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ABSTRACT 

 

Computational Prediction of Transcriptional Influence 

 

Michael P. Cary 

 

Genome-wide expression measurements remain difficult to interpret.  Two major challenges lie 

in drawing firm conclusions from hundreds or even thousands of significantly changing genes, 

and in deriving hypotheses from the data that merit further testing.  Identifying the degree to 

which each gene regulator acts to increase or decrease the expression of each gene, a concept I 

refer to as transcriptional influence, would greatly increase our ability to make sense of these 

data. 

 

This work describes a new method to calculate the transcriptional influence that each regulatory 

motif in a de novo predicted set has on each gene represented in a gene expression measurement 

platform, using only a compendium of data from the platform and genome sequence information. 

The method uses independent component analysis (ICA) first to generate genetic regulatory 

modules, and then to predict DNA sequence motifs (putative regulatory sites) that are enriched in 

these modules.  In a final step, the relative membership of each gene in each gene module and 

the enrichment of each sequence motif in each module are used to predict the relative influence 

of each sequence motif on each gene. 
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The power of these predictions is demonstrated in the analysis of microarray data for several C. 

elegans variants, including isp-1 and hif-1 mutants. isp-1 mutations extend lifespan through the 

HIF-1 transcription factor, but there is no meaningful overlap among significant genes in hif-1 

and isp-1 microarray datasets.  In contrast, our method reveals extensive similarity in gene 

expression at a deeper level.  Moreover, a regulatory motif predicted to have a strong influence 

in both datasets matches the canonical HIF-1 binding site. 
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Chapter 1: Introduction 
	
	
Advances	in	genome-wide	experimental	techniques,	such	as	RNA,	protein	or	metabolic	

profiling,	have	had	a	radical	impact	on	biological	research	in	recent	years.		These	high-

throughput	techniques	provide	researchers	with	a	wealth	of	data	about	a	biological	sample,	

such	as	the	abundance	of	messenger	RNA	for	nearly	every	gene	in	the	genome,	or	the	

abundance	of	thousands	of	different	proteins.			

	

Concomitant	with	the	widespread	adoption	of	these	technologies	has	been	the	development	of	

bioinformatic	techniques	aimed	at	helping	researchers	make	sense	of	the	data	they	generate.		

Early	work	in	this	area	focused	mainly	on	developing	statistical	methods	to	help	researchers	

decide	which	observed	differences	from	a	data-rich	assay	were	most	likely	to	be	real,	and	which	

may	have	arisen	simply	due	to	random	technical	or	biological	variation	not	associated	with	a	

condition	of	interest	(Cristoni	&	Bernardi	2004;	Kerr	&	Churchill	2001;	Satagopan	&	Panageas	

2003).		This	work,	combined	with	continued	technological	advances,	has	led	to	larger	and	larger	

sets	of	“significant”	molecules	from	high-throughput	assays.		This	in	turn	has	led	to	a	new	

challenge:	from	a	list	of	hundreds	or	thousands	of	significant	molecules,	how	does	one	

determine	which	changes	are	germane	to	the	biological	questions	at	hand	(Murray	2000)?	

	

The	challenge	of	interpreting	results	from	high-throughput	assays	has	spawned	a	flurry	of	

research	aimed	at	providing	meaningful	contexts	for	sets	of	molecules,	especially	genes	and	the	

proteins	or	non-coding	RNAs	that	they	encode	(Bussemaker	et	al	2007;	Curtis	et	al	2005;	
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Sivachenko	et	al	2007;	Troyanskaya	2005).		For	example,	efforts	to	provide	functional	context	

include	the	development	and	application	of	controlled	vocabularies	to	gene	annotation	

(Ashburner	et	al	2000;	Jupe	et	al	2014;	Mayer	et	al	2014),	and	the	generation	of	pathway	or	

network	maps	that	show	how	genes	and	gene	products	interact	with	each	other	(Croft	et	al	

2011;	Dahlquist	et	al	2002;	Kanehisa	&	Goto	2000).	

	

An	implicit	and	widespread	assumption	in	much	of	this	work	is	that	most	biological	processes	

involve	a	relatively	small,	discrete	set	of	molecules	that	together	execute	some	function.		I	will	

refer	to	this	as	the	assumption	of	extreme	specialization,	because	it	views	most	gene	products	

as	serving	in	very	specific	capacities	(though	many	of	these	are	unknown).		For	many	cellular	

processes,	there	is	abundant	evidence	that	this	assumption	is	valid.		For	example,	some	

processes	are	carried	out	by	macromolecular	complexes.		Many	of	these,	for	example,	the	

ribosome,	have	been	studied	in	great	detail,	such	that	the	identity	of	the	molecules	comprising	

them,	their	physical	structure	and	orientation,	and	their	contribution	to	the	overall	function	of	

the	complex	is	known	in	some	detail	(Bedford	et	al	2010;	Chakravarthy	et	al	2005).	

	

There	are,	however,	cellular	processes	in	which	the	assumption	of	extreme	specialization	may	

not	hold.		Protein	kinases	provide	a	good	illustration,	as	they	may	be	much	more	promiscuous	

(i.e.,	capable	of	phosphorylating	many	different	protein	targets)	than	originally	appreciated	

(Lienhard	2008).		These	many	substrates	might	reflect	a	diversity	of	downstream	functions,	or	

possibly	simply	as	excess	kinase	substrates	that	titrate	down	their	activity	(Kim	et	al	2011).		

Furthermore,	the	human	kinome	appears	to	be	resilient	to	perturbation	and	able	to	rapidly	
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circumvent	the	effect	of	highly	specific	kinase	inhibitors	(Graves	et	al	2013).		These	and	other	

findings	suggest	that	the	set	of	human	kinases	may	form	an	extremely	highly	connected	

network,	and	that	the	effect	of	specific	phosphorylations	on	kinase	function	may	range	from	

neutral	(no	effect)	to	highly	activating	or	highly	inhibiting.		Thus,	the	common	motif	in	signaling	

pathways	of	a	linear	kinase	cascade,	in	which	a	protein	kinase	acts	to	phosphorylate	another	

protein	kinase,	which	thereby	becomes	activated	and	phosphorylates	yet	another,	may	be	an	

over-simplification	of	the	biological	reality	–	dozens	or	even	hundreds	of	other	kinases	(and	

other	proteins)	may	exert	effects	on	the	components	of	the	pathway	and	transduction	of	the	

signal.	

	

Another	area	in	which	the	assumption	of	extreme	specialization	may	not	hold	is	that	of	

regulatory	interactions	between	transcription	factors	and	DNA.		Many	models	of	small-scale	

genetic	regulatory	networks	have	been	proposed	in	recent	years,	each	typically	involving	a	

handful	of	transcription	factors	and	dozens	to	hundreds	of	target	genes	(Lee	&	Tzou	2009).		For	

example,	Davidson,	et	al.,	developed	a	model	for	the	specification	of	the	endomesoderm	in	the	

sea	urchin	embryo	that	contained	45	genes,	and	Hartemink,	et	al.,	developed	a	model	of	the	

pheromone	response	in	S.	cerevisiae	that	contained	32	genes.		Such	models	are	useful	for	

performing	in	silico	experiments	on	the	modeled	system.		These	can	lead	to	knowledge	not	

easily	obtained	by	traditional	experimental	methods,	such	as	the	discovery	of	emergent	

properties	not	apparent	from	studies	of	individual	genes	or	proteins.		
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However,	one	criticism	of	small-scale	genetic	regulatory-network	models	is	that	they	represent	

the	function	of	gene	regulators	in	isolation	from	genes	and	proteins	not	included	in	the	model.		

There	is	growing	experimental	evidence,	e.g.	from	in	vivo	protein-DNA	binding	assays	such	as	

ChIP-seq	or	ChIP-on-chip	assays,	that	many,	if	not	most,	transcription	factors	bind	proximally	to	

a	large	fraction	of	the	genome	(Van	Nostrand	&	Kim	2013).		These	assays	also	show	that	

transcription	factors	bind	to	different	genomic	regions	with	a	wide	range	of	affinities,	and	that	

some	genomic	regions	appear	to	be	bound	with	high	affinity	by	many	different	transcription	

factors.		Thus,	the	true	genetic	regulatory	network	of	the	cell	may	be	both	highly	connected	and	

highly	variable	in	the	degree	to	which	each	gene	regulator	influences	its	target	genes	(Biggin	

2011).		A	global	set	of	predictions	for	the	influence	of	each	gene	regulator	on	each	gene	(a	

concept	I	refer	to	as	transcriptional	influence)	could	therefore	prove	more	useful	in	interpreting	

genome-wide	expression	measurements	than	methods	that	yield	only	sets	of	small-scale,	

largely	disjoint	genetic	regulatory	networks	or	pathway	maps.		Such	predictions	could	also	

serve	as	the	foundation	for	a	global	genetic	regulatory	network.		This	raises	the	question,	“How	

can	predict	one	predict	transcriptional	influence	on	a	genome-wide	scale?”	

	
Here,	I	present	a	method	that	takes	a	significant	step	toward	the	accurate	prediction	of	

transcriptional	influence	genome-wide	and	toward	the	prediction	of	a	global	genetic	regulatory	

network	from	a	large	compendium	of	gene	expression	measurements	(Chapter	2).		The	method	

uses	independent	component	analysis	(ICA)	first	to	generate	genetic	regulatory	modules,	and	

then	to	predict	DNA	sequence	motifs	(putative	regulatory	sites)	that	are	enriched	in	these	

modules.		In	a	final	step,	the	relative	membership	of	each	gene	in	each	gene	module	and	the	
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enrichment	of	each	sequence	motif	in	each	module	are	used	to	predict	the	relative	influence	of	

each	sequence	motif	on	each	gene.	

	

While	ICA	has	been	applied	to	gene	module	prediction	before,	our	method	contains	several	

innovations	that	result	in	significantly	higher	quality	gene	modules.		The	first	of	these	is	a	data	

preprocessing	optimization	step.		Investigations	by	other	researchers	in	this	area	largely	made	

use	of	established	protocols	for	microarray	preprocessing.		Such	protocols,	however,	were	

optimized	for	a	different	use	case	–	the	detection	of	significantly	changing	genes	between	two	

conditions	or	different	points	in	a	time	series.		Prior	to	beginning	our	work,	it	was	not	clear	to	

us	whether	such	protocols	would	also	be	optimal	for	the	use	of	detecting	gene	modules	and,	

indeed,	we	found	that	they	were	not.	

	

A	second	major	innovation	in	the	gene	module	prediction	part	of	our	work	lies	in	identifying	the	

optimal	number	of	gene	modules	to	extract	from	a	compendium	of	microarray	data.		ICA	is	a	

powerful	source	separation	algorithm,	but	it	is	unable	to	predict	the	number	of	true	latent	

sources	in	a	dataset.		Information	theoretic	approaches	exist	to	help	make	this	determination,	

but	these	rely	on	the	assumption	that	samples	comprising	the	dataset	are	independent	and	

identically	distributed	(i.e.,	pulled	randomly	from	the	space	of	possible	sample	points).		This	

assumption	is	clearly	not	valid	for	microarray	data,	in	which	most	samples	are	replicated	

several	times	and	a	large	fraction	of	the	samples	correspond	to	the	organism	or	tissue	in	a	wild	

type	state.		We	used	a	“brute	force”	approach	to	source	determination	by	using	several	

different	module	quality	metrics	to	evaluate	the	results	of	performing	ICA	with	various	numbers	
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of	extracted	components.		All	of	the	quality	metrics	we	applied	gave	similar	results,	and	

indicated	that	extracting	just	over	200	gene	modules	(that	is,	co-regulated	gene	sets)	was	

optimal	for	the	microarray	compendium	we	analyzed.		This	is	far	less	than	the	typical	approach	

to	ICA	(in	which	the	maximum	number	of	components	are	extracted,	1386	in	this	case)	would	

have	generated.		Thus,	the	gene	modules	we	predicted	are	likely	much	more	enriched	for	

“true”	gene	modules	than	those	that	would	be	produced	by	other	ICA-based	methods.	

	

Another	innovation	in	our	work	lies	in	discretizing	the	independent	components	produced	by	

ICA.		While	others	have	used	a	fixed	threshold	approach	(e.g.,	setting	genes	with	weights	

greater	than	3	or	less	than	-3	to	be	“in”	the	gene	module),	we	found	that	this	approach	was	

suboptimal.		We	trained	an	artificial	neural	network	on	a	large	set	of	simulated	data	to	find	the	

optimal	discretization	threshold	for	each	independent	component	based	on	the	skewness	and	

kurtosis	of	the	component’s	weight	distribution.		We	show	that	this	method	out-performs	the	

fixed	threshold	approach.	

	

Because	our	main	motivation	in	developing	an	accurate,	genome-wide	model	of	gene	

regulation	was	to	use	it	to	aid	the	interpretation	of	experimental	data,	we	tested	the	utility	of	

our	predictions	with	several	case	studies.		We	found	that	our	predictions	could	identify	key	

(genetically-validated)	regulators	that	were	not	be	revealed	by	traditional	methods	of	gene	

expression	analysis.		We	anticipate	that	our	method	will	help	us	understand	key	regulatory	

mechanisms	of	biological	processes	we	are	currently	investigating,	such	as	the	process	of	aging.		



	 7	

Application	of	our	predictions	to	the	interpretation	of	longevity	data	sets	and	other	planned	

research	activities	are	discussed	in	more	detail	in	Chapter	3,	Future	Directions.	
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Chapter 2: Predicting the influence of regulatory sequences on gene 

expression 

	

Abstract 

	

Identifying	the	genes	and	gene	regulators	that	specify	and	execute	essential	biological	activities	

is	a	fundamental	goal	in	biology.		In	principle,	gene	expression	data	coupled	with	knowledge	of	

transcription	factor	binding	sites	should	advance	this	goal,	yet	recent	findings	indicate	that	

most	transcription	factors	bind	proximally	to	a	much	wider	array	of	genes	in	vivo	than	they	are	

predicted	to	regulate.		Thus	more	nuanced	models	may	be	needed	to	predict	genetic	control	

circuitry	and	regulatory	factors.		Toward	this	end,	we	have	developed	a	powerful	method	to	

calculate	the	transcriptional	influence	that	each	regulatory	motif	in	a	de	novo	predicted	set	has	

on	each	gene	represented	in	a	gene	expression	measurement	platform,	using	only	a	

compendium	of	data	from	the	platform	and	genome	sequence	information.		We	demonstrate	

the	power	of	our	predictions	of	transcriptional	influence	by	using	them	to	analyze	microarray	

data	for	several	C.	elegans	variants,	including	isp-1	and	hif-1	mutants.	isp-1	mutations	extend	

lifespan	through	the	HIF-1	transcription	factor,	but	we	observed	no	meaningful	overlap	among	

significant	genes	in	hif-1	and	isp-1	microarray	datasets.		In	contrast,	our	method	reveals	

extensive	similarity	in	gene	expression	at	a	deeper	level.		Moreover,	a	regulatory	motif	

predicted	to	have	a	strong	influence	in	both	datasets	matches	the	canonical	HIF-1	binding	site.	
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Introduction 
	

Despite	the	widespread	availability	of	bioinformatic	tools	for	interpreting	genome-wide	

transcript	measurements(Aittokallio	et	al	2003;	Chatziioannou	et	al	2009;	Leach	2004;	Lee	et	al	

2012;	Rubinstein	&	Simon	2005;	Xia	et	al	2005;	Zhang	et	al	2009),	extracting	testable	

hypotheses	from	such	data	remains	difficult.		In	our	view,	this	difficulty	stems	largely	from	a	

lack	of	specific	knowledge	about	the	relationships	between	gene	expression	regulators,	such	as	

transcription	factors,	and	the	sets	of	genes	they	control.		A	desire	to	generate	such	knowledge	

has	motivated	large-scale	efforts,	such	as	the	ENCODE	and	modENCODE	projects,	which	collect	

in	vivo	binding	data	for	known	gene	regulators(2004;	Gerstein	et	al	2010;	Kellis	et	al	2014;	Niu	

et	al	2011;	Roy	et	al	2010).		A	surprising	result	from	these	projects	is	that	many,	if	not	most,	

transcription	factors	bind	proximally	to	a	much	wider	array	of	genes	than	expected,	including	

genes	not	thought	to	be	under	their	control,	and	often	to	regions	lacking	canonical	binding	

sites(Van	Nostrand	&	Kim	2013).	

	

These	findings	reinforce	the	concept	that	accurate	models	of	gene	regulation	must	include	

more	than	just	the	presence	or	absence	of	transcription-factor	binding.		The	degree	of	influence	

that	a	factor	has	on	the	expression	level	of	each	of	its	target	genes,	a	concept	we	refer	to	as	

transcriptional	influence,	must	also	be	represented.		Toward	this	end,	we	have	developed	a	

method	to	predict	transcriptional	influence	between	a	large	set	of	regulatory	sequence	motifs,	

predicted	de	novo,	and	each	gene	represented	in	an	extensive	expression	platform,	using	only	a	

compendium	of	data	from	the	platform	and	genome	sequence	as	input.	
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Figure 2.1.  Diagram of transcriptional influence prediction 

The three main steps of our method.  In step 1, a matrix of gene expression data, Xg, is 
decomposed using independent component analysis (ICA), producing a gene module definition 
matrix, Sg, and a matrix indicating the weight of each module (set of co-regulated genes) in each 
gene-expression measurement, Ag.  In step 2, a dictionary of potential regulatory sequence 
elements is constructed using the Mobydick algorithm.  The words of this dictionary are assessed 
for enrichment in the promoters of the genes comprising each gene module, and p-values for 
word / gene module pairs are used to construct a new matrix, Xw.  ICA decomposition of this 
matrix produces a word module matrix, Sw, and a matrix indicating the weight of each word 
module in each gene module, Aw.  In step 3, the product of Hg (a transformation of Sg, see text) 
and the transpose of Aw is calculated.  We interpret the values in the resulting matrix as the 
transcriptional influences of each word module on each gene within the context of the gene 
expression data provided as input to step 1. 
	

	

Our	method	consists	of	three	main	steps	(Fig.	2.1).		In	the	first,	we	predict	gene	transcription	

modules	(sets	of	co-regulated	genes)	using	independent	component	analysis	(ICA)	of	a	large	

compendium	of	expression	data.		ICA	has	been	applied	to	gene	module	prediction	
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before(Engreitz	et	al	2010;	Gong	et	al	2007;	Lee	&	Batzoglou	2003;	Li	et	al	2007;	Liebermeister	

2002),	but	we	have	refined	the	process	in	a	way	that	improves	the	results	substantially	

according	to	several	different	measures.		These	predicted	gene	modules	serve	as	an	

intermediate	data	structure	in	our	algorithm	for	transcriptional	influence,	but	they	are	

revealing	in	their	own	right,	and	provide	new	insights	into	properties	of	gene	expression,	some	

of	which	we	present	here.	

	

In	the	second	step,	we	calculate	the	module-wise	enrichment	or	deprivation	of	“words”	

(oligonucleotide	sequences	from	a	dictionary	compiled	using	annotated	DNA	sequence)	in	the	

promoter	regions	of	module	genes.		We	create	a	matrix	with	this	data	and	perform	ICA	to	

generate	word	modules;	that	is,	sets	of	words	that	appear	together	(or	are	absent	together)	in	

the	promoters	of	predicted	gene	modules.		We	interpret	word	modules,	which	generally	

comprise	closely	related	oligonucleotide	sequences,	as	DNA	sequences	with	shared	regulatory	

potential,	e.g.	transcription	factor	binding	sites.		Finally,	we	determine	the	matrix	product	of	

the	gene	module	source	matrix	from	step	1	and	the	word	module	mixing	matrix	resulting	from	

step	2,	which	yields	a	matrix	relating	each	word	module	to	each	gene,	i.e.,	the	predicted	

transcriptional	influence	of	each	potential	regulatory	sequence	on	each	gene.	

	

We	validate	our	method	by	using	transcriptional	influence	predictions	to	analyze	gene	

expression	data	from	several	experiments,	including	C.	elegans	isp-1	(respiratory	chain)	and	hif-

1	(hypoxia-inducible	transcription	factor)	mutant	microarrays.		Mutation	of	the	isp-1	gene	

extends	lifespan	in	a	hif-1-dependent	fashion(Bell	et	al	2007;	Hwang	&	Lee	2011;	Lee	et	al	
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2010),	but	the	significant	gene	sets	from	microarray	data	for	these	two	mutants	have	little	in	

common.		In	contrast,	our	method	reveals	that	both	conditions	do	impact	common	sets	of	

downstream	genes.	Moreover,	using	our	transcriptional	influence	predictions	to	analyze	the	

data,	we	find	that	several	word	modules	are	predicted	to	exert	strong	effects	in	both	data	sets,	

and	that	the	words	comprising	one	of	these	modules	match	the	canonical	HIF-1	binding	site.	

	

	

Results 
	

Optimization of genetic regulatory module prediction 

	

Our	algorithm	relies	on	accurate	predictions	of	genetic	regulatory	modules.		A	large	body	of	

gene	expression	data	is	publicly	available(Barrett	et	al	2011;	Rustici	et	al)	and	has	enabled	

computational	prediction	of	gene	modules	(co-regulated	genes)	by	several	groups(Bansal	et	al	

2007;	Bar-Joseph	et	al	2003;	Bergmann	et	al	2003;	Engreitz	et	al	2010;	Ihmels	et	al	2004;	Kim	et	

al	2001;	Michoel	et	al	2009;	Pham	et	al	2004;	Segal	et	al	2003a;	Segal	et	al	2003b;	Segal	et	al	

2003c;	Soinov	et	al	2003;	Vermeirssen	et	al	2009;	Wang	et	al	2006).		Preliminary	

experimentation	with	published	methods	led	us	to	choose	ICA	for	performing	module	

prediction,	as	modules	predicted	with	ICA	yielded	stronger	oligonucleotide	enrichment	in	

promoter	regions	than	did	modules	predicted	with	the	other	methods	we	tested	(Fig.	2.2e	and	

additional	data	not	shown;	see	Lee	&	Batzoglou(Lee	&	Batzoglou	2003)	for	additional	

comparisons	of	ICA	to	other	methods).	
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Briefly,	ICA	is	a	blind	source	separation	method	that	attempts	to	“unmix”	a	signal	comprising	

additive	subcomponents	by	separating	it	into	statistically	independent	source	signals(Comon	

1994;	Hyvärinen	&	Oja	2000).		In	the	common	notation,	a	data	matrix,	X,	comprising	multiple	

observations	of	a	multidimensional	variable,	x,	is	decomposed	into	two	new	matrices,	a	mixing	

matrix,	A,	and	a	source	matrix,	S:	

X	=	AS	 (1)	

	

The	A	matrix	contains	the	weight	of	each	independent	component	in	each	observation,	and	the	

S	matrix	contains	the	weight	of	each	element	of	x	in	each	independent	component.		In	the	

context	of	gene	expression	analysis,	the	elements	of	x	correspond	to	genes,	the	observations	

correspond	to	genome-wide	gene	expression	measurements,	such	as	microarrays,	and	the	

independent	components	are	interpreted	as	gene	modules	(essentially,	genes	whose	

expression	levels	change	similarly	across	multiple	arrays).		The	values	in	the	S	matrix	

correspond	to	the	relative	levels	of	inclusion	of	each	gene	in	each	gene	module(Kong	et	al	2008;	

Liebermeister	2002).	

	

Our	preliminary	investigation	indicated	that	the	performance	of	ICA	was	sensitive	both	to	data	

preprocessing	and	to	the	number	of	components	extracted.		Therefore,	we	first	sought	to	
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optimize	gene	module	prediction	through	ICA,	evaluating	results	using	biological	information,	

	

Figure 2.2.  Gene module prediction 

To	determine	the	optimal	preprocessing	method	and	the	optimal	number	of	components	(gene	
modules)	to	extract	from	a	gene	expression	compendium	of	C.	elegans	microarray	data,	we	
determined	the	number	of	Gene	Ontology	terms	(a),	C.	elegans	tissues	(b),	and	REACTOME	
pathways	(c)	that	were	significantly	enriched	in	at	least	one	gene	module.		We	also	quantified	
the	ability	of	each	predicted	set	of	gene	modules	to	accurately	represent	data	from	a	different,	
two-color	gene	expression	platform	(d).		Black	points	show	results	from	a	compendium	
produced	using	a	previously	published	preprocessing	procedure15;	red	points	show	results	for	
the	best	alternative	preprocessing	method	that	we	tested.		Dashed	lines	indicate	the	point	on	
the	x-axis	of	each	graph	at	which	loess	regression	curves	showed	the	greatest	difference	
between	red	points	and	results	from	randomized	controls	(grey	points).		(e)	The	total	number	
of	predicted	modules	and	the	number	of	modules	with	significant	regulatory	word	enrichment	
for	our	method	(DEXICA),	another	ICA-based	method,	FCA15,	and	gene	sets	from	the	C.	elegans	
gene	expression	topomap25;	error	bars	indicate	s.d.	between	repeat	runs	of	DEXICA	/	FCA.	
	
	
including	Gene	Ontology	(GO)	term	enrichment(Ashburner	et	al	2000),	REACTOME	pathway	

enrichment(Croft	et	al	2011),	and	tissue-specific	expression	enrichment	in	predicted	gene	

modules.		We	applied	our	optimization	strategy	to	a	compendium	of	1386	C.	elegans	Affymetrix	

arrays(Dalma-Weiszhausz	et	al	2006),	which	we	obtained	from	the	Gene	Expression	Omnibus	
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(GEO)	database(Barrett	et	al	2011).		Our	preliminary	results	indicated	that	applying	dimension	

reduction	procedures	on	the	data	matrix	prior	to	performing	ICA	reduced	the	number	of	

biologically	significant	components	in	the	end	result	(data	not	shown),	so	we	chose	to	optimize	

ICA	of	the	full	data	matrix	of	1386	arrays.		We	found	that	the	highest	quality	modules	were	

produced	when	we	omitted	between-experiment	quantile	normalization	from	the	

preprocessing	procedure	(see	Methods)	and	when	the	number	of	extracted	components	(i.e.,	

gene	expression	modules,	or	sets	of	co-regulated	genes)	ranged	from	191	to	226	(Fig.	2.2a-c).	

	

Because	each	of	the	module	quality	metrics	we	used	relied	on	prior	knowledge,	which	could	be	

incomplete	or	inaccurate,	we	also	gauged	module	quality	by	quantifying	the	ability	of	each	

predicted	set	of	modules	to	represent	expression	data	from	a	different	gene	expression	

measurement	platform	(a	two-color	microarray;	see	Methods),	with	the	expectation	that	more	

accurate	gene	modules	would	be	able	to	capture	such	data	more	closely	than	less	accurate	

modules.		This	measure	of	module	quality	produced	results	similar	to	those	produced	by	the	

other	measures,	with	the	optimal	number	of	extracted	components	occurring	at	197	(Fig.	2.2d).	

	

With	the	exception	of	representing	data	from	an	alternative	platform,	all	of	our	module	quality	

measures	required	translation	of	the	independent	components	generated	by	ICA	into	discrete	

sets	of	genes,	a	process	we	refer	to	as	discretization.		Typically,	each	component	(gene	module)	

is	discretized	into	two	sets	of	genes	that	are	regulated	in	opposite	directions.		We	refer	to	these	

two	sets	as	“hemi-modules”,	one	set	consisting	of	genes	with	highly	positive	weights	and	

another	consisting	of	genes	with	highly	negative	weights	in	the	independent	component.		
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Others	have	used	a	fixed	threshold	approach	to	discretization(Chiappetta	et	al	2004;	Engreitz	et	

al	2010;	Lee	&	Batzoglou	2003),	for	example,	defining	genes	with	weights	exceeding	+/-	3	

standard	deviations	from	the	component	mean	to	be	“in”	each	hemi-module,	and	this	is	the	

approach	we	applied	in	figures	2.2a-c.		However,	we	found	that	individual	modules	showed	

maximum	annotation	enrichment	at	different	thresholds,	suggesting	that	a	‘one-size-fits-all’	

approach	to	discretization	is	sub-optimal.		An	alternative	approach	to	discretization	that	we	

attempted	(described	in	Frigyesi	et	al.(Frigyesi	et	al	2006))	failed	to	converge	in	many	cases.		

Therefore,	to	increase	discretization	accuracy,	we	trained	an	artificial	neural	network	(ANN)	to	

predict	thresholds	for	discretization	of	each	component	from	the	skewness	and	kurtosis	of	its	

weight	distribution	(see	Supplemental	Methods).		Using	this	artificial	neural	network	for	

discretization	in	our	optimization	process	produced	similar	results	qualitatively	(Fig.	2.3a-c),	but	

resulted	in	a	greater	number	of	significant	annotations	across	the	range	of	parameters	tested	

than	did	threshold	discretization	(p	<	2.2e-16,	Fig.	2.3d).	Therefore,	we	used	ANN	discretization	

in	the	subsequent	steps	of	our	algorithm.	

	

The	mean	optimum	number	of	extracted	components,	determined	using	the	module	quality	

measures	we	applied,	was	similar	for	both	threshold	discretization	and	ANN	discretization	(209,	

and	209.33,	respectively),	and	we	chose	209	as	the	final	number	of	components	to	extract	from	

the	C.	elegans	Affymetrix	microarray	compendium.	We	refer	to	our	process	of	first	optimizing	

and	then	executing	gene	module	prediction	from	a	non-dimension-reduced	gene	expression	

compendium	using	ICA	as	DEXICA,	for	deep	extraction	independent	component	analysis.	
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Figure 2.3. Gene module prediction optimization using ANN discretization 

When	searching	for	optimal	parameters	for	gene	module	prediction	(see	Figure	2.2),	we	applied	
two	different	module	discretization	methods.			Figure	2.2	shows	results	using	a	fixed-threshold	
method	(threshold	=	+/-	3),	whereas	here,	a-c	show	results	using	an	artificial	neural	network-
based	approach	for	generating	discrete	sets	of	genes	for	Gene	Ontology	term	enrichment	(a),	C.	
elegans	tissue	enrichment	(b),	and	REACTOME	pathway	enrichment	(c).		As	in	Figure	2.2a-d,	
black	points	show	results	from	a	compendium	produced	using	a	previously	published	
preprocessing	procedure15;	red	points	show	results	for	the	best	alternative	preprocessing	
method	that	we	tested;	dashed	lines	indicate	the	point	on	the	x-axis	of	each	graph	at	which	
loess	regression	curves	showed	the	greatest	difference	between	red	points	and	results	from	
randomized	control	modules	(grey	points).		d	shows	the	mean	performance	of	ANN	
discretization	relative	to	fixed	threshold	discretization	for	all	data	points	in	a-c	and	Figure	2.2a-
c.		Error	bars	indicate	SEM;	all	comparisons	are	statistically	significant	(***	=	p	<	2.2e-16).		e	
shows	the	number	of	modules	with	significant	enrichment	for	GO	terms,	C.	elegans	tissue	
annotations,	and	REACTOME	pathway	annotations	for	modules	produced	by	DEXICA	and	FCA,	
and	gene	sets	from	the	C.	elegans	gene	expression	topomap25;	error	bars	in	e	indicate	s.d.	
between	repeat	runs	of	DEXICA	/	FCA.	
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Gene module validation 

	

To	test	the	prediction	that	the	independent	components	generated	by	DEXICA	correspond	to	

genetic	regulatory	modules,	we	checked	each	module	for	enrichment	of	regulatory	sequences	

in	the	promoter	regions	and	3’	untranslated	regions	(3’-UTRs)	of	module	genes.		To	do	this,	we	

first	generated	a	list	of	potential	regulatory	oligonucleotide	sequences	(called	‘words’)	by	

applying	the	Mobydick	algorithm(Bussemaker	et	al	2000)	to	the	set	of	all	predicted	C.	elegans	

promoter	regions,	which	we	defined	as	the	region	extending	from	the	transcription	start	site	to	

2000	base	pairs	upstream.		(Many	C.	elegans	regulatory	sequences	are	located	in	this	interval;	

however,	we	note	that	this	method	will	exclude	potential	promoter	sequences	located	

exclusively	upstream	or	downstream	of	this	region.)		We	generated	a	second	oligonucleotide	

list	using	the	set	of	all	predicted	C.	elegans	3’-UTRs	(see	Supplementary	Methods).		We	then	

calculated	the	statistical	significance	of	the	over-	or	under-representation	of	genes	bearing	

each	word	in	each	gene	module	(see	Methods),	using	the	hypergeometric	test	and	the	Simes	

method(SImes	1986)	for	multiple	hypothesis	testing	(alpha	level	=	0.05),	to	determine	the	

number	of	significant	modules.		Across	multiple	runs	of	DEXICA,	the	mean	number	of	gene	

modules	containing	significant	promoter	words	and	3’-UTR	words	was	106.3	and	40.6,	

respectively,	which	was	significantly	greater	than	that	produced	by	other	module	prediction	

methods	we	tested	(p	<	2.2e-16,	Fig.	2.2e).		
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Because	the	ICA	algorithm	that	we	employed	during	module	prediction,	fastICA,	converges	to	a	

final	solution	from	a	random	starting	point(Hyvarinen	&	Oja	2000),	small	differences	typically	

	

Figure 2.4.  Significant words in predicted gene modules 

We	generated	100	sets	of	gene	modules	from	the	C.	elegans	microarray	compendium	using	the	
optimal	parameters	indicated	by	the	tests	in	Figures	2.2a-d	and	2.3a-c.		Among	these	module	
sets,	there	is	a	significant	correlation	between	the	total	number	of	promoter	words	that	are	
significant	in	at	least	one	module	and	the	number	of	3’-UTR	words	that	are	significant	in	at	least	
one	module	(R	=	0.27,	p	=	6.5e-3).		As	our	final	C.	elegans	module	set,	we	chose	the	set	with	the	
best	mean	rank	in	these	two	criteria	(indicated	by	red	point	in	figure).	
	
	
exist	in	the	output	of	different	runs	of	the	algorithm;	these	differences	can	be	seen	in	the	

vertical	spread	of	data	points	in	figures	2.2a-d,	and	in	the	error	bars	of	figure	2.2e.		While	

others	have	reconciled	such	differences	through	a	clustering	approach	applied	to	the	output	of	

numerous	runs	of	the	algorithm	(so	called	“iterated	ICA”)(Engreitz	et	al	2010;	Frigyesi	et	al	

2006),	when	applied	to	our	C.	elegans	Affymetrix	compendium,	we	found	that	many	of	the	final	

components	generated	by	this	method	were	highly	correlated	to	one	another,	indicating	non-

independence	and	potential	redundancy	among	the	components	(data	not	shown).		We	

therefore	sought	to	choose	a	single,	high	quality,	fastICA	run	output	to	use	as	predicted	gene	
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modules.		Because	we	considered	word	enrichment	the	most	trustworthy	measure	of	module	

quality,	and	because	we	observed	a	significant	correlation	(R	=	0.27,	p	=	6.5E-3)	between	the	

total	number	of	significant	promoter	words	and	the	total	number	of	significant	3’-UTR	words	in	

the	results	of	different	ICA	runs	with	the	same	parameters	(Fig.	2.4),	as	our	final	module	set,	we	

chose	the	run	from	a	set	of	100	with	the	best	average	rank	in	terms	of	significant	promoter	

words	and	significant	3’-UTR	words.		This	set	ranked	first	in	significant	promoter	words	and	

third	in	significant	3’-UTR	words.	

Global properties of gene expression revealed by predicted gene modules 

	

Gene	modules	are	sets	of	genes	that	are	co-expressed.		Unexpectedly,	during	our	analysis	of	3’-

UTR	word	enrichment	within	gene	modules,	we	observed	that	some	modules	appeared	to	be	

enriched	for	genes	with	long	3’-UTRs.		To	determine	if	this	trend	was	statistically	significant,	we	

calculated	the	mean	3’-UTR	length	of	each	hemi-module	and	determined	a	p-value	for	length	

bias	using	Student’s	t-test	(Fig.	2.5a).		Of	the	418	hemi-modules,	65	contained	a	significant	(q	<	

0.1)	bias	toward	long	3’-UTR	genes	and	58	contained	a	bias	toward	short	3’-UTR	genes.		

	

To	see	if	other	gene	properties	were	enriched	in	specific	gene	modules,	we	tested	each	hemi-

module	for	over-	and	under-enrichment	of	genes	appearing	in	operons	and	for	genes	with	

multiple	splice	forms.		21	hemi-modules	were	significantly	enriched	and	205	hemi-modules	

were	significantly	under-enriched	for	operon	genes,	and	81	hemi-modules	were	enriched	and	

80	hemi-modules	were	under-enriched	for	genes	with	multiple	splice	variants	(Fig.	2.5b-c).		
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Control	tests	performed	on	the	same	module	set	but	with	randomly	scrambled	gene	IDs	

	

Figure 2.5.  Biological implications of predicted gene modules 

Discretization	of	predicted	gene	modules	produces	two	sets	of	genes	per	module,	which	we	
refer	to,	based	on	the	signs	of	their	weights	in	the	Sg	matrix,	as	the	positive	and	negative	hemi-
modules.		We	tested	each	hemi-module	for	biases	in	3’-UTR	length	(A),	in	the	number	of	genes	
transcribed	in	operons	(B),	and	in	the	number	of	genes	with	multiple	annotated	splice	variants	
(C).		The	y-axis	in	A-C	indicates	the	strength	and	direction	of	bias;	values	shown	are	the	–log10	of	
q-values,	multiplied	by	the	direction	of	the	bias.		D	shows	the	signed	variance	explained	(SVE)	of	
the	gene	modules	for	two	sets	of	gene	expression	fold	changes,	hif-1(-)	vs.	wild	type,	and	isp-1(-
)	vs.	wild	type.		SVE	for	these	two	datasets	are	significantly	negatively	correlated	(R	=	-0.74,	p	=	
2.4e-37).		That	is,	genes	turned	up	in	isp-1(-)	mutants	are	likely	to	be	turned	down	in	hif-1(-)	
mutants.	
	
	
produced	no	significant	modules	for	any	of	the	gene	properties	we	tested	(Fig.	2.6).		Taken	

together,	these	results	suggest	that	genetic	regulatory	modules	tend	to	comprise	genes	with	

gross	similarities	in	gene	structure.		This	association,	in	turn,	raises	the	possibility	that	these	
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shared	structural	features	(long	3’-UTRs,	etc.)	house	important	biological	information,	either	for	

	

Figure 2.6.  Randomized controls for module bias tests 

We	permuted	the	gene	IDs	in	the	gene	module	definition	matrix,	Sg,	then	repeated	the	
statistical	tests	for	3-UTR	length	bias	(A),	operon	gene	content	bias	(B),	and	splice	variant	
number	bias	(C).		As	in	Fig.	2.5,	the	y-axis	of	each	graph	indicates	the	strength	and	direction	of	
bias;	values	shown	are	the	–log10	of	q-values,	multiplied	by	the	direction	of	the	bias.	
	
	
gene	regulation	or	gene	function.		Consistent	with	this	idea,	genes	within	operons	are	enriched	

in	the	set	of	C.	elegans	genes	switched	on	during	recovery	from	growth-arrested	states(Zaslaver	

et	al).	

	

To	test	whether	our	predicted	gene	modules	could	provide	biological	insights	into	gene	

expression	data,	we	used	them	to	analyze	published	microarray	datasets	for	C.	elegans	carrying	
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mutations	in	isp-1	(iron-sulfur	protein,	respiratory	complex	III)(Cristina	et	al	2009)	and	hif-1	

	

Figure 2.7.  Contingency table for isp-1(-), hif-1(-) microarray comparison 

The	isp-1(-)	and	hif-1(-)	datasets	we	used	in	this	study	were	conducted	on	different	microarray	
platforms,	and	both	datasets	contained	a	substantial	number	of	flagged	(excluded	due	to	low	
quality)	data	points,	such	that	the	number	of	complete	pair-wise	observations	between	the	two	
sets	was	only	6245.		The	table	shows	the	overlap	between	the	number	of	significantly	up-
regulated,	significantly	down-regulated,	and	non-significant	genes	in	the	two	datasets.		The	X2	
p-value	for	this	table	is	0.17;	thus,	there	is	not	a	significant	degree	of	overlap	among	the	
significant	genes	of	these	two	datasets.	
	
	
	(hypoxia-inducible	transcription	factor)(Shen	et	al	2005).		Reduction-of-function	isp-1	

mutations	extend	lifespan	in	a	hif-1-dependent	fashion(Bell	et	al	2007;	Hwang	&	Lee	2011;	Lee	

et	al	2010),	but,	unexpectedly,	we	found	that	the	overlap	among	the	significant	genes	of	

microarray	measurements	comparing	each	mutant	to	wild	type	was	not	statistically	significant	

(Χ2	test	p-value	=	0.17;	Fig.	2.7).		We	computed	the	relative	amount	of	variance	that	each	gene	

module	explains	in	the	hif-1	and	isp-1	microarray	data	sets,	then	multiplied	the	resulting	values	

by	-1	in	those	cases	in	which	a	module	definition	vector	was	negatively	correlated	with	a	set	of	

microarray	fold	changes.		The	resulting	quantity,	which	we	refer	to	as	signed	variance	explained	

(SVE),	provides	an	indication	of	both	the	strength	and	the	direction	of	change	of	each	module	in	

each	microarray	data	set.		Using	this	method,	we	observed	a	very	strong	correlation	in	gene	

module	activities	for	isp-1	mutants	and	those	for	hif-1	mutants	(Fig.	2.5d,	R	=	-0.74,	p	=	4.1e-

39).		The	correlation	was	negative,	consistent	with	the	interpretation	that	the	life	extension	
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observed	when	isp-1	activity	is	reduced	requires	activation	of	gene	expression	by	HIF-1.		The	

strong	gene	module	correlation	between	these	datasets	despite	a	lack	of	similarity	among	their	

most	differentially	expressed	genes	suggests	that	the	role	of	HIF-1	in	regulating	the	lifespan	of	

isp-1	mutants	may	be	to	instigate	small	but	coordinated	expression	changes	in	many	genes,	

most	of	which	fail	significance	tests	for	differential	expression	in	one	or	both	datasets.		In	

general,	it	would	be	interesting	to	learn	to	what	extent	this	situation,	which	would	not	be	

detected	by	many	genetic	or	bioinformatic	methods,	has	arisen	during	the	evolution	of	gene	

circuits.	

	

Generation of word modules 

	

In	our	algorithm,	a	word	is	a	predicted	regulatory	sequence.		We	observed	that	sets	of	

significantly	enriched	words	within	gene	module	promoters	often	contain	word	pairs	that	are	

reverse	compliments	of	each	other.		This	increased	our	confidence	that	the	independent	

components	generated	by	DEXICA	correspond	to	genetic	regulatory	modules	and	led	us	to	

hypothesize	that	ICA	of	a	matrix	comprising	a	significance	level	of	each	word	in	each	hemi-

module	would	reveal	sets	of	words	that	“travel	together”	in	the	space	of	gene	module	

promoters,	i.e.,	regulatory	sequence	motifs.	

	

To	test	this	hypothesis,	we	created	a	new	matrix,	Xw,	comprising	enrichment	p-values	for	each	

word	/	hemi-module	combination	(see	Methods).		We	then	performed	ICA	on	this	matrix	
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multiple	times,	varying	the	number	of	extracted	components	each	time.		We	refer	to	the	

	

Figure 2.8.  Word modules 

(A)	To	determine	the	optimal	number	of	word	modules	to	extract	from	the	word	/	gene	module	
matrix,	we	varied	the	number	of	extracted	components	and	assessed	the	total	number	of	
reverse	complement	word	pairs	that	appeared	in	each	set	of	discretized	word	modules.		This	
value	reached	the	largest	increase	over	randomized	controls	(grey	points)	at	240,	indicated	by	
the	dashed	line.		B)	We	calculated	gene	module	signed	variance	explained	(SVE)	for	gene	
expression	fold	changes	in	nhr-23(RNAi)	samples	compared	to	wild	type	from	previously	
published	data;	gene	module	99	accounts	for	over	10%	of	the	variance	explained	by	the	word	
module	set.		C)	We	calculated	SVE	of	gene	expression	fold	changes	from	hif-1(-)	vs.	wild	type	
and	isp-1(-)	vs.	wild	type	using	previously	published	data.	SVE	for	these	two	data	sets	are	
significantly	negatively	correlated	(R	=	-0.72,	p	=	4.1e-39).		The	red	circles	in	(B)	and	(C)	highlight	
word	module	99;	the	blue	circles	highlight	word	module	217.	
	
	
resulting	independent	components	as	word	modules.		To	assess	the	quality	of	a	set	of	word	

modules,	we	counted	the	total	number	of	reverse	compliment	pairs	that	occurred	within	the	
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same	word	module	after	ANN	discretization.		We	found	that	this	number	achieved	a	maximum	

	

Figure 2.9.  Word module control tests 

a)	Similar	to	Fig.	2.8a,	in	which	we	applied	ANN	discretization,	we	varied	the	number	of	
extracted	components	and	assessed	the	total	number	of	reverse	complement	word	pairs	that	
appeared	in	each	set	of	discretized	word	modules	using	threshold	discretization	(+/-	3	s.d.).		b)	
Similar	to	Fig.	2.8c,	we	compared	nhr-23(-)	SVE	to	hif-1(-)	SVE	(b)	and	to	isp-1(-)	SVE	(c).		As	in	
Fig.	2.8b-c,	red	circles	highlight	word	module	99	and	blue	circles	highlight	word	module	217.	
	
	
value	when	240	word	modules	were	extracted	(Fig.	2.8a).		A	similar	result	was	observed	using	

threshold	discretization	(Fig.	2.9a).	

	

To	test	whether	word	modules	generated	in	this	manner	resembled	known	transcription	factor	

binding	sites,	we	examined	whether	any	word	modules	showed	strong	similarity	to	the	

canonical	binding	sites	of	four	well-characterized	transcription	factors:	DAF-16,	HSF-1,	NHR-23,	

and	HIF-1.		The	canonical	binding	site	of	the	first	of	these,	DAF-16,	was	not	present	in	the	
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promoter	word	dictionary	generated	by	Mobydick,	which	precluded	it	from	membership	in	a	

word	module,	but	the	canonical	binding	sites	for	each	of	the	other	three	factors	were	both	

present	in	the	dictionary	and	among	the	top	words	in	specific	word	modules	(Table	1).	Thus,	

ICA	of	word	enrichment	p-values	in	sets	of	co-regulated	genes	has	the	ability	to	recover	sets	of	

words	with	strong	similarity	to	known	transcription	factor	binding	sites.		

	

Prediction of transcriptional influence 

	

ICA	of	the	word	/	hemi-module	p-value	matrix,	Xw,	produces	a	word	module	source	matrix,	Sw,	

and	a	word	module	mixing	matrix,	Aw	(Figure	2.1).		Because	the	Aw	matrix	describes	the	relative	

enrichment	of	each	word	module	in	the	promoters	of	each	hemi-module,	and	the	values	in	the	

gene	module	source	matrix,	Sg,	describe	the	degree	of	inclusion	of	each	gene	in	each	gene	

module,	we	hypothesized	that	the	matrix	product	of	these	two	matrices,	appropriately	

transformed	(see	Methods),	would	reveal	the	relative	transcriptional	influence	of	each	word	

module;	that	is,	each	potential	regulatory	sequence,	on	each	gene.		However,	one	property	of	

ICA	decomposition	that	must	be	taken	into	account	before	performing	this	operation	is	that	the	

signs	assigned	to	each	independent	component	are	arbitrary.		For	example,	binding	sites	for	a	

particular	transcription	factor	that	always	activates	gene	expression	may	be	enriched	in	a	hemi-

module	termed	“positive”	in	one	gene	module,	and	also	enriched	in	a	hemi-module	termed	

“negative”	in	another	gene	module.	
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Sign	ambiguity	in	gene	modules,	if	left	unresolved,	could	lead	to	inaccurate	transcriptional	

influence	predictions	as	this	ambiguity	would	be	transferred	to	the	addends	whose	sums	yield	

the	values	in	the	transcriptional	influence	matrix;	addends	with	incorrectly	(from	the	

perspective	of	biological	reality)	opposing	signs	would	serve	to	cancel	each	other	in	the	

summation	step.		To	resolve	sign	ambiguity	in	gene	modules,	we	transformed	the	gene	module	

source	matrix,	Sg,	into	a	matrix	with	a	separate	row	for	each	hemi-module	and	a	column	for	

each	gene,	Hg.		We	used	the	absolute	value	of	each	gene’s	weight	in	each	hemi-module	to	fill	

this	matrix,	placing	zeros	in	cells	of	the	matrix	for	each	gene	that	was	not	a	member	of	the	

corresponding	hemi-module	after	ANN	discretization.		We	then	determined	the	matrix	product	

of	this	matrix	with	the	transpose	of	a	normalized	version	of	the	Aw	matrix.		This	produced	a	

matrix,	Xwg,	with	word	modules	in	rows	and	genes	in	columns,	with	each	value	in	the	matrix	

reflecting	the	weight	of	the	word	module	across	all	of	the	hemi-modules	in	which	the	gene	is	a	

member.		We	interpret	this	value	as	the	degree	of	transcriptional	influence	that	each	word	

module	exerts	on	each	gene	in	the	data	comprising	the	gene	expression	compendium.	

	

To	test	whether	our	predictions	of	transcriptional	influence	agree	with	known	transcription	

factor	/	gene	associations,	we	compared	the	strongest	genes	associated	with	each	word	

module	to	transcription	factor	target	genes	identified	by	the	modENCODE	project.		Of	the	240	

word	modules	we	predicted,	239	shared	a	statistically	significant	overlap	with	at	least	one	of	

the	transcription	factors	in	the	modENCODE	data	set	(hypergeometric	test,	q	<	0.1).			
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Transcriptional influence analysis of gene expression data 

	

To	test	the	utility	of	our	transcriptional	influence	predictions	in	analyzing	gene	expression	data,	

we	first	applied	them	to	the	analysis	of	a	transcription	factor	perturbation	experiment	

conducted	on	the	same	platform	used	to	generate	our	predicted	gene	modules.		For	this	test,	

we	chose	an	experiment	that	measured	gene	expression	changes	induced	by	RNAi	of	the	C.	

elegans	nuclear	hormone	receptor	nhr-23	for	two	reasons,	1)	the	experiment	was	excluded	

from	inclusion	in	the	compendium	because	only	6	array	hybridizations	had	been	performed	(we	

required	at	least	8	arrays	from	each	experiment	for	inclusion	in	the	compendium,	see	

Methods),	and,	2)	the	binding	site	of	nhr-23	has	been	characterized.	

	

Calculation	of	signed	variance	explained	(SVE)	of	the	word	modules	for	the	fold	changes	

between	nhr-23	and	control	samples	using	the	Xwg	matrix	reveals	that	word	module	99	shows	

by	far	the	strongest	change	in	activity	(fig.	2.8b).		This	is	the	same	word	module	that	we	

identified	when	we	looked	for	word-module	matches	to	the	NHR-23	binding	site	directly	

(discussed	above).		The	three	words	most	strongly	associated	with	word	module	99	have	similar	

weights,	ranging	from	18.3	–	20.7;	the	fourth	strongest	word	has	a	weight	of	7.7.		Each	of	the	

top	three	words	matches	the	known	nhr-23	binding	site,	either	directly	or	via	reverse	

complementarity,	suggesting	that	the	word	and	gene	associations	defined	by	this	word	module	

are	accurate	(Table	1).		To	determine	if	the	canonical	binding	site	for	NHR-23	would	also	be	

recovered	using	a	standard	method	for	transcription	factor	binding	site	prediction,	we	applied	

the	RSA-Tools(Thomas-Chollier	et	al)	oligo-analysis	program	(http://rsat.ulb.ac.be/oligo-
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analysis_form.cgi)	to	the	most	differentially	expressed	genes	in	the	nhr-23	dataset.		None	of	the	

oligonucleotide	sequences	found	to	be	enriched	in	the	promoters	of	these	genes	by	oligo-

analysis	matched	the	canonical	NHR-23	binding	site	(see	Supplemental	data).	

	

We	next	chose	to	test	whether	transcriptional	influence	predicted	from	microarray	data	

generated	with	the	Affymetrix	platform	could	be	useful	for	interpreting	data	from	a	different	

expression	platform.		For	this	test,	we	reanalyzed	the	hif-1	and	isp-1	mutant	gene	expression	

fold	changes	described	above.		Calculation	of	signed	variance	explained	for	these	fold	revealed	

that	word	module	217	was	the	strongest	positive	word	module	in	isp-1	mutants,	and	the	

second	strongest	negative	word	module	in	hif-1	mutants.		Similar	to	the	result	with	nhr-23,	the	

top	three	words	in	word	module	217	showed	similar	strengths,	ranging	from	26.8	–	28.9	and	

each	of	these	words	matched	the	known	binding	site	of	HIF-1.		We	also	applied	the	oligo-

analysis	program	to	the	most	differentially	expressed	genes	for	both	the	isp-1	and	hif-1	

datasets.		Similar	to	the	result	with	the	nhr-23	dataset,	none	of	the	oligonucleotides	reported	to	

be	enriched	by	this	program	matched	the	canonical	HIF-1	binding	site	(see	Supplemental	data).		

Again,	these	results	suggest	that	our	method	is	able	to	detect	functional	transcription	factor	

binding	sites	that	other	methods,	which	typically	examine	only	the	most	strongly	differentially	

expressed	genes,	may	miss.	
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Discussion 

	

Improvements	in	gene	expression	measurement	technology	have	advanced	to	the	point	where	

subtle	changes	in	gene	expression	between	two	conditions	can	be	detected	reliably,	and	a	

researcher	is	often	faced	with	making	sense	of	thousands	of	significant	genes	following	

statistical	analysis	of	expression	data.		A	common	practice	is	to	choose	an	arbitrary	fold-change	

threshold,	e.g.,	2-fold,	to	limit	a	large	list	of	significant	genes	to	a	more	manageable	size,	but	

the	biological	justification	for	such	a	threshold	is	unclear,	given	that	a	small	difference	in	the	

expression	level	of	a	gene,	or	the	coordinated	expression	of	many	such	genes,	could	potentially	

have	a	large	impact	on	cellular	physiology.		To	wit,	our	application	of	a	common	transcription	

factor	binding	site	detection	method	to	the	top	genes	from	the	three	different	microarray	

experiments	we	examined	(from	nhr-23,	isp-1,	and	hif-1	mutants)	did	not	recover	the	binding	

sites	of	the	transcription	factors	expected	to	be	most	influential	in	each	data	set.		

	

Our	method	of	analyzing	gene	expression	data	using	transcriptional	influence	does	not	rely	on	

fold	change	thresholds	or	on	thresholds	of	statistical	significance.	Instead,	the	entire	spectrum	

of	fold	changes	from	a	gene	expression	experiment	informs	the	activity	level	of	each	word	

module.		This	not	only	allows	one	to	look	for	biologically	significant	patterns	comprising	genes	

with	small	fold	changes	(as	we	infer	occurs	for	HIF-1’s	regulation	of	genes	in	isp-1	mutants),	it	

also	allows	one	to	apply	transcriptional	influence	predictions	to	analyze	gene	expression	data	

from	a	single	contrast,	e.g.	a	single	two-color	microarray	or	an	RNA-Seq	experiment	with	a	

single	control	sample	and	a	single	test	sample.		This	level	of	sensitivity	could	be	useful	for	
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conducting	large-scale	gene	expression	screens,	as	both	cost	and	effort	would	be	reduced	

dramatically.	

	

Whereas	ICA	has	been	applied	to	the	prediction	of	gene	modules	before,	we	could	find	no	

examples	in	the	literature	of	its	application	to	the	recovery	of	transcription	factor	binding	sites	

from	co-regulated	genes.		The	successful	recovery	of	known	binding	sites	via	ICA,	based	on	a	

library	of	potential	regulatory	sequences	created	with	genomic	sequence	data,	serves	as	a	

proof	of	principle	of	the	utility	of	this	algorithm	in	this	capacity.		Combined	with	the	improved	

ability	to	discretize	independent	components	provided	by	our	artificial	neural	network	

approach,	we	expect	that	our	results	will	spur	exploration	into	additional	applications	of	ICA	to	

the	analysis	of	biological	data.		In	addition,	it	will	stimulate	many	specific,	testable	hypotheses	

about	the	roles	of	specific	transcription	factors	in	biological	processes.		For	example,	had	we	

not	known	previously	that	HIF-1	regulated	life	extension	in	isp-1	mutants,	we	would	have	

generated	this	hypothesis	upon	observing	strong	representation	of	the	same	gene	and	word	

modules	in	the	isp-1	and	hif-1	microarray	datasets.	

	

A	potential	limitation	of	our	method	is	that	estimations	for	transcriptional	influence	can	only	be	

made	for	transcription	factors	that	have	differing	levels	of	activity	among	the	experimental	

conditions	represented	in	the	compendium.		A	transcription	factor	with	a	constant	level	of	

activity	across	all	compendium	microarrays	would	be	invisible	to	our	method.		As	new	areas	of	

research	are	explored	and	new	experiments	are	published,	however,	transcriptional	influence	
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can	be	recalculated	to	add	new	word	modules	or	to	improve	influence	estimations	for	word	

modules	already	present.	

	

While	three	of	the	four	canonical	transcription	factor	binding	sites	that	we	examined	had	good	

matches	to	word	modules,	both	in	terms	of	the	oligo	nucleotide	sequences	comprising	the	

word	modules	and	in	terms	of	the	predicted	transcriptional	influence	of	the	word	modules,	

neither	of	the	exact	matches	to	the	canonical	binding	site	of	the	fourth	factor,	DAF-16	[which	

has	the	canonical	binding	site	T(G/A)TTTAC(Furuyama	et	al	2000;	Murphy	et	al	2003)],	was	

present	in	the	promoter	word	dictionary	created	by	Mobydick.		A	word	module	comprising	

longer,	similar	sequences	to	the	canonical	DAF-16	site	was	generated	by	our	algorithm,	but	few	

genes	were	predicted	to	be	strongly	influenced	by	this	word	module	and	those	that	were	did	

not	match	known	DAF-16	target	genes.		While	the	lack	of	strong	transcriptional	influence	

predictions	between	known	DAF-16	target	genes	and	a	word	module	that	resembles	the	DAF-

16	binding	site	could	be	due	to	insufficient	sampling	of	perturbations	involving	this	factor	in	the	

compendium,	we	believe	a	more	likely	explanation	stems	from	our	method	for	calculating	word	

enrichment	among	module	promoters.		We	calculated	the	p-value	for	module-wise	enrichment	

based	simply	on	the	presence	or	absence	of	each	word	in	each	gene’s	promoter.		Thus,	words	

that	are	present	many	times	in	a	gene’s	promoter	do	not	contribute	anything	more	to	the	p-

value	calculation	than	words	that	are	present	only	once.		The	canonical	DAF-16	binding	site	

occurs	in	approximately	50%	of	all	2k-bp	gene	promoters,	but	in	the	12	genes	with	the	largest	

expression	changes	in	daf-2	mutants,	in	which	DAF-16	becomes	activated,	Zhang	et	al.(Zhang	et	

al),	found	that	the	mean	number	of	occurrences	of	the	DAF-16	binding	site	is	5.1.		Thus,	a	single	
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copy	of	the	DAF-16	binding	site	may	be	insufficient	to	confer	regulation	by	this	factor.		A	

modification	of	our	method	that	uses	gene-wise	promoter	word	enrichment	rather	than	

presence	vs.	absence	may	prove	more	to	be	more	accurate	for	predicting	the	transcriptional	

influence	of	factors	with	highly	abundant	binding	sites,	such	as	DAF-16.		This	is	a	question	we	

plan	to	address	in	future	work.	

	

In	addition	to	its	utility	in	analyzing	gene	expression	data,	the	transcriptional	influence	matrix	

can	be	used	to	identify	transcription	factor	target	genes,	providing	that	word	modules	can	

successfully	be	mapped	to	transcription	factors.		In	our	comparison	of	word	module	target	

genes	to	genes	identified	as	potential	targets	of	transcription	factors	by	the	modENCODE	

project,	we	found	that	most	word	modules	shared	statistically	significant	overlap	with	multiple	

transcription	factors.		We	attribute	this	to	the	general	binding	promiscuity	that	transcription	

factors	in	the	modENCODE	datasets	demonstrate.		Future	work	based	on	matching	binding	site	

sequences,	rather	than	target	genes,	may	prove	to	be	more	fruitful	for	mapping	word	modules	

to	specific	transcription	factor(s)	on	a	large	scale.	
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Methods 

	

Compendium construction 

	

To	build	our	compendium	of	1386	C.	elegans	Affymetrix	arrays,	we	first	downloaded	all	CEL	files	

with	the	appropriate	platform	ID	(GPL200)	from	the	GEO	database	available	on	March	1,	2014,	

excluding	those	for	which	the	organism	was	not	C.	elegans	and	the	sample	type	was	not	RNA.		

We	excluded	arrays	from	experiments	for	which	fewer	than	8	hybridizations	were	performed	in	

order	to	mitigate	the	effect	that	under-sampled	conditions	might	have	on	predicted	modules.		

We	then	performed	a	quality	control	step	using	the	quality	assessment	functions	provided	in	

the	simpleAffy	(v2.40.0)	R	package	(http://bioinformatics.picr.man.ac.uk/simpleaffy/),	

discarding	arrays	that	did	not	meet	the	quality	thresholds	recommended	in	the	simpleAffy	

documentation.	

	

We	generated	expression	values	for	probesets	separately	for	each	experiment	(determined	by	

GEO	series	IDs)	using	the	RMA	preprocessing	procedure	provided	in	the	affy	(v1.40.0)	R	

package	(Gautier	et	al	2004),	then	used	the	bias	(v0.0.5)	R	package(Eklund	&	Szallasi	2008)	to	

remove	intensity-dependent	biases	in	expression	levels.		We	then	concatenated	the	expression	

matrices	for	each	experiment	into	a	single	matrix.		Next,	we	either	performed	between-

experiment	quantile	normalization(Bolstad	et	al	2003)	on	the	entire	matrix	using	the	limma	

(v3.18.13)	R	package(Smyth	2005),	or	omitted	this	step,	depending	on	preprocessing	method	to	
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be	tested.		Finally,	we	scaled	and	centered	the	arrays	and	centered	the	genes	such	that	the	

mean	of	each	row	and	column	were	zero	and	the	standard	deviation	of	each	array	was	1.		

	

Conducting ICA 

	

To	conduct	ICA	of	the	gene	expression	matrix,	we	used	the	fastICA	(v1.2-0)	R	package	

(http://CRAN.R-project.org/package=fastICA)	with	default	parameters	except	for	the	“method”	

parameter,	which	we	set	to	“C”	to	increase	computational	speed,	and	the	“row.norm”	

parameter,	which	we	set	to	”TRUE”	in	order	to	balance	the	total	compendium	variance	

between	genes	with	subtle	changes	in	expression	values	and	those	with	large	changes	in	

expression	values.		We	used	the	same	parameters	to	conduct	ICA	of	the	word	/	module	p-value	

matrix.	

	

Discretization of independent components 

	

To	convert	independent	components	to	discrete	sets	of	genes,	we	employed	two	methods.		In	

the	first,	for	each	component,	we	assigned	all	genes	with	a	weight	<=	-3	to	the	negative	hemi-

module,	and	all	genes	with	a	weight	>=	3	to	the	positive	hemi-module.		In	the	second,	we	

created	an	artificial	neural	network	using	the	neuralnet	(v1.32)	R	package	(http://CRAN.R-

project.org/package=neuralnet)	to	predict	positive	and	negative	discretization	thresholds	for	

each	independent	component,	based	on	the	component’s	skewness	and	kurtosis	(see	



	 49	

Supplemental	Methods),	then	assigned	genes	whose	weights	exceeded	these	thresholds	to	the	

corresponding	hemi-modules.	

	

Obtaining gene annotations and additional microarray data 

	

To	obtain	GO	term	and	REACTOME	pathway	annotations	for	genes	we	used	the	biomaRt	

(v2.18.0)	R	package(Durinck	et	al	2005;	Durinck	et	al	2009),	using	the	ensembl	mart	for	data	

retrieval.		To	obtain	tissue	annotations	for	C.	elegans	genes,	we	downloaded	all	available	data	

from	the	GFP	Worm	database	(http://gfpweb.aecom.yu.edu/)(Hunt-Newbury	et	al	2007),	which	

contains	annotated	expression	patterns	of	promoter::GFP	fusion	constructs;	in	total,	this	

dataset	provided	annotations	for	1821	genes	across	89	tissue	types	(n.b.,	we	considered	the	

same	tissue	in	different	development	stages	to	be	distinct	tissue	types).		To	obtain	expression	

data	from	a	different	platform	for	use	in	optimization	of	gene	module	prediction,	we	

downloaded	the	fold	change	matrices	for	all	GEO	series	conducted	on	the	Washington	

University	C.	elegans	22k	60-mer	array	(GEO	platform	ID:	GPL4038),	a	two-color	spotted	array	

platform,	and	concatenated	these	column-wise	into	a	single	matrix.		To	obtain	microarray	data	

for	nhr-23(RNAi),	we	downloaded	gene	fold	changes	for	the	GEO	series	GSE32031,	which	

contains	three	control	samples	and	three	nhr-23(RNAi)	samples(Kouns	et	al	2011);	gene	fold	

changes	were	calculated	using	the	GEO2R	web	service	

(http://www.ncbi.nlm.nih.gov/geo/geo2r/).		To	obtain	fold	changes	for	isp-1	mutants,	we	used	

data	previously	published	by	our	group	in	which	isp-1(qm150)	mutants	were	compared	to	wild	

type	controls(Cristina	et	al	2009).		To	obtain	fold	changes	for	hif-1	mutants,	we	used	the	
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maanova	(v1.33.2)	R	package	(http://research.jax.org/faculty/churchill)	and	data	previously	

published	by	Shen,	et	al.(Shen	et	al	2005),	to	calculate	the	induced	gene	fold	changes	upon	

mutation	of	hif-1.	

	

Optimizing gene module prediction 

	

To	optimize	gene	module	prediction,	we	performed	ICA	with	different	parameters,	varying	the	

number	of	extracted	components	from	5	to	500	by	increments	of	5	and	varying	the	

compendium	between	one	generated	with	between-experiment	quantile	normalization	and	

one	generated	without	this	step.		For	each	parameter	combination,	we	repeated	ICA	5	times,	

for	a	total	of	1000	ICA	runs.	

	

We	tested	the	biological	validity	of	the	independent	components	generated	by	each	ICA	run	by	

determining	the	number	of	annotations	that	were	enriched	in	at	least	one	hemi-module.		To	

make	this	determination,	we	first	calculated	a	p-value	for	the	enrichment	of	genes	associated	

with	each	annotation	term	in	each	hemi-module	using	the	hypergeometric	test.		We	then	

applied	the	Simes	method(SImes	1986)	for	multiple	hypothesis	testing	(alpha	=	0.05)	to	the	set	

of	p-values	for	each	annotation	term;	failure	of	this	test	indicates	that	at	least	one	of	the	p-

values	is	truly	significant.		To	verify	the	accuracy	of	our	module	quality	statistics,	we	repeated	

all	tests	using	module	definition	matrices	in	which	gene	IDs	had	been	randomly	shuffled.	
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To	test	the	ability	of	a	set	of	independent	components	to	represent	data	from	a	different	

microarray	platform,	we	first	projected	the	data	from	the	second	platform	onto	the	

independent	components	(see	below).		This	operation	produces	a	mixing	matrix,	which	may	be	

interpreted	as	describing	the	weight	of	each	independent	component	in	each	of	the	projected	

microarrays.		We	then	attempted	to	recover	the	original	data	by	determining	the	dot	product	of	

the	module	definition	matrix	and	the	mixing	matrix.		We	compared	this	matrix	with	the	original	

matrix	and	calculated	the	root	mean	squared	deviation	(RMSD)	between	the	two.		We	

normalized	this	value	by	dividing	by	the	range	of	values	between	the	two	matrices,	resulting	in	

NRMSD.	

	

Projection onto independent components and calculation of SVE 

	

To	project	a	data	vector,	x,	such	as	a	set	of	gene	expression	fold	changes,	onto	a	set	of	

modules,	we	used	the	scalar	projection	method,	in	which	a	mixing	vector,	a,	is	calculated	from	

the	dot	product	of	the	data	vector	and	the	transpose	of	the	unit	vectors	comprising	the	module	

definitions.		The	resulting	mixing	vector,	a,	provides	an	indication	of	the	weight	of	each	module	

definition	vector	in	the	projected	data,	x.		Projection	of	a	data	matrix,	X,	which	generates	a	

mixing	matrix,	A,	was	carried	out	using	the	same	procedure.	

	

To	calculate	signed	variance	explained	(SVE),	we	calculated	the	relative	variance	explained	(VE)	

for	each	module	from	a	then	multiplied	these	values,	which	are	strictly	positive,	by	-1	in	each	

case	where	a	<	0	to	obtain	SVE.	
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Statistical testing of module 3’-UTR length bias 

	

We	observed	that	C.	elegans	3’-UTR	lengths	are	approximately	log-normally	distributed	(Figure	

2.10).		Therefore,	we	chose	to	use	the	log	of	each	3’-UTR	length	in	our	calculations	to	allow	the	

use	of	parametric	statistical	tests,	such	as	Student’s	t-test.		For	those	genes	with	multiple	

annotated	3’-UTRs,	we	determined	the	log	of	the	individual	3’-UTR	lengths	and	used	the	mean	

of	these	numbers	for	the	gene’s	3’-UTR	length.	

	

In	our	statistical	test	for	3’-UTR	length	biases	in	predicted	modules,	we	first	calculated	the	

weighted	mean	C.	elegans	3’-UTR	length.		We	weighted	each	gene’s	contribution	to	this	mean	

by	the	frequency	with	which	it	appears	in	our	predicted	modules	in	order	to	adjust	for	different	

propensities	for	module	inclusion	by	different	genes.		We	then	used	one-sample	t-tests	to	

calculate	p-values	for	whether	the	mean	3’-UTR	length	of	each	hemi-module	differs	significantly	

from	the	weighted	mean	C.	elegans	3’-UTR	length.		We	used	the	Benjamini-Hochberg	

procedure	on	these	p-values	to	control	the	false	discovery	rate	at	a	level	of	0.1.		

	

Generation of word / hemi-module p-value matrix 

	

To	generate	a	matrix	for	use	in	word	module	prediction	via	ICA,	we	first	created	gene	sets	from	

the	module	definition	matrix,	Sg,	using	ANN	discretization.		This	produced	two	gene	sets	(which	

we	refer	to	as	hemi-modules)	per	gene	module,	for	a	total	of	418.		We	then	calculated	a	

hypergeometric	probability	for	each	word	in	each	hemi-module,	using	the	frequency	of	genes	
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bearing	a	particular	word	in	their	promoter	in	the	hemi-module,	the	frequency	of	such	genes	in	

the	compendium,	the	number	of	genes	in	the	hemi-module,	and	the	number	of	genes	not	in	

the	hemi-module	as	the	q,	m,	k,	and	n	input	parameters,	respectively,	to	the	phyper()	function	

of	the	stats	(v3.0.3)	R	package	(http://www.R-project.org/).		

	

We	used	these	p-values	to	populate	a	matrix	with	a	column	for	each	hemi-module	and	a	row	

for	each	word	in	our	promoter	dictionary.		For	under-represented	words,	we	entered	the	log(p-

value	x	2)	in	the	matrix,	and	for	over-represented	words	we	entered	the	–log(p-value	x	2).		The	

multiplication	by	2	corrected	for	two-tailed	testing.	

	

Prediction of transcriptional influence 

	

Because	word	modules	are	created	based	upon	genes	assigned	to	hemi-modules,	the	final	step	

in	our	process	of	predicting	transcriptional	influence	required	us	to	transform	the	gene	/	

module	definition	matrix,	Sg,	into	a	gene	/	hemi-module	matrix.,	Hg.		This	operation	consisted	of	

performing	a	row-wise	concatenation	of	two	copies	of	the	module	definition	matrix,	such	that	

each	hemi-module	appeared	in	its	own	row.		We	then	set	the	weights	of	all	non-hemi-module	

genes	within	each	row	to	zero,	to	prevent	such	genes	from	exerting	an	effect	on	transcriptional	

influence.	
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Comparing transcriptional influence predictions to modENCODE data 

	

To	compare	transcriptional	influence	predictions	to	known	transcription	factor	/	DNA	binding	

interactions,	we	downloaded	all	C.	elegans	transcription	factor	binding	data	from	the	

modENCODE	database	(http://www.modencode.org/)	available	on	March	1,	2014.		This	dataset	

comprised	69,860	DNA	binding	sites	from	136	submissions.		For	each	DNA	binding	site,	we	

annotated	a	gene	as	being	a	target	of	a	transcription	factor	if	the	midpoint	of	one	of	the	

transcription	factor’s	binding	sites	occurred	within	the	gene’s	2-kb	promoter	region.		We	then	

calculated	a	hypergeometric	p-value	for	each	word	module	/	transcription	factor	combination	

by	comparing	the	genes	with	the	100	largest	weights	for	a	word	module	in	the	transcriptional	

influence	matrix,	Xwg,	to	the	set	of	genes	annotated	as	transcription	factor	targets.		We	then	

calculated	q-values	from	the	resulting	set	of	hypergeometric	p-values,	and	considered	a	result	

significant	if	q	<	0.1.	
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Supplemental methods 

	

Construction of Mobydick dictionaries 

	

To	construct	promoter	and	3’-UTR	dictionaries,	we	ran	the	Mobydick(Bussemaker	et	al	2000)	

program	once	on	the	complete	set	of	C.	elegans	promoters,	using	DNA	sequence	from	the	

transcription	start	site	to	2000	b.p.	upstream	for	each	gene,	and	again	on	the	complete	set	of	

3’-UTRs	with	lengths	of	at	least	25	n.t.		Sequences	were	obtained	using	the	biomaRt	(ver	2.14.0)	

R	package(Durinck	et	al	2005;	Durinck	et	al	2009).		Application	of	Mobydick	to	promoter	

sequences	produced	a	dictionary	of	5230	words,	and	application	to	3’-UTR	sequences	produced	

a	dictionary	of	968	words.	

	

Calculation of significance of 3’-UTR word enrichment 

	

Because	3’-UTRs	differ	in	length,	and	because	gene	modules	show	a	tendency	toward	inclusion	

of	genes	with	similar	length	3’-UTRs,	calculation	of	the	enrichment	of	3’-UTR	words	in	module	

genes	required	a	length-normalization	step.		To	achieve	this,	we	applied	the	method	described	

van	Helden,	et	al.(van	Helden	et	al	1998)		Briefly,	we	determined	the	per	nucleotide	frequency	

of	each	word	in	the	entire	set	of	3’-UTRs,	then	used	the	binomial	distribution	to	determine	

whether	each	word	occurs	more	often	than	expected	by	random	chance	in	a	sequence,	given	

the	number	of	occurrences	of	the	word	in	the	sequence	and	the	sequence	length.		We	then	
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applied	the	Holm-Bonferroni	correction	to	the	resulting	p-values	and	marked	all	words	with	a	

corrected	p-value	<	0.5	as	present	in	the	3’-UTR.	

	

Generation of artificial neural network for independent component dicretization 

	

To	create	an	artificial	neural	network	for	use	in	discretization	of	independent	components,	we	

first	generated	simulated	data	to	use	as	test,	training,	and	validation	sets.		We	generated	this	

data	by	first	randomly	permuting	the	expression	values	of	100	arrays	comprising	our	C.	elegans	

microarray	compendium	column-wise	to	create	a	background	devoid	of	non-random	signal,	but	

with	a	similar	gene	expression	value	distribution	to	real	data.	

	

Into	this	random	background	we	inserted	simulated	gene	modules	by	first	picking	a	gene	to	use	

as	a	module	seed	pattern,	then	changing	the	expression	values	of	other	genes	such	that	they	

positively	or	negatively	correlated	with	the	expression	values	of	this	gene	across	all	or	a	subset	

of	arrays.		We	varied	the	number	of	genes	comprising	the	simulated	module,	the	strength	of	

adherence	of	each	gene	to	the	seed	pattern,	the	fraction	of	genes	within	the	module	with	

positive	and	negative	correlation	to	the	seed	pattern,	and	the	number	of	arrays	in	which	this	

correlation	existed.		In	all,	we	generated	over	10,000	random	modules	and	inserted	them	into	

separate	sets	of	random	background	arrays,	so	that	each	array	set	would	contain	a	single	non-

random	module.	
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Figure 2.10.  Distribution of C. elegans 3’-UTR lengths 

The	distribution	of	C.	elegans	3’-UTR	lengths	is	approximately	log-normal.	
	
	
We	then	attempted	to	recover	each	simulated	module	using	ICA.		We	extracted	a	single	

component	from	each	simulated	array	set	and	deemed	the	extraction	successful	if	3	of	the	top	

5	most	strongly	weighted	genes	in	this	component	were	in	the	simulated	module.		For	

successful	extractions,	we	calculated	the	optimal	discretization	thresholds	for	the	positive	and	

negative	hemi-modules,	as	well	as	the	skewness	and	kurtosis	of	the	module	definition	vector	

using	the	moments	(v0.13)	R	package	(http://CRAN.R-project.org/package=moments).	

	

Using	this	data,	we	trained	an	artificial	network	to	predict	the	optimal	discretization	thresholds	

for	an	independent	component	from	the	skewness	and	kurtosis	of	its	gene	weights	using	the	

neuralnet	(v1.32)	R	package	(http://CRAN.R-project.org/package=neuralnet).		We	generated	

another	simulated	module	set	in	the	same	manner	as	the	first	to	use	as	a	test	set,	and	varied	

the	architecture	of	the	artificial	neural	network	until	the	prediction	performance	reached	a	

maximum	value.		This	occurred	when	the	artificial	neural	network	contained	two	hidden	layers,	
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each	with	11	nodes.		We	confirmed	that	the	artificial	neural	network	was	not	over-fit	to	the	test	

	

Figure 2.11.  Optimization of artificial neural network for discretization 

We	tested	the	effect	of	various	parameters	on	the	prediction	performance	of	artificial	neural	
network	discretization	of	simulated	modules.		Shown	here	are	the	results	of	varying	the	
number	of	hidden	layers	in	the	network	and	the	number	of	nodes	in	each	layer;	the	x-axis	
shows	the	total	number	of	connections	in	the	network,	the	y-axis	shows	the	mean	squared	
error	of	each	network.		Colors	indicate	the	number	of	hidden	layers.	
	
	
set	by	measuring	its	performance	in	a	third	set	of	simulated	data,	the	validation	set.		

Performance	on	this	set	was	similar	to	that	on	the	test	set.		The	structure	of	this	artificial	neural	

network	is	shown	in	Figure	2.12;	an	R	data	file	containing	the	artificial	neural	network	is	

available	for	download	on	our	website	(http://kenyonlab.ucsf.edu/data/ann.11.11.Rdata).	
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Figure 2.12.  Schematic of optimized artificial neural network for IC discretization 

The	figure	shows	the	structure	of	the	best	performing	ANN	generated	by	our	optimization	tests.		
The	skewness	and	kurtosis	of	the	source	matrix	weights	(rows	of	the	S	matrix)	of	an	
independent	component	are	used	as	input	to	the	network,	and	the	predicted	optimal	
discretization	thresholds	are	generated	as	output.	
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Chapter 3: Future Directions 

	

Accurate	predictions	of	transcriptional	influence	will	facilitate	the	construction	of	continuous	

genetic	regulatory	networks,	but	the	utility	of	the	work	described	in	Chapter	2	could	be	far	

more	reaching.		The	predicted	gene	modules,	which	serve	as	an	intermediate	data	structure	in	

the	algorithm	for	predicting	transcriptional	influence,	may	themselves	reveal	new	biological	

processes	or	provide	more	inclusive	lists	of	participating	genes	for	known	processes.		Both	the	

gene	modules	and	transcriptional	influence	predictions	may	be	used	to	analyze	existing	data	

sets,	possibly	shedding	new	light	on	the	biological	questions	those	data	sets	address.		In	this	

chapter,	I	discuss	these	and	other	possible	applications	of	the	work	described	in	Chapter	2,	and	

describe	what	I	view	are	the	most	important	next	steps	that	should	be	taken	in	this	area	of	

research.	

	

Construction of an online resource for data analysis 

	

The	most	pressing	need,	in	my	opinion,	is	to	make	the	work	described	in	Chapter	2	accessible	to	

the	wider	research	community	through	the	construction	of	an	online	resource	for	data	analysis.		

Without	such	a	resource,	neither	the	gene	modules	nor	the	transcriptional	influence	

predictions	will	see	widespread	use.		Such	a	resource	should	allow	a	user	to	enter	gene	

expression	data	(i.e.,	a	list	of	gene	fold	changes),	or	even	a	simple	list	of	genes	that	are	

interesting	to	the	user,	and	the	resource	should	show	the	user	which	gene	modules	and	which	
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word	modules	are	significant	in	their	input	data.		In	addition,	the	resource	could	inform	the	

user	of	microarrays	(and	the	underlying	perturbations)	that	are	highly	similar	to	their	input	data	

in	terms	of	gene	and	word	modules.		In	the	initial	version	of	the	resource,	the	pool	of	available	

microarrays	for	this	kind	of	analysis	could	be	limited	to	the	compendium	used	to	construct	the	

gene	and	word	modules,	but	future	versions	of	the	resource	could	include	microarrays	from	

other	platforms	and	RNA-seq	data.	

	

Additional	future	improvements	to	the	online	resource	could	be	to	expand	predicted	modules	

to	other	species	(see	below),	allow	cross-species	data	analysis	through	gene	orthology	

relationships,	and	expand	the	types	of	annotations	able	to	be	analyzed.		The	method	used	to	

construct	word	modules	relies	on	a	simple	binary	annotation	matrix,	in	which	genes	appear	in	

rows	and	words	in	columns;	if	a	word	appears	in	the	promoter	region	of	a	gene,	the	

corresponding	cell	of	this	matrix	contains	a	1,	and	a	0	otherwise.		This	same	kind	of	matrix	could	

be	constructed	for	any	kind	of	gene	annotation.		For	example,	a	matrix	of	genes	and	tissue	

types	could	describe	all	known	tissue-specific	expression	patterns	of	all	genes.		This	matrix	

could	be	used	to	construct	tissue	modules	(i.e.,	tissues	with	similar	expression	patterns)	and,	

subsequently,	allow	users	to	see	which	tissue	modules	are	significant	in	their	input	data.		In	the	

same	way,	modules	could	be	constructed	for	GO	annotations,	REACTOME	pathways,	

publications,	and	even	authors	(by	first	creating	a	matrix	associating	published	authors	with	

genes	they	have	written	about.)		All	of	these	types	of	modules	could	be	returned	to	the	user	

upon	submission	of	their	input	data,	possibly	revealing	important	patterns	in	their	data	that	

were	previously	hidden.	
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Predicting gene modules for other species 

	

In	preliminary	work,	we	used	ICA	to	predict	gene	modules	from	yeast,	fly,	and	mouse	

Affymetrix	arrays.		Working	with	several	batches	of	100	arrays	each,	we	observed	that	the	

optimal	preprocessing	regime	appears	to	differ	between	these	different	species.		It	is	not	clear	

whether	this	is	due	to	fundamental	differences	in	gene	expression	between	these	organisms,	or	

due	to	technical	differences	in	the	arrays;	each	array	platform,	though	all	were	manufactured	

by	Affymetrix,	contained	significant	design	differences	from	the	others.		Thus,	the	first	

challenge	in	applying	our	method	in	another	species	is	to	identify	the	optimal	data	

preprocessing	regime	to	use	for	that	species.		We	expect	that	an	approach	similar	to	the	one	

we	employed	to	optimize	module	prediction	in	C.	elegans	will	be	successful	in	optimizing	

module	prediction	in	other	species.		

	

The	second	challenge	in	applying	our	method	to	different	species,	especially	to	mouse	and	

human,	arises	from	the	fact	that	these	organisms	contain	an	order	of	magnitude	more	

microarrays	in	public	repositories	than	were	available	for	C.	elegans	at	the	time	we	performed	

our	analysis.		For	example,	at	present	(August,	2014),	there	are	over	40,000	microarray	samples	

available	for	the	most	common	mouse	Affymetrix	array,	and	over	50,000	for	the	most	common	

human	Affymetrix	array,	compared	with	just	over	1700	for	C.	elegans.		This	presents	a	

computational	challenge	–	using	the	same	algorithms	and	computers	we	used	in	our	C.	elegans	

analysis	for	all	of	the	data	in	mouse	or	human	would	take	many	months	of	computing	time	and	

a	prohibitive	amount	of	RAM.		Thus,	either	smaller	sets	of	arrays	would	need	to	be	selected	for	



	 73	

module	construction	or	different	algorithms	would	need	to	be	employed	for	predicting	gene	

modules	with	mouse	or	human	Affymetrix	arrays.		A	highly	parallel	version	of	ICA	able	to	run	on	

a	computer	cluster	could	meet	this	need,	but	this	has	not	yet	been	developed.	

	

Yet	another	challenge	in	applying	our	method	to	other	organisms	stems	from	the	fact	that	gene	

regulation	is	likely	more	complex	and	may	work	at	larger	upstream	distances	from	the	

transcription	start	site	in	other	organisms.		In	C.	elegans,	promoter	regions	in	the	range	of	1	–	2	

kilobases	are	often	sufficient	to	recapitulate	the	expression	pattern	of	a	gene	when	fused	to	a	

reporter,	such	as	GFP(Dupuy	et	al	2004).		This	is	not	the	case	in	more	complex	organisms,	such	

as	D.	melanogaster	(Roland	Bainton,	personal	communication).		Thus,	larger	upstream	regions	

(and	downstream	regions	as	well)	may	be	needed	for	successful	capture	of	functional	

transcription	factor	binding	sites	for	most	genes	in	D.	melanogaster	or	more	complex	

organisms.		This	could	significantly	dampen	the	signal	used	for	word	module	detection,	as	

additional	input	DNA	for	a	gene	would	likely	contain	many	words	that	serve	no	biological	

function	for	the	gene	in	question,	but	that	do	serve	a	regulatory	function	to	a	different	gene.		

The	application	of	algorithms	that	predict	DNA	accessibility	to	transcription	factor	binding	in	

order	to	limit	the	word	search	region	for	each	gene	may	help	to	mitigate	this	problem.	
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Exploring gene module homology 

	

Predicting	gene	modules	in	multiple	species	would	allow	cross-species	comparisons	of	gene	

modules	and,	potentially,	of	transcriptional	influence	as	well	(providing	the	challenges	

described	above	are	overcome).		Aside	from	shedding	light	on	how	specific	biological	processes	

differ	between	species	and	how	those	processes	may	have	evolved,	cross-species	module	

comparisons	may	help	to	answer	two	types	of	questions	of	particular	interest	to	myself	and	

other	members	of	the	Kenyon	lab.	

	

The	first	of	these	pertains	to	the	process	of	gene	and	word	module	prediction.		Using	

homologous	modules	to	translate	information	that	is	abundant	for	one	species	but	scarce	for	a	

second	could	aid	the	prediction	and	refinement	of	gene	and	word	modules	in	the	second	

species.		For	example,	the	number	of	well-characterized	D.	melanogaster	transcription	factors	

with	binding	site	descriptions	in	public	databases	far	exceeds	those	of	C.	elegans.		Matching	a	

transcription	factor	to	a	word	module	in	D.	melanogaster,	therefore,	should	present	less	of	a	

challenge	in	many	cases	than	it	does	in	C.	elegans.		A	putative	regulator	for	a	C.	elegans	word	

module	could	potentially	be	found	by	identifying	the	gene	homologue	of	a	regulator	found	in	D.	

melanogaster	for	a	homologous	word	module.		In	addition,	homologous	modules	may	serve	as	

guides	for	adapting	our	algorithm	to	more	complex	organisms.		For	example,	a	set	of	well-

conserved	gene	modules	between	C.	elegans	and	a	second	species	could	be	used	to	optimize	

the	search	space	for	promoter	words	in	the	second	species.		Such	a	search	would	rely	on	the	

assumption	that	conserved	gene	modules	should	be	regulated	similarly	in	different	species;	this	
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assumption	appears	reasonable,	but	it	would	need	to	be	validated	prior	to	conducting	such	

work.	

	

The	second	type	of	research	question	that	homologous	modules	may	help	answer	pertains	to	

the	use	of	model	organisms	to	study	human	diseases.		Perturbations	that	mimic	a	human	

disease	state	or	perturb	a	biological	process	that	is	pertinent	to	a	human	disease	may	alter	the	

activity	of	both	conserved	and	non-conserved	gene	and	word	modules.		In	these	cases,	

researchers	may	wish	to	focus	their	attention	on	the	genes	comprising	conserved	modules,	as	

these	may	be	more	relevant	to	the	human	disease	being	investigated.		In	addition,	

perturbations	in	a	model	organism	could	be	translated	first	into	perturbations	of	modules	(both	

word	and	gene),	and	then	into	perturbations	of	homologous	modules	in	humans.		For	example,	

the	gene	fold	changes	observed	in	extremely	long-lived	variants	of	C.	elegans	could	be	

translated	into	activity	levels	of	human	modules	with	C.	elegans	homologues.		The	vast	

repository	of	human	microarray	data	could	then	be	searched	for	conditions	that	elicit	similar	

module	activities.		The	experimental	conditions	that	such	arrays	tested	serve	as	hypothesis	for	

the	question,	“What	perturbations	in	human	cells	give	a	similar	result	to	longevity	

perturbations	of	C.	elegans?”	

	

Toward continuous genetic regulatory networks 

	

There	are	two	major	remaining	challenges	to	generating	continuous	genetic	regulatory	

networks	from	transcriptional	influence	prediction	matrices.		The	first	of	these	lies	in	mapping	
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word	modules	to	gene	regulators.		In	the	work	presented	in	Chapter	2,	the	word	modules	are	

hypothesized	to	correspond	mainly	to	protein	transcription	factors,	but	additional	type	of	

regulators,	such	as	micoRNAs	(see	below),	could	be	included	in	the	network.		Mapping	

transcription	factors	to	word	modules	is	not	a	trivial	exercise,	especially	in	C.	elegans,	in	which	

relatively	few	transcription	factors	have	well-characterized	binding	sites.		I	currently	see	two	

approaches	one	could	use	to	achieve	this	mapping.	

	

The	first	of	these	would	rely	on	transcription	factors	in	other	species	with	known	binding	sites.		

Each	word	module	would	be	mapped	to	the	closest	binding	site	match	in	the	second	species,	

and	then	(as	described	above)	C.	elegans	orthologs	of	this	transcription	factor	would	serve	as	

hypothetical	matches	to	the	word	module.		Expression	levels	of	hypothetical	matches	could	

then	be	compared	to	the	activity	levels	of	the	word	module	in	a	set	of	expression	data;	strong	

correlations	(either	positive	or	negative)	would	serve	to	bolster	the	hypothesis	that	the	

regulator	acts	upon	the	word	module.	

	

The	second	approach	to	mapping	word	modules	to	regulators	would	make	use	of	high-

throughput	protein-DNA	binding	assays,	such	as	the	ChIP-seq	data	provided	by	the	

modENCODE	consortium(Gerstein	et	al	2010).		Analysis	of	non-promiscuous	genomic	regions	

(i.e.,	regions	that	appear	to	be	relatively	specific	to	a	particular	factor)	can	be	analyzed	with	

transcription	factor	binding	site	analysis	algorithms	to	derive	binding	sites	for	each	regulator.		

These	can	then	be	compared	to	word	modules	to	find	potential	matches.		Combined	with	

comparisons	between	genes	predicted	to	be	influenced	by	the	word	module	and	genes	shown	
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to	have	proximal	binding	by	the	transcription	factor,	and	regulator	expression	/	word	module	

activity	correlation,	a	“short	list”	of	potential	regulators	can	be	generated	for	each	word	

module.	

	

The	second	remaining	challenge	to	generating	continuous	genetic	regulatory	networks	lies	in	

partitioning	the	influence	of	each	transcription	factor	on	each	gene	into	direct	and	indirect	

components,	i.e.,	how	much	of	a	transcription	factor’s	influence	on	a	gene	arises	from	proximal	

binding	to	that	gene	and	how	much	is	due	to	the	action	of	downstream	intermediaries?		At	

least	two	types	of	data	could	be	used	to	help	make	this	determination.		The	first	of	these	is	

binding	site	analysis.		Genes	lacking	promoter	sequence	matches	to	a	word	module	are	

candidates	for	indirect	regulation	by	the	corresponding	transcription	factor,	especially	if	the	set	

of	such	genes	for	a	word	module	have	one	or	more	promoter	sequence	motifs	in	common	that	

putative	direct	targets	lack.		The	second	type	of	data	comes	from	protein-DNA	binding	assays.		

Given	DNA	binding	data	for	a	transcription	factor	and	the	predicted	influence	of	that	factor	on	

each	gene,	a	classifier	algorithm	could	be	trained	to	discriminate	between	direct	and	indirect	

gene	targets.		One	possible	way	to	train	such	a	classifier	would	be	with	a	set	of	transcription	

factor	perturbation	experiments	using	the	assumption	that,	in	general,	direct	targets	should	

show	greater	expression	level	changes	than	indirect	targets;	the	classifier	would	be	iteratively	

modified	until	these	(predicted)	sets	showed	the	greatest	difference	in	the	perturbation	

experiments.	
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Generation	of	word	modules	for	3’-UTRs	would	add	another	dimension	to	the	continuous	

genetic	regulatory	network.		Generation	of	word	modules	for	3’-UTRs	is	relatively	straight	

forward,	though	one	extra	step	is	required	(specifically,	3-UTR	length	normalization	of	word	

frequencies,	see	Chapter	2).		Since	gene	expression	regulation	in	3’-UTRs	is	thought	to	occur	

mainly	through	the	action	of	microRNAs,	many	3’-UTR	word	modules	could	potentially	be	

identified	via	microRNA	database	searches.		We	have	not	yet	attempted	this,	however,	so	there	

may	be	unforeseen	difficulties	in	this	approach.	

	

Once	a	rudimentary	continuous	genetic	regulatory	network	is	constructed,	additional	data	

could	be	used	to	test	and	refine	it.		Ultimately,	an	algorithm	to	produce	the	most	likely	

continuous	genetic	regulatory	network,	given	a	large	set	of	training	data,	is	envisioned.		Such	a	

network	could	be	of	great	use	to	researchers,	as	it	could	allow	them	to	see	how	specific	

perturbations	alter	the	activity	of	different	nodes	in	the	network	to	produce	the	observed	

transcriptional	output.		This	could	greatly	facilitate	the	interpretability	of	genome-wide	

expression	measurements	and	lead	to	more	fruitful	hypothesis	generation	from	these	complex	

data.	
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