Lawrence Berkeley National Laboratory

LBL Publications

Title

Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed

Permalink https://escholarship.org/uc/item/5gg1k6zm

Journal Journal of Geophysical Research Biogeosciences, 125(7)

ISSN 2169-8953

Authors

Philben, Michael Taş, Neslihan Chen, Hongmei <u>et al.</u>

Publication Date 2020-07-01

DOI

10.1029/2019jg005512

Peer reviewed

Influences of hillslope biogeochemistry on anaerobic soil organic matter decomposition in a
 tundra watershed

- 3
- 4 M. Philben^{1*}, N. Taş², H. Chen³, S. D. Wullschleger¹, A. Kholodov⁴, D. E. Graham⁵, and B. Gu¹
- ⁵ ¹Environmental Sciences Division, Oak Ridge National Laboratory
- ⁶ ²Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
- ³Department of Chemistry and Biochemistry, Old Dominion University
- ⁸ ⁴Geophysical Institute, University of Alaska Fairbanks
- 9 ⁵Biosciences Division, Oak Ridge National Laboratory
- ¹⁰ ^{*}Present address: Department of Geology and Environmental Science, Hope College
- 11 Corresponding authors: Michael Philben (<u>philben@hope.edu</u>) and Baohua Gu (<u>gub1@ornl.gov</u>)
- 12 Key Points:
- We compared CO₂ and CH₄ production in soils from two wetland areas along a tundra hillslope gradient (toeslope and peat plateau).
- Production of both gasses was higher in the organic toeslope soils, while microbial N
 limitation was higher in peat plateau soils.
- Downslope transport of N, DOM, and alkalinity increases greenhouse gas production in
 the organic toeslope soils.
- 19

20 Abstract

We investigated rates and controls on greenhouse gas (CO₂ and CH₄) production in two 21 contrasting water-saturated tundra soils within a permafrost-affected watershed near Nome, 22 23 Alaska, United States. Three years of field sample analysis have shown that soil from a fen-like area in the toeslope of the watershed had higher pH and higher porewater ion concentrations than 24 soil collected from a bog-like peat plateau at the top of the hillslope. The influence of these 25 contrasting geochemical and topographic environments on CO₂ and CH₄ production was tested 26 in soil microcosms by incubating both the organic- and mineral-layer soils anaerobically for 55 27 28 days. Nitrogen (as NH₄Cl) was added to half of the microcosms to test potential effects of N 29 limitation on microbial greenhouse gas production. We found that the organic toeslope soils produced more CO₂ and CH₄, fueled by higher pH and higher concentrations of water-30 31 extractable organic C (WEOC). Our results also indicate N limitation on CO₂ production in the peat plateau soils, but not the toeslope soils. Together these results suggest that the weathering 32 and leaching of ions and nutrients from tundra hillslopes can increase the rate of anaerobic soil 33 34 organic matter decomposition in downslope soils by (1) increasing the pH of soil porewater; (2) providing bioavailable WEOC and fermentation products such as acetate; and (3) relieving 35 microbial N limitation through nutrient runoff. We conclude that the soil geochemistry as 36 mediated by landscape position is an important factor influencing the rate and magnitude of 37 greenhouse gas production in tundra soils. 38

39 **1 Introduction**

Hillslope topography organizes the distribution of water, energy, and nutrients within
landscapes (Burt & Pinay, 2005). Erosion and selective leaching from areas with elevated
topography results in gradients of soil grain size, composition and chemistry (Milne, 1936;
Moore et al., 1993; Wang et al., 2009). This typically results in the accumulation of soil organic

Confidential manuscript submitted to JGR-Biogeosciences

matter (SOM), nutrients, and other soil-derived solutes in low-lying areas within watersheds
(Creed et al., 2002; Yoo et al., 2006), provided that the soils are hydrologically connected
(Hornberger et al., 1994; Stieglitz et al., 2003). In temperate watersheds, slope and elevation
have been successfully used to predict stocks of SOM, soil pH, and nutrient concentrations
(Creed et al., 2002; Hall & Olson, 1991; Moore et al., 1993). There is therefore growing interest
in representing hillslope processes as sub-grid cell heterogeneity in the next generation of Earth
system models (Fan et al., 2019).

Accurately representing these processes in the Arctic is particularly important because Arctic 51 52 soils contain about one-third of the total global C pool (Hugelius et al., 2014; Schuur et al., 2015) and are severely under-studied compared to temperate soils (Metcalfe et al., 2018). There is 53 evidence that similar geochemical gradients exist on Arctic hillslopes, in that nutrients, soil 54 organic matter (SOM), and leachable cations accumulate in low-lying soils (Koch et al., 2014; 55 Lev & King, 1999; Stewart et al., 2014; Yano et al., 2010). However, the presence of permafrost 56 underlying many Arctic soils impedes drainage (Liljedahl et al., 2016). This isolates surface 57 water from deeper flow pathways and increases the hydrological connectivity of the surface 58 soils, potentially strengthening the relationship between the chemistry of the ridge and valley 59 60 surface soils (Bring et al., 2016). In addition, poor drainage results in saturated soils in upland areas as well as lowlands. Therefore, we expect a trend of increasing pH and increasing nutrient 61 concentrations in low-lying soils compared to uplands due to erosion, selective leaching, and 62 63 weathering.

Previous studies suggest these environmental variables are important regulators of CO_2 and CH₄ emission from SOM decomposition. For example, rates of anaerobic SOM decomposition in boreal peatlands are consistently observed to increase along gradients of groundwater inputs,

from precipitation-fed bogs to mineral-rich fens (Keller et al., 2006; Thormann et al., 1999). This 67 pattern has been attributed both to higher alkalinity via weathering (Ye et al., 2012) and nutrient 68 availability (Bayley et al., 2005; Keller et al., 2006) provided by groundwater inputs. Studies of 69 tundra soils have also indicated that CH_4 production is sensitive to pH (Tang et al., 2016; Zheng 70 et al., 2019a), nutrients (Philben et al., 2019), and the concentration of labile organic matter 71 72 (Chen et al., 2018; Yang et al., 2016). Here, we test the hypothesis that the variability in pH and nutrient availability over a permafrost-affected Arctic hillslope constitutes a landscape-level 73 74 influence over the rate and pathways of SOM decomposition. 75 We used laboratory microcosm incubations to investigate differences in potential anaerobic SOM decomposition between two wetland areas within an Arctic watershed near Nome, Alaska. 76 Both are characterized by wet sedge tussock tundra plant community, organic-rich soils, and 77 water tables near the soil surface during the thaw season (Jafarov et al., 2018). However, field 78 observations revealed that their positions on opposite ends of the hillslope results in contrasting 79 porewater geochemistry. We hypothesized that these geochemical differences affect the rates and 80 pathways of anaerobic SOM decomposition, specifically that the transport of leached ions, 81 nutrients, and dissolved organic matter down the hillslope fuels greenhouse gas production in the 82 83 low-lying toeslope compared to elevated plateau.

84 2 Materials and Methods

85 2.1 Study site

Soil cores and porewater were collected from two locations within the same watershed in
the Teller Road mile 27 site of the Next Generation Ecosystem Experiment (NGEE)-Arctic
project (<u>http://ngee-arctic.ornl.gov</u>). The site is located in hilly terrain in the southern Seward
Peninsula, Alaska, on a southeast-facing hillslope (Jafarov et al., 2018). One site (hereafter

"Plateau") is located on the peat plateau on the top of the hillslope (N64.74512° W165.96668°, 90 WGS84 datum), and the other site ("Toeslope") from the wetland in the toeslope (N64.72946° 91 W165.94465°). Both sites are characterized by tussock tundra, sedge-dominated vegetation, and 92 a water table at or near the soil surface. The depth of the permafrost table varies with hillslope 93 position: the thick peat layers in the peat plateau insulate the soil, resulting in near-surface 94 95 permafrost, while the active layer is thicker on the hillslope due to greater snow accumulation (Jafarov et al., 2018). The toeslope consists of a collapsed peat plateau wetland that lacks near-96 surface permafrost (> 1 m thaw depth in August 2018). In August 2018 the surface water 97 98 temperature was 10 °C.

99

100 2.2 Soil and porewater collection

Porewater samples were collected from the two sites on five occasions over three years 101 (September 9 and 13, 2016; August 9, 2017; September 10, 2017; and August 22, 2018). 102 Samples were collected using PVC piezometers with slits cut into the sides 10–15 cm from the 103 bottom to allow soil porewater to percolate in while excluding soil particles. Piezometers were 104 installed at depths of approximately 35 and 70 cm to sample the organic and mineral soils, 105 106 respectively. pH was measured in the field using a Hanna Instruments portable pH meter. Subsamples for cation analyses were returned to the laboratory and analyzed using inductively 107 108 coupled plasma mass spectrometry (ICP-MS). The full dataset from these field measurements 109 (Zheng et al., 2019b) is available in the NGEE-Arctic data portal (https://ngeearctic.ornl.gov/data). 110

111 Cores from the two sites were collected on June 1, 2017 prior to the thawing of the active 112 layer. Frozen cores were collected using an AMS Frozen Soil Powered Auger. Soil cores (5.1 cm

Confidential manuscript submitted to JGR-Biogeosciences

113	diameter) were removed from the unlined auger barrel, wrapped in plastic sleeve, and cooled
114	with freezer packs. The peat plateau core was drilled at location N64.74514° W165.96651° while
115	the toeslope core was from W64.729193°, W165.944072°. The core from the plateau was 76 cm
116	in length, and the toeslope core was 84 cm. The cores were shipped frozen to Oak Ridge
117	National Laboratory and stored frozen until the start of the incubation. The frozen cores were
118	transferred to an anaerobic chamber and separated into organic and mineral soil layers based on
119	visual inspection. The uppermost layers containing intact vegetation were removed. The 0-38 cm
120	and 0-34 cm intervals were characterized as organic for the toeslope and the plateau,
121	respectively. Core sections from 38-84 cm for the toeslope and 61-76 cm for the plateau were
122	used for the mineral soil.
123	
124	2.3 Microcosm construction
125	The separated cores were cut into small (<0.5 cm ³) pieces using an oscillating cutting tool
126	and mixed with a spoon, creating four homogenized samples (organic and mineral soils for the
127	toeslope and the plateau). Soil microcosms were constructed by adding 7 g (wet soil) to 60 mL
128	serum bottles. 1 mL of either deionized water (control treatment) or NH4Cl solution containing
129	32 mM N (+N treatment) was added to each microcosm, so that the amendment would increase
130	the concentration of inorganic N by approximately 10-fold, based on previous measurements of
131	N in the toeslope soil (Philben et al., 2019). Three replicate microcosms were prepared for the
132	control and +N treatments to be incubated at -2°C and 8°C for 55 days. In addition, three
133	replicates were constructed for destructive sampling and soil microbial analyses after 15 and 30
134	days for the 8°C treatment only. The microcosms were sealed with blue rubber septa, crimped

with aluminum caps, headspace flushed with N_2 for 10 minutes, and transferred to incubators at the appropriate temperature.

137

138 2.4 Greenhouse gas and chemical analysis

Concentrations of CO_2 and CH_4 were measured in the headspace of the microcosms every 139 two days for the first two weeks, then every five days thereafter. On each sampling day, 0.5 mL 140 of the headspace was analyzed using gas chromatography, as previously described (Roy 141 Chowdhury et al., 2015). The microcosms incubated at -2°C were kept in a cooler filled with ice 142 packs during analysis to reduce temperature change during the incubation. Headspace CO₂ and 143 CH₄ concentrations were converted to total gas production using Henry's Law based on the 144 water content, temperature of incubation and measured soil pH (Sander, 2015). Gas production 145 was normalized to per g dry weight (gdw⁻¹) of the soil to compare between soils with variable 146 water contents. 147

Microcosms were destructively sampled after 15, 30, and 55 days of incubation. In an anaerobic chamber, 2 g of each soil was extracted with 10 mL of degassed water or 0.1 M KCl in a 15 mL plastic tube and placed on a reciprocal shaker for 90 minutes. The soil extracts were centrifuged for 10 min and filtered through a 0.2 μ m syringe filter. Aliquots of the KCl extracts were analyzed immediately for pH and Fe(II) using the 1,10-phenanthroline method (Hach method 8146). NH₄-N concentrations were also analyzed in the KCl extracts using the colorimetric salicylate and cyanurate method (Hach method 10031).

The water extracts were analyzed for major anion content, low-molecular weight organic acid concentration, UV-visible absorbance, and water-extractable organic C (WEOC). Samples were either analyzed within three days of collection or frozen until analysis. Specifically, anions (Cl⁻, Br⁻, NO₃⁻, and SO₄²⁻) and organic acids (formate, acetate, propionate, butyrate, and oxalate)
were analyzed in the water extracts using ion chromatography using previously established
methods (Herndon et al. 2015). The ions were separated using a 4 µm Dionex IonPac AS11-HC
column and gradient elution. The eluent was 1 mM KOH from 0-7 min, ramping to 15 mM from
7-16 min, 30 mM at 25 min, and 60 mM at 33 min. Ions were detected using a Dionex
suppressed conductivity detector.

Water-extractable organic carbon (WEOC) concentration in the soil extracts were analyzed using a Shimadzu TOC-L analyzer after acidification with 0.1% HCl and purging to remove inorganic C (CO_3^{2-} and HCO_3^{-}). Ultraviolet-visible (UV-Vis) spectroscopy was also conducted on the water extracts in a 1 cm quartz cuvette over the range 200–800 nm on a Hewlett-Packard 8453 spectrophotometer. Specific UV absorptivity at 254 nm (SUVA₂₅₄) was calculated as:

$$SUVA_{254} = 100 \times \frac{A_{254}}{[WEOC]}$$

where A_{254} indicates the absorbance at 254 nm and [WEOC] is the WEOC concentration in mg C L⁻¹ (Weishaar et al., 2003).

172

173 2.5 FTICR-MS analysis of DOM molecular composition

Selected samples from Day 0 and Day 55 of the incubation were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The WEOC fraction was subjected to solid-phase extraction (SPE) using Bond Elut PPL cartridges (Agilent) following a method developed by Dittmar et al. (2008). Sample volumes of approximately 5 mL at an average DOC concentration of 35 ± 20 mg L⁻¹ were acidified with HCl to pH ~2, and loaded onto PPL cartridges (3 mL, 0.1 gram of resin), which were conditioned with LC-MS grade 180 methanol (Fisher Scientific) before use. PPL cartridges after desalting were dried by flushing with ultra-purity nitrogen gas and DOM was eluted out with 1–2 mL of LC-MS grade methanol. 181 The eluate was then stored at -20 °C until FTICR-MS measurements. Samples were analyzed 182 using a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS interfaced to an Apollo electrospray 183 ionization (ESI) source operating in the negative ion mode. Prior to analysis, DOM extracts and 184 185 PPL blanks were diluted with LC-MS grade water to a methanol:water ratio of 1:1. Samples were injected into the ESI source at an infusion rate of 120 µL h⁻¹. The ESI spray current was 186 stable at approximately 20 nA for all sample runs. Ion accumulation in the hexapole was set to 187 3.0 seconds, and 300 transients were co-added and digitized with a 4 M Word data acquisition 188 size. 189

FTICR-MS was externally calibrated with a polyethylene glycol standard and internally 190 calibrated with naturally present homologous series of organic acids detected within samples 191 (Chen et al., 2018). Peaks detected in experimental blanks were removed from the DOM peak 192 193 list. Molecular formulas were assigned to peaks with a signal to noise (S/N) above 4, using the molecular formula calculator from the National High Magnetic Field Laboratory (Molecular 194 Formula Calc v.1.0 © NHML, 1998). The criteria were set as ¹²C₂₋₅₀, ¹H₂₋₁₂₀, ¹⁶O₀₋₃₀, ¹⁴N₀₋₁₀, 195 ${}^{32}S_{0.2}$, ${}^{34}P_{0.1}$, where the subscripts show the range of atoms allowed in each formula. The 196 majority (>95%) of the assigned formulas were within 0.5 ppm mass accuracy, and all formulas 197 198 were within 1.0 ppm mass accuracy. Molecules were categorized by compound class using 199 chemical composition metrics as described previously (Chen et al., 2018). Briefly, double bond 200 equivalent (DBE) values are calculated as DBE = 1 + C - 0.5H + 0.5 N + 0.5 P. The modified aromaticity index (AI_{mod}) was calculated as $AI_{mod} = (1 + C - 0.5O - S - 0.5N - 0.5P - 0.5H)/(C$ 201

202 - 0.5O - N - S - P), which indicates aromatics when the value is ≥ 0.5, or condensed aromatics 203 when the value is ≥ 0.67 (Koch & Dittmar, 2006).

204

205 2.6 Microbial community analysis

Total DNA was extracted from Day 0 and Day 55 microcosms by using 0.25 g of wet soil as 206 207 input to the DNeasy PowerSoil Kit (Qiagen, Germantown, MD, USA) with minor modifications. Prior to bead-beating, the samples were incubated in bead-solution at 65 °C for 5 min. Samples 208 were disrupted by bead beating with a 1600 MiniG (SPEX Sample Prep, Metuchen, NJ, USA) at 209 210 a setting of 1500 rpm for 60 s and the DNA was further purified according to the kit protocol. 16S rRNA genes were amplified in PCR reactions using primers (F515/R806) that target the V4 211 region of the 16S rRNA gene where reverse PCR primer was barcoded with a 12-base Golay 212 code (Caporaso et al., 2010). The PCR reactions contained 2.5 µl Takara Ex Taq PCR buffer, 2 213 μl Takara dNTP mix, 0.7 μl Roche BSA (20 mg/ml), 0.5 μl each of the forward and reverse 214 primers (10 µM final concentration), 0.125 µl Takara Ex Taq Hot Start DNA Polymerase 215 (TaKaRa, Shiga, Japan), 1.0 µl genomic DNA (10 ng/reaction), and nuclease-free water in a total 216 volume of 25 μ l. Reactions were held at 98 °C for 3 min to denature the DNA, followed by 217 amplification for 25 cycles at 98 °C for 30 s, 52 °C for 30 s, and 72 °C for 60 s, and a final 218 extension of 12 min at 72 °C. Each sample was amplified in triplicate, combined, and purified 219 using the Agencourt AMPure XP PCR purification system (Beckman Coulter, Brea, CA). The 220 221 purified amplicons were quantified using the Qubit dsDNA HS assay (Invitrogen, Carlsbad, CA, USA). Amplicons were pooled (10 ng/sample) and sequenced on one lane of the Illumina Miseq 222 223 platform (Illumina Inc, San Diego, CA) resulting in 300 bp paired-end reads. Sequence data are 224 deposited at European Nucleotide Archive with accession PRJEB34184.

225	Paired-end amplicon sequences were overlapped and merged using FLASH (Magoč &
226	Salzberg, 2011). Quality filtering and demultiplexing were performed as described previously
227	(Bokulich et al., 2013). Sequences were grouped into operational taxonomic units (OTUs) based
228	on 97% sequence identity, and chimeric sequences were removed using UPARSE (Edgar, 2013).
229	For 16S rRNA gene analysis, OTUs were given taxonomic assignments in QIIME (Caporaso et
230	al., 2010) version 1.7.0 using the RDP classifier (Wang et al., 2007) and the SILVA database 132
231	(Quast et al., 2013). Phylogenetic trees were created using FastTree (Price et al., 2010) under
232	QIIME's default parameters. All remaining analysis were performed in R version 3.5.1 (Bates et
233	al., 2014; R Core Team, 2013) via use of phyloseq (McMurdie & Holmes, 2013), vegan
234	(Oksanen et al., 2013) and ggstatsplot (Patil et al., 2019) packages. Amplicon data were
235	proportionally normalized, and β -diversity was assessed by perMANOVA (Anderson & Walsh,
236	2013) using Bray-Curtis distance (Bray & Curtis, 1957). For multiple comparisons p values were
237	adjusted via Bonferroni method.

239 2.7 Statistical analysis

Porewater chemistry data were fit to a linear mixed effects model using the package lme4 in 240 R version 3.5.1 (Bates et al., 2014; R Core Team, 2013). Time of incubation (0, 30, or 55 days) 241 and treatment (control or +N) were used as fixed factors, and the microcosm replicate was used 242 as a random factor to account for the effects of repeated sampling. The treatment effect was 243 excluded from the model for the inorganic N $(NO_3^++NH_4^+)$ measurements so that temporal 244 changes in the control treatments were evaluated. For the CO₂ and CH₄ measurements, the 245 difference between concentrations at 29 and 50 days in the Control and +N treatments were 246 247 compared using the mixed effects model. Note that the days analyzed are different for the

248	greenhouse gas concentrations and porewater chemistry due to differences in their respective
249	sampling intervals. A separate ANOVA analysis was performed using the R base package to
250	evaluate differences in initial soil porewater chemistry among the four soils. A significance
251	threshold of p=0.05 was used for all statistical analyses.

252 **3 Results**

253 3.1 Porewater geochemistry of field samples

Comparison of the soil porewater geochemistry over five sampling time points indicated that 254 the average pH was approximately 1 pH unit higher in the toeslope soils than the plateau soils. 255 This was observed in both the organic soil (6.73 and 5.59, respectively; Fig. S1) and in the 256 mineral soils (6.62 and 5.86, respectively). The mean concentration of dissolved cations was also 257 higher and contained a higher proportion of alkali earth metals in the toeslope, consistent with 258 the input of weathering products from the hillslope. The mean molar ratio of alkali to alkali Earth 259 260 cations was 1.34 and 2.20 in the organic and mineral soils of the plateau, respectively, compared to 0.11 and 0.08 in the organic and mineral soils of the toeslope (Fig. S1). 261

262

263 3.2 Rates and temperature sensitivity of greenhouse gas production

CO₂ production at both sites was higher in the organic soils than the mineral soils (Fig. 1a,b). It was higher in the organic soils of the toeslope than the organic soils of the plateau, especially during the first 15 days of incubation (Fig. 1a; p<0.001). CO₂ production was not significantly different between the two mineral soils. Similar to the patterns for CO₂ production, CH₄ production was significantly higher in the toeslope soils than in the plateau soils in the organic (p=0.047) but not the mineral soils (Fig. 1c,d), which produced low levels of CH₄. 270 N addition had contrasting effects on CO₂ and CH₄ production, as effects on CO₂ varied by soil but CH₄ production was generally inhibited (Fig. 2). N addition had no effect on CO₂ 271 production in either the organic or mineral soils from the toeslope. However, it significantly 272 increased CO₂ production in the organic plateau soils (p=0.010). N addition also increased CO₂ 273 production in the plateau mineral soils, but the difference was not significant. In contrast, N 274 addition generally reduced CH₄ production in all soils except for the plateau mineral soil, which 275 exhibited a small but not significant increase. However, the effect on decreasing CH₄ production 276 was significant only for the toeslope soils (p=0.004 and 0.024 for the organic and mineral soils, 277 278 respectively).

Figure 1. Cumulative CO₂ (a,b) and CH₄ (c,d) production in the incubations of two contrasting water-saturated tundra soils within a watershed near Nome, Alaska. Incubations were performed with both the organic and mineral layer soils either with or without addition of inorganic N (as NH₄Cl). Symbols indicate the mean of three replicates and error bars indicate one standard deviation. Abbrviation "gdw" refers to g dry weight soil.

285

286 3.3 N dynamics

287	The extractable inorganic N content (the sum of independently measured NO_3^- and NH_4^+)
288	of the organic soil was higher in the toeslope than the plateau soils (0.96 and 0.63 μ mol N gdw ⁻¹ ,
289	respectively; p=0.020; Fig. 2). The opposite pattern was observed in the mineral soils (p=0.001).
290	However, both plateau soils exhibited net N immobilization (i.e. the concentration of extractable
291	inorganic N significantly declined during the incubation; $p < 0.001$). The toeslope soils both
292	exhibited net N mineralization (increased extractable inorganic N) but the change was not
293	significant. Inorganic N concentrations in the +N treatment soils declined during incubation for
294	all four soils, indicating microbial uptake or gaseous loss. The decline in concentration was
295	similar for the two organic soils (4.4 and 4.2 μ mol gdw ⁻¹ for the toeslope and plateau,
296	respectively), and was greater than that in the mineral soils (3.3 and 2.3 μ mol gdw ⁻¹ ,

respectively).

Figure 2. Total extractable inorganic N ($NH_4^+ + NO_3^-$) in the initial soils and after 30 and 55 days of incubation. The height of the bars indicate the mean of three replicates and the error bars indicate one standard deviation.

303

302

304

305 3.4 WEOC quantity and composition

306 Initial concentrations of WEOC were higher in the toeslope than the plateau in both the

```
organic and mineral soils (Fig. 3a,b; p < 0.001). WEOC concentrations significantly declined
```

during incubation in all soils (p < 0.001), indicating decomposition and immobilization of

- 309 organic C was greater than the solubilization of solid-phase SOC. N addition significantly
- increased the loss of WEOC after 55 days in all soils except for the toeslope organic soil.

311	$SUVA_{254}$ in the WEOC was slightly higher in the toeslope than the plateau organic soils at the
312	beginning of the experiment (0.82 and 0.57, respectively; $p = 0.014$), indicating higher
313	aromaticity. SUVA ₂₅₄ increased significantly during incubation in all soils except for the organic
314	plateau (Fig. 3c). In the mineral soils, the SUVA $_{254}$ of the WEOC was higher than in the organic
315	soils (2.35 and 1.04 in the toeslope and plateau, respectively; Fig. 3d; $p = 0.014$ and 0.019,
316	respectively). N addition resulted in a smaller increase of SUVA254 in the mineral soil control
317	incubations ($p < 0.001$), but not in the organic soils of both sites.
318	This pattern was also observed in the concentrations of low-molecular weight organic
319	acids, primarily formate, acetate, and propionate. Concentrations were higher in the organic soils
320	of the toeslope than the plateau (Fig. 3e). Concentrations in the toeslope organic soil increased
321	throughout the incubation, indicating the production of organic acids via fermentation exceeded
322	their consumption. In the plateau organic soil, concentrations increased from 0 to 30 days, but
323	then declined to near the initial concentration after 55 days. Both mineral soils exhibited a net
324	decline in organic acid concentrations by the end of the experiment Fig. 3f). N addition appeared
325	to have little effect on the organic acid concentrations, and the final concentration was
326	significantly different only in the plateau organic soils (1.65 \pm 0.20 and 0.55 \pm 0.16 $\mu mol~gdw^{\text{-1}}$
327	for control and +N treatments, respectively).

Figure 3. Water-extractable organic C (WEOC; a,b), specific ultraviolet absorbance at 254 nm
 (SUVA₂₅₄; c,d), and total extractable organic acids (sum of formate, acetate, propionate, and
 butyrate; e,f) in the initial soils and after 30 and 55 days of incubation. Symbols indicate the

333 mean of three replicates and error bars indicate one standard deviation.

334

Figure 4. Relative abundance of molecular formulas from FTICR-MS analysis of the WEOC of
 the organic soils. Error bars indicate the deviation in results between sets of experimental
 replicates performed for selected samples.

339

```
FTICR-MS analysis of the WEOC indicated that formulas corresponding to lignin and
condensed aromatic compounds were predominant in all porewater DOC samples (Fig. 4; Table
S1). The number of lignin formulas increased in relative abundance during incubation, while
condensed aromatics declined. The abundance of N-containing (CHON) and peptide formulas
and their response to N addition varied by site. Between the organic soils, CHON formulas were
more abundant in the toeslope than the plateau soils (16.9% and 10.4% of all formulas,
```

respectively; Fig. 4). Following N addition, the abundance of CHON formulas increased to
20.4% in the plateau soil, indicating incorporation of the added N into organic compounds, but
did not change in the toeslope soil. Peptide formulas also increased in abundance from <1% to
9.7% in the plateau N-addition incubation, but only increased to 2% in the toeslope soil
incubations.

351

352 3.5 Ion concentrations and pathways of anaerobic C decomposition

Changes of porewater ion concentrations during the incubations indicated a relatively 353 minor contribution of alternative electron acceptors to the total C mineralization. SO₄²⁻ 354 concentrations in the toeslope soils declined by $0.02-0.12 \mu mol gdw^{-1}$ (Fig. S2), indicating that 355 SO_4^{2-} reduction accounted for <1% of the total C mineralization. In the plateau soils, SO_4^{2-} 356 concentrations increased slightly during incubation, and SO_4^{2-} reduction was not detectable. 357 Denitrification was also minimal, as NO_3^- declined by <0.07 µmol gdw⁻¹, consistent with low 358 initial NO₃⁻ concentrations (data not shown). Reduction of Fe(III) was detectable in all soils 359 except for the plateau mineral soil, as measured by increasing Fe(II) concentrations in the 360 porewater (Fig. S2). The cumulative increase in extractable Fe(II) ranged from 0.4 to 1.4 µmol 361 gdw⁻¹ in the control treatments and 0 to 2.9 µmol gdw⁻¹ in the +N treatments, which were not 362 significantly different for any soil. However, Fe(III) reduction accounted for a small fraction of 363 C mineralization in all soils (<2%). 364

365

366 3.6 Microbial community composition

Microbial communities of toeslope and plateau soils were significantly different from each other (p = 0.005) (Fig. S3). We also observed a strong effect (p = 0.001) where organic and

369	mineral soils in each location clustered separately indicating significant differences in each soil
370	compartment. Proteobacteria, Bacteroides, Acidobacteria, and Chloroflexi were abundant in all
371	soils (Fig. 5). Caldiserica were more abundant in the mineral soils than the organic soils.
372	Concentrations of WEOC ($p = 0.001$), propionate ($p = 0.001$), acetate ($p = 0.001$) and Fe(II) ($p = 0.001$)
373	0.001) were significantly correlated with microbial community structure, especially in plateau
374	soils (Fig. S3). Soil pH overall showed a smaller correlation ($p = 0.006$) to the microbial
375	community structure. The effect of nitrogen addition on the microbial community was nuanced.
376	All soils clustered mainly based on their horizons ($p = 0.001$) where impact of nitrogen addition
377	was nested within each horizon ($p = 0.001$) and by itself was not a significant effect ($p = 0.881$).
378	Nitrogen addition effect was mainly observed as changes in microbial composition in
379	toeslope soils where <i>Firmicutes</i> significantly increased in both organic ($p = 0.035$) and mineral
380	(p = 0.001) soils with nitrogen addition (Fig. 5). Upon further analysis, we determined that
381	relative abundance of genus <i>Saccharofermentans</i> increased both in organic ($p = 0.025$) and
382	mineral ($p = 0.004$) soils in response to nitrogen addition (Fig. S5 and S6). Additionally, in
383	nitrogen-added mineral soils we detected significant increase in genus Desulfosporosinus (p =
384	0.045). In organic horizons of toeslope soils <i>Bacteroides</i> ($p=0.008$) and <i>Proteobacteria</i> ($p=$
385	0.039) also increased in their relative abundance but remained unchanged in mineral soils (Fig.
386	5). Plateau soils responded differently to nitrogen addition than toeslope soils where the largest
387	and most significant change observed was the decrease in <i>Bacteroidetes</i> both in organic (p =
388	0.010) and mineral (p<0.001) soils (Fig. 5). In both locations Archaeal populations was
389	dominated by methanogenic archaea of Methanoflorentaceae (former Rice Cluster II) (Adam et
390	al., 2017) (Fig. S8) which remained unchanged after nitrogen addition.

Figure 5. Relative abundance of microbial phyla extracted from the soils before and after
 incubation. NA: not assigned to a known phylum.

395 **4 Discussion**

4.1 Effects of topography on rates of SOM decomposition

Higher exchangeable aluminum and organic acid concentrations reduce the pH in the peat plateau soil compared to toeslope soils. Preliminary speciation calculations indicate that most of the aluminum, iron and alkaline earth metal ions in these pore waters are complexed by DOC. Therefore, the cation exchange capacities of DOC and SOM provide an important pH buffer to the soils. Similar precipitation-fed wetlands with no mineral inputs are often acidic due to the accumulation of organic acids resulting from fermentation (Gorham & Janssens, 1992). Synoptic sampling and analysis of the soil pore waters over three years have indicated that the soils from the plateau have sodium bicarbonate-type pore waters, while the toeslope soil pore waters have a
calcium-magnesium bicarbonate chemistry with a lower ionic strength. These differences in pH
and geochemical environment are consistent with advanced mineral weathering and high cation
exchange capacity of peat in the plateau. At the base of the hillslope, however, runoff containing
leached alkaline earth metals floods tussock graminoid tundra. Therefore, the difference in pH
between the sites is associated with hillslope position, vegetation, and geomorphology.

Overall, our results show that both CO₂ and CH₄ production were higher in the organic 410 toeslope soils from the base of the hillslope than in the organic soils from the peat plateau. This 411 412 is likely in part due to the higher pH in the toeslope soils, which is a key control on anaerobic SOM decomposition. Empirical estimates of the pH optimum for methanogenesis range from 6.2 413 to 7.5 (Cao et al., 1995; Meng et al., 2012; Tang et al., 2016). Observations of CO_2 and CH_4 414 emission also vary along natural pH gradients in peatlands (Moore & Knowles, 1990; Zalman et 415 al., 2018), and laboratory incubations show that buffering soils at a higher pH increases 416 production of both gasses, especially CH₄ (Dunfield et al., 1993; Valentine et al., 1994; Ye et al., 417 2012). This is consistent with our observations of higher rates of CO₂ and CH₄ production in the 418 circumneutral toeslope soils. However, we observed that the hillslope position affected CO_2 419 420 much more than CH_4 production, resulting in lower CO_2 : CH_4 ratios in the plateau soils than at the base of the hillslope. This result contrasts with observations that methanogenesis is more 421 sensitive to pH than other pathways of anaerobic C mineralization, and suggests that other 422 423 hillslope differences such as differences in DOC concentration and composition also contribute to the differences in greenhouse gas production. 424

425 Porewater DOC represents the fraction of C directly available to soil microorganisms,
426 and as such is the most important in shaping SOC decomposition dynamics (Chen et al., 2018;

427	Yang et al., 2016). For example, radiocarbon measurements of CH ₄ in peatlands reflect the
428	young age of the DOC pool rather than the old age of the much larger SOC pool (Chanton et al.,
429	1995, 2008). Accordingly, some biogeochemical models estimate methanogenesis in part as a
430	function of DOC concentration (Cao et al., 1995, 1998; Tian et al., 2010; Xu & Tian, 2012).
431	WEOC represented a small fraction of the total SOC in both soils (0.33 and 0.24% in the organic
432	soils of the toeslope and plateau, respectively), but the concentrations were higher in the toeslope
433	soils. The higher concentrations of WEOC indicate a larger pool of potentially fermentable
434	substrates and likely contributes to the higher CO ₂ and CH ₄ production from these soils.
435	The patterns of WEOC concentrations during the incubations also suggest limitation of
436	labile C in the plateau soils. There was a net loss of WEOC during all incubations, indicating that
437	the degradation of DOC by microorganisms (or other uptake/immobilization) exceeded the
438	production of new DOC through the solubilization of solid-phase SOC. Consistent with previous
439	studies (Chen et al., 2018; Yang et al., 2016), the degradation of DOC was selective, as SUVA ₂₅₄
440	values increased during the incubation. High $SUVA_{254}$ values are correlated with the abundance
441	of aromatic DOC and are associated with lower CH ₄ production (D'Andrilli et al., 2010;
442	Hodgkins et al., 2016). The inhibitory effect of highly aromatic DOC on C mineralization could
443	be higher in these anaerobic incubations due to the low activity of phenol oxidase in the absence
444	of oxygen (Freeman et al., 2004; Pind et al., 1994). Therefore, our results indicate selective
445	decomposition of the bioavailable and easily fermentable DOC pool, and accumulation of the
446	aromatic fraction. This effect was more pronounced in the plateau soils where initial DOC
447	concentrations were lower. The depletion of easily fermentable C likely contributes to the lower
448	CO_2 and CH_4 production in the organic soils.

Limitation of bioavailable DOC was also apparent in the concentrations of low molecular 449 weight organic acids, the immediate substrates for methanogenesis as well as Fe(III) and SO_4^{2-} 450 reduction in these soils (Bethke et al., 2011). Models (Tang et al., 2016; Zheng et al., 2019a), 451 observations (Christensen et al., 2003; Valentine et al., 1994), and experiments (Herndon et al., 452 2015; Hershey et al., 2014) indicate that the availability of these substrates limits rates of 453 454 methanogenesis and anaerobic C mineralization. The increasing organic acid concentrations in the organic toeslope soils indicated that their production via fermentation exceeded their 455 utilization, and they were therefore not limiting for anaerobic respiration. This was supported by 456 the stable microbial community structure in soils with prevalence of carbohydrate-fermenting 457 populations such as *Firmicutes* and *Bacteroidetes*. In contrast, the pattern of organic acid 458 concentrations and microbial community composition in the mineral horizons suggests substrate 459 limitation of respiration. In the toeslope organic soil, increases in the carbohydrate-fermenting 460 genus Saccharofermentans and Desulfosporosinus, which includes bacteria capable of anaerobic 461 respiration using sulfate, Fe (III) or fumarate as electron acceptors, suggests close coupling of 462 organic acid fermentation and anaerobic respiration (Chen, 2017; Nixon et al., 2017). In plateau 463 mineral soil horizons, observed increases in Group I clostridia (Clostridium sensu stricto) (Gupta 464 465 & Gao, 2009) signals the emergence of fermentative pathways leading to alcohol, butyrate, acetate and hydrogen production. In both locations and soil horizons relative abundance of the 466 dominant methanogenic lineage Methanoflorentaceae (former Rice Cluster II) showed no 467 significant change with incubation, yet we observed different CH₄ production rates. The 468 hydrogenotrophic methanogen candidatus Methanoflorens stordalenmirensis was identified as 469 the predominant methanogen in a northern Sweden permafrost thaw site (Mondav et al., 2014). 470 471 The strong correlation of WEOC and organic acid concentrations with the overall microbial

472 community composition (Fig. S3) provides other lines of evidence that substrate availability was 473 a key control on microbial growth. Therefore, we conclude that continued bioavailability of 474 WEOC (Fig. 3) in the toeslope supported a higher rate of fermentation, in turn fueling higher 475 rates of CO_2 and CH_4 production.

476

477 4.2 Greater microbial N limitation in the plateau soils

Several lines of evidence indicate that the plateau soils were more N-limited than the 478 toeslope soils, especially in the organic soil. First, the concentration of extractable inorganic N 479 $(NO_3^++NH_4^+)$ was higher in the organic soils of the toeslope than the plateau. Second, extractable 480 inorganic N increased during the incubation of the toeslope organic control soils, indicating net 481 N mineralization. This is consistent with previous observations that net N mineralization is 482 generally higher in soils in lower topographic positions (Giblin et al., 1991; Nadelhoffer et al., 483 1991). In contrast to the toeslope organic soil, both plateau soils exhibited declining inorganic N 484 concentrations during incubation, indicating either net N immobilization or gaseous N losses. 485 This observation is consistent with greater N availability in the toeslope soils. The increase in 486 CHON and peptide formulas following N addition in the plateau but not the toeslope organic 487 488 soils by FTICR-MS analysis also demonstrates that the added N was assimilated to a greater degree in the plateau soils, consistent with greater microbial N limitation. Finally, N addition 489 increased CO₂ production in the organic plateau soils but not the toeslope soils, further 490 491 demonstrating that SOM decomposition was N-limited in the former but not the latter. Although we do not have direct evidence of the sources of N to the toeslope soils, these 492

493 patterns are consistent with leaching and downslope transport of inorganic and labile organic N
494 down the hillslope. The differences in pH, ion composition, and alkali-to-alkaline earth metal

ratio of the porewater demonstrate distinct sources of water inputs, indicating the water in the 495 toeslope soils is derived from hillslope runoff. Previous studies have demonstrated that nutrients 496 (including N) are transported downslope and accumulate in low-lying areas (Stewart et al., 497 2014). Our results extend these findings to tundra landscapes and demonstrate that they cause 498 associated differences in anaerobic SOM decomposition. The hillslope gradient in decomposition 499 500 is similar to the hydrological fen-bog gradient in peatlands, in which wetlands with higher pH and nutrient availability are associated with higher rates of anaerobic SOM decomposition, 501 especially CH₄ production (Keller et al., 2006; Thormann et al., 1999; Ye et al., 2012). 502 Our experiments utilized cores collected in early June, before the Arctic growing season. 503 N limitation in tundra soils is observed to be highest at the peak of the growing season, when 504 plants and microorganisms are competing for available N (Melle et al., 2015). These microcosm 505 incubation experiments are therefore conservative estimates of the potential N limitation of 506 SOM decomposition; the lack of effect of N addition on CO₂ production in the toeslope soils 507 does not preclude N limitation during the summer, as has been observed previously (Philben et 508 al., 2019). However, our results are consistent with relatively greater N limitation in the plateau 509 soils compared to the toeslope. 510

In contrast to the organic soils, there was no evidence that N availability in the mineral soils differed between the plateau and the toeslope. There was no difference in initial extractable N content. No net N mineralization was observed in the toeslope soils, and N addition did not significantly increase CO_2 production. This indicates that the apparent microbial N limitation was limited to the organic plateau soil. Mineral soils could therefore experience a smaller increase in CO_2 production in response to increased N availability.

517	While N addition stimulated CO ₂ production in the organic plateau soil, it consistently
518	decreased CH ₄ production in all but one soil (the plateau mineral soil). This likely results from
519	suppression of methanogenesis due to reduced pH. The pH optimum for methanogenesis is
520	between 6 and 7, and the slope of the response function appears to be steeper than that of CO_2
521	production due to the specificity of the microbes and enzymes involved (Ye et al., 2012). The pH
522	of the KCl extracts following incubation was consistently lower in the microcosms with added
523	NH ₄ Cl compared to the control microcosms. This was in part due to the weakly acidic nature of
524	the NH ₄ Cl solution (pH \sim 5.7), but also likely due to the effects of increased proton production
525	via fermentation, especially in the plateau soils. The lower pH in the N-fertilized treatments
526	could result in reduced CH ₄ production despite other indicators of microbial N limitation,
527	emphasizing the complex feedbacks regulating CH ₄ production.

528 **5 Conclusions**

We observed major differences in the rates of greenhouse gas production in two wetland 529 areas within the same watershed. Despite surface similarities between the wetland areas, the 530 toeslope organic soil produced significantly more CO₂ and CH₄ than the plateau soil due to 531 higher availability of labile DOC and higher pH than the plateau soils during anaerobic 532 533 incubation. Our results also indicate that inorganic N concentrations were lower and soil C decomposition was more N-limited in the plateau soils than the toeslope soils, which exhibited 534 net N mineralization while the plateau soils had net N immobilization. Examination of the 535 changes in porewater geochemistry, soil microbial community and response to N addition 536 indicate that the differences are due to a combination of (1) higher pH due to leaching of mineral 537 weathering products from the hillslope; (2) higher N availability for microorganisms; and (3) 538 higher availability of fermentable DOC, which provided an ample supply of labile organic 539

- substrates throughout the incubations in the toeslope soils. These results demonstrate that
- 541 topographic position, geochemical environment, and hydrologic flow are important
- 542 considerations to predict the fate of thawing permafrost.

543 Acknowledgments and data availability

- 544 The authors declare no financial conflicts of interest. All data supporting the conclusions of
- this work can be found on the NGEE-Arctic Data Portal (<u>https://ngee-arctic.ornl.gov/data)</u>.
- 546 We thank Xiangping Yin for ICP-MS analyses of samples and technical support in
- ⁵⁴⁷ laboratory. Xujun Liang and Jianqiu Zheng assisted constructing the soil microcosms. The Next
- 548 Generation Ecosystem Experiments (NGEE-Arctic) project is supported by the Office of
- 549 Biological and Environmental Research in the Department of Energy (DOE) Office of Science.
- 550 Oak Ridge National Laboratory is managed by UT-Battelle LLC for DOE under contract DE-
- 551 AC05-00OR22725.

552 **References**

- Adam, P. S., Borrel, G., Brochier-Armanet, C., & Gribaldo, S. (2017). The growing tree of
 Archaea: new perspectives on their diversity, evolution and ecology. The ISME Journal,
 11(11), 2407–2425. https://doi.org/10.1038/ismej.2017.122
- Anderson, M. J., & Walsh, D. C. I. (2013). PERMANOVA, ANOSIM, and the Mantel test in the
 face of heterogeneous dispersions: What null hypothesis are you testing? Ecological
 Monographs, 83(4), 557–574. <u>https://doi.org/10.1890/12-2010.1</u>
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). *lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7.*
- Bayley, S. E., Thormann, M. N., & Szumigalski, A. R. (2005). Nitrogen mineralization and
 decomposition in western boreal bog and fen peat. Ecoscience, 12(4), 455–465.
 https://doi.org/10.2980/i1195-6860-12-4-455.1
- Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q., & Flynn, T. M. (2011). The thermodynamic
 ladder in geomicrobiology. American Journal of Science, 311(3), 183–210.
 https://doi.org/10.2475/03.2011.01
- Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., et al. (2013).
 Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.
 Nature Methods, 10(1), 57–59. https://doi.org/10.1038/nmeth.2276

- Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern
 Wisconsin. Ecological Monographs, 27(4), 325–349. https://doi.org/10.2307/1942268
- Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S. H., et al. (2016). Arctic
 terrestrial hydrology: A synthesis of processes, regional effects, and research challenges.
 Journal of Geophysical Research: Biogeosciences, 121(3), 621–649.
 https://doi.org/10.1002/2015JG003131
- Burt, T. P., & Pinay, G. (2005). Linking hydrology and biogeochemistry in complex landscapes.
 Progress in Physical Geography: Earth and Environment, 29(3), 297–316.
 https://doi.org/10.1191/0309133305pp450ra
- Cao, M., Dent, J. B., & Heal, O. W. (1995). Modeling methane emissions from rice paddies.
 Global Biogeochemical Cycles, 9(2), 183–195. https://doi.org/10.1029/94GB03231
- Cao, M., Gregson, K., & Marshall, S. (1998). Global methane emission from wetlands and its
 sensitivity to climate change. Atmospheric Environment, 32(19), 3293–3299.
 https://doi.org/10.1016/S1352-2310(98)00105-8
- Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et
 al. (2010). QIIME allows analysis of high-throughput community sequencing data.
 Nature Methods, 7(5), 335. https://doi.org/10.1038/nmeth.f.303
- Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A., Tyler, S. C., et al. (1995).
 Radiocarbon evidence for the substrates supporting methane formation within northern
 Minnesota peatlands. Geochimica et Cosmochimica Acta, 59(17), 3663–3668.
 https://doi.org/10.1016/0016-7037(95)00240-Z
- Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., et al.
 (2008). Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochemical Cycles, 22(4), GB4022. https://doi.org/10.1029/2008GB003274
- Chen, H., Yang, Z., Chu, R. K., Tolic, N., Liang, L., Graham, D. E., et al. (2018). Molecular
 Insights into Arctic Soil Organic Matter Degradation under Warming. Environmental
 Science & Technology, 52(8), 4555–4564. https://doi.org/10.1021/acs.est.7b05469
- 598 Chen, S. (2017). Saccharofermentans. In Bergey's Manual of Systematics of Archaea and
 599 Bacteria (pp. 1–5). American Cancer Society.
 600 https://doi.org/10.1002/9781118960608.gbm01450
- Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., et al.
 (2003). Factors controlling large scale variations in methane emissions from wetlands.
 Geophysical Research Letters, 30(7), 1414. https://doi.org/10.1029/2002GL016848
- Creed, I. F., Trick, C. G., Band, L. E., & Morrison, I. K. (2002). Characterizing the Spatial
 Pattern of Soil Carbon and Nitrogen Pools in the Turkey Lakes Watershed: A
 Comparison of Regression Techniques. Water, Air and Soil Pollution: Focus, 2(1), 81–
 102. https://doi.org/10.1023/A:1015886308016
- D'Andrilli, J., Chanton, J. P., Glaser, P. H., & Cooper, W. T. (2010). Characterization of
 dissolved organic matter in northern peatland soil porewaters by ultra high resolution

610	mass spectrometry. Organic Geochemistry, 41(8), 791–799.
611	https://doi.org/10.1016/j.orggeochem.2010.05.009
612	Dittmar, T., Koch, B., Hertkorn, N., & Kattner, G. (2008). A simple and efficient method for the
613	solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater.
614	Limnology and Oceanography: Methods, 6(6), 230–235.
615	Dunfield, P., Knowles, R., Dumont, R., & Moore, T. R. (1993). Methane production and
616	consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil
617	Biology and Biochemistry, 25(3), 321–326. https://doi.org/10.1016/0038-0717(93)90130-
618	4
619	Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads.
620	Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604
621	Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., et al. (2019).
622	Hillslope hydrology in global change research and Earth system modeling. Water
623	Resources Research, 55(2), 1737–1772. https://doi.org/10.1029/2018WR023903
624	Freeman, C., Ostle, N. J., Fenner, N., & Kang, H. (2004). A regulatory role for phenol oxidase
625	during decomposition in peatlands. Soil Biology and Biochemistry, 36(10), 1663–1667.
626	https://doi.org/10.1016/j.soilbio.2004.07.012
627 628 629	 Giblin, A. E., Nadelhoffer, K. J., Shaver, G. R., Laundre, J. A., & McKerrow, A. J. (1991). Biogeochemical Diversity Along a Riverside Toposequence in Arctic Alaska. Ecological Monographs, 61(4), 415–435. https://doi.org/10.2307/2937049
630	Gorham, E., & Janssens, J. A. (1992). Concepts of fen and bog re-examined in relation to
631	bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae,
632	61(1), 8. https://doi.org/10.5586/asbp.1992.001
633 634 635 636	Gupta, R. S., & Gao, B. (2009). Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridiumsensu stricto (cluster I). International Journal of Systematic and Evolutionary Microbiology, 59(2), 285–294. https://doi.org/10.1099/ijs.0.001792-0
637 638	Hall, G. F., & Olson, C. G. (1991). Predicting variability of soils from landscape models. Spatial Variabilities of Soils and Landforms, 9–24.
639	Herndon, E. M., Mann, B. F., Roy Chowdhury, T., Yang, Z., Wullschleger, S. D., Graham, D., et
640	al. (2015). Pathways of anaerobic organic matter decomposition in tundra soils from
641	Barrow, Alaska. Journal of Geophysical Research: Biogeosciences, 120(11), 2345–2359.
642	https://doi.org/10.1002/2015JG003147
643 644 645 646	Hershey, A. E., Northington, R. M., & Whalen, S. C. (2014). Substrate limitation of sediment methane flux, methane oxidation and use of stable isotopes for assessing methanogenesis pathways in a small arctic lake. Biogeochemistry, 117(2–3), 325–336. https://doi.org/10.1007/s10533-013-9864-y
647	Hodgkins, S. B., Tfaily, M. M., Podgorski, D. C., McCalley, C. K., Saleska, S. R., Crill, P. M., et
648	al. (2016). Elemental composition and optical properties reveal changes in dissolved
649	organic matter along a permafrost thaw chronosequence in a subarctic peatland.

650	Geochimica et Cosmochimica Acta, 187, 123–140.
651	https://doi.org/10.1016/j.gca.2016.05.015
652	Hornberger, G. M., Bencala, K. E., & McKnight, D. M. (1994). Hydrological controls on
653	dissolved organic carbon during snowmelt in the Snake River near Montezuma,
654	Colorado. Biogeochemistry, 25(3), 147–165. https://doi.org/10.1007/BF00024390
655	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., et al.
656	(2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty
657	ranges and identified data gaps. Biogeosciences, 11(23). https://doi.org/10.5194/bg-11-
658	6573-2014
659	Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L., Atchley, A. L., &
660	Romanovsky, V. E. (2018). Modeling the role of preferential snow accumulation in
661	through talik development and hillslope groundwater flow in a transitional permafrost
662	landscape. Environmental Research Letters, 13(10), 105006.
663	https://doi.org/10.1088/1748-9326/aadd30
664	Keller, J. K., Bauers, A. K., Bridgham, S. D., Kellogg, L. E., & Iversen, C. M. (2006). Nutrient
665	control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland
666	gradient. Journal of Geophysical Research: Biogeosciences, 111(G3), G03006.
667	https://doi.org/10.1029/2005JG000152
668	Koch, B. P., & Dittmar, T. (2006). From mass to structure: An aromaticity index for high-
669	resolution mass data of natural organic matter. Rapid Communications in Mass
670	Spectrometry, 20(5), 926–932. https://doi.org/10.1002/rcm.2386
671	Koch, J. C., Gurney, K., & Wipfli, M. S. (2014). Morphology-dependent water budgets and
672	nutrient fluxes in Arctic thaw ponds. Permafrost and Periglacial Processes, 25(2), 79–93.
673	https://doi.org/10.1002/ppp.1804
674	Lev, A., & King, R. H. (1999). Spatial variation of soil development in a high arctic soil
675	landscape: Truelove Lowland, Devon Island, Nunavut, Canada. Permafrost and
676	Periglacial Processes, 10(3), 289–307. https://doi.org/10.1002/(SICI)1099-
677	1530(199907/09)10:3<289::AID-PPP319>3.0.CO;2-Z
678	Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., et al. (2016).
679	Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra
680	hydrology. <i>Nature Geoscience</i> , 9(4), 312–318. https://doi.org/10.1038/ngeo2674
681 682 683	Magoč, T., & Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
684	McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive
685	Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217.
686	https://doi.org/10.1371/journal.pone.0061217
687	Melle, C., Wallenstein, M., Darrouzet-Nardi, A., & Weintraub, M. N. (2015). Microbial activity
688	is not always limited by nitrogen in Arctic tundra soils. Soil Biology and Biochemistry,
689	90, 52–61. https://doi.org/10.1016/j.soilbio.2015.07.023

690	Meng, L., Hess, P. G. M., Mahowald, N. M., Yavitt, J. B., Riley, W. J., Subin, Z. M., et al.
691	(2012). Sensitivity of wetland methane emissions to model assumptions: application and
692	model testing against site observations. Biogeosciences, 9(7), 2793–2819.
693	https://doi.org/10.5194/bg-9-2793-2012
694	Metcalfe, D. B., Hermans, T. D., Ahlstrand, J., Becker, M., Berggren, M., Björk, R. G., et al.
695	(2018). Patchy field sampling biases understanding of climate change impacts across the
696	Arctic. Nature Ecology & Evolution, 2(9), 1443–1448. https://doi.org/10.1038/s41559-
697	018-0612-5
698 699	Milne, G. (1936). Normal erosion as a factor in soil profile development. Nature, 138(3491), 548–549.
700	Mondav, R., Woodcroft, B. J., Kim, EH., McCalley, C. K., Hodgkins, S. B., Crill, P. M., et al.
701	(2014). Discovery of a novel methanogen prevalent in thawing permafrost. Nature
702	Communications, 5(1), 1–7. https://doi.org/10.1038/ncomms4212
703	Moore, I. D., Gessler, P. E., Nielsen, G. A. E., & Peterson, G. A. (1993). Soil attribute prediction
704	using terrain analysis. Soil Science Society of America Journal, 57(2), 443–452.
705	https://doi.org/10.2136/sssaj1993.03615995005700020026x
706 707	Moore, T. R., & Knowles, R. (1990). Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry, 11(1), 45–61. https://doi.org/10.1007/BF00000851
708	Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R., & Laundre, J. A. (1991). Effects of temperature
709	and substrate quality on element mineralization in six arctic soils. Ecology, 72(1), 242–
710	253. https://doi.org/10.2307/1938918
711	Nixon, S. L., Telling, J. P., Wadham, J. L., & Cockell, C. S. (2017). Viable cold-tolerant iron-
712	reducing microorganisms in geographically diverse subglacial environments.
713	Biogeosciences, 14(6), 1445–1455. <u>https://doi.org/10.5194/bg-14-1445-2017</u>
714	Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., et al. (2013).
715	Package 'vegan.' <i>Community Ecology Package, Version</i> , 2(9), 1–295.
716 717	Patil, I., Powell, C., Beasley, W., & Heck, D. (2019). ggstatsplot: major restructuring of the entire package. Zenodo. https://doi.org/10.5281/zenodo.3382322
718	Philben, M., Zheng, J., Bill, M., Heikoop, J. M., Perkins, G., Yang, Z., et al. (2019). Stimulation
719	of anaerobic organic matter decomposition by subsurface organic N addition in tundra
720	soils. Soil Biology and Biochemistry, 130, 195–204.
721	https://doi.org/10.1016/j.soilbio.2018.12.009
722	Pind, A., Freeman, C., & Lock, M. A. (1994). Enzymic degradation of phenolic materials in
723	peatlands—measurement of phenol oxidase activity. Plant and Soil, 159(2), 227–231.
724	https://doi.org/10.1007/BF00009285
725	Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-
726	Likelihood Trees for Large Alignments. PLOS ONE, 5(3), e9490.
727	https://doi.org/10.1371/journal.pone.0009490
728 729 730	Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219

731	Roy Chowdhury, T., Herndon, E. M., Phelps, T. J., Elias, D. A., Gu, B., Liang, L., et al. (2015).
732	Stoichiometry and temperature sensitivity of methanogenesis and CO 2 production from
733	saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 21(2), 722–737.
734	https://doi.org/10.1111/gcb.12762
735	Sander, R. (2015). Compilation of Henry's law constants (version 4.0) for water as solvent.
736	Atmospheric Chemistry & Physics, 15(8), 4399–4981. https://doi.org/10.5194/acp-15-
737	4399-2015
738	Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., et al.
739	(2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–
740	179. https://doi.org/10.1038/nature14338
741 742 743	Stewart, K. J., Grogan, P., Coxson, D. S., & Siciliano, S. D. (2014). Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biology and Biochemistry, 70, 96–112. https://doi.org/10.1016/j.soilbio.2013.12.005
744	Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J., & Kling, G. W. (2003). An
745	approach to understanding hydrologic connectivity on the hillslope and the implications
746	for nutrient transport. Global Biogeochemical Cycles, 17(4), 1105.
747	https://doi.org/10.1029/2003GB002041
748	Tang, G., Zheng, J., Xu, X., Yang, Z., Graham, D. E., Gu, B., et al. (2016). Biogeochemical
749	modeling of CO 2 and CH 4 production in anoxic Arctic soil microcosms.
750	Biogeosciences, 13(17), 5021–5041. https://doi.org/10.5194/bg-13-5021-2016
751 752 753	Thormann, M. N., Szumigalski, A. R., & Bayley, S. E. (1999). Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands, 19(2), 305–317. https://doi.org/10.1007/BF03161761
754	Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., & Lu, C. (2010). Spatial and temporal
755	patterns of CH 4 and N 2 O fluxes in terrestrial ecosystems of North America during
756	1979–2008: application of a global biogeochemistry model. Biogeosciences, 7(9), 2673–
757	2694. https://doi.org/10.5194/bg-7-2673-2010
758	Valentine, D. W., Holland, E. A., & Schimel, D. S. (1994). Ecosystem and physiological controls
759	over methane production in northern wetlands. Journal of Geophysical Research:
760	Atmospheres, 99(D1), 1563–1571. https://doi.org/10.1029/93JD00391
761	Wang, H. J., Shi, X. Z., Yu, D. S., Weindorf, D. C., Huang, B., Sun, W. X., et al. (2009). Factors
762	determining soil nutrient distribution in a small-scaled watershed in the purple soil region
763	of Sichuan Province, China. Soil and Tillage Research, 105(2), 300–306.
764	https://doi.org/10.1016/j.still.2008.08.010
765	Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian Classifier for
766	Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and
767	Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-
768	07
769	Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003).
770	Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition
771	and reactivity of dissolved organic carbon. Environmental Science & Technology,
772	37(20), 4702–4708. https://doi.org/10.1021/es030360x

773	Xu, X., & Tian, H. (2012). Methane exchange between marshland and the atmosphere over
774	China during 1949–2008. Global Biogeochemical Cycles, 26(2), GB2006.
775	https://doi.org/10.1029/2010GB003946
776	Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., & Gu, B. (2016). Effects of warming on
777	the degradation and production of low-molecular-weight labile organic carbon in an
778	Arctic tundra soil. Soil Biology and Biochemistry, 95, 202–211.
779	https://doi.org/10.1016/j.soilbio.2015.12.022
780	Yano, Y., Shaver, G. R., Giblin, A. E., Rastetter, E. B., & Nadelhoffer, K. J. (2010). Nitrogen
781	dynamics in a small arctic watershed: retention and downhill movement of 15N.
782	Ecological Monographs, 80(2), 331–351. https://doi.org/10.1890/08-0773.1
783	Ye, R., Jin, Q., Bohannan, B., Keller, J. K., McAllister, S. A., & Bridgham, S. D. (2012). pH
784	controls over anaerobic carbon mineralization, the efficiency of methane production, and
785	methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient.
786	Soil Biology and Biochemistry, 54, 36–47. https://doi.org/10.1016/j.soilbio.2012.05.015
787	Yoo, K., Amundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil
788	organic carbon on hillslopes: Integrating geomorphic processes and the biological C
789	cycle. Geoderma, 130(1–2), 47–65. https://doi.org/10.1016/j.geoderma.2005.01.008
790	Zalman, C., Keller, J. K., Tfaily, M., Kolton, M., Pfeifer-Meister, L., Wilson, R. M., et al.
791	(2018). Small differences in ombrotrophy control regional-scale variation in methane
792	cycling among Sphagnum-dominated peatlands. Biogeochemistry, 139(2), 155–177.
793	https://doi.org/10.1007/s10533-018-0460-z
794	Zheng, J., Thornton, P. E., Painter, S. L., Gu, B., Wullschleger, S. D., & Graham, D. E. (2019).
795	Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights
796	into soil geochemical influences on carbon mineralization. Biogeosciences, 16(3), 663–
797	680. https://doi.org/10.5194/bg-16-663-2019
798	Zheng, J., Philben, M., Zhang, L., Jubb, A., Bill, M., Wullschleger, S. D., et al. (2019). Surface
799	and Active Layer Water Chemistry, Teller Road Mile Marker 27, Seward Peninsula,
800	Alaska, 2016-2018. Next Generation Ecosystem Experiments Arctic Data Collection,
801	Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee,
802	USA. Retrieved October 1, 2019, from https://doi.org/10.5440/1567181
803 804	

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

