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Abstract

A central question in neuroscience is how sensory inputs are transformed into percepts. At this point, it is
clear that this process is strongly influenced by prior knowledge of the sensory environment. Bayesian ideal
observer models provide a useful link between data and theory that can help researchers evaluate how prior
knowledge is represented and integrated with incoming sensory information. However, the statistical prior em-
ployed by a Bayesian observer cannot be measured directly, and must instead be inferred from behavioral
measurements. Here, we review the general problem of inferring priors from psychophysical data, and the sim-
ple solution that follows from assuming a prior that is a Gaussian probability distribution. As our understanding
of sensory processing advances, however, there is an increasing need for methods to flexibly recover the
shape of Bayesian priors that are not well approximated by elementary functions. To address this issue, we
describe a novel approach that applies to arbitrary prior shapes, which we parameterize using mixtures of
Gaussian distributions. After incorporating a simple approximation, this method produces an analytical solution
for psychophysical quantities that can be numerically optimized to recover the shapes of Bayesian priors. This
approach offers advantages in flexibility, while still providing an analytical framework for many scenarios. We
provide a MATLAB toolbox implementing key computations described herein.

Key words: ideal observer models; perception; Bayesian inference

Significance Statement

Ideal observer models in neuroscience are an important tool for developing and testing hypotheses about
how sensory information is processed. Here, we review the canonical application of Bayesian ideal observer
models for understanding sensory processing. We present a new mathematical generalization that will
allow these models to be used for deeper investigations into how prior knowledge influences perception.
We also provide a software toolkit for implementing the described models.

Introduction
Sensory systems must encode information about envi-

ronmental stimuli in a way that supports successful be-
haviors. However, sensory measurements are often
noisy and ambiguous, making this a demanding task.

For example, in the visual system, each retinal image
is consistent with an infinite number of possible three-
dimensional scenes. In the auditory system, the vibra-
tion of the inner ear intermixes both the identity and
elevation of sound sources. Prior knowledge about the
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environment can help resolve these ambiguities (Knill
and Richards, 1996; Simoncelli and Olshausen, 2001).
Thus, advances in understanding sensation and per-
ception often rely on understanding how prior knowl-
edge is represented in the nervous system and how
this prior knowledge influences our percepts.
The influence of prior knowledge on perception is often

characterized using psychophysical experiments that mea-
sure the bias and variability of perceptual reports (Hürlimann
et al., 2002; Weiss et al., 2002; Adams et al., 2004; Girshick
et al., 2011; Vacher et al., 2018). For example, measured
biases can be compared with biases predicted by ideal ob-
server models, which can also inform our understanding
of how sensory information is represented within neuronal
populations (Ganguli and Simoncelli, 2010; Wei and
Stocker, 2015, 2017; Morais and Pillow, 2018). Bayesian
ideal observer models specifically posit that observers
optimally combine noisy sensory measurements with a
probability distribution representing the relative frequency
with which events occur in the world (called the prior distri-
bution, or simply the prior). Bayesian models are popular
across many domains, including sensation and perception,
because they can successfully explain a wide range of
phenomena (Weiss et al., 2002; Adams et al., 2004; Burge
et al., 2010; Girshick et al., 2011; Kim and Burge, 2018).
However, these models are often poorly constrained.
Without constraints on the shape of the prior, Bayesian
models can effectively explain any biases. Thus, a set of
important questions arise: What is the shape of the prior
the observer is using? Does this shape accurately reflect
probabilities in the world? Does it change systematically
with experience?
Bayesian priors are often assumed to take the form of a

Gaussian distribution for computational efficiency (Mamassian
and Landy, 1998; Weiss et al., 2002; Beierholm et al., 2009;
Sotiropoulos et al., 2011; Saunders and Chen, 2015; Rokers
et al., 2018). This assumption, however, limits the ability to
ask questions about the shape of the prior because a
Gaussian only has two parameters. In addition, analyses of
natural scene statistics suggest that the probability distribu-
tions of environmental stimuli are generally non-Gaussian
(Dong and Atick, 1995; Girshick et al., 2011; Sprague et al.,
2015). In order to more flexibly model prior distributions, a
previous study introduced an analytic approach based on
piecewise approximations that leverages assumptions
about the local shape of the prior relative to the magnitude
of measurement noise (Stocker and Simoncelli, 2006).
An alternative approach to increasing flexibility without

introducing assumptions about prior shape is to use nu-
meric methods that do not place constraints on the
global parametric form or local properties of the prior
(Girshick et al., 2011; Acerbi et al., 2014; Sprague et al.,
2015). Numeric methods, while able to fit an arbitrary
prior, are often slower and require hand-tuning of the nu-
merical support and precision. Thus, while researchers
have a varied toolkit for modeling the shapes of Bayesian
priors, there is still a need to diversify our tools for using
these models in perceptual research.
Our goal is to provide an overview of how Bayesian ideal

observer models can be used in perceptual research, and
to describe a computational approach that uses mixture of
Gaussian models to flexibly and efficiently model the influ-
ence of priors on perception. First, we review the general
mathematical principles that link a Bayesian ideal observer
to psychophysical data. Then, we present the analytic solu-
tions for psychophysical quantities assuming a simple
Gaussian prior and Gaussian measurement noise. Next,
we introduce a mixture of Gaussians model of priors that
provides increased flexibility. Mixture of Gaussian priors
have been employed in other contexts, such as computer
vision and signal processing (Olshausen and Millman, 1999;
Snoussi and Mohammad-Djafari, 2001), but are not com-
monly used in ideal observer models (but see related appli-
cations for modeling perceptual inferences by Acerbi et al.,
2014; Orhan and Jacobs, 2014). Lastly, we introduce a new
analytical approximation that increases the computational
efficiency of the mixture of Gaussians model. This approxi-
mation offers improvements in efficiency for adaptive experi-
mental methods (e.g., adaptive stimulus staircasing) as
compared with fully numerical approaches. An accompany-
ing MATLAB (MathWorks) toolkit provides implementations
that can be used to simulate and fit psychophysical data.

Materials and Methods
Bayesian ideal observer models
In a Bayesian ideal observer model, the observer makes

a noisy measurement m of a stimulus x and uses that
measurement to generate an estimate of the stimulus in
the world x̂ or to select an appropriate behavioral re-
sponse r. We can represent this mapping of measurement
onto response with the function r=T(·) where T is some esti-
mation function. For example, in the context of a psycho-
physical experiment, T(·) may represent a point estimate
of the presented stimulus (in which case r ¼ TðmÞ ¼ x̂) or a
binary judgment in a two-alternative forced-choice (2AFC)
experiment (e.g., r ¼ Tðm1;m2Þ ¼ “yes” when queried
whether x2 . x1).
A Bayesian ideal observer selects the optimal response

to a set of stimuli on the basis of the three components:

• a prior distribution p(x )
• a likelihood p(m |x)
• a loss function L(x, r )

The prior p(x ) represents the observer’s knowledge of
the probability of encountering the stimulus based on pre-
vious experience. The likelihood pðmjxÞ, the probability of
a measurement given the stimulus, captures the noisiness
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in the observer’s measurement of the stimulus. The noisi-
ness depends on both external factors (such as signal
strength and presentation time) and internal factors (such
as neuronal noise and attentional state).
To obtain the observer’s belief about the current stimu-

lus x given a measurement m we first use Bayes’ rule to
obtain the posterior distribution, pðxjmÞ, as follows:

pðxjmÞ ¼ pðmjxÞpðxÞ
pðmÞ : (1)

The posterior represents the probability distribution of a
stimulus, given the current measurement, and can thus be
used for drawing inferences. Here, p(m ) is the model evi-
dence (or marginal likelihood) that serves to normalize the
posterior. This calculation is represented graphically in
Figure 1. Since p(m ) is a scalar value and does not affect
the shape of the posterior, we can note that pðxjmÞ / p
ðmjxÞpðxÞ.
This simple illustration, however, shows a likelihood

based on only one example measurement. If we instead
consider the full range of possible measurements, as
shown in Figure 2, we can see how the resulting shape of
the posterior varies. Figure 2A shows the prior as a func-
tion of x. By definition, the prior is independent of the
measurement m, so it varies horizontally, but is constant
along the vertical dimension. This two-dimensional (2D)
format, similar to that used in (Girshick et al., 2011), helps
illustrate the point that the posterior (Fig. 2C) arises from
pointwise multiplying the prior (Fig. 2A) and likelihood
(Fig. 2B). Figure 2B illustrates the likelihood by plotting
the probability of the observer making each measure-
ment, conditioned on each possible stimulus value. This
2D distribution is generated by assuming that the mea-
surement associated with each stimulus value is cor-
rupted by additive Gaussian noise, but is unbiased. A
vertical slice through B represents what we refer to as the
measurement distribution pðmjxnÞ, which is the probabil-
ity over measurement values m given a particular stim-
ulus xn. A horizontal slice through B, on the other hand,
represents the likelihood function p(mn, x), which is the
probability of a given measurement m as a function of
different stimulus values x. Thus, the 2D object pðmjxÞ
may represent either the likelihood when it is conditioned

on a specific measurement and considered as a function
of the stimulus, or a measurement distribution when it is
conditioned on a specific stimulus and considered as a
function of measurements.
While the likelihood is the pertinent quantity for apply-

ing Bayes’ rule, the measurement distribution is the rel-
evant quantity when considering samples of the noisy
sensory observation process. Note the measurement
distribution is a true probability density function based
on a noise model (here, we use additive Gaussian
noise). The likelihood, on the other hand, is not generally
a probability distribution because it does not necessar-
ily integrate to one.
By multiplying each row of the prior and likelihood plots

and normalizing, we obtain the set of possible posterior
distributions pðxjmÞ for each possible measurement (Fig.
2C). Note that since the prior is non-Gaussian and steeper
around the left flank of the peak, the posteriors are more
concentrated around these values.
Finally, a loss function is needed to complete the

model. The loss function L(x,r) refers to the penalty of
making a response r when the true stimulus was x. An op-
timal decision rule is one where the observer will minimize
the loss on average over the course of a set of responses.
To calculate the expected loss of a particular response,
we can find the expected loss under the posterior:

E½Lðx; rÞ� ¼
ð
Lðx; rÞpðxjmÞdx: (2)

A decision rule is Bayes optimal under a particular loss
function if it minimizes the expected loss for all measure-
ments. That is, T*(·) is Bayes optimal if for all estimation
functions T(m) and all measurement valuesm:

E½Lðx;TpðmÞÞ� � E½Lðx;TðmÞÞ�: (3)

Note that here we show T(·) as a function of a single m,
but it may also take multiple measurements into account,
as in a two-alternative forced-choice paradigm (2AFC). In
the following sections, we will discuss this loss in more
concrete terms in the context of point estimation and
2AFC tasks.
While the derivations outlined in this paper do not as-

sume any particular stimulus, they do assume that the
measurements are unbiased, and that the measurement
noise is additive and Gaussian distributed. In this case,
the likelihood always takes the form of a Gaussian. Under
these assumptions, the mean of the likelihood varies with
and is equal to the measurement. We also assume that
the width of the likelihood (i.e., the amount of noise) does
not inherently vary with the measurement. However, the
Weber–Fechner law across many stimuli suggests that
this assumption does not hold if stimulus values are rep-
resented in many common sense units (e.g., candelas per
square meter for luminance, visual degrees per second
for speed), because sensory thresholds in these units in-
crease systematically as stimulus values increase (Hecht,
1924; McKee et al., 1986; Pardo-Vazquez et al., 2019).
Thus, a transformation of the stimulus values from physi-
cal space to “sensory space” may often be necessary to

Figure 1. Canonical Bayesian computation. This figure illus-
trates Bayes’ rule, by which a posterior is the product of a
prior (the observer’s knowledge of the probability of encoun-
tering the stimulus) and a likelihood (the set of stimulus val-
ues associated with a given a measurement). The posterior
is scaled by the inverse of the marginal likelihood. Toolkit
script: Fig1_BayesianDemo.m.
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satisfy this assumption (Stocker and Simoncelli, 2006;
Kwon et al., 2015). Indeed, the Weber–Fechner law sug-
gests that the width of the likelihood or measurement distri-
bution is approximately constant in logarithmic units across
many stimulus domains (although deviations have been
noted). For example, if one were to model visual speed per-
ception, the measurement distribution and prior could be
represented in terms of pðlogðmÞjlogðxÞÞ and p(x), respec-
tively. Throughout this document, we will represent the likeli-
hoods as Gaussians even if a transformation is necessary,

to keep the estimation of the prior computationally tractable.
For reference, Table 1 provides a summary of notation used
for each of the ideal observer parameters.

Modeling psychophysical data from an observer with
a Gaussian prior
We begin with a simple case in which the prior takes the

form of a Gaussian distribution. If this condition is met, the
posterior has an analytic solution and is also Gaussian.
This property follows from the general rule defining the
product of any two Gaussians. Specifically, if we denote a
Gaussian distribution generally as Nða;b2Þ with mean a
and standard deviation b, we can write the prior asNð�; g2Þ
(see Table 1). We define the likelihood as a Gaussian func-
tion with its mean equal to the measurement value m and a
SD of s :Nðm;s2Þ. We can then write the posterior as:

pðxjmÞ ¼ 1
r
Nðm;s 2ÞN ð�; g 2Þ

¼ N ðmpost;s
2
postÞ

(4)

C

BA

Figure 2. The canonical Bayesian computation as in Figure 1 but expanded to a set of likelihood functions. The prior (A) is multiplied
by the likelihood defined by a given measurement (B, shown for m1 and m2) to obtain the posterior (C). Note that the shape of the
posteriors change for different likelihoods since the prior is non-Gaussian, but the posteriors are overall drawn to the largest proba-
bility region of the prior. In each panel, the heat map values represent probability with higher intensity mapping to higher probability.
Identity lines are indicated with dashed black lines. Toolkit script: Fig2_2DBayesianDemo.m.

Table 1: General notation

Value Notation
Stimulus value x
Sensory measurement m
Stimulus estimate x̂
Response r
Likelihood SD s
Prior mean, SD �, g
Posterior mean, SD mpost, spost

Research Article: Methods/New Tools 4 of 17

January 2023, 10(1) ENEURO.0144-22.2022 eNeuro.org



where the normalizing constant r , which relates the
posterior to the product of prior and likelihood, is given
by:

r ¼ 1ffiffiffiffiffiffiffi
2p

p spost

sg

� �
exp � m2

2s 2
� �2

2g 2
1

m2
post

2s 2
post

" #
; (5)

and the posterior variance and mean are given by:

s 2
post ¼ s 2 g 2

s 2 1 g 2

� �
(6)

mpost ¼ m
g 2

s 2 1 g 2

� �
1 �

s 2

s 2 1 g 2

� �
: (7)

Selecting a sensory estimate from the posterior
To start linking this framework to psychophysical data,

we first consider an experiment in which we want to fit a
Bayesian ideal observer model to a set of data in which par-
ticipants reported point estimates of the presented stimuli
(e.g., through method of adjustment such that x9¼ r is a
possible estimate response when x is the true value). To
convert the posterior into an optimal estimate, we can assert
a loss function for our Bayesian ideal observer. In the
general form, this loss function will determine the Bayes
estimate that minimizes the expected error defined in
Equation 2:

x̂ ¼ argmin
x9

ð
Lðx; x9ÞpðxjmÞdx: (8)

Two commonly used loss functions are the zero-one loss
(where the loss is 0 when ðx� x9Þ ¼ 0, and 1 for all other val-
ues), and squared error loss (Lðx; x9Þ ¼ ðx� x9Þ2). Using
zero-one loss, we obtain a Bayes optimal estimate x̂ that
is the mode of the posterior, the maximum a posteriori
(MAP) estimate:

x̂MAP ¼ argmax
x

pðxjmÞ: (9)

For an ideal observer that uses a squared error loss
function, the Bayesian least squares (BLS) estimate is the
mean of the posterior:

x̂BLS ¼ E½xjm�: (10)

When the posterior is Gaussian, the MAP and BLS esti-
mates are equivalent and equal to mpost (Eq. 7), which can
be simplified to:

x̂BLS ¼ x̂MAP ¼ am1 ~�: (11)

Here, we have simplified the equation for mpost such that a
is a shrinkage factor that determines how biased the pos-
terior is toward the prior mean:

a ¼ g 2

g 2 1s 2

� �
(12)

and ~� offsets the posterior when the prior is not zero-
centered:

~� ¼ s 2

s 2 1 g 2

� �
�: (13)

With these simplifications we can rewrite the posterior as:

pðxjmÞ ¼ N ðam1 ~�;as 2Þ: (14)

When x̂BLS ¼ x̂MAP, we simply adopt x̂ to denote the es-
timate. The solution for x̂ here can also be considered as
a weighted average of the prior and likelihood means,
where the weights are inversely proportional to the var-
iance of the prior and likelihoods (Landy et al., 1995). To
make that link explicit, we can represent Equation 11 as
x̂ ¼ am1ð1� aÞ�, since ~� is equal to (1 – a)�. Note that
when the posterior is not Gaussian, the MAP and BLS es-
timates are not necessarily equivalent.

Distribution of sensory estimates
While the ideal observer model outlined in this paper is

defined from the perspective of the observer, we will
briefly shift our perspective to that of an experimenter to
demonstrate how the model can be used in practice. In a
task in which the observer is making repeated point esti-
mates of the stimulus (e.g., judging its visual brightness,
auditory volume, or speed), the mean of the measurement
distribution on each trial will be equal to the true value of
the stimulus, x, and we can define TðmÞ ¼ x̂ ¼ am1~� as
the function by which the ideal observer converts noisy
measurements into a response on each trial. While this is
a deterministic function, the value will vary from one trial
to another because of variability in the measurement m.
The responses thus form an estimate distribution pðx̂jxÞ,
the probability distribution of estimates, given a particular
stimulus (Fig. 3).
If we want to infer the underlying ideal observer param-

eters from a set of real behavioral data, we can fit a set of
empirically measured observer estimates to this estimate
distribution. To do so, we define an analytic form of this esti-
mate distribution pðx̂jxÞ with a substitution of variables in
which we substitute T�1ðx̂Þ form in the measurement distri-
bution pðmjxÞ ¼ N ðx;s2Þ. First, we solve for T�1ðx̂Þ and
the first derivative of this function with respect to x̂:

T�1ðx̂Þ ¼ m ¼ x̂ � ~�

a
(15)

d
dx̂

T�1ðx̂Þ ¼ 1
a
; (16)

and then perform the substitution of variables:

pðx̂jxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp �ðT�1ðx̂Þ � xÞ2
2s 2

� �����dT�1ðx̂Þ
dx̂

����

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp �
x̂ � ~�

a
� x

� �2

2s 2

2
64

3
75���� 1a

����
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2s 2
p exp �ðx̂ � ðax1 ~�ÞÞ2

2a2s 2

� �
(17)

which we can denote simply as:
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pðx̂jxÞ ¼ N ðax1 ~�;a2s 2Þ: (18)

While we could also derive the estimate distribution more
simply using the identity for the affine transformation of
Gaussian random variables, we use a substitution of varia-
bles here to draw a parallel to the mixture of Gaussians case
in the next section. Note that the form of the estimate distri-
bution is similar to the posterior distribution associated with
a single measurement (Eq. 14) with two key differences: the
mean of the estimate distribution is dependent on the stimu-
lus x instead of any specific noisy measurement, and the
variance is equal to the variance of the likelihood scaled by
a2 instead of a.
This distribution of observer estimates, given the stimu-

lus, provides the likelihood function for fitting the Bayesian
ideal observer model to data by performing maximum
likelihood estimation (MLE; not to be confused with
the likelihood of a Bayesian observer). Specifically, it is
a likelihood when considered as a function of the model
parameters u ¼ f�; g ;sg. Given a set of paired stimuli
and observer reports fðxt; x̂tÞgNt ¼ 1 from a set of condi-
tionally independent trials t = 1,...,N, the model likeli-
hood is given by:

pðfx̂tgjfxtg; u Þ ¼
YN
t¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2s 2

p exp �ðx̂t � ðaxt 1 ~�ÞÞ2
2a2s 2

� �
:

(19)

In practice, we optimize u by minimizing the negative
log-likelihood, which is obtained by taking the negative
log of this expression:

�log ½pð x̂tf g j xtf g; u Þ�

¼ �
XN
t¼1

log
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2s 2
p
� �

� ðx̂ � ðaxt 1 ~�ÞÞ2
2a2s 2

� �" #

¼ N
2
logð2pa2s 2Þ1 1

2a2s 2

XN
t¼1

ðx̂t � ðaxt 1 ~�ÞÞ2: (20)

Two-alternative forced-choice task
Experimenters often avoid having research participants

report point estimates of stimuli because the origin of the
noise in the measurement is ambiguous. For example, re-
sponses that incorporate a motor component may be
contaminated by motor noise in addition to sensory noise.
To avoid this issue, participants can make a categorical
judgment about stimuli in perceptual space that can be re-
lated back to physical qualities of the stimulus. One such
paradigm is a two-alternative forced-choice (2AFC) task in
which participants view two stimuli either sequentially or
concurrently and must select which of the two best fits the
instructions they are given. In a speed judgment task, for
example, the instruction might be: “indicate which of the
two stimuli appeared to move faster”. Often, this task is re-
peated for a range of stimulus values, such as stimulus
speed, to build up a psychometric function. This function,
for example, might describe the probability that a test
stimulus is perceived as moving faster than a fixed refer-
ence stimulus, as a function of the test stimulus speed.
Importantly, the two stimuli should differ in reliability to
estimate the best fitting parameters for both the likeli-
hood and the prior.
If we consider two stimuli x1 and x2, on each trial, the ob-

server makes two noise-corrupted measurements, which
we model with two measurement distributions pðm1jx1Þ
and pðm2jx2Þ or a single joint distribution pðm1;m2jx1; x2Þ
(see Fig. 4 for examples). The ideal observer selects an op-
timal response r based on a decision function that takes
both measurements as input (Tðm1;m2Þ). Here, we assume
this function indicates whether or not stimulus x2 best sat-
isfies the instructions given the measurements (e.g., in our
speed judgment example, was x2 faster than x1). This is de-
fined by the following decision rule:

r ¼ Tðm1;m2Þ ¼ 1 pðx2 . x1jm1;m2Þ.0:5
0 otherwise

;

�
(21)

where pðx2 . x1jm1;m2Þ is determined for each pair
ðm1;m2Þ by:

CBA

Figure 3. The distribution of sensory estimates arises from the variability in the measurement values about the expected value
across trials (EV; i.e., the true stimulus value). A, On a given trial, a likelihood is defined around the observed measurement. Here,
we plot the expected value of this likelihood for a given true stimulus, as well as other possible likelihoods that occur on a set of tri-
als. The prior is shown for reference. The upward arrow indicates the true stimulus that used to generate the likelihood. B, The re-
sulting posteriors for each trial are shown, along with downward arrows indicating the estimates (fx̂g) derived from these posteriors.
C, Over many trials, these estimates (now indicated as upward arrows) create an estimate distribution, which can be predicted for a
Bayesian ideal observer with a given prior and amount of sensory noise. When the prior is Gaussian, there is a closed form expres-
sion for this distribution. Toolkit script: Fig3_EstimateDistribution.m.
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pðx2 . x1jm1;m2Þ ¼
ð1
�1

ð1
x1

pðx1; x2 jm1;m2Þdx2dx1:

(22)

Since we model the likelihoods as independent and the
posteriors are both Gaussian (at this point in the derivations),
we can more succinctly say this occurs whenever the esti-
mate x̂2 ¼ a2m2 1 ~�2 is greater than x̂1 ¼ a1m1 1 ~�1,
which we can express using the decision rule:

Tðm1;m2Þ ¼ 1 a2m2 1 ~�2 .a1m1 1 ~�1

0 otherwise:

�
(23)

Because this is now a classification task, we adopt the
loss function:

Lððx1; x2Þ; rÞ ¼ jr � 1ðx2 . x1Þj; (24)

where 1(·) denotes an indicator function that evaluates to 1
when the input is true. For simplicity, we will represent the
first case in Equation 23 as “yes” and the second case as
“no”. Graphically, this equation is represented in Figure 4 as
a white decision boundary in panels A–C for three different
combinations of noise levels for m1 and m2. The slope of
this line is determined by: m2 ¼ a1

a2
m1 1

~�1�~�2
a2

. If we want to
solve for the probability of responding “yes” for a given x2
and x1 over repeated trials (i.e., a point on the psychometric
curve), we can obtain a numerical solution by integrating
the joint distribution above the decision boundary:

pð“yes”jx1; x2Þ

¼
ð1
�1

ð1
�1

Tðm1;m2Þpðm1jx1Þpðm2jx2Þdm1dm2: (25)

The results of this integration for Figure 4A–C are shown in
Figure 4D, along with the full psychometric curves.
However, Bayesian ideal observer models with Gaussian

posteriors also allow for an equivalent analytical alternative

to this calculation. Specifically, we can obtain an analytic so-
lution for points on the psychometric curve via an alternative
model of the Bayesian observer in which the observer com-
putes the MAP estimate for each stimulus and then com-
pares which of the two is larger. This method has been used
previously (Stocker and Simoncelli, 2006) and is equivalent
to the optimal computation in Equation 25 when the prior
and likelihoods are both Gaussian. Since x̂MAP ¼ x̂BLS, this
solution works for both estimators. The probability that a
given estimate of x2 ( x̂2) is greater than the estimate x1 ( x̂1)
can be obtained by integrating over the estimate distributions
for the two stimuli in what is essentially a signal detection
problem (Green and Swets, 1966):

pð“yes”jx1; x2Þ ¼
ð1
�1

ð x̂2
�1

pðx̂2jx2Þpðx̂1jx1Þdx̂1dx̂2: (26)

Equivalently, pð“yes”jx1; x2Þ can be expressed as the in-
tegral over positive values of x̂2 � x̂1 in the probability dis-
tribution pðx̂2 � x̂1jx1; x2Þ. This has an analytic solution
since the difference of two Gaussian random variables is
itself a Gaussian. For a Gaussian prior, the estimate distri-
butions are indeed Gaussian (see Eq. 18) so this differ-
ence pðx̂2 � x̂1jx1; x2Þ is defined as:

pðx̂2 � x̂1jx1; x2Þ ¼ N ða2x2 1 ~�2;a
2
2s

2
2Þ � N ða1x1 1 ~�1;a

2
1s

2
1Þ

¼ N ða2x2 � a1x1 1 ~�2 � ~�1;a
2
2s

2
2 1a2

1s
2
1Þ

:

(27)

From this equation, pð“yes”jx1; x2Þ can be attained simply
by integrating over positive values of this difference:

pð“yes”jx1; x2Þ ¼
ð1
0
Nða2x2 � a1x1;a2

2s
2
2 1a2

1s
2
1Þ:

(28)

To simplify the calculation of this integral, we can con-
vert the difference distribution to a standard normal f (·)
by subtracting the mean and scaling all values by the

DCBA

Figure 4. Graphical illustration of computing the observer’s psychometric curve for a 2AFC task. A, Computing a single point on the
psychometric curve when x1 ¼ x2 ¼ 3 for measurement noise variances s2

1 ¼ 0:75; s2
2 ¼ 0:5 and a prior with v = 0 and g = 1.5.

Dashed line (top) shows the measurement distribution pðm1jx1Þ and solid line (right) shows measurements distribution pðmjx2Þ. The
2D grayscale image shows the joint distribution of observer measurements given the stimuli x1 and x2, formed by the product of the
two measurement distributions along the top and right. The white diagonal line is the observer’s decision boundary, corresponding to
measurement values for which the inferred speeds are equal. The probability that the observer reports “yes” (i.e., that x2 exceeded
x1) is the area above the decision boundary (point “A” in panel D). B, Same as panel A but with equal noise variances
s2

m1 ¼ s2
m2 ¼ 0:64. C, Same as panel A but with noise variances s2

m1 ¼ 0:5; s2
m2 ¼ 0:75. D, Full psychometric curves for the noise

variances used in panels A–C, showing the probability that the observer reports “yes” as a function of the stimulus x2. The points la-
beled A, B, C represent the sum of the probability above the diagonal in panels A–C.
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inverse of the SD. The location on the standard normal
curve that corresponds to the lower bound on the integral
in Equation 28 is then equal to the original mean divided
by the SD. This is useful because it allows us to integrate
the standard normal above this (standardized) mean to
find pð“yes”jx1; x2Þ for a given x2. That is, instead of inte-
grating the original normal from zero to infinity, we now in-
tegrate the standard normal up to the standardized mean.
Lastly, we take advantage of the fact that the standard
normal is symmetric about its mean to write the equation
as follows:

pð“yes”jx1; x2Þ ¼ U
a2x2 � a1x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
2s

2
2 1a2

1s
2
1

p� �
; (29)

where U(·) is the cumulative standard normal:

UðKÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
ðK
�1

exp
�t2

2

� �
dt; (30)

and the symmetry about the mean of f indicates thatÐ1
�Kf ðtÞ ¼ Ð K

�1f ðtÞ ¼ UðKÞ for all values of K.
We can again take the perspective of the experimenter

to demonstrate how to fit the ideal observer model to
2AFC data. This analytic solution is an efficient way to es-
timate the underlying parameters of the Bayesian ideal
observer model given a dataset fx1;t; x2;t;TtgNt¼1, where Tt
is the participant’s response to stimulus pair x1;t; x2;t on
trial t. As in the point estimate case, we can solve for the
best fitting parameters u ¼ fv; g ;s1;s2g with MLE in
which we minimize the following negative log-likelihood
function:

�log ½pðfTgjfx1; x2g; u Þ� ¼ �
XN
t¼1

Ttlog ½pð“yes”jx1;t; x2;tÞ�

1 ð1–TtÞlog½1–pð“yes”jx1;t; x2;tÞ�: (31)

Summary
Up to this point, we have described how to determine

the posterior, the individual sensory estimates, the sen-
sory estimate distribution, and the results of a 2AFC task
for a Bayesian ideal observer with a Gaussian prior and
likelihood. In the next section, we will generalize this
framework by deriving the same quantities for an observer
with a prior that can be modelled more flexibly as a mix-
ture of Gaussian components.

Modeling psychophysical data for an observer with a
mixture of Gaussians prior
While the approach outlined in the previous section

is computationally efficient, it assumes that the ob-
server’s prior is well fit by a single Gaussian. This is un-
likely to be the case assuming that the prior reflects
knowledge of natural scene statistics, since many
physical quantities have much heavier tails than a
Gaussian (Dong and Atick, 1995; Sprague et al., 2015)
or are even multimodal (Girshick et al., 2011; Kim and
Burge, 2018). Accurately modeling these shapes is

important. For example, long-tailed priors would pre-
dict that biases are reduced for stimulus values that
fall within the the flatter regions of the stimulus proba-
bility distribution than in the more peaked regions. In
this section, we propose an approach based on a mix-
ture of Gaussians that retains some of the efficiency of
the single Gaussian prior while better approximating
realistic priors. Table 2 lists a summary of the addition-
al notation adopted for this section.
Consider an observer with a prior defined by a mixture

of C Gaussian components:

pðxÞ ¼
XC
i¼1

wiNð� i; g
2
i Þ; (32)

where wi � 0 is the weight of the ith component, withP
wi ¼ 1, and �i and g2

i are the mean and variance of the
ith Gaussian component, respectively (Fig. 5A, red lines).
If we assume a Gaussian likelihood with variance s2, the
posterior is also a mixture of Gaussians (Fig. 5B, blue
lines):

pðxjmÞ ¼
XC
i¼1

~wiðmÞN ðaim1 ~� i;ais
2Þ; (33)

where ai and ~� i are the shrinkage factor and mean of the
ith posterior component, respectively:

ai ¼ g 2
i

g 2
i 1s 2

(34)

Table 2: Mixture of Gaussians notation

Value Notation
Weight (prior component i) wi

Mean (prior component i) �i
SD (prior component i) g i

BA

Figure 5. Prior and posterior defined by a mixture of Gaussian
components. A, The prior of a Bayesian observer (dark red
line) can be modeled as a mixture of Gaussian components
(light red lines). B, When combined with a Gaussian likeli-
hood, the resulting posterior is also a mixture of Gaussians.
Similar to the posterior resulting from a single Gaussian prior,
the mixture of Gaussians posterior is biased relative to the
likelihood. Likelihoods are shaded here for visual clarity. Toolkit
script: Fig5_MoGprior.m.
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~� i ¼ s 2

s 2 1 g 2
i

 !
� i: (35)

This is the mixture of Gaussians version of the posterior
given in Equation 14. Here, ~wiðmÞ is a set of adjusted
weights that combine the weights wi of the individual
components of the prior, the scale factors r i(m) for each
of the components of the posterior (analogous to Eq. 5),
and a normalization step to ensure the weights all sum to
1. To determine ~wiðmÞ, we can first define each r i(m) as:

r iðmÞ ¼ 1ffiffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 2

i 1s 2
p exp � m2

2s 2
� �2

i

2g 2
i

1
ð~� i1aimÞ2
2ais 2

" #
;

(36)

and by substituting for ~� i and ai with Equations 35 and 34,
respectively, then simplifying, we obtain:

r iðmÞ ¼ 1ffiffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 2

i 1s 2
p exp � ðm� � iÞ2

2ðg 2
i 1s 2Þ

" #
: (37)

Note that r i(m) is inversely related to the difference be-
tween the measurement m and the prior component
mean �i. Therefore, the posterior shape will change relative
to the likelihood, not just shift as in the single Gaussian prior
case. That is, as the measurement changes, the relative
weight of each component changes. We can combine the
scaling effects ofwi and r i(m) to define:

viðmÞ ¼ wir iðmÞ ¼ wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 2

i þ s 2
p f

m� � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 2

i þ s 2
p� �

; (38)

which is then normalized by the sum of all vi to obtain the
set of adjusted weights ~wiðmÞ:

~wiðmÞ ¼ viðmÞXC
i¼1

viðmÞ
: (39)

In the following sections, we will first demonstrate how
to fit the mixture of Gaussians prior to point estimation
and 2AFC data using numerical evaluation of the log-like-
lihood. We then derive an analytical approximation that
can reduce the computational load necessary to estimate
the observer parameters.

Selecting a sensory estimate from the posterior
As before, let us first consider the case where we want

to estimate a participant’s prior from a set of point esti-
mates from an experimental dataset. We can use the pos-
terior derived in Equation 33 and an appropriate loss
function to define an optimal estimate x̂. For the mixture
of Gaussians posterior, the MAP and BLS estimates differ.
Here, we will consider only x̂BLS, since this estimate has
an analytical solution in the mean of the posterior:

x̂BLS ¼
XC
i¼1

~wiðmÞðaim1 ~� iÞ: (40)

Without an analytical solution x̂MAP can be deter-
mined numerically and used instead in the numerical
approaches described below. Note that if the posterior
is multimodal, the BLS estimate may fall on a relatively
unlikely value (since it is between the two modes of the
posterior), and the MAP estimate may be unstable
(since it may oscillate between the two modes depend-
ing on the measurement noise on a given stimulus
presentation).

Distribution of sensory estimates
We can use Equation 40 to define TðmÞ ¼ x̂BLS for the

point estimation task. Unlike in the single Gaussian case,
however, there is no clear analytic form for T�1ðx̂BLSÞ with
arbitrary mixture of Gaussians priors since ~wi is a function
of m. To demonstrate this, consider a simplified form
where all ~� i ¼ 0 and it is clear that there is no way to solve
for T�1ðx̂BLSÞ:

TðmÞ ¼ x̂BLS ¼ m
XC
i¼1

~wiðmÞai

¼ m
1XC

i¼1

viðmÞ

XC
i¼1

viðmÞai
: (41)

Instead, we can numerically estimate T�1ðx̂BLSÞ by
first calculating TðmÞ ¼ x̂BLS over a grid of points
fx̂BLS;mg to create a look-up table to find {m} from fx̂g
for a given set of Bayesian ideal observer parameters
u ¼ fwi; �i; g i;sg. With a goal of estimating an observ-
er’s prior from a set of N point estimates (all with the
same sensory noise level, s ), we can then evaluate the
likelihood of the data given the putative model parame-
ters, u , using Equation 17:

pðfx̂tgjfxtg; u Þ

¼
YN
t¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp �ðT�1ðx̂tÞ � xtÞ2
2s 2

� �����dT�1ðx̂tÞ
dx̂t

����:
(42)

Note that we have abbreviated x̂BLS to x̂ for simplicity
here. This process is then repeated for other parameter
sets until we find an optimal solution that maximizes
the likelihood of the data (or minimizes the negative
log-likelihood). That is, finding u that minimizes the
following:

�log ½pð x̂tf g j xtf g; u Þ�

¼ �log
YN
t¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp �ðT�1ðx̂tÞ � xtÞ2
2s 2

� �����dT�1ðx̂tÞ
dx̂t

����
" #

¼
XN
t¼1

ðxt � T�1ðx̂tÞÞ2
2s 2

1N log½
ffiffiffiffiffiffiffi
2p

p
s ��

XN
t¼1

log
����dT�1ðx̂tÞ

dx̂t

����:
(43)

The toolkit includes a function for this numerical ap-
proach (fitEstimData_numerical.m), which we will
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also return to in Results. This process can be computa-
tionally expensive, however, if we are trying to fit an ob-
server’s prior with many Gaussian components (each of
which is defined by three parameters w, �, g ). While this
may be acceptable for lower numbers of components
and datasets that have already been collected, this is
more problematic if the mixture of Gaussians model
is used during the course of an experiment to guide an
adaptive staircase.
To make the log-likelihood equation more tractable to

solve, we can derive an approximate analytical solution
for the point estimate distribution if we approximate
Equation 40 using just the expected value of the measure-
mentEðmÞ ¼ x when calculating ~wi:

~wiðxÞ � ~wiðmÞ (44)

This approximation allows us to solve form in Equation 41:

TðmÞ ¼ x̂BLS �
XC
i¼1

~wiðxÞðaim1 ~� iÞ (45)

TðmÞ ¼ x̂BLS � m
XC
i¼1

~wiðxÞai 1
XC
i¼1

~wiðxÞ~� i: (46)

We can then derive an analytic solution to T�1ðx̂BLSÞ
and its first derivative with respect to x̂BLS:

T�1ðx̂BLSÞ ¼ m �
x̂BLS �

XC
i¼1

~wiðxÞ� i

XC
i¼1

~wiðxÞai

(47)

d
dx̂BLS

T�1ðx̂BLSÞ � 1XC
i¼1

~wiðxÞai

; (48)

and in turn use the substitution of variables to derive
an (approximate) analytic solution in the form of a
Gaussian:

pðx̂BLSjxÞ� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp �ðT�1ðx̂BLSÞ�xÞ2
2s 2

� �����dT�1ðx̂BLSÞ
dx̂BLS

����

pðx̂BLSjxÞ� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2

p exp

�

x̂BLS�
PC
i¼1

~wiðxÞ�iPC
i¼1

~wiðxÞai
�x

0
BB@

1
CCA

2

2s 2

2
666664

3
777775
���� 1PC
i¼1

~wiðxÞai

����
(49)

pðx̂BLSjxÞ � N
XC
i¼1

~wiðxÞðaix1 ~� iÞ;s 2
XC
i¼1

~wiðxÞai

 !2
0
@

1
A:

(50)

This approximates the true estimate distribution with a
Gaussian with a mean RC

i¼1 ~wiðxÞðaix1 ~� iÞ and variance
s2ðRC

i¼1 ~wiðxÞaiÞ2. Maximum likelihood estimation can
then be used as described previously to find the model
parameters that best explain an empirically measured
estimate distribution. In Results, we analyze the re-
gimes in which this is a good approximation.

Two-alternative forced-choice task
As with the point estimate distributions, we will again

describe a numerical and approximate analytical ap-
proach for handling data from a 2AFC task.
To numerically estimate the ideal observer’s prior

from a set of experimental 2AFC data using a mixture
of Gaussians prior, we can again use the general form
of the log-likelihood defined in Equation 31. Here,
pð“yes”jx1;t; x2;tÞ is defined with the general solution in
Equation 25, and the decision rule Tðm1;m2Þ follows
the definition in Equation 21. Since the estimate distri-
butions are not guaranteed to be Gaussian, there is no
simple analytical solution like there was in the single
Gaussian prior model. Thus, these equations must be
evaluated numerically by calculating pðx2.x1jm1;m2Þ
for each measurement pair on the 2D support to define
Tðm1;m2Þ, as illustrated previously in Figure 4. Once
the boundary defined by this decision rule is found, we
can simply integrate the joint distribution pðm1;m2jx1; x2Þ
above this boundary to determine pð“yes”jx1;i; x2;iÞ and
evaluate the model likelihood. This process is again
outlined graphically in Figure 6, with the white line now
denoting an example decision boundary for an ob-
server with a mixture of Gaussians priors.
Compared with the single Gaussian case, the mix-

ture of Gaussians decision boundary can be nonlinear
for a few reasons. One reason is the dependence of
each adjusted weight ~wi on m: the weight of the shrink-
age factor for each prior component decreases with a
greater difference between the component mean and
the likelihood mean. As a result, the perceptual bias
that the prior exerts is different at different points
along the stimulus domain. Nonlinear decision boun-
daries can also emerge when the prior is bimodal, with
measurements biased in different directions depend-
ing on which mode is closest. A function for numeri-
cally evaluating pð“yes”jx1;i; x2;iÞ is included with the
toolkit (calcMoGPFxn_Numeric.m).
As noted for the point estimation case with a mixture

of Gaussians prior, this numerical calculation can be
computationally expensive. We can, however, lever-
age the approximate analytical expression for the esti-
mate distribution to define an approximate expression
for the categorical data collected in a 2AFC experi-
ment. The reason this is possible is that with this ap-
proximation, the two-point estimate distributions are
Gaussian. Using the Bayesian least squares estimate
x̂BLS defined in Equation 40, we can generalize the de-
cision rule Tðm1;m2Þ in Equation 23 to an observer with
a Mixture of Gaussians prior:
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Tðm1;m2Þ

� 1
XC
j¼1

~wjðx2Þðajm2 1 ~� jÞ.
XC
i¼1

~wiðx1Þðaim1 1 ~� iÞ
0 otherwise

:

8><
>:

(51)

Note that we index the modified weights and means differ-
ently for the two stimuli (i for x1 and j for x2) since these param-
eters of the posterior components are defined by both the
prior components and the likelihood parameters, which differ
whenever x1 is different from x2. As before, we can derive an
analytical (although approximate) solution to the psychomet-
ric function for the mixture of Gaussians approach using
Equation 29, with the exception of substituting in the approxi-
mate estimate distribution pðx̂BLSjxÞ from Equation 49:

pð“yes”jx1; x2Þ

� U

XC
j¼1

~wjðx2Þðajx2 1 ~� jÞ �
XC
i¼1

~wiðx1Þðaix1 1 ~� iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

1

XC
i¼1

~wiðx1Þai

 !2

1s 2
2

XC
j¼1

~wjðx2Þaj

0
@

1
A

2
vuuut

0
BBBBBBB@

1
CCCCCCCA
:

(52)

Code accessibility
The code is included as Extended Data 1 and is available

at https://github.com/tsmanning/bayesIdealObserverMoG.

Results
In this section, we will demonstrate that there are a

number of ways to maintain the flexibility of the mixture of
Gaussians approach while reducing the total number of
parameters describing the prior, and then show that this
approach can be used to fit leptokurtotic and bimodal dis-
tributions. Lastly, we show that the approximate 2AFC so-
lution remains close to the numerical solution for a range of

model parameters constrained to realistic values. Although
we do not go into detail here about how to generate syn-
thetic estimate or 2AFC data using a Bayesian ideal ob-
server framework, we include some example code in the
toolkit about how one might benchmark implementations
of an observer model with a mixture of Gaussians prior
interactiveNumTrialsVSaccuracy.m.

Prior estimation error usingmixture of Gaussians
model with point estimation data
Theoretically, a mixture of Gaussians could fit an infinite

number of prior shapes given enough Gaussian compo-
nents in the model. But the number of model parameters
increases by three for each additional component, poten-
tially requiring large amounts of data to obtain reliable fits.
Further, unrestricted models will likely be nonconvex with
multiple local optima. These characteristics extend the
number of iterations needed to find the global optimum
of the log-likelihood objective functions at best and
make it unlikely or impossible to find the global optimum
at worst. In practice, unrestricted forms of the mixture of
Gaussians model will likely need multiple optimization
runs with different starting parameters to reliably minimize
the log-likelihood functions. There are a few ways to main-
tain the flexibility of the mixture of Gaussian approach while
reining in the number of parameters in the model.
In sensory subdomains where there is evidence that the

probability of some stimulus values monotonically de-
creases with stimulus magnitude, such as the spectral con-
tent of retinal images (Field, 1987; Dong and Atick, 1995),
we can reduce the number of parameters by a third in our
ideal observer model by fixing all component means at
zero. This allows us to model long-tailed distributions as
can be seen in Figure 7A, and in fact, any distribution that
is a member of the exponential power family with a peak at
zero and power 1�p� 2 can be approximated with
enough components (West, 1987).
If there is not sufficient evidence that the true distri-

bution of stimulus power in the environment is either

DCBA

Figure 6. An extension of Figure 4 to a long-tailed prior defined by a mixture of Gaussians (g1 ¼ 2; g2 ¼ 0:6 �1 ¼ �2 ¼
0; w1 ¼ w2 ¼ 0:5), similar in appearance to the prior in Figure 7A. Here, the decision boundary representing Tðm1;m2Þ is nonlinear be-
cause the different components of the prior have different levels of influence on the percept as m varies. A, As in Figure 4, the 2D grayscale
image shows the joint distribution of the observer measurements given the stimuli x1 and x2, formed by the product of the two measurement
distributions along the top and right. The white line is the observer's decision boundary. Here, x1 = x2 = 3 for measurement noise variances
s2
1 = 0.75, s2

1 = 0.5. B, Same as panel A, but with equal noise variances s2
m1 = s2

m2 = 0.64. C, Same as panel A, but with measurement
noise variances s2

1 = 0.75, s2
1 = 0.5. Toolkit script: Fig6_MoGGauss_graphicalDemo.m. D, Full psychometric curves for the noise varian-

ces used in panels A–C, showing the probability that the observer reports “yes” as a function of the stimulus X2. The points labeled A, B, C
represent the sum of the probability above the diagonal in panels A–C.
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symmetric or zero-peaked, one can take an alternative
approach of tiling the components (Fig. 7B). Here, one
defines a fixed number of components, their means, and
their SDs and fits only the weights of the tiled components
to the data. In this way, the mixture of Gaussians can ap-
proximate a prior with a peak at an arbitrary location,
skewness, and kurtosis. This approach has been used
previously with large numbers of components to approxi-
mate a “nonparametric” reconstruction of a complicated
prior (Acerbi et al., 2014).
Here, we demonstrate proof of principle for both ap-

proaches by generating a synthetic dataset of 1000 point
estimates using a zero-centered, non-Gaussian prior and
a bimodal prior, and then recovering estimates of these
priors using the mixture of Gaussians ideal observer
model and the constraints illustrated in Figure 7.

We first defined a long-tailed prior using a Cauchy
distribution pðxÞ ¼ 1=pð11 x2Þ. We generated individual
point estimates by numerically calculating the posteriors
for a range of different measurement values as seen at the
top right in Figure 8A and calculating x̂BLS for each mea-
surement. We used this matched set of measurements
and Bayes estimates as a look up table, and generated
the synthetic dataset of 1000 trials by randomly selecting
a stimulus value, adding Gaussian noise to obtain a mea-
surement, and then selecting a matched estimate by in-
terpolating between the previously calculated estimate
values. From these values, we estimated the Cauchy prior
using a restricted form of the mixture of Gaussians ideal
observer model in which we defined six Gaussian compo-
nents with a set of fixed g i on the range ½2�2;23� and all
component means �i fixed at zero. Thus, the only observer
parameters free to vary were the component weights wi,
and the measurement noise level s which was constant for
all simulated stimuli (that is, we are assuming the stimulus
properties that may affect this measurement noise are held
constant throughout the experiment). The best fitting pa-
rameters u ¼ fwi;sg were obtained through numerical op-
timization by numerically estimating T�1ðx̂Þ to obtain a set
of {mi} from the dataset of fx̂g and then minimizing the
negative log-likelihood, which is the sum over the individual
negative log likelihoods (see Eq. 43). The correspondence
between the true prior and the inferred one are shown at
the in Figure 8A, as well as the correspondence between
the true BLS estimates and the ones inferred through MLE.
In general, the mixture of Gaussians model closely matches
the true prior although each of the basis function components
on their own are less kurtotic than their sum.
We then repeated this process using a bimodal prior de-

fined by the normalized sum of two Gaussians p1ðxÞ ¼

BA

Figure 8. Mixture of Gaussians model fitting to non-Gaussian priors. A, Inferring the shape of a Cauchy prior from a set of 1000 point es-
timates. Top left, True prior in red and inferred prior in dashed black. Bottom left, The same, but on a semilog axis. Top right, Posteriors
for a set of stimuli and measurements, as well xBLS for each posterior (green line). Bottom right, Set of posteriors and xBLS inferred from
the data using the mixture of Gaussians model. B, Inferring the shape of a bimodal prior from a set of 1000 point estimates. Conventions
are the same as in panel A. A slight gamma correction has been applied to the set of posteriors shown in the 2D plots for visibility.
Toolkit scripts: Fig8_MoGtoNonGauss.m and Fig8_MoGtoNonGauss2.m for panels A and B, respectively.

BA

Figure 7. Two example methods for reducing the number of pa-
rameters to optimize when inferring an observer’s prior. A, A
leptokurtotic prior centered on zero formed by a mixture of
zero-mean Gaussian components. B, A skewed prior formed by
a mixture of Gaussian components with fixed positions and
widths. Toolkit script: Fig7_MoGConstrainedFitting.m.
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Nð�1 ¼ �2; g1 ¼ 1Þ and p2ðxÞ ¼ N ð�2 ¼ 2; g2 ¼ 1Þ, and
this time using the tiling constraint variation mixture of
Gaussians model previewed in Figure 8B. Once again,
the prior inferred from the data closely corresponds to
the true prior, although this correspondence will change
depending on the exact spacing and width of the basis
functions (Fig. 8B).

Error in mixture of Gaussians analytical approximation
with 2AFC data
We will next examine how close the approximate ana-

lytical solution is to the numerical solution within a range
of observer parameters that matches the biases and sen-
sitivities seen in real human data.

Human bias
To get a sense of what a realistic range of biases is in

the literature, we consider empircally measured percep-
tual biases for linear (i.e., noncircular, nonspherical) stim-
ulus domains like speed and distance. For example, in
Stone and Thompson (1992), participants performed a
2AFC speed judgment task in which they selected
which of two contrast and speed-varying stimuli ap-
peared to move faster. Depending on the contrast ratio
between the two stimuli, biases in speed judgments
ranged from ;0.55 to 1.55 times the veridical speed.
Similar results were found in later studies that devel-
oped Bayesian ideal observer models to explain these
biases (Weiss et al., 2002; Stocker and Simoncelli,
2006). An analysis of speed judgments for contrast-
varying stimuli in 2D and 3D (Cooper et al., 2016) found
a bias of up to ;1.75 times veridical. In a disparity
judgment task, Burge and colleagues reported bias of
;1.15 (Burge et al., 2010). Thus, we will ensure that the
simulated observer parameter models will at least reach
these levels in our error analysis. The relationship between
bias and observer parameters is straight-forward for a single
Gaussian prior and Gaussian likelihood. It is simply the frac-
tion of the shrinkage factors a1=a2 for the two stimuli, where
the observer is unbiased when the fraction equals one.
Referring back to Equation 12, this means we need to select
the stimulus likelihood widths s1;s2 and prior width g to

ensure that the upper and lower bounds of
g2 1s2

1

g2 1s2
2

fall on

the range of 0.55–1.75. For mixture of Gaussian priors,
the analytical approximation essentially treats the poste-

riors as Gaussians with SDs defined by s2 PC
i¼1

~wiðxÞai

 !2

.

This means we can produce human-like biases as
long as we select observer parameters such that

PC
i¼1

~wiðx1Þai

 !2, PC
j¼1

~wjðx2Þaj

 !2

also falls within this range.

Sensitivity
The slope of the psychometric curve at the point of

subjective equality (PSE; i.e., the value of x2 where
pð“yes”jx1; x2Þ ¼ 0:5) is commonly used as a scalar metric
to describe observer sensitivity when performing a 2AFC
task. The slope has an analytical solution 1=ðsdiff

ffiffiffiffiffiffiffi
2p

p
Þ

when the psychometric curve is a cumulative normal dis-
tribution, which occurs when distribution of differences
between estimates fx̂1; x̂2g is a Gaussian Nðmdiff;sdiffÞ.
This is the case for the single Gaussian prior and the ana-
lytical approximate solution for a mixture of Gaussians
prior (see Eqs. 29 and 51), but not necessarily for the full,
numerically evaluated mixture of Gaussians prior. In psy-
chophysical data, this slope could reasonably range from
near-infinite when the task is very easy to zero when the
task is impossible to solve and the observer is guessing
for all stimulus parameters. Therefore, we will define the
range of observer parameters to cover a large range of
slopes.
Although there is an infinite range of possible prior

configurations to test, we will restrict ourselves here to
two useful situations not well fit by a single Gaussian:
(1) a prior with only zero-mean components creating a
leptokurtotic unimodal distribution and (2) a bimodal
prior.

Example 1: leptokurtotic unimodal prior
First, we randomly selected a set of stimulus and ob-

server configurations 5000 times (Fig. 9A, top). Likelihood
means were selected from a uniform distribution ranging
from [–1, 1] and SDs fs1;s2g were selected from a uni-
form distribution in the range of 0 , s � 1. The prior was
restricted to two components, both zero-centered, which
were both constrained to be broader than the likelihoods.
Specifically, g1 was fixed at 1:1maxðs1;s2Þ and g2 was
randomly selected from a uniform distribution on the
range ½1:25maxðs1;s2Þ;3:25maxðs1;s2Þ�). The weights
on these components were chosen randomly from a uniform
distribution and normalized such that they summed to one.
Fixing g1 to be only slightly larger than the largest s ensured
that the priors were non-Gaussian and long-tailed, and that
the priors produced psychometric functions with a range of
biases covering the targeted range (actual biases ranged
from 0.55 to 1.83).
Next, we determined the difference between the psycho-

metric curve resulting from the analytical and numerical ap-
proaches described in the previous section (Fig. 9A,
bottom). We compare the approximate solution (Eq. 50) to
a numerical evaluation (Eq. 25) for the observer with a mix-
ture of Gaussian prior (blue and black lines). We also com-
pare the best fit single Gaussian to the mixture of
Gaussians prior (yellow line). In doing so, we can directly
assess the improvement of the approximate mixture of
Gaussians approach over the single Gaussian approxima-
tion. These results are plotted in Figure 9B–E. Figure 9B,C
show the correspondence between the single Gaussian
(Fig. 9B) and approximate mixture of Gaussians (Fig. 9C)
models and the numerical evaluations. The points all fall
near the identity line, indicated reasonable agreement, but
the spread is clearly larger for the single Gaussian model.
Figure 9D summarizes the errors, showing that the analyti-
cal mixture of Gaussians approximation has approximately
three times lower RMS error than the single Gaussian fit.
The error reduction is most profound about the PSE in
the psychometric function, where the analytical and
numerical approximations are essentially equivalent.
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This means that one can precisely estimate observer
biases even for non-Gaussian priors in a computation-
ally-efficient manner. The analytical approximation
does show a slight tendency to overestimate the upper
flank of the psychometric curve and underestimate the
lower flank (visible with the mean signed errors; Fig.
9E), indicating a bias toward steeper psychometric
functions. Thus, when using this approximation to fit-
ting psychometric data of observers with heavy-tailed
priors, this will produce prior and/or likelihood esti-
mates that are narrower than the true values.

Example 2: bimodal prior
Next, we assess the performance of the mixture of

Gaussians analytical approximation for fitting psycho-
metric data from an observer with a bimodal prior. We
randomly selected likelihood means and SDs in the
same fashion as we did for the zero-mean prior. To de-
fine a bimodal, two-component prior on each random-
ization, we selected the component means f�1; �2g from
a uniform distribution where one component was restricted
to the range [–1, –0.5] and the other from [0.5, 1]. The com-
ponent SDs were randomly selected from a uniform distribu-
tion in the range ½maxðs1;s2Þ; 1:4maxðs1;s2Þ� to ensure
each prior had two distinct peaks. Each component weight
was randomly selected and the two were normalized such
that they summed to one. As before, we present data from
5000 randomization runs in Figure 10. Overall, the approxi-
mate mixture of Gaussians method precisely estimated
the location of the PSE (i.e., this method has low RMS
error;0.5) for the bimodal priors. Compared with the lep-
tokurtotic unimodal case, however, the method shows in-
creases in both RMS error and signed error along other

regions of the psychometric function. The end result is
that while the analytical approximation can accurately
estimate an observer’s bias, it will again tend to over-
estimate the slopes of the observer’s psychometric
functions.

Discussion
The Bayesian ideal observer framework has proven

broadly useful for explaining perceptual phenomena in mul-
tiple sensory modalities. For example, a prior that peaks
at zero speed (a “slow motion” prior) has successfully pre-
dicted systematic biases in judgements of the speed
(Weiss et al., 2002; Stocker and Simoncelli, 2006) and di-
rection (Weiss et al., 2002; Sotiropoulos et al., 2011;
Rokers et al., 2018) of moving objects. A “light from above”
prior about the position of the illuminant in a scene has
been used to explain biases in the perceived shape of am-
biguously shaded figures (Adams et al., 2004). Similarly,
priors for viewing angle, convexity, and alignment between
principal lines of curvature and surface contours can ex-
plain biases in the interpretation of surface curvature from
simple line drawings (Mamassian and Landy, 1998). Other
examples of the success of Bayesian perceptual models in-
clude prediction of biases in the timing of intervals between
discrete events (Sohn and Jazayeri, 2021), the perceived
structure in complex moving patterns (Yang et al., 2021),
judgments in the orientation of contours (Girshick et al.,
2011), and the orientation of surface tilt in natural scenes
(Kim and Burge, 2018).
Here, we reviewed the straightforward approach for in-

ferring Bayesian ideal observer models from psychophys-
ical data when it is assumed that priors and sensory noise

ED

CBA

Figure 9. Performance of approximations for fitting heavy-tailed priors. A, Diagram illustrating the pipeline for comparing the
mixture of Gaussians (MoG) approximation and a single Gaussian (SG) to a full numerical evaluation of two-alternative forced
choice data generated with a MoG prior. B, C, Scatter plots illustrate the relationship between the numerical evaluation of
the MoG prior model and the SG and approximate MoG approaches. Black circles indicate the points corresponding to the
estimated psychometric function values shown in panel A for the SG and MoG approximations. D, Square root of the mean
squared error (RMS error) for the MoG analytical approximation and the single Gaussian approximation, summarized over 20
bins of the numerical data. E, Mean signed error distributions for both approximations. Note that axis ranges are set to
match Figure 10 for comparison. Toolkit script: Fig9_MoGErrorAnalysis.m.

Research Article: Methods/New Tools 14 of 17

January 2023, 10(1) ENEURO.0144-22.2022 eNeuro.org



are Gaussian distributed. Following on a step-by-step
formulation of this approach, we then extended the
model to include prior distributions described with
mixtures of Gaussians. In doing so, we build on previ-
ous work that has used mixture of Gaussian priors in
other perceptual applications. For example, one group
used a mixture of Gaussians to to define the relative
probabilities of experimental stimuli and then probed sub-
optimalities in perceptual inference (Acerbi et al., 2014).
Another group used a mixture of Gaussians approach to
model human observer priors about homogeneity of orienta-
tion to understand biases in visual short-term memory tasks
(Orhan and Jacobs, 2014).
Importantly, this mixture of Gaussians extension of

the Bayesian ideal observer framework complements
and expands on existing approaches for modeling the
relationship between natural scene statistics and per-
ceptual priors. First, if perceptual priors indeed match
the non-Gaussian distributions of natural stimuli, then
using a mixture of Gaussians model of priors may im-
prove how well we predict perceptual biases when
stimulus measurements fall on different regions of the
stimulus domain, as compared with a single Gaussian
model. Second, the mixture of Gaussians approach
provides a tool for researchers to constrain Bayesian
models using empirically measured stimulus statistics.
Bayesian models have faced criticism because of their
lack of constraint in how the priors or likelihoods are
defined (Jones and Love, 2011; Marcus and Davis,
2013; Rahnev and Denison, 2018). One way to con-
strain the prior is to assume that the visual system has
veridically learned the statistics of natural scenes and
these learned statistics are reflected in the prior. In this

case, one could define the ideal observer prior with a
mixture of Gaussians that matches an empirically
measured distribution of scene statistics, forgoing the
need to fit the prior from perceptual judgment data.
Indeed, several groups have made progress in the esti-
mating the distribution of spectral content in terrestrial
scenes (Field, 1987; Dong and Atick, 1995), tilt of ob-
jects in natural scenes (Burge et al., 2016), binocular
disparity (Sprague et al., 2015), and the spectral con-
tent of retinal motion during eye and head movements
(DuTell et al., 2020). While the match between esti-
mates of natural statistics and perceptual biases has
been investigated previously with numerical methods
(Girshick et al., 2011; Sprague et al., 2015), a (relatively)
low dimensional parameterization of these stimulus dis-
tributions opens up new opportunities for efficiency and
experimental investigations.

Limitations and alternative approaches
Although numerical estimation of the model parameters

will find an exact solution with sufficient precision, this is
not always possible in practice. Estimating pð“yes”jx1; x2Þ
requires summation over many 2D probability mass
functions, which must be redefined everytime the ideal
observer parameters are changed (e.g.,during numeri-
cal optimization). Further, the MLE loss functions for
both the numerical and analytical methods defined
in this document are likely to be nonconvex and thus
potentially prone to falling into a local minimum. This
problem can be potentially overcome by initializing the
numerical optimization in multiple locations within the
loss function hypersurface, although this will add addi-
tional computation time to the estimation.

ED
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Figure 10. Performance of the analytical approximation in fitting bimodal priors. A, Diagram illustrating the pipeline for compar-
ing the mixture of Gaussians (MoG) approximation and a single Gaussian (SG) before a full numerical evaluation of two-alternative forced
choice data generated with a MoG prior. B, C, Scatter plots illustrate the relationship between the numerical evaluation of the MoG prior
model and the SG and approximate MoG approaches. Black circles indicate the points corresponding to the estimated psychometric
function values shown in panel A for the SG and MoG approximations. D, Square root of the mean squared error (RMS error) for the
MoG analytical approximation and the single Gaussian approximation, summarized over 20 bins of the numerical data. E, Mean signed
error distributions for both approximations. Toolkit script: Fig10_MoGErrorAnalysis2.m.
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While the approximate analytical method dramatically
improves the computational efficiency of the ideal ob-
server parameter estimation, it deviates from the true
solution for pð“yes”jx1; x2Þ the further x2 gets from the
point of subjective equality. As shown in Figure 10, this
method is also especially prone to errors away from
the PSE when the prior or posterior are bimodal. These
problems can be mitigated in a few ways. If the approxi-
mate analytical method is to be used to adaptively select
stimuli during an experiment, the numerical approach
can be used after data collection to reach a more accu-
rate solution. If there is good reason a priori to think that
an observer’s prior is bimodal (e.g., based on natural
stimulus statistics), one can just fall back to the numeri-
cal solution.
Throughout this document, we assert that the ideal

observer likelihood and measurement distributions are
Gaussian along the domain in which the observer enc-
odes the stimuli. Other model parameterizations, how-
ever, have been proposed that constrain the likelihood
based on physiology and other assumptions, and result
in notably asymmetric, non-Gaussian likelihoods (Zhang
and Stocker, 2022). We also focus here on stimuli de-
fined along a linear axis (e.g., position, velocity, binocular
disparity), and therefore, the methods as presented can-
not be directly applied to perceptual judgments about
stimuli defined on a circular axis (e.g., orientation, visual
motion direction, position of an illuminant). Despite this
limitation, previous work has successfully used circular
statistics to explain perceptual biases with a Bayesian
ideal observer model (Mamassian and Landy, 1998;
Burge et al., 2016). As a circular analog of the Gaussian,
a mixture of von Mises distributions is a natural exten-
sion of the mixture of Gaussians approach.
Finally, we focus here on perceptual priors and not pri-

ors involved in decision-making or perception-action con-
tingencies. Decision strategies could presumably affect
the loss function as well, if there was an advantage to tak-
ing some other summary statistics from the posterior
distribution instead of the least squares estimate. The in-
fluences of these strategies have been considered else-
where (Chambers et al., 2019) but are out of the scope of
the current work.
In conclusion, many scientific questions about how

prior knowledge is incorporated into perceptual judg-
ments and perceptually-guided behaviors remain unan-
swered. Within the Bayesian framework, for example,
do priors vary significantly between observers and do
they vary between different tasks? How closely do pri-
ors follow from the statistics we can measure empiri-
cally from the environment across multiple stimulus
domains? How adaptable are priors in response to
changing stimulus statistics? A major limiting factor in
answering these questions is the accuracy and effi-
ciency with which we can estimate people’s priors from
experimental data. Broadening the computational tool-
kit for experimenters and modelers to address this chal-
lenge is an important component of the larger effort to
advance our understanding of the transformation from
sensation to perception.
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