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Abstract. In the past years we have seen an emerging field of research
focusing on using the “physics” of a Cyber-Physical System to detect
attacks. In its basic form, a security monitor is deployed somewhere in
the industrial control network, observes a time-series of the operation of
the system, and identifies anomalies in those measurements in order to
detect potentially manipulated control commands or manipulated sensor
readings. While there is a growing literature on detection mechanisms in
that research direction, the problem of where to monitor the physical
behavior of the system has received less attention.

In this paper, we analyze the problem of where should we monitor
these systems, and what attacks can and cannot be detected depending
on the location of this network monitor. The location of the monitor is
particularly important, because an attacker can bypass attack-detection
by lying in some network interfaces while reporting that everything is
normal in the others. Our paper is the first detailed study of what can and
cannot be detected based on the devices an attacker has compromised
and where we monitor our network. We show that there are locations
that maximize our visibility against such attacks. Based on our analysis,
we design a low-level security monitor that is able to directly observe
the field communication between sensors, actuators, and Programmable
Logic Controllers (PLCs). We implement that security monitor in a real-
istic testbed, and demonstrate that it can detect attacks that would
otherwise be undetected at the supervisory network.

1 Introduction

One of the recent research trends for the security of Industrial Control Systems
(ICS) is to monitor the sensor and control signals being exchanged between
different components of the system to verify that the system is operating as
intended [5,7,12,23]. For example, if we have a sensor that monitors the height of
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a bouncing ball, then we know that this height follows the differential equations
from Newton’s laws of mechanics. Thus, if a sensor reports a trajectory that
is not plausible given the laws of physics, we can immediately identify that
something has gone wrong with the sensor (a fault or an attack).

While previous research has contributed greatly to the literature, we have
found that most papers working on this topic do not explicitly describe the trust
assumptions for all parts of a control loop—controllers, actuators, and sensors.

In this paper, we show that without explicit trust assumptions, attacker
models proposed in related work are ambiguous. In particular, we analyze the
implicit assumptions made in previous works, and then use a logical attack-
detection architecture to elucidate hidden assumptions, limitations, and possible
improvements. Then, we develop and implement an architecture to maximize the
visibility of attacks.

We summarize our main contributions in this work as follows:

– We review and classify different classes of attacks on a control loop, and map
them to real-wold network topologies for industrial control systems.

– We show how implicit trust in subsets of the components in a real system
can lead to attacks that deny visibility of the physical process to the control
logic or SCADA.

– We provide a table articulating in detail the trust assumptions needed to be
able to detect attacks when monitoring at the supervisory layer and at the
field layer. As far as we are aware, we are the first to justify why monitoring
at the field layer minimizes the number of devices we need to trust in order
to detect attacks.

– We design and implement a deep monitoring system at the field layer and
demonstrate the feasibility of our proposed system through a series of exper-
iments. As far as we are aware, we are the first to illustrate the practical
differences between implementing a security monitor at the supervisory layer
vs. the field layer.

The remainder of this paper is organized as follows: In Sect. 2, we provide
background on ICS networks, and related work. We then propose our new secu-
rity monitoring architecture in Sect. 3. Based on that concept, we design and
implement a deep ICS monitor in Sect. 4. Finally, we present the results of our
prototype in Sect. 5.

2 Background

In this section, we first briefly summarize industrial control system networks,
and then review related work on attack detection in ICS networks.

2.1 ICS Network Layers

Control systems have a layered hierarchy [24]. The two layers closest to the
physical process are Layer 1 and Layer 0:
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Fig. 1. A supervisory control network (SCN) enables communications between a central
control server and embedded controllers. Field communication networks (FCN) enable
controllers to contact sensor, actuators and remote IO terminals.

Layer 1 is where Supervisory Control and Data Acquisition (SCADA) Sys-
tems and other servers communicate with remote control equipment like Pro-
grammable Logic Controllers (PLCs) and Remote Terminal Units (RTUs).
The communication between servers in a control room and these control
equipment is done via a Supervisory Control Network (SCN);

Layer 0 is where PLCs or RTUs interface with sensors (thermometers, tachome-
ters, etc.) and actuators (pumps, valves, etc.) in the field. While traditionally
this interface has been analog (e.g., 4–20 mA), the growing numbers of sensors
and actuators as well as their increased intelligence and capabilities, has given
rise to new Field Communication Networks (FCN) where the PLCs and other
types of controllers interface with remote Input/Output boxes or directly with
sensors and actuators using new Ethernet-based industrial protocols like Eth-
erNet/IP and Profinet, and wireless networks like WirelessHART. Several ring
topologies have also been proposed to avoid a single point of failure for these
networks, such as the use of Device Level Ring (DLR) over EtherNet/IP.

Figure 1 illustrates these two networks in the ICS we analyze later in the paper.
SCN and FCN networks have different communication requirements and dif-

ferent industrial network protocols. While SCN can tolerate delays of up to the
order of seconds, FCN typically require an order of magnitude of lower com-
munication delays, typically enabling communications between devices with a
period of 400µs.

2.2 Previous Work

In this paper we focus on network intrusion detection for ICS. One of the first
papers to consider network intrusion detection in industrial control networks was
Cheung et al. [8]. Their work articulated that network anomaly detection might
be more effective in control networks where communication patterns are more
regular and stable than in traditional IT networks. Similar intrusion detection
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systems have been proposed for building control systems [6] and general cyber-
physical systems [19]; however, as Hadžiosmanović et al. showed [11], intrusion
detection systems that fail to incorporate domain-specific knowledge of the con-
text in which they are operating perform poorly in practical scenarios.

Even worse, an attacker can send false sensor or control values to the phys-
ical process while complying to typical IT traffic patterns used by classical
intrusion detection systems (Internet Protocol (IP) addresses, protocol speci-
fications with finite automata, connection logs, etc.). These false data injection
attacks [5,10,16] manipulate the process under control by sending malicious sen-
sor or control commands, and can cause waste water spills [1], or can sabotage
nuclear enrichment by manipulating the rotation frequency of centrifuges [9,13].
To detect these types of attacks we need to monitor the sensor and control
algorithms in the systems; i.e., the semantic information of the ICS [2,5,12,23].

Previous efforts on semantic monitoring for ICS, however, have been vague in
describing the specific types of attacks their proposals can and cannot detect. In
particular, previous work implicitly assumes certain elements in a control loop
are not compromised in order for their system to work, and this lack of specificity
leads to potential threat vectors not previously anticipated.

Before we describe the vulnerabilities of previous work, notice that an
attacker can compromise different devices in its goal to physically attack an ICS.
In particular the adversary can compromise and launch attacks from (1) SCADA
servers [15], (2) controllers/PLCs [14], (3) sensors [16], and (4) actuators [22].
As we will show, it is important to understand where the adversary is launching
attacks because it can have a drastic effect in attack-detection systems.

For example, McLaughlin [18] focuses on the field layer of a control system;
specifically it tackles the problem of how to verify that control signals uk sent
by the PLC to the actuators do not drive the system to an unsafe state. The
proposed approach, C2, mediates all control signals uk sent by PLCs to the
physical system. McLaughlin mentions that “C2 mitigates all control channel
attacks against devices, and only requires trust in process engineers and physical
sensors.” This is, however, not true, as an attacker that has compromised
an actuator or a Remote I/O, can bypass C2: a PLC can send correct
control signals, but if the actuators are compromised they do not need to follow
the orders from the PLC, and can discard them to continue attacking the system.

Similarly Hadžiosmanović et al. [12] use network traces from an industrial
site using Modbus/TCP to detect attacks by monitoring the state variables
of the system, including constants, attribute data, and continuous data. Their
network data was captured at the supervisory network, and this means that
they are implicitly trusting the PLCs to tell the truth to the supervisory network.
However, if a PLC is compromised, it can lie to the supervisory network
interface stating that everything is working properly, while at the
same time sending erroneous commands via the field communications
interface, and this attack would not be detected by monitoring the
supervisory network.
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(a) (b)

Fig. 2. (a) A control loop at time k, with sensor values yk, control values uk, actuator
action vk, and state of the system zk. (b) A compromised PLC can send manipulated
control commands to devices in the field while reporting an incorrect status of the
system to the supervisory layer.

In another example, Carcano et al. [4] propose a safety monitoring system and
raise alerts whenever it is in a critical state (or approaching a critical state). In
order to detect that they are approaching an unsafe state, they implicitly assume
trusted sensors. If an attacker compromises the sensors, or the PLCs,
it can lie to the network security monitor located in the supervisory
network and bypass the system.

The work of Carcano and C2 rely on having sensors that haven’t been com-
promised. It seems reasonable to assume that if the sensors are trustworthy, we
should be able to detect if the system is approaching an anomalous or danger-
ous state and react accordingly. Zero-dynamics attacks [20–22] are examples of
attacks where even if we assume the sensors and the PLCs are not com-
promised, attackers with compromised actuators can mislead state
estimation algorithms.

In summary, attackers have many vectors for attacks, and none of the pre-
vious we analyzed has considered a detection architecture that can prevent an
attacker from launching attacks while remaining hidden.

3 An Architecture to Reveal Hidden Attacks

Physical processes are regulated by a control loop, consisting of the following
components: (1) the physical phenomena of interest (sometimes called the pro-
cess), (2) sensors to observe the physical system and send a time series yk denot-
ing the value of the physical measurement at time k (e.g., the voltage at 3 a.m is
120 KV), (3) based on the sensor measurements received yk, the controller/PLC
sends control commands uk (e.g., open a valve by 10%) to actuators, and (4)
actuators that change the control command to an actual physical change (the
device that opens the valve). To differentiate between the real state of the system
and the sensor reading, let zk denote the real value and yk the one reported by
sensors. Similarly, actuators might implement a different control action vk than
the one received from the PLC uk. A summary is shown in Fig. 2a.
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3.1 Limitations of Security Monitors Located (Only)
at the Supervisory Control Network

Most of the previous work on network security monitoring has deployed network
intrusion detection systems at the SCN; however, if an anomaly detection system
is only deployed in the supervisory control network then a compromised PLC
can send manipulated data to the field network, while pretending to report that
everything is normal back to the supervisory control network, as illustrated in
Fig. 2b. In the Stuxnet attack, the attacker compromised a PLC (Siemens 315)
and sent a manipulated control signal ua (which was different from the original
u, i.e., ua �= u). Upon reception of ua, the frequency converters periodically
increased and decreased the rotor speeds well above and below their intended
operation levels. While the status of the frequency converters y was then relayed
back to the PLC, the compromised PLC reported a manipulated value ya �= y
to the control center (claiming that devices were operating normally). A similar
attack was performed against the Siemens 417 controller [14], where attackers
captured 21 s of valid sensor variables at the PLC, and then replayed them
continuously for the duration of the attack, ensuring that the data sent to the
SCADA monitors would appear normal [14].

If the network monitor is deployed at the supervisory control layer, it will
not able to detect compromised PLCs, unless it is able to correlate information
from other trusted PLCs, or unless it receives (trusted) sensor data directly
(e.g., wireless sensors sending measurements directly to the control center). If
the control center in the Stuxnet case had monitored the frequency converters
directly through an independent channel, it could have detected the attack.

Another difference in the data visibility between FCN and SCN layers is that
the request-and-respond communication generally implemented by SCN layers
might miss some important data exchanges in the FCN layer: without a spe-
cific request-and-response exchange, the data of interest may not be present
during the deep-packet inspection session. For example, if a specific data item
request/response exchange occurs with a low frequency or under special circum-
stances, the data exchanged will be missed. For example, configuration files for
field devices can be set so that they only to send data if some specific circum-
stances arise. Even if the PLC is trustworthy, this delay can prevent an anomaly
detector at the SCN from detecting the onset of an attack.

3.2 Detectability of Attacks

In the previous section we saw how attackers can bypass intrusion detection sys-
tems when they have compromised a PLC and our monitor is in the supervisory
network. If our intrusion detection system is in the field network, the attacker
of the previous section cannot remain hidden as we can see the false commands
coming out of the PLC and the incorrect sensor measurements from the sensors.
But what if the attacker also compromises these other parts of the system?

We now systematically analyze what can be detected and what cannot be
detected when we have access to data from the field devices (from the FCN) and
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when the attacker compromises different parts of the control loop, as illustrated
in Fig. 3a. Attack 1 in Fig. 3a shows an attack on the actuator(s) vk �= uk,
the attack modifies the control command send to the plant. We note that the
controller is not aware of the communication interruption. On the other hand,
attack 2 in Fig. 3a shows an attack on the sensor(s) yk �= zk, which allows the
attacker to deceive the controller about the real state of the plant. The controllers
can be compromised as well, as illustrated by attack 3 in Fig. 3a, uk �= K(yk),
where K is the logic the control algorithm should have implemented.

We also capture attacks coming from a compromised SCADA server as illus-
trated in Fig. 3b, as malicious control commands from the SCADA server or a
malicious change of parameters to the controller will generate a false control
command equivalent to uk �= K(yk).

(a)

Control Center

yy
Supervisory Control Network

(b)

Fig. 3. (a) Different attack points in a control system: (1) Attack on the actuators, (2)
Attack on the sensors, (3) Attack on the controller. (b) Attacks on central control or
supervisory control network translate to attack uk �= K(yk) in (a).

We now discuss the detectability of each attack.

1. If we trust the controller (e.g., the PLC) but do not trust sensors or actuators
then, it is game over : the attacker can change the physical world with bad
actuation actions while at the same time using the sensors to report that
everything is working normally.

2. If we trust the actuators but not the controller or the sensors then it is also
game over: the attacker can use the controller to send false control signals ua

k

to the actuator, while false sensor measurements can be generated to justify
the false control action.

3. If we trust the sensors but not the controller or the actuators, then for most
practical cases we can detect an attack using a Physics-Based Anomaly Detec-
tion (PBAD) as proposed e.g., by Urbina et al. [23]. A PBAD will work
because the goal of the attack is to affect the physical system, and we assume
we can monitor changes done by the attacker through the sensor time series
yk. Having said that, zero-dynamic attacks [22] are examples where even when
we trust sensor measurements, we cannot detect attacks caused by a compro-
mised actuator. Zero-dynamic attacks are rare and depend heavily on the
properties of the process and the sensors we have deployed.
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4. If we trust the actuator and the controller, then we know the control signal uk

will have the expected intended effect on the physical system. Any false data
injected by the sensors will cause a control command uk to be sent in response
to these false measurements, and in turn, any implausible combination of
control and sensor signals might be an indicator of an attack and can be
detected by a PBAD.

5. If we trust the controller and the sensors, then we again have implausible
combinations of control actions and sensor measurements that can be detected
by a PBAD because we can see that the control command that was sent to
the process did not have the expected result. With the possible exception of
zero-dynamic attacks.

6. Finally, we can detect a compromised controller by identifying if a control
action is the correct response to the current state of the system. This detection
method is not PBAD, but it requires a Redundant Controller (RC) that
can verify that the control action is indeed the intended one for the specific
operation. Notice that a PBAD has limited use in this case as the physical
evolution of the process with a compromised controller will still satisfy the
“physics-based” model of the system because the false control signal ua

k will
be observed by the PBAD and it will match the expected result ya caused by
the attacker of the system.

Table 1. Detectability of attacks depending on which devices are compromised

Device status Detection possible Comment

PLC Sensor Actuator

� × × × False sensing hides bad actuation

× × � × False sensing justifies bad controls

× � × � PBAD detectable except zero-dynamics

� × � � PBAD detectable

� � × � PBAD detectable

× � � � RC-detectable

� � � � No attack possible

� = trusted/detection possible, × = compromised/detection not possible, � = can
detect most attacks except for zero-dynamics attacks

Summary and Takeaways. Table 1 summarizes our contributions. Based on
our discussion, we can see that by monitoring FCN networks we can improve
the number of attacks that we can detect (via PBAD or RC); however when
more than one set of devices is compromised (e.g., sensors and actuators) detec-
tion is impossible, even at the FCN layer. Finally, while most previous work
uses physics-based anomaly detection (PBAD) for detecting false data injection
attacks, we showed in our analysis that PBAD is not enough; in particular we
described why need to have a redundant controller (RC)-based detection.
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Fig. 4. (a) Illustration of physics-based anomaly detection (PBAD) algorithm. (b)
Redundant control (RC) architecture to detect a compromised PLC. (c) Proposed
attack detection architecture

Figure 4a illustrates a general Physics-Based Anomaly Detection (PBAD)
system where the security monitor takes the control signal sent to the field and
the sensor measurement received to see if its compatible to the predicted behavior
of the system (a time-series anomaly detection algorithm like the CUSUM then
performs statistical tests to see if the anomaly is persistent) [23]. Figure 4b on
the other hand shows the RC detector, where a redundant (software-based)
controller verifies that given the same sensor inputs, it obtains the same result
as the controller.

3.3 Attack Detection Architecture

In the last section we saw that by monitoring the field communications of a con-
trol loop we can get better detection results than by monitoring the supervisory
network; however, we still get limited attack-detection when an adversary has
compromised more than one set of devices as summarized in Table 1.

Real-world industrial systems, however, are far larger than a single control
loop. They contain multiple stages controlling interdependent parts of a com-
plex system. For example, the process illustrated at the beginning of this paper
in Fig. 1 has three stages of a water purification process, each controlled by a
different set of PLCs, sensors, and actuators. These different parts of the process
can be used to try to identify the attacks that are not detected in Table 1. For
example, if the attacker compromises both sensors and actuators in one control
loop, then it can take complete control of the system without being detected;
however the effects on one loop will have other evident side-effects on another
system and we can hope to detect the attack there. This will need coordination
between different anomaly detection systems in each loop, so they can verify
with each other what each of them is currently “seeing”.

Our proposed anomaly detection architecture is illustrated in Fig. 4c. As
described in the previous subsection, by deploying network security monitors in



184 J. Giraldo et al.

Table 2. Comparison of detection capabilities of PBAD, RC, ML-PBAD.

the field communication network of the system we can use a PBAD algorithm to
detect compromised sensors or actuators, and also detect compromised PLCs by
using the RC attack-detection algorithm. Each of these anomaly detection tools
will then share their data with a Multi-Loop Physics-Based Anomaly Detection
(ML-PBAD) algorithm that will detect if the reports from a control loop in one
subsystem are consistent with the other control loops. Table 2 summarizes this.

In the next section we will discuss the development and implementation of
our architecture in an industrial system.

4 Implementation of Our Security Monitor

In this section, we present the design and implementation of a security monitor
that is explicitly placed as deep in the ICS network hierarchy as possible—in
the field network immediately next to sensors and actuators, and which reports
data to a supervisory ML-PBAD algorithm. As such, the monitor is expected to
reliably obtain information from the sensors and actuators, without the risk of
obtaining manipulated data from intermediate PLCs or SCADA.

4.1 Testbed Description

The testbed we use for our experiments is a water treatment plant consisting of 6
main stages to purify raw water. The testbed is described in more detail in [17].
The testbed has a total of 12 PLCs (6 main PLCs and 6 in backup configuration
to take over if the main PLC fails). Raw water storage is the part of the process
where raw water is stored and it acts as the main water buffer supplying water to
the water treatment system. It consists of one tank, an on/off valve that controls
the inlet water, and a pump that transfers the water to the ultra filtration
(UF) tank. In Pre-treatment the Conductivity, pH, and Oxidation-Reduction
Potential (ORP) are measured to determine the activation of chemical dosing to
maintain the quality of the water within some desirable limits. Ultra Filtration
is used to remove the bulk of the feed water solids and colloidal material by
using fine filtration membranes that only allow the flow of small molecules. The
accumulated contaminants are removed by back-washing away the membrane
surface depending on the measure of a differential pressure sensor located at the
two ends of the UF. After the small residuals are removed by the UF system, the
remaining chlorines are destroyed in the Dechlorinization stage, using ultraviolet
chlorine destruction unit and by dosing a solution of sodium bisulphite. Reverse



Hide and Seek : An Architecture for Improving Attack-Visibility 185

Osmosis (RO) system is designed to reduce inorganic impurities by pumping the
filtrated and dechlorinated water with a high pressure through reverse osmosis
membranes. Finally, in RO final product stage stores the RO product (clean
water).

Each stage has two PLCs (one primary and one redundant in hot-standby
mode). The field devices, i.e. sensors/actuators, send and receive sensor informa-
tion and control actions, respectively, to/from the PLCs through Remote I/O
modules (digital input and output, and analog input) in a EtherNet/IP ring
topology (EtherNet/IP is a popular industrial control protocol).

4.2 Challenges for Parsing the FCN Layer

Implementing a FCN monitor is more challenging than implementing one at the
SCN level. The network of the testbed illustrated in Fig. 1 uses the Common
Industrial Protocol (CIP) stack [3] for device communications at the SCN and
FCN layers. This is a common industrial protocol and is representative of a wide
variety of industry sectors. There a variety of differences between the FCN and
SCN layers, as illustrated in Fig. 5.

One difference in the data visibility between FCN and SCN layers is that
the request-and-respond communication implemented by SCN layers might miss
some important data exchanges in the FCN layer: without a specific request-
and-response exchange, the data of interest may not be present during the deep-
packet inspection session. For example, if a specific data item request/response
exchange occurs with a low frequency or under special circumstances, the data
exchanged will be missed.

Fig. 5. Differences between the SCN
and the FCN network stacks.

Fig. 6. (a) FCN’s multicast implicit
I/O connections, and (b) SCN’s
request/response-oriented explicit
messaging connections.
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In addition, at the SCN layer, devices communicate through point-to-
point connections over the Transmission Control Protocol (TCP) and exchange
explicit CIP messages—see Fig. 7; these explicit messages are standard and
openly accessible formats defining a clear semantic of the messages exchanged
between devices. As shown in Fig. 6(b), each Messaging Connection (MC) pro-
vides generic, multi-purpose communication paths by carrying well-known and
semantically-rich explicit CIP Messages between two devices. Creating a pro-
tocol parser to extract the sensor and actuation commands in this setting is
straightforward because we only need to follow the standard specification and
all the data types and their interpretation can be understood by the parser.

On the other hand, at the FCN layer, devices communicate through multicast
connections over User Datagram Protocol (UDP) and exchange implicit I/O
Connections between a producer device and one or more consuming devices
(See Fig. 6(a)). The semantic and structure of the data inside the I/O Message
is implicitly known by the communicating devices, and is device and vendor
dependent (Allen-Bradley in this deployment). In particular, these I/O Messages
in the FCN layer follow a flat structure (stream of bits), of fixed size and of
untyped data. Therefore we need to work with low-level data where values are
exchanged without standard units of measurement, and where the protocol is not
publicly available. In order to develop a parser for this layer, we require extra
information provided by the electrical drawings of the equipment, illustrating
how each field device (e.g. sensor or actuator) is wired to the specific modules
of the PLC.

Fig. 7. Explicit CIP message encapsu-
lation over EtherNet/IP.

I/O Message Signal size (bits) # signals Avg. Freq. (ms)

Digital Input 1 32 50
Digital Output 1 16 60
Analog Input 16 12 80

Fig. 8. Modules for each PLC.

4.3 Extracting the Semantics of FCN Data

After implementing the parser in Python, we now need to interpret the data we
see in the wire. According to the electrical drawings, we found that each PLC
had three modules: a digital input module (to receive on/off status reports from
senors or fault alarms from devices in the field), an analog input module (to
receive fine-grain information from sensors in the field such as the height of the
water level in a tank, or the pH level of the water), and a digital output (to turn
on/off actuators in the field). None of the PLCs in this testbed had an analog
output module (analog outputs are used to control continuous variables such as
the speed of a motor or the partial valve opening).
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The number of signals available per module are summarized in Fig. 8. For
example, a digital input module for the PLC consists of a stream of 32 bits,
corresponding to each of the digital inputs signals. The spare channels are those
not in use by the current deployment. The digital outputs are grouped in 16-
bit stream (1 bit per signal), while the analog inputs are grouped in a 24-byte
stream with 16 bits per signal 2’s complement.

Electrical drawings of the plant tell us which specific bit (or word) in the
PLC module corresponds to each signal. For example, Fig. 9 shows the electrical
diagram indicating the description of each bit in the stream for a digital input
module (the top part of the figure is our own illustration showing how these
sensors connect to the PLC).

Fig. 9. Digital input module with 32
input signals (1-bit signals) for the raw
water storage stage PLC.

Fig. 10. Analog input module with 12
input signals (16-bits signals) for the
raw water storage stage PLC.

The I/O Messages containing the analog signals are sent by the field devices
to the PLC with an average frequency of 80 ms. They transport the numeric
representation of the 4–20 mA analog electrical signals measured by the analog
sensors and converted to their raw digital version using an Analog-Digital Con-
verter (ADC). For example the analog inputs for the first stage of the testbed
are shown in Fig. 10.

In order to scale back and forth between the 4–20 mA analog signal and the
real measurement with standard units, we use Eq. (1). In this equation, EUMax
and EUMin are the desired maximum and minimum limits of the specific Engi-
neering Unit (e.g. millimeters (mm), pH, cubic meters per hour (m3/h), etc.) to
which the Raw signal is being scaled; RawMax and RawMin are the maximum
and minimum possible limits for the original Raw signal. These constant values
depend on the type of sensors and the physical property being measured.

Out = (In − RawMin) ∗ EUMax − EUMin

RawMax − RawMin
+ EUMin (1)
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By looking at packet captures between the PLC and the field devices we
found that each packet represented a specific exchange between a module in the
PLC and the field devices. Therefore by simply looking at the packet payload size
(32 bits for the digital input module, 16 bits for the digital output module, and
192 bits for analog inputs) we were able to identify the type of communication.

Based on this information, we developed parsers for the three types of packets
for all PLCs, and a command-line interpreter (CLI) application which includes
a library of attacks and a network monitoring module implementing attack-
detection mechanisms. The attack modules are capable of launching diverse
spoofing and bad-data-injection attacks against the sensor and actuator signals
of the testbed. The attack modules can be loaded, configured, and run indepen-
dently of each other, allowing to attack sensors/actuators separately. The attack
modules can also be orchestrated in teams in order to force more complex behav-
iors over the physical process, while maintaining a normal operational profile on
the HMI. The CLI application consists of 632 lines of Python [26] 2.7 code and
the only external dependencies are Scapy and NetFilterQueue.

Specifically, making use of Scapy [27], we developed a new protocol parser for
the Allen-Bradley proprietary I/O Messages used at the FCN layer, and for the
EtherNet/IP Common Packet Format wrapper that encapsulates it. This parser
allows us to sniff, in real-time, the sensor readings and actuation commands, and
to inject fake packets in the network. When injecting fake data, our software
calculates the data integrity checksums used by the Transport Layer protocol.

Instead of injecting fake packets crafted from scratch, our attack modules
catch the original packets from the communication stream and insert fake sens-
ing/control data, before sending the packets to their original destination. Insert-
ing fake packets may result in race conditions when the original and the fake
packet are both process by the PLC. We employed the NetFilterQueue [25]
Python bindings for libnetfilter queue to redirect all the I/O Messages between
PLC and the field devices to a handling queue defined on the PREROUTING
table of the Linux firewall iptables. The queued packets can be modified using
Scapy and the previously mentioned message parser, and finally released to
reach their original destination e.g., PLC or field devices. Likewise, this tech-
nique allowed us to avoid disruptions on the sequence of EtherNet/IP coun-
ters, and injection of undesirable perturbations in the EtherNet/IP connections
established between field devices. Our final security monitor is inserted in the
EtherNet/IP ring between the PLCs and the field devices.

5 Experiments

We now illustrate how our monitor system can be used to launch and detect
attacks at the FCN in the testbed. In the following experiments, the goal of
the attacker is to deviate the water level in a tank as much as possible until
the tank overflows, without being detected. We assume an attacker who has
complete knowledge of the physical behavior of the system and can manipulate
EtherNet/IP field communications or has compromised the PLC.
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Our network monitoring module was setup to use a stateful CUmulative
SUM (CUSUM) anomaly detection on the residuals, with a LDS model of the
process. In particular, we use a mass balance equation that relates the change
in the water level h with respect to the inlet water flow Qin and outlet water
flow Qout volume of water, given by Areadh

dt = Qin − Qout, where Area is the
cross-sectional area of the base of the tank. Note that in this process the control
actions for the valve and pump are On/Off. Hence, Qin or Qout remain constant
if they are open, and zero otherwise. Using a time-discretization of 1 s, we obtain
an estimated model of the form

ĥk+1 = hk +
Qin

k − Qout
k

Area
(2)

where hk represents the received sensor measurement for the water level at time
k, Qin

k represents the on/off variable of the state of the inlet valve at time k, and
Qout

k represents the on/off variable of the state of the pump that takes water
off the tank. Given these variables, we can predict the height of the tank at the
next time step ĥk+1.

A residual statistic keeps track of the difference between the height of the
tank received at time k+1 and the expected height rk = |hk − ĥk|. A cumulative
sum of these errors (minus a forgetting factor δ) is then computed as part of the
CUSUM anomaly detection test: Sk+1 = max(0, Sk + rk − δ), see [23]. If this
statistic is greater than a user-specified threshold τ (usually selected to maintain
a low false alarm rate) then we raise an alarm; i.e., if Sk > τ then we send an
alert to the operator.

We now show how our field-level implementation has enough visibility to
detect a variety of attacks to the system.

5.1 Sensor Attack (Water Level)

We assume the adversary has gained access to the communication link between
the sensor and the PLC and she is able to manipulate the sensor information
as we described above. At the moment of the attack, the valve was open and
the pump was off, so the water level in the tank starts increasing. This attack
corresponds to attack 2 in Fig. 3a. The sensor information is used by the PLC
to determine the control action; therefore, if the attacker lies and tells the PLC
that the water height is increasing at a slower rate it actually is increasing, the
PLC will keep the valve open and the tank overflows before the valve closes.
Figure 11a illustrates how the compromised water level increases at a slower rate
than the real one, and as a consequence, when the sensor information reaches
0.8 m and the PLC closes the valve, the real water is already overflowing (the
height of the tank is 1 m). However, our proposed detection mechanism detects
that the sensor measurement received hk does not match the rate ĥk at which
the water should be increasing. The consecutive differences between hk and ĥk

form the residual rk (i.e., rk = |hk − ĥk|). Taking a CUSUM detection statistic
over rk triggers an alarm a few seconds after the attacked is launched.
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Fig. 11. (a) Sensor attack (water level). (b) Impact of a stealthy sensor attack with
detection strategies in SCN and FCN.

Fig. 12. (a) Actuator attack (inlet valve). (b) Controller attack (PLC/SCADA).

In this case it does not matter if the security monitor is at the FCN layer or
at the SCN layer, the attack can be detected at any layer because both layers
have visibility into the false sensor data. However, to illustrate the problem of
relying only in supervisory networks when a PLC is compromised, we ran the
same attack, but this time the PLC reported the reading the anomaly detector
was expecting to the supervisory network. The anomaly detector in the field
network on the other hand, was able to see the raw sensor measurements being
produced and how they did not match with the control commands of having
the inlet valve open and the pump extracting water closed. Motivated by the
performance metric proposed by Urbina et al. [23], we compute the trade-off
between attack impact and frequency of false alarms that a stealthy attacker
(one that does not raise any alarms) causes to both systems: an PBAD at the
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SCN, and a PBAD at the FCN (see Fig. 11b). In the figure it is clear that if the
attacker wants to remain hidden, it has better chances to cause damages to the
system if the defender only monitors the SCN.

5.2 Actuator Attack (Inlet Water Valve)

Now we turn our attention to attacks against the actuators, as illustrated in
Fig. 3(a). In this scenario, our security monitor observes the intended control
command by the PLC to the actuator, but then notices that the sensor mea-
surement does not correspond to the intended control command.

We consider a state of the system where the water in the tank is at 0.8 m and
the PLC intends to keep that level by having the intake valve closed, and the
pump taking water out of the tank off. Figure 12a shows how a false actuation
command to open the valve increases the height of the water in the tank. Again,
our anomaly detection system detects that the predicted height (0.8 m) based
on the current control commands (both the inlet valve and the pump are off)
should remain constant, so the increase of the water level is detected as anomaly.

As in the previous case (sensor attack), if the only attacked device in the
system is the intake valve position, then it doesn’t matter if the security monitor
is at the FCN layer or at the SCN layer, the attack can be detected at any layer
because both layers have visibility into the truthful sensor data and notice that
it does not correspond to the control commands sent to the field.

5.3 PLC Attack (RC-Detection)

In this attack the logic of the PLC is modified so that it sends a false control
command, but reports that everything is fine to the SCN as in Fig. 2b. In par-
ticular, the PLC sees that the water is at the high level of 0.8 m (so it shouldn’t
open the intake valve); however, our change of logic in the PLC instead asks it
to open the intake valve to allow more water into the tank, while reporting to
the supervisory control layer that the intake valve is closed and that the water
level is still 0.8 m.

As discussed before, this attack cannot be detected with a security monitor
at the supervisory control layer, because it does not have visibility to the field
control commands sent by the PLC. As discussed before, this attack cannot even
be detected using PBAD at the FCN because there is no discrepancy between the
observed control commands, and their effect on sensor measurements. Figure 12b
shows how a command from a compromised PLC cannot be detected by our
physics-based anomaly detection statistic as our FCN monitoring tool observes
the command to open a valve, and then predictably, the height of the tank begins
increasing at the appropriate rate.

To detect this attack we require a redundant control architecture in this case
is illustrated in Fig. 4b. In this case the RC attack detection algorithm notices
the compromised PLC sends a signal that is not authorized to send in its current
state, thus detecting the compromised PLC.
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5.4 Multi-loop Anomaly Detection (ML-PBAD)

The worst type of attack corresponds to the case when the sensors and actuators
are attacked simultaneously. To show the generality of our ML-PBAD architec-
ture originally presented in Fig. 4c, we implemented it in two different systems;
we now present the results for the water system we have been considering.

Here we assume the adversary has compromised both the actuators and the
sensors, and therefore is able to send arbitrary actuator control signals (e.g. open
the intake valve when the water in the tank is 0.8 m) while at the same time, lie
about the sensor readings (i.e., tell our security monitor that the water in the
system is constant at 0.8 m).

Now, recall that the testbed has multiple stages controlled by various PLCs,
each of them receiving different field signals from the physical process. We focus
our attention on the water level of two consecutive stages with two tanks, each of
which is controlled by hysteresis switched controls that depend on those levels.
We want to show how attacks over sensors and actuators affect the performance
of the system, and it is even possible to lead the water level to overflow.

Fig. 13. Sensor and actuator attack in stage 1. The attack cannot be detected by the
detection algorithm in process 1, but it can be observed in the other stage.

In particular, we assume our attacker has compromised both the pump actu-
ator and the water level sensor in the first stage of the testbed. As result, if
the attacker wants to damage the pump, it can turn on the pump directly from
the actuator command. As our security monitor will not see that command, it
will assume the pump is off. The attacker then can lie about the water in the
system, and tell the PLC (and thus the security monitor) that the water remains
at 0.8 m, while in reality the water level in tank one is decreasing.

From the point of view of the security monitor however, the pump is off,
and the water level is stable (the security monitor sees the red lines in Fig. 13
(top)) and therefore, the anomaly detection statistic for stage 1 does not increase.
However, from the point of view of the field security monitor in stage two of the
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plant monitoring the control loop of the second PLC, the water level for the
second tank will appear to rise without any apparent reason, and this will raise
an alarm, as illustrated in Fig. 13 (bottom).

We found that without our proposed ML-PBAD scheme, the attacker is able
to raise the water level of the tank to the point of overflow (0.4 m above the set-
point) without being detected by the single loop PBAD. In contrast, the attacker
can only raise the water level to 0.1 m above the setpoint without detection if
ML-PBAD is used

6 Conclusions

In this paper we have presented a detailed discussion of the lack of missing
trust models in previous work, and why specifically looking where to deploy
physics-based anomaly detectors is of high importance. In particular we show
why deploying security monitors in the field level of industrial control systems
has several advantages over deploying only at the supervisory control layer.

We then implemented a field security monitor. We showed the differences
between implementing a detector in the field level versus at the supervisory
control layer, and then showed its effectiveness to detect more attacks than
what is possible at the supervisory control layer.

Finally, by experimenting with attacks to all components of the system, we
were able to identify new tools to mitigate some corner cases that cannot be
addressed solely with PBAD-anomaly detection algorithms [23]. We then pre-
sented a new holistic detection architecture that covers detection of attacks not
previously discussed in the literature.

A limitation of a field monitor is that if both, sensor and actuators are com-
promised, then an attacker can still bypass this detection. To mitigate this prob-
lem we proposed the integration from multiple field monitors at different stages
in a large process. Our work in this distributed architecture improves the visi-
bility of our system, and makes the work of an attacker who wants to remain
stealthy much harder. Powerful attackers will always be able to bypass the sys-
tem, but our architecture will raise the bar in the amount of effort and knowledge
required by attackers to be successful.
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