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Abstract

We introduce HUNTRESS, a computational method for mutational intratumor heterogeneity inference from
noisy genotype matrices derived from single-cell sequencing data, whose running time is linear with the number
of cells and quadratic with the number of mutations. We prove that under reasonable conditions HUNTRESS
computes the true progression history of a tumor with high probability. On simulated and real tumor sequencing
data HUNTRESS is demonstrated to be faster than available alternatives with comparable or better accuracy.
Additionally, the progression histories of tumors inferred by HUNTRESS on real single-cell sequencing datasets
agree with the best known evolution scenarios for the associated tumors.
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1 Introduction

Following the introduction of single-cell sequencing (SCS), we have witnessed major developments in computational
methods for inferring mutational heterogeneity and progression history of tumors [1, 2]. Among available methods
of interest, SCITE [3] and OncoNEM [4] represent the first principled computational approaches for inferring trees
of tumor progression from SCS data, both employing the infinite sites assumption (ISA). More recent methods,
SiFit [5] and SiCloneFit [6], consider a more general finite sites model of tumor progression, ScisTree [7] employs
neighbor-join heuristic to generalize SCITE, OncoNEM allows user defined cell and site-specific probabilities of
false mutation calls, and B-SCITE [8], combines single-cell and bulk sequencing data. While the above methods
search for a solution directly in the space of tumor progression histories, other methods perform search among
binary matrices that correspond to tumor progression trees [9]; these combinatorial optimization based techniques
include SPhyR [10], PhISCS [11], scVILP [12], PhISCS-BnB [13] and gpps [14].

Despite all the progress, emerging, larger scale datasets provide a challenge to available methods. For example,
the running time of the combinatorial optimization based techniques above increase exponentially with n, the
number of cells and m, the number of mutations, as the number of constraints and variables in their formulation
are polynomial in n and m (respectively O(nm2) and O(nm+m2) [9]). As a result these methods can not handle
datasets consisting of several hundreds of mutations and cells. In fact the problem of tumor progression tree
reconstruction is NP-hard [10] and it is unlikely that a polynomial time solution could handle all input types and
parameters.

In this work we introduce HUNTRESS (Histogrammed UNion Tree REconStruction Scheme), a computational
method with a running time that is linear with the number of cells, n and quadratic with the number of mutations,
m. We show that under some reasonable conditions on the ground truth and the observed input genotype matrix,
HUNTRESS infers a tree that closely matches the ground truth with high probability. Such a guarantee can not
be provided by many of the alternative, e.g., deep-learning based approaches [15].

We have compared HUNTRESS with a number of available alternatives with respect to running time and
accuracy on both simulated and real tumor datasets. HUNTRESS has comparable or better accuracy than the
best available methods on these datasets - especially those with a higher number of cells than mutations - while
being substantially faster. We have also demonstrated it to be robust to additional sources of noise such as doublets
and loss of heterozygosity events (LOH). With all these features, we believe HUNTRESS offers a timely advance
in the resolution of intratumor heterogeneity and tumor progression history on datasets with increasing scale and
complexity.

2 Results

We first present results of HUNTRESS on a previously published [16] high-grade serous ovarian cancer (HGSOC)
dataset consisting of 891 cells and a total of 14, 068 SNVs. The dataset is characterized by a very low coverage and
high missing entry rate (i.e., per cell, the presence/absence of ∼83% of mutations could not be determined) making
it very challenging to perform tree reconstruction. The thorough analysis of the evolutionary history conducted in
the original study includes pre-clustering of cells in order to reduce the effect of low sequencing coverage and obtain
more reliable mutation calls. This step resulted in 9 clusters representing distinct clonal populations of cells, and
the reported tumor progression tree relating them is given in Figure 1a .

In our analysis, in order to focus on the most informative mutations, we removed those mutations for which
more than 650 of the sequenced cells have missing entries, as well as the mutations that are present in fewer than
10 cells. The resulting genotype matrix contains 891 cells and 744 mutations with an improved (i.e., lower) missing
entry rate of ∼69%. The tree inferred in the original study, constrained on this reduced size but denser matrix, is
shown in Figure 1b. The results obtained by HUNTRESS on this matrix are shown in Figure 1c. As can be seen,
the placement of the cells in this tree largely matches the placement of the cells in the tree reported in the original
study. In particular, cells from clones G,H,I and E,F are well separated. These results are further supported by
high ancestor-descendant and different-lineages measures (see Supplementary Section 1.6 for definitions) between
trees in Figure 1b and Figure 1c, which equal 0.9769 and 0.9986, respectively. Note that HUNTRESS was able to
achieve this in less than 30 minutes, when 8 threads (on 4 cores) were used.

Next, we tested HUNTRESS on two targeted single-cell DNA sequencing datasets, each consisting of several
thousands of single cells, from recently published study which involved 123 acute myeloid leukemia (AML) patients
[17]. We selected two of the patient datasets which had the largest number of detected somatic mutations and
compared results obtained by HUNTRESS to those inferred by SCITE and reported in the original study. As can
be seen in Figure 2, the trees inferred by HUNTRESS are identical to trees reported by SCITE - with the exception
of two minor differences in the trees shown in Figure 2a and Figure 2b: (1) Mutation DNMT3A 1 is the ancestor of
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mutation ASXL1 in the SCITE tree while they are merged in the tree inferred by HUNTRESS. (2) This is also the
case for mutations STAG2 and BCOR 1. Both of these differences are due to HUNTRESS relying on the assumption
that each subclone is represented by a non-trivial number of cells in the input. Here, because the number of cells
having only these mutations is small (see Figure 3f in the original study[17]), they were combined to form a single
subclone in the HUNTRESS tree.

Next, we compared the running time as well as the inference accuracy of HUNTRESS against several published
tools, namely ScisTree [7], gpps [14], SPhyR [10] and SiCloneFit [6], on both HGSOC and AML datasets. Among
other well known tools, OncoNEM crashes on large input sizes as reported previously [6, 11], while optimization
methods including SiFit, SCITE, PhISCS and PhISCS-BnB or deep learning techniques [15] are too slow to handle
both datasets. We ran each tool on each dataset for up to 48 hours on the LBNL NERSC cluster. (SiCloneFit was
run with the default number of MCMC iterations. For additional results with more iterations see Supplementary
Section 1.9. Also see Supplementary Section 1.8 for details involved in running each tool.

On the AML datasets with large number of cells but small number of mutations HUNTRESS was more than three
orders of magnitude faster than alternatives; see Supplementary Table 1. On the HGSOC dataset, HUNTRESS
produced an output in ∼ 6 minutes, while SPhyR produced a trivial output (comprised of a a single node), and
others did not terminate. In order to assess the alternative tools’ accuracy and running time on a reasonably large,
real dataset, we reduced the number of cells and mutations in this dataset randomly, by a factor of 3, without
altering the tree topology (i.e. leaving at least one cell per node and one mutation per edge). On this sparsified
dataset, ScisTree and SiCloneFit produced an output, albeit being substantially slower (respectively 3× and 8×)
than HUNTRESS, but gpps (being ILP based) could not.

With respect to accuracy, we compared the output of each tool to the trees published in the original studies,
using ancestor-descendant (AD) and different-lineages (DL) accuracy measures (see Supplementary Section 1.6
for definitions). HUNTRESS was the most accurate on all four datasets - except the first AML dataset where
it was slightly outperformed by gpps, an ILP tool which is prohibitively slow on datasets with many mutations
(e.g. the HGSOC datasets). On this dataset, the low prevalence of cells harboring mutations specific to two
subclones, namely {DNMT3A, ASXL1} and {STAG2, BCOR} prompted HUNTRESS to merge them, while they
were separated in the original study (see Figure 2).

HUNTRESS guarantees theoretical optimality on input datasets with no false positives, thus we first bench-
marked it on simulated data with only false negatives. For these experiments, we simulated data consisting of 100
to 300 cells and a similar number of mutations, with false negative rates varying between 0.05 and 0.20. We tested
HUNTRESS against SPhyR, ScisTree, as well as PhISCS-BnB, the fastest combinatorial optimization method that
provides accuracy guarantees on datasets with no false positives. Note that, since it is not designed to handle
false positives, PhISCS-BnB was not applied to real tumor datasets or simulated datasets that do feature false
positives. We allowed each tool to run up to 8 hours on each instance. Due to their long running times, gpps and
SiCloneFit could not complete most of the tasks so they are not included here. Our benchmarking results provided
in Extended Data Figures 1, 2, 3 (as well as Supplementary Table 2) clearly demonstrate that HUNTRESS is faster
than all other tools by a factor of 10 to 1000 and is at least as accurate.

We performed several experiments on simulated data with both false positives and false negatives. In our first
set of experiments the number of mutations, m, and cells, n, both varied between 300 and 1000 reminiscent of their
sizes in the HGSOC datasets. We had two settings for fn, false negative entry rate: fn = {0.05, 0.2}, while the
false positive and missing entry rates were set to 0.001 and 0.05, respectively. In Extended Data Figures 4, 5, 6 (as
well as Supplementary Table 3) we give the AD and DL accuracy measure distributions, together with the running
times for each tool on each parameter setting. Note that for each of the experiments, each tool was allowed to run
for 48 hours, the maximum time allowed for a single job in the LBNL NERSC cluster.

Among the tools tested, SPhyR’s AD performance is poor, even though it achieves comparable DL values to
HUNTRESS. This is due to the fact that SPhyR mistakenly infers a star-like topology (with leaf nodes all connected
directly to the root) for all inputs. SPhyR is faster than HUNTRESS when the number of cells are small however
its low accuracy values makes it not a good choice for datasets with similar or larger sizes. (SPhyR’s reported
performance is based on default parameters; see Supplementary Section 1.8.4 on how SPhyR’s performance depends
on parameter choices.)

With respect to accuracy, HUNTRESS is comparable to or better than ScisTree; HUNTRESS performs es-
pecially well when n > m - this is the setting for which HUNTRESS provides accuracy guarantees. It must be
considered that HUNTRESS achieves these figures while being substantially faster, especially when n ≥ m. As
sequencing costs decrease, we expect that sequencing experiments involving thousands of single cells will become
a common practice in the near future. The above results suggest that HUNTRESS could provide the necessary
runtime improvement for highly accurate tumor progression tree reconstruction on emerging datasets.

Next, we assessed the robustness of HUNTRESS to the presence of deletion events, a source of ’biological’
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noise which is the main cause of ISA violations. As can be be seen in Supplementary Figure 2, deletion events
only slightly impact the performance of HUNTRESS with respect to the AD and DL measures. We also assessed
the impact of doublets (i.e. two cells sequenced as one) as a source of noise; as per Extended Data Figure 7 and
Supplementary Table 6, HUNTRESS’ performance is again minimally impacted by doublets.

To further demonstrate robustness of HUNTRESS, we also evaluated its performance against published tools
on (i) larger datasets with n = 5000, m = 500 (see Extended Data Figure 8 as well as Supplementary Table
4 for details), and (ii) datasets with higher false positive rates of 0.003 (see Extended Data Figure 9 as well as
Supplementary Table 5 for details). Finally, (iii) we benchmarked HUNTRESS on simulations with parameters
resembling those we observed on the AML dataset, generated by the Tapestri platform; we used an external
simulator for these experiments, which was employed in earlier studies [4] (see Extended Data Figure 10 and
Supplementary Table 7 for details). Our results on all these simulations illustrate that HUNTRESS consistently
outperforms all available alternatives and its comparative advantage improves as the number of cells increases.

3 Discussion

There are a number of potential avenues for algorithmic improvement. Currently, HUNTRESS assumes uniform
noise rates across all cells and mutation sites; this can be extended to account for read count data at each mutation
locus in each single cell [18, 12, 7]. It may also be possible to cluster cells based on their mutational profiles prior
to or during tree reconstruction for the purpose of obtaining more reliable trees - especially when the per-cell read
coverage is limited. Another way to address high noise levels in single-cell sequencing data could be through the
integration of bulk sequencing data into the existing model. This approach already showed promising results with
tools operating on smaller scale datasets [8, 11].

4 Methods

In this work we introduce three distinct but related computational methods for cancer progression analysis. The
first is a combinatorial algorithm for finding the tree of tumor progression based on mutation calls in single cells
in the absence of false positives. We show that this algorithm is optimal, i.e. given a noisy genotype matrix as the
input, it computes the smallest number of false negative corrections required to convert it to a conflict-free (output)
genotype matrix from which a tree of tumor progression can be directly obtained[19, 9]. Since the problem solved
by this algorithm is NP hard[10], it is not surprising that its worst case running time is exponential with the input
size and, as a result, it is of limited practical interest. However, it forms the basis of our second, but arguably the
main contribution, which is a very efficient algorithm that computes the optimal solution with high probability,
provided some reasonable conditions on the input genotype matrix are satisfied. Importantly, the running time of
this algorithm is only quadratic with the number of mutations and linear in the number of cells. To the best of our
knowledge, this is the first polynomial time algorithm to optimally solve the tumor progression history inference
problem under reasonable conditions on the input genotype matrix. Our final contribution is an extension to the
second algorithm to account for the three most commonly observed types of noise in single-cell sequencing data,
i.e., false positives, false negatives and missing entries. The resulting approach, which we call HUNTRESS, is a
fast computational method for inferring progression histories of tumors from large scale single-cell DNA sequencing
data. Below, after providing some introduction on the tree representation of tumor progression history and details
of the notation that we use, we present the three methods in the order listed above.

4.1 Tree representation of tumor progression history

Assume that we have performed a single-cell DNA sequencing experiment in which single cells C1, C2, . . . , Cn were
sequenced. Let M = {M1,M2, . . . ,Mm} denote the set of single-nucleotide variants that were reported in the
variant calling step as present in at least one of the sequenced cells. Assume for simplicity that each pair of a
parent and a daughter cell differ by at most one mutation and that each of mutations from M is indeed present in
at least one tumor cell (we make these assumptions solely for the purpose of simplifying description in this section
and they are not used by our algorithm). Then the history of tumor progression can be represented by a mutation
tree, which is a rooted tree having m + 1 nodes in which each node, except the root, is labeled by exactly one
mutation from M [3]. Each node of T can also be associated with a unique integer v from the set {0, 1, 2, . . . ,m}
and a genotype gv, which is a binary vector of size m such that gv[i] = 1 if and only if Mi is a label of some
node that belongs to the path from the root of T to v (inclusively). In this work, we assume that the infinite sites
assumption holds, which, together with the above assumption that each non-root node has a mutational label,

3



guarantees that each gv is unique. In addition, we assume that the root of a mutation tree is mutation-free and
represents a population of healthy cells.

As each of the sequenced single cells originates from one of the nodes of the tree, it can be associated with a
unique binary genotype gi for some i ∈ {0, 1, 2, . . . ,m}. Genotypes of all sequenced cells can then be arranged
in a (true) genotype matrix G, which is a binary matrix with n rows (cells) and m columns (mutations). The
value G[i, j] is equal to 1 if and only if mutation Mj is present in cell Ci. Due to technical limitations of single-cell
sequencing, which yields data characterized by various types of noise, some mutation calls made from raw SCS data
do not reflect the true status of a mutation in a cell. In other words, what we observe in practice as an output of
SCS experiment and data processing step is a noisy genotype matrix I, which for the sake of simplicity we assume
is of the same dimensions as G, but the two matrices typically differ at a number of entries. In I, the value of I[i, j]
is set to 1 if and only if during the mutation calling step mutation Mj is reported as present in cell Ci. In some
cases there might be insufficient read count information to call presence or absence of a mutation in some cell so
some of the entries of I are regarded as missing and their value is set to “?”.

The presence of false mutation calls typically prevents direct reconstruction of the tumor progression history
from the matrix I. In other words, there does not exist a mutation tree T such that each row of I matches genotype
of some node of T . Namely, as it was previously shown [19], for a given binary matrix Z with rows corresponding
to cells and columns corresponding to mutations, such a tree exists if and only if Z satisfies three-gametes rule,
that is, there does not exist a pair of columns (i, j) and a triplet of rows (a, b, c) in Z such thatZ[a, i] Z[a, j]

Z[b, i] Z[b, j]
Z[c, i] Z[c, j]

 =

0 1
1 0
1 1

 .
If such a triplet of cells and a pair of columns exists, we refer to it as a conflict and thus we also call any matrix

satisfying three-gametes rule as a conflict-free matrix and this term will be used more frequently in the description
provided below.

Now, given the observed noisy genotype matrix I, our goal is to flip some entries of I in order to obtain a
conflict-free matrix Y . Here, by flipping an entry I[i, j] we refer to setting Y [i, j] = 1 when I[i, j] = 0 or setting
Y [i, j] = 0 when I[i, j] = 1 and these two flip types respectively represent corrections for false negative and false
positive mutation calls in I. When searching for conflict-free matrix Y , in order to find Y which implies the most
likely tree of tumor progression, our goal is typically to minimize (the weighted) number of corrections (flips) used
in obtaining Y from I[9].

While in SCS data false negatives are present even at rates of 0.10 (i.e., 10%) or higher, the false positive
rates of the existing datasets are much lower and are typically below 0.01. For these reasons, in this work we will
first focus on the case where only the presence of false negative mutation calls in I is considered when making
corrections in order to obtain Y . For this problem, we first provide a simple, but recursive, algorithm and show
that it finds the optimal conflict-free matrix Y . We then present a fast algorithm that runs in O(nm2) time and
O(nm) space. In addition, we also show that the matrix Y returned as the output of this algorithm is conflict-free
and, with high probability, the tree implied by it matches the ground truth tree in terms of branching events (i.e.,
achieves perfect different-lineages accuracy values) and does not swap the order of any pair of mutations that are
in ancestor-descendant dependency in the ground truth tree.

4.2 Notation

In this work, for an arbitrary matrix B with n rows and m columns, for j ∈ {1, 2, . . . ,m} we denote the j-th
column of B as Bj . In other words, Bj = [B[1, j], B[2, j], . . . , B[n, j]]T . Next, we introduce a function S defined
on the set of column vectors such that, for an arbitrary column vector v, S(v) equals the set of indices i for which
v[i] = 1, where 1-based indexing is used. More formally, for k-dimensional vector v = [v[1], v[2], . . . , v[k]]T , we have
S(v) = {i | v[i] = 1}. As an example of the use of the above notation, note that S(Ij) represents the set of indices
of cells C1, C2, . . . , Cn in which mutation Mj was reported to be present in the observed genotype matrix I. In other
words, S(Ij) is the set of all integers i such that 1 ≤ i ≤ n and I[i, j] = 1. With the slight abuse of notation, we
introduce a function S-1 defined on the pairs (A, k), where k is a positive integer and A is a subset of {1, 2, . . . , k}.
For a pair (A, k) given as an argument, S-1(A, k) is defined to be equal to a binary column vector v of length k
with v[i] = 1 if and only if i ∈ A. For the convenience of notation, we also allow the use of S-1(A) with the same
meaning as S-1(A,n), where n denotes the number of cells in the input matrix I, as defined earlier. Lastly, we
introduce flips counting function F , defined on a pair (A,B) of matrices (or vectors) of the same dimension. This
function returns the total number of entries (i, j) for which (A[i, j], B[i, j]) = (0, 1) or A([i, j], B[i, j]) = (1, 0).
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4.3 A constrained exhaustive search algorithm for genotype matrix reconstruction

In this section we discuss a provably optimal algorithm, referred to as Supplementary Algorithm 1 (complete
pseudocode is available in the Supplementary Materials), for tumor progression history reconstruction under the
assumption that I has no false positives and given that our goal is to find a conflict-free matrix that differs from I
by the smallest possible number of flips. Note that our objective is then equivalent to the following: convert I to
conflict-free matrix Y by the use of the smallest number of 0 to 1 flips.
Our algorithm utilizes the following well-known property of a conflict-free binary matrix Z[19]:

Lemma 1. Let Z be a binary conflict-free matrix. Then for any pair of columns Zi and Zj in Z, one of the
following must be true:

1. S(Zi) ⊆ S(Zj)

2. S(Zj) ⊆ S(Zi)

3. S(Zi) ∩ S(Zj) = ∅.

Let us now consider the relation between the above lemma and the tree implied by Z. We assume that Z
contains no columns having all entries equal to 0 (columns having all entries equal to 0 are usually filtered from Z
as they imply that the corresponding mutations are absent in all single cells). The above lemma implies that for a
given conflict-free genotype matrix Z and mutations Mi and Mj corresponding respectively to the columns Zi and
Zj , the sets of cells, indexed by S(Zi) and S(Zj), in which these mutations are present, are either (i) disjoint, and
in this case mutations belong to different branches of a tree implied by Z, or (ii) one is a superset of the other, and
in this case mutation corresponding to the larger set is ancestor of the other mutation, or (iii) S(Zi) and S(Zj) are
equal, and in this case mutations Mi and Mj occur for the first time at the same node of the tree. Note that in the
description provided here, in order to simplify presentation, we typically do not consider the third case, although
in all of our experimental results we take into account this possibility.

Supplementary Algorithm 1 represents a top down approach to correct the errors in the input genotype matrix
I so that, under the assumption that I has no false positives, the output genotype matrix Y contains no conflicts.

This algorithm starts with a set consisting of (an index of) some column U = {i} (i.e., mutation Mi) of the
input matrix I. It then considers the set of cells in which mutation Mi is present and searches for a mutation
Mj such that there exists a cell in which both Mi and Mj are present. If such cell exists, the set U is extended
by adding j to it. We observe that, due to the assumption that I does not contain false positive mutation calls
(i.e., no 1→ 0 flips are allowed), it follows that in any conflict-free matrix Z obtained from I by the use of 0→ 1
flips only, we must have S(Zi) ∩ S(Zj) ̸= ∅. Therefore in any such matrix Z, due to the above lemma, we must
have S(Zi) ⊆ S(Zj) or S(Zj) ⊆ S(Zi). As the absence of false positives obviously implies S(Ii) ⊆ S(Zi) and
S(Ij) ⊆ S(Zj), we can easily conclude that at least one of the following must hold true: S(Ii) ∪ S(Ij) ⊆ S(Zi) or
S(Ii) ∪ S(Ij) ⊆ S(Zj). Similarly, if there exists a mutation Mk such that Mi and Mk are present in the same cell
or Mj and Mk are present in the same cell (which is equivalent to S(Ik)∩ (S(Ii)∪S(Ij)) ̸= ∅) we extend U so that
it equals {i, j, k} and observe that at least one of the following must hold true: S(Zi) ⊆ S(Zk), or S(Zk) ⊆ S(Zi),
or S(Zj) ⊆ S(Zk), or S(Zk) ⊆ S(Zj). In any case, we can conclude that for at least one l ∈ {i, j, k}, in any
conflict free matrix Z obtainable from I by the use of 0→ 1 flips only, we have S(Ii)∪S(Ij)∪S(Ik) ⊆ S(Zl). The
search is then continued, each time looking for a column v such that S(Iv) has non-empty intersection with union
of sets S(Iu) where u ∈ U . Eventually at some point no further extensions of the set U will be possible. Then,
based on what was shown above, we must have ∪u∈U S(Iu) ⊆ S(Zv), for some entry v ∈ U . In other words, in any
conflict-free matrix Z that is a candidate solution for our problem, it is necessary that at least one of the columns
Zv, for v ∈ U , has 1’s in all rows (cells) in which at least one of Iu, for u ∈ U , has 1.

Observe that reordering columns and rows of I together with their mutational and cellular labels in principle does
not impact the tree reconstructed from I. So, let us reorder the columns of I such that the columns corresponding
to mutations Mi, where i ∈ U , come first from the left and rows having 1 in at least one of these |U | columns come
first from the top. Assume that there are q such rows. Then the entries at the intersection of all remaining rows
(i.e., rows q + 1, q + 2, . . . , n) and the first |U | columns of (reordered) I are all zeros. What is more, due to the
choice of U , the entries at the intersection of columns |U |+ 1, |U |+ 2, . . . ,m and rows 1, 2, . . . , q are also all equal
to zero. In other words, the reordered I has the following shape[

A 02

01 B

]
where 01 and 02 are null matrices. Note that in the pseudocode given in Supplementary Algorithm 1, when

constructing A and B from I, we do not remove rows that have all entries equal to zero. This is done solely for the
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purpose of simplifying presentation, but it clearly does not affect the final result since entries of I corresponding
to 01 and 02 are never flipped from 0 to 1.

Converting I to some conflict free matrix Z clearly requires resolving all conflicts in A, as well as in B. On
the other hand, resolving all conflicts in A first and then separately resolving all conflicts in B will also resolve
all conflicts in I (because it can be easily verified that all conditions listed in Lemma 1 will be satisfied for the
resulting matrix). Therefore, we can recursively resolve conflicts in A and then in B and merge the two obtained
results.

While matrix B has at most m − 1 columns and recursive formula can be applied to it directly, it can occur
that the number of columns of A equals to m (i.e., |U | = m), in which case A has the same number of columns
as I so simple recursive call on A would result in non-terminating recursion. Observe now that: (i) ∪i∈U S(Ai) =
{1, 2, . . . , q}, which follows from the definition of A and (ii) If C is a conflict free-matrix that can be obtained from
A by the use of smallest number of 0 → 1 flips only, then, as we observed above, ∪i∈{1,2,...,|U |} S(Ai) ⊆ S(Cj) for
some j ∈ {1, 2, . . . , |U |}. Combining these two observations we conclude that at least one column in C consists
of entries that are all equal to 1. Performing the exhaustive search over all possible columns i ∈ {1, 2, . . . , |U |} in
order to find the one which has all 1’s in the output matrix and using recursive calls as described in Supplementary
Algorithm 1 will obviously result in finding the desired (optimal) conflict-free matrix C.

While the above approach results in a solution Y that is conflict-free and differs from I by a fewest number of
0 → 1 flips, it is exhaustive and has a running time O(n(m + 1)!) (one of the worst cases can occur for example
when mutation tree implied by the optimal solution is a linear tree without any branching events).

4.4 A fast computational method for many cells

In this section, we introduce and discuss a greedy computational method, which is a slight modification of the
algorithm given above, but has a running time of O(nm2) and requires O(nm) space. While it does not necessarily
always return an optimal output matrix (i.e., closest to the input matrix I in terms of the total number of
0 → 1 flips), we show that, if some reasonable assumptions are satisfied, the tree implied by the output matrix,
with high probability, matches the ground truth with perfect different-lineages (DL) accuracy measure (i.e., two
mutations belonging to different lineages in the true tree also belong to different-lineages in the tree implied by
solution returned from the algorithm) and any pair of mutations that have an ancestor-descendant relationship in
the ground truth tree will be either in ancestor-descendant order in the inferred tree or clustered together (i.e.,
reported as present in the same set of cells).

The new computational method is highly similar to Supplementary Algorithm 1. The main difference is that,
instead of performing an exhaustive search over all columns of A (line 13 in Supplementary Algorithm 1), we
greedily choose a column Ai with the highest number of 1’s and set the corresponding column of the output matrix
Y to S-1(∪j∈U S(Ij)). We then recursively apply our method to matrices B and A(i) and merge the obtained
results. The pseudocode of this algorithm, which we refer to as Supplementary Algorithm 2, is provided in the
Supplementary Materials.

As mentioned earlier, due to the greedy choices that it makes, Supplementary Algorithm 2 does not necessarily
find the optimal solution. However, if the conditions listed in Assumption 1 (see below) are satisfied, then the tree
implied by Y closely matches the tree implied by the ground truth genotype matrix G.

Assumption 1. Matrix I does not contain false positive mutation calls. Furthermore, I satisfies the following for
each pair of mutations Mi and Mj that are in a parent-child dependency in the ground truth tree (i.e., the node
labeled by Mi is parent of the node labeled by Mj): | S(Ii)| > | S(Ij)| and S(Ii) ∩ S(Ij) ̸= ∅.

We will prove that the above assumption is satisfied with high probability provided that the number of sequenced
single cells is much higher than the number of distinct (sub)clones in the tumor sample and the cellular prevalence
of each distinct (sub)clone is non-trivial. As such, Supplementary Algorithm 2 expands the capability of PhISCS-
BnB, a recent branch and bound algorithm [13] that achieves worst case optimality on genotype matrices with
no false positives, on emerging single-cell tumor datasets, where the number of cells is much higher than that of
mutations and thus the number of (sub)clones. Due to the space constraints, we only provide statements of the
following results. Their proofs can be found in Supplementary Materials, where we also provide an extension of
Supplementary Algorithm 2 to handle data containing both false negatives and false positives, as well as the missing
entries (some discussion of this algorithm is also provided in Section 4.5).

Lemma 2. Assume that we are given a tumor having the progression history that can be represented by a mutation
tree in which infinite-sites assumption is satisfied. Let φ denote the fraction of the smallest population of cells in
the entire tumor sample. Given that the false negative mutation detection rate is β < φ/2e, where e is the base of
the natural logarithm, if n≫ m cells are i.i.d. sampled from the tumor sample, then Assumption 1 is satisfied with
“high” probability.
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Theorem 1. Given an input matrix I that satisfies Assumption 1, Supplementary Algorithm 2 computes an output
matrix Y that is conflict-free and the tree reconstructed from this matrix matches the ground truth tree in preserving
all different-lineages (DL) dependencies between mutations, as well as either preserving ancestor-descendant (AD)
dependencies or, sometimes, possibly merging together mutations that are in ancestor-descendant order in the ground
truth (but never swapping their relative order in the tree implied by Y ).

Lemma 3. Supplementary Algorithm 2 can be implemented in O(nm2) time using O(nm) space.

4.5 A generalized method for handling false positives and missing entries

In this section, we briefly describe how we generalize the algorithm presented in Section 4.4 to cases where the
observed genotypes matrix I possibly contains some false positive mutation calls, as well as missing entries, in
addition to false negative mutation calls. A detailed pseudocode of this generalized method, along with a description,
can be found in the Supplementary Section 1.3. Specifically, Supplementary Algorithm 3 forms the main body of
the generalized method, which searches for the best possible solution by calling Supplementary Algorithm 4 for
every combination (of specified values) of the parameters λ and µ, as explained below.

In Supplementary Algorithm 2 we can call the set of columns that are united a ”connected component” because
they are considered to represent a subtree of the tumor progression tree. One key difference in Supplementary
Algorithm 4 with respect to Supplementary Algorithm 2 is that rather than computing the union of the columns in
a connected component (line 9 of Supplementary Algorithm 2) and using this as a “pivot” column, Supplementary
Algorithm 4 computes the sum of each row across the columns of the connected component to create a “histogram”.
The column with the highest number of 1s (more specifically, expected number of 1s - after estimating the number
of potential 1s among its missing entries) is then used as the pivot, and the intersection between this pivot column
and every other column is computed. In case the fraction of 1s in the intersection is less than λ, where λ is one
of the two key parameters we mentioned above, we remove the column (mutation) from the connected component.
Similarly, if the ratio of the number of 1s in any given row with the largest row of the histogram is less than
1/µ, where µ is the second key parameter mentioned above, then that row is set to 0 in the columns of the entire
connected component (including the pivot). As can be seen, λ is used to remove false positive columns (mutations)
from the connected component, and µ is used to detect and eliminate false positive entries among the (true positive)
columns of the connected component.

For each pair of values of λ and µ from a given range, Supplementary Algorithm 4 computes the output conflict-
free matrix R. Then, based on the scoring function defined in the line 7 of Supplementary Algorithm 3, among
all such matrices R, the best scoring matrix, denoted as Ropt, is selected. Given this best scoring matrix and the
input matrix I, by calling Supplementary Algorithm 5, we associate each column i of the matrix I with a column t
of the matrix Ropt. The column t is selected such that the conditional probability of observing the column Ii given
that its true status matches the column t of Ropt is maximized. Note that we can now define a matrix Y such that
its i-th column equals the column of Ropt that is closest (in terms of the conditional probability) to the column Ii.
Analogous is done for the rows of I, and the whole process is repeated several times (each time by first updating
the value of Ropt to Y before repeating the other steps of Supplementary Algorithm 5). Even though we do not
provide theoretical optimality guarantees for the generalized version of our method, we demonstrate in the next
section that it is (asymptotically) as fast, and produces highly accurate results on simulated and real genotype
matrices.
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Data availability

Our study makes use of two publicly available datasets introduced in previous studies [16, 17]. For the leukemia
dataset, single-cell and bulk sequencing data have been deposited at NCBI BioProject ID PRJNA648656, and SNP
array data with NCBI GEO ID GSE156934. For the HGSOC dataset, the single-cell FASTQs have been deposited in
the European Genome-phenome Archive under accession number EGA: EGAS00001003190. The OV2295 datasets
are available at Zenodo [20]. Source data for performance results for Figures 1 and 2 are available in Supplementary
Table 1. Source data for Extended Data Figures 1 to 10 is available with this manuscript. Simulated data generated
and used in this study for obtaining results shown in Extended Data Figures 1 to 10 are available at Zenodo [21].

Code availability

The open-source implementation of HUNTRESS is available at Zenodo [22].
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Figure 1: Analysis of high-grade serous ovarian cancer (HGSOC) dataset[16]. (a) Tumor progression tree repre-
senting 9 clonal populations of HGSOC dataset. This tree (with some minor formatting differences) was reported
in Figure 3H in [16]. (b) The reduced size tree obtained after filtering from the input all mutations (columns)
that have more than 650 missing entries, as well as mutations that are reported to be present in less than 10 cells
(i.e., have less than 10 entries being equal to 1 in the corresponding column of the genotype matrix I). (c) Tree
inferred by HUNTRESS. In (b) and (c) each edge is labeled with the number of mutations occurring between the
corresponding parent and child nodes (each node represents a subclone, i.e. a distinct cellular population that have
the same mutational profile). The proportion of cells in each node of the trees in (b) and (c) is color coded with
respect to the leaves in (a). To better visualize the inferred tree, we collapsed most of the linear chains (i.e., chains
of nodes having in/out-degrees equal to one) into single nodes. We also provide a comparison of HUNTRESS’
running time and accuracy against ScisTree [7], gpps [14], SPhyR [10] and SiCloneFit [6] using ancestor-descendant
(AD) and different-lineages (DL) accuracy measures (the higher the value, the better; see Supplementary Section
1.6 for definitions). The trees published by the original study are used as ground truth. (d),(e),(f) Results for the
full size HGSOC data with 891 cells and 744 mutations. (g),(h),(i) Results for the reduced size HGSOC data with
297 cells and 248 mutations. The time limit for each tool was set to 48 hours. All multi-threaded tools (i.e. gpps,
SPhyR and HUNTRESS) were run using 16 threads. For SiCloneFit we used 16 restarts in parallel, and reported
the best result in terms of the reported likelihood. See Supplementary Table 1 for a tabular depiction of panels
(d)-(i).
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Figure 2: Analysis of acute myeloid leukemia (AML) dataset[17]. (a): The mutation tree of patient “AML-67-001”
inferred by the use of SCITE[3] and reported in the original study[17]. The dataset consists of 3347 single cells
sequenced using Tapestri platform for targeted single-cell DNA sequencing. In total, 13 somatic mutations were
detected and used for the phylogenetic analysis. (b): The tree of tumor progression for the same patient dataset
as in (a), but inferred by the use of HUNTRESS. (c): The mutation tree of patient “AML-38-001” inferred by the
use of SCITE and reported in the original study[17]. The dataset consists of 6784 cells sequenced using Tapestri
platform for targeted single-cell DNA sequencing. In total, 12 somatic mutations were detected and used for the
phylogenetic analysis. (d): The tree of tumor progression for the same patient dataset as in (c), but inferred by the
use of HUNTRESS. Note that this tree turned out to be isomorphic to the tree reported in the original study. In
each tree shown in this figure, mutations are placed on the nodes (i.e., a cell population) of their first occurrence.
Since the sequencing data was generated by targeting a specific set of genes, each mutation can be associated
with a unique gene. However, some genes are mutated at multiple sites. In order to distinguish between multiple
mutations on the same gene, we use distinct subscripts (e.g., BCOR 1 and BCOR 2 represent two distinct mutations
in gene BCOR). We also provide a comparison of HUNTRESS’ running time and accuracy against ScisTree [7], gpps
[14], SPhyR [10] and SiCloneFit [6] using ancestor-descendant (AD) and different-lineages (DL) accuracy measures
(the higher the value, the better; see Supplementary Section 1.6 for definitions). The trees published by the original
study are used as ground truth. (d),(e),(f) Results for the patient AML-67-001. (g),(h),(i) Results for the patient
AML-38-001. The time limit for each tool was set to 48 hours. All multi-threaded tools (i.e. gpps, SPhyR and
HUNTRESS) were run using 16 threads. For SiCloneFit we used 16 restarts in parallel, and reported the best
result in terms of the reported likelihood. See Supplementary Table 1 for a tabular depiction of panels (e)-(j).
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Extended Data Figures
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Extended Data Figure 1: A running time assessment of HUNTRESS on simulated data with no false positives,
in comparison to ScisTree [7], SPhyR [10], and PhISCS-BnB [13], as well as its slower but more general variants,
PhISCS-I [11], and PhISCS-B [11]. All numbers on y-axis are in log10 scale. Here n, m and fn, respectively, denote
the number of cells, the number of mutations and the false negative error rate in single-cell data. For each setting of
n and m, we report the distribution of the running time for each tool - over 10 distinct trees of tumor progression,
with false negative error rates of 0.05, 0.1 and 0.2. Each tool was run with a time limit of 8 hours (those cases that
exceed the time limit are not included here). The corresponding accuracy measures for each setting are shown in
Extended Data Figure 2 (ancestor-descendant accuracy measure) and Extended Data Figure 3 (different-lineages
accuracy measure).
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Extended Data Figure 2: Comparison of ancestor-descendant (AD) accuracy measures for HUNTRESS, PhISCS-
BnB [13], ScisTree [7] and SPhyR [10] on simulated data with no false positives. Here n, m and fn, respectively,
denote the number of cells, the number of mutations and the false negative error rate in single-cell sequencing.
For each setting of n and m, we report the ancestor-descendent (AD) accuracy measure for each tool with respect
to the ground truth. The experiments were performed over 10 distinct trees of tumor progression, using a false
negative error rate of 0.05, 0.1 or 0.2. Each tool was run with a time limit of 8 hours (those cases that exceed
the time limit are not included here). Note that we have not included results of PhISCS-I and PhISCS-B as their
accuracy values are identical to that of PhISCS-BnB (on these instances on which they completed the task) due to
the same underlying objective function and optimality guarantee that they all provide.
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Extended Data Figure 3: Comparison of different-lineages (DL) accuracy measure distributions for HUNTRESS,
PhISCS-BnB [13], ScisTree [7] and SPhyR [10] on simulated data with no false positives. Here n, m and fn,
respectively, denote the number of cells, the number of mutations and the false negative error rate for single-cell
sequencing. For each setting of n and m, we report the different-lineages (DL) accuracy measure for each tool
with respect to the ground truth. The experiments were performed over 10 distinct trees of tumor progression,
with a false negative error rate varying across 0.05, 0.1 and 0.2. Each tool was run with a time limit of 8 hours
(those cases that exceed the time limit are not included here). Note that we have not included results of PhISCS-I
and PhISCS-B separately as their accuracy values match those of PhISCS-BnB (on these instances on which they
completed the task) due to the same underlying objective function and optimality guarantee that they all provide.
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Extended Data Figure 4: Ancestor-Descendant (AD) accuracy measure distributions for HUNTRESS, ScisTree
and SPhyR on simulated data with false positives, false negatives and missing entries. Here n, m, fn, fp and
na respectively, denote the number of cells, the number of mutations, the false negative, false positive error and
missing entry rates in single-cell sequencing data. For each setting we report the distribution for each tool over 10
distinct trees of tumor progression. Each tool was allowed to run with a time limit of 48 hours (those cases that
exceed the time limit are not included here).
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Extended Data Figure 5: Different Lineages (DL) accuracy measure distributions for HUNTRESS, ScisTree and
SPhyR on simulated data with false positives, false negatives and missing entries. Here n, m, fn, fp and na
respectively, denote the number of cells, the number of mutations, the false negative, false positive error and
missing entry rates in single-cell sequencing data. For each setting we report the distribution for each tool over 10
distinct trees of tumor progression. Each tool was allowed to run with a time limit of 48 hours (those cases that
exceed the time limit are not included here).
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Extended Data Figure 6: Running time distributions for HUNTRESS, ScisTree and SPhyR on simulated data with
false positives, false negatives and missing entries. Here n,m, fn, fp and na respectively, denote the number of cells,
the number of mutations, the false negative, false positive error and missing entry rates in single-cell sequencing
data. For each setting we report the distribution for each tool over 10 distinct trees of tumor progression. For any
given task each tool was allowed to run with a time limit of 48 hours (those cases that exceed the time limit are
not included here).
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Extended Data Figure 7: Ancestor-Descendant (AD) and Different Lineages (DL) accuracy measures as well
as running time distributions for HUNTRESS, ScisTree and SPhyR on simulated datasets with doublets. Here
n = 1000, m = 300, fn = 0.2 or 0.05, fp = 0.001, na = 0.05, and the doublet rate is set to 0.03. Each distribution
is over 10 distinct trees of tumor progression. For any given task each tool was allowed to run with a time limit of
48 hours.
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Extended Data Figure 8: Ancestor-Descendant (AD) and Different Lineages (DL) accuracy measures, as well as
the running time distributions for HUNTRESS on large simulated datasets. In these simulations we set n = 5000,
m = 500, fn = 0.05 or 0.2, fp = 0.001 and na = 0.05. For each setting, the distributions are reported over 10
distinct trees of tumor progression. Note that because ScisTree could not finish any of the tasks within the time
limit of 48 hours and SPhyR failed to generate any output, they are not presented in the figure.
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Extended Data Figure 9: Ancestor-Descendant (AD) and Different Lineages (DL) accuracy measures as well as
running time distributions for HUNTRESS, ScisTree and SPhyR on simulated datasets with a high(er) false positive
rate of fp = 0.003. Here n = 1000, m = 300, fn = 0.2 or 0.05, and na = 0.05. Each distribution is over 10 distinct
trees of tumor progression. For any given task each tool was allowed to run with a time limit of 48 hours.
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Extended Data Figure 10: Running time, ancestor-descendant and different lineages accuracy measure distributions
for HUNTRESS and SPhyR on simulations with parameters similar to those observed in the AML dataset (the
Tapestri platform). Here n = 5000, m = 50, fn = 0.2 or 0.05, fp = 0.01 or 0.003 and na = 0.1. All simulated data
used in this figure were generated by the simulator developed for OncoNEM [4]. For any given task each tool was
allowed to run with a time limit of 48 hours.
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5 Supplementary Materials

5.1 Pseudocode of constrained exhaustive search algorithm for genotype matrix re-
construction

Supplementary Algorithm 1 Input: a boolean genotype matrix I ∈ {0, 1}n×m, which may have false negatives.
Output: a “corrected” genotype matrix Y that contains no conflicts and differs from I by the smallest possible
number of 0→ 1 flips among all conflict free matrices obtainable from I by the use of 0→ 1 flips only.

1: function PtreeExactFNonly(I)
2: Y ← I
3: if number of columns in I is zero or one then
4: return Y
5: end if
6: E ← {1, 2, . . . ,m}
7: U ← {1} (instead of 1 this can also be an arbitrary column j ∈ {1, 2, . . . ,m})
8: while there exists j ∈ E \ U such that (∪i∈U S(Ii)) ∩ S(Ij) ̸= ∅ do
9: U ← U ∪ {j}

10: end while
11: A← matrix formed of all columns Iu of I for which u ∈ U
12: B ← matrix formed of all columns Iv of I for which v ∈ E \ U
13: for i ∈ {1, 2, . . . , |U |} do
14: A(i) ← matrix obtained by removing i-th column from A
15: C(i) ← PtreeExactFNonly(A(i))
16: C(i) ← extend C(i) by adding S-1(∪i∈U S(Ii)) as its last column
17: end for
18: C ← argmini∈{1,2,...,|U |} F

(
A,C(i)

)
19: D = PtreeExactFNonly(B)
20: Y ← concatenate matrices C and D
21: Y ← using column labels reorder columns in Y so that their ordering matches the ordering of columns in I
22: return Y
23: end function
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5.2 Pseudocode of the fast computational method for many cells in the absence of
false positives

Supplementary Algorithm 2 Input: a boolean genotype matrix I ∈ {0, 1}n×m, which may have false negatives.
Output: a “corrected” conflict-free matrix Y , which, if Assumption 1 is satisfied, implies the ground truth tree.

1: function ApproximatePtreeReconstruct(I)
2: Y ← I
3: if number of columns in I is zero or one then
4: return Y
5: end if
6: E ← {1, 2, . . . ,m}
7: U ← {1} (instead of 1 this can also be an arbitrary column j ∈ {1, 2, . . . ,m})
8: while there exists j ∈ E \ U such that (∪i∈U S(Ii)) ∩ S(Ij) ̸= ∅ do
9: U ← U ∪ {j}

10: end while
11: A← matrix formed of all columns Iu of I for which u ∈ U
12: B ← matrix formed of all columns Iv of I for which v ∈ E \ U
13: i← argminj∈{1,2,...,|U |} F

(
Aj ,S-1(∪u∈U S(Iu)

)
14: A(i) ← matrix obtained by removing i-th column from A
15: Y ← a single column matrix with the column equal to S-1(∪u∈U S(Iu))
16: Y ← concatenate Y and ApproximatePtreeReconstruct(A(i))
17: Y ← concatenate Y and ApproximatePtreeReconstruct(B)
18: Y ← using column labels reorder columns in Y so that their ordering matches the ordering of columns in I
19: return Y
20: end function
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5.3 Pseudocode of the most general method for genotype matrix reconstruction
handling false positives, false negatives, and missing entries

Supplementary Algorithm 3, as described below, is the heart of the extended version of HUNTRESS which can
handle not only false negatives but also false positives and missing entries. Primarily, Supplementary Algorithm 3
sweeps through the parameters λ and µ. For each parameter setting, it calls Supplementary Algorithm 4 to compute
the output matrix R for which it computes the likelihood score defined as the sum of (i) the number of 1 to 0 flips
between I and R, weighted by γ, and (ii) 0 to 1 flips between I and R, weighted by 1 where γ is the estimated
ratio of number of false negatives to number of false positives. The specific output matrix Ropt minimizing the
likelihood score is then forwarded to the post-processing step for the final refinement and as specified previously
α, β correspond to estimated false positive and negative probabilities respectively.

Note that all experiments in this paper were conducted by using the default values. Unless the ratio of the
number of false negatives to the number of false positives is too small (close to 1 or less), the output is not very
sensitive to these parameters and default values yield good results. If the user has knowledge on the false positive
and/or false negative rates in the data, they can be input for further refinement of the results. For the case where
there are no false positives (i.e. α = 0), HUNTRESS calls Supplementary Algorithm 2 that we have presented
earlier, specifically for this case.,

Supplementary Algorithm 3 HUNTRESS: Histogrammed UNion Tree REconStruction Scheme, an autotuned
progression history reconstruction method with post-processing refinement. Input: Observed genotype matrix I
and estimated false positive and false negative rates of single-cell data. Output: Conflict-free matrix Y representing
noise corrected version of the input matrix I (ideally, Y contains true genotypes of the sequenced cells).

1: function HUNTRESS(I, α, β, γ)
2: fopt ← +∞ (this variable stores the smallest weighted number of flips between I and R’s as given below)
3: Ropt ← any matrix of dimension n×m (value will be set below)
4: if α > 0 then
5: for λ in {0.2, 0.3, 0.4} do
6: for µ in {1, 3, . . . , 97, 99} do
7: R← PtreeApproxGeneral(I, λ, µ)
8: f ← γ|{(i, j)|I[i, j] = 1 & R[i, j] = 0}| + |{(i, j)|I[i, j] = 0 & R[i, j] = 1}|
9: if f < fopt then

10: fopt ← f
11: Ropt ← R
12: end if
13: end for
14: end for
15: Y ← Post-Proc(I,Ropt, α, β)
16: else
17: Y ← ApproximatePtreeReconstruct(I)
18: end if
19: Return Y
20: end function

Supplementary Algorithm 4 generates the outline of the topology for the tumor progression tree. For ordering
the columns of the input matrix I in the presence of missing entries, for each column we define its weight as the
ratio of the number of 1s to the total number of 0s and 1s present in the column. Because of potential false
positives, columns that are disjoint in the ground truth genotype matrix G might have a non-empty intersection
in I. Parameter λ helps eliminate the false positive columns of a connected component. Parameter µ, on the other
hand, helps eliminate the false positive entries of a true positive column. After the elimination of the false positive
columns and rows of a connected component (to form a subtree of the tumor progression tree), we compute the
union of the remaining columns as the pivot column and perform a final sweep across the columns that are not a
part of the connected component. Those that have a substantial overlap with the pivot column are added to the
connected component (see lines 21 to 25). For all other columns, we set their rows that intersect with the pivot
column to 0. This approach ensures that the three-gametes rule is satisfied for the output matrix R.

Supplementary Algorithm 5 postprocesses the matrix R returned by Supplementary Algorithm 4 by comparing
it to the input matrix I. For that, it first scans through columns of I and replaces each column with the column
of R with the highest conditional probability with respect to the entries that are not missing in the input data.
It then takes the resulting matrix Y and repeats the same procedure for its rows, again using those of the input

23



Supplementary Algorithm 4 Generalized Approximate P-Tree Reconstruction with Parameterization. Input:
Genotype matrix I with false positives, false negatives, and potentially some missing entries (denoted as ”?”); user
defined parameters λ and µ. Output: Conflict-free matrix R.

1: function PtreeApproxGeneral(I, λ, µ)
2: Itemp ← I (some local changes will be made to I below so we store its original value here)
3: w ← a vector of size m such that w[i] holds the “weight” of i-th column of I (i.e., i-th mutation)
4: for i ∈ {1, 2, . . . ,m} do
5: ones ← the number of entries in the column Ii that are equal to 1
6: known ← the number of non-missing entries in the column Ii
7: w[i]← ones/known
8: end for
9: C ← {1, 2, . . . ,m}

10: while C ̸= ∅ do
11: choose i ∈ C such that w[i] ≥ w[j] for all j ∈ C
12: h← a vector of dimension n (a histogram)
13: for j ∈ {1, 2, . . . , n} do
14: h[j]← |{k|k ∈ C, | S(Ik) ∩ S(Ii)| ≥ λ ·min{| S(Ik)|, | S(Ii)|}, j ∈ S(Ik)}|
15: end for
16: s← ∅
17: for j ∈ {1, 2, . . . , n} do
18: if h[j] ≥ max{h[1], h[2], . . . , h[n]}/µ then s← s ∪ {j}
19: end if
20: end for
21: for ℓ ∈ C do
22: if | S(Iℓ) ∩ s| > | S(Iℓ)|/2 then Iℓ ← S-1 (S(Iℓ) ∩ s)
23: else Iℓ = S-1(S(Iℓ) \ s)
24: end if
25: end for
26: C ← C \ {i}
27: Ri ← S-1(s)
28: end while
29: I ← Itemp (this ensures that the value of I is restored to its original value passed through the function

argument)
30: Return R
31: end function

matrix I. The postprocessing step can stop at this point or could be repeated until the output matrix reaches
stability; this takes no more than two iterations in simulated problem instances.

In Supplementary Algorithm 5, P (Ii | Rj , α, β) is taken as αNij
10βNij

01(1 − α)N
ij
00(1 − β)N

ij
11 . Here N ij

kl denotes
the number of entries that are equal to k in Ii and equal to l in Rj where k, l ∈ {0, 1}. P (Ii | Rj , α, β) is thus the
conditional probability over the non-missing entries, given that false positives and false negatives are i.i.d.; here α
and β represent the probability of false positives and false negatives, respectively.

24



Supplementary Algorithm 5 Manipulates rows and columns of a given conflict-free matrix R in order to create
a conflict-free matrix Y which is closer in terms of the conditional probability to the noisy input matrix I. Here,
we assume that probabilities of false positive and false negative mutation calls in I, denoted respectively as α and
β, are given as arguments (in addition to the noisy input genotype matrix I and matrix R obtained by (multiple)
calls of the function defined in Supplementary Algorithm 4).

1: function Post-Proc(I,R, α, β)
2: N̂01 ← number of entries that are 0 in I but 1 in Y , N01 ← N̂01 + 1
3: while N̂01 < N01 (based on our experimental results this loop typically repeats only a few times) do
4: N01 ← N̂01

5: Y ← R
6: for i ∈ {1, 2, . . . ,m} do
7: t← argmaxj∈{1,2,...,m} P (Ii | Rj , α, β) (see the main text for details of computing P (Ii | Rj , α, β))
8: Yi ← Rt

9: end for
10: R← Y
11: Repeat lines 4-9 this time comparing rows of I and R instead of comparing their columns
12: N̂01 ← number of entries that are 0 in I but 1 in Y
13: end while
14: return Y
15: end function

5.4 Supplementary Proofs

In this section we provide proofs of the two lemmas and the theorem stated in the Methods section of the main
manuscript.

Assumption 1 (restated) Matrix I does not contain false positive mutation calls. Furthermore, I satisfies the
following for each pair of mutations Mi and Mj that are in a parent-child dependency in the ground truth tree
(i.e., the node labeled by Mi is parent of the node labeled by Mj): | S(Ii)| > | S(Ij)| and S(Ii) ∩ S(Ij) ̸= ∅.

Lemma 2 (restated) Assume that we are given a tumor having the progression history that can be represented by
the use of a mutation tree in which infinite-sites assumption is satisfied. Let φ denote the fraction of the smallest
population of cells in the entire tumor sample. Given that the false negative mutation detection rate is β < φ/2e,
where e is the base of the natural logarithm, if n ≫ m cells are i.i.d. sampled from the tumor population, then
Assumption 1 is satisfied with “high” probability.

Proof. We first show that this lemma is valid for the case where the (ground truth) tree implied by G has a
“linear” topology and each two populations with a parent-child relationship differ by one mutation. Without loss
of generality, assume that the columns of the input genotype matrix I are sorted in increasing order with respect
to the number of 1s they have in the matrix G. Then G[k, i] ≤ G[k, i + 1] for all i, k (see [9] for a more detailed
discussion of correlations between conflict-free matrices and linear trees). As there are m cancerous populations
(due to the infinite-sites assumption and the assumption that parent-child populations differ by one mutation), we
have m · φ ≤ 1, implying that m ≤ 1/φ.

In the case of tree with linear topology, Assumption 1 is satisfied if and only if I satisfies the two conditions
below for all 1 ≤ i < m:

(a)
∑n

k=1 I[k, i] <
∑n

k=1 I[k, i+ 1]; i.e., the number of 1s in columns increases from left to right, and

(b) S(Ii)∩S(Ii+1) ̸= ∅ for all columns Ii and Ii+1 of the matrix I; i.e., any two adjacent columns have a nonempty
intersection (of the locations of their 1s).

We first consider (a). For (a) to be violated by columns Ii and Ii+1, enough entries of the column Ii+1 must be
false negatives so that the number of 1s in column Ii+1 is not greater than the number of 1s in column Ii. More
precisely, the inequality

∑n
k=1 I[k, i] ≥

∑n
k=1 I[k, i + 1] must hold. Define li =

∑n
k=1G[k, i] (i.e., li is the number

of 1s in the column Gi) and ni+1 = li+1 − li. Then, in order for part (a) of the assumption to be violated, we
must have at least ni+1 false negative mutation calls in Ii+1. Given ni+1 locations and the fact that each can be a
false negative independently with probability β, the probability that all ni+1 will be false negatives is βni+1 . These
locations can be chosen in

(
li+1

ni+1

)
ways in column i+1. By applying the union bound, we can bound the probability
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ρi that condition (a) will be violated by the pair of columns Ii and Ii+1, as follows (for more detailed proof of this
bound see the subsection after the end of this proof):

ρi ≤ βni+1

(
li+1

ni+1

)
.

In order for I to satisfy (a), (a) must be satisfied by all adjacent column pairs of I. The probability of this
happening is at least

m−1∏
i=1

(1− ρi) ≥
m−1∏
i=1

[
1− βni+1

(
li+1

ni+1

)]
=

m∏
i=2

[
1− βni

(
li
ni

)]
≥

m∏
i=2

[
1− βφin

(
n

φin

)]
where φi = ni/n and we used the fact that each term in the above products is positive real number (proof

provided below).
Using the well known inequality (

n

k

)
≤

(en
k

)k

.

we have

m∏
i=2

[
1− βφin

(
n

φin

)]
≥

m∏
i=2

[
1−

(
βe

φi

)φin]
Now, observe that φ ≤ φi, combined with the assumption β

φ < 1
2e , implies that βe

φi
≤ βe

φ < 1
2 for each i. We

know from (a version of) Bernoulli’s inequality that, for real numbers t ≥ 1 and 0 ≤ x ≤ 1, (1 − x)t ≥ 1 − tx.
Combining this with the above observation, we can bound the probability of (a) being satisfied by all adjacent
column pairs as

m∏
i=2

[
1−

(
βe

φi

)φin]
≥

[
1−

(
1

2

)φn]m−1

≥ 1− (m− 1) ·
(
1

2

)φn

> 1− 1

φ

(
1

2

)φn

where the last inequality follows from (m+1) ·φ ≤ 1 (this holds true because, including the healthy population,
there are in total m+ 1 genetically distinct populations of cells, their frequencies add up to 1 and each frequency
is lower bounded by φ), which implies m− 1 = (m+ 1)− 2 ≤ 1

φ − 2 < 1
φ .

The probability of satisfying (b) can also be simply bounded. As at least φn cells are sampled from each
population, we have that in G the intersection of two columns Gi and Gi+1 is of size at least φn (i.e., | S(Gi) ∩
S(Gi+1)| ≥ φn). For this intersection to become empty, for each row j where G[j, i] = 1 and G[j, i+1] = 1, at least
one of I[j, i] or I[j, i + 1] must be a false negative. Therefore, the probability that | S(Ii) ∩ S(Ii+1)| = 0, denoted
as ψi, can be bounded as follows

ψi ≤ (2β)φn = 2φnβφn.

Note that φ ≤ 1
m+1 ≤

1
2 and using the well known inequality

(
n
k

)k ≤ (
n
k

)
we have 2φn ≤

(
n
φn

)
. Now we have

that the probability that all adjacent pairs of columns of I have nonempty intersection is at least

m−1∏
i=1

(1− ψi) ≥
m∏
i=1

(1− 2φnβφn) ≥
m∏
i=2

[
1− βφn

(
n

φn

)]
.

Using the same arguments as part (a) we can prove that the last product is also lower bounded by 1− 1
φ

(
1
2

)φn
.

Thus, the probability that both (a) and (b) will be satisfied by the entirety of I; i.e., Assumption 1 will be satisfied,
is at least

1− 2

φ

(
1

2

)φn

.

By establishing the above inequality we have completed the proof for the case where the ground truth tree
implied by G has a linear topology and all parent-child cellular populations (subclones) differ by exactly one
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mutation. This result can be extended to cases of linear trees where possibly more than one mutations distinguish
parent-child populations. Namely, in such case, all of the above inequalities would still hold, except that in the last

ones the coefficient m− 1 in front of
(
1
2

)φn
needs to be replaced by m2

2 ≤
1

2φ2 (because in this case the number of
terms in the products is upper bounded by the total number of mutational pairs that are in parent-child relations

and this number is certainly less than m2

2 ). In summary, in this more general case of linear trees, the coefficient 2
φ

present in the lower bound for the above special case, now needs to be replaced by 1
φ2 .

Finally, this proof immediately generalizes to the most general case where the ground truth tree implied by
matrix G might contain some branching events and multiple mutations per node. Namely, in such cases the proof
essentially remains the same as for the case of linear trees that have one or multiple mutations per node.

More detailed proof of the bound on the value of ρi used in the proof of Lemma 2

Observe that, in order for the inequality
∑n

k=1 I[k, i] ≥
∑n

k=1 I[k, i+1] to hold, the total number of false negatives
in Ii+1 needs to be higher for at least ni+1 compared to the total number of false negatives in Ii. Let P be a
function defined on the pairs (Q, k), where Q is an arbitrary set and k is a non-negative integer, such that P(Q, k)
equals the set of subsets of Q of size k. For q ∈ P(S(Gi+1), ni+1) let Eq be an event that Ii+1 contains false
negatives at all positions (i.e., rows/cells) from the set q (note that we allow the presence of other false negatives
in Ii+1). In other words, Eq is an event that at a given set of ni+1 positions from S(Gi+1) we have false negative
mutation calls in Ii+1. Assuming that false negatives occur independently of each other, the probability of each Eq

is βni+1 . Due to the observation stated above, ρi is clearly upper bounded by (below, P denotes the probability
function)

P

 ⋃
q∈P(S(Gi+1),ni+1)

Eq

 ≤ ∑
q∈P(S(Gi+1),ni+1)

P (Eq)

= βni+1

(
li+1

ni+1

)
where in the last step we used the fact that the size of the set P(S(Gi+1), ni+1) equals

(
li+1

ni+1

)
.

Theorem 1 (restated) Given an input I that satisfies Assumption 1, Supplementary Algorithm 2 computes an
output matrix Y that is conflict-free and the tree reconstructed from this matrix matches the ground truth tree in
preserving all different-lineages dependencies between mutations, as well as either preserving ancestor-descendant
dependencies or, sometimes, possibly merging together mutations that are in ancestor-descendant order (but never
swapping their relative order).

Proof. We first prove that for two mutations Mi and Mj such that Mi is parent of Mj in tree TG implied by G, in
the output matrix Y we have S(Yi) ⊇ S(Yj). Based on the Assumption 1, it follows that S(Ii) ∩ S(Ij) ̸= ∅, which
guarantees that columns corresponding toMi andMj are kept together in matrices passed as arguments in recursive
calls of function implemented in Supplementary Algorithm 2, until one of the two is chosen as column that best
matches S-1(∪u∈U S(Iu)). As | S(Ii)| > | S(Ij)|, due to the greedy approach used in our algorithm, the column that
is selected earlier will be the one that corresponds toMi. Then, before making the next recursive call of the function,
mutationMi gets removed from the input provided to the recursive call. In other words,Mi and is not a part of the
resulting matrix, which is denoted as A(i) in the pseudocode and is provided as an argument in the recursive call.
From the description of the algorithm, it is obvious that for any column corresponding to the mutation Mk of the
matrix A(i), in the final solution we have Yk ⊆ Yi. Since the column corresponding toMj belongs to this matrix, we
then have S(Yi) ⊇ S(Yj). As this holds for each pair of mutations that are in parent-child dependency, it trivially
extends to all pairs of mutations that are in ancestor-descendant dependency in TG. From the observation that
S(Yi) ⊇ S(Yj) holds for arbitrary pair of mutations that are in ancestor-descendant dependency in TG, it follows
that no such pair of mutations will be placed on different lineages nor in descendant-ancestor dependency in the
tree implied by Y .

Second, we prove that for two mutations Mi and Mj that are on different lineages in the tree TG implied by G,
we have that they are also on different lineages in the tree implied by Y . To prove this, note that it is sufficient to
prove that S(Yi) ∩ S(Yj) = ∅. As Mi and Mj are on different lineages in the tree TG we have S(Gi) ∩ S(Gj) = ∅.
Consider the topology of TG. Since S(Gi) ∩ S(Gj) = ∅ we know that mutations Mi and Mj belong to different
lineages (equiv. different tree branches), implying that neither of them is an ancestor of the other. What we
have just shown above is that, for two mutations that are in ancestor-descendant order in TG, the one which is an
ancestor will be processed first. Consider the point E in the execution of Supplementary Algorithm 2 when the
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column corresponding to the most recent common ancestor of Mi and Mj in TG, denote it as Mk, is processed and
the column Yk constructed. Prior to the point E , Mk and all of its descendants (including Mi and Mj) will be
together in the same matrix passed as an argument to the function implemented in Supplementary Algorithm 2
(this follows from the Assumption 1 as it guarantees that, for each pair of parent-child mutationsMa andMb on the
path from Mk to Mi or Mj in TG, the intersection of S(Ma) and S(Mb) is non-empty so columns corresponding to
all of these mutations will be added to the union set U). However, once column corresponding to Mk is processed,
in the subsequent recursive calls, the two mutationsMi andMj will eventually be split into two different matrices A
and B. This is true due to the fact that Mi and Mj belong to different lineages and for any pair of mutations from
different lineages there does not exist a cell in I harboring both of them (here we exploit the assumption that there
are no false positives, which implies S(Ii) ∩ S(Ij) = ∅). As soon as mutations Mi and Mj are separated into two
different matrices (i.e., A and B) during the execution of our algorithm, we obviously must have S(Yi)∩S(Yj) = ∅
in the reported solution Y (see discussion related to the reordered matrix I that is provided in the Section 4.3).

Note that above we used the assumption that each pair of mutations Mi and Mj has the most recent common
ancestor Mk, which is not necessarily always true (e.g., in case of some multicentric tumors). However, it can be
easily verified that even if Mk does not exist, then we still have S(Yi) ∩ S(Yj) = ∅. One way of showing it is
by introducing an artificial null mutation M0 present in all cells in I and applying the above argument (in this
case each pair of mutations obviously has a common ancestor, namely M0). As M0 is present in all cells, its
corresponding column Y0 will be generated first and the algorithm will then be recursively called on the original
matrix I hence removing column Y0 from Y would give us the same output as we would originally obtain when
providing the observed matrix I (with m columns) as the input matrix.

Lemma 3 (restated): Supplementary Algorithm 2 can be implemented in O(nm2) time using O(nm) space.

Proof. Supplementary Algorithm 2 can be implemented in the two steps described below. In the first step, it simply
identifies “connected components” of the graph GI in which each vertex corresponds to a specific column of the
input genotype matrix I and there is an edge between two vertices if and only if their corresponding columns have
a row at which both of them are equal to 1 in I. The graph GI can be constructed in O(nm2) time, whereas finding
its connected components will only take O(m2) time. The second key step involves computing the “union” of all
columns in a connected component. This will take O(nm) time and will need to be repeated at most mc times
for a connected component with mc vertices. As all values of mc add up to m, the overall running time required
for completing this step is O(nm2). Combining the above we conclude that Supplementary Algorithm 2 can be
implemented so that its total running time does not exceed O(nm2).

The memory requirements of Supplementary Algorithm 2 are no more than a constant number of matrices of size
O(nm) together with some pointers that store the information about which columns (vertices of GI) are included in
the recursive calls. As these pointers obviously do not require more than O(nm) space, the total memory required
by the algorithm is O(nm).

5.5 Details of simulated data generation

Simulated data used in this work were generated by adopting the source code previously used in [8] and [23]. These
simulations are to some extent based on the commonly used clonal theory of cancer growth, according to which
tumors are composed of a number of genetically highly similar populations of cells (subclones). However, in order
to avoid to extensively rely on this theory, in most simulations where tree inference accuracy was assessed, we set
the number of subclones to a very high value of 100. More discussion of this parameter choice can also be found at
the end of this section. The process of generating simulated data can be divided into three main steps:

1. Simulating tree of tumor progression

We first simulate a random rooted clonal tree of tumor progression of a given size k. Each of the tree nodes
represents a genetically distinct population of cells. This tree is generated iteratively, starting from the root,
which is mutation-free and represents the population of healthy cells, and adding each new node as a child of
one of the randomly selected existing nodes. We then randomly assign a set of m ≥ k − 1 mutations, denote
them as M1,M2, . . . ,Mm, to the nodes of the tree. While making this assignment, we assume that commonly
used infinite sites assumption holds, that is: mutation Mi is assigned to exactly one node and is present at
that node as well as in all of its descendants (we will see below how violations of infinite sites assumption are
simulated). In order to ensure that nodes of the tree correspond to genetically distinct populations of cells,
we require that each node is assigned at least one mutation. The node to which Mi is assigned represents
the node of the first occurrence of Mi. Each node of the tree is then assigned a frequency, which represents
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the cellular prevalence of the related cellular population (subclone) in the simulated tumor. This frequency
is a real number greater than some small pre-defined constant (in all simulations this value was set to only
0.005). Frequencies of all nodes are required to add up to 1.

2. Single-cell data simulation

Once the tree of tumor progression is generated, we draw a given number n of single cells, denote them as
C1, C2, . . . , Cn, from the tree nodes. The probability of drawing a cell from a given node equals the frequency
that was assigned to the node during the tree simulation step. Each of the sampled cells has a unique true
genotype, which is a binary vector having i-th coordinate set to 1 if and only if mutation Mi is present at the
node of origin of the cell or some of its ancestors. After single-cell sampling is completed, we obtain a true
genotype matrix G, which is a binary matrix with n rows (representing cells) and m columns (representing
mutations). We set Gij = 1 if and only if mutation Mj is present in cell Ci. In order to simulate noise
introduced (in practical applications) during single-cell sequencing and mutation calling, we first add false
positive noise to G by considering its entries that are equal to 1 and flipping them to 0 independently with flip
probability equal to a given false positive rate constant α. Similarly, we add false negatives at a given false
negative rate constant β. Lastly, we independently change entries G to ? (missing entry) with a probability
equal to a given missing entries rate constant γ. We denote by I the noisy single-cell matrix obtained from
G after the above noise-adding steps are completed.

3. Simulating copy number aberrations that cause violations of infinite-sites assumption

All methods used in this work rely on the infinite sites assumption. As mentioned above, it states that each
somatic single nucleotide variant occurs exactly once during the course of tumor progression and once it is
acquired in some cell it is not lost in any of its descendants. However, the presence of copy number aberrations
is the major cause of the violations of this assumption. Deletions and loss of heterozygosity events in which
a variant allele is lost cause losses of previously gained mutations. On the other hand, copy number gains
do not have a major effect on the status (presence vs. absence) of a single nucleotide variant in a given
cell. While we require that mutations from regions affected by deletions and loss of heterozygosity events
are filtered prior to running HUNTRESS, due to imperfect calling of copy number variants, some of such
mutations might remain in the input.

In order to assess the robustness of the methods to the presence of this type of noise, we also generated
simulated data where 10% of the total number of mutations (i.e., m

10 mutations) are affected by losses.
Mutations on which losses would have a major effect in the context of tree reconstruction are these occurring
at non-leaf (i.e., internal) nodes of the simulated tree. Therefore we first randomly choose m

10 among mutations
occurring for the first time at the internal nodes and then for each mutation M from this set we do the
following: assume that M occurs for the first time at node v. We consider the set of all descendants of v in
the simulated tree, denote it as D(v), and then randomly choose one node, denote it as w, from the set D(v).
We assume that M is lost at w. In other words, M is present at the node v and all of its descendants, except
at the node w and all of its descendants.

After we have selected mutations affected by losses and nodes where these losses occur, we proceed with
generating true and noisy single-cell genotype matrices, denote them as Gdel and Idel, respectively. We start
by setting Gdel = G and Idel = I, where G and I were obtained in the Step 2 described above. In order to
get values of Gdel and Idel we first observe that only columns of these matrices corresponding to mutations
affected by deletions need to be updated. More precisely, for a given mutation M that is lost at node w, the
only entries of Gdel that need to be updated are these at the intersection of (i) column corresponding to M
and (ii) rows corresponding to cells sampled from node w or its descendants. Namely, all these entries are set
to 1 in G and they need to be flipped from 1 to 0 in Gdel as they correspond to cells where M was lost. Once
this correction in the column related to mutation M is made in Gdel, we then consider matrix Idel. For all
entries Gdel

ij that were updated from 1 to 0 and such that Idelij ̸=?, we first update Idelij to Gdel
ij = 0 (i.e., to the

true status). We then flip Idelij to 1 with probability φ, which is done in order to simulate false positive noise.

The above process ensures the minimal difference between matching noisy matrices I and Idel. It preserves
nodes of origin of single cells for both matrices, all missing entries, as well as the values of all non-missing
entries in I and Idel for which ground truth matrices G and Gdel do not differ in the corresponding entries.
We use this approach of obtaining Idel in order to minimize the effect of factors other than these introduced
by mutational losses when assessing the robustness of tools to the presence of losses.

After noisy single-cell matrices are generated, we filter from the input all columns that have no entry equal
to 1. These columns represent non-observed mutations for which no information useful for tree reconstruction is
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available and in real settings such mutations would not be considered as a part of the input. This filtering step, on
average, removes only between 1% and 2% of the total number of simulated mutations.

Note that, as mentioned above, in all of our experiments we set tree size parameter k to 100. It is important to
observe that simulations with a smaller value of k (e.g., k = 15) are in general less challenging and imply higher
reconstruction accuracy (experiments not included in this work). Namely, for smaller values of k we typically have
a higher number of cells sampled from each node, as well as a higher number of mutations separating cellular
populations, which in turn gives more informative signals for inference of relative placement (ancestor-descendant
vs. different-lineages) of mutations.

5.5.1 Details of generating doublets

In order to simulate doublets, for each simulated instance of size n = 1000, m = 300 from Supplementary Table 3
(which does not contain any doublets), we first selected 3% of cells uniformly at random. For each of the selected
cells, we replaced its genotype in the true (noise-free) matrix with the union of its true genotype and the true
genotype of one randomly selected cell from the set of the remaining cells. This procedure yields an input data
with 0.03 doublet rate. In order to generate the noisy version of the true matrix, the false positive, false negative
and missing entries were then added to the simulated doublets at the specified rates, whereas the remaining rows
were copied from the matching noisy matrix used in Supplementary Table 3.

5.6 Measuring tree inference accuracy on simulated and real data

In order to assess the performance of methods on simulated data where ground truth is available, as well as to
compare results obtained by HUNTRESS to the previously published results on real datasets, we use two commonly
used measures for tree inference accuracy: ancestor-descendant (AD) accuracy measure and different-lineages (DL)
accuracy. Below we provide a brief description of how each of the measures was computed. For the case of simulated
data, we assume that G is the true simulated genotype matrix and for the case of real data we assume that this is a
noise-corrected genotype matrix reported by previously published studies. We assume that Y denotes a conflict-free
matrix obtained by the use of some (specified) tool that we run in this study using the matching noisy version of
G as input. We also assume that mutation corresponding to column i of G (and Y ) is denoted as Mi.

Two mutations Mi and Mj can be in one of the following dependencies:

• Ancestor-descendant if node of occurrence of Mi is ancestor of node of occurrence of Mj .

• Descendant-ancestor if node of occurrence of Mi is descendant of node of occurrence of Mj .

• Same node if Mi and Mj occur for the first time at the same node of the tree.

• Different-lineages if none of the above is the case.

Mutual dependencies between Mi and Mj can be directly obtained from the simulated ground truth tree. How-
ever, in the single-cell sampling step, there might be some nodes of the tree from which no cells are sampled.
Consequently, the inference of some dependencies is dependent solely on the “luck”, which is related to the distri-
bution of missing entries and false positives and false negatives in I. For example, even if the ground truth matrix
G is provided as input (which, under the infinite sites assumption and assuming that we penalize for flipping entries
of the input matrix, would result in Y ≡ G), it would be impossible to infer some of the dependencies (e.g., the
ancestor-descendant dependency between Mi and Mj in case where Mi and Mj respectively occur at nodes v and
w, where w is a child of v and no cell was sampled from v). Therefore, in order to focus on these dependencies which
can be inferred correctly in the theoretically most ideal case (i.e., noise-free input single-cell data), we compute
“true” dependencies between mutations from the matrix G.

To compute dependency implied by G for a given pair of mutations Mi and Mj , we do the following: for each
pair (a, b) ∈ {(0, 1), (1, 0), (1, 1)} we compute the number of cells c in which G[c, i] = a and G[c, j] = b and denote
this number as Bab. We can conclude that Mi and Mj are in ancestor-descendant order if and only if B11 > 0 and
B10 > 1. Namely, B11 > 0 indicates that there exists a cell harboring both Mi and Mj , hence these mutations
can not be at different lineages of the tree. Furthermore B10 indicates that there exists a cell harboring Mi and
not harboring Mj . Combining the two observations, we conclude that in this case G implies that Mi and Mj

are in ancestor-descendant order. Similarly, if B01 > 0 and B10 > 0 we can conclude that Mi and Mj are in
different-lineages, whereas B11 > 0 and B10 = B01 = B00 = 0 implies that they occur at the same node. Lastly,
B11 > 0 and B01 > 0 implies that Mi is descendant of Mj . We refer to [9] for more detailed discussion of this. It
is also trivial to show that at least one of the four dependencies must be the case for any pair of mutations as soon
as the matrix from which we are computing dependencies is conflict-free and does not contain any column having
all entries equal to 0.

Using the above we compute the following two accuracy measures:
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1. Ancestor-descendant (AD) accuracy measure For each pair of mutations Mi and Mj we check whether
G implies that they are in ancestor-descendant order. If it does not, we continue. Otherwise, we check
whether the same holds in the reported tree or, in cases of tools that report conflict-free matrix Y , whether
it is implied by Y . If it is, we declare a success for this pair, otherwise we declare a failure. The ancestor-
descendant accuracy measure is then given as the total number of successes divided by the sum of the number
of success and failures (i.e., the number of successes is divided by the number of pairs of mutations for which
G implies that they are in ancestor-descendant order).

2. Different-lineages (DL) accuracy measure We do analogous as above, this time focusing on pairs of
mutations Mi and Mj for which G implies that they are in different-lineages dependency. In order to save
some computational time, when computing this measure it suffices to focus only on pairs for which i < j .

Note that for the case where losses of mutations are simulated, due to infinite sites assumption violations, the
true genotype matrix Gdel is typically not conflict-free. Consequently, it can be impossible to infer dependencies
in cases where at least one of Mi and Mj is affected by a loss. However, we still do not perform filtering of
mutations affected by losses when computing scores, but rather obtain their true mutual dependencies from the
matching true genotype matrix before losses (denoted above as G) and check whether these dependencies are
preserved in the solution reported by HUNTRESS. We emphasize that this is less favoring to HUNTRESS and
other tools in comparison to the approach where all mutations affected by deletions are filtered and excluded from
score computation. As a simple illustrative example, assume that mutations Mi and Mj occur close to the root
of the ground truth tree and that Mi is an ancestor of Mj , but Mi gets lost even before Mj occurs. It is very
likely that in this case there will be a very weak or even a negative (i.e., opposite to the expected) signal in Idel for
correct placement of Mi with respect to Mj (and with respect to many other mutations as well). Consequently,
the tools will end up getting penalized for incorrect ordering of such pairs. We believe that this approach, where
all mutations are kept when computing accuracies, enables more realistic assessment of the loss in tree inference
accuracy caused by the presence of mutations for which infinite sites assumption is violated.

5.7 Details of the LBNL NERSC compute cluster

Processor : Intel Xeon Processor E5-2698 v3

Sockets per node: 2

Physical cores per socket: 16

Physical cores per node: 32

Operating frequency: 2.3 ghz

Memory per node: 128gb

5.8 Parameter Setup for SiCloneFit, gpps, ScisTree and SPhyR

5.8.1 SiCloneFit

SiCloneFit was downloaded from https://bitbucket.org/hamimzafar/siclonefit with commit number 7492d9c,
which is the latest version that was available on December 25, 2021 when we last accessed the repository. The full
command used to run SiCloneFit is given below:

java -jar SiCloneFiTComplete.jar \

-m $NUMBER_OF_CELLS \

-n $NUMBER_OF_MUTATIONS \

-ipMat $PATH_TO_GENOTYPE_MATRIX \

-fp $FALSE_POSITIVE_RATE \

-fn $FALSE_NEGATIVE_RATE \

-df 0 \

-missing $FRACTION_OF_MISSING_DATA \

-iter $NUMBER_OF_ITERATIONS \

-cellNames $PATH_TO_CELL_NAME_FILE \

-geneNames $PATH_TO_GENE_NAME_FILE \

-r 8 \

-burnin $NUMBER_OF_BURNIN \

-outDir $PATH_TO_OUTPUT_DIR > $PATH_TO_LOG_FILE
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5.8.2 gpps

gpps was downloaded from https://github.com/AlgoLab/gpps with commit number b77a2a6, which is the latest
version that was available on December 25, 2021 when we last accessed the repository. The full command used to
run gpps is given below:

gpps \

-f $PARH_TO_INFPUT_FILE \

-a $FALSE_NEGATIVE_RATE \

-b $FALSE_POSITIVE_RATE \

-k 0 \

-o $PATH_TO_OUTPUT_FILE \

-c $NUMBER_OF_THREADS \

-t $TIME_LIMIT \

-d -1 \

-N 30 \

-M 100 \

-n $PATH_FO_FILE_NAME

5.8.3 ScisTree

ScisTree was downloaded from https://github.com/yufengwudcs/ScisTree with commit number cca7677, which
is the latest version that was available on December 25, 2021 when we last accessed the repository. The input to
ScisTree is the probability of individual genotype for each cell and each mutations. To provide this input from a
binary matrix using known false-positive (alpha) and false-negative (beta) error, we use the following conversion.
If the genotype is 1, we convert it to alpha error rate, if its is 0 we convert it to 1− beta and finally if it is missing
entry we convert it to 0.5. The full command used to run ScisTree is given below:

scistree \

-v \

-d 0 \

-e \

-o $PATH_TO_OUTPUT_FILE \

$PATH_TO_INPUT_GENOTYPE_PROBABILITIES

5.8.4 SPhyR

SPhyR was downloaded from https://github.com/elkebir-group/SPhyR with commit number f083ce6, which is
the latest version that was available on December 25, 2021 when we last accessed the repository. The full command
used to run SPhyR is given below:

kDPFC \

$PATH_TO_INPUT_FILE \

-a $FALSE_POSITIVE_RATE \

-b $FALSE_NEGATIVE_RATE \

-t $NUMBER_OF_THREADS \

-T $TIME_LIMIT \

-k 0 \

> $PATH_TO_OUTPUT_FILE

For running SPhyR on simulated data that contain only false negatives, the false positive rate parameter was
set to a very small number (1e-7).

Note that in all our experiments SPhyR was run with default parameters. To get more accurate predictions,
SPhyR needs to be provided with the number of subclones s, and the number of mutation clusters m in the
tree. Given this information (which is unrealistic, since prior to tree construction the size of the progression tree
is unknown) SPhyR’s output improves in accuracy. However this substantially increases its running time since
SPhyR first establishes m′ clusters of mutations and n′ clusters of cells, and feeds them to its ILP formulation to
establish the progression tree. The running time of this ILP formulation is exponential with n′ and m′ (and thus
these parameters are respectively set to a maximum of 10 and 15 respectively in the default settings). In fact,
when we set them to the ground truth values, SPhyR is 266 times slower than HUNTRESS for n = m = 300, the
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smallest input size we used in our simulations. Even for this case, it is not as accurate as HUNTRESS. Without
the information about the ground truth values of n′ and m′, SPhyR would need to set n′ = n and m′ = m, which
makes it even slower.

5.9 SiCloneFit performance as a function of the number of iterations on real data

In order to further investigate the running time and accuracy performance of SiCloneFit (see the default setup results
in Supplementary Table 1) we run it on the same dataset while varying the number of the MCMC iterations.

For each setting for the number of iterations, we report the running time and accuracy figures for SiCloneFit
in Supplementary Figure 1. As can be seen, SiCloneFit’s running time increases roughly linearly with the number
of MCMC iterations. While its accuracy also improves with the number of iterations initially, it reaches a peak
and then deteriorates. In comparison to HUNTRESS (shown by the red line) SiCloneFit’s performance is not only
poorer but is also unpredictable.
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5.10 Supplementary Figures and Tables
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Supplementary Figure 1: SiCloneFit’s performance as a function of the number of iterations on AML and HGSOC
datasets. (a,b) SiCloneFit’s performance on the AML-67-001 patient dataset (c,d) SiCloneFit’s performance on
the AML-38-001 patient dataset (e,f) SiCloneFit’s performance on the reduced size HGSOC dataset. Panels (a,c,e)
demonstrate how the ancestor-descendant (AD) accuracy measure varies as a function of the number of MCMC
iterations. Panels (b,d,f) represent the running time of SiCloneFit in seconds as a function of the number of MCMC
interactions. In each panel the corresponding performance value of HUNTRESS is shown by the red line. For each
value for the number of MCMC iterations, report the mean value for the running time and the AD measure over
16 independent runs of SiCloneFit.
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Supplementary Figure 2: Assessment of HUNTRESS’ robustness to the presence of deletion events (i.e., mutations
for which infinite sites assumption is violated). Panel (a) shows the change in the Ancestor-Descendant (AD)
accuracy measure after the introduction of deletion events, whereas panel (b) shows the change in the Different-
Lineages (DL) accuracy measure. Here n, m and fn, respectively, denote the number of cells, the number of
mutations and the false negative error rate. The false positive rate, fp was set to 0.01 and the missing entry rate
was set to 0.05. The experiments were performed over 10 distinct trees of tumor progression. Full details on how
these deletion events are simulated can be found in the Supplementary Section 5.5.
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Dataset
(size)

Tool
Run Time

(secs)
Ancestor-Descendant (AD) Measure Different-Lineages (DL) Measure

HGSOC
(891×744)
Figure 1

HUNTRESS 376.9 0.9769 0.9986
ScisTree ∞ - -
gpps ∞ - -

SiCloneFit ∞ - -
SPhyR 192.4 Each mutation is deemed to be present in all cells, i.e. AD = DL = 0.0

HGSOC
(297×248)
reduced size

HUNTRESS 38.3 0.9437 0.9947
ScisTree 122.6 Each mutation is deemed to be present in all cells, i.e. AD = DL = 0.0
gpps ∞ - -

SiCloneFit 3040.3 0.8906 0.9508
SPhyR 70.0 Each mutation is deemed to be present in all cells, i.e. AD = DL = 0.0

AML 1
(3347×13)
Figure 2a,b

HUNTRESS 0.2 0.9600 1.0000
ScisTree 56657.5 0.9200 1.0000
gpps 1461.5 1.0000 1.0000

SiCloneFit 3127.1 0.9800 1.0000
SPhyR 49.1 0.8800 1.0000

AML 2
(6783×12)
Figure 2c,d

HUNTRESS 0.3 1.0000 1.0000
ScisTree ∞ - -
gpps 2532.7 1.0000 0.9556

SiCloneFit 8688.7 0.6667 0.4889
SPhyR 27.8 0.7619 0.6444

Supplementary Table 1: A comparison of HUNTRESS’ running time and accuracy with the existing tools on
HGSOC and AML datasets. HUNTRESS was compared against ScisTree [7], gpps [14], SPhyR [10] and SiCloneFit
[6] using ancestor-descendant (AD) and different-lineages (DL) accuracy measures (the higher the value, the better;
see Supplementary Section 5.6 for definitions). Comparisons were done by comparing results of each tool to the
trees published by the original studies. The time limit for each tool was set to 48 hours. In cases where a tool could
not finish the task within this time limit, its running time is reported to be ∞. In each dataset, the tool with the
best performance (with respect to the running time or accuracy) is highlighted in green. All multi-threaded tools
were run with the same number of threads (i.e. 16) including gpps, SPhyR and HUNTRESS. For SiCloneFit we
used 16 restarts in parallel modes and reported the best result in terms of the likelihood.
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Dataset Tool Min Run time (secs) Max Run time (secs) Avg AD Measure Avg DL Measure

n = m = 300 HUNTRESS 0.9 1.7 1 1
fn = 0.2 ScisTree 35.54 43.84 1 1

SPhyR 43.8 69 0.992 0.989
PhISCS-BnB 93.11 393.28 1 1

n = m = 300 HUNTRESS 1.3 2.2 1 1
fn = 0.05 ScisTree 32.51 45.77 1 1

SPhyR 33.6 51 0.99 0.987
PhISCS-BnB 7.14 56.25 1 1

n = m = 200 HUNTRESS 0.4 0.6 0.998 1
fn = 0.2 ScisTree 9.35 12.15 1 1

SPhyR 26.1 43.3 0.969 0.996
PhISCS-BnB 3.68 27.89 1 1

n = m = 200 HUNTRESS 0.4 0.7 1 1
fn = 0.05 ScisTree 8.96 11.77 1 1

SPhyR 20.3 38.4 0.962 0.963
PhISCS-BnB 1.48 9.85 1 1

n = m = 100 HUNTRESS 0.1 0.1 0.997 0.995
fn = 0.2 ScisTree 1.22 1.25 0.999 1

SPhyR 11.5 20.1 0.979 0.988
PhISCS-BnB 0.53 2.05 1 1

n = m = 100 HUNTRESS 0.1 0.1 1 0.995
fn = 0.05 ScisTree 1.10 1.4 1 1

SPhyR 7.3 11.4 0.987 0.988
PhISCS-BnB 0.347 0.827 1 1

Supplementary Table 2: Benchmarking results on simulated data with no false positives. Here n, m and fn,
respectively, denote the number of cells, the number of mutations and the false negative error rate of single-cell
data. For each setting of n and m, we report the maximum and minimum running times for each tool over 10
distinct trees of tumor progression, for false negative error rates of 0.05 and 0.2. Each tool was allowed to run with
a time limit of 8 hours (those cases that exceed the time limit are not included here). Average ancestor-descendant
(AD) and different-lineages (DL) accuracy measures for each tool is also provided for each parameter setting. All
tools were run on a single thread.
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Dataset Tool Min Run time (secs) Max Run time (secs) Avg AD score AD score std Avg DL score DL score std

n = 300,m = 300 HUNTRESS 39.57 46.99 0.95672 0.01673 0.99779 0.00066
fn = 0.2 ScisTree 306.48 659.18 0.95202 0.01510 0.99669 0.00099

SPhyR 41.00 1123.17 0.28255 0.04119 0.99078 0.00118

n = 300,m = 300 HUNTRESS 41.05 49.44 0.97193 0.011403 0.99785 0.001204
fn = 0.05 ScisTree 77.55 276.21 0.97183 0.014695 0.99760 0.001196

SPhyR 34.76 288.84 0.18777 0.05392 0.99745 0.00129

n = 300,m = 1000 HUNTRESS 442.54 494.14 0.96600 0.011655 0.99798 0.000533
fn = 0.2 ScisTree 1079.94 2195.55 0.97085 0.00914 0.99692 0.00081

SPhyR 38.94 48.60 0.26782 0.04683 0.99154 0.00262

n = 300,m = 1000 HUNTRESS 466.13 547.93 0.98116 0.01060 0.99846 0.00047
fn = 0.05 ScisTree 364.98 694.55 0.98421 0.00689 0.99768 0.00076

SPhyR 33.87 45.55 0.20208 0.05230 0.99710 0.00087

n = 1000,m = 300 HUNTRESS 70.03 78.20 0.99458 0.00312 0.99991 0.00020
fn = 0.2 ScisTree 18335.27 28640.59 0.98084 0.01209 0.99943 0.00028

SPhyR 153.48 214.05 0.14490 0.04730 0.99552 0.00257

n = 1000,m = 300 HUNTRESS 69.75 77.79 0.99892 0.00203 0.99996 0.00011
fn = 0.05 ScisTree 3716.14 10459.41 0.99435 0.00308 0.99984 0.00025

SPhyR 129.36 1666.65 0.08973 0.03937 0.99958 0.00029

n = 1000,m = 1000 HUNTRESS 768.06 892.55 0.99669 0.00228 0.99994 0.00010
fn = 0.2 ScisTree 42441.18 90069.36 0.99651 0.00228 0.99968 0.00024

SPhyR 149.03 208.49 0.15532 0.05289 0.99528 0.00221

n = 1000,m = 1000 HUNTRESS 762.95 866.27 0.99812 0.00388 0.99994 0.00007
fn = 0.05 ScisTree 13049.38 23854.09 0.99937 0.00062 0.99989 0.00009

SPhyR 122.29 684.63 0.11915 0.03423 0.99863 0.00152

Supplementary Table 3: Benchmarking results on simulated data with false positives, false negatives and missing
entries. Here n, m, fn, fp respectively, denote the number of cells, the number of mutations, the false negative
and false positive error rates in single-cell sequencing data. For each setting of n and m, we report the maximum
and minimum running times for each tool over 10 distinct trees of tumor progression, for false negative error rates
of 0.05 and 0.2. The false positive error rate was set to 0.001 and the missing entry rate was set to 0.05. Each data
set have 10 samples. Each tool was allowed to run with a time limit of 48 hours (those cases that exceed the time
limit are not included here). Average ancestor-descendant (AD) and different-lineages (DL) accuracy measures for
each tool are also provided for each parameter setting.

Dataset Tool Min Run time (secs) Max Run time (secs) Avg AD Score AD score std Avg DL Score DL score std

n = 5000,m = 500 HUNTRESS 948.46 1412.50 0.99998 0.00003 1.0 0
fn = 0.2 ScisTree Not completed in 48 hours

SPhyR Failed to generate an output

n = 5000,m = 500 HUNTRESS 966.06 1237.81 1.0 0 0.99999 0.00002
fn = 0.05 ScisTree Not completed in 48 hours

SPhyR Failed to generate an output

Supplementary Table 4: Benchmarking results on larger simulated data with false positives, false negatives and
missing entries. Here n, m, fn, fp respectively, denote the number of cells, the number of mutations, the false
negative and false positive error rates in single-cell sequencing data. For each setting of n and m, we report the
maximum and minimum running times for each tool over 10 distinct trees of tumor progression, for false negative
error rates of 0.05 and 0.2. The false positive error rate was set to 0.001 and the missing entry rate was set to
0.05. Each data set have 10 samples. Each tool was allowed to run with a time limit of 48 hours, the maximum
time allowed on a job at the LBNL NERSC cluster. Average ancestor-descendant (AD) and different-lineages (DL)
accuracy measures for each tool are provided for each parameter setting. None of the datasets where n = 5000,
m = 500 could be completed by ScisTree. While SPhyR terminated on these datasets, it did not generate an
output.
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Dataset Tool Min Run time (secs) Max Run time (secs) Avg AD Score AD score std Avg DL Score DL score std

n = 1000,m = 300 HUNTRESS 68.32 78.13 0.98269 0.01060 0.99962 0.00047
fn = 0.2 ScisTree 19563.15 26347.99 0.97104 0.01745 0.99870 0.00104

SPhyR 145.64 196.02 0.13439 0.02312 0.99743 0.00087

n = 1000,m = 300 HUNTRESS 70.37 80.60 0.99613 0.00539 0.99991 0.00021
fn = 0.05 ScisTree 5702.75 7555.06 0.98870 0.00918 0.99971 0.00033

SPhyR 125.04 178.64 0.08223 0.02685 0.99941 0.00079

Supplementary Table 5: Benchmarking results on simulated data with a higher false positive rate of 0.003, in
addition to false negatives and missing entries. Here n, m and fn, respectively, denote the number of cells, the
number of mutations and the false negative error rate of single-cell data. For each setting of n and m, we report the
maximum and minimum running times for each tool over 10 distinct trees of tumor progression, for false negative
error rates of 0.05 and 0.2. Each data set have 10 samples. Each tool was allowed to run with a time limit of
48 hours Average ancestor-descendant (AD) and different-lineages (DL) accuracy measures for each tool is also
provided for each parameter setting.

Dataset Tool Min Run time (secs) Max Run time (secs) Avg AD Score AD score std Avg DL Score DL score std

n = 1000,m = 300 HUNTRESS 63.86 105.12 0.99067 0.00716 0.99983 0.00014
fn = 0.2 ScisTree 18274.80 25433.56 0.97262 0.01844 0.99861 0.00114

SPhyR 134.15 180.25 0.15360 0.05055 0.99599 0.00272

n = 1000,m = 300 HUNTRESS 67.99 76.57 0.99733 0.00363 0.99981 0.00022
fn = 0.05 ScisTree 3957.38 8362.22 0.99228 0.00556 0.99984 0.00020

SPhyR 134.86 167.45 0.09741 0.04075 0.99937 0.00043

Supplementary Table 6: Benchmarking results on simulated data with doublets in addition to false positives, false
negatives and missing entries. Here n, m, fn, respectively, denote the number of cells, the number of mutations,
and the false negative error rate in single-cell sequencing data. For each setting of n and m, we report the maximum
and minimum running times for each tool over 10 distinct trees of tumor progression, for false negative error rates
of 0.05 and 0.2. The doublet rate was set to 0.03, false positive error rate was 0.001 and the missing entry rate was
0.05. Each data set have 10 samples. Each tool was allowed to run with a time limit of 48 hours, the maximum
time allowed on a job at the LBNL NERSC cluster. Average ancestor-descendant (AD) and different-lineages (DL)
accuracy measures for each tool are provided for each parameter setting.

Dataset Tool Min Run time (secs) Max Run time (secs) Avg AD Score AD score std Avg DL Score DL score std

n = 5000,m = 50 HUNTRESS 4.1 8.9 0.99054 0.0299 0.99962 0.0012
fn = 0.05, fp = 0.003 SPhyR 1465 1734 0.26418 0.08766 0.15306 0.04310

ScisTree Not completed in 48 hours

n = 5000,m = 50 HUNTRESS 3.7 7.5 0.97905 0.02803 1 0
fn = 0.05, fp = 0.01 SPhyR 1646.5 1882.6 0.25271 0.0862 0.14349 0.0595

ScisTree Not completed in 48 hours

n = 5000,m = 50 HUNTRESS 4.2 8.4 0.99865 0.00426 1 0
fn = 0.2, fp = 0.003 SPhyR 1636.9 2126 0.30541 0.07277 0.23706 0.0566

ScisTree Not completed in 48 hours

n = 5000,m = 50 HUNTRESS 4.7 9.3 0.94324 0.0595 0.99961 0.00067
fn = 0.2, fp = 0.01 SPhyR 1959.3 2610.7 0.31418 0.0681 0.19569 0.029244

ScisTree Not completed in 48 hours

Supplementary Table 7: Benchmarking results on simulations with parameters similar to those observed in the
AML dataset generated by the Tapestri platform. Here n, m, fn, and fp respectively, denote the number of cells,
the number of mutations and the false negative error rate and false positive rate observed in single-cell data. In
addition the missing entries rate was set to a higher value of 10%. For each setting of fp and fn, we report the
maximum and minimum running times for each tool over 10 distinct trees of tumor progression. Each tool was
allowed to run with a time limit of 48 hours Average ancestor-descendant (AD) and different-lineages (DL) accuracy
measures for each tool is also provided for each parameter setting.
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[9] Malikić, S., Mehrabadi, F. R., Azer, E. S., Ebrahimabadi, M. H. & Sahinalp, S. C. Studying the history
of tumor evolution from single-cell sequencing data by exploring the space of binary matrices. Journal of
Computational Biology 28, 857–879 (2021).

[10] El-Kebir, M. Sphyr: tumor phylogeny estimation from single-cell sequencing data under loss and error.
Bioinformatics 34, i671–i679 (2018).

[11] Malikic, S. et al. Phiscs: a combinatorial approach for subperfect tumor phylogeny reconstruction via integra-
tive use of single-cell and bulk sequencing data. Genome research 29, 1860–1877 (2019).

[12] Edrisi, M., Zafar, H. & Nakhleh, L. A Combinatorial Approach for Single-cell Variant Detection via Phy-
logenetic Inference. In Huber, K. T. & Gusfield, D. (eds.) 19th International Workshop on Algorithms in
Bioinformatics (WABI 2019), vol. 143 of Leibniz International Proceedings in Informatics (LIPIcs), 22:1–
22:13 (2019).

[13] Sadeqi Azer, E. et al. Phiscs-bnb: a fast branch and bound algorithm for the perfect tumor phylogeny
reconstruction problem. Bioinformatics 36, i169–i176 (2020).

[14] Ciccolella, S. et al. gpps: an ilp-based approach for inferring cancer progression with mutation losses from
single cell data. BMC bioinformatics 21, 1–16 (2020).
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