find potential statistically significantly different imputation methods. Third, we will check if 

the candidate methods are indeed statistically significantly different by choosing them as control methods 

against other imputation methods. 

In the last subsection, we will investigate whether the imputation results are independent from 

algorithms, i.e., there are some imputation methods that are recommended or should be avoided regardless 

of the applied prediction algorithm. 

4.6.1   Rejecting the Null Hypothesis 

In order to see whether there is a statistically meaningful difference between imputation results for 

each prediction algorithm, we apply the Friedman test to reject the null hypothesis. Here the null 

hypothesis is that there is no difference between imputation methods for any algorithms. Table 4-I shows 

the p-values from the Friedman test for each algorithm for the results depicted in Fig. 4-3. 

TABLE 4-I p-Values Of Friedman Test For Each Algorithm 

NN 
TWDP NN MPSF SVR RF 

0.008029 1.063e-05 5.942e-05 0.0001538 2.312e-07 

 

All the p-values are significant (less than 0.1) which shows that there is a statistically significant 

difference in the results of each forecasting algorithm due to the imputation method used for the treatment 

of missing values.  
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4.6.2   All Pair Comparison 

Now that we know the null hypothesis is rejected for all algorithms, we want to know the result of 

which imputation methods are (statistically) significantly different from each other. Hence, to find our 

potential control imputation method for each algorithm we perform the Holm post-hoc procedure on p-

values obtained from the Friedman test. The adjusted p-values have been reported in Table 4-II. 

The significant values (𝑝 < 0.1) have been displayed in bold in Table 4-II. For instance, in the SVR 

algorithm, Zero imputation has a significant difference with LOCF, ML, and MI imputations with 0.0015, 

.0051, and 0.0070 p-values respectively. This makes Zero imputation a candidate for our control method. 

Also, LOCF imputation has a significant difference with Zero and Median imputations (0.0015 and 0.0557 

respectively) which makes LOCF imputation another candidate for control method. 

Looking at Table 4-II, the results of forecasting with NN and TWDP NN are significantly different 

when applying LOCF imputation instead of Zero or Mean imputations (0.0066, 0.0551 for NN and 7.16e-

05, 2.16e-02 for TWDP NN). On the other hand, MPSF and SVR show significant statistical difference 

when applying Zero and LOCF imputations (for instance look at the Median vs. LOCF row for these 

algorithms with 0.0034 and 0.0557). RF shows significant difference with both Zero and Median 

imputations (Median vs. all other methods except Zero have values less than the threshold of 0.1). 

4.6.3   Control Methods 

In this subsection, we pick control methods for each algorithm based on the candidate methods 

derived in the previous subsection and make sure each control method for each algorithm produces 

significantly different results than all other methods. To this end, we perform Friedman post-hoc test with 

Hommel’s procedure [38] for adjusting p-values. Each row in Tables 4-III and 4-VI shows the adjusted p-
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values for the post-hoc procedure for each forecasting algorithm when one of the imputation methods is 

selected as control. 

 

TABLE 4-II Friedman Test With Post-Hoc Holm’s Method Of Adjusting p-Values For Multiple Comparison Per 
Algorithm  

Hypothesis 
NN TWDP NN MPSF SVR RF 

Median vs. Mean 1.0000	
   0.7710 1.0000 1.0000 2.24-04 

Median vs. Zero 1.0000	
   1.0000 1.0000 1.0000 1.0000 

Median vs. LOCF 0.1328 4.63e-05 0.0034 0.0557 0.1898 

Median vs. ML 1.0000 0.1124 0.1651 0.1306 3.66e-02 

Median vs. MI 1.0000 0.5326 1.0000 0.1590 9.83e-05 

Mean vs. Zero 1.0000 0.7850 0.2663 0.2493 3.30e-04 

Mean vs. LOCF 0.0551 2.16e-02 0.2663 0.7479 0.2783 

Mean vs. ML 1.0000 1.0000 1.0000 1.0000 0.6918 

Mean vs. MI 1.0000 1.0000 1.0000 1.0000 1.0000 

Zero vs. LOCF 0.0066 7.16e-05 1.25e-04 0.0015 0.2216 

Zero vs. ML 0.5770 0.1376 0.0150 0.0051 4.64e-02 

Zero vs. MI 1.0000 0.5858 0.2663 0.0070 1.49e-04 

LOCF vs. ML 1.0000 0.3242 1.0000 1.0000 1.0000 

LOCF vs. MI 0.4912 5.57-02 0.2663 1.0000 0.2216 

ML vs. MI 1.0000 1.0000 1.0000 1.0000 0.5792 

 

Table 4-III shows that when applying the NN algorithm, the LOCF method is statistically different 

from all other methods, except ML, since the adjusted p-values are less than 0.1. Even for ML, the p-value 
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is close to 0.1 (0.1158).  However, on average LOCF results in a higher MAE for the NN algorithm. 

Similar results can be found in Tables 4-V and 4-VI for MPSF and SVR. Hence, we can claim: when 

applying the NN, MPSF, or SVR prediction algorithm on the current type of energy consumption data, 

using the LOCF imputation method for treating the missing data, will most likely generate worse results 

than other  imputation methods (except maybe ML) and should be avoided. 

The previous statement can be claimed even more strongly for TWDP NN since, according to Table 

4-IV, all p-values are substantially smaller than 0.1.   

According to Tables 4-V and 4-VI, the Zero imputation method is significantly different from other 

imputation methods (except Median), thus we can claim: when applying MPSF, or SVR prediction 

algorithms on the current type of energy consumption data, using the Zero imputation method for treating 

the missing data will most likely result in lower MAEs than other (except Median) imputation methods. 

The practical suggestion is that along with MPSF or SVR algorithms, it is recommended to try Zero (or 

Median) imputation. Also since our results for Median imputation is not (statistically) significantly 

different from Zero imputation, Median imputation should be tried as an alternative. 

TABLE 4-III Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-Values With Control Test For NN 
Algorithm  

Control 
Median Mean Zero LOCF ML MI 

LOCF 0.0306 0.0157 0.0022 -- 0.1158 0.0818 

 

As Table 4-VII indicates, the Zero and Median imputations are both (statistically) significantly 

different from other methods but not different from each other for the RF algorithm. Therefore, it is 

recommended to try both these imputation methods and avoid others when applying RF as the prediction 

algorithm on a similar type of energy consumption data. 
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TABLE 4-IV Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-Values With Control Test For TWDP NN 
Algorithm 

Control 
Median Mean Zero LOCF ML MI 

LOCF 1.28e-05 0.0049 2.05E-05 -- 0.0360 0.0092 

 

TABLE 4-V Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-Values With Control Test For MPSF 
Algorithm  

Control 
Median Mean Zero LOCF ML MI 

LOCF 0.00097 0.0484 4.19e-05 -- 0.2278 0.0484 

Zero 0.4317 0.0554 -- 4.19e-05 0.0046 0.0554 

 

TABLE 4-VI Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-Values With Control Test For SVR 
Algorithm 

Control 
Median Mean Zero LOCF ML MI 

LOCF 0.0185 0.2804 0.0005 -- 0.7531 0.7531 

Zero 0.2945 0.0554 -- 0.0005 0.0010 0.0016 

 

TABLE 4-VII Post-Hoc Friedman Test With Hommel’s Method Of Adjusting p-Values With Control Test For RF 
Algorithm  

Control 
Median Mean Zero LOCF ML MI 

Median -- 6.89e-05 0.9165 0.0422 0.0100 3.28e-05 

Zero 0.9165 0.0001 -- 0.0554 0.0139 5.34e-05 
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4.6.4   Dependence of Imputation Methods on Prediction Algorithms 

Here, we are interested to see whether, independent of the algorithm, an imputation method could be 

recommended. Tables 4-III through 4-VII introduce different control methods for each algorithm, and 

Table 4-II shows that the pairwise comparison significance patterns are different for each algorithm. As a 

result, we can conclude that there is no universal best imputation method, and it is dependent on the 

prediction algorithm applied. 

One other possibility is that for each specific outlet data there is an imputation method which 

minimizes the prediction error regardless of the prediction algorithm. However, since the number of 

prediction algorithms (five) is less than the number of imputation methods (six), there are not enough 

samples in order to perform statistical analysis between six methods. 

4.7   Summary 

In this chapter, we analyzed the effect of imputation methods (methods of replacing missing values) 

on prediction algorithms. The investigated data is EV charging data, as an example of energy consumption 

data. The most important finding in this work is that each prediction algorithm works better when paired 

with certain imputation methods; therefore, instead of cleaning the data and then separately working on the 

prediction algorithm, our findings show that the missing value correction method and prediction algorithm 

should be selected together.  

According to our results, the LOCF imputation method should be avoided with NN, TWDP NN, 

MPSF, or SVR algorithms. Zero imputation method results in significantly lower average MAE when 

paired with MPSF, SVR, or RF prediction algorithms. With the RF prediction algorithm, however, Median 

imputation method is also recommended due to its significantly lower MAE.  
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Overall, Zero and Median imputation methods seem to be better choices. The reason that Zero and 

Median have similar results could be explained by the sparsity of the data. For sparse time series (time 

series with lots of zeros), the median is equal or close to zero, hence giving us the close performance of 

Zero and Median imputations.  

LOCF, which replaces the missing data with the last observed value, seems to be the worst imputation 

method for most of the algorithms. For sparse data, the likelihood that a missing data point is zero is more 

than the last observed value and this might be a reason of poor performance of the LOCF method. 

Another interesting observation is that NN and TWDP NN are not that sensitive to the imputation 

method. Other than LOCF, that is not recommended, there is no preference among the imputation 

methods, which makes these two nearest neighbor methods more robust with respect to the imputed 

values. In the smartphone application that has been developed for predicting of the EV charging 

consumption data at UCLA parking lots [73], the Median imputation method has been used. 

Note that these conclusions are specific to these datasets.  
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5   Privacy and data source 

5.1   Overview  

In this chapter, our focus is on privacy issues and data sources when forecasting (predicting) the EV 

charging load based on historical charging data. We have two available datasets: the charging record that 

comes from anonymous customer profiles and the station records that come from measurements (voltage, 

current, etc.). Either one of them can be used for building a load time series and hence future load 

forecasting at the outlet level.  

One might wonder that, since the charging records are anonymized, there is no threat to customer 

privacy. However, anonymizing might not be enough, as in a famous incident, the medical record for the 

then governor of Massachusetts was extracted easily from anonymous medical records when combined 

with voter registration rolls [7]. The medical records were anonymous but they had sex, ZIP code, and 

birth-date of patients. This incident shows that even anonymity is not enough and anonymous data might 

still be revealing when combined with other datasets. 

Therefore, we deal with two datasets: The charging record comes from customer profiles, and, as 

pointed out earlier, it is prone to privacy issues. On the other hand, the station record does not have any 

information about specific customers and hence protects customer privacy. We compare the accuracy and 

speed of the prediction process using these two types of records. Specifically, for EV charging data, we 

investigate the potential increase in prediction accuracy and speed, as a tradeoff of endangering customer 

privacy. Interestingly, we found that prediction accuracy is not significantly increased while using the 

privacy-jeopardizing dataset (charging records). To our knowledge, this type of comparison has not been 

done in this context. Forecasting algorithms that we have applied in this chapter are kNN, MPSF, SVR, 

and RF that have all been discussed in Sections 2.4 or 3.4. 
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The rest of this chapter is organized as follows: Section 5.2 provides a brief review of the existing 

literature, and Section 5.3 briefly discusses the problem we aim to investigate. Section 5.4 presents the 

structure of each dataset from the charging stations at the University of California, Los Angeles (UCLA) 

parking lots and the preprocessing stages to convert each of them into a time series. Section 5.5 reports the 

result of applying the prediction algorithms on each of the time series and then analyses the results with 

non-parametric statistical tests to investigate statistically meaningful differences. Section 5.6 summarizes 

the chapter. 

5.2   Literature Review 

Privacy has been an important issue in smart grids and it is one of the factors holding people back 

from participating in the use of these new technologies [74].   

There are various levels of invasion of privacy in the smart grid context. For example, at the smart 

household level, the different ways that household privacy might be invaded are: access to power 

consumptions records, presence of different players with potential access to data such as service provider 

and distribution operator in the economic smart grid, using wireless communication technology between 

devices that might make communications vulnerable, accessing energy devices from the internet, and third 

parties that are not involved in any part of power generation and distribution but monitor the customer 

usage with customers’ approval [75].  

According to [76], the current resolution of smart meter data (usually between 15 minutes to 1 hour) 

invades customer privacy and the data might not be necessary for most of the smart grid planning and 

distribution functions. Some other research still relies on anonymous data to protect the privacy where the 

pattern of the EV customer driving times is used for designing an optimal charging algorithm [77].  

There have been various suggestions on how to preserve privacy. Some of them are based on the idea 

of aggregating the data instead of using individual data. For example, in [78], building energy usage is 
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investigated and only the aggregated data, instead of individual data, is used for analysis. Similarly, instead 

of individual EV charging data, the aggregated data of EV loads has been used for coordinating the EV 

charging operation in [79].  

On the other hand, centralized and distributed algorithms for the routing of the information flow, 

which preserve the privacy based on cryptographic methods, is proposed in [80]. Cryptographic methods 

are also used in [81] to perform privacy preserving bill calculations. All these methods fall under Secure 

Signal Processing (SSP) methods which protect the sensitive data by encryption and provide tools to 

analyze the data under the applied encryption [82].  

According to [83], privacy is exposed even when relatively infrequent measurements are acquired, 

and on the other hand, an energy management system using batteries can protect customer privacy. The 

role of the battery and its use in more effectively protecting privacy is also discussed in [84].  

Lastly, the above articles focus mostly on protecting privacy at the measurement level. Another way 

to protect the privacy is at the data mining algorithm level. Privacy preserving machine learning algorithms 

started to become more important in early 2000s [85],[86]. In subsequent years, privacy preserving 

versions of different machine learning algorithms such as nearest neighbor [87], Bayes classifiers [88], 

Support Vector Machines [89], and logistic regression [90] were introduced in literature to address privacy 

preservation at the algorithmic level. 

There is rich literature for time series forecasting in various disciplines. Reference [91] provides a 

comprehensive review of different models. Machine Learning algorithms have also been successfully 

employed in the forecasting realm [32]. In the current work, we compare four machine learning based 

prediction algorithms on two time series built from different measurements of one phenomenon, one of 

which contains privacy-jeopardizing information whereas the other does not. We show that the dataset 
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without privacy-sensitive information allows us to make equally accurate charging load prediction 

compared to the other dataset, thus precluding the need for privacy-preserving data mining techniques. 

5.3   Problem Statement 

The problem statement is similar to previous chapters. The objective continues to be the prediction of 

the available energy in the next 24 hours at each charging outlet. However, in this chapter, we focus on the 

two different data sources, one of which is more prone to jeopardizing privacy. We seek to determine if the 

use of one data source gives significantly different prediction performance than the other. 

5.4   Data and Preprocessing 

The prediction algorithms described in the next section are applied to the charging stations located on 

the UCLA campus. The data used in this chapter were recorded from December 7, 2011 to February 28, 

2014; however, not all outlets were installed at the same time or were in use on all days. Among the 

charging outlets at UCLA, 28 outlets have charging data for more than 30 effective days (days that 

nonzero charging has been reported); the data from these outlets have been used in this chapter. 

Data for each outlet comes in two formats: Charging Records and Station Records. We are interested 

in analyzing the difference in using prediction algorithms on each of these formats. These formats have 

been explained below, as well as the timing and stages of preprocessing for each format in order to acquire 

the time series. 

5.4.1   Station Records 

This dataset comes directly from measurements at the outlets. Thus, when accessing this dataset from 

the server, it is not part of the customer’s profile; rather it is the recorded quantities at the outlet. Each 

station record contains measurements, such as voltage, current, and power factor of the charging outlet, in 
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three to five minute intervals. In order to obtain the real power time series, we multiply the voltage, 

current, and power factor.  

However, not all of these quantities are available or have been reported correctly at all instances. In 

this chapter, we classify data which is either unreported or the data that is not in the nominal expected 

range (and hence non usable) as missing data. 

The process of providing the best guess for the missing values is called imputation [58]. Some 

imputation methods involving deletion, such as “case deletion” where the incomplete instance of data is 

removed from the dataset, are not suitable for time series since they will change the relative order of events 

and make the time series lose its ordinal properties such as periodicity. A more elaborate discussion on 

imputation methods and their application on energy time series have been discussed in [112]. The article 

argues that each prediction algorithm goes along well with a certain imputation method and care should be 

taken in selecting an imputation method for each prediction algorithm. Based on this reference, we chose 

zero imputation for SVR and MPSF prediction algorithms and median imputation for RF and NN 

prediction algorithms.  

In the case of zero imputation, the value of zero is substituted for all missing values. In this method, 

missing voltage, current, or power factor, is substituted with zero. This imputation preserves the sparsity of 

the time series. In median imputation, on the other hand, missing values of each quantity are being 

replaced with the median of that quantity for that specific outlet. The advantage of the median imputation 

method is that the imputed value is always one of the actual values of the data.  

Before applying the imputation methods, missing values need to be identified. For voltage, current, 

and power factor, in addition to unreported and negative reported values, the reported values that were 

more than the maximum voltage, maximum current or maximum power factor (one) were identified as 

missing values.  
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Since we are interested in comparing the prediction results with that of the charging records dataset 

and hence forecast on hourly basis, we up-sample the time series to form a power time series of one hour 

granularity for each outlet.  

5.4.2   Charging Records 

This dataset comes from anonymous user profiles. Every time that an EV uses a charging facility, a 

charging record is added to the EV profile. Each charging record contains the charging time (beginning 

and end) and the acquired energy in kWh. In order to make the times series with one hour granularity, the 

Charging Records are converted to time series by uniformly dividing the acquired energy to the (rounded) 

charging interval; e.g., if the charging interval is 3.2 hours and the acquired energy is 3kWh, it is assumed 

that the EV received 1kWh of energy in each hour.  

Charging records are different from station records in that missing data cannot be easily identified. 

This is because charging records are event triggered measurements. In the case of station records, when we 

do not receive a value (i.e. for voltage) in a five minute period, we know that the value is missing; 

however, if we do not receive any charging record in a time period, we conveniently assume no charging 

event has occurred. Therefore, there is no need for missing value imputation in charging record dataset. 

5.4.3   Comparing Two Datasets 

As explained earlier, the main difference between the two datasets is that charging records are derived 

from user profile data. These records include the entrance and exit time of each EV and hence are prone to 

jeopardizing the user’s privacy and could lead to misuse. Station records, on the other hand, are direct 

measurements of quantitates at the outlet and are independent from customer or particular EV information.  
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The figure below shows constructed time series with one hour granularity (as explained above) from 

both dataset formats for a sample day (August 13, 2013, to be specific) for one of the outlets. 

  
Figure 5-1 Time series constructed from station record and charging record formats. 

According to Fig. 5-1, since the charging record (the diamond blue curve) indicates the beginning and 

ending of the EV presence at the outlet, we can speculate that one EV has been present at the outlet from 8 

to 18 while another EV has been present from 18 to 20. The station record (the square orange curve), 

however, shows the time when the EV is actually receiving power from the outlet, which for the first EV is 

from 9 to 15 and for the second one only one hour at 20. So these two datasets are describing the same 

phenomenon with different accuracy. It is important to note that the areas under both curves are equal to 

each other, meaning that they both report the same amount of energy being consumed. If the ultimate goal 

is predicting the available energy at each outlet as in [52], the predictions based on either one are expected 

to behave competitively. 

Another difference between these two types of datasets is their preprocessing time. Each charging 

record is made of three values (beginning and end of charging and acquired energy), and the time required 

for preprocessing is divided between accessing the database and creating the time series from those three 
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values. However, for preparing the time series from station records, one needs to access the database, 

identify missing values and impute them and, finally, up-sample the time series to achieve the time series 

with one hour granularity. Therefore, it should not be surprising that preprocessing time for station records 

is more than charging records. 

Fig. 5-2 shows the preprocessing time for charging record dataset and station record dataset per each 

outlet.  

 
Figure 5-2 Preprocessing times for preparing times series from both formats of data per outlet 

Depending on the number of charging records for each outlet, the preprocessing time will be different. 

Note that for a certain outlet, the preprocessing time for station records dataset will not change by the rate 

of usage of the outlet, while charging records dataset is a direct function of the number of charging events 

for the outlet. If there is no charging event for an outlet, then there will be no charging record and the time 

series is readily available, but for a station record all the steps of identifying missing values and possibly 

imputation as well as up-sampling should be performed. 

Thus, we see that one difference between these two datasets is that it always takes longer to 

preprocess (and eventually predict) station records compared with charging records.  
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5.5   Simulations and Analysis 

In this section we first describe our parameter selection procedure, followed by reporting the results 

and analyzing them. 

5.5.1   Parameter Selection 

We use Blocked Cross-Validation as explained in section 3.4.2. The range for each of the parameters 

of each algorithm has been discussed in the following lines.  

In cross validation, the depth parameter (𝐷) varies between 1 and 30 (equal to looking only at 

yesterday and up to the past month). The kernel type for SVR was selected from linear, radial basis, 

sigmoid, and polynomial kernels. Other parameters for SVR and their ranges are (the bold parameter is the 

default in the relevant R package):  𝜀 ∈ {0.01, 𝟎. 𝟏} and	
  𝐶 = {0.1, 𝟏}. Similarly for RF, the parameters are 

the number of trees,	
  𝑛𝑡 ∈ {200, 𝟓𝟎𝟎}, number of variables to consider for splitting at each node, 𝑚 ∈

L
¸
, 𝟏
𝟑
, s
º
×𝐷, and minimum size of terminal nodes, 𝑛𝑠 ∈ {𝟓, 10}. There are lots of other parameters for 

SVR and RF for which we used their default value in the relevant R package. 

5.5.2   Results  

The training set in our simulations was the first 90% of the data which makes the test set the last 10% 

of the data. We used five blocks in the cross validation procedure. 

Table 5-I below shows the average prediction SMAPE on all outlets for each algorithm when using 

either charging record or station record time series. 
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TABLE 5-I Average Of SMAPE (%) On Test Days For Charging Record And Station Record Based Time Series For 
Each Algorithm  

Time series origin 
NN-TWDP MPSF SVR RF 

Charging Record 10.02 7.85 19.79 20.82 

Station Record 16.45 6.28 20.68 20.09 

 

Care should be taken before deciding which source of data leads to a better prediction accuracy based 

on just the average accuracy over all the outlets, due to varied performance of each algorithm on each 

individual outlet. In making such a decision, statistical analysis needs to be considered.  

Fig. 5-3 shows the average SMAPE on test days based on both datasets per prediction algorithm and 

outlet. In the analysis section we will investigate whether there is a statistically significant difference in the 

accuracy of the algorithms when using either of the datasets. 
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Figure 5-3 Average Symmetric Mean Absolute Percentage Error (SMAPE) on test days based on both datasets for each 

outlet for TWDP NN, MPSF, SVR, and RF algorithms. 
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Note that since the time series attained from either of the datasets have the same granularity, the 

processing time for a certain prediction algorithm and certain outlet on either of the time series would be 

the same.  

The analysis has been performed with RStudio version 0.98.1091 and Microsoft SQL Server 

Management Studio on an Intel Core i-7 CPU at 3.40 GHz with 16 GB RAM. RStudio is running under R 

version 3.1.2. 

5.5.3   Analysis 

There are various criteria to judge whether a set of results is better than another. In general, the 

criterion depends on the application. For example in a business model, if the penalty depends on average 

SMAPE, the algorithm with less average SMAPE will be selected. However, if we want to know how 

often it is probable that two set of results significantly vary from each other, we need to use statistical tests. 

In this section, we want to see whether there is a statistically significant difference between the 

accuracy of the predictions based on either of the datasets. To this end, we use the Wilcoxon signed rank 

test [38]. In our application, this test compares the SMAPE resulted from two different datasets at each 

outlet. Depending on the number of positive and negative differences and their absolute value, the test 

gives a probability (p-value) of how likely these two SMAPE results come from the same distribution. A 

small p-value means that it is unlikely that the two SMAPE population come from the same distribution, 

and hence there is a statistically significant difference between the results. 

It is common to pick a threshold for the p-value which is called significance level and denoted by α. It 

is customary to pick α equal to 0.01, 0.05 or 0.1 [38]. We pick α = 0.05. The Table 5-II shows applying the 

Wilcoxon test on each of the prediction algorithm results depicted in Fig 5-3. 
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TABLE 5-II p-Values Of Wilcoxon Signed Rank Test On  Charging Record And Station Record Based Time Series For 
Each Algorithm 

 
NN-TWDP MPSF SVR RF 

p-value 0.02983 0.04235 0.4785 0.7639 

   

By selecting the significance level (α) of 0.05 for p-value, there is no statistically significant 

difference between using charging record and station record based time series for SVR and RF algorithms 

(corresponding p-values are greater than 0.05). However, since the p-value is less than 0.05 for NN-TWDP 

and MPSF algorithms, there is a statistically significant difference between prediction results when using 

charging record or station record time series.  

For NN-TWDP and MPSF, where the statistically significant difference between results has been 

observed, the dataset with greater occurrence of lower SMAPE is considered preferable. For NN-TWDP, 

most of the outlets have lower SMAPE when using the charging record; while for MPSF, most of the 

outlets have lower SMAPE when using the charging record (Fig. 5-3). Therefore, statistically speaking, the 

charging record based time series gives higher accuracy when NN-TWDP is the prediction algorithm; 

however, the station record based time series gives higher accuracy when MPSF is the prediction 

algorithm. There is no difference between using either of the datasets for RF and SV algorithms. 

Next, we investigate whether there is a statistically significant difference between the prediction 

results of the two datasets, regardless of the algorithm. In order to make an overall conclusion on the effect 

of these two datasets on the prediction accuracy, one approach is to perform the Wilcoxon signed rank test 

on all the results together. This way instead of 28 samples (number of outlets) per algorithm, we have 112 

samples (28 outlet and four algorithms) for all four algorithms. In this case, the p-value from the Wilcoxon 

test is 0.6136 which shows that, overall, there is no statistically significant difference in using either of the 



 

 

 

86 

charging record or station record based time series. This conclusion is not unexpected since the charging 

records are essentially zeroth-order approximation of the station records dataset, and the station records 

themselves are usually constant on pretty large intervals (e.g. Fig. 5-2). We speculate if the station records 

were a time series with lots of fluctuations, charging records, as it is zeroth-order approximation, would 

result in significantly worse prediction accuracy. 

5.6   Summary  

In this chapter, we investigated the difference between predictions based on time series obtained from 

charging records and station records. A charging record contains three values for each charging event 

(beginning and end of charging and the acquired energy) which comes from customer profiles. A station 

record, on the other hand, comes from station measurements and is a five-minute log of voltage, current, 

and power factor and its length depends on the length of the charging event.  

Because of the greater volume of data per charging event for station records, preparing the time series 

from the station record dataset takes longer than the charging record dataset; hence, for fast prediction 

applications charging record is more suitable. On the other hand, charging records are part of the customer 

profile (although anonymous) and yields privacy concerns while station records come from station 

measurements without any access to customer behavior. 

Perhaps the more important question is the difference in the prediction error when using these two 

datasets. In general, there is no statistically significant difference between prediction errors, although 

looking at the results for each algorithm demonstrates that for NN and MPSF, the charging records and 

station records create less error respectively. 

Table 5-III summarizes the difference between the two datasets when used for prediction. The table 

can guide an application designer to choose the right dataset depending on the speed and privacy concerns 

as well as prediction algorithm used for the application in hand. 
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TABLE 5-III Summary Of Differences Between Prediction With Charging Record And Station Record Based Time Series  

Time series origin 
Speed 

Prediction Error 

(SMAPE) 
Privacy Preserving 

Charging Record 

Preprocessing 

on average twice as 

fast 

lower SMAPE for NN-TWDP 

(Generally no statistically significant difference) 

No 

(comes from customer profile) 

Station Record 

Preprocessing 

on average twice as 

slow 

lower SMAPE for MPSF 

(Generally no statistically significant difference ) 

Yes 

(independent from each 

particular customer) 
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6   Solar power 

6.1   Overview 

In this chapter, we are applying forecasting algorithms to solve another problem in the 

context of smart grid that needs fast forecasting. This time, it is prediction of solar power 

generation from solar PV panels located on the UCLA Ackerman Union. The prediction is needed 

for real-time control and management of the energy storage system; if we know the generated 

power from PV panels, we can control the battery to have a constant current from the combination 

of the battery and PV unit.   

The forecasting in this problem would be a minute ahead forecasting that is performed each 

minute and hence has to be fast. In this case, however, unlike Chapter 2, we have access to offline 

computation in the system and are able to train the model offline. Thus, there is no limit on 

training time; however, when querying the system, the output should be served in a few seconds 

so that, considering network overhead and communication time with battery, the one minute goal 

is achieved.  

The rest of this chapter is organized as follows: Section 6.2 provides a literature review, 

Section 6.3 states the problem, and Section 6.4 reviews the prediction algorithms applied on solar 

power generation time series. Section 6.5 discusses the data, preprocessing of them, and the 

simulation setup. Section 6.6 reports the result of applying the prediction algorithms and then 

analyzes the results. Section 6.7 provides the summary of the chapter. 
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6.2   Literature Review 

The increasing propagation of large-scale intermittent renewable energy resources to address 

the electricity power demand and the environmental concerns adds more challenges to power 

system operation and deregulated energy markets due to the stochastic nature of these resources 

[92]. Although it has been recognized for a while that renewable energy is critical to meeting our 

energy needs, its utilization has been hampered by its intermittency and the difficulty of 

predicting its availability. Thus, employing renewable energy as part of our energy supply 

requires reliable prediction of its availability for power generation. Embedding renewable energy 

prediction techniques in the grid operation procedure facilitates the massive integration of 

renewables. Real time control of renewables and compensating devices would be more efficient if 

prediction is available. Reliable prediction methods may also improve the power quality and 

reliability of the power grid by enabling prompt compensation of negative consequences of 

renewable dynamics and fluctuations [93]. 

The necessity of renewable energy prediction and its complexity have motivated many 

researchers to develop an efficient and practical solution. This chapter only focuses on solar 

power prediction. The solar power prediction methods can be categorized in two main groups 

based on the variety of parameters employed for prediction: 1) multivariate model based methods 

and; 2) univariate model based methods. The multivariate methods usually estimate the solar 

power based on multi-input parameters such as solar irradiance, cloudiness and clearness indices, 

temperature, wind speed, relative humidity, etc., which are mostly influential physical and 

atmospheric parameters on the solar generation. On the other hand, univariate methods only rely 

on the current or past values of the solar power time series. Evidently, the later approach is 
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relatively cheaper as it doesn’t require acquiring and maintaining a weather station or other types 

of relevant measurement tools. In addition, for high speed dynamic control which requires short-

term solar power prediction, univariate methods are more effective as they do not rely on 

prolonged data acquisition processes. Although univariate methods only look at previous recorded 

data, there is usually a tradeoff between accuracy, cost, and speed of the prediction methods. The 

focus of this chapter is on developing relatively fast forecasting method based on univariate data 

to serve as part of real time dynamic control system. 

Although multivariate solar prediction methods have been already investigated significantly 

in the literature [94]-[100], univariate solar prediction methods are studied in a few publications.    

Univariate model based methods can be divided into linear based models, mainly including 

autoregressive and autoregressive moving average [101], and nonlinear based models such as 

artificial neural networks [102], support vector machine with kernel trick [103], fuzzy model 

[104], wavelet-based methods [105], echo state network [106], and k-nearest neighbors (kNN) 

[107]. Although nonlinear models (compared with linear models) seem to be more accurate in 

terms of capturing the nonlinear characteristics and time varying behavior of solar power 

generation, these methods generally take a longer time for training/tuning parameters and easily 

fall into local optimum.  

On the other hand, the univariate prediction methods can be categorized based on the 

prediction horizon ranging from super-short-term (about a minute ahead) to super-long-term 

prediction (more than a year prediction horizon). Although a few studies are available for the 

super-short-term prediction timeframe, this type of prediction is useful for real time control of 

renewables, regulation actions and power quality enhancement. While the short term prediction 
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methods are suitable for economic load dispatch planning or load increment/decrement decisions, 

and long-term prediction is normally valuable for unit commitment decisions, reserve requirement 

decisions, and maintenance scheduling to obtain optimal operating cost [108]. In [101], the short 

term univariate prediction method based on auto-regressive moving average (ARMA) model is 

used to predict the future solar generation according to the historical solar radiation data. Authors 

in [109] employ a hybrid solar power prediction method for super-short-term prediction. The 

objective of the latter study is to predict one step-ahead solar power generation (minutely) based 

only on historical solar power time series data. The long–term solar prediction is investigated in 

[110] while it develops a one day-ahead forecasting model based on an artificial neural network 

with tapped delay lines. In [111], super-long-term solar prediction is discussed while it is 

targeting the seasonality variations of solar potential for generation of electric and thermal 

powers. It also presents time series models for the analysis of insolation using daily data, 

transformed into monthly averages, covering a period between January 1961 and December 2008 

to confirm a prediction for 2012, and it compares the results with the data measured in the 2008-

2011 period. 

6.3   Problem Statement 

The objective is to predict the solar power generation for the next minute ahead based on 

historical solar power generation recorded data. Formally, we assume there is a function relating 

the predicted power and the past power: 

𝑝 𝑡 = 𝑓 𝑝 𝑡 − 1 , 𝑝 𝑡 − 2 , . . . ,	
   (6-1) 

where 𝑝(𝑡) is the actual power generated by the solar panel at time t, 𝑝(𝑡) is the prediction of the 

generated power by the solar panel at time t, and (𝑝 𝑡 − 𝑖 ) indicates the generated power in the 
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past at time (𝑡 − 𝑖). The main constraint for this application is that the whole process of 

measurement, communication, forecasting, and control action should take less than a minute to be 

useful. By assuming that whole process except forecasting takes about 30 seconds, the forecasting 

part should take well below 30 seconds to guarantee enough time for measurement, 

communication and control.  

As is the usual practice in forecasting, we are interested in finding an estimation of 𝑝(𝑡) that 

optimizes a particular performance (or error) criterion. There are variety of different definitions of 

forecasting error in the literature [91]. To this end, two of the most common error definitions are 

selected and results are reported in both: Symmetric Mean Absolute Percentage Error (SMAPE) 

and Mean Absolute Error (MAE). The SMAPE and MAE are defined as: 

𝑆𝑀𝐴𝑃𝐸 = 	
  
1
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(6-2) 

where 𝑁8H is the number of data points in the test set (defined below).  

Let 𝑆8G = {1,2, … , 𝑁8G} and 𝑆8H = {𝑁8G + 1,… ,𝑁} be two sets of indices for the training and 

test sets, respectively where 𝑁 is the total number of data points, and 𝑁8G is the number of data 

points in training set which makes 𝑁8H = 𝑁 − 𝑁8G . Later on, in the parameter selection phase, 

parts of the training set will be treated as the validation set. The different methods used to select 

the validation set are further explained in the parameter selection section. In this chapter, the most 

recent 10% of the data is used to evaluate the performance of the algorithm (test set). Note that the 

test dataset is not used in either the parameter selection or training phase. 
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6.4   Applied Algorithms 

The applied algorithms are ARIMA, kNN, SVR, and RF that have been introduced in 2.4 and 

3.3. 

6.5   Simulation Setup 

6.5.1   Data and Preprocessing 

The prediction algorithms described in the previous section are applied to the recorded solar 

power from solar PV panels located on the UCLA Ackerman union. The data used in this chapter 

have one minute granularity and were recorded from November 18, 2014 to April 24, 2015; 

however, not all the time the measurement was being recorded due to communication issues.  

Missing values and outliers have also been identified and treated. If there is a missing value, 

the Last Observation Carried Forward (LOCF) imputation is used to substitute the value. On the 

other hand, if there are more than one measurement in a given minute, the median of them has 

been used as the power value at that minute. As power generation is a positive value, negative 

values are considered outliers and substituted with zero. There was no normalization or feature 

extracting from the data.  

6.5.2   Parameter Selection 

In cross validation, the depth parameter (𝐷) varies between 2 and 60 (equal to looking only at 

the last two minutes and up to the past hour). We have looked at more than 60 minutes depth up 

to the last 24 hours as well; however, the results were not improved. This is not unexpected given 

that we are forecasting the next minute value, and more recent values will have more impact on 
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the forecasting compared with the older data in time.  Also, the two periodicities imaginable for 

solar radiation in one location are daily and annually periodicities. Since our available data is less 

than one year, only daily periodicity is noteworthy here. However, given the fact that the amount 

of daylight is variable in the year, there is no fix daily period for solar radiations, and hence more 

recent values should be considered as input to the algorithms (rather than something like the last 

24 hour values), where it is the case in this study. 

 
Figure 6-1 Sample recorded solar power data for a sunny day (Feb 12, 2015) and a cloudy day (Dec 2, 2014) . 
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The Blocked CV has been used as discussed in 3.4.2. The number of neighbors (k) ranges 

from 1 to 10 for kNN. Also, in the auto.arima function, maximum of p and q was set to 5 and 8 

respectively. Parameter d was picked by the auto.arima function based on the KPSS test [51]. The 

kernel type for SVR was selected from linear, radial basis, sigmoid, and polynomial kernels. 

Other parameters for SVR and their ranges are (the bold parameter is the default in the related R 

package):  𝜀 ∈ {0.01, 𝟎. 𝟏} and	
  𝐶 = {0.1, 𝟏}. Similarly for RF, the parameters are the number of 

trees,	
  𝑛𝑡 ∈ {200, 𝟓𝟎𝟎}, number of variables to consider for splitting at each node, 𝑚 ∈

L
s
, 𝟏
𝟑
, L
Ä
×𝐷, and minimum size of terminal nodes, 𝑛𝑠 ∈ {𝟓, 10}. There are lots of other 

parameters for SVR and RF for which we used their default value in the relevant R package. 

6.6   Results and Analysis  

6.6.1   Results  

The training set in our simulations was the first 90% of the data which makes the test set the 

last 10% of the data. We used five blocks in the cross validation procedure. 

Fig. 6-2 shows the SMAPE and MAE for each algorithm while Table 6-I shows the optimum 

selected parameter for each algorithm. 

According to Fig. 6-2, kNN has the best overall performance with respect to both MAE and 

SMAPE. Its relative error (SMAPE=1.67%) is significantly better than the other algorithms and 

its absolute error (MAE=237) is comparable with SVR’s MAE at 217. Although all three kNN, 

SVR, and RF algorithms have comparable absolute errors (MAE), their relative error (SMAPE) is 

very different. This phenomenon has been discussed deeper in the Analysis subsection of this 
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chapter. ARIMA fails to accurately predict according to both criteria which is not unexpected due 

to ARIMA’s heavy reliance on periodic behavior in the time series. 

 

  

 
Figure 6-2 Symmetric Mean Absolute Percentage Error (Smape) and Mean Absolute Error (MAE) Averaged 

on test days for each algorithm 
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TABLE 6-I Optimum Selected Paramerters For Each Algorithm 

Parameter 
ARIMA kNN SVR RF 

Depth (𝐷) -- 5 5 10 

Neighbor (𝑘) -- 1 -- -- 

Order (p,d,q) (5,0,7) -- -- -- 

Kernel -- -- Polynomial -- 

𝜀 -- -- 0.01 -- 

Cost (𝐶) -- -- 1 -- 

Number of trees (𝑛𝑡) -- -- -- 200 

Splitting leaves at each 
node (𝑚) 

-- -- -- L
s
𝐷	
  = 5 

Minimum of terminal 
nodes (𝑛𝑠) 

-- -- -- 5 

 

As Table 6-I shows, the selected depth for all the algorithms is rather short, i.e. in kNN and 

SVR the prediction is made by looking at the last five minutes of values and in RF by looking at 

the last 10 minutes of values. Even p in ARIMA (the order of Auto-Regressive model) has been 

selected as five, which is equivalent to considering the last five minutes of values. Hence, through 

optimum parameter selection, all the models rely on the most recent data to make the prediction. 

This, once again, emphasizes the importance of local patterns in the times series prediction rather 

than global patterns.  

As mentioned earlier, the timing is also important, and making the prediction should not take 

more than a few seconds so that the control process can finish in one minute. Fig. 6-3 shows the 

execution time for each algorithm once they are provided with the query. Clearly, all algorithms 
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are able to respond to the query in less than a fraction of a second which is well below a few 

seconds limit. It is noteworthy to mention the higher response time is for kNN, as it is considered 

a Lazy Learning (or Instance-based) algorithm, such that no learning has been done unless a 

query is received. Therefore, it is not surprising if it takes longer, as the other algorithms are 

trained offline but kNN is not. Also, keep in mind that the training time for other algorithms (and 

the parameter selection time for kNN), which could take a couple of hours, is not factored in here. 

However these training/parameter selection can be done offline and periodically (it is done every 

15 days in this chapter) so it should not interfere with the querying part. Depending on the 

computation cost, running the training/parameter selection more often will generate the same or 

better accuracies. Note that for each query, kNN searches the whole training dataset and as the 

data grows, the response time will increase too. The 0.1 seconds is for searching in about half a 

year of data (our currently available data), so it can increase to about 0.2 seconds when querying 

against a whole year of data. 

 
Figure 6-3 The average time (in seconds) needed for each algorithm to make a one minute ahead prediction. 

 The simulations has been performed with RStudio version 0.98.1091 on an Intel Core i-7 

CPU at 3.40 GHz with 16 GB RAM. RStudio is running under R version 3.1.2. 
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6.6.2   Analysis 

The results reveal interesting characteristics of each of the applied algorithms. For example 

the low SMAPE of the kNN algorithm can be justified as follows: according to (6-2), SMAPE is 

100% when either of the predicted or actual value (and not both of them) is equal to zero. 

Considering that in kNN the prediction is always an instance of the past data and the fact that 

there are lots of zeros in a 24 hour period (especially at night, refer to Fig. 6-1), there will be lots 

of instances that actual power and the prediction are zero, hence yielding a SMAPE equal to zero. 

However, in other algorithms, as they have more arithmetic involved, chances are that their 

prediction for night time is a very small number but not exactly zero, which makes the SMAPE of 

that time equal to 100%. However, this type of error in prediction has a lot less of effect on MAE; 

therefore, MAE for other algorithms is much better compared to MAE for kNN.  

One way to test if this discrepancy in error is occurring for the aforementioned reason, is to 

set the smaller predicted values of SVM, RF, and ARIMA equal to zero. Since the peak of the 

values is in the order of 35kW and the first value after night hours is in the order of 50 W, we 

modify these algorithms to output zero when predicted value is less than 10 W. With this 

modification, the results are depicted in the fig. 6-4.   

The fact that thresholding the predicted values does not change the MAE considerably, but 

changes the SMAPE (from 49.04% to 1.53% for SVR and from 49.31% to 1.68% for RF) shows 

that the reasoning behind the source of difference in error measurements  was right and there are 

lots of near zero predictions that make the SMAPE large for these algorithms. Please note this is 

not the case for ARIMA as the minimum of predicted values is around 500W and thresholding 

with 10W would not change the predicted values and error measurements.  
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Figure 6-4 Symmetric Mean Absolute Percentage Error (SMAPE) and Mean Absolute Error (MAE) 

Averaged on test days for each algorithm when including the thresholding effect: the output values of ARIMA, 
SVR, and RF algorithms that are less than 10W is rounded to zero 

When considering the thresholding procedure, SVR generates the best results with respect to 

both MAE and SMAPE measurements; however, kNN follows very closely in both measures. 
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Considering parameter selection for kNN will be relatively faster (according to Table 6-I, SVR 

and RF both have four parameters to select while kNN only has two), it could be a suitable 

substitute for SVR, when simplicity of the algorithm is considered. 

6.7   Summary 

In this chapter, we investigated four different algorithm for predicting the power generated by 

solar radiation. This is a challenging task as cloudiness of the weather can affect the quality of 

prediction. In our case, we want to predict generated power a minute ahead for dynamic control of 

energy storage. Therefore, it makes sense to focus on the most recent values of the time series and 

compare local temporal patterns to make the prediction. This hypothesis is verified in the 

parameter selection phase where, for all the algorithms, the optimum history of the data (the one 

that results in a lower MAE) used for predicting the minute ahead value is at most ten minutes.  

One other observation is that, depending on the error measurement, naturally, different 

algorithms are deemed optimum. For example, according to Fig. 6-2, kNN is the best algorithm 

when considering the SMAPE while SVR is the best one when considering the MAE. It is 

important for a system designer to pick an error measurement that models their concerns/costs of 

the problem better and also to understand the difference of these error measurement criteria to be 

able to tell why one error is high while the other is low. We speculate in this chapter that the 

mismatch between results of both errors is because of near zero situations where SMAPE is 100% 

if actual value is zero and the predicted value is not zero regardless of the magnitude of the 

predicted value and the magnitude of its difference with the actual value. Based on this 

speculation, we set a threshold to round near-zero predicted values to zero, thus changing the 

SMAPE of that point from 100% to 0%. 
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SVR and kNN outperformed the other algorithms; kNN needs less parameters to tune and 

hence will result in a simpler system. In general, it seems that machine learning based algorithms 

(SVR, RF, and kNN) outperform the traditional ARIMA algorithm drastically. 
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7   Conclusion and Future Work  

Throughout this research, we focus on forecasting algorithms with an emphasis on Machine 

Learning algorithms in the smart grid context. We believe that this research will be useful in this 

new era of smart grid growth. We have proposed two new algorithms, a cross validation method, 

as well as took the approach of using statistical methods to evaluate the performance and draw 

conclusions on the effectiveness of the applied algorithms which is not commonly used in the 

engineering field.  

In this section, we provide our conclusions and suggest future research directions: 

7.1    Fast Prediction for a Smartphone Application 

We look at Instance-based prediction algorithms for their speed and their potential for being 

appropriate for our smartphone application. Among all Instance-based algorithms, kNN was faster 

and more accurate for almost all of the outlets.   

One interesting finding is that for all outlets, 𝑘 = 1 is the optimum number of neighbors in 

the kNN algorithm. This means it is optimal to look at the most similar pattern in the past, to 

predict the future instead of aggregating more than one similar patterns. Note that the depth 

parameter (𝐷) is different from number of neighbors (𝑘) and might be different for each outlet, 

i.e. for one outlet it might be optimum to compare 5 day patterns with the training set while in the 

other one it might be 10 days. 

We improved the forecasting accuracy and speed by substituting the Euclidean distance in 

kNN with Time Weighted Dot Product (TWDP) dissimilarity. The TWDP dissimilarity helped 

speed by reducing the time to compute the dissimilarity from O(3n) to O(2n), and it improved 
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accuracy by having it time weighted. Also, the dot product tends to detect the events (non-zero 

activities) in sparse time series (where there is lots of zero values), and hence, it is appropriate for 

comparing sparse times series. We used it to implement the forecasting engine on the smartphone 

application for EV drivers at UCLA campus. 

Looking into other dissimilarity definitions for further reducing computational cost could be 

a future direction. It would be interesting to map different dissimilarities to different time series 

by some statistical attribute of the time series.   

7.2   Non-Instance based Algorithms  

We explore the potential of including offline computation in the accuracy of our predictions. 

This was an important step in our study, as we needed to make an educated decision on any 

potential trade-offs in accuracy when using Instance-based algorithms for our smartphone 

application. After comparing the performance of different non-Instance based algorithms, we 

proposed the Modified Pattern Sequence-based Forecasting (MPSF) algorithm which is an 

improvement of the Pattern Sequence-based Forecasting (PSF) algorithm that has been successful 

in price forecasting applications. 

The challenge with most of these algorithms is number of their “tuning knobs” (parameters, 

kernel function, etc.). Finding the optimal combination for each algorithm is a significant task to 

be investigated in future work. 

7.3   Blocked Cross-Validation 

We have introduced Blocked Cross-Validation as the fittest Cross-Validation (CV) method 

for time series. We discussed how k-fold CV which comes from the Machine Learning realm does 

not respect the order of the samples since data samples are shuffled randomly. On the other hand, 
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last block CV (from the world of time series analysis) does not provide more than one error 

measure per parameter combination and hence is not able to provide a confidence interval for the 

error measure. Our proposal takes advantage of both approaches: it respects the order while 

providing more samples per parameter combination.  

Future work would be to investigate the application of Blocked Cross Validation method in 

other algorithms and time series prediction methods.  

7.4   Comparing Algorithms using Statistical Methods 

We used statistical tests to claim whether an algorithm has consistently lower error than 

another one, rather than merely looking at their average behavior. This is very important and not 

well practiced in the engineering world, but with abundance of data and data driven approaches in 

this era of big data, well-grounded statistical tests should be taken seriously. While the average 

error of some algorithm on several benchmarks (e.g. time series in our case) could be lower than 

another, it does not necessarily mean that algorithm should be preferred all the time. Rather, the 

distribution of the number of times that the algorithm generates the lower error determines 

whether or not the algorithm is consistently better than others. Hence, making decisions by just 

looking at average behavior might be misleading. 

7.5   Imputation Methods and their Influence on Prediction Results 

We looked into another challenge while dealing with data: missing or corrupted values. We 

looked at different ways to find the best guess for the missing value; this process is called 

imputation. We found that the accuracy of different forecasting algorithms might change based on 

the imputation method that has been used to remedy the missing data. Therefore the imputation 

method and forecasting algorithm should be treated as one package and not separately. We 
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proceed to determine a suggested set of imputation methods to avoid or pair along for each 

forecasting algorithm. 

A significant research contribution would be to investigate the (statistical) properties that 

make forecasting algorithms and imputation methods combinations fit or unfit.  

7.6   Privacy Preservation Concerns in Data  

When dealing with data, there is always a concern with privacy. We had access to two sets of 

data that were describing a (somewhat) similar EV charging phenomenon. However, one of them 

is prone to jeopardizing privacy (by coming from an anonymous customer profile database) while 

the other dataset is not. We compared them for speed and accuracy and found that the one that 

comes from the anonymous customer profiles is faster to pre-process due to a reduced number of 

data points per charging event (three); on the other hand, the other dataset collects measurements 

each five minutes, so depending on the length of the charging event, it might have a relatively 

large number of data points. As for accuracy, we did not find any statistically significant 

difference which should not be surprising as they report the same phenomenon. 

It would be interesting to see the privacy risks that these datasets can actually pose. More 

specifically, one could investigate whether customer EV information, such as vehicle make, 

model, etc., can be extracted from the charging patterns of different EVs. 

7.7   Solar Power Forecasting for Energy Storage Management 

As another forecasting problem in the context of smart grid, we investigated forecasting solar 

power in order to compensate the overall current with a battery management system. If we know 

the solar power in the future, we can adjust the battery charging or discharging so that the overall 

current from the solar panels and battery is constant. We investigated several forecasting 
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algorithms and conclude that kNN and SVR perform the best. Although kNN, because of its 

simple structure and less number of parameters, is recommended.  

Future work would be to implement the algorithm into the battery management system and 

test it in a real world setting. 
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