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RESEARCH Open Access

Expanding the potential genes of inborn
errors of immunity through protein
interactions
Humza A. Khan1,2 and Manish J. Butte1,2*

Abstract

Background: Inborn errors of immunity (IEI) are a group of genetic disorders that impair the immune system, with
over 400 genes described so far, and hundreds more to be discovered. To facilitate the search for new genes, we need
a way to prioritize among all the genes in the genome those most likely to play an important role in immunity.

Results: Here we identify a new list of genes by linking known IEI genes to new ones by using open-source databases of
protein-protein interactions, post-translational modifications, and transcriptional regulation. We analyze this new set of
2,530 IEI-related genes for their tolerance of genetic variation and by their expression levels in various immune cell types.

Conclusions: By merging genes derived from protein interactions of known IEI genes with transcriptional data, we offer a
new list of candidate genes that may play a role in as-yet undiscovered IEIs.

Keywords: Inborn errors of immunity, Clinical immunology, Next-generation sequencing, Protein-protein interactions,
Primary immunodeficiency

Introduction
IEIs are a collection of over 400 monogenic disorders
with phenotypes of recurrent, severe or unusual infections,
autoimmunity, and autoinflammation. The process of
making a diagnosis in these patients requires the synthesis
of the clinical phenotype, the results of immunological
testing, and the results of genetic testing that identify the
key pathogenic variant(s). Whole exome and genome se-
quencing have made the process of identifying genomic
variants straightforward. But when this process cannot
find a known pathogenic variant or even a known IEI
gene, the process switches tracks to discovering whether a
new gene might explain the disease phenotype. Paring

down the list of thousands of genes and tens of thousands
of variants in “non-clinical” genes/genes not yet identified
as being important for a human disease, is an unsolved
problem. The list of variants can be filtered to eliminate
those variants that occur commonly in human popula-
tions, resulting in a shorter list of few hundreds to
thousands of genes. However, beyond this step lies a
painstaking process of choosing genes and testing their
roles. Nowadays, over three dozen new IEI genes are dis-
covered yearly [1]. Eventually, if the right gene has been
identified, the ensuing process of validating the biochem-
ical and immunological impacts of the identified variant(s)
is well defined if arduous [2].
Here we describe a list of IEI-related genes that were

gathered by associating known IEI proteins with new
ones. A similar approach in 2015 created a list of over
3,000 IEI-related genes by linking 229 known (at the
time) IEI genes to new ones by the human gene connec-
tome (HGC) [3, 4]. The HGC was created by calculating
genetic distance from the binding portion of the STRING
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protein database [5]. Expanding gene lists for other
collections of rare diseases by such an approach has been
fruitful [6]. The trade-off with creating such a large list of
3,000 + genes (more than 15 % of the genome) is that
many will be expected not to actually participate in non-
redundant pathways of the immune response. Regardless,
the list of known IEI genes since the 2015 paper has dou-
bled, and the field needs an updated gene list.
In this work, we used the recently described OmniPath

protein-interaction meta-database to reveal novel genes
that are functionally related to IEI genes [7]. Specifically,
we employed two routes to include putative IEI genes:
(1) we analyzed annotated interactions encompassing
transcriptional regulation and post-translational modifi-
cations (PTM) between two proteins, and (2) we ana-
lyzed pathways without functional annotation between
all combinations of immunodeficiency genes present in
the database.

Materials and methods
Known IEI gene list
We derived a list of 403 confirmed IEI genes from the
2019 International Union of Immunological Societies
(IUIS) IEI classifications at https://s3-eu-west-1.
amazonaws.com/wp-iuis/app/uploads/2019/12/2011322
8/IUIS-IEI-list-for-web-site-December-2019-003.xlsx.
We manually filtered the list of only include monogenic,
Mendelian disorders. Our analyses grouped IEI genes
based on the “Major Category” parameter. Our list is
available at https://github.com/humzalikhan/omnipath_IEI.

Algorithm verification
We split our list of confirmed IEI genes into training
datasets (80 %) and validation datasets (20 %). We then
filtered our already built pathways and PTM/TF interac-
tions datasets to only include the training dataset and
then derived a list of associated genes. The percentage of
the validation dataset that was re-discovered within the
associated genes was calculated. This analysis was per-
formed 1,000 times, with randomly sampled training and
validation datasets each time. We extended this to an
out-of-sample methodology where all the genes in a pre-
viously defined immune function category are left out
and the genes in all other categories are used to redis-
cover the left-out genes.

Protein-interaction databases
We refer to Discovery pathway 1 as our method of
collecting new genes by examining IEI genes with re-
spect to transcriptional regulation and post-translational
modifications (PTM) between two proteins. We refer to
Discovery pathway 2 as our method of collecting new
genes from all the pathways arising from all pairwise

combinations of immunodeficiency genes present in the
database.
OmniPath is a recently described meta-database of sig-

naling pathways and protein interactions, integrating
over 100 individual databases. We ran our list of 403 IEI
genes into the OmniPathR package and infrastructure to
derive the proteins most related to the relevant IEI gene
products [8].

Discovery path 1
For analyzing transcriptional regulation, we imported in-
teractions from the DoRothEA_A database [9]. IEI gene
products were analyzed for their activity as transcription
factors as well as their activity in inducing or repressing
transcription of other genes. For post-translational mod-
ifications, we imported interactions from the SIGNOR
database [10]. IEI gene products were analyzed for their
activity as modifiers and as recipients of modifications.

Discovery path 2
Omnipath contains protein-protein association data
from over 100 different databases. We queried whether a
“pathway” could exist between all known IEI genes to
other known IEI genes. If the Omnipath databases could
identify a chain of protein interactions (a “pathway”)
linking pairwise each known IEI gene, we then collected
the genes along that pathway. This was implemented via
the all_shortest_paths function in OmnipathR; all of the
shortest possible pathways between known IEI genes
were investigated. Furthermore, to avoid the risk that
every protein touches every other along some hypothet-
ical pathway, we limited consideration to pathways with
a total distance of less than 6; that is, an IEI gene would
have to link to another IEI gene by less than six protein-
protein interactions.
For IEI genes that did not return any interactions, we

utilized the HGNChelper to find alternative gene sym-
bols to query [11]. In sum, 334 IEI genes were analyzed
for related proteins.

Filtering pLI and GDI
We filtered pLIs under 0.9 using the updated pLI index
available at https://gnomad.broadinstitute.org/downloads
[12]. Gene damage indices (GDI) were taken from the
HGC GDI server [13, 14].

RNAseq data
We used immune cell RNA sequencing data from the
Human Blood Atlas [15]. This provided expression data
from 18 different immune cell types (available at https://
www.proteinatlas.org/humanproteome/blood). Monocyte
subsets, eosinophils, basophils, and neutrophils were
grouped as myeloid cells. Plasmacytoid and myeloid den-
dritic cells were grouped together as DCs. NK, B and T
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cell subtypes were grouped as such. Genes with an
average of under 1 transcript per million in their group
were filtered out of our group-specific IEI candidate
gene lists.
Genes present in our list of candidate genes that were

not found in the RNAseq expression data (n = 14) auto-
matically were included in our filtered lists.

Code
All plotting was done in ggplot2 in R. Code is available
at github.com/humzalikhan/omnipath_IEI.

Results and discussion
IEIs are genetic diseases, and every patient with a genetic
disease deserves a specific genetic diagnosis whenever

possible. The published IEI genes offer only a limited
snapshot of all the human genes that underlie immune
disorders, as is shown by the rapid growth in the identifica-
tion of new genes, more than 30 per year at this point [1].
We employed two methods in parallel to evaluate genes
and include them in a list of potential IEI-related genes.
First, we assessed protein associations through the lenses
of post-translational modification and transcriptional regu-
lation. Second, we analyzed unannotated pathways of
protein-protein interactions between all combinations of
IEI genes (Fig. 1). Together, these approaches identified a
list of 2,530 genes that we propose should be prioritized
for consideration as IEI genes (Table S1).
To validate our algorithm, we repeatedly sampled the

list of known IEI genes, taking a random subset of 80 %

Fig. 1 Overview of our approach. We used the OmniPath set of databases to create a list of candidate IEI genes using two approaches: pathway 1
(left), which uses post-translational modification and transcription factor data, and pathway 2 (right), which uses protein-protein interaction pathways
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of the genes (“training”) and setting 20 % aside for “test-
ing.” We ran the training set of genes through our compu-
tational pipeline and assessed how much of the testing
20 % of genes could be rediscovered. We found that, on
average, this approach recaptured ~ 50% of the omitted
IEI genes (that is, 10 % of the total set) (Fig. S1A).
Additionally, known IEI genes have already been split into
nine categories of immune function (“tables” in the IUIS
paper [1]). Therefore, we pursued a cross-validation
methodology where we iteratively left one whole
category out and use the genes in the other
categories to rebuild the genes in the left-out category
(Fig. S1B). On average, about 40 % of a left-out category
was rediscovered. There was large variance in this meth-
odology, where most SCID and CID genes (IUIS table 1)
were found, while not many complement genes (IUIS
table 8) were. This finding may be due to categorical dif-
ferences in interactions between pathways; for example,
complement genes are known to be exclusive in their
interactions [16]. Our validation approach gives us
confidence that our methodology is useful in actually
discovering IEI genes.
In our discovery pathway 1 approach, each gene was

analyzed for its action as a transcription factor, its induc-
tion/repression due to a transcription factor, its activity

as a post-translational modifier, or as a recipient post-
translational modification. We first explore the distribu-
tion of known IEI genes by category (Fig. 2A). We then
analyzed the relationship our candidate genes to known
IEI categories in discovery pathway 1, finding that our
list of pathway 1 genes associated more with IUIS table 1
genes that cause cellular and humoral defects, and al-
most none with genes that cause complement deficien-
cies (Fig. 2B). Of the relationships described in pathway
1, we found that IEI gene products are post-
translationally modified more often than they post-
translationally modify other proteins (Fig. 2C-D). In par-
ticular, they are likely to be phosphorylated along a sig-
naling pathway that results in cellular response such as
transcription. Some IEI genes also encode kinases/phos-
phatases themselves (Fig. S2A). While IEI gene products
also ubiquitinate and cleave other proteins, it was found
that modifications to IEI genes are more diverse than
the effects of known IEI genes (Fig. S2B). Associated
genes may (de)methylate, neddylate, (de)acetylate, and
sumoylate IEI genes. Some of these interactions have
been described in literature; for example, SUMO modifi-
cation of STAT1 has been documented [17], but the
sumoylation enzymes are not known IEI genes. As the
discovery of the TNFAIP3, OTULIN, HOIL-1, and HOIP

Fig. 2 Discovery Pathway 1 reveals IEI candidates by analyzing transcriptional regulation and post-translational modifications of known IEI genes.
A Number of confirmed IEI genes in respective IUIS tables as defined by the phenotype that their variants cause. B Number of candidate IEI
genes in tables classified by their interactions with known IEI genes. For A and B, only primary tables were utilized. C Number of known IEI genes
and their respective modifications. D Number of candidate IEI genes that transcriptionally regulate IEI genes, are regulated by IEI genes, and PTMs
to/from IEI genes
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have shown, PTMs are important to regulate proper im-
munity activity and quiescence; conceivably, a deleteri-
ous variant in the genes that modify or are modified by
known IEI proteins could alter immune function and
cause a novel IEI.
In discovery pathway 1, we also analyzed transcrip-

tional regulation related to IEI genes. Notably, we found
that IEI proteins more often are involved as effectors of
this regulation as opposed to recipients of it. The STAT
family is a set of transcription factors of many down-
stream pathways relevant to immune function; defects in
STAT action are known to cause susceptibility to infec-
tion, autoimmunity, and immune dysregulation [18].
Defects in the downstream products of IEI genes that
act as transcription factors (TFs), such as STAT4/6, and
the upstream TFs that induce transcription of IEI
genes may alter immune function and be found to
cause immunodeficiency.
In discovery pathway 2, we constructed a set of puta-

tive “pathways,” the starts and ends of which are every
known IEI-gene. Along the pathway lie validated
protein-protein interactions, validated by literature. For
example, two proteins that lie along the pathways
between IFNAR1 and STAT3 include TYK2 or JAK1.
Alternatively, longer, less biologically probable routes
exist, such as WRAP53 -> TP53 -> RPS6KA4 ->
MAPK14 -> CSNK2A2 -> DKC1. In discovery pathway
2, we limited the gene-gene pathway distance to five to
reduce the biological irrelevance of the putative path-
ways, knowing that six or seven degrees of separation
link virtually every protein with every other. Our ana-
lyses of protein-protein interaction pathways from
known IEI gene to known IEI gene revealed many previ-
ously known IEI genes (Fig. 3A), a result supports that
as-yet undiscovered IEI genes may lie along these same
routes. We found many new genes using this approach
(Fig. 3B). We again found complement-related genes un-
derrepresented, similar to the functional annotations in

discovery pathway 1. This result suggests that not many
pathways exist ending in a complement protein, that the
complement system is perhaps independently regulated
and is less intertwined with other immune defenses [16].
To assess whether a particular gene might play a role

in multiple pathways, and thus potentially be important
to multiple mechanisms of disease, we analyzed the fre-
quency of genes along the protein-protein association
pathways. However, many known IEI genes occurred at
high frequency within these pathways, while others only
occurred one or a few times (Fig. 3C). For example,
CTLA-4, a well-known inhibitory receptor whose defi-
ciency causes antibody deficiency and autoimmunity,
was only found once as a pathway intermediate in
between two IEI genes. Therefore, we decided against
culling low-frequency genes from our list of candidates.
Our list of 2,530 related genes is smaller than the list

of over 3,000 candidate genes from the Itan group [3].
Furthermore, since we utilized a compendium of many
databases, our associations are likely to be biologically
relevant and supported by literature. About half of the
genes we identified appeared in the Itan group’s list, and
the other half were novel. Furthermore, to assess how
“close” our gene list is to the list of known IEI genes, we
performed an analysis using the HGC. We found that
our gene list has a median distance of 10.4 between the
candidate genes and known IEI genes, which can be
described as a “small” to “small-medium” distance (Fig.
S3). This result indicates that our candidate genes are
biologically close to the known set of IEI genes. 49.3 %
of genes were found exclusively in discovery pathway 1,
29.7 % were found exclusively in pathway 2, and 21 %
were found via both. As expected, genes found in discov-
ery pathway 1 included kinases, TFs, and other PTM ef-
fectors. Pathway 2 recapitulated many of these genes,
but also included genes that interact generally with
known IEI genes. Genes appearing in both lists should
not necessarily be prioritized, as this finding may simply

Fig. 3 Discovery Pathway 2 uses protein interaction data to describe pathways between genes. A Bubble plot showing the relative numbers of
known IEI genes that lie on protein interaction pathways between known IEI genes and known IEI genes. B Bubble plot showing the relative
numbers of candidate IEI genes that lie on protein interaction pathways between known IEI genes and known IEI genes. C Number of times that
a particular gene appears along different pathways between known IEI genes and known IEI genes. Two previously known IEI-causative
genes are indicated
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be because the same gene function is present in both
datasets that were analyzed. The presence of a gene in
either pathway is indicated in our list.
Ranking genes by their probability of loss intolerance

(pLI) has been suggested as a way to predict the import-
ance of unknown genes to human disease, especially for
genetically dominant conditions. This metric is often
used in the clinic to filter genes that bear potentially
deleterious mutations. High pLI values imply purifying
selection in the population when genomic loss-of-
function variants (e.g., frameshift, truncation) appear.
pLI values are calculated empirically from large data-
bases of healthy individuals by comparing observed
variants in the population to the number of variants
expected to arise by chance [19]. These databases and
pLI values are of course subject to change as more and
diverse populations are sampled. To filter our putative
list of IEI genes, we considered pLI scores for all known
and putative IEI genes. Notably, we found that known
IEI genes did not have unilaterally high pLI (Fig. S4A).
Disaggregating by inheritance type, high pLI values (>
0.9) were shown to be associated with autosomal domin-
ant inheritance and well associated with X-linked dom-
inant conditions. The pLI for known IEI genes is hardly
constrained for autosomal recessive disorders (Fig. S4A).
Thus, we have provided a shorter list of 810 high-pLI
genes (including genes without available pLIs) for con-
sideration of X-linked dominant or autosomal dominant
conditions (Table S2). This subset of genes may be less
important for recessive clinical traits, where the entire
list of putative genes should be considered.
Since not all IEI genes have high pLI scores, we de-

cided to explore the previously described Gene Damage
Index (GDI), which uses the presence of population-
level mutational damage to filter out genes with low po-
tential for pathogenicity [12]. That is, higher GDI indi-
cates that healthy humans can tolerate some damage in
those genes (i.e., opposite to pLI). However, we found
that many known IEI genes also had variable scoring of
predicted GDI (Fig. S4B). Predictions of damage from
known IEI genes using the GDI results in mostly a
“medium” characterization (Fig. S4C). Therefore, quali-
tative and quantitative GDI predictions have limited util-
ity for filtering putative IEI genes. We found that GDI
and pLI do not negatively correlate with each other in
known IEI genes (Fig. S4D). Taken together, our results
show that filtering on only high pLI or low GDI genes
would serve only a limited role and may unnecessarily
constrain lists of putative genes.
Known IEI genes are generally expressed in immune

cells; we used RNA sequencing data from the Human
Protein Atlas to liberally filter for variants expressed in
any immune cell type. The Human Protein Atlas data-
base includes RNA sequencing data of 18 immune cell

types from healthy donors which comprised five general
groups: B cells, dendritic cells, myeloid cells (basophils,
neutrophils, eosinophils, monocytes), NK cells, and T
cells [15]. For initial inquiry, we analyzed the expression
of all genes in each cell group and found most genes not
expressed at all in immune cell types (Fig. S5A). How-
ever, when only IEI genes were plotted, the distribution
was more right-skewed, indicating the expected trend
that IEI genes are transcriptionally well expressed in im-
mune cells (Fig. S5B). Expectedly, among the IEI genes
that have zero RNA transcripts among immune cells are
AIRE and complement genes. Therefore, we decided to
filter a list for expression above 0 TPM in any immune
cell type (Table S3).
Furthermore, since many IEIs manifest with cell-type

specific defects, we decided to use RNA sequencing data
to also create IEI-related gene lists based on cell-type
specific gene expression. Such a list may offer utility
when investigators are focused on disordered with fo-
cused immunophenotypes. For example, one might
begin a search for new SCID genes where only T cells
are affected by looking at transcripts that are expressed
in T cells or T cell precursors.
To determine a cutoff for what is considered

“expressed,” we plotted gene expression of IUIS table 1
genes, which affect humoral and cellular immunity, and
IUIS table 3 genes, which predominantly affect antibody
production, and disaggregated by cell type. The former
would be more likely to be expressed in all lymphocytes
and the latter in only B cells (Fig. 4A-B). As disorders in
IUIS table 1 can manifest due to defects in either T or B
cells, we found that many of the genes that were
expressed at a low level in T cells were expressed in B
cells and vice versa. For example, among the low-
expressed genes in B cells, for example, was CD3D.
CD3D is a major component of the T-cell receptor com-
plex and was highly expressed in T cells but not in B
cells. CD3D deficiency causes a T-/B + SCID (an IUIS
table 1 condition) and is thought to be irrelevant in B
cell development, which is supported by its negligible
gene expression. Thus, if one were considering a list of
IEI genes to be used for patients with B-cell focused de-
fects, we would filter out such T-cell-specific genes as
likely irrelevant.
We set our cutoff point for expression as greater than

1 transcript per million (TPM). We picked this limit
based on the transcriptional expression of known IEI
genes across cell types (Fig. 4A-B). There was only one
known IEI gene that causes a primary antibody defi-
ciency (PAD) expressed below 1 TPM in B cells, the
gene called SLC39A7, which codes for ZIP7. Ostensibly,
this finding was unexpected since PADs reflect defects
in B cell numbers or function, but an obvious explan-
ation would be that this gene is expressed only early in
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B-cell development and not in peripheral B cells
(Fig. 4B). Indeed, ZIP7 is an essential zinc transporter
without which B-cell development is abrogated in the
transition from pro- to pre-B cell. Thus, we anticipate
that filtering gene lists by expression levels would pre-
serve the majority of interesting genes. The genes that
were erroneously filtered out in cell-type specific lists
would still be present in the broader, unfiltered list. Our
cell-type specific lists for the cell type groups in the
Human Blood Atlas are found in the supplement
(Tables S4, S5, S6, S7 and S8).
A limitation of our work is that some genes are not

described in the protein-interaction databases queried.
For example, the complement protein C2 with its known
interaction with CD19 was not represented in the
protein-protein databases, and this interaction was thus
not recognized in our searches using the OmniPath da-
tabases. Furthermore, the Human Blood Atlas database
holds RNAseq data on major categories of immune cells;
gene expression data from clinically relevant subsets
such as plasmablasts, effector memory T cells, and
others would be valuable. As access to open-source data-
sets increases and as functional evidence for protein
function is released, we will refresh our lists.
Additionally, our lists do not address the problem of

isolating non-redundant genes as cause for immunodefi-
ciencies. Better databases of immunological networks
and tissue annotation may address this problem. How-
ever, given the brevity of our lists, we are less likely to
include redundant genes in our datasets. By also further
paring our lists for cell-type expression, we increase the
likelihood that genes from redundant, non-specific im-
mune pathways are culled. Lastly, there are IEI genes
with no or only nominal expression in circulating im-
mune cells (e.g., complement, some cytokines,

developmental genes). In these cases, our unfiltered list
is likely to be more useful than our filtered lists.
In summary, by using a combination of both 1:1 anno-

tated protein interactions and larger, un-annotated
protein-interaction pathways, our approach allows for
both a global and local view of proteins that may be
relevant to query in future immunodeficiency studies.
Notably, we found that high pLI or GDI were not par-
ticularly good criteria for determining the pathogenicity
of a putatively novel IEI gene, especially those with re-
cessive patterns of inheritance. Our work further ad-
vances on previous studies by merging transcriptional
expression data with our list of IEI candidate genes de-
rived from protein interactions to ensure that queries
based on clinical presentations (i.e., T-cell lymphopenia)
or diagnostic hypotheses can be made.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07909-3.

Additional file 1: Table S1. IEI Candidate Genes without Filter.

Additional file 2: Table S2. IEI Candidate Genes with high (>.9) pLI
Filter.

Additional file 3: Table S3. IEI Candidate Genes with Average in all
Immune Cells > 0 TPM Filter.

Additional file 4: Table S4. IEI Candidate Genes with Average in B
Cells > 1 TPM Filter.

Additional file 5: Table S5. IEI Candidate Genes with Average in DCs >
1 TPM Filter.

Additional file 6: Table S6. IEI Candidate Genes with Average in
Myeloid Cells > 1 TPM Filter.

Additional file 7: Table S7. IEI Candidate Genes with Average in NK
Cells > 1 TPM Filter.

Additional file 8: Table S8. IEI Candidate Genes with Average in T Cells
> 1 TPM Filter.

Fig. 4 RNA sequencing data provide a method to filter for relevant IEI genes depending on patient phenotype. A Expression levels of SCID and
CID-causing genes in the cell types found in the Human Blood Atlas RNAseq expression matrix. B Expression levels of antibody deficiency-related
genes in B cells. Transformations of TPM + 1 done to visualize 0 values. Percentage of genes expressed above 1 TPM (at 2 when transformed to
TPM + 1) cutoff presented in each plot
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Additional file 9: Figure S1. Algorithm verification using out-of-sample
testing. (A) Percentage of validation set genes rediscovered by algorithm.
(B) Percentage of genes from left-out category rediscovered by algo-
rithm. Figure S2. Post-translational modifications induced by and re-
ceived by IEI gene products. (A) The number of targets or substrates for
each IEI gene when they are either a kinase, phosphatase, protease, or
ubiquitinase. (B) The number of proteins that are known to target IEI pro-
teins for post-translational modification by various mechanisms. Figure
S3. Human Gene Connectome (HGC) Distance between known and can-
didate IEI genes. Figure S4. Known IEI-causative genes have varying
levels of predicted mutational harm. (A) Confirmed IEI gene pLI disaggre-
gated by inheritance type (AD: autosomal dominant, AR: autosomal re-
cessive). (B) Confirmed IEI gene Gene Damage Indices (GDIs)
disaggregated by inheritance type. (C) Damage prediction of confirmed
IEI genes as classified by the GDI Server. (D) Known IEI gene pLIs plotted
against GDIs and disaggregated by inheritance type. Figure S5. Known
IEI transcripts skew to higher expression in immune cell types. (A) RNAseq
expression of all Human Blood Atlas-recorded genes disaggregated by
cell types present. (B) RNAseq expression of all IEI genes disaggregated
by cell type. Line drawn at 1 TPM (at 2 when transformed to TPM+1). Per-
centage above 1 TPM (at 2 when transformed to TPM+1) cutoff
presented.
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