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Brain Imaging: Your Brain Scan
Doesn’t Lie About Your Age
Multi-modal MRI data analysis can be used to predict a child or young adult’s
age. Most, but not all, individuals’ brain-derived age estimate is close to their
chronological age.
Silvia A. Bunge1,2

and Kirstie J. Whitaker2

Sitting at a table with several
neurologists and neuroscientists last
year, the first author presented
images of a man’s brain from
a structural magnetic resonance
imaging (MRI) scan, and asked her
colleagues to guess how old he was.
Although these were all undeniably
brain experts, they were stymied by
this seemingly simple question: the
closest guess was over 20 years off. In
this issue of Current Biology, Tim
Brown and colleagues [1] unveil a fully
automated MRI data analysis pipeline
that can be used to infer, with
a startlingly high degree of accuracy,
the age of an individual between 3 and
20 years old.

In 2010, Washington University
researchers working with resting-state
fMRI data from 238 individuals
between 7 and 30 years of age
showed that the strength of correlated
activity between brain regions is
a good indicator of an individual’s
age [2]. Their support vector
machine-based multivariate pattern
analysis allowed them to predict
55% of the variance in age within this
cohort.

In their new study, Brown et al. [1]
use measures of brain anatomy
rather than brain activation to predict
age. Their analyses are based on
multi-modal structural MRI data
from a diverse sample of 885 typically
developing individuals, collected
from 12 MRI scanners at nine
institutions across the USA
(Pediatric Imaging, Neurocognition,
and Genetics (PING) Study; see
http://chd.ucsd.edu/research/
ping-study.html).

Using a fully automated pipeline,
Brown et al. [1] analysed and
integrated three different types of
structural MRI data from this large
sample (Figure 1). From T1- and
T2-weighted scans, they derived
measures of brain morphology and
signal intensity, respectively, for
multiple regions of interest. From
diffusion-weighted scans, they
computed diffusivity for a number of
white matter tracts, as is commonly
done, but also for subcortical nuclei
and the cerebellum. As will be
discussed later, diffusivity in
subcortical gray matter was a
surprisingly strong predictor of age
during adolescence.

All in all, 231 brain variables per
participant were incorporated into
the model. Modeled separately, the
morphological, diffusion, and signal
intensity measures each accounted
for 81–83% of the variance in age — no
small feat. And together, these
measures accounted for more than
92% of the variance in age across
the sample of 3–20-year-olds.
This level of accuracy in predicting
age from brain measures is
simply unprecedented in the
literature.

On average, the model’s prediction
for an individual was within
approximately one year of his or her
chronological age. The model was
most accurate, however, for younger
children, such that the average
prediction error was 8 months for
3-year-olds (with the prediction
ranging from 2–4 years) and 1.5 years
for 20-year-olds (with the prediction
ranging from approximately 17–23
years). As is to be expected, then,
it is during the period of most
dramatic brain development — early
in childhood — that anatomical
differences between individuals are
the strongest indicator of an
individual’s age.

Interestingly, the explanatory
power of a given brain variable
also varied with age. Gray matter
signal intensity within subcortical
regions was the very strongest
predictor during early and middle
childhood, whereas diffusivity within
subcortical regions of interest was the
strongest predictor late in
adolescence. By contrast, diffusivity
within white matter fiber tracts was
a consistently strong predictor
across the age range. It is worth
noting that total cortical area was a
very poor predictor of age,
exhibiting high variability across the
age range.
In summary, Brown et al. [1]

effectively demonstrate the power of
non-invasive structural MRI to
accurately track brain development
through childhood and adolescence.
They show that the model-derived
‘brain age’ is only off by about a year
from the chronological age, on
average. Based on their data, they
conclude that the anatomical
phenotype of the brain is under tight
control throughout child and
adolescent development. Below we
highlight some of the key
theoretical and practical implications
of this work.
Although it is not possible to

compare directly the accuracy of this
model with that of other models, it
appears that these structural MRI
measures — either in combination or
alone — provide a more accurate age
estimate than the resting-state
functional connectivity measure used
previously [2]. Indeed, it stands to
reason that individual differences at
a given age would be greater for
measures of brain function (not to
mention cognitive functioning) than
brain structure, given that structural
MRI is insensitive to microscopic
differences at the molecular,
cellular, and circuit levels that surely
influence the dynamics of functional
interactions within and between
regions.
How can we reconcile the

current evidence of predictable
age-related changes in brain
structure with the body of prior
evidence pointing to important
individual differences in brain
development [3,4]? The most
facile answer is that these
individual differences are most
compelling in late childhood and
adolescence, the period of
development during which the
model’s prediction error is
greatest (63 years by age 20). On
average, however, the prediction
error is still much smaller than one
would have guessed based on the
individual differences literature.
Brown et al. [1] explain the

apparent discrepancy by noting that,
‘‘despite marked variability among
children across a wide variety of
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Figure 1. Illustration of Brown et al.’s [1] analytic derivation of age estimates from an individ-
ual’s multi-modal MRI data.

Sample MRI images from two 3-year-old girls in the PING dataset (courtesy of Tim Brown). At
left: automatic segmentation of structural MRI image used to measure cortical thickness and
area. At top: diffusion-weighted scan used to measure the structural integrity of multiple fibre
tracts. At right: automatic segmentation of structural MRI image used to measure subcortical
volumes. The converging lines represent the numerous brain measures that are combined to
predict an individual’s age. Illustration of the automatic pipeline conceptualized by Ori Elis,
M.A., a student in the Psychology Ph.D. program at UC Berkeley.
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isolated brain measures, there are
aspects of brain development for
which the multidimensional biological
phase is remarkably controlled, and its
timing is more closely tied to
chronological age than was previously
known’’.

Indeed, a big piece of this puzzle
about the existence of predictable
age-related differences in spite of
important individual variability
relates to the choice of brain
measures for themodel. Brown et al. [1]
set out to identify the neuroanatomical
measures that are most powerful for
capturing developmental changes,
and used these measures to predict
age. Had they instead weighted the
model towards measures showing
strong individual differences, it
would have been difficult to predict
age from them. In other words, an
individual differences researcher’s
signal is a developmental researcher’s
noise.

This automated pipeline and large
normative data set might, in the future,
be valuable in a clinical setting to
monitor brain development in
individual patients, testing whether
their level of ‘brain maturity’ is
lower — or higher — than expected
based on their age [4,5]. For a given
patient whose age is known, the
relative predictive power of each of the
brain variables for typically developing
individuals of his or her age could be
specified as a priori weights in the
model. Then, the model could
potentially be used to quantify more
precisely the extent to which this
individual’s brain deviates from
expectation.

Such a technique theoretically
could enable early detection of
abnormal brain development in
individuals with a family history of
schizophrenia, autism, or other
heritable neurological disorder, those
who have experienced early-onset
neurological damage, and those who
have been exposed prenatally to
environmental toxins or substances of
abuse. Of course, it is important to
proceed cautiously, as much more
research is needed to test the validity
and cost-effectiveness of this
approach.

Readers familiar with the emerging
field of ‘neurolaw’ will immediately
wonder whether this technique could
be relevant for legal deliberations.
In the aggregate, these data provide
some of the strongest evidence yet
for protracted maturation in brain
structure throughout adolescence,
corroborating prior neuroscientific
evidence that contributed to the
United States Supreme Court
decisions to abolish for juvenile
offenders the death penalty (Roper
versus Simmons, 2005) and life without
parole sentencing (Graham versus
Florida 2012, and Miller versus
Alabama, 2012).

However, we would caution
strongly against the use of this type of
technique in individual legal cases, for
example to determine whether
a juvenile defendant is competent to
stand trial, or — in the limit — whether
he or she is criminally responsible. As
Brown et al. [1] carefully note, ‘‘Brain
scans, though informative about
anatomical and physiological states,
cannot be used to make inferences
about an individual’s level of
psychological maturity’’. It is difficult to
foresee a time when we will be able to
accurately infer or predict patterns of
behavior from brain imaging data;
predicting a single numerical value
(age), as Brown et al. [1] do, is already
an impressive feat.
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