UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Class of Curvature Equations, Convexity, and Real Algebraic Geometry

Permalink
https://escholarship.org/uc/item/5gh6w1xd

Author
Lin, Chao-Ming

Publication Date
2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5gh6w1xd
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Class of Curvature Equations, Convexity, and Real Algebraic Geometry

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Chao-Ming Lin

Dissertation Committee:

Professor Zhiqin Lu, Co-Chair

Associate Professor Xiangwen Zhang, Co-Chair
Distinguished Professor Richard Schoen

2023



(©) 2023 Chao-Ming Lin



DEDICATION

To my family, friends, and teachers.

i



TABLE OF CONTENTS

LIST OF FIGURES

ACKNOWLEDGMENTS

VITA

ABSTRACT OF THE DISSERTATION

1

2

Introduction

Preliminaries

2.1 Right-Noetherian Polynomials . . . . . .. .. .. ... .. ... ... ....
2.2 General o, Equations and T-Cones . . . . . . . .. . ... ... ... ....
2.3 Convexity of the Level Set . . . . . . . . . .. . ... ... ... ... ....
2.4 Some Applications . . . . . . ...
2.5 Basic Formulas of Symmetric Functions . . . . . . . .. .. ...

Background

3.1 General o, Equations and General Inverse o Equations. . . . . . . .. . ..
3.2 Space for Continuity Path . . . . . . .. ... ... 0000
3.3 Examples of Continuity Path . . . . ... ... ... ... ... ..

A Priori Estimates

4.1 When Complex Dimension Equals Three . . . . . . . . ... ... ... ...
4.1.1 The C? Estimate . . . . . . . . . .. . ... ...
4.1.2 The C' Estimate . . . . . . . . .. ... ... ...
4.1.3 Higher Order Estimates . . . . . ... ... ... ... ... .....

4.2 When Complex Dimension Equals Four . . . . . .. ... ... ... ... ..
421 The C? Estimate . . . . . . . . . .. ... ...,
422 The C' Estimate . . . . . . . . . .. .. ... ...
4.2.3 Higher Order Estimates . . . . . ... ... ... ... ... .....

Existence Results
5.1 When Complex Dimension Equals Three . . . . . . ... ... ... ... ..
5.2 When Complex Dimension Equals Four . . . . . . ... ... ... ... ...

il

Page

vi

viii



Bibliography 138

v



LIST OF FIGURES

Page
21 op(z) of p(x) =2° —19(3)a® + 64(3)2* —9(})z' +20(0)a® . . . . .. ... 16
2.2 The YT-cones of the dHYM Equation whenn=3. . ... ... ... ... .. 26
3.1 Polyhedron P? of Mg —di(A + g +X3) —do=0. . . . .. .. ... ... 77
5.1 The continuity path in Lemma 5.2 when d; < 0. . . . . . ... ... ... .. 136



ACKNOWLEDGMENTS

First, I would like to thank my advisors Professor Zhiqin Lu and Professor Xiangwen Zhang.
I was fortunate to have them advise me, they broadened my horizons in mathematics, taught
me to appreciate theories in mathematics from different aspects, and boosted me to reach
my full potential. I am very grateful to them for their constant guidance, patience, and
support in mathematics at University of California, Irvine.

I also like to thank Professor Li-Sheng Tseng, Professor Jeffrey Streets, Professor Duong
Hong Phong, Professor Po-Ning Chen, Professor Xin Fu, Professor Tsung-Ju Lee, and Pro-
fessor Yu-Shen Lin for their academic help and support. I would like to thank Professor
Bo Guan, Professor Richard Schoen, Professor Tristan Collins, Professor Siyuan Lu, and
Professor Man-Chun Lee for their interest in my works and for their help in my career.

I would like to thank my friends at University of California, Irvine. I would like to thank
Anthony Tsai for hanging out with me and sharing life as graduate students, we were foodies
and we found all good Asian and Taiwanese food in this area. I would like to thank Hua
Lin, Ellen Wang, Matthew Cheung, and Edward Martinez, I am lucky to have friends that
regularly checked up, kept in contact, and chilled with me. I would like to thank Hsu Cheng
and Yifan Guo for playing table tennis with me. I would like to thank Kuan-Hui Lee, Long-
Sin Li, and Yi-Lin Tsai. I would like to thank Tin-Yau Tsang, his passion for mathematics
and math society really impressed me a lot. I would like to thank Kai-Wei Zhao for his
kindness and patience. I had a hard time, I appreciate conversations with him not only in
mathematics but also in many fields. They are the ones who best understood the struggles
of graduate school and the support I received was invaluable.

I would like to thank Heaton Christensen for his life experiences, knowledge, and financial
advice. I learn a lot from him and our conversations always widen my field of vision. Heaton
teaches me the importance of finding the core of things and helps me improve my resilience
and confidence. I would like to give thanks to Heaton for everything.

I would like to thank the mathematics community I encountered prior to my graduate school
at National Taiwan University, especially Professor Chung-Jun Tsai, Professor Chen-Yu Chi,
Professor Mao-Pei Tsui, and Professor Yng-Ing Lee. I was not an outstanding student and
failed several courses when I was in my bachelor degree. I am indebted for their tolerance
and support at National Taiwan University. Chung-Jun is my master degree advisor at
National Taiwan University, [ am very grateful to him for showing his great patience and his
guidance to me as a beginner in differential geometry. I also would like to thank my friends
at National Taiwan University, I would like to thank Hsin-Po Wang, You-Cheng Chou, Chi-
Shian Dai, Chung-Ru Lee, Chi-Yun Hsu, Chung-Ming Pan, Chen-Chih Lai, Yu-Ping Lin,
and Christopher Kuo. I wish all of you the best when you are pursuing your future goal.

Last, I would like to thank my mother ff] £#& (Yu-Chiao Ho) and my father #{GHE(Yu-
Tsung Lin) for their unconditional love and support. Nothing would be possible without
them and I hope my father will recover and see my achievement.

vi



Portions of Chapter 2 of this dissertation are a reprint of the material currently in press at
the Journal of Functional Analysis, available at https://doi.org/10.1016/j.jfa.2023.
110038, used with permission from Elsevier.

vil


https://doi.org/10.1016/j.jfa.2023.110038
https://doi.org/10.1016/j.jfa.2023.110038

VITA

Chao-Ming Lin

EDUCATION

Doctor of Philosophy in Mathematics

University of California, Irvine

Master of Science in Mathematics
National Taiwan University

Bachelor of Science in Mathematics
National Taiwan University

RESEARCH EXPERIENCE
Visitor
National Center for Theoretical Sciences

Visitor

National Center for Theoretical Sciences

Graduate Research Assistant
National Center for Theoretical Sciences

TEACHING EXPERIENCE

Teaching Assistant
University of California, Irvine

Lecturer
University of California, Irvine

Teaching Assistant
National Taiwan University

2023
Irvine, California

2016
Taipei, Taiwan

2014
Taiper, Taiwan

November 2022— December 2022
Taiper, Taiwan

December 2020— April 2021
Taiper, Taiwan

August 2016— June 2017
Taipei, Taiwan

2017-2023
Irvine, California

August 2022—-September 2022
Irvine, California

20142016
Taipei, Taiwan

viii



REFEREED JOURNAL PUBLICATIONS
On the Convexity of General Inverse o, Equations 2023

Journal of Functional Analysis

Deformed Hermitian—Yang—Mills Equation on Compact 2022 (Accepted)
Hermitian Manifolds
Mathematical Research Letters

X



ABSTRACT OF THE DISSERTATION

Class of Curvature Equations, Convexity, and Real Algebraic Geometry
By
Chao-Ming Lin
Doctor of Philosophy in Mathematics
University of California, Irvine, 2023

Professor Zhiqin Lu, Co-Chair
Associate Professor Xiangwen Zhang, Co-Chair

This dissertation works towards building a fundamental theory of general o, equations and
general inverse o, equations, showing up in many different fields. For example, PDE, differ-
ential geometry, and complex geometry. Our primary goal is to construct nice algebra tools,
especially related to real algebraic geometry, so that we can generalize previous classical
equations to more complicated settings. Once the framework is settled, we aim to look for
a priori estimates and further obtain the solvability of these equations. To be more precise,
first, we introduce a special class of multilinear polynomials and a special class of univari-
ate polynomials which are related to the convexity of these equations. Second, we study
a priori estimates of these equations provided that the convexity and a C-subsolution are
given. Last, by collecting these equations which have a priori estimates, we obtain a special
algebraic set to apply the method of continuity and further look for the solvability. As an ap-
plication, we apply our theory and results to the deformed Hermitian—Yang-Mills equation,
an equation discovered around the same time by Marifio-Minasian—-Moore—-Strominger [54]
and Leung—Yau—Zaslow [48] using different points of view when studying mirror symmetry in
string theory. We confirm one of the conjectures by Collins-Jacob—Yau [18] of the deformed

Hermitian—Yang—Mills equation when the complex dimension equals three or four.



Chapter 1

Introduction

In complex geometry, let (M, w) be a compact connected Kéhler manifold of complex dimen-
sion n with a Kéhler form w and [xo] € H"'(M;R), where H"!(M;R) is the (1, 1)-Dolbeault

cohomology group. The study of the following equation is widely considered:
X" = Cno1 (n i 1)x”_1 Awh+ -4 (T)Xl AW 4 ¢ (g)w”, (1.1)

where ¢, are real functions on M and yx € [xo] is a real smooth closed (1, 1)-form. We call
an equation having the same format as equation (1.1) a degree n general inverse oy type
equation. A general inverse oy, type equation (1.1) is very likely to be ill-posed, but some

special combinations of the coefficients raise some famous equations.

For example, by letting [yo] be a Kéhler class, ¢, = 0 for all k € {1,--- ,n— 1}, and ¢; be a
positive function, equation (1.1) becomes the complex Monge-Ampeére equation in the Calabi
conjecture [12, 13], which was solved by Yau [72]. Inspired by the study of the Hermitian—
Yang—-Mills connections by Donaldson [26] and Uhlenbeck—Yau [70], Donaldson [27] studied
the J-equation using the moment map. The J-equation can be obtained by letting [xo] be

a Kéhler class, ¢, = 0 for all £ € {0,--- ,n — 2}, and ¢,_; be a positive constant. The



J-equation was studied extensively by Chen [14], Collins—Székelyhidi [20], Lejmi—Székelyhidi

[47], Song [65], Song—Weinkove [66], and the references therein.

There are also some examples with more non-zero terms. For example, the general inverse oy,
equations with non-negative coefficients, which were studied by Fang-Lai-Ma [29], Collins—
Székelyhidi [20], and Datar—Pingali [23]. Motivated by mirror symmetry in string theory, the
deformed Hermitian—Yang—Mills equation, which will be abbreviated to the dHYM equation
from now on, was discovered around the same time by Marino-Minasian-Moore—Strominger
[54] and Leung-Yau-Zaslow [48] using different points of view. The dHYM equation was

initiated by Jacob—Yau [45] and can be formulated as follows:

%(w + \/—_1x)n = tan(@) . ?R(w + \/—_1x)n. (1.2)

Here, & and R are the imaginary and real parts, respectively, and 6 is a topological constant
determined by the cohomology classes [w]| and [xo]. The dHYM equation was studied ex-
tensively by Chen [14], Chu-Lee-Takahashi [17], Collins—Jacob—Yau [18], the author [50, 51]
and the references therein. We should emphasize that there are many significant works that
have been done recently. The interested reader is referred to [16, 19, 21, 22, 24, 43, 44, 46,

50, 53, 61, 63, 71] and the references therein.

If we write equation (1.1) in terms of the eigenvalues of the Hermitian endomorphism A =

w~x at a point, then we can rewrite equation (1.1) as

n—1 n—1
M A= crop(Ar, e A) =D crok(N), (1.3)
k=0 k=0
where \; are the eigenvalues of A, oy (A1, - -+, \,) is the k-th elementary symmetric polynomial

of {\, -+, A}, and we denote ox(A1,---,\,) by ox(\) for convenience. The following



multivariate polynomial in n variables {A,---, A, }

i
L

Ao A= eor (M) (1.4)
0

i

is a special case of multilinear polynomials, that is, multivariate polynomials in which no
variable occurs to a power of two or higher. We will call a multilinear polynomial having

the same format as (1.4) a general inverse oy type multilinear polynomial.

In convex geometry, on standard unit sphere S, the following general Christoffel-Minkowski

problem is studied extensively:

os(Wu(z)) = ) cr(@)or(Wu(z)) (1.5)

0

B
Il

where ¢, are real functions on S™ and W, () = u;;(x) + u(x)d;; is the spherical Hessian
matrix of a function u: S* — R. Here, u;; are the second order covariant derivative with
respect to any orthonormal frame on S" and J;; is the standard Kronecker delta. We call an
equation having the same format as equation (1.4) a degree s general oy, type equation with

n variables.

For the case s = 1, equation (1.5) becomes the standard Christoffel problem which was
solved by Firey [30, 31] and Berg [6]. For the case s =n and ¢, =0 for k € {1,--- ,n— 1},
equation (1.5) becomes the Minkowski problem which was studied extensively by Minkowski
[55], Alexandrov [1], Lewy [49], Nirenberg [56], Pogorelov [62], and Cheng—Yau [15]. In [40],
Guan—Zhang studied the solvability of a class of more general equations, they considered the
case that n > s > 2 and ¢, > 0 for k € {0,--- ,s — 2}. There are also other general o} type
equations in different fields, but since we mainly focus on the general inverse o, equations
in this dissertation and because of the space limitations, the interested reader is referred to
[10, 11, 20, 28, 29, 32, 33, 34, 35, 37, 38, 39, 42, 47, 57, 58, 59, 60, 64, 69] and the references

therein.



Similarly, if we write equation (1.5) in terms of the eigenvalues of the Hessian matrix W, at

a point, then we can rewrite equation (1.5) as

US()\) = ickak()\l, R ,)\n) = ickak()\), (16)

where \; are the eigenvalues of W, 0% (A1, -, A,) is the k-th elementary symmetric polyno-
mial of {A\,---, A\, }, and we denote ox (A1, -+, A\,) by ox(A) for convenience. The following
multivariate polynomial in n variables {A,---, A, }
s—1
gs(A) =Y cor(Ar, -0 An) (1.7)
k=0

is a special case of multilinear polynomials. We will call a multilinear polynomial having the

same format as (1.7) a degree s general o) type multilinear polynomial with n variables.

Throughout all these works, the convexity of either the equation itself or the level set plays

a crucial role. To be more precise, to get a priori estimates, we highly rely on convexity.

Let us state some of our settings, definitions, and results now. This is a generalization of the
author’s works [51, 52]. First, we introduce the following stableness condition for general oy,

type multilinear polynomials. For more details, see Section 2.2.

Definition 1.1 (Y-stableness). Let f(\) = o4(\) — S2i_) cxox(\) be a general o type
multilinear polynomial and I'} be a connected component of {f(\) > 0}. We say that this

connected component I'} of f(A) is T-stable if

Iy € (N i) > iy} for some g = (@i i)y ooy o

1< < <is-15n

Here, we treat ¢ as an element in the (Sfl)—dimensional Euclidean space. We say that
this connected component I'} is strictly T-stable if it is T-stable and the boundary dI'} is

contained in the Y-cone.



The Tj-cones will be defined later in Section 2.2 for k € {1,--- ;n — 1}. In particular, the
T;-cone is the C-subsolution cone introduced by Székelyhidi [68] and Guan [36]. With the
T-stableness condition, in Section 2.3, we prove that the boundary OI'} of I'} will be convex
if I'? is strictly T-stable. In this case, this connected component equals OI;. We have the

following main result.

Theorem 1.1 (Convexity of the general o, equation). Consider the following general oy,
equation f(\) = o(\) — 30"t ckor(N) = 0, where oy, is the k-th elementary symmetric
polynomial and c;, are real numbers. Let Iy be a connected component of {f(\) > 0}. IfI'}

is strictly T-stable, then the boundary O} is conver.

The following general inverse o type equations are all strictly Y-stable, we will verify some

of them in Section 2.4.

Remark 1.1. The following general inverse o type equations are all strictly T-stable:

Complex Monge-Ampere equation.

J-equation.

Hessian equation.

Deformed Hermitian—Yang—Mills equation with supercritical phase.

Special Lagrangian equation with supercritical phase.

General inverse o, equation with non-negative ¢ for k € {0,--- ;n —1}.

In practice, verifying the T-stableness condition is not easy. Here, we introduce the following
class of special univariate polynomials which plays an important role in determining the
convexity of both general inverse o equations and general o equations. In Section 2.1, we
will show more special properties of these special univariate polynomials. Now, we list some

definitions and some interesting and important results.

Definition 1.2 (Noetherian polynomial). We say a degree n real univariate polynomial p(z)

is right-Noetherian if for all k € {0,--- ,n—2}, there exists a real root of p*) which is greater

5



(k+1)  Here p® is the k-th derivative of p. We say a

than or equal to the largest real root of p
right-Noetherian polynomial p(z) is strictly right-Noetherian if the largest real root of p(x)

is strictly greater than the largest real root of p'(z).

In Section 2.2, we will show that the right-Noetherianness condition is equivalent to the
T-stableness condition in the following sense. We get the following Positivstellensatz-type
result generalizing the work in [51]. When the degree is small, we can explicitly write down
the constraints using the resultant and the discriminant, see Section 2.4 for more examples

when the degree equals three or four.

Theorem 1.2 (Positivstellensatz). Let f(\) = o,(\) — S2i_t crow(N) be a general oy type
multilinear polynomial. There exists a connected component I't of {f(A) > 0} which is T-

stable if and only if the diagonal restriction r¢(x) of f(X), which is defined by the following

n\ k
Ck (k)x )

is right-Noetherian. Moreover, I'} is strictly Y-stable iff ry is strictly right-Noetherian.

s—1

ri(z) = f(o, - ,7) = (Z)xs B

=0

As an application of the Positivstellensatz Theorem, in Section 2.4, we will verify some
general inverse o type equations and general o, type equations. As a quick consequence
of the Positivstellensatz Theorem, we can show that the level set of the following general
inverse o equation is convex. This is also numerical checkable, which gives a large quantity

of new convex sets.

Example 1.1. The following univariate polynomial 7(z) = 2% — 30_ ¢ (?)a* with c3 =
19,¢c0 = —64,¢c; = 9, and ¢y = —20 is strictly right-Noetherian. This is checkable using any

computer. By rounding off to the third decimal place, we have

2o ~ 11.632, 21 ~ 9.306, 25 ~ 6.909, x5 ~ 4.359, z, = 0.



Here, for k € {0,--- ,n — 1}, we denote by x; the largest real root of the k-th derivative

'r](ck) (). This implies that the level set of the following general inverse o equation is convex

3
FO) =X X = > ckor(A) = A+ A5 — 1903(N) + 6403(\) — 901 (A) + 20 = 0.
k=0

If a general o, type multilinear polynomial has an Y-stable connected component, then, for
convenience, we say this multilinear polynomial is T-stable. In the following setting, we can

also compare two T-stable general o type multilinear polynomials.

Definition 1.3 (T-dominance). Let f(A) = A -+ Ay — 31— crop(A) and g(A) == Ay -+~ A, —

Zz;é dror(N) be two Y-stable general inverse o type multilinear polynomials. For k €

{0,--- ,n — 1}, we write z the largest real root of the diagonal restriction r}k) of f and y;
the largest real root of the diagonal restriction rék) of g. Ifyp > xp forallk € {0,--- ,n—1},

then we say g > f.

We get another Positivstellensatz-type result. This result implies that for Y-stable general

inverse o type multilinear polynomials, the T-dominance is equivalent to the set inclusion.

Theorem 1.3 (T-dominance). Let f = ao(\) =Y i_t cror(N) and g = ao(A\) = i_t dpor(N)

be two Y-stable general oy type multilinear polynomials. Then g > [ if and only if I'y C T}

Example 1.2. The following univariate polynomial r,(z) = z° — 22:0 dy, (2)£Ek with dz =

19,dy = 65,d; = —2, and dy = —24 is strictly right-Noetherian with roots:

Yo ~ 15.250, y1 ~ 11.673, yo ~ 8.066, ys ~ 4.359, 3, = 0.

Here, for k € {0,--- ,4}, we denote by y; the largest real root of the k-th derivative r;k) (x).

We compare this T-stable general inverse o type multilinear polynomial with the one in

Example 1.1. Since yo > xg, y1 > X1, Y2 > T2, Y3 = 3, and y4 = x4, we have g > f. By



Theorem 1.3, we get

{A1--- A5 — 1903(X) — 6503(X) + 201 (A) + 24 > 0}

In this dissertation, we apply this framework to determine the solvability of a general in-
verse oy equation on a compact connected Kéhler manifold satisfying strictly Y-stableness
condition at every point on the manifold. By Theorem 1.1, we know strictly Y-stableness

condition will give us level set convexity, so we define the following set in Section 3.1.

Definition 1.4. For A = {\y, -+, \,,}, we define

s—1
Gps = {(cs,l, Cs—2,++ ,Cp) € R*: ag(N) — chak()\) is strictly T—stable};
k=0

Gns = {(cs,g, Co 3, ,co) ER g (N) — chak()\) is strictly T—stable}.

s—2
k=

0

For convenience, we denote %, ,, by 4, and %Znn by ‘gn

So equation (1.1) can be viewed as a function ¢ from M to %, which is defined by

c: M — %5 c(p) — (cno1(p), -+, c1(p), co(p))

We can reformulate some classical general o equations or general inverse o, equations into
a function (or a constant map) from M to %, . For example, let us reformulate the dHYM

equation here and state one of the conjectures by Collins-Jacob—Yau [18].

Congecture 1.1 (Reformulate deformed Hermitian—Yang—Mills equation). Let (M,w) be a
Kéhler manifold with Kéhler form w and [y] be a (1,1)-Dolbeault class. The deformed
Hermitian—Yang-Mills equation with 6 € ((n — 2)7/2,n7/2) induces a point in %, and we

consider the following constant map cquynv: M — Cfn If there exists a C-subsolution to

8



CaayM 1n [Xol, then there exists a x € [xo] such that

%(w + \/—_1x)n = tan(@) . §R(w + \/—_lx)n.

In Section 3.2, assuming we have a C-subsolution to an equation d: M — %, , then we
study the equations such that this subsolution is still a C'-subsolution to them. By collecting

these equations and by Theorem 1.3, we have an explicit expression of this set.

Theorem 1.4. Given d: M — 6,, at any point p € M, we write xi(p) the largest real
root of the k-th derivative of fy(z) = (7)z® — ° 4 di(p) (L)a*. Then the C-subsolution cone

of d at p is contained in the C'-subsolution cone of c: M — 6, s at p if and only if for all

ke {l,--,s—1}, we have gi (z4(p)) > 0. Here, gy(y) = ()y° — it er(p) (D) y".

It is still open whether the existence of a C-subsolution will provide a priori estimates, but
the space of equations sharing same subsolution as C-subsolution is still worth considering.
This space should be the space to find continuity path and apply a priori estimates. In
Section 3.3, we show that the continuity path in Yau [72] and Collins—Székelyhidi [20] will
lie in this space. In Chapter 4, we study a priori estimates of constant maps d: M — %,

and d: M — %, provided the existence of a C-subsolution. We have the following result.

Theorem 1.5 (A priori estimates). Let S be a compact subset of the generic stratification
of €1, X be a C-subsolution to constant map d: M — €,. If X is again a C-subsolution to
a constant map c¢: M — %, with c € S and u: M — R is a solution to c¢. Then for every

a € (0,1), we have

|00u||c2.e < C(M, X, S, d,w,a).

In Chapter 5, we apply our a priori estimates and find a continuity path connecting the

original equation to a solvable one. In conclusion, we prove that if d is in the generic open



stratification of % and there exists a C-subsolution to d, then the degree four general inverse
ok, equation d: M — %, with d(p) = d is solvable. This result covers one of the author’s

work in [51].

Theorem 1.6 (Solvability when n = 4). Suppose d is in the generic open stratification of

%,. If there exists a C'-subsolution to d, then the degree four general inverse o equation

X* = 6dyw? A X? — 4djw® A X — dow® = 0.

1s solvable in the same cohomology class.

Theorem 1.7 (Deformed Hermitian—Yang-Mills equation, Lin [51]). When the complex

dimension equals three or four, Conjecture 1.1 is confirmed.

The layout of this dissertation is as follows: in Chapter 2, we introduce some preliminary
knowledge. We introduce a special class of univariate polynomials and a special class of
multivariate polynomials. Moreover, we show that these special classes are related to the
convexity of general o, equation. By collecting these general o, equations we get a special
algebraic set, which is related to convexity. In Chapter 3, we reformulate general o, equations
into our framework. We may view these equations as functions mapping from the manifold
M to the special algebraic set introduced in Chapter 2. We also discuss a potential space
to look for continuity paths and give some evidences showing that this potential space is
compatible with some classical works. In Chapter 4, we study a priori estimates of general
inverse o equations when the dimension is three or four. We show that the potential space
is truly the right space because for any point in this space (which corresponds to a general
inverse o) equation) we have a priori estimates for it. In Chapter 5, we apply our results
in Chapter 4 and conclude the solvability of degree three and degree four general inverse oy,

equations with constant coefficients provided the existence of a C-subsolution.

10



Chapter 2

Preliminaries

In this chapter, we will outline some conventions, definitions, and results regarding algebra
and complex geometry. Some ideas and details can be found in [51, 52] by the author.
In Section 2.1, we introduce the class of right-Noetherian polynomials, which is related to
the largest real roots of the derivatives of the polynomials. In Section 2.2, we consider
some special semialgebraic sets in real algebraic geometry, which are defined by system of
inequalities of polynomials with real coefficients. More precisely, we introduce the notion
of T-cones, which is a generalization of the C-subsolution cone introduced by Székelyhidi
[68] and Guan [36]. In Section 2.3, we prove the convexity of the level sets introduced in
Section 2.2. In Section 2.4, we apply our result in Section 2.3 to some classical examples.
For example, when the degree is low, we can use the resultant and the discriminant to verify

the convexity. In Section 2.5, we state some lemmas for symmetric functions.

11



2.1 Right-Noetherian Polynomials

In this section, we introduce the class of Noetherian polynomials, which will be used through-
out this dissertation. The class of Noetherian polynomials has some special properties and
will help us determine the convexity of the level set of any general inverse o type equation

and any general oy, type equation. We will see this in the later sections.

Definition 2.1 (Noetherian polynomial). We say a degree n real univariate polynomial p(z)
is right-Noetherian if for all k € {0,--- ,n—1}, there exists a real root of p*) which is greater
than or equal to the largest real root of p*t1). Here, p*) is the k-th derivative of p. We
say a right-Noetherian polynomial p(z) is strictly right-Noetherian if the largest real root of

p(z) is strictly greater than the largest real root of p/(x).

As a consequence, we immediately have the following descending relation.

Proposition 2.1. Let p(x) be a real univariate polynomial of degree m which is right-
Noetherian. Then for any k € {0,--- ,n — 1}, there exists a unique (ignoring multiplicity)
real root of p*)(z) which is greater than or equal to the largest real root of p*+V(z). More-
over, this real root is the largest real root of p™ (x). In particular, if we denote x, to be the

largest real root of p®)(x), then xg > o1 > -+ > 2.

Proof. We prove this statement by mathematical induction on the degree n. When n = 1,
there is nothing to prove. When n = 2, p/(z) is a degree 1 polynomial and the only root
will be the midpoint of the roots of p(z). By the definition of right-Noetherianness, there
exists a real root of p(z) which is greater than or equal to the largest real root of p/(z). Thus
p(z) is real rooted and if we ignore the multiplicity, then there exists a unique real root of
p(z) which is greater than or equal to the largest real root of p’(x). Moreover, this real root
will be the largest real root of p(z). Suppose the statement is true when n = m — 1. When

n = m, it suffices to check p(x), the rest follows by mathematical induction. If there exists

12



xo and Ty with p(xg) = 0 = p(%) and Ty > x¢ > x1, where z; is the largest real root of

p'(x). For convenience, we assume that the polynomial p(x) is monic, we may write
n—1
p(r) =a2" + Z cra”.
k=0

Then p/(x) = na"! +ZZ;11 kepx®~1. Since xy is the largest real root of p/(z), for any z > xy,

we have p/(z) > 0. By the fundamental theorem of calculus, we have

Zo

0= p(a0) =plan) + [ Hla)s =0+ [ @) >0

zo Zo

which is a contradiction. This finishes the proof. O]

We give a quick example of right-Noetherian polynomial, the right-Noetherianness condition

is checkable by any computer using long division algorithm and Sturm’s theorem.

Example 2.1. The following univariate polynomial ry(x) = a° — 22:0 C (2)95'“ with ¢z =
19,c0 = —64,¢1 = 9, and ¢y = —20 is strictly right-Noetherian. This is checkable using any

computer. By rounding off to the third decimal place, for k£ € {0,--- ,4}, we have
xg ~ 11.632, x; ~ 9.306, x5 ~ 6.909, x5 ~ 4.359, x4 = 0.

Here, we denote by x; the largest real root of the k-th derivative Tgfk)(x).

Proposition 2.2. Let p(x) be a real univariate polynomial of degree n which is real rooted,

that is, all roots are real numbers, then p(x) is right-Noetherian.

Proof. This follows immediately by the Gauss—Lucas theorem. If p(x) is real rooted, then
the roots of p/(x) will be contained in the convex hull of the set of roots of p(z). So p/(x)
will also be real rooted, the rest follows directly by mathematical induction. This finishes

the proof. 0

13



Remark 2.1. A right-Noetherian polynomial might not be real rooted, a simple example will
be p(z) = 3 — 1. Then we have p/(x) = 32 and p”(x) = 6x. If we denote by z; the largest
real root of p¥(z), then 2 = 1, z; = 0, and 25 = 0. So p(x) will be right-Noetherian due to
To > 11 > T9. But the roots of p(z) = 2® — 1 are: 1,(—1+/=3)/2, and (=1 — /=3)/2.

The log-concavity property of special univariate or multivariate polynomials were studied ex-
tensively by Brandén—Huh [7], Gurvits [41], Anari-Gharan—Vinzant [2], Anari-Liu—Gharan—
Vinzant [3, 4], and Anari-Liu-Gharan—Vinzant—Vuong [5]. For the class of right-Noetherian
polynomials, here, we not only show that any right-Noetherian polynomial will be strongly

log-concave after translation, but we also show that the ratio will be monotone.

Definition 2.2 (Log-concavity ratio). Let f: I — R be an analytic function, I be an open
interval in R, and define Cy = {x € I: f'(x) = 0}. For any point z € I, we define the
log-concavity ratio as(z) of f(x) to be the following

fz) - ["(=)

ap(z) = Pl (2.1)

if v ¢ Cy. If x € C} is a limit point of C, then we define af(x) to be 0, otherwise we define

as(z) = lim f(y}/é yf) Q(y)7
where we allow ay(z) = oo or ay(z) = —oo.

Remark 2.2. Let f: I — R be an analytic function and / be an open interval in R, if

ap(r) <1forall z € I, then f is logarithmically concave on {f > 0}.

The following Proposition 2.3 shows that for any real univariate polynomial p(zx), p(z) (or

—p(z)) will eventually be logarithmically concave when x is sufficiently large.

Proposition 2.3. Let p be a real univariate polynomial of degree n, then lim, o a,(z) =

1—=1/n. In particular, there exists a N > 0 sufficiently large such that p (or —p depends on
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the sign of the leading coefficient) is logarithmically concave on (N, o).

Proof. For x sufficiently large, if we write p(z) = >_,_, cx2”, then by equation (2.1), we have

p(x) - p"(x) _ Sorg kx> k(k — 1)ckxk_2'
p'(x)? <ZZ=1 kckxk1>2

a,(z) =

Since p’ is a polynomial, by letting x approach oo, we can avoid critical points and get

Do kT Doy k(K — 1)ega® ~ im n(n — 12?2 + O(2?"73)

lim a,(z) = lim

T—00 T—00 (22:1 k‘ckxk_l)2 T—500 n2x2n—2 4 O<x2n—3)
—14+0(z7! 1
z—oo0 N+ O(:L'_1> n
Here, we use the Big O notation for convenience. This finishes the proof. n

The derivative of the log-concavity ratio in Definition 2.2 of any right-Noetherian polynomial

will satisfy the following.

Lemma 2.1. Let p(x) be a right-Noetherian polynomial of degree n. For k € {1,--- ,n—1}
and x > 1y, where xy, is the largest real root of p®), then oz;)(k_l)(x) < 0 when 2 > a,m ()
and o1 (x) > 1/(2 = a0 (x)). On the other hand, o, ) (x) > 0 when oy (x) = 2 or

2> aym(z) and 1/(2 — apm () > aye-n ().

Proof. By taking the derivative of a1 (x) with respect to x, we get

: _d p* I (@)p* ()
Qp(k71)<$) - @ p(k)(x)Q
_ PP (2)?p* (@) + p D (2)p™® (2)p* ) () — 2p D (2)p*H D ()2

p®(x)?

(2.2)
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Figure 2.1: ay(x) of p(x) = 2° = 19(3)2* + 64(3)2* — 9(}) =" +20(5) 2",
Then the numerator of equation (2.2) will give us the following.

p® (2)?p* D (z) + p* 1 (2)p™ (2)p* ) (z) — 2p* 1 (2)p*HY (2)?

= p®) ()2 (1) (1 + (apm (z) — 2) Oép(k—l)(l')>.
For convenience, we assume the leading coefficient of p is positive. When 2 > a,w) (z) and

-1 (@) > 1/(2 = am (), then since x is greater than the largest real root of p®), we get

1 + (Oép(k)(x) - 2)ap(k_1)(l’)
P (z)

e (2) = P4 (2) <o.

On the other hand, when a,w (7) > 2 or 2 > a,w (7) and 1/(2 — a,m (7)) > -1 (),

1+ (Oép(k)(l') — 2)Oép(k—1)(x)

> 0.
p®) (z)

e (2) = p* (@)

This finishes the proof. 0

Now, with all these preparations, we are able to prove the following important result for
the class of right-Noetherian polynomials. We prove that this log-concavity ratio will be
monotonic for right-Noetherian polynomials. In Figure 2.1, we plot the log-concavity ratio
a,(z) of p(x) = 2® —19(3)2® + 64(3)a? — 9(3) 2! +20(])2® = 2® — 19023 + 6402% — 452 + 20,

which is right-Noetherian by Example 2.1.

Theorem 2.1 (Monotonicity of log-concavity ratio). Let p(z) be a right-Noetherian polyno-
mial of degree n. Then the log-concavity ratio o,(x) of p(x) is monotonically increasing on

(x1,00) with value from —oo to 1 — 1/n if xg > x1 and on [xg,00) with value from 1 —1/m
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tol—1/nifxg =21 =+ = 1. Here, xq is the largest real root of p, xy is the largest
real root of the k-th derivative p*) of p, and m is the multiplicity of p at zo. In particular,

if p is right-Noetherian, then p is always logarithmically concave when x > xq.

Proof. For convenience, we may assume that p(z) is monic. By the definition of right-
Noetherian, if we denote x; by the largest real root of p(x), then by Proposition 2.1, we
have zog > 1 > x93 > --- > x,_1. We use mathematical induction on the degree of the

polynomial. When the degree equals two, since p has a real root xg, we may write
p(z) = (z — zo)(z — (221 — 20)) (2.3)

with xg > 7. If > 21, then by equation (2.3), we obtain

0 (z) = p(z)p"(2) _ 2(x — xo)(x — (21 — ) _ 1 (o — 21)?
: p'(z)? Az —1)? 2 2(r—m)?

So, for degree 2 right-Noetherian polynomials, a,(x) is monotonically increasing from 0 to
1/2 from z( to oo if g = x; and from —oco to 1/2 from 7 to oo if xy > x1. Suppose the
statement holds when the degree equals n—1. When the degree equals n, say the multiplicity

of the largest real root zy equals m > 1. We have

"L p®) (g B ~
p(@) = (&= a0 - Y2 T (0 gy = (o i) (2.4

by using the Taylor series expansion of p(x) at xo and set

"L p®) (zg A
() = 30 P i
k=m ’
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So the first and the second derivative of (2.4) with respect to x can be written as

P (@) = (& — 20)" " (mp(x) + (z — x0)P (2)); (2.5)

p'(x) = (z — @)™ 7% (m(m — 1)p(x) + 2m(z — 20)p (z) + (v — 20)*p"(2)). (2.6)

There are two cases to consider: m = 1 or m > 2. For the case m = 1, since p’ is again
right-Noetherian, a,, is monotonically increasing on [z, 00) with value from 1 — 1/m to
1 —1/(n — 1), where m is the multiplicity of p’ at z;. When x > z;, by Lemma 2.1,
af(x) > 0 when 2 > apy(z) and 1/(2 — oy (x)) > ap(z). If we consider the set I == {z €
(21,00): 1/(2—ay(2)) > ap(x)}, then the set I is not empty because 2o € I. If we can show
that I = (z1,00), then we are done. I will be open by the continuity of functions o, and oy .

If I # (z1,00), then we can find a smallest & € (xy,00) such that 1/(2 — ay (7)) = a,(Z).

This is ensured because p is a polynomial and

1

2~ ay () — ap(z)
1 / 2.1 / /11 " )
~ (2 ap (@) (@) (x) (p (2)°p"(x) + p()p'(2)p" (x) — 2p(z)p"(2) )

The second term p/(z)%p” (x) + p(x)p' (x)p" (x) — 2p(x)p” (x)? is just a polynomial so can only

have finitely many zeros. Then by Lemma 2.1, at the point Z, we have
d . p”(f)(l —(2- O‘p’(fi))ap@))

%O‘p(“;) = 7 (%) =0. (27)

On the other hand, since p’ is right-Noetherian and by mathematical induction, we have

d 1 o oy(@)
dole=z2 — ay () N (2 —ay(7))? > 0. (2.8)

We get a contradiction. Otherwise, by standard calculus argument and equation (2.7), there
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exists a 6 > 0 sufficiently small such that if |h| < J, then we have

3(2—ay(7))? h 3(2—ay(7))?
Also, since (37— (I))/ = (22"/(2))2, by inequality (2.8), for § sufficiently small, we get
2 o, (%) 2—a1/(z) T 2-a ,l(g“c—h) 4 ol (T)
- e T L < = L (2.10)
3(2—ay(7))? h 3(2—ay(7))?

Since 7 is the smallest value such that 1/(2 — oy (2)) = a,(x) and = € I for x slightly larger
than z1, by the intermediate value theorem, we have & — h € I where § > h > 0. Hence, by

inequalities (2.9) and (2.10), we obtain

1 1

1 a, (7) - a,(Z) — ap(T — h) . oy ® T 2-a,(G-h) - 2 a, (T)
3(2 —ay(1))? h h 3(2— oy ())*

This is a contradiction because a7,(z) > 0 by mathematical induction. So I = (z1,00).

If the multiplicity of x¢ equals 1, then «,, is increasing on (x1,00) with value from —oo to

1—1/n.

For the second case, if the multiplicity of z( is greater than or equal to 2, then at xy we have

ay(xg) =1—1/m and ap(zg) =1 —1/(m — 1). This gives

1 1 1

2 — ay(x0) T 2- (1-1/(m—1)) =1- m (o).

We need to do some local analysis near xy. Similar to before, we only need to consider the

term p/(x)*p" (z) + p(z)p'(x)p" (z) — 2p(z)p”(x)?. By equations (2.5) and (2.6), we get

P (x)?p" (x) + pla)p' (x)p" (z) — 2p(x)p" (x)°

_ 2m(x o x0)3m73ﬁ2ﬁ/ 4+ 4m(:1: o x0>3m72 (252]5” _ﬁﬁa)
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+ m<x _ xo)gm—l (2?5/3 + ﬁZﬁNI _ Sﬁﬁ/ﬁ”> + (.T _ IO)?)'ITL <ﬁﬁ,ﬁ,// _’_ﬁ/Qﬁ” . 2ﬁ~//2> .

When = > z is sufficiently close to xg, since 2mp(z)*p'(z) > 0, we get
P (@)*p" (@) + p(2)p' (2)p" () — 2p(z)p"(2)* > 0.

Similarly, we define the set I := {z € (x9,00): 1/(2 — apy(2)) > a(x)} which is open and
non-empty. Same as the previous argument, we get I = (zg,00), which implies that «, is

increasing on [y, 00) with value from 1 —1/m to 1 — 1/n. This finishes the proof. O

As an application, we immediately obtain that for a right-Noetherian polynomial p(z), the

roots of p(x), the roots of p'(x), and the root of p”(x) will satisfy the following relation.

Proposition 2.4. Let p(z) be a right-Noetherian polynomial of degree n. If we denote all
the roots of p(x) by ay, - ,an, all the roots of p'(x) by P, -+, Bn1, and all the roots of

P"(z) by Y1, V2. If we write xy, the largest real oot of p¥)(z), then for x > 1,

[, (@ — ) - TI (o — )
H:'L;ll(x - Bi)?

1s monotonically increasing to 1 when x approaches infinity.

Proposition 2.5. Let p(x) be a right-Noetherian polynomial of degree n, then
2
12 > ay(e)ay(a)
n
for x > x1, where xy is the largest real root of p'(x). In particular, for x > x,

(n —2)p'(x)p"(x) > np(x)p” (x).
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Proof. By Theorem 2.1, for x > x;, we have

1 1
1——> > — d 1-
" a,(x) 0o an —

> ay () > 0.

By multiplying them together, we always get the following upper bound: 1 —% > a,(x)ay ().

Moreover, for x = x1, since p is right-Noetherian, we get

Px)p’(en)  ple)p(en) - ple)p™(@) o

n n—2 n—2 -

Also, for x > x1, we obtain

Plx)p’(x)  ple)p”(x) _ p'()p"(z) (n —2  p(z)p’(z) -p’(:ﬂ)p’”(af))

n n—2 n—2 n P (x)? - p'(x)?
p@)p"(x) (n—2
" ( - ap(x)ap/(a:)> > 0.
This finishes the proof. 0

For the class of right-Noetherian polynomials, we show that this class will be strongly log-

concave after translation. We state the definition here.

Definition 2.3 (Strongly log-concave). Let p(z1,--- ,x,) be a multivariate polynomial, we
say p is strongly log-concave if any order partial derivative is either identically zero or log-

n
concave on RY,.

Lemma 2.2. Let p(x) be a real univariate polynomial of degree n which is right-Noetherian,

then p is strongly log-concave after the translation x — x — xg.

Proof. This follows directly by Theorem 2.1. O
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2.2 General 0, Equations and T-Cones

In this section, we introduce the notion of T-cones, which is an extension of the C-subsolution
cone introduced by Székelyhidi [68] and Guan [36]. The arguments in this subsection might
be tedious because any set in this section might have more than one connected components,
we need to specify which connected component we are considering. After all the arguments
in this subsection, there will be no ambiguity, so we may assume the set is the connected
component we are interested in. We prove some Positivstellensatz type results and a Newton—

Maclaurin type inequality on the T-cones.

First, let us state some widely used notations, see Spruck [67] for more details. For an n-tuple
numbers A = {Ay,--- ;A\, }, for & € {1,---  n}, the k-th elementary symmetric polynomial
or(A) of A will be

1<ip << <n

We also define og(A) := 1 for convenience. For [ € {1,---,n} and pairwise distinct indices
i, i, where i; € {1,--- ,n} for all j € {1,---,{}, we denote the set A — {\;;, -, \;,}

by A, ... ;,- In this section, we consider the following multilinear polynomial

s—1

0(A) = > aror(N). (2.11)

k=0

We call a multilinear polynomial having the same format as polynomial (2.11) a general oy,

type multilinear polynomial.

Remark 2.3. When s = n, we call this general g, type multilinear polynomial a general
inverse oy type multilinear polynomial. In [52], the author has shown some results for
general inverse o, type multilinear polynomials. Here, we generalize and obtain more results

for general o, type multilinear polynomials.
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Lemma 2.3. By doing the substitution p; = N\; — cs_1/(n — s+ 1) for all i € {1,--- n},
then for all k € {0,--- ,n}, we have

zk: n—sli— ,<Z:j)aj(,u)

j=0

and the coefficients d; for j € {1,--- s — 1} will be

— Ck_{ n—j CS_{ n—j
d; = c = () - —(" 7).
! z_: k(n—s+1)’fﬂ<kj) (n—3+1)53(8.7>
In addition, after substitution, the original general oy type multilinear polynomial becomes

- Z_: cror(N) = os(p) — Z_:dﬁ'aj(“)

and for all positive integer | and i, € {1,--- ,n} for alla € {1,--- 1}, we have
al s—1 al 5—9
s A)— A s d
O\, -+ 0N, <0 ) ;C’““’“( )> Driss O (0 (1) ;0 m(u))

k k;—]
Cs—1 Cs—1 n—j
A) = ( ) -
ok(A) = o /L—i_n—s—l—l j;(n—s—l—l)k—ﬂ(k—J) ()
Thus, after the substitution, we get
s—1
os(N) = ) cok(N)
k=0
s i , s=1 k& ok .
s—1 n—yj s—1 n-—7j
- (o - Y a (1))
j:O(n_S+1) 3<S—J)J — jgo(n—s—l—l)kﬂ k—3)"7
s—2 s—1 Ck:{ n—j CS:{ N
= oslp) = (Z T —s+ 1)k (k—j) T —s+1) ( —J))"J(“>



So, for any j € {1,---,s — 2}, we have

s—1 k—j . 5=j .
d: = Ch Cs-1 <”J> _ Cs—1 (nj>
! — (n—s+ 1)k \k—j (n—s+1)s9\s—j)
The rest follows by the change of variables formula. This finishes the proof. O

For convenience, by above Lemma 2.3, we may assume that c;_; = 0 by doing this substitu-
tion. In most of the proofs in this section, we will do this substitution to simplify our proofs.

We consider the following general o type multilinear polynomial instead.
s—2
JO) =f, ) = Js<)\)_zckak()\)- (2.12)
k=0

Now, we state the definition of C-subsolution here which was introduced by Székelyhidi [68]

and Guan [36]. We will slightly adjust the settings in [68] to meet our settings.

Definition 2.4 (C-Subsolution. Székelyhidi [68], Guan [36], and Trudinger [69]). Consider
an equation f(A;,---,\,) = h, where f(A,---,\,) is a smooth symmetric function of
variables {1, , A, }. We assume that f is defined in an open symmetric cone I'y C R”
satisfying f > 0, df/O\; > 0 for all ¢ € {1,--- ,n} on I'y, and supyr, f < h. We say that

w= (1, ,pun) € R" is a C-suboslution to the equation f = h if the following set
Fhp)y={X: fN)=h and A—p= (N — 1, , Ay — ) €1} (2.13)

is bounded. By collecting all the C-subsolutions, we call this the C-subsolution cone.

Definition 2.5 (Alternative definition of Definition 2.4. Székelyhidi [68] and Trudinger
[69]). Suppose that f is defined in an open symmetric cone I'y C R™ satisfying f > 0,
Of/oN; >0 forallie {1,--- ,n} onTIy, and supgr, f < h. Define

Ih={XeTy: f(A) > h}. (2.14)
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For p € R", set (2.13) F"(u) is bounded if and only if lim; .o f(i + te;) > h for all
i € {1,---,n}, where ¢; is the i-th standard vector. We denote by F}Lil’h the projection
of F? onto R"~! by dropping the last entry. We can show that for any p € R™, F*(u) is

bounded if and only if (saq1y, -+, Ha(n-1)) € F?_l’h for every a € S,,.

Let I'} be a connected component of {f()\) > 0}, we are interested in whether there exists
a nice connected component of {f(\) > 0}. Inspired by the work of Trudinger [69] on the
Dirichlet problem (over the reals) for equations of the eigenvalues of the Hessian, the results
of Caffarelli-Nirenberg—Spruck [10], and the results of Collins—Székelyhidi [20]. In [51, 52],
the author introduced the T-cones to keep track of the information of the original equation

as much as possible. We abstractly define the following sets.

Definition 2.6 (T-cones. Lin [51, 52]). Let f(\) := o,(\) — S_i_{ cxox()\) be a general oy,
type multilinear polynomial and I'} be a connected component of {f(A) > 0}, we denote by

F}‘_l the projection of I'} onto R™! by dropping the last entry. We define
T, = {u e R™: (#a(1)> e ,ua(n,l)) € F?_l, Ya € Sn},

where S,, is the symmetric group. For s — 1 > k > 2, we define the following Y-cones
Ty = {,u e R": (ua(l), e ,,ua(n,k)) € F}‘_k, Va € Sn},

where we define F?’k inductively by the projection of F}‘H’k onto R"* by dropping the last

entry. For convenience, sometimes we write Tq = I'}.

Definition 2.7 (Y-stableness). Let f(\) = o,(\) — Y2i_§ cxox(\) be a general oy, type

multilinear polynomial and I'} be a connected component of {f(A) > 0}. We say that this
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Figure 2.2: The Y-cones of the dHYM Equation when n = 3.

connected component I'} of f(A) is T-stable if

Iy C (N {oui i) > iy} for some g = (@i i)y ooci

1<i1 < <ig—1<n

Here, we treat ¢ as an element in the (Sfl)—dimensional Euclidean space. We say that
this connected component I'} is strictly T-stable if it is T-stable and the boundary dI'} is

contained in the Y;-cone.

Remark 2.4. Let f(\) = 04(\) — Z;}) ckok(N) be a general oy, type multilinear polynomial
and I'} be a connected component of {f(\) > 0}. We will show that if I'} is strictly T-
stable, then the symmetric cone I' in Definition 2.4 will always be contained in the T;-cone.
Normally, we consider the largest possible I'y, which is in fact the T;-cone. So the T;-cone

is the same as the C-subsolution cone introduced by Székelyhidi [68].

Above Figure 2.2 is an example of the Y-cones for the three-dimensional dHYM equation.
The red hyperplane is the solution set { f(A) = h}, and the darker blue cone in between is the
boundary of the T{-cone. By Remark 2.4, the Y;-cone is the C-subsolution cone introduced
by Székelyhidi [68] and Guan [36]. Last, the outermost lighter blue cone is the boundary of

the Ta-cone. In fact, the Ys-cone will be the positive orthant in this case.

Lemma 2.4. Let f(\) = o04(\) — ZZ;E ckok(N) be a general o, type multilinear polynomial
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and I} be a connected component of {f(\) >0}. If It is T-stable, say

F}l - ﬂ {Ul(A;iL'",isﬂ) > qih--',isﬂ}

1<i1<-<ig—1<n

with q € R(sﬁl), then we get

F? CTCT,C---CT; = m {0-1(/\;11,"',1'571) > CS—1}7

1<ii<<is—1<n

Csm1 = Qiyo iy, Joralll1 <4y < -+ <igy <mn. Foranyle{l,---,s— 1}, we define

T, = ﬂ Fq}ilu.z‘l - ﬂ {08 ARG SR chak (N it) > 0}.

1<ip <-<ij<n 1<ig <-<ij<n
Moreover, we have Ty is open and connected. Here, we denote 3 a === by fi,.,-
]

Remark 2.5. Notice that for the above Lemma 2.4, we need to specify each connected com-

ponent inductively on the subindices to avoid ambiguity. For example, when [ = s — 2,

ﬂ {02( 101, yhs— 2 Z CrOk— (5—2) ’Ll,'“,ig_g) > 0}

1<i1 < <is—2<n k=n—2

- ﬂ {02 101, b — 2 65710-1()\;7;17---71'372> - 0572 > O}

1<i1 < <is—2<n

will have two connected components. We specify the one which is contained in the next
Y-cone Y, | = ﬂ1§i1<_”<is_1§n{al()\;ih...72-8_1) > cs_1}. Similarly, we specify the connected
component inductively til T; by decreasing the subindices. But for notational convention,

we abbreviate these expressions.

The Y-stableness in fact gives us some constraints on the coefficients {cx}x—o,... s—1. For

example, if I'} is T-stable, then we get 2&__5:;21) 2 |+ cs_o > 0. Otherwise, if T:l 55121) A+
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cs—o < 0, then

ﬂ {o2( N isa) = Com101(Niy i y) — Cs—2 > 0}

1<ii < <ip—2<n

is not contained in Y-cone Yo 1 = () c..ci,<nt01(Niy, o is 1) > €51}, which violates the
above Lemma 2.4. Later on, we will prove that the Y-stableness condition for the class of
general o, type multilinear polynomials is equivalent to the right-Noetherianness condition
of its diagonal restriction. So the constraints can be derived using the resultants and can be
written explicitly when the degree is low, see the author’s work [51, 52] for more details. We

will show some examples in Section 2.4 when the degree is less than or equal to four.

Proof of Lemma 2.4. There is nothing to prove when s = 1, so we may assume s > 2. We
use mathematical induction on the number of variables n to prove this. When n = 1, there
is nothing to prove. When n = 2, we only need to consider the case s = 2 and this case can
be done due to previous work in [52]. Suppose the statement is true when n = m — 1 and we
assume c,_1 = 0 for convenience. When n = m, for the case s = m, this case can be done due
to previous work in [52]. For m — 1 > s > 2, suppose that there exists (A1, -+, \,) € T,

such that

()\1, S Am) = Fi ) = o) = Y ao (M)

for some 7 € {1,--- ,m}. By fixing other entries, for N <\, we get

s—2 s—2

Ai(oci(Na) = ewono1(Na)) + 0u(Na) = D crow(A
k=1 k=0
s—2

> N1 (M) = D> aono1(Na)) + (X)) = Y cwor(Aa) = F(Ar, -+, A) > 0.
k=1 0

[\

v

i

This implies that (Aq, -+, A1, i Nitl, " s Am) € [ for all i < \; due to the assumption
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that I} is connected. By letting A\ approach —oo, we get a contradiction. Same as before,

for any i € {1,--- ,m}, 7 will be contained in the same connected component of
s—2
{fi = 0o (M) = D ckoraa(Xg) > 0}~
k=1

Next, we prove that this connected component of {05_1(/\;,-) — ZZ;? ckop—1(A;) > O} is

contained in

N {o1(Niin e isms) > Qiinisa }

{i1<-<is_o}C{l, i—1/i+1,n}

by ignoring the Cartesian product R term. Without loss of generality, we only consider the

case i = 1. Let (Ay,--- , An) € [ and consider the following section

A+ A = —os (A1) + a0 akok(Aa) + (V)
o o US—IO‘;I)_Zkzlckak—l(/\;1) ’

where f(A) = 0,(A) — 3277 cyor(A) > 0. Notice that this section \; in 7" is defined on this

connected component of {03_1()\;1) — 22;21 CkOp—1(A1) > 0}, continuous, and

- - —os(\. 52 by A -
MO, 3y = =) & Zkzosf’ff’“( ) SN g
Os— 1()\ ) Zkzl Cko'kfl()\ﬂ)

Moreover, for any (Ag, -« , A {as 1 Zk 1 CkOp—1( A1) > 0}, we get

s—2 s—2
)\1()\27 Ut 7/\m)gs—1(/\;1> - )\1(/\2> e 7)\m) Z Ckak—l(/\;l) + Us</\;1) - Ckgk()‘;l) > 0.

k=1 k=0

Thus, if this connected component of {o,_1(A1) — 2 or 1 (Na) > 0} is not contained

in (Vv sycqze 101 (Atinie2) > @i, »}, then we get a contradiction. Hence,
this connected component of {o_1(A\;) — > j_ 2 cror1(Ny) > 0} is T-stable and will be the

unique connected component contained in the Y-cone of F?Z’l by mathematical induction.
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We now show that the Tq-cone of I'}" is exactly

ﬂ {Us 1 chak 1 >0}

1<i<m

Then, the rest follows from mathematical induction. By the previous arguments, we know

F?g m {O’S 1 chak 1 >0} Tl.

1<i<m

By mathematical induction, since {o,_1(A;) — S o (Ny) > 0} is T-stable, we get

s—2 s—2
ﬂ {03—10\;1') — chak—l(A;i) > 0} - ﬂ {Us 2(Nij) — chak—Z()\;i,j> > 0}
1<i<m k=1 1<i<j<m k=2

coc ) {aa) >0}

1<ip<-<is_1<m

Last, similar to before, there exists a unique connected component of {f(A) > 0} such that

the intersection with Ty is not empty. This finishes the proof. O

In the proof of Lemma 2.4, we also obtain the following result, let us list this result here.

Lemma 2.5. Let f(\) = 0,(\) — S04 crow(N) be a general oy type multilinear polynomial
and Tt be a connected component of {f(\) > 0}. If I'} is T-stable, then for any A € Ty,
AT, CX forle {0,1,--- ,s — 1}. Here, we write F}l =Y, and T, is the closure of T',,.

As a consequence, for any l € {0,1,--- ;s — 1}, as a set T, will be

Tl: ﬂ {O’s l chak 1(Asiq - )>O}HTZ+1.

1<iy <--<ij<n
In particular, for any X € {o5(\) — S ckoR(N) > 0} Ny, we have X € 7.

Remark 2.6. By Lemma 2.4, the T-cones are defined by systems of inequalities of polyno-

mials, so they are semialgebraic sets in real algebraic geometry.
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The boundary of the T-cones will have the following relations.

Lemma 2.6. Let f(\) := a,(\) — S0t ckon(N) be a general oy, type multilinear polynomial
and I't be a connected component of {f(\) > 0}. If T is Y-stable and Ty # (Cs—1, e ,cs_l)—i—
L, for somel € {0,---,s— 2}, then either O¥,; NOY; .1 =0 or {(x;,--+ ,x;)}. Here, x; will

be the largest real value satisfies

s—1 s—1
n—1\_s—1 n—=IU\ k-1 __ (n—01—-1\ s—i-1 n—1-1\_ k-i-1
<s—z)xl ZCk(k—z)xl 0=, 1) P PO i
k=1 k=1+1

Moreover, if I} is strictly T-stable, then 0To N IYT, = O N ITy = 0.

Proof. There is nothing to prove when s = 1. In addition, when s = n, this can be done due
to previous work in [52], so we may assume n — 1 > s > 2. We use mathematical induction
on the number of variables n to prove this, for convenience, we assume c¢,_; = 0. First, when
n = 1 or n = 2, there is nothing to prove. Second, suppose the statement is true when
n =m—1. Then, when n = m, we only need to prove the case that To = I'}" # I, the rest
follows directly by mathematical induction. If Ty =T1,, then s=nand f =X ---\,, — ¢

with ¢g > 0 by Lemma 2.4. This can be done due to [52]. We consider the case that T # T,

for any (Aq,--- , \n) € 0Yg, we have
s—2 s—2 s—2
0=0,0) =3 croe(N) = Ay (US_I(A;I) -y ckak_l()\;l)> o, 0u) = S ewon(ha).
k=0 k=1 k=0

Due to Lemma 2.4, T is contained in Y. This implies that

2 s—2

k(A1) —os(A1) = )\1<Us—1()\;1) - ch(jk—l()\;l)) > 0.

0 k=1

s

B
Il

If 0Yg N oY, # B, we use the method of Lagrange multipliers to find the local extrema of
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S22 crop(Ma) — 0s(Aa) under the constraint o, (A1) — Si_a cxok_1(A1) = 0. Let

Far e A pt) = ickakw) — 0s() — (e () - i aoa(\). (215)

By taking the partial derivative of quantity (2.15) with respect to p and A;, we have

OF Jop = —0s_1(M1) + chak . (2.16)
5—2 5—2

OF [ON; = Z ckok-1(A1) — 0s-1( A1) — M(%—Q()\;u) - Z Ckak—Q(/\;l,i))a (2.17)
k=1 k=2

fori e {2,---,m}. At VF =0, we subtract equation (2.17) by (2.16) and get

0=0F/ON — OF /O = (N — 1) (0372()\;1,1) — Z Cka'k72()\;1,i)>

for all i € {2,--- ,m}. By mathematical induction, 0T N 0Ys = 0 or {(xy, -+ ,x1)}. Here

x1 is the largest real value satisfies both

s—2 s—2

m—1 s—1 n—1\ k-1 - m— 2 k;
B S ) (A vy
k=1 k=2
No matter which case, there exists only one local minimum (xy,--- ,z1), where
s—2

m—1 5 rL—l k 1 _
k=

1

Since we assume 9Ty N I, # () and by above, there exists only one critical point. It is a

global minimum, 0Ty N 9T = {(z1,--- ,x1)}, and z; also satisfies

m s n k
Ty — C Ty =

This finishes the proof. O

s—2

k=0
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Proposition 2.6. Let f()) == os(\) — ZZ;%) ckok(N) be a general oy type multilinear polyno-
mial. For s > 1 and any q € R™, there exists at most one connected component of { f(\) # 0}
which is contained in (y<; o i <p101( Ny ia 1) > @iy iy o} and this connected compo-

nent will be a connected component of {f(\) > 0}.

Proof. When s = n, this can be done due to previous work in [52], so we may assume
n—12> s> 2. We use mathematical induction on the number of variables n to prove this,
for convenience, we assume c,_; = 0. First, when n =1 or n = 2, there is nothing to prove.
Second, suppose the statement is true when n = m—1. Then, when n = m, for any connected
component of {f(A) # 0} which is contained in (,o; . o; < {01 Ny oii 1) > Giy oo )
for some ¢ € R0 Tf there exists a point (A1,--+, Ay) such that f;(Ay, -+, \y,) = 0 for

some i € {1,--- ,m}. Then for any i < \;, we always have

f(Ala"' 7>\i7175\i7)\i+17"' 7)\m) = f()\b 7)\m)

This gives a contradiction. By induction and similar to previous proofs, we see that this con-
nected component of {f(\) # 0} will be contained in Nieq1.... my{fi > 0}. Here, by ignoring
the Cartesian product R term, for convenience, we write {f; > 0} as the unique connected
component of {f; > 0} which is contained in m{i1<~-<i3_2}c{1,~-,F1,i+1,.-.,m}{al()‘;i#w-,is—z) >
Qiiyieo}- By the proof in Lemma 2.4, this connected component of {f # 0} will be a

connected component of {f > 0} and is unique by Lemma 2.5. This finishes the proof. [

Proposition 2.7. Let f(\) = a,(\) — S0_ crox(N\) be a general oy type multilinear poly-
nomial and I'} be a connected component of {f(\) > 0} which is T-stable. Then for any
1 €{0,---,s—1}, the boundary OY,; of the Y;-cone separates the ambient space R™ into two

disjoint connected components.
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Proof. For convenience, we assume that ¢,_; = 0. By Lemma 2.4, we have

[MCT CYTyC - CYoy = N {o1(Niyeiiy) > 0}
1<) < <ig_1<n
For any [ € {0,---,s — 1}, we consider the following two open sets Y; and R™\Y;. By
Lemma 2.4, T; is connected. Similar to the proof in Lemma 2.4, we can also show that
R™\T,; is connected. For any (A;,---,\,) € R"\T,, we have a straight path connecting
(A1, 5 An) 10 (Amin, A2y -+ 5 A ), where Ay :== min{\, - -+, A\, }. Suppose that there exists
(:\,)\2, -++,Ap) on this path such that (5\, Ao, A,) € Y;. Then, by Lemma 2.5, we get
(A1, -+, An) € Ty, which gives a contradiction. We can find a piecewise linear path connect-
ing (A1, -, An) t0 (Amin, = » Amin) and for any point on this path, this point is in R™\Y;.
Hence, R™\ T, is open and connected. By standard topology arguments, the boundary 7Y,

separates R" into two disjoint connected components. This finishes the proof. O]

Proposition 2.8. Let f(\) = a,(\) — S0_ crox(N\) be a general oy type multilinear poly-
nomial and It be a connected component of {f(A) > 0} which is (strictly) Y-stable. For
any | € {1,---,n — 1}, suppose (u1,--- , ) € T4 Then for any a € Sy, by fizing the
a(k)-th entry Ao equals py for all k € {1,--- 1}, and treat the rest as variables. f is a
degree min{s,n — 1} general o type multilinear polynomial with n — 1 variables and the cross

section will be (strictly) Y -stable.

Proof. When s = 1, this is automatically true. When s = n, this can be done due to the work
in [52]. So we may assume 2 < s < n — 1. We use mathematical induction on the number
of variables n to prove this, for convenience, we assume c,_; = 0. First, when n = 1 or
n = 2, the proof is straightforward. Second, suppose the statement is true when n = m — 1.

Then, when n = m, it suffices to prove the statement by fixing a single entry, say u; € F}

34



for convenience, the rest follows by induction. By symmetry, we fix A\; = pq, then we get

w

sS—

f(,uh Ao, - e 7/\m) = Us()\;l) + MlUs—l()\;1) - 65—205—2(/\;1) - <M1Ck+1 + Ck) Uk(>\;1)-
0

B
Il

By Lemma 2.4, since I'f" is T-stable, I'' C (\,o; o i. <101 ( Ny iiy) > 0} Thus, we

can also verify that this connected component of

{f(p1, Az, Am) > 0}

w

S—

= {030\;1) + 110s—1 (A1) — Cs—205-2(A1) — <M10k+1 + Ck)Uk(/\;l) > O}
0

>~
I

is contained in ﬂ2§i1<m<i5_1§n{al()\;il,...,Z-S_l) > 0} by ignoring the first entry u;. So the
cross section A\; = p; is again Y-stable. For the strict T-stableness, the proof is similar, so

this finishes the proof. O

Theorem 2.2 (Positivstellensatz). Let f(\) == o,(\) — S2i_t crow(N) be a general oy type
multilinear polynomial. There exists a connected component I't of {f(A) > 0} which is T-

stable if and only if the diagonal restriction r¢(x) of f(N), which is defined by the following

1

Ch (Z) " (2.18)

S

re(z) = f(z,- ,x) = (iﬂ)xs _

is right-Noetherian. Moreover, I'} is strictly Y-stable iff vy is strictly right-Noetherian.

Proof. For convenience, we assume cs_1 = 0. If I'} is T-stable, by Lemma 2.4, then we have

MPCYCYC - CTyy = N {o1(Niyeiiy) > 0}

1<) < <is—1<n

For A > 0 sufficiently large, by Lemma 2.5, we have (\,--- \) € [}, By decreasing the

value of A, since I'} is contained in (,o; ... <p{01(Aiy . i.y) > 0}, there exists a largest
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o > 0 such that

s

—2
n k _
ck<k>x0 = 0.
k=0

F@0) = Flan.-++ va0) = ry(an) = (") =

Otherwise we will get a contradiction. Similarly, there exists a largest z; > 0 such that

1d -1\ s— — ,— 1 _
If 21 > xo, then f(z1) = f(z1,---,21) > 0. So, we have (zy,---,21) € I'f € Ty, which

implies that f,(z1) > 0. This contradicts f,(z;) = 0. If we inductively let z; be the
largest real root of Tj(f) (z) for ¢ € {0,---,s — 1}, then similarly we obtain the following

right-Noetherianness of r¢(x): g > 23 > -+ > 2,1 = 0.

On the other hand, for convenience, we assume that c¢,_; = 0. If the diagonal restriction
re(z) = (T)a* — 2o (1)a* is right-Noetherian, then we use mathematical induction on
the number of variables n. When n = 1 or n = 2, this is true. Suppose the statement is true

when n =m — 1. When n =m, for any ¢ € {1,--- ,m} we get

rs(z) = (7:_11)1’51 —

This implies that ry, is still right-Noetherian. By mathematical induction, there exists a

s—2

m—1\ g 1 d
ck<k_1>xk P=——rs(2).
k=1

connected component I‘}r;_l of {f; > 0} which is Y-stable for all ¢ € {1,--- ,m}. As a conse-
quence, by Lemma 2.4, F?Z_l is contained in m{i1<--~<i572}c{1,--~,i—l,i—i—l,m,m}{o-l(/\§iai17"'visf2) >
0}. By Lemma 2.6, if 8F?:*1 ﬂ8ﬂ{i1<__<i572}c{1’_,71.71’”1,__’m}{al()\ml’...,iH) > 0} # (0, then
f(A) = 05(A)—cp. We have ¢y > 0, which is guaranteed by the right-Noetherianness of ;. Let
[ be the connected component of { f(A) > 0} contained in (), o; . ;<01 Ny in ) >

0}, then I'?* will be T-stable.

Now, let I'7" be the open connected component of { f(\) > 0} containing the ray {(z,--- ,z) €
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R™: x > x¢}. For the case 8F’}:_1 N an{z‘1<--~<is,2}c{1,--~,i—l,i+1,-~,m}{gl(/\;i,ilw-,isﬂ) >0} =0,
suppose that I} is not contained in I'f! for some i € {1,---,m}. Here '}l = F;’Z’l x R. By
Proposition 2.7, since F}f‘l is T-stable, the boundary OF}ZL—l separates R™~! into two disjoint

connected components. Thus, I}’ separates R™ into two disjoint connected components.

Since any connected set in R™ is also path connected, there exists (5\1, cee S\m) eI'rnorty.
That is,
_ B s—2 ~ ~ s—2 ~
FO) =0.N) =) aor(d) >0 and  o,1(N) = Y eroei(Xg) =0
k=0 k=1

for some i € {1,--- ,;m}. Say i = 1 for convenience. At this point (5\1, e ,S\m), we get

s—2 ~ _ ~

> aror(Ma) — o) = —f(N) < 0. (2.19)

k=0

Similar to the proof in previous Lemma 2.6, we use the method of Lagrange multipli-
ers to find the local extrema of Y25_% cyop (A1) — 04(A\1) under the constraint o, (X)) —
22;21 ck0k—-1(A1) = 0. There exists only one local extremum at (xy,--- 1), where z; is the
largest real root of rg (x). Since F’J}’;_l is T-stable, by Lemma 2.6, we can treat \,, as a
function in terms of Ay, -+, A1 and smooth when (Ag, -+, A\y) # (21, -+ ,x1). By taking
the derivative of the quantity ZZ;% ckor(A1) —os(A1) and the equation f; = 0 with respect

toi € {2,---,m— 1}, we get

2l

9 -2
X, < Ckak()‘;l) - US()‘;I)>
k=0
s—2 a)\ s—2
=\ <Us—2(>\;1,i) - Z Ck%—2(>\;1,z’)> + /\ma_; (Us—z(/\;1,m) - Z CkUk—2()\;1,m)>
k=2 ¢ k=2
O
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Also, on 1 (A1) — 32572 cxor_1 (A1) = 0, we have

0 0 — O
0= a)\z 1 — a_A,L-<O-S_1<)\;1) - ;Ck(jk 1( )) f17, _Zflm (221)

By combining equations (2.20) and (2.21), we get

5—2
ai. <Z ckok(Aa) — 050‘;1)> = Aifri = Amfri = (N = Am) fri (2.22)

By setting A\; > A, for all i € {2,--- ,m — 1} and since F}’;"l is T-stable, quantity (2.22)
is always positive on the level set {fi = 0}. By (2.22) and the fact that (z1,---x) is the

unique local extrema of 372 cxor (A1) — (A1), for any (Mg, -+, Ap) on {fi = 0}, we have

5—2 5—2
—1 —1\
chak()\;l) —os(A1) > ch(mk ):c’f - <m$ >£L‘1. (2.23)
k=0 k=0
Since x; is a root of 7y, we obtain
m—2
ri(zy) = 2" — ck(?g)xlf
k=0
) s—2 ) ) s—2 .
_a:1<<m_1>xi_1— ck<k_1>xlf_1>+(ms )xf— ck<mk >x’f
k=1 k=0
5—2
= (msl>xi — ck<mk1>xlf. (2.24)
k=0
By combining inequalities (2.19), (2.23), and (2.24), we get
R 5—2 ~ ~ 5—2 1
0>—f(A\)=> ckor(A1) —os(Aa) ck< > <m5_ >x§ = —r¢(x1)
k=0 k=0

> —rs(xg) = 0.

Here z is the largest real root of ry. This gives a contradiction, in conclusion, I'}" is contained
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in I'f! for all 7 € {1,--+ ,m}. This implies that [ is T-stable. Similarly, we can show that I'}

is strictly T-stable if and only if r; is strictly right-Noetherian. This finishes the proof. [J

Proposition 2.9. Let f(\) = 0,(\) = 30—t ckor () be a general oy, type multilinear polyno-
mial. If one level set of { f(A) = 0} is contained in (V<; c..ci  <nt01 Ny iieiy) > Qg iy )
for some q € R(sfl), then this level set is unique and there exists a unique connected compo-

nent of {f(\) > 0}, which is strictly T-stable and the boundary will be this level set.

Proof. We only need to consider the case s > 2 and we use mathematical induction to prove
this, for convenience, we assume c,_; = 0. First, when n = 1, there is nothing to prove.
Second, when n = 2, this can be done due to previous work in [52]. Suppose the statement
is true when n = m — 1. Then, when n = m, if there exists a point (A1, -, A,) on this level
set {f = 0} such that f;(Ay,---,\,) =0 for some i € {1,--- ,n}, then for i < A\, we always
have f(Aq, -+, \i_1, Nis Mg, - - s An) = f(A1, -+, An) = 0. By letting \; approach —oo, this
gives a contradiction. By Proposition 2.6, this level set of {f = 0} will be contained in

Nieg1, my{fi > 0}. Hence, this level set will be the following graph

p— _USO‘;m) + ZZ;?) Ckak()‘;m>
" o5 1(Am) — 22;21 ckak—l()‘;m)

over { f,, > 0}. We define I'}" by

—0, )‘m 5:2 )\'m
F}n = {/\ (Ab'” 7)\m—1)€{fm>0} and Am> O-( . )_’_Zsﬁg()cko-k( ) ) }
OS_I(AW) T k=1 Ckgk—l()‘;m)

We have I'}" is open and connected. If I'}' is not a connected component of {f(A) > 0}, say
there exists (Ar,- -+, \p) & ['?" in this connected component. Then it suffices to check the

case that (A, , Am_1) € {fmn > 0}. Since connected set in R™ is also path connected and
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by induction, there exists (5\1, e 7/A\m) such that

s—2

f()\la e 7>\m—17 )\m) = Us(j\;m) - chak(j\;m) >0 and fm(j\lu tc 7>\m—1) = 0.
k=0

The rest follows by the proof in Theorem 2.2, we use the method of Lagrange multipliers to
get a contradiction. So, I'}" is an open connected component of {f(A) > 0} which is strictly
T-stable and the boundary OI'f" will be this level set. Similarly, a connected component of

{f(A\) > 0} satisfies these properties will be unique. This finishes the proof. O

Proposition 2.10. Let f()\) = a,(\) — S20_ crox(N\) be a T-stable general oy type multi-
linear polynomial. For any k € {0,--- ,n — 1} and (A1, - ,S\n) € R™, there exists a unique

ti. € R such that (:\1 SR D W tr) € OYg. Moreover, tg > 11 > -+ >ty 1.

Proof. For convenience, we assume c¢;,_; = 0. By hypothesis and Lemma 2.4, since f =

o.(\) = 32072 cpor(N) is T-stable, we get

F=ToCT  CTyC---CTy = ﬂ {o1(Niy o isy) > 0},

1<i < <ig_1<n

and for any [ € {1,--- ,s — 1}

s—2

T, = ﬂ F}Ln“.z‘l - m {US—Z(A;ZL'",Z‘I) - Z kOt (Asiy i) > O}'

1<t <<y <n 1<ii<--<<n k=l

When k£ = s — 1, by considering a system of linear equations, there exists a unique t,_; € R
such that (5\1+ts,1, e 5\n—|—ts,1) € 0Y,_1. Suppose the statement holds when & = m. When
k = m — 1, since (5\1 + by ,5\n+tm) € 0Y,,, we have (5\1 S P ,5\n+tm) ¢ Y.
If (5\1 + by o ,:\n + t,,) € 0Y,,_1, then we have t,, 1 = t,,. A quick observation gives
(5\1 +t,--- ,S\n +t) €Y,y for t > t,_1. This gives the uniqueness of t¢,,_; and we justify
the mathematical induction. If not, we try to show that there exists a unique ¢,,_1 > t,,, such

that (:\1 Flp1, ,5\n+tm,1) € 0Y,,_1. Again, we have (5\1+t, e ,5\n+t) e, fort>t,,.
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For t > t,, sufficiently large, we have (:\1 +t,- - S\n—i-t) € T,,_1. Hence, by the intermediate

value theorem, there exists a t,,_1 > t,, such that (5\1 bty A+ tm-1) € Tro1. The
uniqueness can be ensured because (5\1 4+ tm1, ,S\n + tm_1) € T, otherwise we will get
a contradiction. This finishes the proof. O

Here, we define a first order differential operator D on multilinear polynomials by

"0
D = :
2o
We also define the following ratio for T-stable general o) type multilinear polynomials.

Definition 2.8. Let f(\) == 04(\) — Zz;}) ckok(A) be a T-stable general oy type multilinear

polynomial, we define the following ratio a;y of f to be the following

f-D*f
Oéf =

(Df)?

We have the following generalization of Theorem 2.1.

Theorem 2.3 (General NewtonMaclaurin’s Inequality). Let f(\) := 04(A) — 35_¢ cxor(N)
be a Y-stable general oy type multilinear polynomial. For any k € {0,--- ,s — 2}, the ratio
aprp = DFf - DF2f/(DFFY )2 s increasing on Tyiq N {(:\1 b A tt)it € R} for any

(5\1, oo \n) € Tiyr. In particular, for any k € {0,--- ,s — 2}, we have

Dkf'Dk+2f 1o

OéDkf = (Dk+1f)2 < P on Tk+1.
Proof. For any k € {0,--- ,s — 2}, similar to Lemma 2.1, we have the following
Dk+2f
DOéchf = Dk—-f—lf (]. + (()éDk+1f — 2)OéDkf> (225)
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and

—

S—

G LTCYES SFH () PTomtey) (2:20)

- n—s
J

Il
=

We assume c¢,_; = 0 for convenience and we use mathematical induction on the degree s to

prove this. When s = 1, then we have f(\) = 01()\) and oy = (011(3;))-0 = 0. So the statement

is automatically true. When s = 2, we have

f-D*f  (02(N) —co)-n(n—1)  n(o2()) = co)

2 e N (VoY
and
Dar = (n—1)oF(A) — 2noa(A) +2ncg ~ n Do (Ni— Aj)? + 2nco S
U a3 (N) T n—1 a3 (N) -
Notice that the equality happens only when A\ =--- = A, and ¢y = 0. In addition, we have
Df-D¥f (n—1)o;(N\)-0
apf (DQf)Q nQ(n—l)Q 0 an apf 0

So the statement holds when s = 1 or s = 2, suppose the statement holds when s = m—1 < n.
When s = m, for k € {1,---,m — 1}, by mathematical induction, the ratio apr; will be
increasing on Yy, 1N {(5\1 it S\n—l—t) ‘te ]R} for any (5\1, e S\n) € Tjy1. In particular,

by equation (2.25), we get

DEf-DM2f . DRf(A+1) - DMEFA 1)
(D) T (D)

k!(nim%) Om—k(t) - (k+ 2)!(n7;n_+nl§+2)0m—k—2(t) - m—k—1

OéDkf =

n—m

= lim
{500 ((k + 1)!(n_m+k+1)0'm—kfl(t))2 m—k

n—m
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We only need to prove the case when k = 0, by equation (2.25), we have

D2
Daf = D}f <1 —|— (OéDf — 2)Ozf).

For any (A1, -+ ,\,) € Ty, we define I == {t e R: M+t A+t)e Ty and ——(\ +

Q—C!Df

£ A+ t) > af(5\1 TR t)} By Proposition 2.10, there exists tq such that

(5\1 +to, A+ ty) € 0Yy. If (5\1 +to, A+ to) € 0y, then by Lemma 2.6, either
;\1 = ... = S\n or To =1I',. For the case ;\1 = ... = S\n, this can be done by Theorem 2.1.
For the case Ty =T, we get s = m =n and f(A) = A\ --- \,. Hence, we have

2
2 2
DOéf = 0_3— (0n710n72 — 40,0, 5+ 30-n0-"*10"*3>'
n—1

When n =1 or n = 2, the proof is straight forward. When n = 3, we get

O';O'l - 40’30’% + 30’30'20'0 == )\?()\2 - )\3)2 + Ag()\l - )\3)2 + )\g()\l — )\2)2 Z 0.

We consider the remaining case n > 4 and without loss of generality, we say (5\1 +tg, , Apt
to) = (€1, - ,&,0,---,0)and n —1 >k > 0 with € > 0 for any j € {1,--- ,k}. The case

k =0 is the case Ay = --- = \,, so we can ignore this case. Since we have

lim (O’i_ldn_g — 40,02 5+ 3anan_1an_3) (5\1 +t, A1)

+
t—t]

= lim (Ui_lan_g — 40,02 5+ 3anan_1an_3) (& +1t, - & +1t,t,---,1),

t—0t+

we consider the term (02_,0,_9 — 40,02 5 + 30,0,_10,_3)(€1 + t, -+ , & + ¢, t,--- ,t) when

tis close to 0. If n —4 > k, we get the following

In—1 = (n I k) &t 4 (n - ]f " 1) o1 ()" F L Ot R,
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Tnos = (” N k) E et 4 (“ ke 1) o1 (T O,

2 2
B\ - ke k41 ke .
Op—3 = (ng )61"'€kt g 3+(n 3+ )O’k—l(E)t 2o,

Here, we use the Big O notation. Thus, by some complicated computations, we have

(0,21_10”_2 — 40,10,21_2 + 30nan_10n_3) (6, +t, - &+t t,--- 1)

= (n— k)& & - o () L o),
For the case n —1 >k >n — 3, if k =n — 1, then we have

(aiflan,g — 40n0i,2 + 30nan,10n,3> (& +t, - €1 +t,1)

=&...2 - 0,08 +0().
If Kk =n— 2, then we get

(O'Z_IO'n_Q — 4an02_2 + 3Un0n_10n_3> (6, +t, - € o +1t,t1)

=28...& .0, 3" + O(th).
If Kk =n — 3, then we get

(02_10n_2 — 40,00 5+ 30n0n_10n_3) (€141t &g+ 1,11,

=388 -0, 4O +0O@17).

No matter which case, when t > tg is sufficiently close to tg, then (5\1 SR W t) € 1.
So I is not an empty set, moreover, I is an open set by the continuity of ay and apy. If we
can show that I = (to,00), then we are done. If I # (tg,00), then we can find a smallest

t € (tg,00) such that -— (5\1 + i A+ t) = af(;\l + i A +t). This is ensured

2—apy
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because we can treat f as a polynomial in terms of ¢ and

1 ~

2—OéDf(5\+t) _af()\+t>
1 . .
a 2 — osz(S\ +t) (1 —(2—aps(A +t))af()\+t))
1 DfD*f\ fD*f
T 2—ap, (1 B (2 —(D2f)? > (Df)Q)

T 2- an)l(Df)zsz ((Df)2D2f + fDfD*f — 2f(D2f)2>_

The term (Df)?D?f + fDfD3f — 2f(D?f)? is just a polynomial in terms of ¢, so can only
have finitely many zeros. Then when ¢t = ¢, we have

Day(h+7) = D*f(A+1)(1— g]:(;ifé) +8)as; (A +1)) _o. (2.27)

On the other hand, since Df is T-stable and by mathematical induction, we have

1 D A+t
D| __ DapO¥t) (2.28)
=12 apfA 1) 2= apsA+ D)2

We get a contradiction. Otherwise by standard calculus argument and equation (2.27), there

exists a 6 > 0 sufficiently small such that if |h| < d, then we have

1 Daps(A+1) oy 4D —asA+i—h) 1 Dap(A+1i) (2.29)
3(2—aps(A+1)) h 3(2-an 3+ D) |

Since D( — L) = Dap;(3+) by inequality (2.28), for ¢ sufficiently small, we get

2—ap;(A+t) (2—apr(A+t)2’
~ - 1 _ o 1~ ~
2 DapfA+1) _ 2apGa)  2ap i _ 4 Dapy(A +1) (2.30)
3(2—aps(A +1))? h 3(2_0‘Df()\ +1))2

Since 7 is the smallest value such that 1/(2 — aps(\ +t)) = ay(A +t), by the intermediate

value theorem, we have X\ +¢ — h € I where § > h > 0. Hence, by inequalities (2.29) and
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(2.30), we obtain

1 Dap(A+D) _ as(A+D) —aA+E—h) _ 3ap 00D —ay(A+1—h)
3(2 = app(A +1))? h h
1 1 » R
2_an(5‘+£) B 2_0‘Df(5\+t~—h) > 2 Dan(A —+ )
h 32— aps(A+0)?

This is a contradiction because Dapy > 0 by mathematical induction. Hence, I = (¢, 00).
For the last case, if (5\1 +to, A+ to) ¢ Oy, then ty € I due to the fact that

o fO+t) D+t
R A V37 S R

and 2 — aps(A +1t9) > 2~ (1 - -L) = -2 > 0. Hence, I is open and not an empty set.

Similar to the previous argument, we get [ = (¢;,00), where (5\1 SR N W t1) € 0Yy.
This finishes the proof. n

Even though the original Newton-Maclaurin’s inequality holds as long as {A,--- , A\, } are
all real numbers, here, we mainly focus on the T-cones and we obtain a monotonicity result

due to Theorem 2.3.

Proposition 2.11. The ratio % is increasing on (i_ {ox(X;) > 0} N {O +

t- o A+1):t R} for any (A, -+, \n) € N {ok(Xi) > 0}. In particular, we have

Uk—1(/\)0k+1(>\)
o3 (A)

k(n —k) "
CE S Q{"k“ﬂbo},

<

which is equivalent to

71 o) (Y A0 s o).
() (x11) _< ) ) Q{ (\i) >0}

Proof. By letting f = o441(A), the diagonal restriction will be r¢(z) = (kil)xk“, which is
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right-Noetherian. By Theorem-2.3, this finishes the proof. [

Definition 2.9. Let f = 0,(\) — S0_y ckor(N) and g == a,(\) — 325_4 dror(N) be two Y-
stable general oy, type multilinear polynomials. For ¢ € {0,---,s—1}, we write x; the largest
real root of the i-th derivative of the diagonal restriction rff) of f and y; the largest real root
of the i-th derivative of the diagonal restriction Téi) of g. If y; > x; for all i € {0,--- , s — 1},

then we say g > f.

Theorem 2.4 (T-dominance). Let f = o,(\) =Y i_t cror(N) and g = ao(\) = i_t dpor(N)

be two Y-stable general oy type multilinear polynomials. Then g > [ if and only if I’y C T}

Proof. First, if s = 1, then we can write f(A) = A+ -+ A, —co and g(A) = A+ - -+ A\, —do.
If g> f, then we have dy/n > co/n. This implies that I'; C I'}. On the other hand, if I'; C I'},

then we can also get g > f.

Second, for the case s = n, this case can be done due to previous work in [52]. Then, we
may assume that 2 < s < n — 1. We use mathematical induction on the variables n to
prove this, for convenience, we assume ds_; = 0. When n = 1 or n = 2, the proof should
be straightforward. Suppose the statement is true when n = m — 1. Then, when n = m, if
Iyt C TP, by denoting the largest real root of r;k) by x; and the largest real root of rg(,k) by
Yr, we immediately get yo > x¢. The rest follows from mathematical induction, thus g > f.
On the other hand, if g > f, suppose I'j" Z T}, there exists (5\1, e ,S\m) such that

o0 =)= S doe) >0 and () =0, (0) = Y aelh) <0

Similar to the proof in previous Lemma 2.6, we use the method of Lagrange multipliers to find

the local extrema of f under the constraint g = g(\). There exists only one local extremum

at (o, - Jo), where g is the largest real root of the diagonal restriction of g — g(\). In

addition, under the constraint g = g(\) > 0, the partial derivative of f with respect to \;
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forie {1,---,m — 1} will be

0
o\

F=hit B = (figm — 9if) =

>\i m m

For the quantity g, fim — fimgm in equation (2.31), we have
0

So the quantity ¢,,fim — gimfm is independent of the value of A\; and \,,. By Theorem 2.4
and Proposition 2.9, since r, is right-Noetherian, we have g = g(\) is contained in the
T;-cone TY of g — 9(5\) By fixing the values of A1, -+, A1, Mis1,- -, Am and decreasing
the value of the i-th entry, it will intersect with {g,, = 0}. At this intersection point, the
quantity g, fim — Gimfm Will be g, fim — Gimfn = —Gimfm < 0. The last inequality is due to

mathematical induction, g, > f,, if and only if F;’:l crl ’};‘1. For convenience, we suppose

Am is the smallest value between {Ay,--- , A, }, then equation (2.31) will satisfy
0 Am — i
ot = g Omfim = gimfm)

By the fact that (g, - , 7o) is the unique local extrema of f under the constraint g = g(\),

OZf(S\ly 7)‘m) Zf(g()a 7:&0) > f(y[b ayO) Z f(._'['(),"' al‘()) = 0.
This is a contradiction, hence we finish the proof. O

Here, we skip the proof of the following Lemma. By using mathematical induction, the proof
should be straightforward.
Lemma 2.7. Let f(\) == 0,(\) = 30— ckor(N) and g(N) = 0(\) — 32524 drow(N) be two Y-

stable general oy, type multilinear polynomials. If g> f, then for any (A, -+, \y) € {g > 0},

we have f(hg, -+, A) > g(A, -+, \n).
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By considering the difference of two T-stable general o type multilinear polynomials with

one Y-dominant another, we get the following Positivstellensatz-type result.

Lemma 2.8. Let f(\) == a,(\) — S0t crow(N) and g(\) == 04(\) — S04 drow(N\) be two

T-stable general o) type multilinear polynomials. If g > f, then

s—1
I C{f—g=> (d—cp)or()) > 0}.
k=0
Proof. The proof follows from Theorem 2.4 and Lemma 2.7. ]

Note that similar to before, we need to specify the connected component of {g — f > 0}. A

simple application of Lemma 2.8 will be the inequality of arithmetic and geometric means.

2.3 Convexity of the Level Set

In this section, let f(\) = ,(A\) = S27_} cxor(\) be a general oy type multilinear polynomial.
If {f(\) =0} is strictly T-stable, then we use a classical way to prove the convexity of this
level set {f(\) = 0}. By doing the substitution in Lemma-2.3, we may assume c¢;_; = 0 and

consider the following general o} equation

.f(>\) = f()\h e 7>\n) = Us(/\) - ZCkUk()\) =0.
There are two ways to compute the convexity, first, if we write

h= W (2.32)

then we have the following.
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Lemma 2.9. If the following n — 1 x n — 1 Hermitian matriz is positive semi-definite

hih;
hz

h; R
— hip—2 — Bjn—

2.33
h., hn)i,je{l,---,nu’ ( )

then the level set {h = c} is convex. Here, h; == Oh/ON; and h;; == 0*h/ONON;

Proof. Let V = (Vq,---,V,) € T,\{h = c} be a tangent vector, which gives, >, h;V; = 0.

Then, to get convexity, which is equivalent to the following quantity

> hiViVs (2.34)
2%
is non-negative. Since V' is a tangent vector, we can write V,, = — Z?;ll h;V;/h,. By plugging

in quantity (2.34), we obtain

n—1

h? h;
S higViVs = 37 (i + iy = 2hiny ) VAP
i\ 1 " "

i=

hih; h; h;
+0 3 (bt bt = it = by )V V). (2.35)

2
1<i<j<n—1 hn hn
So, if the following n — 1 x n — 1 Hermitian matrix is positive semi-definite

hy — . hi
Jn

o I/ ije{l, - m—1}

<hij + h’nnh_% — Mg

then the quantity (2.35) is non-negative. This implies that the level set {h = ¢} is convex. [

If we write

0-8(>\§n) B ZZ;?) Ckgk()\;n)
0_8_1()\§”) o ZZ;?[ Ckak—l()\;n) ’

Ap = — (2.36)

then the Hessian of A, is related to n — 1 x n — 1 Hermitian matrix (2.33) as follows.
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Lemma 2.10. Let h = Y52 crox(\) /o(\), then we have

By — — Hy and  he. = 5= 1(Ay) Hui + os—1(Ni) Hy

EEACY ? a3 (A)

Hsy,; ;
08()‘) 7

— (1 =143)

where we denote by h; = 0Oh/ON; and h;; = 0*h/ONON;. Moreover, we have

hih; h; hi
hij + hnnh_%] - hinh_i - hjnh—n
Hl-sz-in + H1-¢H2-jn HZ-ij Hl'n 82
— 3 sy ) 5J 9 _ 1 _ 52 ) — 3 )\n' 2'37
os(\)Hip ( j)as()\) as(X) ONON; (2.37)

Here, for 1,7,k pairwise distinct, we denote

s—2
H = hos(\) — chak()\); Ho.i = hog(\;) Z kg (A
k=0
s—2
Hm = hasq()\;i) - cho'kfl()\;i); Hu,] = hos_ 1 ZCkUk 1 zj
k=1
H2;i,j = ho,_ 2 chak 2 w HQ;i,j,k = ho,_ 2 z]k ZCkUk 2 z]k

Proof. First, we have the following

0=H =\ (has N Z crpn ) +hoy(N) = 3 con()-
k=0
This implies that
Hyi = hoy(\) Z ckor(Ni) = =N Hy. (2.38)
In addition, for 7, j, k pairwise distinct, we get
Hy; = Hygj + AjHoy g (2.39)
Hy; 5 = Hoji + AeHsy j k- (2.40)
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Second, for the first order partial derivatives of h, by equation (2.38), we get

oh 0 <Zi% Ckgk()\)) _os(N) S it croro1 () — oem1 () Yoy ckok(N)

TN 0N os(\) o2()\)
_ 0s(Na) i anon1 () — o1 () S cor(A)
a3(A)
o) (hosi (V) — Hig) = o1 (Na) (hos(N) — Hoq) — Hag (2.41)
B CHOY RN '
Then, for the second order partial derivatives of h, by equation (2.38), we obtain
i — 0*h _ _i( Hl;i ) —_ d (hasl()‘;i) — 22;21 CkUklO‘;l’))
* 8)\18)\j (9)\J O's()\> 8)\j O's(/\)
_ o (ha) +h(L = 8y)oea(Nayg) — (1= 85) 30575 cnon—2(Niy)
os(N)
hos 1 (\i) = St o1 (M)
+ O-S*l()‘;j) Ug()\)l
US—I(A'j)Hl'i +08—1()\'i)H1'j HQZ]
= ’ ’ ’ 2 — (1 —0;) —=. 2.42
O_g(/\) ( j)O'S(A) ( )
Hence, by equation (2.41) and (2.42), we have
hih; h; h;
hij + hnnh_?: - hmh_i - hjnh_n
o5 1(Ag) Hii + 051 (M) Hyy Hyij | o0s-1(An)HiiHyy
= — (1 —4;) +2
ai(A) 05(A) o3 (A Hyn
. (Us—l()\;i)Hl;n + Us—l()\;n)Hl;i N HZ;i,n) Hl;j
ai(A) 0s(A)/ Hyp
B <0s—1()\;j)H1;n o1 (An) 1y H2;j,n> i
2V o)) Hyy
HijHy;, + HyiHojp Hy,
_ M2y, AR (] ) 2 2.43
Us()\)Hl;n ( J)O'S(A) ( )

On the other hand, on h = 3272 c04(\)/04()\), we have

—hO‘S(A;n) + ZZ;%) Ckak(/\;n) o _%

C hoe (M) — St o1 (M) Him

n
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This implies that the first order partial derivatives of A, will be

6)\n 0 (HO;n> o Hl;i,nHl;n - HO;nH2;i,n
Hl;n ‘

o\ O HZ,

So the second order partial derivatives of \,, will be

82 0 Hl'i nHl'n - HO'nHQ‘in Hl‘i nHl‘n - HO'nH2"L' n
O\ Oh i, i i3,
(Hl'z' - )\nHQz n)Hl'n + /\nHl'nHQ'i n Hl'iHQ'in
— 2Hy,, -t ) n2in o i 2.44
. 7, 7, 240
and for i # 7, similarly, we get
82 N o— — a (Hl;i,nHl;n - HO;nHQ;i,n>
anon" T o, i,
_ _ HQ;i,j,n + Hl;i,nHQ;j,n + Hl;j,nHQ;i,n + HO;nHS;Lj,n . 2H0;nH2;i,nH2;j,n
Hl%" le,n Hzlg,n
Hy;;  HyiHojy + HyjHoyp
= %k 2% 72 2.45
Hl;” " H12,n ( )
By comparing equations (2.43), (2.44), and (2.45), we con conclude that
hih; hj h; H. 0?
§ 7 nn e e he T oa(N) ONON
This finishes the proof. O

Theorem 2.5 (Convexity of the general oy, equation). Let f(\) = a4(\) — Si_t ckon(N)

be a general oy type multilinear polynomial. If the diagonal restriction r¢(z) = (Z)xs —
o4 C ()a" is strictly right-Noetherian, then {f = 0} is convex.

Proof. For the case s = 1, the level set is a hyperplane, so the level set will be convex. We
assume c;_1; = 0 for convenience. We prove this by mathematical induction on the number

of variables n. When n = 2, then we get s = 2 and this can be done due to previous work in
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[52]. So for convenience, we may assume that s < n. Similar to the proof in [52], we claim
that for any point in the enclosed region and every line passing through this point, the line

will intersect with the level set of {f(\) = 0} at at least one point and at most two points.

Suppose the statement and the claim are true when n =m — 1. When n = m > 3, we first
show that the claim is true. Let (xq,---,,,) be in the enclosed region and (vy,--- ,v,) be
the tangent of the line. We define f(t) = f(zy 4 vit, -, Zpm + Umt), if v; = 0 for some
i € {1,---,m}. By fixing z; and Proposition 2.8, we may view f(e z; o) as a degree s
general o, equation with m — 1 variables. By mathematical induction, f will intersect with
the level set of {f(e,z;,8) = 0} at at least one point and at most two points. So we may
assume vy - -+ vy, # 0, f is a degree s polynomial. If s is an odd number, then by letting ¢
approach oo or —oo, f intersects with the level set of {f = 0} at at least one point. If s
is an even number, then by letting ¢ approach oo or —oo, fl = fi(z1 +vit, - T + Ut)
intersects with the YTj-cone at at least one point. Since {f = 0} is contained in the Y-
cone, so f intersects with the level set of {f = 0} at at least one point. Let t; > 0 be
the smallest number (might not exist) such that f(t;) = 0. If there exists € > 0 such that
f(t) > (0 for all € > t —¢; > 0, then similar to before, by doing a small perturbation on
tangent, there exists new t; and t, with ¢, > t; such that f(t;) = 0 = f(t,), f(t) < 0 for
any t € (t1,12), and f(t) > 0 for any t € (tg,ty + €) for € > 0 small. For any t € (t,12),
0> f(t) = f(x1 +vit, -+, Tm + vmt). For the case v, > 0, by considering %fm, we have

d -

d
%fm - %fm(xl + Ulta oy Tm—1 + Um—lt) - Ulflm + -+ Um—lfm—lm~

If %fm(tg) = 0, then for the case s = 2, we can perturb the tangent such that %fm(tg) #
0. Moreover, for the case s > 3, again we can perturb the tangent such that % fm is a
polynomial of degree s — 2. Hence, there exists an ¢; > 0 sufficiently small such that for any
t € (ta — €1,t2) U (ta,ta + €1), %fm(t) # 0 (actually the punctured disk with radius €; and

center ty in the complex plane). Now, we may perturb v,, slightly smaller so that f (t2) <0

o4



and there exists £ € (t, 1o + €) such that f(f,) = 0 and %fm(fg) # 0. This is ensured by

considering u,, > 0 sufficiently small and we consider the following perturbation
f(xl + Ultu Tl T Umflta T + (Um - um)t)
For w,, > 0 sufficiently small, we have

f(xl + U1t27 M 7o | + Um—1t27xm + (Um - Um)tQ) < f(t2) = 0’

€ € €
Sz + ot + 51), e Tt F U (2 + é),xm + (V= um) (t2 + 51)) > 0.

So by the intermediate value theorem, there exists ty € (tg,ts + € /2) such that

f($1 + vita, -+ Tt + U1t Ty 4 (Un — Um)b) = 0.

Moreover, % fm(fQ) # 0. By replacing t; and t5, we may assume that there exists ¢; and t,
with t, > t; such that f(t;) = 0= f(t,), f(t) <0 for any t € (t1,1,), and %fm(tz) # 0. For

the case %]Em(tg) > 0, since f(t,) = 0, we may pick ¢ > 0 sufficiently small so that
flar+oi(ta+ ), oy + Umoi1(t2 + €), Ty + Uta) > 0.

For any t € (t1,t2), by fixing the last entry x,, + v,,t, since v,, > 0 and t; > 0, we have

f(t):f(x1+vlt7 ,$m+vmt)<0,

f(l'l + Ultl, e X1 T ’Umfltl, T + Umt) > f(tl) =0.

By continuity, we have lim,_,, f(:z:l +vi(ty + €), o1 + Up(ta + €), 2 + Umt) =

f(xl +or(ta+€), o1+ Upm1(ta +€), Ty + ’Umtg) > 0. By picking ¢ sufficiently close to

55



to, we have
flar+oi(ta+6),- - Tmo1 + Vo1 (t2 + €), Ty + vpt) > 0.

Similar to before, by fixing the value ¢ and the last entry, we may view this as a line
passing through a point in the enclosed region of a degree s general o}, equation. By letting

g(t) = f(:cl 4ot 1+ U1t Ty + vmﬂ, we have
g(t1) >0, g(t) <0, g(ta +¢€) > 0.

By letting t approach oo or —oo, we see that this line intersects with the level set at at
least three points, which is a contradiction. For the case %fm(tg) <0, since f(ty) = f(x1 +

vite, Ty + Uple) = 0, we may pick € > 0 sufficiently small so that
flzr+uvi(ta—€), @1 + Vm-1(ts — €), T + Unta) > 0.

For any ¢ € (t1,t), by fixing the last entry x,, + v,,t, since v,, > 0 and t; > 0, we have

J(t) = f(xr+oit, - Zp + Omt) <0;

flzyr +oite, - Tt + Vmeaty, T + Ut) > f(t1) = 0.

By continuity, we have lim;_,,, f(a:l + vi(te — €), -+ Ty + Vpo1(te — €), 2 + vmt) =
f(xl +o1(ta —€), Tt + Up1(ta — €), T + vth) > 0. By picking ¢ sufficiently close to

t5, we have
f(l’1 + ’Ul(tg — g), e Tt T+ Um_l(tg — g),[Em + ’Uml?) > 0.

The rest follows similarly, hence we get a contradiction. So f (t) < 0fore>t—t; >0 where

e > 0 is small. For ¢ > t;, if this ray again intersects with the level set of {f = 0}, say x5 is
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the smallest one. Thus f(t;) = 0 = f(t,) and f(t) < 0 for any t € (t1,t5). The rest argument
should be similar to above, which again gives us a contradiction. For the case v,, < 0, the
proof is similar to above. In conclusion, for any ray passing through a point in the enclosed
region, this ray intersects with the level set of { f = 0} at at most one point. Combining this
with the fact that the line will intersect with the level set of {f = 0} at at least one point,
we justify the claim. With this claim, using previous argument we can prove that the set

{f = 0} is convex because the enclosed region is convex. This finishes the proof. O

We prove the following Lemma to end this section, which shows that Theorem 2.1 is equiva-

lent to the positive definiteness of the Hessian matrix of A, on the curve {\; =--- =\, _1}.

Lemma 2.11. Let f(\) i= 0,(A) = S0_4 cxor()) be a general oy type multilinear polynomial.
If the diagonal restriction ry(x) of f is strictly right-Noetherian, then on the curve {\ =
<o = A\y_1} of the level set {f = 0} with Ay > x4, the positive definiteness of the following

n—1xn—1 Hessian matrix

< 0\, )
ONiON; /i jef1, n—1}
is equivalent to the monotonicity of log-concavity ratio of rp(x) = (Z):cs — Z;B Ck (Z)a:k

Here, xy is the largest real root of r'y.

Proof. For convenience, we assume c¢,_; = 0. By Lemma 2.10, we show that the following

matrix is positive-definite at every point on the curve {\; =--- = \,_; = 2} with = > x;:

hih; h; h
( ij nnp2 mp, I b, ije{l, - m—1}

By Lemma 2.10, we have

hih; h;
nnh_% — hy

-7
m
P,

h; Hi.Ho;p+ Hi;Ho.in Hy.; s
_hjnh_: 1412450 + 142, —(1-6,) 2:i,

et h .
ij T oo =6
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Now, it suffices to show that the following n — 1 X n — 1 matrix is positive semi-definite

C = 2H2;1,n (Hl;l,n + )\nHQ;l,n)]ln—lxn—l

- Hl;n(HQ;l,Zn + >\nH3;1,2,n)(]ln—1><n—1 - Hn—lxn—l)a (246)

where 1,,_1x,_1 is the n — 1 x n — 1 all-ones matrix, I,,_1x,_1 is the n — 1 x n — 1 identity

matrix, and we have

—1 _ —1 _
Hln—JS—I(A,n)_ZCkak—1<>\n): (7‘:_1) sl Ck(z_1> k 1a
k=1 ) k=1
s—2 s—2
—2 _ —2 _
H1,1,n Us—l(/\,l,n) - chgk—l()‘;l,n> - <Z_ 1) - Ck (Z_ 1) ¥ 1,
k=1 k=1
s—2 5—2
—2 _ —2 _
Hy.q 0 03—2(/\,1,n) - chak—2()\ 1,n> = <Z_ 2) 2 — Ck (Z_ 2>$k 2,
k=2 k=2
s—2 s—2
-3 _ -3 -
Hyi0m = 03—2(/\;1,2,n) - kz CkUk—2(>\;1,2,n) = (Z_ 2) 2 — ch (Z_ 2) g 27
—9 =2
s—2 s—2
-3 _ -3 -
H3;1,2,n = 03—3(/\;1,2,n) - 2 Cko'k—3<>\;1,2,n) - (:,L_ 3>xs i ; Ck (Z _ 3) xk °.

By change of basis, to show C' is positive-definite, it is equivalent to showing that the matrix

O*CO is positive-definite, where

1 1 1 11
1 0 0 0 1
0 -1 0 0 1
O = :
0 0 -1
0
0 0 0 -1 1

The column vectors of matrix O are in fact the eigenvectors of 1, 14, 1, which makes the
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new matrix O*C'O and the computations simpler. We have

O*CO
= 2Hy1 0 (Hiin + MHan) On—zcn=2 0
0 (1)
-2 -1 -1 0
12 0
 Hyp(Hsnon+ MHsion) | 1
~1 —1 -2 0
0 0 0 (n—1)(n-2)
2 1 10 00 0 0
12 0 00 0
= HynHo 0 | | >'1 + | | F'O
1120 o 0o 0
0 0 00 00 0 2(n—1)2Ho.1 n(Hi n+AnHo:1m)

—(n—=1)(n—2)H1;n(H2;1,2,n+AnH3:1,2,n)

We know H,., is positive, Hs. o is positive, and the following n — 2 X n — 2 matrix

2 1 1
1 2 1
11 2
is a positive-definite matrix with eigenvalues {1,---,1,n — 1}. So to prove whether O*CO

is positive-definite, it is equivalent to show that whether the following quantity is positive.

2(” - ]-)H2;17n(H1;1,n + )\nHQ;l,n) - (n - Q)Hl;n(HQ;l,Q,n + /\nHS;l,Q,n)- (247)

59



Now, we use the equation itself, that is,

H . n—1 5 — 5:2 c n—1 l’k
An = _}]07 = n(lS )_1 ’;jg k<nk1) k—1" (248)
Lin (Yt DR (e £

Here, we write
s—2
HO;n - 0-5()\;71) - Z Ckak(A;n) - <77 B 1) ZL’S —
k=0

If we consider the diagonal restriction ry(z) = (7)2* — Se e (1)a* of f, then we have the

following observations:

"

H Hp= 2 Hy,—— . g ¥
=Tf; m = T ilim — ) ;1,2,n — ;
i b n T nn = 1) AT n = 1D (n —2)
nry — xr} (n— 1)7"} — xrgﬁ (n— 2)7“;! — xr}”
HO;n =, 1;1n — ) 2:1,2n — .
n n(n—1) n(n—1)(n —2)

Then by the above observations and (2.48), quantity (2.47) becomes

2(” - 1>H2;l,n(H1;l,n + )\nHZ;l,n) - (n - 2>H1;n(H2;1,2,n + )\nH3;1,2,n) (249)

= i <2(TL — 1)Hl;nH1;l,nH2;1,n — 2(n - 1>HO;nH22;1,n
In

—(n— 2)H12;7LH2;1,2,11 + (n — Q)Ho;nﬂl;nH3;1,2,n>
rp@)” 9 (M)

]' IN\2, .1 1\ 2 1
= ——————— (7)) r = 2rp(ry)" +rerir )z——
n%(n — 1)Hy., <( 1)y o) A n*(n — 1)Hyp, Oz \ 1 (x)?
2
er o,
n(n —1) 0x
Here, for notation convention, we denote a,,(x) as as(z). In conclusion, we have shown
that on the curve {\; = --- = \,_1}, the positive definiteness of the Hessian matrix of A, is

equivalent to the monotonicity of log-concavity ratio ay. O
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2.4 Some Applications

In this section, we use our Convexity Theorem to verify some examples. First, when the

degree is low, the Positivstellensatz Theorem can be verified using the resultants and the

discriminant. Here, we give a different proof of the Positivstellensatz results in [51], the

interested reader can also check [52] for general inverse oy equations.

Definition 2.10 (Resultant). The resultant of two univariate polynomials p; () and ps(z)

is defined as the determinant of their Sylvester matrix. To be more precise, if we write

d—1

pl(-’f) :ded—l—ad,lx + -+ ap;

pa(x) = bex® + be12° 1+ -+ + by,

then the resultant of p; and ps is defined by the following.

aq 0 0 be 0
ag-1 A4 0 ber be
aq—2 ad—lv_. 0 be—g beq .
res(py, p2) = det =
ao ar aq—1  bo bl_
0 Qo | 0 bo
ai
0 0 | a 0 0

o o O

bo

(2.50)

Definition 2.11 (Discriminant). Let p(z) = Y__, a;2* be a polynomial of degree n and

the coefficient ag, - - - , a, are real numbers. The discriminant of p is defined by

(_1)n(n—1)/2

discr(p) = e res(p, p').
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Proposition 2.12. The level set of the following general inverse o equations are all convex.

AMAy —cog =0, where co > 0;

AMAoAs — (A1 + Ao+ A3) — o =0, where ¢; >0 and ¢y > —20?/2;

)\1)\2)\3)\4 — 0202()\) — 610'1()\) — Cy = 0,

/2

3
where ¢y > 0, ¢; > —2¢y7, ¢g > —3cox? — 311y, and

(

N4 , when co = 0;
2,/ cos [1 arccos(iﬂ , when ¢ > 0 and 4¢3 — ¢ > 0;
T = 3 263/2 -

\2\/c_gcosh[% arccosh(%glﬂﬂ , when c1,co >0 and 403 — c% < 0.
Proof. Here, we only prove the degree four case:

A A A3y — €202(N) — c101(A) — ¢o = 0.
First, the diagonal restriction and its derivatives (after normalizing) will be

{2* — 6co2® — 4c1x — ¢y, % — 3cow — c1, 2 — o, ).

Second, for the largest real roots, we have xy = /¢y, x3 = 0. Then, for the depressed cubic

olynomial 2% — 3cox — ¢, we want
b
3/2
xg — 3coxy — €1 = —202/ —c; <0.

That is, ¢; > —203/ . We compute the discriminant of the cubic polynomial 2® — 3cox — ¢,
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by (2.50) and (2.51), we have

discr(z® — 3¢z — ¢1) = res (:103 — 3¢y — €1, 3% — 302)
1 0 3 0 0

0 1 0 3

=det [ =3¢, 0 —3c; O 3 = 27(de; — cf).

—c1 —3cy 0 —3¢s 0

0 —Cq 0 0 —302

When 4c3 — ¢ > 0, then this is the case casus irreducibilis. When 4c3 — ¢ < 0, then the

root can be represented using hyperbolic functions. So the largest real root x; will be

p

N , when ¢y = 0;
1
2 = 2,/cq cOs [g arccos(%glﬂﬂ , when ¢y > 0 and 4¢3 — ¢ > 0;

1
2y/¢co cosh[g arccosh( 631/2” , when ¢, ¢y > 0 and 4¢3 — ¢f < 0.
2c
\ 2

Here, we take the branch arccos(e) € [0, 7| and arccosh is the inverse hyperbolic cosine. Last,
we plug x; in to the quartic polynomial z* — 6cox? — 4c17 — . Because we want zg > 1,

so we want the following to be true.
4 2 _ 2
] — 6oy — 4ciry — cop = —3cex] — 3c1w1 — ¢ < 0.
That is, cog > —3coz? — 3¢12;. O

In [40], Guan—Zhang studied the solvability of a general class of curvature equations. These

curvature equations can be viewed as generalizations of the Christoffel-Minkowski problem
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in convex geometry. Guan-Zhang considered the following class of equations

—2
Om(A) + Cn10m-1(A) = ckok(N),
0

3

b
Il

where n is the dimension of the space, n > m > 2, ¢, > 0 for k € {0,--- ,m — 2}, and
¢m—1 € R. They obtained a priori estimates for the admissible solutions. Here, we show that
the level set is convex by our Convexity Theorem. When m = n, the following result can
also be applied to the general inverse o, equations with non-negative coefficients considered

by Collins-Székelyhidi [20] and Fang-Lai-Ma [29].

Lemma 2.12. The level set of the following general inverse o) equation

m—2
f(A) = Um()‘) + Cmflo—mfl()o - Z Ckak()\) =0 (252)
k=0
is convez if ¢, > 0 for k € {0,--- ,;m — 2} with ZZL;Oz ¢ >0 and ¢,,1 € R.

Proof. Consider the following diagonal restriction r(x) of equation (2.52), that is,

m—2

rote) = (1)am +enms(,1 ) = Y ()

k=0

By Theorem 2.5, if r; is strictly right-Noetherian, then we are done. We prove this by
mathematical induction on the degree m. We also claim that when m > 2, if the coefficients
¢y, satisfy the hypothesis, then xy > 0. When m = 1, we have r¢(z) = nz+cy, which is strictly

right-Noetherian. When m = 2, we have r(z) = (5)2* 4+ nciz — co; re(z) =n(n—1)x+nc.

C1
n—1

If we write z; = — the largest real root of 7, then by the hypothesis, we get

2
nes
= — e < —cp < 0.
)= "oy @S

(&1

7“f(—n_l

This implies that 7 is strictly right-Noetherian. Moreover, we have 7¢(0) = —¢o < 0, which
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implies that o > 0. So the claim is true when m = 2. When m = 3, we obtain

ri(z) = (Z)gﬁ + CQ(g)xQ - (Y)clx — Co; r}(x) - n((”g 1>x2 n (n; 1)02x B C1>;

ri(z) =n(n—1)((n—2)x + ).

We have 7y = —-%. If ¢; > 0, then x; > max{x,,0}. In addition, we obtain

n—

—1)(n—2
’l"f(.%'l) = <n>.’L’3 + Co (n)$2 - <n>clx — Cy = —n<n )(n ).CE? — gcliﬁl —Cy < 0.

3 2 1 12

Thus, the largest real root zy of 7, is greater than x;, ry is strictly right-Noetherian. If

¢; = 0, then 1 = max{0, —22}. If ¢, < 0, then similar to above, we get 7¢(z1) < 0. This

implies that xy > x1, ry is strictly right-Noetherian. Otherwise, if ¢ > 0, then z; = 0. For
this case, by the hypothesis, we have Zi;g cr = g+ ¢1 = ¢g > 0. This implies that

rf(xl) = Tf(O) = —cy < 0.

Thus, g > z1 = 0, ry is again strictly right-Noetherian. No matter which case, the claim is

true. Suppose the statement and the claim is true when m = [ — 1. When m = [, we have
1

re(x) = (?)xl + cll<lf1)xll - ck(Z)xk
k

If we consider the first derivative of r(x) with respect to =, then we obtain

! o n—1\ 11 n—1Y -2
Tf(:c)—n<(l_1>x +cl_1<l_2)x

There are two cases to consider. First, if 22;21 cr > 0, then r} satisfies the hypothesis, so r}

2

=0

-2

k=1
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is strictly right-Noetherian. Moreover, the largest real root x; of r} will be positive. Also,

k=0

-2 T . -2 .
_(n\, 1 ny\ _k 1 n n— -1 n— k—1
RUAR SR o G S S R

k=0 1_9 k=1

-2

_ 1 l k ny _k
- 1_;ck(1_l_1)(k)xl<o

In this case, zy > 1 > 0, ry is strictly right-Noetherian. Second, if 22_:21 ¢, =0, then ¢, =0

n

forall k € {1,---,1—2}. By hypothesis, we have ¢y > 0, so r¢(z) = (?)xl+cl_1 (l_l)xl’l —¢p.

For k € {1,---,l — 1}, we have x;, = maX{O,—%cm_l}. We are done if ¢,,_; < 0.
Otherwise, we have 21 = --- = x,,,-1 = 0 and zy > x; = 0. Hence, no matter which case, 7
is strictly right-Noetherian, and the claim is true. This finishes the proof. O

Lemma 2.13. The level set of the deformed Hermitian—Yang—Mills equation
%(w + \/—1)()" = tan(é) . S?(w + \/—1x)n

is convez if 0 is in the supercritical phase, that is, 6 € ((n —2)7/2, n7r/2). In addition, the

level set is also convex if § € (—nw /2, —(n —2)m/2).

Proof. First, it is well-known that the dHYM equation can be rewritten as >, arctan();) =

0. Since 6 € ((n — 2)7/2,n7/2), we have

9—k:7r/2€<(n—2—k)7r (n—k:)ﬂ>:<7r T 7T>C<_7T 7r>

n—k 2n—k) " 2(n—k) 2 n—Fk'2 272
for k € {0,1,--- ,n —1}. Second, by Theorem 2.5, we consider the diagonal restriction, we
get (n — k) arctan(xy) = 0 — %” for k € {0,1,--- ,n — 1}, where x, is the largest real root of
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the k-th derivative of the diagonal restriction. We claim that:

0 —km/2

Ty = tan(%) > > x = tan<ﬁ> > > T :tan(é’— (n— 1)%)

Since tan(z) is increasing on (—7/2,7/2), to check the above claim, it suffices to check

— /2 — k)2
%>9 T2 0k

T
. —(n—1)—=.
n—1 n—k >0—(n )2

This is true because the function f(z) = (0 — xw/2)/(n — x) is decreasing on (—oo,n). By

Theorem 2.5, the level set is convex. O

2.5 Basic Formulas of Symmetric Functions

In this section, we state some lemmas for symmetric functions first. One can also check the

author’s work [50] and the references there in for more details.

Lemma 2.14. If F(A) = f(A1, ..., \y) s a smooth function in the eigenvalues {Ay, -+, A\n}

of a Hermitian matriz A, then at a diagonal matriz A with distinct eigenvalues \;, we get

OF Ay — . OF fi— 1

where f;(\) = 8—{.()\) and fir = maj—af’\r()\)'

We denote A = {)\1, e ,)\n} the eigenvalues of the Hermitian endomorphism wik (X +
\/—18511)].]5. Since we are on a Kéhler manifold, we can pick the following coordinates

to simplify our computation.

Lemma 2.15. At any point p € M, there exist local holomorphic coordinates near p such
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that
wﬁ(p) = 0ij; (Xu)zj(]?) = Xidij; Wij,k(P) =0,
foralli,j ke {l,... ,n}.

From now on, without further notice, we always use the above coordinates. We denote A as
the Hermitian endomorphism w* (X +V —185u)ﬂ-€. Then the first and second derivatives of

A will be the following.

Lemma 2.16. The first and second derivatives of A are

ON _ _ - _ _
821 = w]p]}(XU)iﬁ + wjp(X’u)iﬁJ_c = _w]bwal_),l_cwap<XU)iﬁ + w]p<Xu)iﬁ,l_m
k b
92N A_ A_ ._ .
i __, Jb D P _ _
02,0z, W’ 7El<Xu)iZ7 +u’ ) (Xu)ipi + o’ 1 (Xu>iﬁ,k: + ij(Xu)iﬁ,kl

_ . gd, b ap b ap A jb,, ., ad, P .
= W Weq W Wep W (Xu)zﬁ W Wep W (XU)zﬁ+w Wap kW Weg W (Xu)zﬁ

7 _ 7 _ .
— wPwgp ™ (X )iy — wwep w0 (Xu)ipr + w0 (Xu)ip s

where we denote (X,);; = X;5 + u;; and A is the Hermatian endomorphism w™(X,).

If we evaluate at any fixed point p € M and we use the coordinates in Lemma 2.15, we can

simplify the first and second derivatives of A.

Lemma 2.17. At any fixed point p, by picking the coordinates in Lemma 2.15, we get

ON!
0z

92N
02,0%, p) B

(p) = (Xu)ize —Aiwii (X)) -
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Chapter 3

Background

In this chapter, first, in Section 3.1, we collect all strictly T-stable general o, type multilinear
polynomials or strictly T-stable general inverse o type multilinear polynomials. We may
reformulate previous general inverse o, type equations and general o, type equations into
our settings. Second, in Section 3.2, given a fixed strictly T-stable general o} equation or
strictly Y-stable general inverse o, equation and a C-subsolution to this equation. We study
all strictly Y-stable general o, equations or strictly T-stable general inverse o, equations
such that the given one is still a C-subsolution to these equations. Even though it is still
open whether a (C-subsolution will provide a priori estimates, but it holds for all known
examples. For example, the Monge-Ampere equation solved by Yau [72]; the J-equation
studied extensively by Collins—Székelyhidi [20], Chen [14], Song—Weinkove [66]; and general
inverse oy, equations with non-negative coefficients studied by Fang-Lai-Ma [29] and Collins—
Székelyhidi [20]. So it is still worth considered based on these works and should be a potential
space for finding continuity path. By Section 2.2, the C-subsolution cone introduced by
Székelyhidi [68] and Guan [36] is the T;-cone provided that the original equation is strictly
T-stable. Moreover, with the aid of our T-dominance Theorem, we can explicitly describe

the space of all strictly T-stable general o) equations or strictly Y-stable general inverse oy,
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equations sharing the same function as a C-subsolution. Last, in Section 3.3, we show some

examples such that the continuity paths will lie in our space defined in Section 3.2.

3.1 (General 0, Equations and General Inverse 0, Equa-

tions

Let (M,w) be a compact connected Kéhler manifold of complex dimension n and [xo] €
HY'(M;R), where H"'(M;R) is the (1,1)-Dolbeault cohomology group. The study of the

solvability of the following general inverse o, equation is widely considered:

" = C”_1<n i 1))(”_1 Aw+-—+c (T)X Aw 4 co<g)w”, (3.1)

where ¢y, are real functions on M for k € {0,--- ,n—1} and x € [xo] is a real smooth, closed

(1,1)-form. Or if possible, we can do a substitution X = x — ¢,_jw and get
n—2

Xn:dng( " )X”Q/\w2+...+d1(7ll)X/\w"1+do(g)w”, (32)

where dj, are real functions on M for k € {0,--- ,n —2}. We can treat equation (3.1) or

(3.2) as a function from the manifold M to Euclidean space R™ or R"~!, which is defined by
c: M =R c(p) = (cp1,++,c1,¢0) or d: M — R"™; d(p) = (dp_2,--+ ,dy,dp).

Similarly, we can view general o, equation as a function from the manifold M to Euclidean
space. Based on the results in Section 2.2 and Section 2.3, to obtain convexity, we wish the
coefficients of equation (3.1) or (3.2) satisfy some special properties. By collecting all strictly

T-stable general g, type multilinear polynomials, we consider the following algebraic sets.
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Definition 3.1. For A = {\y, -+, A\, }, we define

s—1
Gns = {(65—17 Cs—2, 7 ,C0) €ER*: og(N) — chak()\) is strictly T—stable};
k=0
_ s—2
Gns = {(05,2, Co_z, -+ ,C0) ER: g (N) — ckor(A) is strictly T—stable}.
k=0

For convenience, we denote %4, ,, by 4, and ann by ‘an

When the number of variables n is small, by Proposition 2.12, we get the following.

Proposition 3.1.

G ={co>0}; € ={(0,c0):co>0}U{(c1,c0): ¢1 >0 and ¢y > —20?/2};
1= {(0,0,¢0): co > 0} U{(0,¢c1,¢0): ¢1 > 0 and o > —3611/3}
U {(cs, —202’/2,00): ¢ >0 and ¢g > 3¢5}

/2

U {(cz,cl,co): co > 0,01 > —203 , and cy > —3cax] — 301361}.

Here, x; is the largest real root of 3 — 3cox — ¢ = 0.

For the T-cones defined in Section 2.2, if x is a C-subsolution to the equation c¢: M — €, ,
then we know that for any p € M, (Zj)f‘l AW =31 (Zj)xk_l Aw™* is a positive
(n — 1,n — 1)-form at p. If we consider the Hermitian endomorphism w‘lx, we get the

following.

Remark 3.1. x € [xo] is a C-subsolution to c: M — 4, , if and only if at each point p € M,

forany l € {1,--- ,s — 1} and any a € S,,, we have
s—1
Ul(ﬂ;a(l),-~~,a(5—l)) - Z Cko-k—s-i—l(:u;a(l),m,a(s—l)) > 0.
k=s—1
Here, = {p1,- -+ , jun} are the eigenvalues of the Hermitian endomorphism w™'y.
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On the other hand, for any p € M and for any (n — 1)-dimensional complex vector subspace

V=1 of the n-dimensional complex vector space T;C(M ), we have

-1 S— n—s -1 _ n—
(Z_ 1>(X|Vn—1) 1 A (a}’\/n—l) — C’“(Z— 1) (X‘V”—l)k 1 A (w|vn—1> k > 0.

By considering the complex Grassmannian space, for any ¢ € 6, and for any x € [xo] €

HOYD(M;R), we define the following function xy*¢: M — R by

wepy : (x|v)srameV=n(wly)m*
X4(p) = inf dime V
(wly)ome
ve U GC(kTE(M))
k=n—s+1
= dime V k+dime V k
e
=n—dimgc
(w]y)dime v )

Here, Gr®(k, TS (M)) is the space of all complex k-dimensional vector subspaces of the com-

plex n-dimensional vector space Ty (M).

Remark 3.2. x € [xo] is a C-subsolution to c: M — %, , if and only if the function x*“: M —

R is a positive function.

Here, similar to Remark 2.5, we need to consider all Grassmannians to avoid ambiguity.
Most of the time, we consider the simpler case ¢s,_; = 0. We may reformulate the settings

for classical general inverse oy, equations, for example, the complex Monge—-Ampere equation.

Theorem 3.1 (Reformulate Complex Monge-Ampeére equation, Yau [72]). Let (M,w) be
a Kdahler manifold with Kdhler form w and [xo] be a (1,1)-Dolbeault class. Given a map

c: M — %, satisfying the integrability condition, which is defined by

c: M — 6,; p+— (0,---,0,¢0(p)) and /Xg:/ cow™.

n—2 copies
Suppose that there exists a C-subsolution to ¢ in [xo], that is, there exists a X € [xo] such
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k
that infyrcq.e o) Ellvi;k >0 foranyp e M and k € {1,--- ,n—1}. Then there exists
) w v

a unique X € [Xo] such that x"™ = cow".

Congecture 3.1 (Reformulate deformed Hermitian—Yang—Mills equation). Let (M,w) be a
Kéhler manifold with Kéhler form w and [yo] be a (1,1)-Dolbeault class. The deformed
Hermitian—Yang-Mills equation with 6 € ((n — 2)7/2,n7/2) induces a point in %, and we
consider the following constant map cquynv: M — Cfn If there exists a C-subsolution to

caayM In [xol, then there exists a x € [xo] such that

%(w + \/—_1x)n = tan(@) . §R(w + \/—_1x)n.

We state one of the author’s work in [51].

Theorem 3.2 (deformed Hermitian—Yang-Mills equation, Lin. [51]). When the complex

dimension equals three or four, Conjecture 3.1 is confirmed.

3.2 Space for Continuity Path

By previous classical works, if x € [xo] is a C-subsolution to d: M — €, , (or an,s), then we
are interested in whether X Is again a C-subsolution to another function c¢: M — %, (or
‘5;75). Once we understand the space consisting such ¢, then it is a potential space to find
a continuity path in this space connecting different equations and apply a priori estimates
over this continuity path. In Chapter 4, for constant maps d: M — %,,, when the dimension
n equals three or four, it is justified that we obtain a priori estimates provided the existence

of a C-subsolution. So the space consisting such c is truly the space for continuity path.

Theorem 3.3. Given d: M — 6,5, at any point p € M, we write xy(p) the largest real root

of the k-th derivative of f,(z) = (7)a* — Z;g de(p)(7)x*. Then the Ti-cone of d at p is
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contained in the Yy-cone of c: M — €, s at p if and only if for all k € {1,---,s — 1}, we

have gy (w(p)) > 0. Here, g,(y) = (")y* — it cx(p) (1) y*

Proof. To show that the T;-cone of d: M — ¢, s at p is contained in the Y;-cone of ¢: M —
©n,s at p. By Theorem 2.4, if we write yx(p) the largest real root of the k-th derivative of
(") T D (7 ) (3)y*, then we are checking whether z,(p) > yx(p) forallk € {1,--- ,s—1}.
Wmﬂh—slf“”()(JQ@—%“UQf”@%Wn@( etlt)), oo (p) = 2t

n—s+1 (r— n—s+17
and ys_1(p) = % So, zs_1(p) > ys—1(p) if and only if gp - (xs_l(p)) = ﬁ(% 1(p) —
ety > 0. When k = s — 2, we get g5 (2. 2(p) = 55 (322,(p) — 725hwa s —
m) If x5 o(p) > ys_o(p), then since ys_o(p) is the largest real root of g (=2) e get

9572 (z,_5(p)) > 0. On the other hand, if g5 (z,_2(p)) > 0, then since z,_o(p) > z,_1(p) >
ys—1(p), we get a contradiction by the proof in Proposition 2.1 when ys_o(p) > xs_2(p). We
use mathematical induction on k, suppose the statement is true when £k = [ > 2. When

(I-1)

k=1-1,if x;1(p) > yi—1(p), then since y;_;1(p) is the largest real root of oY we get

95"V (x1_1(p)) > 0. On the other hand, if g§ " (z;_1(p)) > 0, then since z,_,(p) > z,(p) >

yi(p), we again have x;_1(p) > y;_1(p). This finishes the proof. O

As a consequence, we immediately get the following proposition.

Proposition 3.2. Let d: M — €, s and x be a C-subsolution to d. Then for any p € M

and for any c: M — 6, s satisfies the following s —1 x s — 1 linear system:

(3.3)
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we obtain that X is also a C'-subsolution to c. That is to say, if x is a C-subsolution to c, then
for any p € M, c(p) = (cs-1(p), cs—2(p), -, co(p)) € Crs CR%, (cs-1(p), cs—2(p), -+, c1(p))
lies in one of the polyhedrons, containing (—R, —R?,--- | —R*™Y) for R > 0 sufficiently large,
defined by s — 1 hypersurfaces passing through (ds_1(p),ds_2(p), -+ ,d1(p)) with the following

s — 1 linearly independent vectors as normal vectors:

! ("7 )@ (p) (<)) (<2)ai(p)
0 1 (a5 () (") (p)
0 0 ()T EHE(
0 0 1 (" Hz1(p)
0 0 0 1

Here, we also write a version for functions mapping to ¢, .

Lemma 3.1. Given d: M — (éms, at any point p € M, we write xy(p) the largest real root
of the k-th derivative of f,(x) = (Z):vs — ZZ;% dr(p) (Z)xk Then the Yi-cone of ¢ at p is
contained in the Yq-cone of c: M — an,s at p if and only if for all k € {1,--- s — 2}, we

have gy (zi(p)) > 0. Here, g,(y) = (“)y* — Spzs cu(p) (1)y*

Proposition 3.3. Let d: M — %ZM and x be a C-subsolution to d. Then for any p € M

and for any c: M — %st satisfies the following s — 2 x s — 2 linear system.:

(3.4)
("2)xs2(p) — Sp s en(p) (12) 252 (p) > 0;

("D p) = i () (1) 2t (p) > 0,

\
we obtain that x is also a C-subsolution to c. That is to say, if x is a C-subsolution to

5



¢, then for any p € M, c(p) = (cs_2(p), -+ ,co(p)) € ‘ngs C R (cs_alp), - ,ci(p)) lies
in one of the polyhedrons, containing (—R,—R? -+, —R*72) for R > 0 sufficiently large,
defined by s — 2 hypersurfaces passing through (ds_s(p),- - ,di(p)) with the following s — 2

linearly independent vectors as normal vectors:

1 (") zsms(p) (=D (p) (225)ai ()
0 1 (22525 (p) (2= (p)
0 0 N (22g)a5(p) (225)2i ()
0 0 1 (" Hz1(p)
0 0 0 1

Remark 3.3. In [51], the author found an explicit path in the space for continuity path, but
without the aid of Theorem 2.4, it was not clear how the exact space looks like. Now, we
have an explicit expression of this space for continuity path, this should provide us a more

flexible way to find continuity paths. In Chapter 5, we will provide more details.

Definition 3.2. Let d: M — %, then for any p € M, we may define the following
polyhedron in 4, 5 at p

P = {ee b (20 )0 - Yol )at ) 20, e fLs- 1} 39)

s—1

where 2(p) is the largest real root of the k-th derivative of f,(2) = (7)a* — * o di(p) ()",

For any d: M — €, ,, we write ¢ € P4 if for any p € M, we have c(p) € P%(p).

Similarly, let d: M — ‘5;1,5, then for any p € M, we may define the following polyhedron in

©Cn,s at D

Pip) = {e€ G (1)) = e} 7))ot ) 20, Ve (L s -2} @6)



Co

D &1

\‘ (d17 dO)

Figure 3.1: Polyhedron P% of AMA\sAs — dy (A + Ay + A3) — dy = 0.

where x(p) is the largest real root of the k-th derivative of f,(z) = (7)a* — S22 di(p) (1)a*.

For any d: M — %st, we write ¢ € P? if for any p € M, we have ¢(p) € P4(p).

Above Figure 3.1 is an example of the polyhedron P?% of A\jAsAs — di( M+ A2+ A3) —dyp =0
with d; = 4 and dy = —4. The pink region is the set %, and the purple region is the

polyhedron P

3.3 Examples of Continuity Path

In 1978, by studying the complex Monge-Ampere equation, Shing-Tung Yau [72] resolved the
Calabi conjecture [12, 13], which had been posed by Eugenio Calabi in 1954. This celebrated
method by Yau is well-known nowadays, which is called the continuity method. The idea
is to find a path connecting the unsolved equation to a well-understood solvable equation.
In [72], Yau connected the unsolved equation to another complex Monge-Ampere equation
having the given C-subsolution as the solution. Below, we will justify this continuity path

lies in our polyhedron defined in Section 3.2.

Proposition 3.4 (Complex Monge-Ampere equation, Yau [72]). Suppose (M,w) is a Kdhler
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manifold and d: M — €, with d; = 0 for all i € {1,--- ,n —2}. Let X € [xo] be a Kihler

form, which is a C-subsolution to d. Then for the following continuity path

di(p) = (0,---,0,tdo(p) + (1 — t)x"/w"(p))

n—2 copies

with t € [0,1], we have d;, € P% for any t € [0,1].

Proof. By Proposition 3.3, we first compute the largest real root of the k-th derivative of
the diagonal restriction of d for all k € {1,--- ,n —2} at p € M. The diagonal restriction at

p will be 2™ — dy(p). Hence, z1(p) =0,--+ ,x,_2(p) =0 for all p € M. By (3.6), we have

Pl(p) = {c €% — >0, Vie{l,--- ,n—Q}} ={(0,---,0,¢0): co > 0}. (3.7)
——
n—2 copies

So to check whether d, € P? for any ¢ € [0, 1], by (3.7), that is to check whether tdy(p) +

(1 —1)x"/w"(p) is positive for any ¢ € [0,1]. This is true hence we finish the proof. O

Proposition 3.5 (General inverse o} equation with non-negative coefficients, Fang—Lai-Ma
[29] and Collins—Székelyhidi [20]). Suppose (M,w) is a Kdhler manifold and a constant map
d: M — €, with d; > 0 for all i € {0,---,n — 1} with 1~ d; > 0. Let x € [xo] be a

C-subsolution to d. Then for the following continuity path

(1) a4 -+ (?)dlﬂn—1>

A(p) i= (tdor,tdys, o sty do + (1— 1) -

where Q; = [\, w' A xg™" with t € [0,1], we have d; € P? for any t € [0, 1].

Proof. First, by Lemma 2.12, we see d; is strictly Y-stable, that is, d;: M — %,. Second,

by Proposition 3.2 and by (3.3), we want to verify whether the following n — 1 x n — 1 linear
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system is always true for any t € [0, 1]:

Tp—1 — tdn—l 2 07

[Ei_z - 2tdn—lxn—Q - tdn—Q Z Oa

(3.8)
L de(35)es > 0;
| T (D) > 0,
where z, is the largest real root of the k-th derivative of x”—zz;é dy, (Z) hfork e {1,--+ n—

1} and zy > 0 by the proof of Lemma 2.12. Hence, for any [ € {1,--- ,n — 1}, we have

n—1
n—1
rpt =) dy (k - z) it = . (3.9)

Last, equation (3.9) implies that for any [ € {1,--- ,n — 1}, we get

n—1 n—1
—1 —1
l’?il—t E dk(Z—Z)xfl:<1_t> E dk<Z_l)fL’fl 20
k=l k=l

This justifies n — 1 x n — 1 linear system (3.8) is always true, this finishes the proof. n
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Chapter 4

A Priori Estimates

In this chapter, we study a priori estimates for functions ¢: M3 — %3 and ¢: M* — €,
provided that a C-subsolution is given. We will study them individually in this dissertation
and hope we will find a unified approach to handle all dimensions in the future. The ideas

in this chapter come from the author’s previous works [51, 52].

First, let us summarize the proof of our a priori estimates. Under the assumption of C-
subsolution, we apply the Alexandroff-Bakelman-Pucci estimate to get a C° estimate. This
C" estimate can be obtained following the proof in Székelyhidi [68], which is based on the
method that Blocki [8, 9] used in the case of the complex Monge-Ampere equation. We will

skip the proof of this C° estimate because it follows verbatim.

Second, we use the maximum principle to obtain that the C? norm can be bounded by the
C! norm. The method is inspired by Hou-Ma-Wu [42] for the complex Hessian equations
and used by Székelyhidi [68]. The interested reader is referred to [18, 68] and the references
therein. Once we have the above type inequality, by a blow-up argument due to Dinew—

Kotodziej [25], we can get an indirect C! estimate.
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Last, to get C*® estimate, we follow the proof of the complex version of the Evans—Krylov
theory in Siu [64], we can exploit the convexity of the solution sets to obtain a C** estimates
by a blow-up argument. Furthermore, for higher regularity, we apply the standard Schauder

estimates and bootstrapping.

4.1 When Complex Dimension Equals Three

In this section, we are interested in the following equation on M3:
X3 = (?)ch Aw?® + <g>00w3 =301 X Aw? + cow?, (4.1)

where ¢ is a constant and ¢; is a function on M. By Proposition 3.1, to have convexity, for

any z € M, we want (¢y, co(2)) € €5 with
G =1{(0,c0): ¢ >0} U{(c1,¢0): 1 >0 and ¢y > —20?/2}. (4.2)

So equation (4.1) can be rewritten as a function c: M3 — %s. In this dissertation, we consider
functions ¢: M3 — %3 with ¢; constant and range in a compact subset of the stratification
{(c1,¢0): 1 > 0 and ¢y > —20:1))/2} of €. For the case with the range in the stratification
{(0,¢0): ¢ > 0}, that is, ¢: M3 — {(0,¢0): ¢ > 0} C €5. This is the three-dimensional

complex Monge-Ampere equation, which can be done by Yau [72].

In this section, first, we always assume that there exists a C-subsolution u: M — R to a
function d: M? — %, with d; constant. Then, we also call X, this C-subsolution and by
changing representative, we may assume X is this C-subsolution. Because later on we want

to use the method of continuity to obtain the solvability, we are interested in functions in
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the set P9. For any function ¢ € P% with ¢; constant, we consider the following equation:

~ 1, (4.3)

where z € M and ); are the eigenvalues of w™'X, at z. Note that we abbreviate A =
{A1, A2, A3} and we always assume A; > Ay > A3 unless further notice. Most of the time, to
save spaces, we will abbreviate h = h.(\), h; = Oh./ON;, hij = 0*h./ONON; for i, j € {1,2,3}
for notational convention. Unless specify otherwise, we always assume S is a compact subset
of {(¢1,¢0): ¢4 > 0 and ¢o > —2021)’/2} C %5 and we abbreviate ¢y = c¢o(2) for z € M? with

(61,00) eScC Cé),

4.1.1 The C? Estimate

Define a Hermitian endomorphism A = w™'X,, where X, = X + v/—190u, and let \ =
{A1, A2, A3} be the eigenvalues of A. We consider the following function G(A) = log(1+X\;) =

g(A1, A2, A3) and the following test function
U:=—-Au+ G(A), (4.4)

where A > 0 will be determined later. We want to apply the maximum principle to U, but
since the eigenvalues of A might not be distinct at the maximum point ¢ € M of U, we do
a perturbation here. The perturbation here, though not necessarily, is made to preserve the

T-cone structure for convenience. Assume \; is large, otherwise, we are done, then

e we pick the constant matrix B to be a diagonal matrix with real entries

Bi1 = A3 Baa = X\o/2; Bs3 =0.
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By defining A = A + B, then A has distinct eigenvalues near ¢ € M, which are {5\1 =
2M1, 5\2 =3X\y/2, 5\3 = A3}. The eigenvalues of A define smooth functions near the maximum
point ¢. And we can check that the maximum point ¢ of U in equation (4.4) is still the

maximum point of the following locally defined test function

U:=—Au+G(A). (4.5)

Near the maximum point ¢ of U, we always use the coordinates in Lemma 2.15 unless

otherwise noted. We instantly get the following lemma.

Lemma 4.1. At the mazimum point q of U, by taking the first derivative of U at q, we get

0= —Aug(q) + —(Xu) 11k (4.6)

At the maximum point ¢, we have 0 = — Auy(p) + ﬁ(){u)ﬂ,k, which finishes the proof. [

For any ¢ € P? with ¢, constant, we may define the following operator £, by

82
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L. = Z (z, Nw <Z)—8zi(92j’

i7j7k

where A is the Hermitian endomorphism w™'X, at z and H.(z,A) = h.(z, A1, A2, A3) is

defined by he(z,A) = (c101(N) + ¢o(2)) /M A2As. We immediately have the following.
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Lemma 4.2. By taking he(\) = (c101(X) + o) /MAeAs and g(A) =log(1 + A1), we have

—010'1()\;1') — Cp . _Cl()\i + AJ) + [6101()\) + CO} (1 + 52]) X

hi = ) hz - )
AL A2 A3\ J A A2 A3
1 1
i = 01— i = —01i01j 75
9i = TN Yij PRI N2

Here, we denote h; == Oh./ON;, g; = 0g/ON;, hij = 0*h./ONON;, and g;j == 0*g/ON;ON;. In

particular, on {A\ A3 = c101(\) + ¢}, we have

—  and  hy =20 i
ETTINN T A

hi — -
AA2As A

Lemma 4.3. For any point on the set {h = 1}, we have

. 010'1()\;1')4‘00 . l_ C1 -0
Y VD VS Y YO '

—h;

Proof. On h = % = 1, this implies that X\;(02(X;) — 1) = c1o1(Ny) + 0. By
Lemma 2.4, we have o5(\;;)—c; > 0 on 03(\) = ¢101(A)+co. This implies that cy0q(A;)+co >

0 and —h; > 0. This finishes the proof. O

To obtain a priori estimates, we focus on functions ¢ € P% with ¢; constant and range in
a compact subset S of the stratification {(c1,¢0): ¢; > 0 and ¢o > —20‘;’/2} of €. That is,
besides c¢g, ¢; are uniformly bounded from above and below, we also have inf.cgc¢; > 0 and

/2 > 0. With these, we can get a priori estimates depending on this compact

inf.cqco + 20;1;
subset. With these, we can get a priori estimates depending on this compact subset. Also, to
simplify estimates and compute asymptotic behavior, for the remainder of this subsection, we
let O; be the Big O notation that describes the limiting behavior when \; approaches infinity.
So O;(1) means the quantity will be bounded by a uniform constant if \; is sufficiently large.

we let ©; be the Big © notation that describes the limiting behavior when \; approaches

infinity. So ©;(1) means the quantity will be bounded from both above and below by a
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uniform constant if \; is sufficiently large.

Proposition 4.1. Let h(\) = (0101(/\) + co) [ A1 A3, on {1 A3 = c101(N\) + o}, we have

> hi=X3'04(1); D ki =2"0(1);

> huh = A0 (1); D hah = 2125204 (1);
l !

> hgh = A70:(1); > hihizhy = A5* 01 ().
l 2

Proof. The proof is by exhaustion. We consider two cases: the case A3 is uniformly bounded
from below by a positive constant and the case A3 approaches 0. No matter which case, we

always get these estimates. This finishes the proof. O

Now, by taking the first and second derivatives of the equation H.(z,A) = 1, we have the
following Lemma. The proof should be straightforward; we apply Lemma 2.14, Lemma 2.15,

Lemma 2.17, and Lemma 4.2. Or one can check the following reference [50] for more details.

Lemma 4.4. Let H.(z,A) = 1, then we have

dco

N OHWMN)ON G5
0=2_ 8A{ Oz o3(A)’

,J
92co

aAJ A OH(A) 92N o [ 2 dco ON Berom

In particular, at the maximum point ¢ € M of U, we have

dco
0= h n + Ok ) 4.8
O—Zhw Zl_c jjk+z)\>\ ]zk’2+zh ( zzkk )\iwﬁ,kl_c>
7]

o 9R(52(X,)ax)

8Zk82k
_ 4.9
AT TD D wwwy (49)
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Proof. The first and second derivatives should be straightforward. At the maximum point,
suppose the eigenvalues are pairwise distinct satisfying Ay > Ay > A3. Since A is a diagonal

matrix, then

e

0= hi(Xu)i = .
; ( ),k+)\1)\2>\3

This is also true when the eigenvalues are not pairwise distinct. For the second derivative,

if the eigenvalues at the maximum point ¢ are pairwise distinct, then

1
0= 3 hig(X)ar(X)iie + 20 35 (il + D b (Kiws = Mewiar)
irj it Y i
d2cq
D205 2 e
02,0z _ §R<—0 X )= )
T aahs Ao\ gg, Keiix
This is also true when the eigenvalues are not pairwise distinct. O

Lemma 4.5. Let d: M3 — €3 and X be a C-subsolution to d, then there exists uniform
constants N > 0 and r > 0, which are independent of ¢ € P with c(z) € S for any z € M,

such that if \y > N, we have ), hijuz > —k) . h;.

Proof. If X is a C-subsolution to d: M3 — %3, then for all z € M, we have X2 — dyjw? > 0.
Now, unless further notice, the following inequalities hold for any point z € M. By choosing
0 >0, k>0, and € > 0 sufficiently small, since M is a compact manifold and S is a compact

subset, for any ¢ € P4 with ¢ € S, we get
(1-6)(X — Hw)2 > (c1 +Ow?; X — kw > ew.

By the definition of 75d, we also have d; — ¢; = 22 — ¢; > 0. This implies that d; > ¢; for
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any ¢ € P Note that u; = \; — X3, s0 we can write

i)

Z hi(uig + K) = Z hi(Ni — Xig + 1) = Z _01;1;:\;3): O — X + )
Zi A

A
— _ Xo—g)——— 4.1
)\1A2>\3 + Z( (13 K‘) )\1A2>\3>\i Y ( 0)

where we denote A; = cjo1(\;) + ¢ for i € {1,2,3}. Since A\; > Ay > A3, we have

)

A3 > Ay > Ay > 0. There are two cases to be considered:
oIf0<)\3§@,then

Ay A,

Xas — >3 )
(X =0 ks = S hos

Hence, equation (4.10) gives Y. hi(uz + k) > —3A1’:§>\3 + > (X — m)#j‘\a/\i >

o If \g > X3§7“, we can show that A\ is bounded from above when A; is large. To be more

precise, suppose A\; > A\, > N for N > 0 sufficiently large, then

A — Cl()\l + )\2) + Co < d1(>\1 + )\2) + Supces |CO| < Sup s dl()\l —+ )\2) + Supces |C0|
3=

)\1)\2 —C1 - )\1)\2 — d1 - )\1)\2/2
o 4supy di + Zsup.eg ol
— N .

12sup s d1+6sup.cs |col
X r > Ay 2>

Ag > % > (0. With this, we can do a better estimate for Ay A3, we have

We get a contradiction if N is sufficiently large. So, we have

Aodg = Cl()‘l/;? j\‘ A3) +coda _ o+ C1A3 + cohg + & <ot di A3 + sup,cg |colAe + @2
1A2 — C1 M — Mo — ¢y
diA3 Ay + d3
S ol + 1 2+Supc€S |CO| 2+ 1
A — dy
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We see that when ) is sufficiently large, for any ¢ € P? satisfies the hypothesis, we have
/\2)\3 <+ e (411)

In addition, by (1 —0)(X — /fw)Q > (¢ + €)w?, we get the following,

1 1 (X953 — k) (X33 — K) c+e
N 5 — k) — > > -_ .
<X22 K>A + <X33 KJ)A - 2¢ )\2)\3 p 2 (1 _ 5))\2)\3 (4' ]'2)

2 3

By combining inequalities (4.10), (4.11), and (4.12), we may write

—2010'1(>\) — 360 Az
hi(u:s = X=— -
; ’L(u’LZ + K) )\1)\2A3 + ;( 1 Ii) )\1)\2)\3)\i

PSRRI S IE e T

/\1)\2)\3 P /\1/\2A3)\i
Co >\1)\2>\3 — €12 >\1)\2>\3 - 01)\3
-2 - — X5 — K)———————— Xgzs — K)—————
= oy, K TR o (s — )
1 1
> —2+ (Xp3 — k)= + (Xa3 — £)— + A7'01(1)
A2 A3
Xo5 — Xa3 —
Z _2 + 2 ( 22 I{)( 33 K/) _|_ )\I101<1)
A2 A3

> 24 2(1 624 XT01(1) > 6 + A0 (D).

Here, because in this case A3 has a lower bound, otherwise we will not get a lower order term

At - O1(1). In conclusion, we can find a uniform N > 0 such that if A\; > N, we have

for any ¢ € Pd with range in a compact subset of %5. This finishes the proof. O]

Lemma 4.6. With the same settings as in Lemma 4.5, there exists a uniform N > 0 and

€ > 0 such that if Ay > N, then —hgy — hz > ¢ > 0.
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Proof. 1f A3 is uniformly bounded from below by a positive constant, then by the proof in

Lemma 4.5, we get Ay is uniformly bounded from above. We obtain

010'1(/\;2) —|— Co i 610'1(/\;3) —|— Co . i 4 i _ 261
A A3 A AN T A3 Mg
1 1 2d, 1 1

> - — = —+—+)\to1 0.
W Wl W v Wl W W I IO Ry

—hy — hy =

If )3 is sufficiently close to 0, and A; is sufficiently large, then we have

1 C1 1 1
—hs = — — > ————>e>0.
3 )\3 )\1)\2)\3 )\3 )\1 ‘
This finishes the proof. O

Now we let C' be a constant depending only on the stated data, but which may change from

line to line. We can finish the proof of the following C? estimate.

Theorem 4.1. Suppose X is a C-subsolution to d: M® — %5 with range in S and dy
constant. For any c € P with range in S and c; constant, if u: M — R is a smooth

function solving the equation c: M3 — %s, then there exists a constant C' such that
00u| < C(1+ sup‘Vu‘z).
M

Here, C = C(M, X, S,d,w,oscy u, ||co||c2) is a constant and V is the Levi-Civita connection

with respect to w.

Proof. We use the maximum principle to prove this, for any ¢ € P% with ¢ € S, we can

define the elliptic operator L. in equation (4.7). First, by applying the operator £, to G(A),

at the maximum point ¢, we obtain

zj Ai aXJ 2714
U 0N oA gi_gjaAjaAi_ AaAi
L(G(N) = Z;hkgw D21, 071 th o N — \; 0z 0% Zzl;h’“gzazkazk
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|(Xu>1ik|2 11kk
= hp———— h = —
Xk: k 1+ ) +Xk: k1+ Wil kk — Z k 1+)\1
~Sn Z‘ Witk| H )5 o
1+ M)A — A))

k 7#1

2

z Xu)7ﬁ h‘( 1|
> [(KXuura| hi(—lf’— ALY +C hi.  (4.13
Z 1+)\ Z L+ X\ ;(Hm)(m Z (419)

Second, by equation (4.8) and equation (4.9), we have

O—th w)ip(X N;mLZ' ﬂk| +Zh< ukk—/\z‘wﬁ,m}>

, Tbh _Zz%re(g%;( um,k)
)\1)\2/\3 p )‘1/\2>\3>\i

_ o zl hl(XU)ll_,l_c ~ Zl hl( )ll k
= %: hi <(Xu)zzk - ThJ ((Xu)jj,k TS h]>
237, 50 hihihaR (X e (Xa) i) | > (X)) sl?
+ hih;hi; ,
7 " 2 Mt Ty
i f C% 2R geo ( )u
+ Z | ] k| + Z h; < zz Kk Aiwﬁ,ki}) + Ozk07 Z ( k)

A1A2A3 )\1>\2)\3)\z
i#]

_ ~ Zzhl( )il% ~ ZZhl( )llk
= Z hz]( m E— Zl h2 hl) (<Xu)jj,k B Zl h2 hJ)
[ole
2 Zu hj hw%(azk( )ﬁkz) Zu hh‘hlﬂazz Z (X ﬂ k|
A1 Ao3 Zz >\2)\2)\2(Zl h2

(9200_ 2%(80 ( ) k)
P 021,0Z) N &
+ Z h < 7,7, kk T Azwzz,kk> + )\1)\2)\3 ; )\1)\2)\3/\

. 2 Z” h; h”ﬂ?(aco( w)ii k) B Z 2%(2%2()@)1‘5,16) Zz] hih; hw|8co 2
- )\1)\2)\3 Zl p /\1>\2)\3)\i /\2>\2)\2(Zl h‘2>
2
’ _]’L k| 82 (‘69%
+ + ¥ hi( X +C Y hidi + =, 4.14
D D DLCDL L) DS v w e )

where the inequality on the last line is due to the convexity of h = 1 and |w; 5| < C. Since
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the solution set { A\ A3 = ¢101(\) 4 ¢} is convex and

dc
Yo (X )llkh — (X)) ﬁhj

X7 SR
(%) PE N deAs S0, 12

is a tangent vector on the solution set, we obtain that

Z hij ((Xu)ﬁ,fc 2 ;l:(l h2)” - h,) <(Xu)j5,k 2 ;l:(l h2)” . hj) 2 0.

Hence, by setting k = 1, inequality (4.14) gives

- Z h 11 7,7,
= - Z hi(Xu)i1 + Z hi((Xu)ﬁ,li - (Xu)li,ﬁ)

= _Zh w)iial +Zh )it — )11,1'%)
2Zu h; hw%(aco( )ﬁ,l) _ Z 2%(2_?1)()@)%,1) Zm‘ hihﬂ'hmgﬁ i

. _
- AMA2As Yo, b A A2 Az AN (D, 72
2
(X J“| | oath
E: O L O hi(1 ). 4.15
+ e U2 (1+) (419)

Combining Lemma 4.5, inequalities (4.13), (4.14), and (4.15), at the maximum point g, if A\

is sufficiently large, then we have

}(Xu 11zz hl 1]]‘
A h; hi—————+C h; — h;————— —
)2 Z ““+Z (1+/\1 - Z Z 1+/\1 ;( \))

- L+ A\ —
2 2
>A2hu +Zh }( 112 Z |(Xu~)ﬂ,1’ _Z hj‘SXuzlj,j|~
T 402 = (LHANN S (+H M) =)
_ 2 Zi,j h]hUéR(a_;zl( u)ﬁ,l) _ Z 2%(860( )zz 1) B Zi,j hihjhij|g_g(;|2
(1+ 5\1)/\1/\2)\3 Yo hi (1+ )\1)/\1/\2/\3)\i (1 4+ A )AAIN (D, hi)?

d2cq

0210%
+ 021071 +C hz
(1 + )\1))\1)\2)\3 Z

%
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2 2
u Z X h X'u, T4
C Ak Zh +Zh Z |( ~)]11’ _Z j‘~( 21],] _
1 1) G#1 ( —+ )\ ))\z)\] J£1 (1 + )\1)()\1 — )\J)
22” h; hzjg%(azl ml) Z 2%(22( )zh) B Z” hih; hzj|3ﬂ|2
(14 A)AdeA; o b2 (T4+X)AM AN (14 A)A2ANE(T, h2)2
d2cq
021071

(14+ M)A Ao
()14 (X)) (Xu)j1.)°
C—-—A h; + hj—————— h— _—
2 (€= 4n) Z ) + 2 (1+ )2 +Z (1+ A)A,

i1
B Z hi| (X.) 13’j| 221 hzhlz%(gzj( W)111) 2%(22’( Wii)
(1 + A1) (A1 — ) (1+ )\1))\1)\2)\3 Zl h2 (1+ )\1))\2)\2)\3
Y SR (K e 2R (K50
(14 A)AAeAs 3o, 12 o (1+ A A A2 As
860 (9260
Zi,j hihjhij’a_zlP qzlagl . (4.16)

- = +
(LHA)ANN Q2 R (T + A)AdeAs

We can also simplify some terms in inequality (4.16):

2
E:h HJ‘ (Xl —Zh.‘(Xu)ﬁ’l_TJ! +ZM
3 - J =z -
= (M) (1+A1)A1Aj = (1+X)? 24 Ay
2
T; X,) 112
>93] ﬂﬂ QE:W_LA—_+§:JLTL£L_
j#1 o M) (LA

_ZQh )\1/\ +1+/\1 ]11} _22010'1 +CO ‘CTJ|2

j£1 1 + )\1 2)\1)\ >\1)\2)\3 ( + 5\1)2
2
—2 1 T; T
Z AL+ +)\1 ]11{ _22 | ‘ _QZ | f‘
T ()2 TESHE 1+ M)
¢ ¢ ¢ -C. (4.17)

> > > >
- )\%)\3 - )\1/\2>\3 - 1nfces )\1)\2)\3 -

Here, we denote T} = (X,);11 — (Xu)11; = Xj11 — Xi1,;. The last inequality is due to the

fact that S is a compact subset, so by our Theorem 2.4, A\; A2 \3 will have a uniform positive
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lower bound. In addition, for j # 1, we obtain

O h Xt 2 i R(BE (Xu)5)  2R(5E (X))
A+A)0 =) T MM SLRE (14 M)A s
hyl(Xu)15,]° 237, hily R (G2 (Xu)ijy) 2R (52 (Xu)17.,5)
A+M)A =) T MM SR (L4 M)A s,
230 M R(G2 (X)jgn — (XNigy))  2R(52 (K50 — (Kaigy))

(14 M)AAods S, b2 (14 A)AAAsA;
2
= hj (Xu)ij; + 2 hlhl?c‘? (A ) 8CO ()‘1 )\J)
1+ a) O — ay) | M Ao Ash; Zl h2 )\1)\2/\3/\]hj
R I DL 3—2 257 haluR(52 ((X) 551 — (X)135))

(T4 X)NN2NZh; | 2ol Aj (14 A)MAoAs 3o, b7
2R (X501 — Kizy))
(1 A)MAoAsA,
Gk |Sihhyle  Saf 235 hahyR(F2 ()51 — (X))
T+ AN, | >R Aj (14 A)Atdods 3o, B2
- 23?(3-2?(0{%3& - (X)lj,j))' (4.18)
(1 A)MAsAsh,

We estimate some terms in inequality (4.16) and inequality (4.18). If A3 is uniformly bounded
from below by a positive constant, then A\, is uniformly bounded from above. The estimates
should be straightforward. Now, if A3 approaches 0, then we need to consider the limiting

behavior of hy and hs. For hs, we have

Lo, ] a 1 1 1
A3 L VS V5 VS VIR VS VIR ) W

So hs = A3'01(1). For hy, the limiting behavior is slightly harder, we have

1 1 c c1(AM+ A3) +c 1 13+ ¢ 1 c
Lot o _ahitie, 1 abte, 1, o
o N Aok AN Do 20NN — 2 | 2AAZA
1 swpeeglal L 1 sweglal . 1 supglal
- 2)\2 2)\1)\%)\3 - 2)\2 201)\1>\2 2)\2 3/2)\1
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Hence, hy = A;'©1(1). In conclusion, for j # 1, we have h; = A;'0(1).

Proposition 4.1, for j # 1, we have

~ ~ C C 2
()\1 _ /\J) Zl hlhljg_z(; n 27? _’El hlhl] i 2 <
(L+M)NAINRZ | X0, I Aj VRV X
2 il R (321 ((X)j5.1 = (X)z5)) < C/\;1>‘52 < ¢ <
(1 +)\1))\1)\2/\3hj Zl hl2 o )\1)\;1)\52 — )\1 -
2R (32 (X)j5.0 — (X)155)) ¢ . C .
(1+ )N AaAs AR /\1)\j/\j_1 P I
Zzghhhlﬂ|gco|2 <C )‘?T4 <£<C-
U+ MR 2|~ At~ A
¢
(22’18051 g < C
(T+A)AMAAs | >‘

Last, we have the following inequality

hy }(X 11 1| 221 hlhll%(azl( ut, 1) _22%(80 (X, 1)
T+A)2 (L4 A)Adahs 3, 2 “ (14 A)A2AAg
—h‘ 111_( > by n 1 )%2

1+ )\1 )\1)\2)\3}11 zl hl2 )\%/\2)\3}11 0,21
860 Zl hlhu 1 2
e ( : STn)
821 )\1)\2)\3h1 Zl h’l )\1)\2>\3h1
>h’ 111_( > by ! ! 1 )%‘2
1+ X\ MA2Ashy D hi AfAeAzhy/ 02

Thus, by

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Thus, by Lemma 4.5 and Lemma 4.6 and by inequalities (4.16), (4.17), (4.18), (4.19), (4.20),

(4.21), (4.22), (4.23), and (4.24), at the maximum point ¢ we obtain

0> L(U)> (C— Ar Zh+CZh—

J#1
Xui1 hih 1
—|—h1’( )1~1,1_( Zl 1 - dco
1+ )\1 )\1)\2)\3h1 Zl hl )\1)\2/\3h1
> % 1 (Xu)ﬁ,l B ( Zl hihy I 1

= 2 _A_l‘ 14X
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Here, we let A sufficiently large to get the last inequality. So, we get

Ake Z hlhll 1 aco
2N < | Aug — l 9o
3 VS [Au <)\1>\2/\3h1 St A%A2A3h1> 921
Zl hlhll

1 800
< Apu + | 52 4.25
] WIS WA (4.25)
Similar to before, we estimate the quantity |- /\E\; lehg:l 7t ,\21,\3 o[> we have
1 ‘ 1 1 1
= < < <C;
’)‘%)‘2)\3% c1(A2 + Az) + co 20‘?/2 oo infees(2¢¥? + )
S haha CATAS?

< <C.
))\1)\2/\3h1 S h? ‘ T (iAo A3) F o)A\ A T

In conclusion, we get \/%\//\1 < Aluy| + C. This implies that

N < (Aluq| + C’)2 < (AQ|u1|2 + C’Z) < C(1+ sup |Vu|2).
M

2 4
Ake Ake

By plugging back to the original test function U = —Au+G(A), we will obtain a C? estimate

for any ¢ € P% with range in S and ¢; constant. This finishes the proof. O]

4.1.2 The C! Estimate

Here, we use a blow-up argument proved by Collins—Jacob—Yau [18] to obtain a C'* estimate.
One can also check a more general setting considered by Székelyhidi [68], or the complex

Hessian equation studied by Dinew—Kotodziej [25].

Proposition 4.2 (Collins—Jacob—Yau [18]). Suppose u: M — R satisfies

(a) X ++/—100u > —Kuw,

(b) l|ullzoeary < K,
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(c) |00u]| o ary < K (1 + supy, [Vul?),

for a uniform constant K < oo. Then there exists a constant C', depending only on M,w,

X, and K such that sup,, |Vu| < C.

4.1.3 Higher Order Estimates

The proof follows from Siu [64], here we use a standard blow-up argument inspired by Collins—
Jacob—Yau [18]. The equation is elliptic and the solution set is convex, we can exploit the

convexity of the solution set to obtain C*® estimates by a blow-up argument.

By shrinking the coordinate charts if necessary, we may assume that the manifold M can be
covered by finitely many coordinate charts U, C V, such that X, = V/—100u, on V, for a
smooth function u, satisfying ||ua||c2(g,) < K, where we use the standard Euclidean metric
on C? and K is a uniform constant independent of a. For convenience, we focus on a fixed

coordinate chart V,, and we drop the subscript a. The function u on V' satisfies
H.(z,00u) = H.(z,A(2)) =1, for z €V,

where A/ (2) = wi*(2)u;z(2) with eigenvalues in the Ti-cone of A\ ApAs — c101 () — ¢o(2) = 0.

Moreover, by fixing Z € U, we define the following operator which does not depend on z € V,
H.:(80u) == H.(Z, 0 (2)u;z).

First, we prove a Holder estimate for the second derivatives. We have the following.

Lemma 4.7. Let U C C? be a connected open set and fix 2 € U. Suppose u: U C C*> — R is
a C® function such that ||00ul| =) < oo and the eigenvalues )\(wj’_“(é)ui,;(,%)) of Wk (2)u;z(%)

in the T1-cone of MAads—ci101(N) —co(2) = 0. If for all z € U, H,:(ddu)(z) = 1, then there
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exists a constant o € (0,1) such that for any R > 0 with Bog C U, the function u satisfies
||85u||ca(BR) S C . R_a.
Here, C = C(c, S, [|00ul| L))

Proof. First, we may verify that for all z € U, )\(wj’}(,%)ui,;(z)) in the Ti-cone of A\j A2\ —
c101(A\) —co(2) = 0. Second, let y be an arbitrary vector of C”, by differentiating H, :(00u) =

1 with respect to v and then with respect to 4 gives

aﬁc Z(99 0? Hc z ch z
5 (00w)uz, = 0; Z i (00U uggsuzy, + Z T (O9u)us3,5 = 0.
< Ou;;

By the convexity of the level set, we have

Second, let w = wu,y, then we may rewrite the equation as —3_, . H” _(00u)0;0;w > 0,
where we denote H;]i(@@u) = 8Hcyg/8ui5(80u). By the hypothesis that [|00ul|z=qr < oo,

the eigenvalues of v/—100u have an upper bound and thus a positive lower bound by the

compactness of S. Hence the operator —ﬁgz (00u) is uniformly elliptic.

82
02;0z i

For s = 1,2, let M, := supp_, w, where Byg is a ball of radius sR contained in U having
the same center. By the Krylov—Safanov’s weak Harnack inequality [34], there is a constant

p >0 and C > 0 such that

w“Lq B2R))

1 1/p
<ﬁ /BR(MQ—w)p> < C(My— M +

where ¢ > 3. Then, by the smoothness and convexity of the solution set, the tangent plane

to the graph of ﬁfc,z at the point (uzg(y)) is below the graph of _E[C’g. Hence the tangent plane
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will be the supporting hyperplane, which implies
H,:(00u(y)) — HZ(00u(y)) (usi(x) = uii(y)) > Hez(00u(x)),

That is, 0 > —ﬁg(@gu(y))(ulﬂy) — u;j(x)). Last, the rest follows directly from the proof
of the complex version of the Evans—Krylov theory in Siu [64]. O
Then, with the above Lemma 4.7, we can prove a Liouville-type result.

Proposition 4.3. Let Z € C*. Suppose u: C* — R is a C* function such that ||00ul| = (cs) <
oo and the eigenvalues )\(wﬂ_“(é)uz,;(é)) of W (2)uz(2) in the Ti-cone of MAxs — croq(\) —

co(2) = 0. If for all z € C*, H.;(00u)(z) = 1, then u is a quadratic polynomial.

Proof. The proof follows from Lemma 4.7 by letting R — oo. m

Lemma 4.8. For r > 0, suppose u: By, C C* — R is a smooth function satisfying

H.(z,00u) = 1. Then, for every a € (0,1), we have the estimate
100ullcas, ,) < Cla, e, S, 00ull L= B,,))-
Proof. For each z € B,, we consider the following quantity
N, = sup d.|000u(z)],
2€B,

where d, := dist(z,0B,). Suppose the supremum is achieved at zy € B,, then we consider

the following smooth function @: By, (0) — R defined by

u(z) = u(zo + dZOZ/Nu)Ns/dzo —A— Az,
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where A, A; are chosen so that @(0) = 0 = 0a(0). Notice that

00u(z) = 00u(zo + doy2/Ny);  |0000| Lo By, (0y) = 1 = [000u(0)].
In particular, we have ||001|ca(p,) < r for every a € (0,1) and @ solves
H. (2o + d.yz/N,,00u)(z) =1, =z € By, (0).

By the hypothesis that [|00ul|f=(p,) < oo, the eigenvalues of /—109u have an upper
bound and thus a positive lower bound, so H.(z,-) is uniformly elliptic. The Schauder
theory for fully nonlinear uniformly elliptic operators of the form H.(z,ddu) implies that
Ot is bounded in C**(By,/2(0)), and so @ is controlled in C**(By, /2(0)). Now, we prove
this by contradiction. Suppose we have a sequence {u,} satisfying H,(z,90u,) = 1, where
Uy : By, — R such that H@éunHLoo(BQr) < K but N,, > n. For each n, we let z, € B, be
a point where N, is achieved. Since B, is compact, by passing to a subsequence, we may

assume that 2, — 2z, € B,. Thus, we have functions @, By, (0) = R such that
|t |lcs.e(By, o) < C and Hc(zn +d., z/N,,, 8571”) (2) =1for z € By, (0).

Since N, > n, by a diagonal argument, there exists a function ., : C> — R and a subse-
quence such that {@,},>x converges uniformly to i, in C**' (B (0)) for some o/ € (0,1). In
particular, we have H,._(0dis)(z) = 1 and |090ii(0)| = 1. By Proposition 4.3, i is a

quadratic polynomial, which leads to a contradiction. O

By arguing locally, with Lemma 4.8 we have the following.

Corollary 4.1. Suppose S is a compact subset of the stratification {(c1,¢o): ¢1 > 0 and ¢o >
—QCi’/Q} of €5 and X is a C-subsolution to d: M® — €5 with range in S and dy constant.

For any ¢ € P* with range in S and ¢; constant, if u: M — R is a smooth function solving
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the equation c¢: M® — €, then for every o € (0,1), we have

||85u||ca(M) <C(M,X,S,d,w,a, ||z, ||85u||Loo(M)).

4.2 When Complex Dimension Equals Four

In this section, we are interested in the following equation on M*:

X4 = <;1)02X2 Aw? + <;L> o X AW+ <3> cow? = 66, X% ANw? + 4 X Aw? 4 cow?,  (4.26)

where ¢y, ¢; are constants and ¢g is a function on M. By Proposition 3.1, to have convexity,

for any z € M, we want (ca,c1,co(2)) € €, with

%1 = {(0,0,¢0): co > 0} U{(0,¢1,¢0): 1 >0 and g > —3¢;*}
U{(ca, —2¢¥% o)1 ¢ > 0 and ¢y > 363}

U{(ca,¢1,¢0): ca > 0,¢1 > —203/2, and ¢y > —3cow] — 3c171}. (4.27)

Here, 1 is the largest real root of 23 — 3coz — ¢;. So equation (4.26) can be rewritten as a
function c: M4 — %,. In this dissertation, we consider functions c: M* — %, with ¢; and ¢y
both constant and range in a compact subset .S of the stratification {(cy,¢1,¢0): 2 > 0,¢1 >
—203/2, and ¢y > —3cox? — 31wy} of C€~4. That is, besides ¢, ¢1, ¢co are bounded from above

and below, we also have inf.cg ¢y > 0, inf.cgc1 + 203/2 > 0, and inf.cg co + 3cox? + 3c121 > 0.

In this section, first, we always assume that there exists a C-subsolution u: M — R to a
function d: M* — (54 with d; and dy constant. Then, we also call X, this C-subsolution and
by changing representative, we may assume X is this C-subsolution. Because later on we

want to use the method of continuity to obtain the solvability, we are interested in functions
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in P?. For any function ¢ € P% with ¢; and ¢, constant, we consider the following equation:

6202()\) + 010'1()\) + Co(Z)
A1 A2 A3y

he(z,\) = =1, (4.28)

where z € M and ); are the eigenvalues of w™'X, at z. Note that we abbreviate A =
{A1, A2, A3, Ay} and we always assume A\ > Ay > A3 > Ay unless further notice. Most of
the time, to save spaces, we will abbreviate h = h.()\), h; = Oh./ON;, hij = 0*h./ON;ON; for
i,7 € {1,2,3,4} for notational convention. Unless specify otherwise, we always assume S is

/2

a compact subset of {(CQ,Cl,Co)Z co > 0,¢0 > —262 , and ¢y > —3cox? — 301561} C ‘€~4 and

we abbreviate ¢y = ¢o(2) for z € M* with (¢, ¢1,¢0) € S C 6.

4.2.1 The C? Estimate

Define a Hermitian endomorphism A = w™'X,, where X, = X + v/—190u, and let \ =
{A1, A2, A3} be the eigenvalues of A. We consider the following function G(A) = log(1+X\;) =

g(A1, A2, A3, Ay) and the following test function
U=—-Au+G(A), (4.29)

where A > 0 will be determined later. We want to apply the maximum principle to U, but
since the eigenvalues of A might not be distinct at the maximum point ¢ € M of U, we do
a perturbation here. The perturbation here, though not necessarily, is made to preserve the

T-cone structure for convenience. Assume \; is large, otherwise, we are done, then

e we pick the constant matrix B to be a diagonal matrix with real entries

Bi1 = A3 Bag=X/2; DBs3=X3/3; By =0.
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By defining A = A + B, then A has distinct eigenvalues near ¢ € M, which are {5\1 =
2A1, Ay = 3X2/2, A3 = 4)3/3, A = Ay}, The eigenvalues of A define smooth functions near
the maximum point ¢q. And we can check that the maximum point ¢ of U in equation (4.29)

is still the maximum point of the following locally defined test function

U:=—Au+G(A). (4.30)

Near the maximum point ¢ of U, we always use the coordinates in Lemma 2.15 unless

otherwise noted. Same as before, we instantly get the following lemma.

Lemma 4.9. At the mazimum point g of U, by taking the first derivative of U at q, we get

0= —Aux(q) +

— (Xu)11 (4.31)
where we denote uy, = Ou/0z, and (Xy,)11, = 0(Xy)11/0%.

For any ¢ € P? with ¢; and ¢, constant, we may define the following operator £, by

82
Z 5 Ak )%, (4.32)

1,5,k

where A is the Hermitian endomorphism w™'X, at 2z and H.(z,A) = he(2z, A1, A2, A3, \g) is

defined by he(z,\) = (c202(X) + c101(X) + o(2)) /A1 A2AsAs. We have the following.

Lemma 4.10. By taking ho(X) = (c202(X) +c101(A) 4+ co) /A Aads Ay and g(X) = log(1+ A1),

we have
b — —0202()\;¢) - 0101(/\;z‘) - CO; hij = 0202(/\;1',]*) + 6101()\;¢,j) + Co(l i 5ij>;
AL A2 A3\ A A2AZA NN
1 1
= 0y i = —01;01 —————.
W I T WE

Here, we denote h; = Oh./ON;, g; = 0g/ION;, hij == 0*h./ONON;, and g;; = D*g/INON;. In

102



particular, on {1 A3\ = ca09(N\) + c101(A) + ¢}, we have

b — CQU]_()\;i) +c1 B l and B — 1+ (5ij B CQ(()\i + /\j)gl()\;i,j) + )\Z/\]) + Cl(>\i + )\])
Mg\ A Yo Aij A A2 A3 AN '

Lemma 4.11. For any point on the set {h = 1}, we have

020'2()\ )+0101<)\ )"—CO . CQUl(A )+Cl _ i >0

—h; = —
A1 A2 A3 A4\ A1 A2 A3 Ay Ai

Proof. On h = 2% )‘E\Tf\;ils(’\)%o = 1, this implies that X; (03(X;) —ca01(Xi) —c1) = c202(Nyi)+
c101(A\;i) + ¢o. By Lemma 2.4, we have o3(\;) — c201(A;) —c1 > 0 on 04(N) = caoa(N) +

c101(A\) + ¢o. Hence, ca09(X;) + c1o1(A;) +¢o > 0 and —h; > 0. This finishes the proof. [

To obtain a priori estimates, we focus on functions ¢ € P? with ¢; and ¢, constant and

range in a compact subset S of the stratification {(cg, c1,¢0): c2 > 0,01 > —203/ 2

, and ¢y >
—3cox? — 301351} of ‘€~4. That is, besides ¢g, ¢1, ¢co are bounded from above and below, we also
have inf.cgco > 0, inf.cgcq + 263/2 > 0, and inf.cgco + Sngf + 3ciz; > 0. With these, we
can get a priori estimates depending on this compact subset. Also, to simplify estimates and
compute asymptotic behavior, for the remainder of this subsection, we let O; be the Big O
notation that describes the limiting behavior when \; approaches infinity. So O;(1) means
the quantity will be bounded by a uniform constant if \; is sufficiently large. We let ©;
be the Big © notation that describes the limiting behavior when \; approaches infinity. So

©;(1) means the quantity will be bounded from both above and below by a uniform constant

if \; is sufficiently large.

Proposition 4.4. Let h(\) = (0202()\) +cr1o1(A) +co)/)\1>\2)\3)\4, on {1 A A3y = caoa(N) +

c101(A) + ¢}, we have
> hi=A7'0q(1); ZhQ A 204(1);
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> huh = A0 (1); > oy = A A204(1);
l l

> hgh = A'A20(1); > hahy = A7P0:(1);
l l

> hihijhy = A*0:(1).

1]

Proof. The proof is by exhaustion. We consider two cases: the case A\, is uniformly bounded
from below by a positive constant and the case Ay approaches 0. No matter which case, we

always get these estimates. This finishes the proof. n

By taking the first and second derivatives of the equation H.(z, A) = 1, we have the following.

Lemma 4.12. Let H.(z,A) = 1, then we have

dco

N OH(W) AN
O_Z 8Ag Oz, o4(N)’

i,J
d2cq

A)ON OAs OH(A) 92A] o [ 2 dco ON) Beromn
- Z(aAﬂaAs 0z, 0z, + 6/\? 02;,0%) + 31\{ (04(/\))%(8_2168_2;6)) + ai(N)

In particular, at the maximum point ¢ € M of U, we have

deg
0= hi(X)ip+ —2—; 4.33
Z VY (4.33)
. o _ 12
0 Zhl] Zk ]jk—i_Z(A)\ A )\2)\3)\4>|<Xu),771,k‘

+ Zh Aiwii k) + af:azk -y R )“k)
u kk — AW kk /\1/\2/\3)\4 - /\ /\2)\3)\

(4.34)

4

Proof. The first and second derivatives should be straightforward. At the maximum point,

suppose the eigenvalues are pairwise distinct satisfying A\; > Ay > A3 > A\4. Since A is a
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diagonal matrix, then
deg

0= B _ om
Z Wik 35

This is also true when the eigenvalues are not pairwise distinct. For the second derivative,

if the eigenvalues at the maximum point ¢ are pairwise distinct, then

O—th

Wi+ Z(A ¥ )\1)\;\3/\) (Xl

E IE
82%¢q
z 2 860
hy it ) + L R (G2 (X))
+ Z )itk — Niwit k) + MAs ek \9z, (Xu)iin
This is also true when the eigenvalues are not pairwise distinct. O]

Lemma 4.13. Let d: M* — €, and X be a C-subsolution to d, then there exists uniform
constants N > 0 and k > 0, which are independent of ¢ € P with c(z) €S for any z € M,

such that if Ay > N, we have Zz hiug; > —kK ZZ h;.

Proof. If X is a C-subsolution to d: M* — €, then for all z € M, we have X3 — 3dyX A
w? — dyw? > 0 and X? — dyw? > 0. By choosing § > 0, k > 0, and € > 0 sufficiently small,

since M is a compact manifold and S is a compact subset, for any ¢ € P% with ¢ € S, we get

(1 —86)(X — kw)® = 3ca(X — kw) Aw? > (c1 + €)w?;

(1—-6)(X — ,%w)2 > (ca+ w?; X — kw > ew.

By the definition of 75d, we also have dy — ¢y = 23 — ¢y > 0. This implies that dy > ¢, for

any ¢ € P Note that u; = \; — Xj3, s0 we can write

S g ) = Yo (= X ) = = 30 2RI T,y

i

> A A;
REVEVY X =Ky 4.35
A1 A2 A3y * Z( i) Mg N, ( )
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where we denote A; = ca09(\;) + c101(X;) +¢o for i € {1,2,3,4}. Since Ay > Ay > A3 > Ay,

we have Ay > A3 > Ay > A; > 0. There are two cases to be considered:
eIf0 < A\ < X44 =, then

Ay Ay

Xyi— >4 .
(Xt = K)o Z e,

Hence, equation (4.35) gives Y . h;(uz + k) > 4/\1)\2)\3/\4 + > (X — )m >

o If N\, > X44 , we can show that A3 is bounded from above when \; is large. To be more

precise, suppose A\; > Ay > A3 > N for N > 0 sufficiently large, then

C2(M A2 + MAz 4+ A2ds) + (A1 + Ao+ A3) + co
Mg — oA+ Aa + A3) — ¢
< da(M A2 + AA3 4+ A2ds) +supeeg e (A1 + A2 + A3) + sup.cg | <ol
- MA2A3 —do(A + Ao+ A3) — dy
< 6supy, da + 6sup,cg |c1| + 2sUp,eg |C()|'
- N

A =

C e . . 3 da+3 sup, +sup,
We get a contradiction if N is sufficiently large. So, we have §=PALZ"=0ces I‘:ﬂ SuPees |co]
44—

A3 > Mg > X44 = > 0. If \y is also sufficiently large, then for A3\, we have

a( M A2 + A A3+ Aodg) + c1(A1 + A+ A3) + ¢
AMAA3 — oA+ Ao+ A3) — ¢
N CoA3( A1+ Xo) + (1 + 2) (M1 + Ao + A3) + ciea + ¢
AMAoAs — oA+ Ao+ A3) — 1
da A3 (A1 + A2) + (Supees [e1] + d3) (M + A2 + Ag) + sup,eg(daler| + o)
Mg — do(A + A2 + A3) — d4 '

)\3)\4 == )\3

:C2

<c+

We see that when ), is sufficiently large, for any ¢ € P satisfies the hypothesis, we have

A3y < co + €. (436)
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In addition, by (1 —0)(X — nw)g > (g + €)w?, we get the following,

1 1 (X33 — K)(Xy3 — K) co+e
Xas — K)— + (Xgg — K)— > 2 >o /21 4.37
(Xag = )5, + (X =)0 2 ¢ ol = A T =) (437)

By combining inequalities (4.35), (4.36), and (4.37), we may write

Z hl(ulz 4 /ﬁ;) _ —2020'2<>\) — 3010’1(/\) — 4C0 4 Z(Xﬁ . /§j> Az

)\1)\2)\3/\4 7 /\1>\2)\3)\4)‘i
610'1(>\) + 260 )\1)\2)\3)\4 — CQ)\iUl()\-i) — Cl>\i
= —2 __— X'f' - -
)\1)\2/\3/\4 + Z( " K) /\1/\2)\3)\4)\i

1 1
> =2+ (Xg3 — #)— + (Xgz — K)— + A, 105(1)

)\3 )\4

Xz — w)(Xy7 —

Z 249 ( 33 l{)( 44 /i) +A5102<1)

A3y

> 24 2(1 =862+ X010,(1) > 6 + A 10,(1).

If A\s is uniformly bounded from above, we get

Cg()\g + )\4) + C1

A2 A3

CQ()\Q -+ )\3) + C1
Ao Ag 2

CQ()\Q + )\4) + C1
A2

+ (X33 —rn— A3)

Z hi(uig + K) 2 (X9 — K — A9)

+ (Xyq— Kk — A1) + 2710 (1).
We can treat the terms as inner product of the vector (Xoz —k— Ao, X33 —k— A3, Xyg— K —A\y)

; c2(AstA)ter ca(AetAg)+er c2(Qe+A3)+er
with the vector ( LT v vy s v v Ve )

. If this inner product has a uniform
positive lower bound, then we are done. Notice that when A; is sufficiently large, since
A2, A3, A4 are uniformly bounded from above and below, we have AgAsAg —ca( Ao+ A3+ Ay) — 1

is sufficiently close to 0. That is, when \; is sufficiently large, we get

5)\2)\3/\4 > )\2/\3/\4 — 02()\2 + /\3 + /\4) —c1 > 0.

Hence, for any triple (A2, A3, A3) in this case, there exists a € (0,0) such that AgAzA\y —
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oMo+ A3+ N\) — 1 = ddodshe. In addition, we can check that for any & € [0,6], (1 —
5))\2)\3>\4 —c2(Ag+ A3+ A\y) — ¢ is strictly T-stable hence convex by Theorem 2.5. Moreover,
since ¢ € P? with ¢ € S, we have (1 — §)(X — kw)? — 3¢2(X — kw) Aw? > (¢ + €)w?. By

Hadamard’s inequality, that is, the determinant of a positive-semidefinite Hermitian matrix

is less than or equal to the product of its diagonal entries, we obtain

Thus, for any 8 € [0, 6], we get

(1= 0)(Xoz = K)(Xg3 — ) (Xuz — K) — 2 Y _(Xj5— k) —c1 > €.

=2

.

This implies that the point (Xo3 — , X33 — &, X453 — ) lies in the set {(1—0)AaAghs — o (Ao +
A3+ A) —¢1 > 0} for any 6 € [0,]. Moreover, the inner normal vector of (1 — §)AaAzhg —

ca(Ao+Ag A1) —e1 = 0 at the point (A, A, Ag) will be (2CRate aletpura aletinta)

By the supporting hyperplane theorem, the inner product will be positive. Since o€ [0, 4]
and Ao, A3, A4 are uniformly bounded from above and below, so the inner product has a
uniform positive lower bound. In conclusion, we can find a uniform N > 0 such that if

A1 > N, we always have

d hiug+r)>0=> hug > =Y hir

for any ¢ € Pd with range in S. This finishes the proof. O

Lemma 4.14. With the same settings as in Lemma 4.13, there exists a uniform N > 0 and

€ > 0 such that if \y > N, then —hy — hg — hy > ¢ > 0.
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Proof. First, we have

1 1 1 02(3)\1 + 2)\2 + 2)\3 + 2)\4) + 301
b= 2L .
2= My — = WY

Second, if A3 is sufficiently large, then A\, approaches 0 and

1 CQ()\l + )\2 + )\3) + 1 1
—hy —hs—h —hy=— — > — + A7 05(1).
2 —h3y—hy > —hy " N BY _)\4+ 3 O3(1)

So —hg — hs — hy is uniformly positive when A3 is sufficiently large. Then, if A3 is uniformly
bounded from above and )\, is sufficiently large, then we get 2co > A3Ay > o > 0 and
1 1 2

2
—hy —hy —hy > — 4+ — + X,105(1) > + 2105(1) >
2 3 4_)\3 )\4 2 2()_ )\3)\4 2 2() \/E

+ Ay TOs(1).

Last, if Ay is uniformly bounded from above and A; is sufficiently large, then we can show
that A3A\y — ¢ has a uniform positive lower bound. If not, for any n € N, there exists A,

A3 and Ay, with Aoy, > Ag > Ay, such that % > A3, Aapn — c2 > 0. This implies that

A2 n A3 A — Co(Aam + A3+ M) — €1
Ao
<22

Ao, X .
—co(Agp + Map) — 1 < % — 203/2 - < 2m inf (¢, + 203/2),

n ceS

which gives a contradiction when n is sufficiently large. Hence A3A; — ¢ has a uniform

positive lower bound, which implies that -+ + &+ + L+ — 32_ has a positive uniform lower
’ A2 A3 A4 A2A3 g

bound. In addition, we obtain

1 1 1 02(3/\1 + 2)\2 —+ 2)\3 + 2/\4) + 301
T S S S I
2= s == sy WY
1 1 1 30 B
syt ke ).
SV WS Wil v W R L&)

Thus, we are done if \; is sufficiently large. This finishes the proof. m
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Now we let C' be a constant depending only on the stated data, but which may change from

line to line. We can finish the proof of the following C? estimate.

Theorem 4.2. Suppose X is a C-subsolution to d: M* — €, with range in S and di,ds
constant. For any c € P with range in S and ci,cy constant, if u: M — R is a smooth

function solving the equation c: M* — %y, then there exists a constant C' such that
00u| < C(1+ sup‘Vuf)‘
M

Here, C = C(M, X, S,d,w,oscy u, ||col|c2) is a constant and V is the Levi-Civita connection

with respect to w.

Proof. We use the maximum principle to prove this, for any ¢ € P? with ¢ € S, we can define
the elliptic operator £, in equation (4.32). First, by applying the operator £, to G(A), at

the maximum point ¢, we obtain

Xt
—=— Wik — th—< )li’kk

- X - 1+ M\
_Z Z\ Jlkl H Xu)l}kf
(1+2) (A — Ay
‘(Xu)l_i ? (Xu)li i ‘ )lj]|
> hji—————— — hj————— — - ~ C h;. 4.38
- (14 X)? Z 14+ M Z(1+A1)(A A)+ Z ( )

Second, by equation (4.33) and equation (4.34), we have

O—th

Sy
??‘I

Jii ¥ Z(A N A )\2)\3)\4> [(Xa)siel”

+ Zh it k) + o -2 a2 )M)
m kk — NiWi gk )\1>\2)\3)\4 - )\1 )\2)\3)\

4
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_ Z hw< ik — > ;l:i h2) l‘l‘chl> <(Xu)jj,k > ;l:(l hz)llkhj)

" 2Zi,j,l hjhijhl%((X )llk 515 Zh hyhs |Zz hi (X )llk|
> hi v )

" Z<>\,1>\ A /\;\3)\4) w)gikl” + Z hi ( )itk — AMﬁ,m})

Bfkgzk Z 2§R ac )’L{ k)
)\ 1 A2 A3y )\1)\2)\3)\4/\
_ o Zz hl( )ll k B Zz hl( )uk
22” hihR(G2 (X )M) S hihihig 52 |2
MA2AsAg Yo b7 )\2/\2>\2)\2(Zl h?)?

+Z<M A1>\2)\3)\4> ”’“‘2+Zh( whitik = M’f’ﬂ)

82 80
8zk8zk Z 28% 0 )zz k)
)\1)\2)\3)\4 - )\1)\2)\3)\4/\
S QZz]h h”%(ﬁco( zzk Z 2§R BCO )ﬁk) Zz]h h; h2]|gco|2
= MAshahe S I )\1)\2)\3)\4)\ TS, 1)
2
+Z<)\)\ )\1>\2)\3)\4> u)ji +Zh ““CZ“
8200
021,0Z)
—hk 4.39
P (4:39)

where the inequality on the last line is due to the convexity of h =1 and |w; ;| < C. Since

the solution set {A\;A2A3\y = c209(A) + c101(A) + o} is convex and

S (X e h;
(Xu)jj,k: - l T 132 h = ( u)ji,k - Oz 2
>, ki A1 A2 AsAs D2 By

is a tangent vector on the solution set, we obtain that

Zh”( ﬁ/‘g D ;l:i h2)”khz> <(Xu)jj,k D ;l:(l h2)llkhj> > 0.
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Hence, by setting k = 1, inequality (4.35) gives

_ Zh.
- — Z h ” 11 + Z h u 11 — (Xu)li,ﬁ)
:_Zh zzll—l—zh ull X)llﬁ)

. ZZ”h h”%(ac“( Z DR(52(Xu)in) Xy, hahshis| S22
- Mo Y, b )\1/\2>\3)\4 )\2)‘2/\2>‘2(Zz hi)?
82
1 Co 2 521051
— Xu)i — hi(1+ X;). 4.4
+ Z()\Z/\] )\1)\2/\3/\4) |( )] 7k| - )\1)\2/\3/\4 - O; ( " ) ( 0)

Combining Lemma 4.13, inequalities (4.38), (4.39), and (4.40), at the maximum point ¢, if

A1 is sufficiently large, then we have

| (X |
{ C h . h 117,7, . j~ u~1j,j _
A1) Z Z 1—|—)\1 ; (14 A) (A=)

_|_

H

ul
+/\1

1 C2 [(Xu) i1l

> A h; h; } — 2

Z ithi + Z i <)\,~)\- A1A2A3A4> 1A

. Z h]} Xu 13,]| 222] h hz‘j%(aco( )25,1) . Z ( ’L’L 1)
L+ 200 =) (14 A)AAadsh S, 72 (1+ A )/\1)\2)\3)\4/\

- hihjhg| 202 Dy
o ;ZJ 777 | 0z1 | + ~8z16z1 + C Z hz
(1 + /\1))\2>\2)\2)\Z(Zl h2)2 (14 A)MAsdshs Z.

112 1 B C2 |(Xu)ji,1|2
>Z Zl<)\1/\j >\1)\2)\3/\4) 1+

i Z h]} Xu 137]"2 2 Zzg h; hlﬂR(gzﬁ( )ﬁ,l) B Z 2%(3_;2()(1)12,1)
(T A — &) (L4 A Adadsha Sy 2 (1+ M)A AN,

Cj QCQ
. Zz]hh hw’h’Q 8(21821 + (C_AH)Zh
(1+A)AMNA(, A2 (14 A)Mdadsh —

> hlw +3n, (X n Z<0’2(A;1,j) - C2> [(Xu)j1a]?
#1

(1+M) T (14 A)? A1 A2 A3\ I+ X\

>AZhun+Zh }((
(X
(1
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B Z hj}(Xu)lj’j{Q 221 hzhuéﬁ(azl( )11,1) B 2%(32( )11,1)
“(L+A) M =) @A R (1 + A)AAs)
2 Zg;ﬁl >l R (8z1 <Xu)j3,1)

2R (52 (Xu) 51
_Z< ( )

(1+ )\1))\1)\2)\3)\4 > h? 14 )\1)>\1)\2)\3)\4)\j
c 2c
B szhh hz]’aOP N ~8213%1 + (C—AH)Zh (441>
(1+ )\1))\%)\%)\3)\3(21 h1)2 (14 M)A Ay

%

We can also simplify some terms in inequality (4.41), for j # 1, we have:

,{(Xu)li,j|2 oa(May) — e\ [(Xu)j1al
h; ESAE + ( )

A A2 A3y 1+ 5\1
2
_p K -1 (2s) o) [(Xu)jraf?
! (14 X)? A1 A2 A3y 1+ XM

thw + 2h; |T]‘~2 + (020\;1’]') _ 02) (X))
(14 Xp)? (14 X)?2

A1 A2 A3\ 1+ :\1

2

_ 20201(>\;1,j> —|: 201 + 0'2()\;1’]') — Co |(X )-1 1}2 n 2(020'1()\;3') + _ i) |7}‘~
(1 + )\1)2)\1)\2)\3>\4 s >\1)\2)\3)\4 /\j (1 + )\1)2
2
2|T;
—% > ¢ > —C. (4.42)
(1 + )‘1)2)\7 >\1

Here, we denote T := (X,);11 — (Xuhi1,; = Xj11

1; — Xi1;. In addition, for j # 1, we obtain

hil (X, [” 2 by R(GE (X)a)  2R(52 (X))

A =) T A)AMAA I (L A) A deAsA,
il (X" 25 b R(GE (X s)  2R(52 (X))

T+ a0 =) (14 A)Adedsh Y h2 (1+ >\1)>\1>\2)\3>\4A
221 hyhyi R (az1 ((Xu)ﬁ,l - (Xu)li,j)> ( cl( JJ 1~ (X )13' J))

(1+ )\1))\1)\2)\3)\4 > th (1 + >\1))\ A2 A3 A4

2
_ h; (X)) + 2 hlhljg—?f()\l ) n %()‘1 )
A+ A) 00 = M) |77 X dshahy 3ok M dsAadihy
(5\1 - 5\]») Zl hiha; gi? g_?f 221 huly; R (azl ((X)jj,l - (X)lj,j))

(1+ A)AZAZA2N2R, | Do, k7 Aj

2R(B2((X)50 — (X)i3y))
(1+ )\1))\1)\2)\3)\4>\j

(14 XA AAs Ay 32, 12
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(5\1 — 5\]) Zl hlhl] gz?
T (14 AD)AZAZAINZR; | o B2
23%(321 (X)j50 — (X)1345))
(T+X)MAdshN;

deg |2

230 M R(G2 ()50 — (Xg,))
( + A ))\1)\2)\3)\4 Zl hl2

0z1
Aj

(4.43)

We estimate some terms in inequality (4.41) and inequality (4.43). If A4 is uniformly bounded

from below by a positive constant, then A3 is uniformly bounded from above. If \; is also

uniformly bounded from above, the estimates should be straightforward. If Ay approaches

infinity, then we get

—)\3/\3>\4h2 = CQ()\3 + )\4) + C1 + )\1_101(1) = @1(1),

1

—hg )\— — )\ 101( ) = )\3_1@1(]_>,
3
1

—hy = SV A 101(1) = A tey (1)
4

In this case, by Proposition 4.4, for j # 1, we have

~ ~ 2
(M=) DT C <
(LHANNNARZ| Xkt A T NN T
257 hiluR(Z2 ((X) 51 — (X)) C <
(1 + )\1))\1)\2)\3)\4h]’ Zl h12 N )‘%)‘2/\3>\4>\th -
2R(52 (X)j5.1 — (X)55)) <
(1 -+ 5\1))\1)\2)\3)\4)\jh]’ - /\%)‘2)‘3)‘4)‘jhj -

Now, if A4 approaches 0, then we need to consider the limiting behavior of hy, hy and hy.

For hy, we have

1 02(/\1 + >\2 + )\3) +C

—hy = — — —

Mg A1A2A3Ag

1
W

+ A 10:(1).
4
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So hy = A\;'O1(1). For hs, the limiting behavior is slightly harder, we have

1 2()\1)\2 + MAs+ )\2)\4) + Cl()\l + Ay + )\4) + ¢ CoA1 Ao 1
Ly = i > 2 .
" MAaAINS AN Bhg

Hence, hy = A\;'©;(1). For hy, the limiting behavior is slightly harder, we have

— M A A3 he = (A Az + Mg+ Asda) + c(A + Az + M) + co = M A0 (1).

Hence, —A;A2A3\4h0 = A\ A301(1). Similar to before, by Proposition 4.1, for j # 1, we have

- 2

(/\1 - /\j) Zl hlhlﬂ gi‘i 3_2 C

= 3 < oo <6
(1+ )\1))\2)\2)\2)\2h? Zl h; Aj >‘1)‘2)‘3)‘4/\th
257 hihiR(52((X),51 — (X)154)) C

< <

(1 + )\1))\1)\2)\3)\4h]’ Zl th )‘1)‘2/\3/\4>\jhj

2R(58 (351 = (0)155)) C .
(14 A)MAAsAadhy |~ Addshidhy —

In conclusion, for j # 1, no matter which case, we always obtain

~ ~ 2
(M —A)) > by S

( 8z1 021 | C- 4.44
(1+)\1))\2)\2)\2)\2h? Zl hZ Nl T J ( )
221 hlhl] (821 ((X>j371 B (X)lj’J)) S C’ (445)
(14 M)A AsAsAsh; 3, B2
2R (22 (X) 51 — (X)17,
(621 (h(( ).7.7:1 ( )1]’])) S 07 (446)
(1 + )\1>>\1)\2)\3>\4)\jh]’
- hihjhgg| 2
Z;ZJ J J|8z1‘ < C; (447)
(1+ A)ATANAT(DS, hi)?
8%({
~821821 S (448)
(1 + )\1))\1)\2)\3)\4
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Last, we have the following inequality

hy }(X 11 1| 221 hlhll\%(azl( )11 1) B Z 2%(32( )11,1)
(1+ )\1) (1+ )\1))\1)\2/\3/\4 > hl2 ) (1+ /\1)>\1)\2)\3)\4
—h‘ 111_( Zlhlhll 4 1 )%2

14+ N )\1)\2)\3/\4h1 Zl hl2 )\%)\2)\3)\4h1 621
600 Zl hlhll 1 2
—h
! 8751‘ ()\1/\2/\3/\4h1 St A§A2A3A4h1>
X hih 1 Jdcg |2
Ehl‘( )1~1,1_( >y luhy o )ﬂ‘
1+ /\1 )\1)\2)\3)\4h1 Zl h’l )\1)\2)\3)\4}11 821

(4.49)

Thus, by Lemma 4.13 and Lemma 4.14 and by inequalities (4.41), (4.42), (4.43), (4.44),
(4.45), (4.46), (4.47), (4.48), and (4.49), at the maximum point ¢ we obtain

0> L(U) > (C - Ar Zh +CY hj—

J#1
n hl‘ (Xu)ﬁ,l B ( Zl hihy, 1 )% 2
1+ :\1 )\1)\2)\3)\4h1 Zl hl2 )\%)\2)\3>\4h1 821
S & B i‘ (Xu)iia _ ( > b N 1 >% 2
- 2 Al + 5\1 )\1)\2)\3/\4]11 Zl hl2 /\%)\2)\3)\4]11 821
Here, we let A sufficiently large to get the last inequality. So, we get
Ake > hihy 1 Jdco
—V A\ < |Auy — L —
V5 V< A </\1/\2/\3>\4h1 Szt A§A2A3A4h1> 821‘
El hlhll 800
<A ‘ H— . 4.50
R P wwwwes SRS VW | (4.50)

s ; : > hihu
Similar to before, we estimate the quantity Mk SR T NN /\3 oo | we have

1
’)\%)\2/\3>\4h1 ) - 02(/\2>\3 + )\2)\4 + )\3/\4) + C1 (/\2 + >\3 + )\4) + Co
! < 1 < ("
3cox? +3c1x1 + o infees(3cor? + 3ciy +¢p) T
’ > huhay ’ CAA <C.
Mg Ashy > hE

CQ )\2/\3 —|— )\2)\4 —f- )\3)\4) + Cl()\g + /\3 —|— /\4) —I— CQ)/\I_I)\Z2 -
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Here, x; is the solution of the diagonal restriction of AAsAy — ca(Aa + A3+ A\y) —c; = 0. In
conclusion, we get y/2£¢\/A; < Ajuy| + C. This implies that

A?|ug)? + C?) < O(1 + sup |[Vul?).
M

2 4
< — 2=
A< A/<;6<AW1’ +O) < AEE(

By plugging back to the original test function U = —Au+G(A), we will obtain a C? estimate

for any ¢ € P% with range in S and ¢;, ¢, constant. This finishes the proof. m

4.2.2 The C! Estimate

Here, same as Section 4.1.2, we use a blow-up argument proved by Collins—Jacob—Yau [18§]

to obtain the C! estimate. Since everything follows verbatim, so we do not state it here.

4.2.3 Higher Order Estimates

Here, the proofs are similar to the proofs in Section 4.1.3, so we just state the results here
without writing down the proofs. The equation is elliptic and the solution set is convex, we

can exploit the convexity of the solution set to obtain C*® estimates by a blow-up argument.

By shrinking the coordinate charts if necessary, we may assume that the manifold M can be
covered by finitely many coordinate charts U, C V, such that X, = vV —1900u, on V, for a
smooth function u, satisfying ||ua||c2(g,) < K, where we use the standard Euclidean metric
on C* and K is a uniform constant independent of a. For convenience, we focus on a fixed

coordinate chart V,, and we drop the subscript a. The function u on V' satisfies

H.(z,00u) = H.(z,A(2)) =1, for z €V,

where A/ (z) = w*(2)u;z(2) with eigenvalues in the Ti-cone of Ay AaAgAy — c209(N) — o (N) —
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co(z) = 0. Moreover, by fixing Z € U, we define the following operator which does not depend

onzeV,
H,:(00u) = H, (%, ()u;;).

We have the following.

Lemma 4.15. Let U C C* be a connected open set and fix 2 € U. Supposeu: U C C* — R is
a C® function such that |00ul| ey < 00 and the eigenvalues A(w/*(2)ugz(2)) of W ()ug(2)
in the Tq-cone of My AagAg g —Co09(N) —c101(N)—co(Z) = 0. If for all z € U, qug(@éu)(z) =1,
then there exists a constant o € (0,1) such that for any R > 0 with Byr C U, the function

u satisfies
100ull oy < C- B
Here, C = C(c, S, [|00ul| L))

Then, with the above Lemma 4.15, we can prove a Liouville-type result.

Proposition 4.5. Let 7 € C*. Suppose u: C* — R is a C* function such that ||00ul|p(cs) <
oo and the eigenvalues )\(wﬁ(,%)ul,;(,%)) of Wk (2)uz (%) in the T1-cone of M Az s Ay — a0 (N)—

c101(\) — ¢o(2) = 0. If for all z € C*, H,;(00u)(z) = 1, then u is a quadratic polynomial.

Lemma 4.16. For r > 0, suppose u: By, C C* — R is a smooth function satisfying

H.(2,00u) = 1. Then, for every a € (0,1), we have the estimate

100ul|ce (B, ) < Cla, ¢, S, [|00ul| L (s,,))-

By arguing locally, with Lemma 4.16 we have the following.

Corollary 4.2. Suppose S is a compact subset of the stratification {(co,c1,c0): ca > 0,¢1 >
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—203/2, and cg > —30233'% —3c111} of‘é and X is a C-subsolution to d: M* — <€~4 with range
in S and dy, dy constant, where x; is the largest real root of x® — 3cox — ¢1. For any c € P
with range in S and cy, co constant, if u: M — R is a smooth function solving the equation

c: M* — ‘€~4, then for every a € (0,1), we have

100ull oy < COM, X, S, d,w, ol 000l o an).
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Chapter 5

Existence Results

In this chapter, we study the solvability of the constant maps d: M3 — €5 and d: M* — €,
provided that a C-subsolution is given. We will study them individually in this dissertation
and hope we will find a unified approach to handle all dimensions in the future. The ideas

in this chapter come from the author’s previous works [51, 52].

We prove the following result in this chapter.

Theorem 5.1. Suppose there exists a C-subsolution to constant map d: M3 — {(0,¢): co >

2
/ , and cg > —3cor? —

0} C %5 or constant map d: M* — {(ca,c1,¢0): ca > 0,¢1 > —203
31z} C ‘54, where x; is the largest real Toot of 23 — 3cow — ¢1. Then the general inverse oy,

equation d: M3 — €5 or d: M* — €, is solvable.

Theorem 5.1 confirms the following analytic conjecture by Collins—Jacob—Yau in [18] when
the complex dimension equals three or four. In [18], with a slightly stronger C-subsolution
assumption, Collins—-Jacob—Yau were able to obtain the solvability. Here, in this chapter, we

show that we can obtain the solvability from a usual C-subsolution.

Congecture 5.1 (deformed Hermitian—Yang-Mills equation, Collins-Jacob—Yau [18]). If there
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exists a C-subsolution to the following equation,
S(w+vV=1x)" = tan() - R(w + v—-1x)"

with 6 € ((n — 2)m/2,n7/2), then the dHYM equation is solvable. Here, § and R are the
imaginary and real parts, respectively, and 6 is a topological constant determined by the

cohomology classes [w] and [x].

5.1 When Complex Dimension Equals Three

In this section, we always assume that there exists a C'-subsolution. By changing represen-
tative, we say X is this C'-subsolution. We are interested in the solvability of the following

equation d: M3 — {(c1,¢o): ¢; > 0 and ¢ > —20?/2} C €3 with dy, dy constant. That is,
X3 —3diw* AN X — dow® = 0. (5.1)

By Section 4.1, we observe that if a C'-subsolution to d: M — %5 exists, then for any ¢ € P4
with range in S a compact subset of {(¢1,¢9): ¢4 > 0 and ¢o > —20“;'/2}, we have a priori
estimates. We try to find a continuity path in the space P? connecting the original equation
d: M3 — ng to another solvable equation. When dy and d; are both non-negative with
dy +dy > 0, this is solvable due to Collins—Székelyhidi [20]. Hence, we only focus on the case
that d; > 0 and dy < 0. We will prove that this is solvable provided that a C-subsolution
exists. In conclusion, for any constant map d: M3 — ‘5},, it is solvable provided that a

C-subsolution exists. We consider the following continuity path,
X3 — 3d1 (t)w2 ANX — do(t)w3 = 0, (52)

where ¢t € [0, 1] and dy(t) and d;(¢) are smooth functions in ¢ which satisfy all the following
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Topological constraint: €y — 3d;(t)Q2e — do(t)Q25 = 0.
Boundary constraints: di(1) =dy; do(1) =dp;  di(0) > 0;  do(0) = 0.
Positivstellensatz constraint: d(t) € 63.

Y-dominance constraint: d(t) € P2

Here, we denote Q; == [, w' A X?70.

Lemma 5.1. If (Q,Q3) € Q3¢ then the following pair will satisfy all the 3-dimensional
four constraints:

Q) — tdpQs

d1 (t) . 392

do (t) = tdo .

Here, Q; = [,,w' A X?" and

: dy — (—do(t)/2)*?
0= {0y < inf —30 3
5 telf(l),l) 2 d() — dg (t)
Proof. First, the topological constraint is automatically satisfied. Second, we can check that

they satisfy the boundary constraints

Third, for the positivstellensatz constraint, when ¢t = 0 or t = 1, the positivstellensatz

constraint holds. We rewrite d;(t) as

_ Qo — tdo€3 —d dop€2s

dq(t 1—1t).
1(t) 30 ! 392< )

For t € (0,1), if (Qy,Q3) € Q%% then

0= 801 () ()= (O
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This implies that do(t) > —2d;(t)%2. Last, for the Y-dominance constraint, by Proposi-
tion 3.3, we have P? = {(c1,¢0): d; > ¢; > 0 and ¢y > —2051)’/2}. We can verify that

N Qo — tdpS2s < Qo — dof3

d —d.
1(#) 30, — 30, !

This finishes the proof. n

Theorem 5.2. [f there exists a C-subsolution to equation (5.1), then the degree three general

inverse oy equation (5.1) is solvable.

Proof. 1f a C-subsolution exists, say X, then pointwise we have X2 > d;w?, this implies that
X2 > diw* A X = Qy > di Q.

By rewriting the topological constraint, we get

QL
_dOQ_2 = 3d; — Q_2 < 2d;. (53)

dl—(—td0/2)2/3
1-t

On the other hand, consider the following quantity . For t € (0, 1), we have

dy — (—1)2/3 1— 23 24,
> 29 4
1=t haTy 2 (54)

The last inequality is due to the fact that the function (1 — 2/3)/(1 — t) is decreasing when
t € (0,1) and by L’Hopital’s rule. Combining inequalities (5.3) and (5.4), we see that if there
exists a C-subsolution, then we always have (2, 3) € Q3. O

We state one of the author’s work in [51].

Corollary 5.1 (deformed Hermitian—Yang—Mills equation, L. [51]). When the complex di-

mension equals three, Conjecture 5.1 is confirmed.
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Proof. When n = 3, the deformed Hermitian—Yang-Mills equation will be
%(w + \/—_1x)3 = tan(f) - §R(w + \/—_1x)3.
By doing a substitution X = x — tan(f)w, the dHYM equation becomes
X3 —3sec?(f)w? A X — 2tan(f) sec?(0)w® = 0. (5.5)

For 0 € (%,27), we always have 2 tan(f) sec?(6) > —2(SeC2(9))3/2. By Theorem 5.2, Conjec-

ture 5.1 is confirmed. This finishes the proof. O

5.2 When Complex Dimension Equals Four

In this section, we always assume that there exists a C-subsolution. By changing represen-
tative, we say X is this C-subsolution. We are interested in the solvability of the following

/2

equation d: M* — {(ca,c1,¢0): ca > 0,¢; > —203 , and ¢y > —3cox? — 3121} C %, with

dy, dy, dy constant, where x, is the largest real root of 23 — 3cox — ¢; = 0. That is,
Xt — 6dyw® AN X? — 4dyw® A X — dow? = 0. (5.6)

By Section 4.2, we observe that if a C-subsolution to d: M — %, exists, then for any

/2, and ¢y >

¢ € P% with range in S a compact subset of {(e2,¢1,¢0): 2 > 0,¢1 > —203
—3cew? — 3¢y, }, we have a priori estimates. We try to find a continuity path in the space
P connecting the original equation d: M* — ‘5; to another solvable equation. When d, d;

and dy are all non-negative with ds + d; + dg > 0, this is solvable due to Collins—Székelyhidi

[20]. Hence, we consider the other cases, we will prove that they are all solvable provided
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that a C-subsolution exists. We consider the following continuity path,
X* — 6dy(t)w® A X2 — 4dy (H)w® A X — do(t)w* = 0, (5.7)
where t € [0, 1] and dy(t), di(t), and dy(t) are smooth functions satisfy all the following

Topological constraint: €y — 6da(t)Q2e — 4d;(t)Q25 — do(t)Q24 = 0.
Boundary constraints: do(1) = do; di(1) = dy; do(1) = do; d2(0) > 0; d1(0) > 0.

/

Positivstellensatz constraint: d(t) € {(cq,c1,¢0): ca > 0,¢1 > —20‘3 2, and ¢y > —3coz? —

3c1x1} C ‘5:1, where z; is the largest real root of 2° = 3cyx+c;.

T-dominance constraint: d(t) € P?.

Here, we denote Q; = [, w' A X" (Qq, Qy, Qs, Q3,y) will be a fixed value determined by
the cohomology classes w and X. If we have a priori estimates for compact subset of %, or
{(ca,c1,¢0): ca > 0,¢1 > —203/2, and co > —3cer? —3c121 }U{(0,0,¢0): ¢o > 0}, then we can
find a better path and do a uniform estimates. Here, since we only have a priori estimates for

2
/ , and cg > —3cex? — 3c121 }, s0 we always

/

compact subset of {(ca,¢1,¢0): ¢ > 0,¢1 > —26)

required that the path will be in {(¢2,¢1,¢0): c2 > 0,¢ > —203 2, and ¢y > —3cow? — 3171}

Lemma 5.2. If (Qy,Q3,Q4) € Q?’d, then there are two cases to consider: If dy > 0 and

dy < 0, then the following triple will satisfy all the j4-dimensional four constraints:

Q(] - 6d27g<t>92 — 4d1 (t)Qg

dog(t) = t3dy + (1 — t*3)0;  dy(t) =tdy; doy(t) = a
4

Here, Q; = [,,w' A X", dy/100 > £ > 0 sufficiently small, and

Qb = {o < nf 6(ds — do (1)) + 4(ch — s (1))

te[0,1

+ (do -+ 3da ()2 (1) + 3y (D) (1)) 2 },
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where 1 4(t) is the largest real root of x* — 3ds 4 (t)x — dy(t) = 0. If dy < 0, then the following

triple will satisfy all the 4-dimensional four constraints:

Qo — 6da,0(£)Q — 4d1 (1)
o ‘

(1-— t)€d1>2/3.

dg[(t) = <d§/2 -+ 9 3 d1 (t) = tdl; do,g(t) =

Here, Q; = [,,w' AN X" Lel, —ngﬂ/dl); and

Q;}’d = {0 < inf ) 6(d2 — dg,g(t))QQ + 4(d1 — dl(t))Qg

telo,1

+ (do + 3dae(£)a? (1) + 3d; (t):t:l,g(t))Q4},
where x14(t) is the largest real root of 3 — 3dy(t)x — dy(t) = 0.

Proof. For the case d; > 0 and dy < 0, first, the topological constraint is automatically
satisfied. Second, for the boundary constraints, it should be straightforward. Third, for

the positivstellensatz constraint, when ¢ = 1, the positivstellensatz constraint holds. For

t € 10,1), we have dy,(t) > 0, di(t) + ng’/f(t) > 2032 > 0, and we can verify that the

following quantity is always positive:

do,e(t) + 3dae(t)23 () + 31 (t)1,6(t)

Qp — 6dy ()2 — 4d,(2)2
_ 2,0( )Q 2 1) 4 3d275(t)xif(t) + 3dy (t)1,4(t)
4

6(dy — dy o(£)) + 4dy (1 — 1)Q
_ 6(d> — da(1)) 5+ (=% Bda,o(t)27 4(t) + tdizye(t) > 0
4

due to the hypothesis that (€9, Q3,Q4) € Qﬁ’d. Last, for the YT-dominance constraint, by
Proposition 3.3, we have P? = {(¢g, ¢1,¢0) € €y: 22— ¢y = dy — 3 > 0 and 23 — 3cowy — ¢1 >

0}. Here, xy is the largest real root of 2> — dy = 0 and z; is the largest real root of
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x3 — 3dax — dy = 0. We can verify that dy > da,(t) = t23dy 4 (1 — t¥/3)¢ and

d
%(I'? — 3d27g(t)l‘1 - dl(t)) = —Qt_l/g(dg — é)l'l — dl <0Oforte (0, 1]

This implies that for ¢ € [0,1], 23 — 3da¢(t)x1 — dyi(t) > 23 — 3dae(1)z1 — di(1) = 0.

For the case d; < 0, first, the topological constraint is automatically satisfied. Second, for

the boundary constraints, we get da (1) = da, d;(1) = dy,d1(0) = 0,d ,0(1) = dy, and

gd 2/3
o,(0) = (3 + 71> >0

Third, for the positivstellensatz constraint, when ¢ = 1, the positivstellensatz constraint
holds. For ¢ € [0,1), we have da(t) > 0, dy(t) + 2d5/7(t) = 2d5/* + €d; + tdy(1 — £) > 0, and

we can verify that the following quantity is always positive:

doo(t) + 3o o(£)22(t) + 3dy (£) 1 (1)
Qg — 6dy (1) — 4dy ()0

_ o
6(dy — dao.g(t))Qs + 4dy (1 — )0

= O + do + 3do o (t) 23 (t) + 3tdya1(t) > 0
4

S 1 3dy o (8)23(t) + 3dy (t)z (¢)

due to the hypothesis that (€9, 3,Q4) € Q?’d. Last, for the T-dominance constraint, by
Proposition 3.3, we have P = {(c2,¢1,00) € Gy 15— co =dy—cy >0 and a3 — 3wy — 1 >
0}. Here, x5 is the largest real root of 2> — dy = 0 and x; is the largest real root of

x3 — 3dyx — dy = 0. We can verify that dy > da,(t) = (al;’/2 + (1 — t)d/2)*? and

d o —£d1 3/2 fdl -1/3
() = = (5 +7) > 0. (5.8)
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Inequality (5.8) gives

d

E(I? - 3d27g(t)l‘1 - dl(t)) = —3d/27z<t)fbl - d1 S —3d/27£(t)$2 - d1
d

< =3y, (H)dy/; (t) — dy = —Qa(dgf(z&)) —dy = td; — dy <0.

This implies that for ¢ € [0,1], 23 — 3da,(t)x1 — di(t) > 23 — 3dae(1)zy — di(1) = 0. This

finishes the proof. 0

Theorem 5.3. If there exists a C-subsolution to equation (5.6), then the degree four general

inverse oy, equation (5.6) is solvable.

Proof. If a C-subsolution exists, say X, then pointwise we have X3 > 3dow? A X + dyw?
and X? > d2w2, these anly that QO > 3d292 + dlﬁg, QO > dQQQ, and QQ > d294. By the

topological constraint 0y = 6ds€2s + 4d;1€23 4 dp€)y, we always get

SdQQQ + 3d193 + doQ4 > O; (59)

5d292 + 4d193 + d()Q4 > 0. (510)
The goal here is to check whether the following quantity
G(dg — dgj(t))Qz + 4(d1 — dl (t))Qg + (do + 3d274(t)l'%7£(t) + 3d1 (t)ZEl,g(t))Qzl (511)

is positive for ¢ € [0, 1] for some ¢. We consider two cases: d; > 0 and d; < 0.

e For the case d; > 0 and dy < 0. By inequality (5.9), quantity (5.11) becomes

6(do — dae(t))Q + 4(dy — di () + (do + 3dae ()2 () + 3dy (t)a1,6(t))
> (2dy(1 + 2t — 3t2/3) — 6£(1 — 7)) Qy

+ (%(@ — 1) + 3da(t)22 ,(t) + 3d1(t)x1,€(t)>94. (5.12)
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If we can show that quantity (5.12) is positive on [0, 1] for some ¢ sufficiently close to 0, then

quantity (5.11) will also be positive, thus we are done. On [0, 1/4], we have

(2ds(1 + 2t — 3t*3) — 6¢(1 — t*/%)) Q0 + <%(4t — 1) + 3da(t)27 ,(t) + 3dy (t)ng(t))Qzl

> (2dy(1.5 — 3(1/4)*?) — 60(1 — (1/4)*?)) Qs > (0.6d5 — 4£)Q5 > 0 (5.13)

provided that d2/100 > ¢ > 0. On [1/4, 1], we compute the derivative of the coefficient of 4
of quantity (5.12), we first consider the derivative of x; ,(t) with respect to t. Since 1 4(t)

satisfies 23 ,(t) — 3dae(t)x1,4(t) — di(t) = 0, using implicit differentiation, we get
3(af () — (1)) (1) = 3y (t)a1(t) + i (£) = 2673 (dy — D)y e(t) + dr.

By Proposition 2.12, we have

24/ da (1) Cos[% arccos( 4.() )} , when 4d; ,(t) > di(t);

ria(t) = 2d§,/52(t)
10(t) =
’ 1
24/ da () cosh[g arccosh(z;i;/(;() ))} , when di(t) > 4d3 ,(t).
t K
2,0

In addition, we have

> 0.

d( d(t) ) d td; d,?

£2@ﬂﬂ::Eg@m@+ﬂ—ﬁﬁmm)ZQW@b+ﬂ—ﬁ@Qm

Hence, when ¢ € [1/4, 1], we obtain

do_ d() A A1)
32 = 5 3/248 = o B2 = o132 =
2d, 2dy) (1) 2dy,(t)  2dy,(1/4)

This implies that 1 4(¢) and

, t_%*@@—@mﬁw+m
) = TR0 0 — da(0)
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both have a uniform lower bound and upper bound on [1/4,1]. The first derivative of the

coefficient of Q, of quantity (5.12) will be

4d / / /
70 + 3dy ()2 (1) + 6d,e(t)a1,0(t) 2 o(t) + 3y (8)10() + 3da(t)2 (1)
4d
= ?“ + 2673 (dy — 02 4(t) + 3y o(t) + 3(2da(t)210(t) + tdy) 2 () (5.14)

and it has a uniform upper and lower bound for ¢ € (0,d,/100) and ¢t € [1/4,1]. The first

derivative of the coefficient of Qy of quantity (5.12) will be
d
%(2@(1 +2t = 3t7) — 60(1 — /%)) = ddp(1 — t7V/3) + 40t/ (5.15)

and it has a uniform upper and lower bound on [1/4,1]. Let {{;} be a sequence such that

l; — 0 as ¢ — co. We define the following sequence of functions on [0, 1]:

Di(t) = (2d2(1 + 2t — 3752/3) —60;(1 — t2/3))§22

+ (%(475 — 1) + 3da, ()21, () + 3di(t)z1, (t)>Q4‘

Since derivatives (5.14) and (5.15) are uniformly bounded on [1/4, 1] when ¢ € (0, d>/100), so
this sequence of functions {%;} will be an equicontinuous sequence that converges uniformly

to the following function on [1/4,1]:

Do (t) = 2ds(1 + 2t — 3t/3)Qy + (%(415 — 1)+ 3tY3(doa? + d1x1)>§24

= 2dy(1 + 2t — 3t/%)Q,
<4t -1

(do + Bdgl’% -+ Bdll’l) -+ (1 — 4t + 3t4/3)(d2$% + d1I1)>Q4.
We can check that 1+ 2t — 3t%/3 and 1 — 4t + 3t*/® are decreasing on [1/4, 1], thus
Do (t) = 2do(1 + 2t — 3t¥3)Q,
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4t -1

on [1/4,1]. So, there exists ¢y > 0 sufficiently small such that

Dn(t) = (2da(1 + 2t — 3%) — 60y (1 — 7)),

+ (%(475 — 1)+ By (0334, (1) + 31 (8)1,14 (£) ) 2 > 0 (5.16)

on [1/4,1]. By inequalities (5.13) and (5.16), we see that Zy > 0 on [0, 1]. This implies that

quantity (5.12) is positive, hence quantity (5.11) is also positive on [0, 1].

e For the case 0 > d; > —ng/z, we consider two subcases: dy < 0 and dy > 0.

* For the subcase dy < 0, by inequality (5.9), quantity (5.11) becomes

6(d2 - dg,g(t))QQ + 4(d1 - dl(t))Qg + (do + 3d2,g(t)l’iz(t) + 3d1 (t)l‘L[(t))Q4
4t —

1
> 2(da + 2 — 3o (1) + (——do + 3o ()23, (1) + 3y ()z1,e(1) ) Q. (5.17)

So, instead of checking whether quantity (5.11) is positive, we check whether quantity (5.17)

is positive. By taking the derivative of the coefficient of Q5 of quantity (5.17), we get

p 1 —t)ld;\—1/3
(dy + 2tdy — 3da(t)) = 2ds + (d; (dgﬂ + %> '

- (5.18)

3/2
Above quantity (5.18) will be negative when ¢t < 1+ % + 642 Cg

. When / is sufficiently close
to —2d§/2/d1, quantity will be negative when ¢ < 1/4. On the other hand, since x; 4(t) is
the largest real root of 3 — 3dy(t)x — di(t) = 0 and 0 > dy(t) > —2d§’7/£2(t), this is the case

casus irreducilis, so we have

1 di(t)
Tq10(t) = 2d1/2t COS | — arccos !
) = 20 o s (s )

(1—t)edi\/3 [l
= 2<d3/2 + T> COS [§ arccos

<2dg/2 +t:lll_ t)edlﬂ , (5.19)

131



Here, we specify the branch so that arccos (o) € [0, 7]. Thus, by (5.19), we have

3dao(t)xt o(t) + 3y (t)16(t)
= 31 o(t) — 6da (1) ,(t)

= 24dg7g(t) cos? [% arccos (d; (t)/ng’/Z(t))} oS [; arccos (dl(t)/2d37/52(t))] : (5.20)

In addition, we can verify that for ¢ € [1, —2d§/2/d1), we get

d ( td, )_ di (243 + (d,)
dENogy? 4 (1 —t)ed, ) (245 + (1 — t)edy)?

So on [0,1] and for ¢ € [1,—2d2/?/dy), we always have the following uniform bounds

0> tdy S5 G > 1.

T ot (1 —tyed, 243

This implies that arccos(d; (t)/Qd;”/f(t))/S € [r/6,7/3) and
1 2 1
g > cos? [5 arccos(d, (t)/2dg,/€2(t))} cos [g arccos(d, (t)/ng(ZQ(t))} > -5 (5.21)

Hence, on [0, 1/4], by inequalities (5.18), (5.20), and (5.21), quantity (5.17) becomes

4t —1

2(d2 + 2td2 — 3d275<t>>92 + < do + 3d2’g(t)l'ig(t) + 3d1 (t)l'ljg(t)> Q4

30d,
8

> 0.6d9Qy — 0.48d584 > 0.12d582 > 0 (5.22)

2 3/2 2/3 2
> 3(dy — 20a(1/4)9% — 33, ()0 > 3(dy — 2(d* + Z2) ) — 368,(1/0)9

provided that ¢ is sufficiently close to —2d>>/dy, so 2-4/3dy < dy,(1/4) < 0.4dy. For the

subinterval [1/4, 1], we consider the derivative of the coefficient of €4 of quantity (5.17) with
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respect to ¢, by quality (5.20), we obtain

(475—1
3

= Zgldo + 24% (d;g(t) cos’ [% arccos(d, (t)/Qd;/;(t))} cos [% arccos(d, (t)/ng{ZZ(t))] >

= o+ 160 (1) 0B, (1)) (A22(0) cos(3 (1)) + (2(1)) co( 1))

4
= Sdo + 8d1d3/{ (¢) cos(0ay an(1)) [1 - ecos(edl,dz,g(t))] . (5.23)

& (F o + 330 + 301 1)

Here, 04, 4, ¢(t) == 5 arccos(d, (t)/2d;/e2(t)) € (7/6,7/3). This is uniformly bounded on [0, 1].

Let {£;} be a sequence such that ¢; — —2d5'*/dy as i — oo. We define the following sequence

of functions on [0, 1]:
d
Dy(t) = 2(d + 2tds — 3o, (1)) + (30(415 — 1) + 3da, ()22, () + 3da (£)1,, (t))Q4.

Since derivatives (5.18) and (5.23) are uniformly bounded on [1/4, 1] when ¢ € [1, —2d§/2/d1),
so this sequence of functions {Z;} will be an equicontinuous sequence that converges uni-

formly to the following function on [1/4,1]:

Do (t) = 2dy(1 4 2t — 3t¥3)Qy

At —1
(T(do 4 3do? + 3diar) + (1 — 4t + 31Y3) (doa? + d1x1)>Q4.

Since 14 2t — 3t?/% and 1 — 4t + 3t*/3 are decreasing on [1/4,1] and dy2? + dyzy > —dy > 0,

Ps(t) > 0 on [1/4,1]. So, there exists £y sufficiently close to —2d>/?/dy such that

Dn(t) = 2(dy + 2tds — 3da.gy (1) Qe

+ (%(475 — 1) + 3dogy (t)27 4, (1) + 3y ()31 0 (t))Q4 >0 (5.24)

on [1/4,1]. By inequalities (5.22) and (5.24), we see that 2y > 0 on [0, 1]. This implies that

quantity (5.17) is positive on [0, 1], hence quantity (5.11) is also positive on [0, 1].
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* For the subcase dy > 0, we first consider the subinterval [0,1/4]. On [0,1/4], we need
to use both inequality (5.9) and inequality (5.10). We multiply inequality (5.9) by 12¢ and

inequality (5.10) by 4 — 16t, then quantity (5.11) becomes

6(cy — oo (1)) + A(dy — dy (1)) + (do + 3elo,e(£)22 (£) + 3y (£)01.(1))
> (dy + 8tdy — 6da,¢(1))Q + (3da,e(t)a] ,(t) 4 3dy(t)z1,6(t))
— (da + 8tdy — 6da o(£))2
24, (1) cos® [% arceos(d (1) /2452(1)) | cos [g arceos (d (1) /2432 (1)) | 24

> (dy + 8tdy — G, (t))Q — 3d5 (). (5.25)

The derivative of the coefficient of Qs of quantity (5.25) will be

d 1 —t)ld\—1/3
= (da + 8tdy — B (1)) = 8 + 20 (dg/ 2y %) (5.26)
3/2 5/2
and attains its minimum at t = 1+ % + sz—fg with minimum value 9ds + % — é;Td;. When
2 2

¢ is sufficiently close to —ng/ ?/dy, the minimum is attained close to 1/8 and the minimum
will be positive. This implies that when ¢ is sufficiently close to —2d3/ 2 /dy, da+8tdy—6ds (1)

will be positive on [0,1/4]. Thus, by Qs > d2Q4 and (5.26), quantity (5.25) becomes
(do + 8tdy — 6z (t))Q — 3d3 () > (d + 8td; — 6dadao(t) — 3d3,(t)) . (5.27)

The derivative of the coefficient of €4 of quantity (5.27) will be 83 —6dads ,(t) —6da ¢ (t)d} 4(t)
and is negative on [0,1/4] when ¢ is sufficiently close to —2d3/ ?/dy. This implies that d2 +

8td5 — 6dady(t) — 3d5 ,(t) will be decreasing. Hence, inequality (5.27) becomes

(d5 + 8td3 — 6dadao(t) — 3d3 4(t))

> 3(d3 — 2dadae(1/4) — d3 ,(1/4))
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_ 3<d§ — 2d, (dg/2 + %)2/3 - (d§/2 + %)4/3) Q4> 0 (5.28)

provided that 2=4/3d, < do(1/4) < 0.4dy when ¢ is sufficiently close to —2d§’/2/d1. So
quantity (5.27) is positive on [0, 1/4], which implies that quantity (5.11) is positive on [0, 1/4].

For [1/4,1], we use inequality (5.9), quantity (5.11) becomes

6(d2 — deg(t))Qg + 4(d1 — dl (t))Qg + (do -+ 3d27g(t)fbi£(t) + 3d1 (t)$17g(t))94
4t — 1

> 2(dy + 2tdy — 3da2(t))2 + < do + 3 (t)x7 ,(t) + 3d, (t)xlj(t))fh.

Let {¢;} be a sequence such that ¢; — —2d5/?/dy as i — oo. We define the following sequence

of functions on [0, 1]:
d
Dy(t) = 2(ds + 2tds — 3o, (1)) + <§0(4t — 1) + 3dy, (£)22,. () + 3dy (t)xl,gi(t)>§24.

Since derivatives (5.18) and (5.23) are uniformly bounded on [1/4, 1] when ¢ € [1, —2d§/2/d1),
so this sequence of functions {Z;} will be an equicontinuous sequence that converges uni-

formly to the following function on [1/4,1]:

Do (t) = 2dy(1 4 2t — 3t¥3)Qy
+ (?(do + 3dox? 4 3dyxy) + (1 — 4t + 3tY3)(dga® + d1x1)>§24
> 2dy(1 + 2t — 3873y + ((1 — 4t + 3t3) (doa? + dy71))
+ %(do + 3dox? + 3dy21)Qy

At —1
> (d§(1 8t = 67 = 31Y) - o (dy + B} + 3d1x1)>94 > 0.

Notice that the function 1 + 8t — 6t%/3 — 3t*/3 is decreasing on [0,1]. So, there exists £y
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&1

C2

(d2,d1)

Figure 5.1: The continuity path in Lemma 5.2 when d; < 0.

sufficiently close to —2d‘;/ 2 /dy such that

Dn(t) = 2(dy + 2tdy — 3da.gy (1) Qe

+ (%(415 — 1)+ By (0334, (1) + 31 (8)1,1 (£) ) 2 > 0 (5.29)

on [1/4,1]. By inequalities (5.28) and (5.29), we see that quantity (5.11) is positive on [0, 1].

In conclusion, if d; > 0 and dy < 0, then there exists ¢ sufficiently close to 0 such that
(Q,Q3, Q) € QY. For the solvability, when ¢t = 0, we have dy(0) = £ > 0 and dg(0) =
(Qo — 6£€22) /4 > 0 provided that ¢ is sufficiently close to 0. This is solvable due to Collins—
Székelyhidi [20], hence the original equation (5.6) is solvable due to the method of continuity.
If d; < 0, then there exists ¢ sufficiently close to —2d3/2/d1 such that (€, Qs, Q) € Q). In
addition, when ¢ = 0, we have ds,(0) > 0 and dy,(0) = (2o — 6d2,(0)$22)/24 > 0 provided

that ¢ is sufficiently close to —2d§/ 2 /dy. This finishes the proof. O

Figure 5.1 is an illustration of the continuity path in Lemma 5.2. Theorem 5.3 shows that
we can meet all the 4-dimensional four constraints by letting the end point close to the

origin. This continuity path was also considered in the author’s work [51] when proving
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Conjecture 5.1 by Collins—Jacob—Yau. We state the author’s work here.

Corollary 5.2 (deformed Hermitian—Yang-Mills equation, L. [51]). When the complex di-

mension equals four, Conjecture 5.1 is confirmed.

Proof. A clever way is by Lemma 2.13, the diagonal restriction of the deformed Hermitian—
Yang—Mills equation is strictly right-Noetherian when the phase is supercritical. Hence, by
above Theorem 5.2, we know that the dHYM equation is solvable when complex dimension
equals four and there exists a C-subsolution. Or we can just check it directly, when n = 4,

the dHYM equation will be
cot(f) - S(w + \/—1x)4 =R(w+ \/—1)()4.
By doing a substitution X = x + cot(f)w, the dHYM equation becomes

X* —6esc?(0)w? A X2+ 8cot(8) esc?(B)w? A X + csc(0)(4 — 3esc?(0))w? = 0. (5.30)

For § € (r,27), we always have ¢; = csc?(6) > 0, ¢; = —2cot(6) csc?(0) > —2¢5/? =

—2(esc?(0))3/? = 2csc3(6), and

co + Sngf + 3c1x1

= —csc®(0)(4 — 3esc®()) + 24 esc™(6) cos (M) o8 <
= —4csct() (Sin2(9) - 3[C (29 . 27T> } >
_ _4CSC4(9)(sin( )—I—\/§CQS<29+27T) >(Sm(9) 3COs<2(9—|—27T) _ﬁ)

_ steset(s (Sin(0§w> B 7) (Sm( ) + \/§>

2
when 6 € (m,27). Here, z; = —2csc(6) cos((6+4m)/3) is the largest root of 23 — 3 csc?(0)z +

29—!3:87r>

2 cot(f) csc?(). By Theorem 5.3, Conjecture 5.1 is confirmed. This finishes the proof. [
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