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SUMMARY

Physical activity is associated with beneficial adaptations in human and rodent metabolism. We 

studied over 50 complex traits before and after exercise intervention in middle-aged men and 

a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, 

muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, 

including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although 

~33% of genes differentially expressed in skeletal muscle following the exercise intervention 

are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-

stimulated weight loss appears controlled by species and underlying genotype. We leveraged 

genetic diversity to generate prediction models of metabolic trait responsiveness to volitional 

activity offering a framework for advancing personalized exercise prescription. The human and 

mouse data are publicly available via a user-friendly Web-based application to enhance data 

mining and hypothesis development.

Graphical Abstract
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In brief

Moore et al. studied over 50 traits before and after exercise intervention in middle-aged men and 

100 diverse strains of female mice. Genetic diversity of the mouse panel was leveraged to generate 

a publicly available data repository that can be mined via a user-friendly Web-based application to 

enhance hypothesis development.

INTRODUCTION

Physical activity is routinely prescribed by physicians to reverse or prevent complications 

associated with cardiometabolic disorders.1,2 Physical activity is one of the few clinical 

interventions effective at improving human health regardless of age,3 sex,4 ethnicity,5 

or cardiometabolic status.6 In addition to cardiometabolic health, daily physical activity 

also reduces cancer incidence and recurrence,7 improves cognitive function and mental 

health, and protects against neurological disorders.8 Cardiorespiratory fitness, as assessed 

by maximum oxygen uptake (VO2 max), is reproducibly improved in mouse and human in 

response to increasing physical activity, and is one of the strongest predictors of all-cause 

mortality.9-12 Considering the rise in metabolic-related disease and overwhelming evidence 

supporting the health benefits of physical activity for mitigating chronic disease burden, it 

is concerning that long-term adherence to exercise prescription by the general population 

remains relatively poor.13 Thus, there is an urgent need to understand the molecular 
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mechanisms improving metabolism as well as best practices for exercise prescription leading 

to greater adherence and health outcomes.

Because previous studies interrogating the benefits of exercise have been performed 

predominantly on a limited number of tissues and pathways, typically skeletal muscle and 

the cardiorespiratory system, we employed an unbiased assessment of whole animal trait 

and genome-wide responses to exercise training. We performed a large-scale project where 

mice from the Hybrid Mouse Diversity Panel (HMDP) performed voluntary wheel running 

for 30 days. The HMDP is a powerful and unique genetic resource including 100 diverse 

inbred strains of mice. We have previously used the HMDP to perform molecular dissection 

of complex cardiometabolic-related traits.14-17 The HMDP enables high-resolution genome-

wide association studies (GWASs) and assessment of gene-by-environment interactions 

(e.g., physical activity). The HMDP has been particularly powerful when integrated with 

multi-omics analyses. In the current study, 12 tissues were harvested from each animal 

of the exercise (Exc) HMDP providing quantification of 50 distinct whole-body and 

tissue-specific physiological traits. Furthermore, we integrated our ExcHMDP data with 

the human Skeletal Muscle, Myokines and Glucose Metabolism (MyoGlu) study, including 

longitudinal collection of clinical traits and multiple biopsies of tissues following acute (one 

session of exercise training) and long-term (12 weeks) exercise intervention.18,19 MyoGlu 

and ExcHMDP are complementary datasets where both human and mouse tissue samples 

were subjected to multi-omics analyses, and these data were integrated with a variety of 

phenotypic traits.

Relationships between exercise workload and several cardiometabolic traits, including but 

not limited to tissue weights, plasma lipid levels, and insulin sensitivity, were examined. 

We performed global transcriptomic analyses of key metabolic tissues including skeletal 

muscle, white adipose, brown adipose, brain, liver, and heart, and integrated these data 

with phenotypic trait outcomes following exercise intervention. We identified mouse genetic 

factors underlying voluntary exercise behavior and the molecular and physiologic responses 

to exercise training. These findings have been made publicly available in a user-friendly and 

simple Web-based application designed to allow researchers the opportunity to visualize, 

compare, and interrogate data between mouse and human. Our study highlights the value 

of cross-species, multi-tissue genetic analyses and underscores the need for personalized 

prediction modeling to improve individual exercise prescription and adherence outcomes to 

mitigate disease risk.

RESULTS

Study design

To understand the role of genetics in exercise adaptation, we used a 100-strain panel of mice, 

the HMDP (Table S1A).20 HMDP strains are inbred, allowing for reliable comparisons 

between different HMDP studies. Thus, the HMDP is an expandable data resource. In our 

study, termed the exercise (Exc) HMDP, mice from each strain were randomly divided into 

two groups: exercise trained (TRN) or sedentary (SED) (Table S1A). Mice were allowed to 

exercise using an in-cage running wheel for 30 days, a sufficient time to induce exercise 

training adaptations.21-23 Following 30 d of exercise intervention, wheels were locked and 
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mice were euthanized 30 h later to avoid the confounding effects of the last exercise bout.24 

Mice were fasted during the final 6 h of the 30-h recovery period from the last exercise 

bout, to ensure a post-absorptive state. We examined the translational relevance of our 

studies in mice by integrating our findings with a longitudinal exercise intervention study 

including aerobic exercise as well as strength training, clinical parameters, and molecular 

measurements in human subjects. The MyoGlu study included 26 previously sedentary 

Norwegian men.18,19 The biopsy schedule allowed for the examination of tissue transcript 

response to acute (45 min of cycling, 70% VO2 max) and long-term exercise intervention 

(12 weeks, 4 × 60-min weekly sessions including strength and endurance training). An 

overview of the study design is provided in Figure S1A.

Genetic regulation of voluntary wheel running

We observed substantial strain dependent variation in the mean volitional daily running 

distance in TRN ExcHMDP mice (5.94 ± 3.43 km; Figure 1A), consistent with rodent 

exercise volume observed in other training studies.25,26 In addition to comparisons of 

running distance, running pattern could also affect the adaptation to daily activity. Thus, 

we determined the average running speed (revolutions/s) and percentage time running over 

each 24-h period. Running speed and time were strongly correlated variables (R2 = 0.54). 

The heritability of running distance, corresponding to the fraction of variance explained by 

genetics, was 0.68 ± 0.05 for the ExcHMDP.27,28

We performed a GWAS that revealed several significant loci (Figures 1B and 1C; Table S1B 

and S1C). As would be predicted, these data suggest that running distance is a polygenic 

trait. Polygenic traits can be assessed by examining the cumulative effect of separate single-

nucleotide polymorphisms (SNPs).29 A genome-wide polygenic score was computed by 

summing the effect of each SNP from the GWAS of running distance (Figures 1B-1D 

and S2). Regardless of the computational method, as few as 100 SNPs were significantly 

associated with running distance and genome-wide polygenic score.

Although it is well documented that VO2 max, an index of exercise capacity,30 is 

largely regulated by the cardiorespiratory system,31-34 and volitional activity is arguably 

controlled by the CNS,35,36 we questioned whether prolonged voluntary wheel running 

could also be regulated by exercise capacity of the periphery. Mean running distance per 

day from the ExcHMDP was correlated with heart phenotypes from a prior sex- and age-

matched HMDP.37 Of the nearly 30 heart phenotypes, none significantly correlated with 

running distance (p > 0.05; Figure S3A). We also conducted candidate gene identification 

analysis and found no candidate genes in cardiac tissue central in the regulation of daily 

running distance (false discovery rate [FDR] >0.05). These data suggest that voluntary 

wheel running distance is predominantly regulated by cardiac-independent factors in Mus 
musculus.

Because published findings suggest that ambulatory movement is driven by the CNS,38 

we performed candidate gene identification analysis on three brain regions from prior age-

matched mouse panels.39,40 Several potential candidate genes were identified in the three 

brain regions (FDR < 0.05; Figure 1E; Table S1B). The hypothalamus possessed the highest 

number of candidate genes (n = 81), followed by striatum (n =56) and hippocampus (n = 
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41). Several candidate genes were shared between all three brain regions (n = 8; Figures 1E 

and 1F). Thus, our findings suggest that voluntary wheel running is significantly controlled 

by all three brain regions studied: hypothalamus, striatum, and hippocampus.

Because the hypothalamus possessed the highest number of candidate genes regulating 

voluntary wheel running, hypothalamic single-cell RNA sequencing was performed on a 

separate cohort of sedentary and trained C57BL/6J mice that engaged in the same exercise 

protocol as the ExcHMDP animals. Seventeen distinct cell populations were identified in the 

hypothalamus (Figures S4A and S4C). Differential gene expression analysis within each cell 

population revealed significant differences in transcript abundance between the two groups, 

TRN vs. SED (FDR < 0.05; Figure S4B). The gene mt-Rnr2, encoding mitochondrial 

16S rRNA, Humanin, was significantly increased in nearly all cell types. Recent research 

has linked Humanin expression to exercise intensity and aging-related diseases, including 

Alzheimer’s.41-43

Leveraging genetic variation to predict physiological traits outcomes in response to 
exercise

A primary goal of the ExcHMDP was to examine the role of genetics in controlling 

physiological responses to exercise intervention. We calculated SNP heritability for each 

group (SED vs. TRN) for 50 physiological traits. SNP heritability was similar for most, but 

not all, traits between groups. Thus, group-specific GWAS was performed (Figure 2A; Table 

S1C), revealing unique as well as conserved loci for each trait in SED vs. TRN (p < 4.1 

× 10−6; Figure 3B; Table S1D). The majority of traits showed group-specific quantitative 

trait loci (QTLs), indicating the presence of a QTL in one group but not the other. Of note, 

a specific 3-Mb region on Chr17 had a QTL for seven traits among both groups. These 

examples highlight a distinct physiology that is genetically regulated independent of exercise 

training status.

In response to exercise, the majority of traits were significantly different between TRN vs. 

SED (p < 0.05; Figure 2C). Exercise reduced liver and plasma lipids, adipose tissue mass, 

and blood glucose concentration, but increased heart, liver, and kidney mass. Because of 

the significant inter-strain variation in running distance, we determined whether running 

distance affected specific trait outcomes. If the correlation between SED and TRN for 

a trait is unchanged when distance is added as a covariate, then the trait response is 

largely independent of running distance. All correlations remained significant when running 

distance was added as a covariate (Table S1E). We then determined the mouse strain by 

group interaction. We observed that 85% of physiological traits have a significant interaction 

between mouse strain and group (SED vs. TRN) indicating a gene × exercise effect after 

adjustment for multiple comparisons (p < 0.05; Tables S1E and S1F).

Considering the differences in heritability estimates and phenotypic trait outcomes between 

the two groups, an unbiased principal-component analysis (PCA) was performed, revealing 

a significant difference between the groups, SED vs. TRN (p < 0.001; Figure S5A). Strains 

displayed a variable response to exercise independent of running distance. Similar to the 

ExcHMDP, MyoGlu subjects also displayed a variable response to exercise, although, in 

general, cumulative group differences (post exercise vs. pre-exercise) from the PCA analyses 
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were statistically significant (p < 0.01; Figure S5B; Tables S1G-S1J). These findings 

highlight the importance of genetic architecture underlying exercise-induced adaptation.

Next, we determined the correlation structure among traits within a group (SED vs. TRN) 

from the ExcHMDP to identify salient trait-trait relationships. As expected, related traits 

showed strong within-group correlations (p < 0.01; Figure S5C). Daily running distance 

displayed significant correlations with traits that were also the most significantly different 

between groups (p < 0.01). Traits displaying the largest change in correlation structure were 

the most significantly different between the two groups, SED vs. TRN.

All assessed traits for ExcHMDP and MyoGlu studies are presented as a heatmap 

(Figures 3A and 3B). Because metabolic health is typically evaluated using multiple 

clinical parameters, we generated an index to reflect the cumulative metabolic effect of 

exercise in mice and humans. This metabolic index increased in 81% of strains following 

training (Figure 3A) but did not correlate with daily running distance (p > 0.05, R2 = 

0.01), substantiating the notion that genetic architecture, in large part, drives physiological 

adaptation to exercise. Similar to rodents, the metabolic index was elevated in 90% of 

human subjects following exercise training intervention (Figure 3B). Leveraging genetic 

diversity by studying a 100-strain mouse panel as well as human subjects discordant for 

metabolic health and fitness allowed us to determine the importance of genetics vs. training 

volume in driving physiological responsiveness to daily activity.44

Molecular responses to exercise in skeletal muscle

We explored whether exercise-responsive gene signatures in skeletal muscle were influenced 

by BMI for both acute and longer-term exercise intervention in previously sedentary 

men. In both normal-weight and overweight men of the MyoGlu trial, we identified sets 

of genes adapting in coordinated fashion following acute and chronic exercise (FDR < 

0.05; Figure 4A; Table S1F). Acute exercise-responsive genes showed at least one of the 

following patterns: (1) sustained change following exercise that persisted 2 h post, (2) 

change immediately following exercise and returning to baseline 2 h post, or (3) change 

after the 2-h exercise recovery period only. Early-response genes reflected inflammatory 

and immune processes (e.g., IL-4 and IL-13), whereas late-response genes were enriched 

for transcripts associated with apoptosis and the unfolded protein response. Transcripts 

decreasing in expression in response to acute exercise reflected gene silencing, chromatin 

folding, and transcriptional or translational regulation. We observed substantial overlap 

between normal-weight and overweight men within all acute exercise-responsive gene sets 

identified (average overlap of differentially expressed genes [DEGs] between groups = 46%; 

Figures S6A-S6F).

Moreover, we studied the long-term effects of exercise intervention on transcript expression 

in skeletal muscle of men in the MyoGlu trial. We identified transcripts changing after 

long-term exercise that were not significantly altered by acute exercise (described above) for 

both normal-weight and overweight men (FDR < 0.05; Figures S7A and S7D). Long-term 

exercise-responsive transcript signatures displayed less overlap between groups (normal 

weight vs. overweight) compared with acute exercise-responding transcript sets (average 

overlap of DEGs between groups = 16%; Figures S6G and S6H; Tables S1F-S1G). In 
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normal-weight men, exercise increased transcripts associated with processes related to the 

immune system and inflammation (FDR < 0.05, Figure 6B). Transcripts with decreased 

expression in response to exercise intervention for normal-weight men were enriched for 

mRNA regulation, protein assembly, and post-translational modification (FDR < 0.05; 

Figure S7C). In overweight men, the response was markedly different: transcripts increased 

in expression were enriched for mitochondrial phenotypes and fatty acid metabolism (FDR 

< 0.05; Figure S7E). Transcripts related to glycolysis and gluconeogenesis were reduced in 

muscle expression among overweight men (Figure S7F). Increases in transcripts enriched 

for nervous system development, extracellular matrix, and angiogenesis were observed in 

both groups, whereas transcripts associated with DNA repair, organelle protein transport, 

transcriptional processes, and macroautophagy were reduced in both groups following 

exercise intervention.

Similar to overweight men, mice from the ExcHMDP showed an enrichment for metabolic 

processes including fatty acid β-oxidation, pyruvate metabolism, mitochondrial membrane 

transport, and electron transport (FDR < 0.05; Figure S8). Approximately 33% of transcripts 

significantly changed in mice were also changed in humans following long-term exercise 

training (FDR < 0.05; Figure 4B). These DEGs transcending species and biological sex 

were significantly enriched for β-oxidation, mitochondrial membrane transport, purine 

ribonucleotide metabolism, carbohydrate metabolism, and oxidative phosphorylation (FDR 

< 0.05; Figure 4C; Tables S1H and S1I).

Next we identified putative regulatory key driver genes in skeletal muscle samples obtained 

from the ExcHMDP and MyoGlu participants.45,46 Briefly, key driver analysis (KDA) 

identifies gene hubs by overlaying DEGs onto previously generated gene regulatory 

networks. KDA of muscle adaptation to exercise intervention identified Myoz2 and Esrrb 
in the mouse, SSC5D and SRPX2 in normal-weight men, and APLN and ABLIM3 in 

overweight men (FDR < 0.05; Figure 4D). In both normal and overweight men, key 

driver gene networks were associated with inflammatory signaling and extracellular matrix, 

whereas mouse key driver gene networks were related to mitochondrial processes and 

muscle contraction.

Molecular responses to exercise in adipose tissue

Long-term exercise significantly reduced adipose tissue mass in humans and mice (Figures 

2C, 3A, and 3B). To identify molecular transducers of this physiological adaptation to 

daily activity, we performed transcriptomics on gonadal white adipose tissue (gWAT) from 

the ExcHMDP and subcutaneous white adipose tissue (scWAT) from MyoGlu subjects. 

ExcHMDP gWAT gene expression was enriched for mitochondrial and lipid metabolism 

(FDR < 0.05; Figure 5A). Differentially expressed transcripts were associated with acetyl-

CoA and pyruvate transport, cholesterol metabolism, tricarboxylic acid (TCA) cycle, and 

purine nucleoside metabolism (FDR < 0.05; Figure 5D). For overweight men, several 

lysosomal enrichment terms in addition to ERK1/2 signaling, blood vessel formation, and 

leukocyte activation emerged (FDR < 0.05; Figures 5C and 5F). Transcripts significantly 

changed by exercise intervention in normal-weight men were enriched for IL-1 signaling, 

amino acid, and ketone metabolism, as well as transcriptional regulation (FDR < 0.05; 
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Figures 5B and 5E). Integrated analysis of transcript expression and enrichment between 

mice and humans revealed few DEG and Gene Ontology (GO) terms overlapping between 

species, a finding in contrast to skeletal muscle displaying high inter-species DEG and 

GO term concordance (Figure 5G; Table S1I). KDA was performed to identify potential 

regulatory transcripts for the exercise response in white adipose. Both normal-weight and 

overweight men displayed key drivers involved in immune and inflammatory responses, 

whereas mouse key drivers included cholesterol and triglyceride metabolism, and the TCA 

cycle (Figure 5H). We connected the exercise-induced changes in both mRNA expression 

and adipose tissue mass by performing candidate gene identification analysis. Seven 

transcripts were predicted to regulate adipose tissue weight loss during exercise intervention, 

including Clic4, Frmd4a, H2-Ob, Mill1, Prxl2a, Snx9, and Tomm5 (FDR < 0.05; Figure 

S9A).

GWAS performed on gWAT from the ExcHMDP revealed differences in associated loci 

between groups, SED vs. TRN, suggesting different mechanisms of genetic regulation 

or adipose mass as a consequence of exercise training (Figure 2B). Next, GWAS was 

performed to interrogate the genetic architecture underlying the within-strain difference 

in gWAT mass between SED and TRN. No loci reached statistical significance (p > 4.1 

× 10−6; Figure S9B). We then calculated a genome-wide polygenic score for each strain 

from this specific GWAS. Using ~400 SNPs, we identified a strong correlation between 

the genome-wide polygenic score and the difference in gWAT mass (p < 0.01, R2 = 0.52; 

Figure S9C). This relationship was consistent irrespective of the method employed for 

determination of genome-wide polygenic score. These findings suggest a strong interaction 

between genetics and exercise for adipose tissue weight loss during training intervention 

(Figure S9). Considering that the difference in adipose tissue mass following training (gWAT 

delta) did not correlate significantly with daily running distance in the ExcHMDP (p > 0.05, 

R2 = 0.04; Figure S9D), a further and more robust dissection of the interaction between 

genetics and exercise, as well as biological sex, in the control of adipose tissue weight loss is 

warranted.

Molecular responses to exercise in liver

The impact of long-term exercise on liver is understudied and less well appreciated 

compared with other metabolic tissues responsible for the mechanical work of physical 

activity.47-49 The ExcHMDP showed differences in hepatic physiological and molecular 

phenotypes (Figure 2C). Transcriptomic analysis of liver showed fewer DEGs compared 

with skeletal muscle and gWAT (FDR < 0.05; Figures 6A and S12A). Enrichment analysis 

of DEGs in female mouse liver following training were related to mitosis, cell division, cell 

cycle, and cytokinesis (FDR < 0.05; Figure 6B). Nearly 60% of all hepatic enrichment terms 

were associated with mitosis and cell cycle. KDA of the liver transcriptome consistently 

identified transcripts associated with mitotic processes such as Mki67, a known regulator of 

chromosomes during mitosis and a marker of cell proliferation (FDR < 0.05; Figure 6C). 

Candidate gene analysis for regulators of liver lipids and hallmarks of non-alcohol fatty liver 

disease revealed 10 gene candidates for the five liver lipids (p < 0.01; Figure 6D).
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Molecular response to exercise in heart

Exercise reproducibly improves cardiovascular function.50,51 Because heart weight was 

increased in TRN vs. SED animals (increased in 85% of HMDP strains; Figure 2C), 

we conducted cardiac transcriptomics. Similar to the liver, the heart showed relatively 

few DEGs compared with skeletal muscle and gWAT for SED vs. TRN mice (FDR < 

0.05; Figure S11A). Enrichment analysis of DEGs displayed several inflammatory and 

immune processes (leukocyte regulation, macrophage activation, and TNFα and other 

cytokine products), calcium signaling and regulation, muscle growth and development, and 

angiogenesis (FDR < 0.05; Figure S11B). These biological processes overlap with those 

identified in skeletal muscle. Candidate gene identification analyses of exercise-induced 

cardiac hypertrophy identified five potential regulatory transcripts: IL31ra, Fam167b, Tafa5, 
Crip3, and Nanos1 (p < 0.01; Figure S11C).

Molecular responses to exercise in brown adipose tissue

Brown adipose tissue (BAT) has received increasing attention in the literature, especially 

with respect to its role in energy expenditure.52-54 We observed a small but significant 

increase in BAT mass following training in the ExcHMDP (p < 0.05; Figure 2C). The 

increase in BAT mass prompted us to investigate the effect of exercise on the BAT 

transcriptome. Unexpectedly, BAT had the most DEG of all tissues assessed (FDR < 

0.05; Figures S12A and S13A). Downregulated BAT transcripts following exercise training 

were significantly enriched for several RNA regulatory processes, including poly(A) 

tail shortening, splicing, RNA polymerase II transcription, and histone H4 acetylation 

(FDR < 0.05; Figure S12B). BAT transcripts upregulated following exercise training 

were significantly enriched for metabolic processes including pyruvate metabolism, the 

mevalonate pathway, glycolysis, pentose phosphate pathway, cholesterol biosynthesis, 

gluconeogenesis, mitochondrial biogenesis, fatty acid metabolism, and glycogen metabolism 

(FDR < 0.05; Figure S12C). Considering the noted species and biological sex differences 

described in the literature regarding the role of BAT in the regulation of energy expenditure 

and its involvement in metabolic adaptation to exercise training, additional comparative 

studies are needed.55

Integrated analysis and Web application

A primary goal of our research was to improve understanding of the integrated physiological 

responses to exercise. Thus, we compared DEGs and GO enrichment categories between 

tissues within the ExcHMDP. Skeletal muscle, and brown and white adipose tissue were 

most similar (Figures S13A and S13B). Although heart and liver were different from all 

other tissues. Only four transcripts (Slc25a1, Acly, Ccn1, and Dusp1) were differentially 

expressed between SED and TRN in all tissues except liver (Table S1M).

We reasoned that exercise likely elicits harmonized tissue responses throughout the body 

to coordinate metabolic responsiveness. Thus, it is possible that gene programs are 

synchronized between tissues during exercise by changes in cell communication. To gain 

insight into coordinated tissue responses, we interrogated inter- and intra-tissue relationships 

between gene modules (p < 0.01; Figure S13C). We identified 20 modules that possessed 

at least one significant inter-tissue correlation. Furthermore, we identified certain modules 
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residing at the nexus of multiple inter-tissue correlations. The presence of inter-tissue 

module connections suggests a secreted factor-mediated pattern of communication, a topic 

currently under investigation by our research team.

Similar to our analysis of physiological traits (Figure S5A), we performed an unbiased PCA 

using the transcriptomes of five tissues from the ExcHMDP (Figure S13D). These analyses 

showed clustering by strain rather than group (SED vs. TRN). However, when interrogating 

the top 500 DEGs from each tissue (the average number of DEGs in a tissue), a significant 

separation by group (exercised vs. sedentary) was observed (p < 0.001; Figure S13E). 

These findings reflect the existence of a conserved exercise program masked by exercise 

unresponsive strain- and tissue-dependent transcripts.

The overarching goal of the ExcHMDP was to develop an expandable, user-friendly, and 

open-access resource for the scientific community. All transcriptomic data from mice 

and visual representation of tissue transcripts from humans are publicly available at 

https://exchmdpmg.medsch.ucla.edu/app/. This Web site application enables side-by-side 

comparisons of expression and DEGs between tissues, species, exercise groups, and exercise 

time points (Figures 7A and 7B) and was designed for ease of data mining to advance 

hypothesis generation by the research community.

DISCUSSION

Combining the power of genetics, multi-omics, deep phenotyping, and data integration, 

we provide species-specific, as well as species-conserved, pathways associated with 

exercise adaptations including (1) phenotypic responses to exercise for physiologically 

relevant traits; (2) tissue-specific molecular responses to exercise in skeletal muscle, white 

adipose tissue, BAT, liver, and heart; as well as (3) adaptations as a consequence of 

interactions between exercise workload and genetic variation (Figure 7C). The integration 

of phenotypic and molecular data identified regulatory genes for whole-organism and tissue-

specific phenotypic effects of exercise (e.g., adipose tissue mass reduction). Bioinformatic 

analyses led to the identification of putative regulators of voluntary physical activity, 

most strongly controlled by the hypothalamus. Finally, data have been made publicly 

available in a Web-based application allowing for hypothesis development and exploration 

(https://exchmdpmg.medsch.ucla.edu; Figures 7A and 7B). This Web application provides 

opportunity for users to compare different datasets between species, tissues, exercise groups, 

and exercise time points. This Web application is expandable and will be utilized as a study 

repository as additional HMDP data become available.

The major goal of this research was to improve understanding of the effects of genetic 

architecture on metabolic tissue adaptation to long-term physical activity. Our findings 

in mouse and humans substantiate known physiological outcomes of exercise (e.g., 

reductions in adipose mass and circulating lipids, and increases in lean mass and insulin 

sensitivity).56-60 We also provide evidence supporting the impact of exercise on relatively 

understudied tissues and traits (e.g., liver, spleen, and kidney adaptations). Genetic 

investigation of metabolic traits revealed that most QTLs were not shared between TRN 

and SED. This suggests exercise-specific regulatory mechanisms for phenotypic traits and 
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a transition of physiological status from sedentary to exercise trained. Group-specific QTLs 

have been observed in previous HMDP studies where interventions to induce trait outcomes 

reflective of disease pathobiology were studied.37 Moreover, in translation to humans, 

exercise-specific QTLs may provide a conserved resilience when non-specific stress is 

imposed compared with untrained individuals, as previously proposed.61,62

In addition to group outcomes, another major finding of our work relates to individual 

phenotypic responses to exercise in both humans and mice (Figures 7C, S5A, S5B, S13D, 

and S13E). For example, strains MRL/MpJ, BALB/cJ, and BXD152/RwwJ were similar 

in body mass and running wheel distance, speed, and duration. However, in contrast to 

BALB/cJ and MRL/MpJ strains, in which exercise contributed minimally to metabolic 

health outcomes, BXD152/RwwJ mice improved markedly in the aggregate metabolic health 

index following training. In the MyoGlu trial, where exercise intervention was tightly 

controlled, one normal-weight individual experienced a reduction in insulin sensitivity 

(assessed by the gold-standard method hyperinsulinemic-euglycemic clamp) and liver fat, 

whereas a second normal-weight individual showed improvement in insulin sensitivity. 

Although the existence of a true exercise non-responder is contended,63 our findings reflect 

a differential effect of exercise on metabolic health underpinned by genotype.28 Our findings 

corroborate similar observations of prior gene-environment interaction studies.17,45 This 

point is further emphasized by examining two genetically similar strains, BXD56/RwwJ 

and BXD102/RwwJ, where both strains exhibited similar beneficial effects of exercise 

training, despite running 0.9 and 11.6 km per night, respectively. How physical workload 

affects the multi-ome to produce unique signaling and communication nodes requires further 

dissection. In an effort to advance precision medicine, methodologies to predict individual 

metabolic responsiveness to exercise or development of algorithms to derive a genome-wide 

polygenic score will advance the discipline of personalized exercise prescription.

Transcriptomic profiling of the liver following long-term exercise revealed that ~60% of 

GO terms derived from differentially expressed transcripts were associated with mitosis and 

the cell cycle. Moreover, KDA of liver transcriptomics identified hub genes involved in the 

cell cycle. Two hepatic modules enriched for cell cycle and mitosis genes were identified. 

Liver mass was significantly increased in TRN vs. SED animals despite reductions in lipid 

content.64 Although the increase in tissue weight following exercise was initially thought 

to be a consequence of hepatic glycogen supercompensation, as previously described,65,66 

our findings suggest liver hyperplasia. Although we cannot rule out an increase in 

non-parenchymal cells following training, our observation of an increase in traditionally 

quiescent hepatocytes post exercise training requires further interrogation. One potential 

explanation could be a physiological adaptation by the liver to meet the increased metabolic 

demand of physical activity. Considering recent findings showing that exercise prevents 

and or delays hepatocarcinogenesis independent of weight loss, our observations may be of 

important clinical relevance.67,68

We utilized the ExcHMDP to better understand how genetics control transcriptome 

remodeling in BAT following long-term exercise. Although there are conflicting findings 

with respect to exercise adaptation in beige adipose tissue and BAT, we found that mouse 

BAT, over all other tissues studied, was increased in mass and displayed the greatest 
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number of DEGs in response to exercise intervention. Considering the evidence that exercise 

activates BAT in rodents,52,53 but not humans,54,55 a more nuanced understanding of species 

differences as well as responsiveness to environmental cues (e.g., ambient temperature and 

diet) requires greater consideration.52-54,69,70 Our transcriptomic analysis of BAT suggests 

an increase in glucose and fatty acid metabolism with concomitant downregulation of genes 

associated with transcription suppression. Our findings support that continued research 

investigating the role of BAT during exercise, as well as its contribution to systemic 

metabolism and disease prevention, is warranted.

Previous studies have interrogated factors driving volitional physical activity in both mice 

and humans with emphasis on the genetic architecture underlying this trait.25,26,71-73 

Advanced intercross mice and human epidemiological observations revealed a moderate 

to high heritability for physical activity and dozens of QTLs. QTL mapping revealed five 

significant and eight suggestive QTLs for body weight (Chr 4, 7.54 Mb; confidence interval 

[CI] 3.32–10.34 Mb; Bwq14), body composition, wheel running duration (Chr 16, 33.2 

Mb; CI 32.5–38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; 

CI 72.2–83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4–48.1 Mb), and food intake during 

exercise (Chr 12, 85.1 Mb; CI 82.9–89.0 Mb). The intrinsic motivation to participate in 

leisure time physical activity is driven by an interaction between genetic, environmental, 

and socioeconomic factors.74 Our findings confirm a 68% heritability for daily running 

distance in female mice, one of the highest heritability values of all traits assessed in 

the ExcHMDP. We integrated these data with previous HMDPs and identified a strong 

connection between daily running distance and gene expression in specific regions of the 

CNS, specifically the hypothalamus. The connection between daily running distance and the 

CNS transcriptome was more significant than its connection to the cardiovascular system, 

lean muscle mass, or specific circulating hormones and metabolites. The hypothalamus has 

previously been associated with volitional physical activity in both humans and rodents.75,76 

Our bioinformatic analyses identified 81 candidate genes in hypothalamus associated with 

daily running distance. Although the hypothalamus may be a central regulator of daily 

running distance in the mouse, our findings suggest additional inputs from other brain 

regions, including the hippocampus and striatum, as well as peripheral tissues. Continued 

investigation into the central and integrative signals from the periphery that drive voluntary 

physical activity and improved strategies promoting lifelong exercise prescription adherence 

are warranted.

In conclusion, this research makes publicly available a longitudinal, cross-species, and 

integrated analysis of adaptations to acute and long-term exercise intervention with specific 

emphasis on genetic regulators of metabolic health. Importantly, we showed that there are 

exercise-conserved gene signatures and metabolic trait adaptations from mouse to human. 

Moreover, certain metabolic traits are highly influenced by genetic architecture, and thus, 

despite performance of a matched exercise workload, trait adaptation can be genotype 

specific. Thus, identification of genetic drivers underlying metabolic health adaptation to 

exercise intervention in diverse human populations is critical. The overarching goal is 

that the vast data repository we generated will serve as a resource to be leveraged for 

target validation and novel hypothesis generation as well as to drive personalized exercise 

prescription to patently reduce metabolic disease burden.
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Limitations of the study

Limitations of our work should be considered when interpreting our findings, and these are 

primarily related to the scale of the ExcHMDP project. Specifically, because we studied 

100 mouse strains over numerous months, we were unable to ascertain and synchronize 

mouse estrous cycles. Our position is that the inherent genetic differences between strains 

and the metabolic effects of exercise training far outweigh the impact of estradiol cyclicity 

on complex trait outcomes observed for the 100-strain mouse panel. To understand volitional 

exercise drive, the mouse panel performed wheel running; however, not all strains performed 

equal volumes of exercise. Many prior rodent studies controlled workload by using a 

treadmill and forced activity typically motivated by a stressful stimulus (e.g., electric 

shock). Differences in exercise modality and stress response to activity will likely preclude 

inter-study comparisons with the ExcHMDP, as marked differences in hormone and tissue 

responses associated with forced vs. volitional activity are known.77 Forced running during 

early adolescence in well-studied Sprague-Dawley rats showed a sexual dimorphism in 

weight and body volume as well as relative adipose tissue mass following training.78 

These findings in female rats in the context of forced wheel running are not supported 

by our observations in mice engaging in volitional activity. Published work suggests that 

sex-dependent effects of exercise on body composition might vary depending on animal 

age, strain,79 and exercise mode (i.e., voluntary vs. forced).4,80,81 We intend to interrogate 

differences between volitional and forced activity in rats and mice in addition to the time 

course of transcript alteration in the post-acute and chronic exercise-trained conditions in 

collaboration with the MoTrPAC consortium. The primary advantage of our work using the 

HMDP is that we can compare gene-gene and gene-trait relationships across a variety of 

mouse panel studies to contrast the effects of exercise with dietary or drug intervention by 

sex.

Because most metabolic tissues include a heterogeneous mix of cell types, and because 

exercise alters the cell composition of most tissues, our bulk RNA sequencing approach 

limits our insight of exercise-induced adaptation in cell composition within tissues.82,83 

Findings from single-cell and single-nuclei sequencing, as well as spatial transcriptomic 

studies, will help resolve questions related to cell composition within the transcriptional 

landscape of a tissue.

Last, translational relevance is always a concern when comparing rodents with humans. We 

compared men with female mice employing different modes of exercise, which presumably 

affected trait outcomes and reduced the number of DEGs overlapping between species after 

training. In light of these limitations, we consider the differentially expressed transcripts 

that were identified between SED vs. TRN mice and humans to be robust, conserved, 

and selectively exercise-responsive transcripts independent of sex, species, and mode of 

activity. In ongoing studies, we are more rigorously exploring the impact of sex on the 

transcriptomic response to exercise within and between species. It is likely that our current 

work missed sex-specific adaptations that may ultimately lead to new hypotheses about 

drivers of volitional activity as well as hormone- and sex chromosome-specific drivers of 

exercise-induced health benefit.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Additional information and requests for resources and reagents should be 

directed to Andrea L. Hevener (ahevener@mednet.ucla.edu).

Materials availability—This study did not generate new reagents.

Data and code availability

• RNAsequencing data can be found at https://exchmdpmg.medsch.ucla.edu/app/ 

as well as online data repositories ExcHMDP data GEO:GSE230102, 

GSE64770, GSE16780, GSE121098, and MyoGlu data GSE227419.

• The original code has been deposited at Zenodo is publicly available as of the 

date of publication. DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects MyoGlu—Briefly, the MyoGlu study18 included healthy sedentary (<1 

bout of exercise per week the previous year) men (40–65 years) divided into two groups 

stratified by BMI: overweight (BMI 29.5 ± 2.3 kg/m2) or normal weight controls (BMI 23.6 

± 2.0 kg/m2). Both groups (n = 26) underwent combined strength and endurance training 

for 12 weeks, including two endurance bicycle sessions (60 min) and two whole body 

strength training sessions (60 min) per week. A 45 min bicycle test at 70% of VO2 max 

was performed before and after the 12-week intervention period. Skeletal muscle (vastus 
lateralis) and subcutaneous white adipose tissue biopsies were taken before and after a 

12-week of exercise intervention, 48h after the last bout of activity. Assessment time points 

included: baseline at rest, baseline immediately after a 45 min exercise session, 2 h after the 

45 min exercise session, at rest 12 weeks after exercise intervention, immediately following 

another 45 min exercise session 12 weeks after exercise intervention, and 2 h after the 

45 min exercise session 12 weeks after exercise intervention. MyoGlu was a controlled 

clinical trial (clinicaltrials.gov: NCT01803568) and adhered to the Declaration of Helsinki. 

The National Regional Committee for Medical and Health Research Ethics North, Tromso, 

Norway approved the study, with reference number: 2011/882. Written informed consent 

was obtained from all participants before any study-related procedure.

Mouse strains—All studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) and the Animal Research Committee (ARC) at the University of 

California, Los Angeles (UCLA). Female mouse strains of the ExcHMDP are listed in Table 

S1A and were acquired from The Jackson Laboratories (Bar Harbor, ME, USA) or through 

Dr. Rob Williams at the University of Tennessee Health Science Center at 10 weeks of 

age. Mice were maintained on a strict 12-hr light/dark cycle (6am to 6pm) with ad libitum 
access to standard rodent chow (Teklad 8604, Envigo, Indianapolis, IN, USA) and water. 

Sedentary mice were housed 1-4 animals per cage. Exercised mice were individually housed 
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with continuous access to an in cage running wheel monitored by VitalView® Activity 

Software (Starr Life Sciences, Oakmont, PA, USA) for 30 days beginning training at 12 

weeks of age. After 30 days, running wheels were locked between 6-9 am local time. 

24h post exercise cessation, cages were replaced and chow removed from all animals 6h 

prior to euthanasia. Animals were euthanized between 12-4 pm local time. Samples were 

removed in the following order: blood from the abdominal aorta, gonadal white adipose 

tissue, quadriceps, inguinal white adipose tissue, heart, lungs, liver, spleen, kidney, colonic 

feces, hindlimb (gastrocnemius-plantaris-soleus), and brown adipose tissue. Whole blood 

was deposited into K3 EDTA-coated tubes and centrifuged for five minutes at 3000 G with 

plasma collected on ice. All samples excluding plasma and colonic feces were quickly rinsed 

in sterile saline, pat-dried, weighed, and frozen in liquid nitrogen. All samples were stored at 

−80°C for subsequent analysis.

Daily running distance was calculated as the average running distance per day over the 

experiment timeframe. Average running speed was calculated by normalizing all 15 second 

intervals with values > 0 relative to 1 second. Percent of time running was calculated by 

dividing the sum of 15 second intervals > 0 by the sum of all 15 second intervals.

METHOD DETAILS

Plasma hormone and metabolite analyses

Liver and plasma metabolite analyses: Plasma metabolites and HOMA-IR17 for humans 

and mice as well as liver lipids for mice only were analyzed45 using commercially available 

kits as per manufacturer instructions.

Euglycemic-hyperinsulinemic clamp studies—Euglycemic-hyperinsulinemic clamp 

studies were performed after an overnight fast. A fixed dose insulin (40 mU/m2 x min−1) 

was infused, and glucose infusion (200 mg/mL) was adjusted to maintain euglycemia (5.0 

mmol/L for 150 min).18 Insulin sensitivity is reported as glucose infusion rate (GIR; mg 

x kg−1 x min−1) during the last 30 min of the clamp. Whole blood glucose was measured 

by glucose oxidase method (YSI 2300, Yellow Springs, OH), and plasma glucose was 

calculated (whole blood glucose x 1.119).

Tissue trait analyses

Trait by trait correlations: Biweight midcorrelation was calculated for pairwise trait 

correlations within each group using the WGCNA package in R. The sedentary and 

exercised trait correlation matrix was visualized using the ‘ComplexHeatmap’ package84 

in R. For trait by trait correlations involving a group difference (sedentary subtracted from 

trained value for each strain, or trait delta), a random pairing method was used. Briefly, 

for each strain, a sedentary mouse was randomly chosen and the value for that trait was 

subtracted from a randomly chosen trained mouse. This process was continued without 

replacement for each group until all mice were utilized. If the sedentary group number was 

greater than the trained group number, a randomly chosen trained mouse was used twice. 

If the sedentary group number was less than the trained group number, a randomly chosen 

sedentary mouse was used twice. This enabled all mice within a strain to be included. Where 
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strain averages for traits were employed, this process was repeated 1000 times with the 

results from all trials averaged to give a final group difference for each strain.

Heart phenotype correlations—Heart phenotypes from a previous sedentary, untreated 

HMDP (age matched)37 were correlated with running distance per day, as well as trait-by-

trait comparisons between sedentary vs. trained mice of the ExcHMDP.

Cumulative exercise effect: Metabolic traits—The cumulative exercise effect on 

metabolic traits was calculated as follows using traits where the general exercise effect 

is known.85 For the ExcHMDP, the traits included muscle mass, fat mass, liver triglycerides, 

and plasma insulin, triglyceride, glucose, and HDL. Heart, quadriceps, and gastrocnemius 

mass were added to comprise muscle mass. Gonadal white adipose tissue and inguinal white 

adipose tissue were added to comprise fat mass. The strain average was determined for each 

trait within a group. Next, the strain percent change was determined for each trait. All traits 

were then summed giving a single final value for each strain indicated as the cumulative 

exercise effect. For MyoGlu, the same process was performed. Traits included fat free mass, 

fat mass, liver fat, glucose infusion rate (GIR), HDL, and plasma triglyceride (TG).

Single cell and bulk RNAsequencing and data processing

RNA Isolation, library preparation, and sequencing: Whole quadriceps, gonadal white 

adipose tissue, heart, brown adipose tissue, and a portion of the liver were pulverized 

at the temperature of liquid nitrogen. Tissue was homogenized in Trizol (Invitrogen, 

Carlsbad, CA, USA), RNA was isolated using the RNeasy Isolation Kit (Qiagen, Hilden, 

Germany), and RNA concentration and quality were assessed (RIN >7.0 used in downstream 

applications). Libraries were prepared using KAPA mRNA HyperPrep Kits and KAPA 

Dual Index Adapters (Roche, Basel, Switzerland) per manufacturer’s instructions. A total of 

800-1000 ng of RNA was used for library preparation with settings 200-300 bp and 12 PCR 

cycles. The resultant libraries were tested for quality. Individual libraries were pooled and 

sequenced using a HiSeq 3000 or NovaSeq 6000 S4 following in house, well established 

protocols by the UCLA Technology Center for Genomics and Bioinformatics (TCGB).

Single cell RNA sequencing—Six female C57BL/6J mice were subjected to the same 

exercise protocol as ExcHMDP animals. Following animal euthanasia, the hypothalamus 

from 3 sedentary and 3 exercise trained mice underwent a DropSeq single cell protocol.86 

The resulting gene matrices for each sample were combined yielding two groups and these 

were further analyzed using Seurat v2.3.4.87 The mouse brain atlas was used to annotate 

cells within each cluster.88 Two marker genes were used to identify each cluster.

Heritability—SNP-heritability was calculated for mice of the ExcHMDP.15

Genome wide association analyses: Genome wide association analyses were conducted.15 

Quantitative trait loci (QTLs) were considered distinct between groups if the significant 

locus was more than 20 Mb from a locus in the other group and below the suggestive 

significance threshold (p < 4.1x10−5).
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Candidate gene identification: Candidate genes in GWAS loci were prioritized based on 

known biologic function or correlation in co-expression with a specific trait. In particular, 

genes whose cis-regulation was correlated with the trait were considered as highly likely 

candidate genes.89 Briefly, when only exercise trained animals were used, SNPs within 1 

Mb (cis-acting) of a gene with a cis-eQTL (P < 1E−4) were identified. The median of 

the allele-specific expression for each SNP of that gene was calculated and those values 

were then correlated with a particular trait. For candidate genes identified using both 

sedentary and exercised animals, sedentary gene expression was subtracted from trained 

gene expression giving the exercise-induced change in gene expression. The trait in question 

underwent the same analysis where the sedentary value was subtracted from the trained 

value. Resulting values from the gene expression and the trait were then used as described 

above in downstream applications.

Genome wide polygenic score: Genome wide association analyses were conducted.15 

Quantitative trait loci (QTLs) were considered distinct between groups if the significant 

locus was more than 20 Mb from a locus in the other group and below the suggestive 

significance threshold (p < 4.1x10−5).

Heritability—SNP-heritability was calculated for mice of the ExcHMDP.15

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analysis of the biological data—Phenotype-phenotype correlations15 and 

principal component analyses were performed using the FactoMineR v2.3 and factoextra 

v1.0.7 packages in R.90 Groups differences were determined using the Vegan v2.5-6 package 

in R. Key driver analyses were conducted45,46 and the final resulting networks were 

visualized using Cytoscape 3.8.0.91

For the ExcHMDP and MyoGlu, raw RNAseq reads were inspected for quality using 

FastQC v0.11.9 (Barbraham Institute, Barbraham, England). Reads were aligned and 

counted using kallisto v0.4592 against the Ensembl mouse transcriptome (v97) to obtain 

counts and transcripts per million (TPM). Samples were analyzed for differential expression 

using DeSeq2 v1.28.093 and were corrected using limma v3.44.194 accounting for library 

prep batch and sequencing flow cell lane.

Gene enrichment analysis was conducted using Pantherdb (http://pantherdb.org/). Afalse 

discovery rate (FDR) < 0.05 was considered significant. Unless otherwise noted, values 

presented are expressed as means ± SEM. The two-sample Student’s t-test was used to 

examine the difference between the two groups. All analyses were performed using R 

v4.0.0, and p values <0.05 were considered statistically significant unless specifically stated. 

Figures were compiled and made using Graphpad Prism v9 (San Diego, CA, USA) or Adobe 

Illustrator v24.3 (San Jose, CA, USA).

ADDITIONAL RESOURCES

A publicly available interactive web browser for tissue gene expression exploration 

of MyoGlu and ExcHMDP datasets analyzed in this study was created for 
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hypothesis generation. Description: https://exchmdpmg.medsch.ucla.edu/app/. MyoGlu was 

a controlled clinical trial (clinicaltrials.gov: NCT01803568) and the ethical committee 

statement can be found at https://link.springer.com/article/10.1007/s00125-020-05296-0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Complex traits and tissue transcriptomics in men and 100-strain mouse panel

• Candidate gene analyses for genetic drivers of exercise-modified traits

• Non-overlapping quantitative trait loci for select traits of sedentary versus 

trained

• Publicly available data mining resource by user-friendly, Web-based 

application
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Figure 1. The impact of genetic variation and central regulators of voluntary exercise
Female mice from the Hybrid Mouse Diversity Panel (HMDP) were trained (TRN) using 

in-cage running wheels or remained sedentary (SED) for 30 days. Transcriptomics data from 

the MyoGlu study of normal-weight and overweight individuals subjected to both acute 

and long-term endurance exercise were integrated for subsequent comparative analyses and 

made publicly available in a Shiny Web application.

(A) Average daily running distance (km), dashed line indicates average.

(B) GWAS for average daily running distance, solid line indicates significance threshold.

(C) Genome-wide polygenic score for running distance per day (km) of strains stratified by 

quartile; *p < 0.05, ***p < 0.001, ****p < 0.0001. Only using SNPs with between r2 < 0.6 

and GWAS p < 0.01. Dashed line indicates overall average.

(D) Correlation of average running speed (revolutions/s) with percentage time running (% 

of 24-h period); solid blue line indicates least-squares regression line. Dashed lines indicate 

axis strain average.

(E) Venn diagram showing overlap of candidate gene analysis for average daily running 

vs. previously published HMDP of RNA sequencing in hippocampus, hypothalamus, and 

striatum. Correlations were considered significant at FDR < 0.05.
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Figure 2. Trait heritability and the effect of genetic architecture on exercise adaptations
(A) Heritability estimates of each trait for sedentary (blue) and exercise trained (green).

(B) Top QTLs from GWAS of each trait in sedentary (blue) and exercise-trained 

(green) animals. Chromosome location of QTL indicated above bar. Dashed lines indicate 

significance threshold (−log10(p value)).

(C) The log 2-fold change of traits across all strains relative to the sedentary group. *p < 

0.05, ***p < 0.001, ****p < 0.0001.
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Figure 3. The effects of exercise on physiological trait outcomes
(A and B) Fold change heatmap of each trait by strain (A, ExcHMDP) or group (B, 

MyoGlu). Positive or negative values indicate increase or decrease in exercise-trained mice 

or after exercise intervention in humans. Cumulative effect of exercise on metabolic traits 

with corresponding improved (green) or diminished (yellow) regions and distance run by 

mice per day plotted along the top. Dashed lines indicate average of variable.
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Figure 4. The impact of short-term and long-term exercise on transcript response and key 
drivers of physiological adaptation
(A) Gene pattern identification from skeletal muscle of MyoGlu. Top two rows are 

normal weight and bottom two rows reflect data from overweight subjects. Left column 

indicates transcripts with sustained increase or decrease. Middle column indicates transcripts 

increasing or decreasing immediately after acute exercise only. Right column indicates 

transcripts increasing or decreasing 2 h after acute exercise cessation. Top GO term and 

gene set size indicated within. Dark colored line indicates fold change median for gene set. 

Shaded region around line indicates interquartile range of fold changes for gene set. Gray 

shaded region within each box indicates 12-week exercise intervention.

(B and C) Venn diagram showing the overlap among groups for (B) DEGs or (C) Gene 

Ontology (GO) terms. MyoGlu are post baseline vs. pre-baseline for each group.

(D) KDA of DEG colored by group. Key driver genes are enlarged within circles with the 

corresponding regulated genes within surrounding shaded region. Top GO term for each 

shaded region are indicated.
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Figure 5. The impact of long-term exercise on white adipose tissue transcripts and key driver 
genes
(A) Volcano plot of transcript expression in gonadal white adipose tissue across all female 

strains relative to the sedentary group. Significant genes (FDR < 0.05) are color coded with 

certain functional groups emphasized.

(B and C) Volcano plot of gene expression from subcutaneous white adipose tissue in 

normal-weight and overweight humans relative to baseline values. Significant transcripts 

(FDR < 0.05) are color coded.

(D–F) Gene enrichment analysis of DEGs from the (D) exercise HMDP, (E) MyoGlu normal 

weight, and (F) MyoGlu overweight. Only significantly enriched groups are displayed (FDR 

< 0.05).

(G) Venn diagram showing the overlap among groups for DEG or GO terms.

(H) KDA of DEGs colored by group. Key driver genes are enlarged in diamonds and the 

corresponding regulated genes within surrounding shaded regions. Top GO term for each 

shaded region is indicated.
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Figure 6. The impact of long-term exercise on liver transcripts and key driver genes
(A) Volcano plot of hepatic transcripts across all strains following exercise training relative 

to sedentary. Significant transcripts (FDR < 0.05) are colored yellow.

(B) Gene enrichment analysis of DEGs from liver samples of the ExcHMDP. Only 

significantly enriched groups are displayed (FDR < 0.05).

(C) KDA of DEGs colored by group. Key driver genes are enlarged within diamonds and 

corresponding regulated genes are within surrounding shaded regions. Top GO term for each 

shaded region is indicated.

(D) Candidate gene analysis (ovals) for liver lipid traits (diamonds).
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Figure 7. Overview of Shiny Web application and summary of findings.
(A) Screen shot of the Web application showing dot plots of transcriptomics data from BAT, 

gWAT, heart, liver, and skeletal muscle (SkM) of sedentary vs. exercised (trained) mice.

(B) Screen shot of time variable comparisons for human muscle transcriptomic findings in 

table format (left) and volcano plot (right). The website enables users to browse, mine, as 

well as download transcriptomics data from mice and humans.

(C–F) Summary of the main findings divided into four broad categories: (C–F) volitional 

exercise, (D) genotype-specific exercise response, (E) physiological responses to exercise 

intervention, and (F) molecular adaptations to repeated physical activity.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

QIAzol Lysis Reagent Qiagen 79306

Chloroform, HPLC Grade Thermo Fisher C606-4

Isopropanol, 99.5% Acros Organics 32727-0010

Critical commercial assays

Cholesterol In house

Insulin ELISA Alpco 80-INSMSU-E01

Glucose StanBio Laboratory 1071-250

Triglyceride Sigma Aldrich TR0100

Phospholipid-C kit WAKO Diagnostics 997-01801

Glycerol Sigma Aldrich FG0100

Qiagen RNAeasy Kit 74106

Deposited data

HMDP (raw and processed data) Bennett et al.14

Parks et al.17
GSE64770

HMDP RNA expression profiling 
(multitissue studies, raw and processed data)

Norheim et al.15

Chella Krishnan et al.45
GSE16780
GSE121098

HMDP RNAsequencing (hypothalamic 
studies)

Hasin-Brumshtein et al.40 GSE79551

RNAsequencing MyoGlu Human Exercise 
Studies

Langleite et al.18 GSE227419

RNAsequencing Exc HMDP This paper GSE230102

Experimental models: Organisms/strains

100 strain mouse panel The Jackson Laboratory Strain IDs in Table S1A

Software and algorithms

Prism v9 GraphPad Software https:www.graphpad.com

R Studio Posit Rv4.0.0 R Studio Desktop Complex Heatmap 
package

https://posit.com

WCGNA This paper https:cran.r-project.org

DESeq2 This paper https://bioconductor.org/packages/release.bioc/html/
DESeq2.html

Gene Enrichment Analysis This paper http://pantherdb.org

Graphics This paper Adobe Illustrator v24.3 http://www.adobe.com

Graphics This paper Biorender www.biorender.com

Other

Resource Website This paper https://exchmdpmg.medsch.ucla.edu/app

Code This paper https://github.com/tho-ols/exchmdpmg
https://doi.org/10.5281/zenodo.7729799

Clinical Trial Registry - MyoGlu Langleite et al.18 NCT01803568

HMDP RNAsequencing (hypothalamic 
studies)

Dryad Digital Repository https://doi.org/10.5061/dryad.vm525
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