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ABSTRACT OF THE DISSERTATION

Unreachability of Pointclasses in L(R)

by

Derek James Levinson

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Itay Neeman, Chair

This dissertation is a contribution to the genre of applications of inner model theory to

descriptive set theory. Applying assumptions of determinacy, we investigate the possible

lengths of sequences of distinct sets of reals from a fixed pointclass Γ.

Substantial work has been done on this question in the case that Γ is a level of the

projective hierarchy. In [1], Hjorth shows from ZF + AD + DC that there is no sequence of

distinct Σ1
2 sets of length δ1

2. Sargsyan extended Hjorth’s technique to prove an analogous

result for every even level of the projective hierarchy (see [2]).

We show from ZF + AD + DC + V = L(R) that for every inductive-like pointclass Γ

in L(R), there is no sequence of distinct Γ sets of length (δΓ)
+. This is the optimal result

for inductive-like Γ. An essential tool for the proof is Woodin and Steel’s computation of

HODL(R) in terms of the direct limit of the system of countable iterates of M#
ω . We adapt

their method to analyze the direct limit of the system of countable iterates of some Γ-suitable

mouse. This allows us code each set in some sequence ⟨Aα : α < λ⟩ ⊂ Γ by a set of conditions

in Woodin’s extender algebra at the least Woodin cardinal of this direct limit. The coding

sets are contained in the direct limit up to δΓ, bounding |λ| by the successor of δΓ in the

direct limit. Our approach also gives a new proof of Sargsyan’s theorem.

Chapter 1 surveys prior work in this area. Chapter 2 covers background necessary for the

ii



proof of our main result, including some of the descriptive set theory of L(R) and a hasty

review of inner model theory. Our main result on inductive-like pointclasses is proven in

Chapter 3. Chapter 4 briefly examines how one might apply the techniques of Chapter 3 to

obtain analogous results for some projective-like pointclasses in L(R).
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CHAPTER 1

Introduction

Definition 1.0.1. For a boldface pointclass Γ, we say λ is Γ-reachable if there is a sequence

of distinct Γ sets of length λ and λ is Γ-unreachable if λ is not Γ-reachable.

The problem of unreachability is to determine the minimal λ which is Γ-unreachable for

each pointclass Γ. As this problem is trivial assuming the axiom of choice, unreachability

is exclusively studied under determinacy assumptions. Under AD, unreachability yields

an interesting measure of the complexity of a pointclass. An early result in this area is

Harrington’s theorem that there is no injection of ω1 into any pointclass strictly below the

pointclass of Borel sets in the Wadge hierarchy (see [3]).

Theorem 1.0.2 (Harrington). If β < ω1, then ω1 is Π0
β-unreachable.

A recent application of Harrington’s theorem was the resolution of the decomposability

conjecture by Marks and Day (see [4]).

Prior work on unreachability has focused on levels of the projective hierarchy. Kechris

gave a lower bound on the complexity of the pointclass needed to reach δ1
2n+2 (see [5]).

Theorem 1.0.3 (Kechris). Assume ZF + AD +DC. Then δ1
2n+2 is ∆1

2n+1-unreachable.

In [5], Kechris conjectured his own result could be strengthened to δ1
2n+2 is ∆1

2n+2-

unreachable. He also makes a second, stronger conjecture that δ1
2n+2 is Σ1

2n+2-unreachable.

Jackson proved the former in [6].

Theorem 1.0.4 (Jackson). Assume ZF + AD +DC. Then δ1
2n+2 is ∆1

2n+2-unreachable.
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But the resolution of Kechris’s second conjecture eluded the traditional techniques of

descriptive set theory. Hjorth proved one case of the conjecture in [1] with the use of inner

model theory and an application of the Kechris-Martin theorem.

Theorem 1.0.5 (Hjorth). Assume ZF + AD +DC. Then δ1
2 is Σ1

2-unreachable.

Kechris also pointed out the following corollary of Hjorth’s result.

Corollary 1.0.6. A Π1
2 equivalence relation has either 2ℵ0 or ≤ ℵ1 equivalence classes.

Hjorth’s use of the Kechris-Martin Theorem in [1] precluded an easy generalization of his

technique to other projective pointclasses. The rest of Kechris’s second conjecture survived

another two decades, until Sargsyan found a modification of Hjorth’s proof which generalized

to the rest of the projective hierarchy (see [2]).

Theorem 1.0.7 (Sargsyan). Assume ZF + AD +DC. Then δ1
2n+2 is Σ1

2n+2-unreachable.

Corollary 1.0.8. Assume ZF + AD + DC. δ1
2n+2 is the least cardinal which is Σ1

2n+1-

unreachable.

Sargsyan’s theorem solves the problem of unreachability for every level of the projective

hierarchy. He conjectured an analogous result holds for every regular Suslin pointclass.

Conjecture 1.0.9 (Sargsyan). Assume AD+. Suppose κ is a regular Suslin cardinal. Then

κ+ is S(κ)-unreachable.

Below, we prove part of Conjecture 1.0.9.

Theorem 1.0.10 (L., Neeman, Sargsyan). Assume ZF +AD +DC + V = L(R). Suppose

Γ is an inductive-like pointclass. Then δ+
Γ is Γ-unreachable.

Theorem 1.0.10 is a special case of Conjecture 1.0.9, since ZF + AD +DC + V = L(R)

implies both AD+ and any inductive-like pointclass is of the form S(κ) for some regular

Suslin cardinal κ.
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Our proof of 1.0.10 extends the inner model theory approach pioneered in [1]. Our

technique also gives an alternative proof of Theorem 1.0.7.

We conclude our introduction with another perspective on Conjecture 1.0.9. For λ which

are Γ-reachable, one might ask how sequences of distinct Γ sets of length λ arise. An

obvious example of a sequence of distinct Γ sets is a sequence of strictly increasing (or

strictly decreasing) Γ sets. And to a descriptive set theorist, a natural way to procure a

sequence of strictly increasing Γ sets is from a norm. This suggests other questions. What is

the least cardinal λ such that there is no strictly increasing (or strictly decreasing) sequence

of Γ sets of length λ. Is λ the length of a norm whose levels are in Γ? And does λ coincide

with the least Γ-unreachable ordinal?

Significant progress has been made on the first two questions.

Theorem 1.0.11 (Kechris). Assume ZF +AD+DC. Suppose κ is a Suslin cardinal. Then

there is a strictly increasing sequence ⟨Aα : α < κ⟩ contained in S(κ).

In fact the sequence ⟨Aα⟩ in Theorem 1.0.11 can be taken to be Aα = {x ∈ R : ϕ0(x) = α},

where ⟨ϕn : n < ω⟩ is a scale witnessing κ is reliable (see Lemma 3.4 of [7]). In [6], Jackson

showed Theorem 1.0.11 is optimal if κ is regular.

Theorem 1.0.12 (Jackson). Assume ZF +AD+DC. Suppose κ is a Suslin cardinal, and

κ is either a successor or a regular limit cardinal. Then there is no strictly increasing (or

strictly decreasing) sequence ⟨Aα : α < κ+⟩ contained in S(κ).

Theorem 1.0.11 also shows Conjecture 1.0.9 is optimal. The conjecture can be viewed as

a partial generalization of 1.0.12 as well as an extension of 1.0.7.
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CHAPTER 2

Background

2.1 Some Descriptive Set Theory

We first introduce some basics of descriptive set theory. A good reference for most of this

material is [8]. For our purposes, a pointset A will refer to a subset of ωn × (ωω)m for some

n,m ∈ ω. Since each ωn× (ωω)m is Borel isomorphic to R, we will often abuse notation and

consider pointsets as just sets of reals. For pointsets A and B, we write A ≤w B if there

is a continuous function f such that x ∈ A ⇐⇒ f(x) ∈ B. Clearly ≤w is reflexive and

transitive. A Wadge degree is an equivalence class of pointsets under the preorder ≤w.

Theorem 2.1.1. (ZF + AD) The relation <w is wellfounded. If A and B are pointsets,

then either A ≤w B or B ≤w A
c.

The structure of the Wadge degrees is called the Wadge hierarchy. Theorem 2.1.1 tells

us that the Wadge hierarchy is nearly wellordered by ≤w — any pointset incomparable with

A under ≤w is in the equivalence class of Ac.

We will consider lightface pointclasses to be sets of pointsets closed under preimages by

computable functions. We will consider boldface pointclasses to be sets of pointsets closed

under preimages by continuous functions. Equivalently, a boldface pointclass is a set of

pointsets closed downward under ≤w. Each lightface pointclass Γ has an associated boldface

pointclass Γ consisting of all pointsets which are preimages of some pointset in Γ by a

continuous function.

We say a pointclass Γ is selfdual if for any A ∈ Γ, Ac is also in Γ. Γ is closed under

projection if for any A ∈ Γ, ∃RA ∈ Γ. Γ is closed under coprojection if for any A ∈ Γ,
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∀RA ∈ Γ. If A and B are pointsets, we say A is projective in B if A is in the smallest

(lightface) pointclass containing B which is closed under recursive substitution, number

quantification, projection and coprojection.

A prewellordering ≤ is a binary relation which is transitive, reflexive, connected, and

wellfounded. A norm on a pointset A is a function ϕ : A→ ON . For a pointclass Γ, we say

ϕ is Γ-norm if there are relations ≤ϕ
Γ and ≤ϕ

Γc in Γ and Γc, respectively, such that whenever

y ∈ A,

(x ∈ A ∧ ϕ(x) ≤ ϕ(y)) ⇐⇒ x ≤ϕ
Γ y ⇐⇒ x ≤ϕ

Γc y.

A scale on A is a sequence ⟨ϕn : n < ω⟩ of norms on A such that whenever ⟨xi : i < ω⟩ ⊆

A, limi→∞ xi = x, and limi→∞ ϕn(xi) exists for all n, x ∈ A and ϕn(x) ≤ limi→∞ ϕn(xi). We

say ⟨ϕn : n < ω⟩ is a Γ-scale if each norm ϕn is a Γ-norm (uniformly). Γ is scaled if every

pointset in Γ admits a Γ-scale.

For any pointclass Γ, we define

∆Γ = Γ ∩ Γc and

δΓ = sup{| ≤∗ | :≤∗ is a prewellordering in ∆Γ}.

. If Γ is a boldface pointclass, we will write ∆Γ and δΓ in bold to emphasize this. Let

Θ = δP (R). Equivalently, Θ = sup{α : exists a surjection of R onto α}.

For x ∈ R and Γ a lightface pointclass, we set

CΓ(x) = {y ∈ R : y is ∆Γ in some countable ordinal}.

. We can extend this definition to a ∈ HC by setting

CΓ(a) = {b ⊆ a : for all x ∈ R coding a, bx ∈ CΓ(x)}

= {b ⊆ a : for comeager many x ∈ R coding a, bx ∈ CΓ(x)},

where bx is the real representing b in the coding induced by x. See [9] for the equivalence of

these two definitions of CΓ(a).

5



For a cardinal κ, we say A ⊆ ωω is κ-Suslin if there is a tree T ⊂ (ω × κ)<ω such

that A = ρ[T ] = {x ∈ ωω : (∃f : ω → κ)(∀n < ω)((x(0), f(0)), ..., (x(n), f(n))) ∈ T }. A

pointclass Γ is Suslin if there is a cardinal κ such that Γ is the collection of all κ-Suslin sets.

2.2 The Pointclasses of L(R)

We will assume for this section ZF +DC+AD+V = L(R). All of the results in this section

are due to Steel and are proven outright or else implicit in [10].

The boldface pointclasses we are interested in all appear in a hierarchy we will now define.

If Γ and Λ are non-selfdual pointclasses, say {Γ,Γc} <w {Λ,Λc} if Γ ⊂ Λ ∩ Λc. This is a

wellordering by Theorem 2.1.1. For α < Θ, consider the αth pair {Γ,Γc} in this wellordering

such that Γ or Γc is closed under projection. Let Σ1
α denote whichever of the two is closed

under projection — if both are, Σ1
α denotes whichever has the separation property. Let

Π1
α = (Σ1

α)
c. Let δ1

α = δΣ1
α
.

The pointclasses {Σ1
n : n ∈ ω} and {Π1

n : n ∈ ω} are the usual levels of the projective

hierarchy. We will refer to the collection of pointclasses {Σ1
α : α ∈ ON} ∪ {Π1

α : α ∈ ON}

as the extended projective hierarchy.

We now define a hierarchy slightly coarser than the one above. If n ∈ ω and α ∈ ON , we

say a pointset A is in the pointclassΣn(Jα(R)) if there is a Σn formula ϕ with real parameters

such that A = {x : Jα(R) |= ϕ[x]}. Πn(Jα(R)) is defined analogously with Πn-formulas.1

The Levy hierarchy consists of all pointclasses of the form Σn(Jα(R)) or Πn(Jα(R)) for some

n and α. It is clear any pointclass in the Levy hierarchy equals Σ1
α or Π1

α for some α, but

the converse is false.

We write Σ2
1 for the pointclass Σ1(JΘ(R)) (or equivalently, the pointclass of sets definable

by a Σ1-formula in L(R) from real parameters). Let δ2
1 = δΣ2

1
.

In this section, we will classify the scaled pointclasses within the Levy hierarchy, relate

1See [10] for the definition of Jα(R). Alternatively, the reader will not lose too much of importance by
pretending Jα(R) = Lα(R).
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the Levy hierarchy to the extended projective hierarchy, and classify the regular Suslin

pointclasses.

2.2.0.1 Classification of Scaled Pointclasses

A Σ1-gap is a maximal interval [α, β] such that for any real x, the Σ1-theory of x is the same

in Jα(R) and Jβ(R).

We say the gap [α, β] is admissible if Jα(R) |= KP , equivalently, if the pointclass

Σ1(Jα(R)) is closed under coprojection. Suppose [α, β] is an admissible gap. Let nβ ∈ ω

be least such that the pointclass Σnβ
(Jβ(R)) is not contained in Jβ(R). We say [α, β] is a

strong gap if for any b ∈ Jβ(R), there is β′ < β and b′ ∈ Jβ′(R) such that the Σnβ
and Πnβ

theories of b′ in Jβ′(R) are the same as the Σnβ
and Πnβ

theories of b in Jβ(R). Otherwise,

we say [α, β] is weak.

Theorem 2.2.1. Suppose Γ is a pointclass in the Levy hierarchy. If Γ is scaled, then one

of the following holds.

1. Γ = Σ2k+1(Jα(R)) for some k ∈ ω and some α beginning an inadmissible gap.

2. Γ = Π2k+2(Jα(R)) for some k ∈ ω and some α beginning an inadmissible gap.

3. Γ = Σ1(Jα(R)) for some α beginning an admissible gap.

4. Γ = Σnβ+2k(Jβ(R)) for some k ∈ ω and some β ending a weak gap.

5. Γ = Πnβ+2k+1(Jβ(R)) for some k ∈ ω and some β ending a weak gap.

Definition 2.2.2. A self-justifying system (sjs) is a countable set B ⊆ P(R) which is closed

under complements and has the property that every B ∈ B admits a scale ψ⃗ such that ≤ψn∈ B

for all n.

Definition 2.2.3. Let z ∈ R and γ ∈ ON . OD<γ(z) is the set of x ∈ R such that x is

ordinal definable from the parameter z in Jξ(R) for some ξ < γ. OD<γ denotes OD<γ(0).

7



The proof of Theorem 2.2.1 also gives:

Theorem 2.2.4. Suppose [α, β] is an admissible gap. Let β′ be the least ordinal such that

there is a scale for a universal Π1(Jα(R))-set definable over Jβ′(R). Then there is z ∈ R

and a sjs B ⊂ OD<β′
(z) such that a universal Π1(Jα(R))-set is in B and either

1. [α, β] is weak and β′ = β or

2. [α, β] is strong and β′ = β + 1.

We say a boldface pointclass Γ is inductive-like if Γ is R-parameterized, has the scale

property, and is closed under ∧, ∨, ∃R, ∀R, and continuous preimages. A lightface pointclass

Γ is inductive-like if Γ is ω-parameterized, has the scale property, and is closed under ∧, ∨,

∃R, ∀R, and computable preimages.

Remark 2.2.5. Suppose Γ is a boldface inductive-like pointclass in L(R). Then

1. Γ = Σ1(Jα(R)) for some α beginning an admissible gap,

2. there is x ∈ R such that letting Γ be the class of pointsets which are Σ1-definable over

Jα(R) from the parameter x, Γ is the closure of Γ under preimages by continuous

functions, and

3. Γ = (Σ2
1)

∆Γ.

2.2.0.2 Relationship between the Levy Hierarchy and the Extended Projective

Hierarchy

Definition 2.2.6. Suppose λ < Θ is a limit ordinal. We say

• λ is type I if Σ1
λ is closed under finite intersection but not countable intersection,

• λ is type II if Σ1
λ is not closed under finite intersection,

• λ is type III if Σ1
λ is closed under countable intersection but not coprojection, and

8



• λ is type IV if Σ1
λ is closed under coprojection.

Let ⟨δα : α < Θ⟩ enumerate the ordinals δ such that (Jδ+1(R)∩P (R))\(Jδ(R)∩P (R)) ̸= ∅.

Let nα be minimal such that Σnα(Jδα(R)) ̸⊂ Jδα(R).

Theorem 2.2.7. Suppose α < Θ.

1. If ωα is type I, then Σ1
ωα+k = Σnα+k(Jδα(R)) for all k ∈ ω.

2. If ωα is type II or III, then Σ1
ωα+k+1 = Σnα+k(Jδα(R)) for all k ∈ ω.

3. If ωα is type IV, then Π1
ωα = Σnα(Jδα(R)) and Σ1

ωα+k+1 = Σnα+k(Jδα(R)) for all

k ∈ ω\{0}.

2.2.0.3 Classification of Suslin Pointclasses

There is a related classification of the Suslin pointclasses. For α < Θ, let κα be the αth

Suslin cardinal. Let να be the αth ordinal ν such that Σ1
ν or Π1

ν is scaled.

Theorem 2.2.8. Let λ < δ2
1 be a limit cardinal and ν = sup{να : α < λ}.

1. If ν is type I, then for all k ∈ ω

• Σ1
ν+2k and Π1

ν+2k+1 are scaled,

• S(κλ+k) = Σ1
ν+k+1,

• κλ+2k+1 = δ1
ν+2k+1 = (κλ+2k)

+, and

• cof(κλ+2k) = ω.

2. If ν is type I or III, then for all k ∈ ω

• Σ1
ν+2k+1 and Π1

ν+2k are scaled,

• S(κλ+k) = Σ1
ν+k+1,

• κλ+2k+2 = δ1
ν+2k+2 = (κλ+2k+1)

+, and

9



• cof(κλ+2k+1) = ω.

3. If ν is type IV, then Π1
ν is scaled, S(κλ) = Π1

ν, and for all k ∈ ω, letting µ = νλ+1,

• Σ1
µ+2k and Π1

µ+2k+1 are scaled,

• S(κλ+k+1) = Σ1
µ+k+1,

• κλ+2k+2 = δ1
µ+2k+1 = (κλ+2k+1)

+, and

• cof(κλ+2k+1) = ω.

Corollary 2.2.9. Suppose Γ = S(κ) for a regular Suslin cardinal κ ≤ δ2
1. Then one of the

following holds.

1. Γ = Σ2k+1(Jα(R)) for some k ∈ ω and some α beginning an inadmissible gap.

2. Γ = Σ1(Jα(R)) for some α beginning an admissible gap.

3. Γ = Σnβ+2k(Jβ(R)) for some k ∈ ω and some β ending a weak gap.

Corollary 2.2.10. If Γ = S(κ) for a regular Suslin cardinal κ ≤ δ2
1, then Γ is scaled.

Corollary 2.2.10 is not true for any Suslin pointclass. In general it may be that the

complement of Γ is scaled instead.

Theorem 2.2.11. If Γ = S(κ) for some κ ≤ δ2
1, then either Γ or Γc is scaled.

2.3 Iteration Strategies on Premice

We first review the notation of premice and iteration trees. We closely follow the presentation

of [11], though in significantly less detail.

A potential premouse M is a structure of the form M = (J E⃗α ,∈, E⃗ ↾ α,Eα) for a fine

extender sequence E⃗ = ⟨Eη : η ≤ α⟩. We say α is the height of M . Eα is called the top

extender of M . We say M is active if Eα ̸= ∅. If β ≤ α, M |β represents the premouse

10



(J E⃗β ,∈, E⃗ ↾ β,Eβ). We say N is an initial segment of M and write N ⊴ M if N = M |β for

some β ≤ α. If also N ̸=M , we say N is a proper initial segment of M and write N ◁M .

Let C0(M) be the Σ0 code of M .2 The first projectum of M , ρ1(M), is defined to be the

least ordinal α such that there is A ⊂ α which is not in C0(M), but is definable over C0(M)

by a Σ1 formula (possibly with parameters). The first standard parameter of M , p1(M), is

the lexicographically least sequence of ordinals in M such that there is a set of ordinals A

definable over C0(M) from parameters in p1(M) such that A ∩ ρ1(M) /∈ C0(M).

For a structure M and X ⊂M ,

HullM(X) = {x ∈M : x is definable in M from parameters in X} and

HullM1 (X) = {x ∈M : x is definable in M from parameters in X by a Σ1 formula}.

Define the first core of M , C1(M), to be the transitive collapse of Hull
C0(M)
1 (ρ1(X) ∪

{p1(M)}). We say M is 1-sound if C1(M) = C0(M). For n < ω, the objects ρn(M), pn(M),

and Cn(M), and the property of n-soundness, can be defined inductively. For example,

ρn+1(M) is roughly the least ordinal α such that there is A ⊂ α which is not in Cn(M), but

is definable over Cn(M) by a Σn+1 formula.3 pn+1(M) and Cn+1(M) are defined analogously.

And a premouse is n+ 1-sound if M is n-sound and Cn+1(M) = Cn(M). For η ∈M , we will

say M projects to η if there is n ∈ ω such that M is n-sound and ρn(M) ≤ η.

We say M is ω-sound if M is n-sound for all n < ω. ρω(M) is the eventual value of

ρn(M) and Cω(M) is the eventual value of Cn(M). M is a premouse if any N ◁M is ω-sound.

Fix k ≤ ω and let M be a k-sound premouse M . We define a game Gk(M,Θ) of at most

Θ moves. As the game progresses, we define a tree order T on Θ, a sequence of premice

⟨MT
ξ ⟩, a sequence of extenders ⟨F T

ξ ⟩ used in the game, a set of ordinals DT , a function degT

from ordinals into ω∪{ω}, and a matrix of iteration embeddings ⟨iξ,ζ⟩. Suppose α+1 moves

have been played thus far and we have defined T ↾ α + 1, ⟨MT
ξ : ξ ≤ α⟩, ⟨F T

ξ : ξ < α⟩,
2The reader who is not interested in the quiddities and quillities of fine structure may pretend C0(M) = M .

The distinction is necessary to prove some theorems in this section, but happily will not appear explicitly in
what follows.

3Σn+1 is not quite the correct notion of definability for this, but gives the right intuition for our purposes.
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DT ∩ α + 1, and iξ,ζ for select ξ, ζ ≤ α. Player I picks an extender F T
α from the extender

sequence of MT
α . We form MT

α+1 = Ultn(N,F
T
α ), where n ≤ ω and N ⊴ MT

β for some

β ≤ α.4 Set degT (α+1) = n. We say T drops at α+1 if N ◁MT
β or degT (α+1) < degT (β).

Add ηT (α + 1) to the tree order T for every η such that η = α + 1 or ηTβ. Put α + 1 in

DT if N ◁MT
β . Let i

T
β,α+1 : C0(N) → C0(MT

α+1) be the ultrapower embedding induced by F T
α

and if ηTβ and DT ∩ (η, α+ 1]T = ∅, let iTη,α+1 = iTβ,α+1 ◦ iTη,β.

Now suppose λmoves have been played so far for a limit ordinal λ and we have constructed

T ↾ λ, DT ∩λ, degT ↾ λ, and the aforementioned sequences up to λ. Player II picks a cofinal

branch b through the tree order constructed thus far such that DT ∩ b is finite. Let MT
λ be

the premouse coded by the direct limit of the system of Σ0 codes

⟨C0(MT
α ) : α ∈ b ∧ DT ∩ (α, λ)T = ∅⟩

and embeddings

⟨iTα,β : α, β ∈ b ∧ αTβ ∧ DT ∩ (α, λ)T = ∅⟩

Add βTλ to the tree order for all β ∈ b. Set degT (λ) equal to the eventual value of degT (α)

for α ∈ b. For any β such that βTλ and DT ∩ (β, λ)T = ∅, let iTβ,λ be the natural direct limit

embedding. Player II loses the game Gk(M,Θ) if he ever fails to pick a valid branch or any

model on the sequence ⟨MT
α ⟩ is illfounded. Otherwise Player II wins.

A (normal) iteration tree T is a partial play of the game Gk(Θ). We write lh(T ) for the

ordinal number of moves in the game constructing T . T is determined by the tree order T ,

sequence of premice ⟨MT
α : α < lh(T )⟩, sequence of extenders ⟨F T

α : α < lh(T )⟩, set DT ⊂

lh(T ), function degT , and matrix of iteration embeddings ⟨iTα,β : αTβ ∧ DT ∩ (α, β]T = ∅⟩.

We will omit the superscripts when there is no chance of confusion. If T has successor length,

we call MT
lh(T )−1 the “last model” of T . Although the maps iTα,β are technically between the

Σ0 codes of our premice, they induce embeddings between the premice themselves, and we

4N are n are chosen to be maximal such that Ultn(N,Fα) makes sense, unless DT ∩ [0, β]T = ∅ and
N = MT

β , in which case we require n ≤ k. Ultn(N,Fα) is defined similarly to the usual ultrapower, but

using functions which are rΣn-definable over C0(N) instead of just functions in N to form the ultrapower.
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will ignore the distinction. Suppose η ∈MT
0 . We say that T is below η if T can be regarded

as an iteration tree on MT
0 |η. T is above η if for each α < lh(T ), the extender ET

α has

critical point above the image of η under the iteration from MT
0 to MT

α .

A strategy for Player II in the game Gk(M,Θ) is a partial function Σ which, given

an iteration tree T on M , outputs a maximal branch through T . We require the domain

of Σ to be all iteration trees T on M such that if λ < lh(T ) is a limit ordinal, then

Σ(T ↾ λ) = {α : αTλ}.

A (k,Θ)-iteration strategy forM is a winning strategy for Player II in the gameGk(M,Θ).

We say an iteration tree T is according to a strategy Σ if every branch b picked by Player II

in forming T is the branch chosen by Σ. We may also consider the game Gk(M,α,Θ). This

consists of α rounds. Each round looks like a play of some game Gl(N,Θ), where N = M

in round 0, in round β + 1, N is an initial segment chosen by Player I of the last model

constructed in round β, and if β is a limit, then N is an initial segment chosen by Player I of

the direct limit of the last models of the prior rounds. l is also chosen by Player I, subject to

some constraints. Player II wins the game so long as he does not lose any individual round.

A partial play of Gk(M,α,Θ) produces a stack of trees T⃗ . A (k, α,Θ)-iteration strategy is

a winning strategy for Player II in the game Gk(M,α,Θ). We will typically suppress the

parameter k in what follows. All the premice which we are concerned with will have an

(ω1, ω1)-iteration strategy. So we will say a premouse M is iterable if it has such a strategy,

although we will typically only need the first round of the game. An iterable premouse is

called a mouse.

If lh(T ) is a limit ordinal, we set

δ(T ) = sup{lh(ET
α ) : α < lh(T )}

and

M(T ) =
⋃

α<lh(T )

MT
α |lh(ET

α )

If b is a cofinal branch through T such that DT ∩ b is finite, then MT
b refers to the direct

limit of the models on the branch b. If also DT ∩ b = ∅, we will write iTb : MT
0 → MT

b for
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the direct limit embedding. We say b is wellfounded if MT
b is wellfounded. We say b does

not drop if there is no α ∈ b such that T drops at α.

Suppose M is a premouse with iteration strategy Σ. We say N is an iterate of M if there

is an iteration tree T according to Σ of successor length on M such that N is the last model

of T . If in addition there are no drops on the branch (0, lh(T )− 1], we say N is a complete

iterate of M . We sometimes say “N is a complete iterate of M” when we should also specify

the iteration realizing this is according to the relevant iteration strategy for M .

An essential tool in the study of mice is comparison. The coiteration of two (or more)

premice M and N is a simultaneous iteration of M and N , constructing iteration trees T

and U on M and N , respectively. Suppose thus far the coiteration has constructed T ↾ λ

and U ↾ λ.

If λ = α+1, let γ be the least ordinal such thatMT
α |γ ̸=MU

α |γ (if no such γ exists below

the height of MT
α and MU

α , the coiteration terminates). Letting F1 be the top extender of

MT
α |γ and F2 be the top extender of MU

α |γ, F1 ̸= ∅ or F2 ̸= ∅ and F1 ̸= F2. We construct

T ↾ λ + 1 and U ↾ λ + 1 by letting Player I pick the extenders F1 and F2 in the next move

of the iteration games forming T ↾ λ and U ↾ λ, respectively.5

If λ is a limit ordinal, let b1 and b2 be the branches through T ↾ λ and U ↾ λ chosen

by (fixed) iteration strategies for M and N , respectively. Then construct T ↾ λ + 1 and

U ↾ λ+1 by letting Player II pick b1 and b2 in the next move of the iteration games forming

T ↾ λ and U ↾ λ, respectively.

If M and N are sufficiently iterable, the coiteration terminates with the last model of T

an initial segment of the last model of U , or vice versa. In particular, we have the following

theorem.

Theorem 2.3.1 (Comparison Lemma). Suppose M and N are k-sound premice of size ≤ θ

with (k, θ+ + 1)-iteration strategies. Then the coiteration of M and N produces iteration

5Technically, this does not quite fit our definition on an iteration tree, since it is possible F1 = ∅ (or
F2 = ∅). It is not difficult to extend our definition of iteration tree to include this possibility: We set
MT

α+1 = MT
α and let iα,α+1 : MT

α → MT
α+1 be the identity. The other modifications are both obvious and

irrelevant in what follows.
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trees T and U on M and N with last models MT
α and MU

α , respectively, such that α < Θ+

and at least one of the following holds:

1. The branch (0, α]T does not drop and MT
α ⊴MU

α .

2. The branch (0, α]U does not drop and MU
α ⊴MT

α .

We say N outiterates M if 2 does not hold and M outiterates N if 1 does not hold.

Remark 2.3.2. Suppose M and N are premice, M is k-sound, ρk(M) = ω, and N outiter-

ates M . Then M ◁N .

Theorem 2.3.1 and Remark 2.3.2 allow the following definition.

Definition 2.3.3. Let n ≤ ω and suppose there exists an active mouse satisfying “There

exist n Woodins.” Then M#
n is the minimal active, ω1+1-iterable premouse such that M |=

“There exist n Woodins” and there is k < ω such that M is k-sound and ρk(M
#
n ) = ω. Here

“minimal” means if N is any active, ω-sound, ω1 + 1-iterable premouse and N |= “There

exist n Woodins,” then M#
n ⊴ N .

Fact 2.3.4. AD implies ω1 is measurable, and thus if M is a premouse with an ω1-iteration

strategy Σ, then Σ extends to an ω1 + 1-iteration strategy.

We only need Fact 2.3.4 so that we can apply Theorem 2.3.1 to mice with ω1-iteration

strategies.

All of the mice we shall consider will have the Dodd-Jensen property, which establishes

the uniqueness of iteration embeddings.

Definition 2.3.5. Let M be a premouse with iteration strategy Σ. We say Σ has the Dodd-

Jensen property if whenever T is an iteration tree according to Σ with last model MT
α ,

N ⊴MT
α , and π :M → N is a (fine-structural) embedding, then

1. N =MT
α ,
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2. [0, α]T does not drop, and

3. iT0,α(x) ≤L π(x) for any x ∈M , where ≤L is the constructability order on MT
α .

We mention one important application of the above theorems. SupposeM is a countable

mouse with an (ω1, ω1 + 1)-iteration strategy satisfying the Dodd-Jensen property and N1

and N2 are countable, complete iterates of M . Then N1 and N2 iterate to the same mouse

P by a countable coiteration. Moreover, if π1 : M → P is the iteration map induced by

iterating M to P via N1 and π2 :M → P is the analogous map induced by the iteration via

N2, then π1 = π2. It follows that the set of all countable, complete iterates of M , together

with the iteration maps between them, forms a directed system. A striking example of the

power of inner model theory is Woodin and Steel’s analysis of HODL(R) as the direct limit

of the system of countable iterates of M#
ω , developed in [12]. Their techniques are essential

for our proof of Theorem 1.0.10.

The following theorem will be used to establish that certain Skolem hulls of mice collapse

to initial segments of the mouse.

Theorem 2.3.6 (Condensation). Let M be an ω-sound mouse which is (ω, ω1, ω1 + 1)-

iterable. Suppose π : N → M is elementary and the critical point of π is ρω(N). Then

either

1. N ⊴M or

2. There is an extender E in M such that the length of E is ρω(N) and N is a proper

initial segment of Ult0(M,E).

We can also consider premice built over hereditarily countable sets. We say a ∈ HC is

self-wellordered if there is a wellorder of a which is in J1(a). Fix some a ∈ HC which is self-

wellordered (for our purposes, we only need to consider the cases a = ∅, a ∈ R, or a is itself

a premouse). A potential a-premouse M = (J E⃗α (a),∈, E⃗, Eα, a) is constructed just like the

potential premice above, but is built over a and includes a predicate for a. We also require
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extenders on the fine extender sequence of M to have critical point above ON ∩a. All of the

definitions of this section can be relativized to a-premice. It is important that for a-premice

we only consider behavior “over” a. For example, ρ1(M) should be defined as the least ordinal

α ≥ ON ∩ a such that there is A ⊂ α which is not in C0(M), but is definable over C0(M) by

a Σ1 formula (possibly with parameters). Similarly, C1(M) = Hull
C0(M)
1 (a∪ρ1(M)∪p1(M)).

If M is k-sound and ρk(M) = ON ∩ a for some k, we will say M projects to a.

Premice not built over some a ∈ HC can equivalently be considered as 0-premice. Note

if a is itself a premouse, the universe of an M -premouse is also that of a 0-premouse. So we

may analyze some modelM as an a-premouse at some times, and as a 0-premouse at others.

2.4 Woodin Cardinals and Iterations

The existence of Woodin cardinals in a mouse is a necessary and sufficient condition for iter-

ation trees with multiple cofinal branches. The existence of Woodins allows us to construct

iteration trees which make whichever reals we like generic over a mouse. On the other hand,

the absence of Woodins is our best guide to defining iteration strategies; in many cases the

lack of Woodinness guarantees an iteration strategy must pick the unique cofinal branch

through an iteration tree.

For a model M , let δM denote the least Woodin cardinal of M (if one exists) and EaM

denote Woodin’s extender algebra in M at δM . Let κM be the least cardinal of M which is

< δM -strong in M . ea will refer to the generic over EaM . When considering the product

extender algebra EaM ×EaM , we will write eal× ear for the generic. ear will typically code

a pair which we shall write (ea1r, ea
2
r). For posets of the form Col(ω,X), ġ denotes a name

for the generic.

Theorem 2.4.1. Suppose M is a countable mouse and M |= “There is a Woodin cardinal.”

Then EaM is a δM -c.c. Boolean algebra and for any x ∈ R, there is a countable, complete

iterate N of M such that x is EaN -generic over N .

Corollary 2.4.2. Suppose M is a countable mouse and M |= “There is a Woodin cardinal.”
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Then there is a countable, complete iterate N of M such that x is Col(ω, δN)-generic over

N .

See Section 7.2 of [11] for a proof of Theorem 2.4.1 and its corollary.

Theorem 2.4.3. Suppose b and c are distinct wellfounded branches of a normal iteration

tree T and A ⊆ δ(T ) is in MT
b ∩ MT

c . Then there is κ < δ(T ) such that MT
b |= “κ is

A-reflecting in δ(T ),” and this is witnessed by an extender on the sequence of M(T ).

See 6.10 of [11] for the proof of Theorem 2.4.3. The theorem justifies the following

definitions.

Definition 2.4.4. Suppose b is a wellfounded branch through a normal iteration tree T . Let

Q(b, T ) be the least initial segment of MT
b extending M(T ) such that there is A ⊂ δ(T )

which is definable over Q(b, T ) and realizes δ(T ) is not Woodin via extenders in M(T ), if

such an initial segment exists.

Definition 2.4.5. Suppose M is a premouse and η ∈ M . We say η is a cutpoint of M if

there is no extender on the fine extender sequence of M with critical point less than η and

length greater than η. η is a strong cutpoint if there is no extender on the extender sequence

of M with critical point less than or equal to η and length greater than η.

Definition 2.4.6. Suppose T is a normal iteration tree. Let Q(T ) be the least δ(T )-sound

mouse extending M(T ) and projecting to δ(T ) such that δ(T ) is a strong cutpoint of Q(T )

and there is A ⊂ δ(T ) which is definable over Q(T ) and realizes δ(T ) is not Woodin via

extenders in M(T ), if one exists.

If follows from Theorem 2.4.3 that there is at most one wellfounded branch b through T

such that Q(T ) ⊴ MT
b . In many cases, we will be able to locate the branch a strategy Σ

chooses as the unique branch which absorbs Q(T ) in this sense.

Note an ω1-iteration strategy on a countable premouse can be coded by a set of reals.
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For a ∈ HC and a pointclass Γ, this allows us to define

LpΓ(a) =
⋃

{N :N is an ω-sound a-premouse projecting to a

with an ω1-iteration strategy in ∆Γ}.

LpΓ(a) can be reorganized as an a-premouse, which is what we will typically use LpΓ(a) to

refer to.

Theorem 2.4.7. Assume ADL(R). Suppose Γ is a (lightface) inductive-like pointclass in

L(R) and a ∈ HC. Then CΓ(a) = LpΓ(a) ∩ P (a).

Remark 2.4.8. Suppose a and b are countable, transitive sets and a ∈ b. It is easy to

see from the definition of CΓ that CΓ(a) ⊆ CΓ(b). This, and the theorem above, implies

LpΓ(a) ⊆ LpΓ(b).

2.5 The Mitchell-Steel Construction

We shall require several methods of building an a-premouse inside a premouseM which con-

tains a. Our main tool for this purpose is the fully backgrounded Mitchell-Steel construction

developed in [13]. This section reviews the construction and its properties.

We say a premouseM is reliable if Cω(M) exists and is universal and solid. As we shall see

in a moment, we will end the Mitchell-Steel construction if we reach a premouse which is not

reliable. [13] defines reliable to include the stronger property that Cω(M) is iterable. But the

weaker properties of universality and solidity are enough to propagate the construction, and

our weaker requirement ensures the construction does not end prematurely when performed

inside a mouse. The definitions of universality and solidity can be found in [11]. In all of the

cases relevant to us, universality and solidity are guaranteed and the reader will lose little

by taking on faith that the construction does not end.

For the moment we will work in V and assume ZFC. Fix z ∈ R. Define a sequence of

z-premice ⟨Mξ : ξ ∈ On⟩ inductively as follows.
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1. M0 = (Vω,∈, ∅, ∅, z)

2. Suppose we have constructed Mξ = (J E⃗α ,∈, E⃗, ∅, z). Note Mξ is a passive premouse.

Suppose also there is an extender F ∗ over V , an extender F over Mξ, and ν < α such

that

(a) Vν+ω ⊂ Ult(V, F ∗),

(b) ν is the support of F ,

(c) F ↾ ν = F ∗ ∩ ([ν]<ω ×Mξ), and

(d) Nξ+1 = (J E⃗α ,∈, E⃗, F, z) is a premouse.

If Nξ+1 is reliable, let Mξ+1 = Cω(Nξ+1). Otherwise, the construction ends. If there

are multiple such F ∗, we pick one which minimizes the support of F . We say F ∗ is the

extender used as a background at step ξ + 1.

3. Suppose we have constructed Mξ = (J E⃗α ,∈, E⃗, Eα, z) and either Mξ is active or Mξ

is passive and there is no extender F ∗ as above. Let Nξ+1 = (J E⃗
⌢Eα

α+1 ,∈, E⃗⌢Eα, ∅, z).

If Nξ+1 is reliable, let Mξ+1 = Cω(Nξ+1). Otherwise, the construction ends.

4. Suppose we have constructed ⟨Mξ : ξ < λ⟩ for λ a limit ordinal. Let

η = lim infξ<λ(ρω(Mξ)
+)Mξ . Let Nλ be the passive premouse of height η such that

Nλ|β = limξ<λMξ|β for all β < η. If Nλ is reliable, let Mλ = Cω(Nλ). Otherwise, the

construction ends.

Suppose the construction never breaks down. That is, Mξ is defined for all ξ ∈ On.

Theorem 2.5.1. Suppose ζ0 and ξ are ordinals such that ζ0 < ξ and κ = ρω(Mξ) ≤ ρω(Mζ)

for all ζ ≥ ζ0. Then Mξ ⊴ Mη for all η ≥ ξ. Moreover, Mξ+1 |= “every set has cardinality

at most κ.”

Let M be the class-sized model such that whenever ξ ∈ On satisfies Mξ ⊴ Mη for

all η ≥ ξ, Mξ is an initial segment of M. We call M the output of the Mitchell-Steel
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construction over z. For δ ∈ On, we call Mδ the output of the Mitchell-Steel construction

of length δ over z.

Theorem 2.5.2. Assume ZFC. Suppose δ is minimal such that δ is Woodin in L(Vδ).

Suppose the Mitchell-Steel construction in Vδ does not break down, and let M be the output

of the construction. Then δ in Woodin in L(M).

See the proof of Theorem 11.3 of [13].

Theorem 2.5.3 (Universality). Assume ZFC. Let δ be Woodin and z ∈ R. Assume the

Mitchell-Steel construction of length δ over z does not break down. Let N be the output of

the construction. Suppose no initial segment of N satisfies “there is a superstrong cardinal.”

Let W be a premouse over x of height ≤ δ, and suppose P and Q are the final models above

W and N , respectively, in a successful coiteration. Then P ⊴ Q.

See Theorem 11.1 of [14].

Theorem 2.5.4. Suppose M is a mouse with Woodin cardinal δ satisfying enough of ZFC

and z ∈M ∩R. Then the Mitchell-Steel construction of length δ over z done inside M does

not break down. Let N be the output of the construction. Then N is a z-mouse of height δ.

For a premouse M satisfying enough of ZFC and z ∈ M ∩ R, we write Le[M, z] for the

output of the Mitchell-Steel construction in M over z (assuming the construction does not

break down). Le[M ] will refer to Le[M, ∅]. Le[M, z] is a z-premouse. If M is iterable, so is

Le[M, z].

We are most interested in cases in which M is a mouse with a Woodin cardinal δ, no

largest cardinal, and no total extenders above δ. Then Le[M |δ, z] is equal to the Mitchell-

Steel construction of length δ over z, done inside M , and Le[M, z] is an initial segment of

L(Le[M |δ.z]).

Remark 2.5.5. Suppose M is a mouse, z ∈ M ∩ R, and κ is inaccessible in M . Let

⟨Mξ : ξ < κ⟩ be the models of the Mitchell-Steel construction in M of length κ over z.
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Suppose an extender is added at step ξ + 1 in the construction. Let F ∗, F , and ν be as in

Case 2 of the construction. Then there is F ′ ∈ M |κ such that M |= Vν+ω ⊂ Ult(M,F ′)

and F ′ ∩ ([ν]<ω × Mξ) = F ↾ ν. So we may assume if F ∗ is used as a background in the

construction of length κ, then F ∗ ∈M |κ.

In particular, if M is a mouse, z ∈ M ∩ R, and κ is inaccessible in M , then Le[M |κ, z]

equals the Mitchell-Steel construction of length κ over z, done in M .

2.6 S-constructions

Below we outline the S-construction (introduced as the P -construction in [15]).

SupposeM = (J E⃗γ ,∈, E⃗ ↾ γ,Eγ, a) is a countable a-premouse and δ ∈M is a cardinal and

cutpoint ofM . Suppose ON ∩ S̄ = δ+ω, δ is a Woodin cardinal of S̄, S̄ is definable overM ,

and there is a generic G (for the version of Woodin’s extender algebra with δ propositional

letters) such that S̄[G] = M |δ + 1. Inductively define a sequence ⟨Sα : δ + 1 ≤ α ≤ γ⟩ as

follows. Sδ+1 is set to be S̄. At a limit λ, Sλ =
⋃
α<λ Sα. If M |λ is active, add a predicate

for Eλ∩Sλ to Sλ. For the successor step, we define Sα+1 by constructing one more level over

Sα. The construction proceeds until we construct Sγ, or we reach some Sα such that δ is not

Woodin in Sα. We refer to Sγ as the maximal S-construction inM over S̄ if the construction

reaches γ. We are primarily interested in cases where δ is Woodin in M , in which case the

construction is guaranteed to reach γ.

Lemma 2.6.1. Suppose M, S̄, δ, γ, and G are as above. Assume also M is iterable, ω-sound,

and ρω(M) ≥ δ. If the construction reaches γ, then for each α such that δ + 1 ≤ α ≤ γ, Sα

is an S̄-mouse and Sα[G] = M |α. If also α < γ, or α = γ and δ is definably Woodin over

Sα, then ρn(Sα) = ρn(M |α) for all n and Sα is ω-sound.

Lemma 1.5 of [15] gives everything in Lemma 2.6.1 except the iterability of Sγ. The

iteration strategy for Sγ in Lemma 2.6.1 comes from lifting an iteration tree on Sγ to iteration

trees on M above δ. In particular, we have:
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Fact 2.6.2. Suppose M, S̄, δ, γ, and G are as in Lemma 2.6.1. Then the iteration strategy

for Sγ (as an S̄-premouse) is projective in the iteration strategy for M restricted to iteration

trees above δ.

The S-construction serves two purposes in what follows. It allows us to “undo” generic

extensions from Woodin’s extender algebra. And combined with the fully-backgrounded

Mitchell-Steel construction, it provides an inner model of a premouse with convenient prop-

erties.

Definition 2.6.3. Let M be a mouse with a Woodin cardinal and z ∈M ∩ R. Let S̄ be the

result of constructing one level of the J -hierarchy over Le[M |δM , z]. Let StrLe[M, z] denote

the maximal S-construction in M over S̄.
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CHAPTER 3

The Inductive-Like Case

In this section we will prove Theorem 1.0.10. We now assume ZF +AD +DC + V = L(R)

and fix a boldface inductive-like pointclass Γ. Let ∆ = ∆Γ. By a reflection argument, we

may assume Γ ̸= Σ2
1. We then have Γ = Σ1(Jα0(R)) for some α0 beginning an admissible

Σ1-gap [α0, β0]. Fix a lightface pointclass Γ as in Remark 2.2.5 such that Γ is the closure of

Γ under preimages by continuous functions.

Section 3.1 reviews some results we will need from the core model induction, most im-

portantly the analysis of iteration strategies of suitable mice. In Sections 3.2 through 3.4

we analyze the directed system of iterates of a suitable mouse and show the directed system

can be approximated inside a larger suitable mouse. Section 3.5 covers some lemmas about

the StrLe construction inside a suitable mouse. Section 3.6 contains a lemma we will use

to obtain witnesses for Σ1 statements inside an initial segment of a suitable mouse. Finally,

Theorem 1.0.10 is proven in Section 3.7.

One of the key ideas to our proof of 1.0.10 is a different coding than the one used in

[1] and [2]. In [2], Σ1
2n+2 sets are coded by conditions in the extender algebra at the least

Woodin of some complete iterate N of M#
2n+1. The reflection argument from [1] ensures a

code for each Σ1
2n+2 set appears below the least < δN -strong cardinal κN of some iterate N

(in fact it gives a uniform bound below κN). But this reflection argument depends upon the

pointclass Σ1
2n+2 not being closed under coprojection.

Our proof of 1.0.10 instead codes Γ-sets by sets of conditions in the extender algebra of

some Γ-suitable mouse N . A weaker reflection argument than the reflection in [1] is used to

contain each code in N |κN . This weaker reflection is sufficient for the proof. This technique
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also applies to the projective pointclasses, so our proof of 1.0.10 also gives a new proof of

Theorem 1.0.7.

3.1 Suitable Mice

We now review some results from the core model induction. Most of the concepts below

are from [16], with some minor additions. We need to work with mice with an inaccessible

cardinal above a Woodin, so in Definition 3.1.2 we introduce a modification of the standard

notion of a suitable premouse. [16] proves the existence of terms in suitable mice capturing

certain sets of reals. We will need analogous lemmas for our modified definition. In fact we

require more than is stated in [16] — it is essential for our purposes that there is a canonical

term capturing each set. Fortunately, this stronger claim is already implicit in the proofs of

[16].

Definition 3.1.1. Suppose x ∈ HC. Say an x-premouse N is Γ-suitable if N is countable

and

1. N |= there is exactly one Woodin cardinal δN .

2. Letting N0 = LpΓ(N |δN) and Ni+1 = LpΓ(Ni), we have that N =
⋃
i<ωNi.

3. If ξ < δN , then Lp
Γ(N |ξ) |= ξ is not Woodin.

Definition 3.1.2. Suppose x ∈ HC. Say an x-premouse N is Γ-super-suitable (Γ-ss) if N

is countable and

1. N |= There is exactly one Woodin cardinal δN .

2. N |= There is exactly one inaccessible cardinal above δN . We denote this inaccessible

by νN .

3. Letting N0 = LpΓ(N |νN) and Ni+1 = LpΓ(Ni), we have that N =
⋃
i<ωNi.

4. For each ξ ≥ δN , N |(ξ+)N = LpΓ(N |ξ).
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5. If ξ < δN , then Lp
Γ(N |ξ) |= ξ is not Woodin.

Definition 3.1.3. Let N be a mouse and δ ∈ N . We say δ is a Γ-Woodin of N if δ is

Woodin in LpΓ(N |δ).

A Γ-suitable premouse is a minimal premouse with a Γ-Woodin cardinal which is closed

under LpΓ, in that none of its initial segments have this property. Similarly, a Γ-ss premouse

can be considered a minimal premouse with a Γ-Woodin which is closed under LpΓ and has

an inaccessible cardinal above its Γ-Woodin.

Definition 3.1.4. Let A ⊆ R, N a countable premouse, η an uncountable cardinal of N , and

τ ∈ NCol(ω,η). We say that η weakly captures A over N if whenever g is Col(ω, η)-generic

over N , τ [g] = A ∩N [g].

Lemma 3.1.5. Suppose B is a self-justifying system and N and M are transitive models of

enough of ZFC such that N ∈M . Let C be a comeager set of Col(ω,N) generics over M and

suppose for each B ∈ B there is a term τB ∈ M such that if g ∈ C, then τB[g] = B ∩M [g].

Let π : M̄ →M be elementary with {N} ∪ {τB : B ∈ B} ⊂ ran(π). Let (N, τB) = π(N̄ , τ̄B).

Then whenever g is Col(ω, N̄)-generic over M̄ , τ̄B[g] = B ∩ M̄ [g].

See Lemma 3.7.2 of [16].

Let β′ be the least ordinal greater than α0 such that there is a scale for a universal

Π1(Jα0(R)) set definable over Jβ′(R). By Theorem 2.2.4, β′ = β0 or β′ = β0 + 1 and there

is a self-justifying system G = {Gn : n ∈ ω} such that

G0 = {(x, y) : x codes some transitive set a and y codes an ω-sound a-premouse

R such that R projects to a and R has an ω1-iteration strategy in ∆},

G1 is a universal Σ1(Jα0(R))-set, and G is contained in OD<β′
(z) for some z ∈ R (Note

G0 ∈ Γ, by part 3 of Remark 2.2.5). For ease of notation, assume G ⊂ OD<β′
.

Definition 3.1.6. Suppose B ⊂ R, N is a premouse, and η is a cardinal of N . Let τNB,η be

the set of pairs (σ, p) ∈ N such that
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1. σ is a Col(ω, η)-standard term for a real,

2. p ∈ Col(ω, η), and

3. for comeager many g ⊂ Col(ω, η) which are Col(ω, η)-generic over N such that p ∈ g,

σ[g] ∈ B.

For n ∈ ω, let τNn,η = τNGn,η
and if N has a Woodin cardinal let τNn = τNn,δN .

Lemma 3.1.7. Suppose N is a Γ-suitable or Γ-ss premouse, z ∈ N , B ∈ OD<β′
(z), and η

is a cardinal of N . Then τNB,η is in N .

See the proof of Lemma 3.7.5 of [16]. In Lemma 5.4.3 of [16], Lemma 3.1.5 is used to

show:

Lemma 3.1.8 (Woodin). Suppose z ∈ R, N is a Γ-suitable (or Γ-ss) z-premouse, and B

is a sjs containing a universal Σ1(Jα0(R))-set such that each B ∈ B is OD<β′
(z). Suppose

π :M → N is Σ1-elementary and for every B ∈ B and η ≥ δN , τ
N
B,η ∈ range(π). Then

1. M is Γ-suitable (Γ-ss) and

2. π(τMB,η̄) = τNB,η, where η̄ is such that π(η̄) = η.

As a result of Lemmas 3.1.5 and 3.1.7 we have:

Corollary 3.1.9. If N is Γ-suitable or Γ-ss and η is an uncountable cardinal of N , then τNn,η

weakly captures Gn.

Definition 3.1.10. Let T be a normal iteration tree on a Γ-suitable (or Γ-ss) premouse N .

Suppose also T is below δN . Say T is Γ-short if for all limit ξ ≤ lh(T ), LpΓ(M(T ↾ ξ)) |=

δ(T ↾ ξ) is not Woodin. Otherwise, say T is Γ-maximal.

Definition 3.1.11. Let N be a Γ-suitable (Γ-ss) premouse and Σ an (ω1, ω1)-iteration strat-

egy for N . Say Σ is fullness-preserving if whenever P is an iterate of N by Σ via an iteration

below δN , then
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1. if the branch to P does not drop, then P is Γ-suitable (Γ-ss), and

2. if the branch to P does drop, then P has an ω1-iteration strategy in Jα0(R).

Remark 3.1.12. Let N be a Γ-suitable (or Γ-ss) mouse with a fullness-preserving iteration

strategy Σ. Suppose P ◁ N |δN , and Σ′ is the iteration strategy for P given by restricting the

domain of Σ to trees on P . Suppose T is an iteration tree on P according to Σ′. Then the

branch b through T chosen by Σ′ can be determined from Q(T ). And Q(T ) is the unique

M(T )-mouse projecting to ω with an iteration strategy in ∆. It follows from Remark 2.2.5

and the uniqueness of Q(T ) that Σ′ is coded by a set in ∆.

Definition 3.1.13. Let T be a Γ-maximal iteration tree on a Γ-suitable (or Γ-ss) premouse

N and let b be a cofinal branch through T . Say b respects G⃗n if ib(τ
N
k,η) = τ

Mb(T )
k,ib(η)

for all k < n

and every cardinal η of N above δN .

Definition 3.1.14. Let N be a Γ-suitable (or Γ-ss) premouse and Σ a fullness-preserving

iteration strategy for N . Say Σ is guided by G if whenever T is an iteration tree according

to Σ of limit length and b = Σ(T ), then

1. if T is Γ-short, then Q(b, T ) exists and Q(b, T ) ∈ LpΓ(M(T )), and

2. if T is Γ-maximal, then Σ(b) respects G⃗n for all n ∈ ω.

Lemma 3.1.15. If N is Γ-suitable (or Γ-ss) and Σ is an ω1-iteration strategy for N which

is guided by G, then Σ is not in Γ.

Proof. There is n ∈ ω such that Gn is a universal Γc-set. Then y ∈ Gn if and only if there

exists a countable, complete iterate N∗ of N according to Σ such that y is EaN∗-generic over

N∗ and y ∈ τN
∗

n [g]. Since Γ is closed under projection, if Σ were in Γ, Gn would also be in

Γ.

Theorem 3.1.16 (Woodin). For any x ∈ HC, there is a (unique) ω-sound, Γ-suitable

x-mouse Wx projecting to x with a (unique) iteration strategy that is fullness-preserving,
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condenses well,1 and is guided by G. Similarly, there is a (unique) ω-sound, Γ-ss x-mouse

Mx projecting to x with a (unique) iteration strategy that is fullness-preserving, condenses

well, and is guided by G.

Chapter 5 of [16] demonstrates the existence of such a Γ-suitable mouse. It is not difficult

to see this gives the existence of the required Γ-ss mouse as well.

For any Γ-suitable (or Γ-ss) premouse N and any n ∈ ω, let

γNn = HullN({τNi : i < n}) ∩ δN .

The regularity of δN in N implies each γNn is an ordinal. Lemma 3.1.8 can be used to

show

Fact 3.1.17. ⟨γNn : n ∈ ω⟩ is cofinal in δN .

Lemma 3.1.18. Let T be a normal iteration tree on a Γ-suitable (or Γ-ss) premouse N and

let b and c be branches through T which respect G⃗n. Then ib ↾ γNn = ic ↾ γNn . Moreover, if b

and c both respect G⃗n for all n, then b = c.

See Lemma 6.25 of [12].

Lemma 3.1.18 implies if b is the branch chosen by the nice iteration strategy for a Γ-

suitable premouse given by Theorem 3.1.16 and c is any branch respecting G⃗n, then the

direct limit maps given by b and c agree up to γNn . In particular, to track the iteration of

a Γ-suitable mouse up to some point below its least Woodin, it is sufficient to know finitely

many of the sets in G.

[17] presents work of Steel and Woodin analyzing the direct limit of all countable iterates

of M#
ω . This direct limit cut to its least Woodin is (HOD||Θ)L(R). [12] goes further in

showing that the entire class HODL(R) is a strategy mouse. The iteration maps through trees

on M#
ω are approximated using indiscernibles, analogously to the use of terms in Lemma

3.1.18. These approximations are merged to give an ordinal definable definition of the direct

1In the sense of Definition 5.3.7 of [16].
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limit in L(R). In particular, initial segments of the direct limit maps are definable from

finitely many indiscernibles. M#
ω is the mouse corresponding to the pointclass Σ2

1. [12] also

demonstrates that if the Σ1-gap [α0, β0] is of a nice form, a good stand-in for M#
ω is the

minimal mouse with ω Woodins whose derived model satisfies a new Σ1-sentence realized at

Jβ0+1(R). This mouse corresponds to the pointclass Γ = Σ1(Jα0(R)). A similar analysis can

be performed to internalize the direct limit of this mouse to Jβ0(R).

Unfortunately, the same technique does not apply to every inductive-like pointclass.

Instead we shall analyze the direct limit of a Γ-suitable mouse and prove that portions of

the direct limit maps are definable within a Γ-ss mouse.

Our task is simpler in that we only need to reach up to δ+
Γ , which we show in section

3.2 is below the least Woodin of our direct limit. So a single approximation using only

finitely many sets from G will suffice. Another advantage we have is that there is no harm

in working over a real parameter, so we can work in a Γ-ss mouse over a real which codes

W0. On the other hand, we will have some extra work to do in Section 3.3 ensuring enough

information about Γ and G is definable in a Γ-ss mouse before we internalize the directed

system in Section 3.4.

[12] also makes use of the fact that the derived model of M#
ω is essentially L(R). So for

x ∈ M#
ω ∩ R, a Σ2

1 statement about x is true if and only if it holds in the derived model of

M#
ω . In other words, there is a natural way to ask about Σ2

1 truth inside of M#
ω . A second,

though minor, inconvenience of having to use a Γ-suitable mouse is we cannot talk about its

derived model, since it only has one Woodin. Instead we will use the fine-structural witness

condition of [16].

Remark 3.1.19. We can associate to any Σ1-formula ϕ a sequence of formulas ⟨ϕk : k < ω⟩

such that for any ordinal γ and any real z, Jγ+1(R) |= ϕ[z] ⇐⇒ (∃k)Jγ(R) |= ϕk[z].

Moreover, the map ϕ→ ⟨ϕk : k < ω⟩ is recursive.

Definition 3.1.20. Suppose ϕ(v) is a Σ1-formula and z ∈ R. A ⟨ϕ, z⟩-witness is an ω-sound

z-mouse N in which there are δ0 < ... < δ9, S, and T such that N satisfies the formulae
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expressing

1. ZFC,

2. δ0 < ... < δ9 are Woodin,

3. S and T are trees on some ω×η which are absolutely complementing in V Col(ω,δ9), and

4. For some k < ω, ρ[T ] is the Σk+3-theory (in the language with names for each real) of

Jγ(R), where γ is least such that Jγ(R) |= ϕk[z].

Other than iterability, the rest of the properties of being a ⟨ϕ, z⟩-witness are first order.

The following two lemmas illustrate the usefulness of this definition.

Lemma 3.1.21. If there is a ⟨ϕ, z⟩-witness, then L(R) |= ϕ[z].

Lemma 3.1.22. Suppose ϕ is a Σ1-formula, z ∈ R, γ is a limit ordinal, and Jγ(R) |= ϕ[z].

Then there is a ⟨ϕ, z⟩-witness N such that the iteration strategy for N restricted to countable

trees is in Jγ(R). By taking a Skolem hull, we can also ensure ρω(N) = ω.

3.2 The Direct Limit

LetW = W0 and let I be the directed system of countable, complete iterates ofW according

to its (ω1, ω1)-iteration strategy. Let M∞ be the direct limit of I. For M,N ∈ I and N

an iterate of M , let πM,N : M → N be the iteration map and πM,∞ : M → M∞ the direct

limit map. Here we demonstrate a few properties of M∞. The proofs of this section are

generalizations of arguments in [11] and [12] giving analogous properties of the direct limit

of all countable, complete iterates of M#
ω .

Lemma 3.2.1. κM∞ ≤ δΓ
2

Proof. Suppose ξ < κM∞ . Let M ∈ I and ξ̄ ∈ M be such that πM,∞(ξ̄) = ξ. Let P be

an initial segment of M such that ξ̄ ∈ P and the largest cardinal of P is a cutpoint of M .

2In fact κM∞ = δΓ, but we don’t need this.
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The iteration strategy Σ for P is in ∆ by Remark 3.1.12. Let IP be the directed system of

countable, complete iterates of P by Σ. Then ξ̄ is sent to ξ by the direct limit map of this

system, since the largest cardinal of P is a cutpoint of M . So a prewellordering of height ξ

is projective in Σ and therefore δΓ > ξ.

Lemma 3.2.2. δM∞ > (δΓ)
+

Proof. Let Σ be the (ω1, ω1)-iteration strategy for W . Recall Σ is not in Γ. We will show Σ

is in S(δM∞)\S(δ+
Γ ).

Claim 3.2.3. Σ is δM∞-Suslin.

Proof. Let T be a tree on (ω × ω) × δM∞ such that (x, y, f) ∈ [T ] if and only if x codes

a countable iteration tree S on W of limit length, y codes a cofinal, wellfounded branch b

through S, and f codes an embedding π :MS
b →M∞ such that π◦iSb = πW,∞. Let Σ′ = ρ[T ].

If (x, y) ∈ Σ, then x codes an iteration tree S onW according to Σ and y codes the cofinal,

wellfounded branch b through S chosen by Σ. And πMS
b ,∞

◦ iSb = πW,∞. So if f : ω → δM∞

codes the embedding πMS
b ,∞

, then (x, y, f) ∈ [T ]. Thus (x, y) ∈ Σ′.

On the other hand, suppose (x, y) ∈ Σ′ and x codes an iteration tree S according to

Σ. Fix f : ω → δM∞ such that (x, y, f) ∈ [T ]. Let b be the branch coded by y and π the

embedding coded by f .

Subclaim 3.2.4. For all n, πS
b (τ

W
n ) = τ

MS
b

n .

Proof. Let Q ∈ I be such that range(π) ⊆ range(πQ,∞). Let π′ = π−1
Q,∞ ◦ π. Then π′ :

MS
b → Q and π′(iSb (τ

W
n )) = τQn . Then by Lemma 3.1.5, iSb (τ

W
n ) weakly captures Gn for all

n. In fact, iSb (τ
W
n ) = τ

MS
b

n .

From the subclaim and the last part of Lemma 3.1.18, we have that (x, y) ∈ Σ.

We can now characterize Σ as the set of (x, y) ∈ R× R such that

1. x codes an iteration tree S on W of limit length,
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2. y codes a cofinal, wellfounded branch through S,

3. (x, y) ∈ Σ′, and

4. for any (x0, y0) ≤T x such that x0 codes a proper initial segment S0 of S of limit length

and y0 codes the branch through S0 determined by S, (x0, y0) ∈ Σ′.

Condition 4 is just to guarantee S is in the domain of Σ. It does so because any proper

initial segment S0 of S is coded by some real computable from x. From this, and the

preceding paragraphs, it is clear these conditions characterize Σ. Since Σ′ is δM∞-Suslin, this

characterization of Σ makes plain that Σ is also δM∞-Suslin.

Claim 3.2.5. Γ = S(δΓ).

Proof. First, let’s establish Γ is Suslin. Let

Ω = {Σ1(Jγ(R)) : γ < α0 and γ begins a Σ1-gap}.

It follows from Theorem 2.2.7 that Γ is the minimal non-selfdual pointclass closed under

projection which contains every pointclass in Ω. Let

Ψ = {Σ1(Jγ(R)) ∈ Ω : Σ1(Jγ(R)) is Suslin}.

By Theorem 2.2.8, Ψ is cofinal in Ω. But the minimal Suslin pointclass larger than any ele-

ment of Ψ is just the minimal non-selfdual pointclass closed under projection which contains

every pointclass in Ω (by part 3 of Theorem 2.2.8). Since Ψ is cofinal in Ω, this is Γ.

So Γ = S(λ) for some cardinal λ. By the Kunen-Martin Theorem, there is a prewellorder-

ing of length λ in Γ but no prewellordering of length λ+. The latter implies that λ ≥ δΓ,

since δΓ is a limit cardinal,3 and since there are prewellorderings of length α in Γ for all

α < δΓ. The former implies that λ ≤ δΓ, since there is no prewellordering of length δ+
Γ in Γ

(Otherwise a proper initial segment of this prewellordering would be of length δΓ, giving a

prewellordering of length δΓ in ∆). So δΓ = λ.

3See Theorem 7D.8 of [8].
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By the previous two claims, Σ ∈ S(δM∞)\S(δΓ). In particular, δM∞ ≥ λ′ where λ′

is the next Suslin cardinal after δΓ.
4 But cof(λ′) = ω by part 3 of Theorem 2.2.8, so

δM∞ ≥ λ′ > δ+
Γ .

Lemma 3.2.6. Suppose µ < δM∞ is a regular cardinal of M∞. Then µ is not measurable in

M∞ if and only if µ has cofinality ω in L(R).

Proof. Suppose µ is not measurable inM∞. FixM ∈ I and µ̄ such that πM,∞(µ̄) = µ. Then

µ̄ is regular but not measurable in M . Since M is countable, there is a sequence of ordinals

⟨ξ̄n : n < ω⟩ cofinal in µ̄. Let ξn = πM,∞(ξ̄n). Since µ̄ is regular and not measurable in M ,

πM,∞ is continuous at µ̄ (This is because πM,∞ is essentially an iteration embedding — in

fact it is an iteration embedding in V Col(ω,R). And any iteration embedding is continuous at

a cardinal which is regular but not measurable, since ultrapower embeddings are continuous

at such cardinals). So ⟨ξn : n < ω⟩ is cofinal in µ.

Now suppose µ has cofinality ω in L(R). Let ⟨ξn : n < ω⟩ be cofinal in µ. Fix M ∈ I

such that there is µ̄ ∈ M and ⟨ξ̄n : n < ω⟩ ⊂ M with πM,∞(µ̄) = µ and πM,∞(ξ̄n) = ξn. If µ

is measurable in M∞, then there is a total extender F on the fine extender sequence of M

with critical point µ̄. Let M ′ be the ultrapower of M by F and j :M →M ′ the embedding

induced by F . Then for any n < ω,

ξn = πM,∞(ξ̄n) = πM ′,∞ ◦ j(ξ̄n) = πM ′,∞(ξ̄n) < πM ′,∞(µ̄) < πM ′,∞ ◦ j(µ̄) = µ.

So πM ′,∞(µ̄) is an upper bound for ξ̄n below µ, a contradiction.

3.3 Definability in Suitable Mice

Lemma 3.3.1. Suppose N is a premouse satisfying enough of ZFC, ν is a cardinal of N ,

LpΓ(a) ⊂ N for each a ∈ N |ν, and τ ∈ NCol(ω,ν) weakly captures G0. Then the map with

domain N |ν defined by a 7→ LpΓ(a) is definable in N from τ .

4In fact δM∞ = λ′, but we don’t need this.
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Proof. Recall

G0 = {(x, y) : x codes some transitive set a and y codes an ω-sound a-premouse

R such that R projects to a and R has an ω1-iteration strategy in ∆}.

Fix a ∈ N |ν. If R is any set in N |ν and g is any Col(ω, ν)-generic over N , then there are

reals x and y in N [g] coding a and R, respectively. It is easy to see from this that

LpΓ(a) =
⋃

{R ∈ N : ∅ ⊩N
Col(ω,ν) (∃x, y)[(x, y) ∈ τ ∧ x codes a ∧ y codes R]}.

Corollary 3.3.2. If P is Γ-ss, then the map with domain P |νP defined by a 7→ LpΓ(a) is

definable in P from τP0,νP .

Proof. It is clear from Remark 2.4.8 and Corollary 3.1.9 that P and τP0,νP satisfy the condi-

tions of Lemma 3.3.1.

Lemma 3.3.3. Suppose P is Γ-ss and N ∈ P |νP is Γ-suitable. Then

{τNn,µ : µ is an uncountable cardinal of N} is definable in P from N and τPn,νP (uniformly in

P and N).

Proof. Let µ be an uncountable cardinal of N .

Note if g is Col(ω, νP )-generic over P and f ∈ P is a surjection of νP onto µ, then f ◦g is

P -generic for Col(ω, µ). In particular, f ◦ g is N -generic for Col(ω, µ). Fix such an f which

is minimal in the constructibility order of P . Let

τn,µ = {(σ, p) : σ is a Col(ω, µ)-standard term for a real, p ∈ Col(ω, µ),

and ∅ ⊩P
Col(ω,νP ) (p̌ ∈ f̌ ◦ ġ → σ̌[f̌ ◦ ġ] ∈ τPn,νP )}

It is clear that τn,µ is definable in P from N , µ, and τPn,νP . It suffices to show τn,µ = τNn,µ.

τn,µ ⊆ τNn,µ by Definition 3.1.6 and that comeager many h ⊂ Col(ω, µ) which are generic

over N are of the form f ◦ g for some g which is Col(ω, νP )-generic over P .
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On the other hand, suppose (σ, p) ∈ τNn,µ. By Corollary 3.1.9, σ[h] ∈ Gn for any h which

is Col(ω, µ)-generic over N such that p ∈ h. In particular, σ[f ◦ g] ∈ τPn,νP [g] for any g which

is Col(ω, νP )-generic over P such that p ∈ f ◦ g. Thus (σ, p) ∈ τn,µ.

We will also need versions of Corollary 3.3.2 and Lemma 3.3.3 in generic extensions of

Γ-ss mice.

Lemma 3.3.4. Suppose B ⊆ R, P is a premouse, δ is Woodin in P , µ ≥ δ, τ ∈ PCol(ω,µ)

weakly captures B over P , and y is EaP -generic over P . Then there is τ ′ ∈ P [y]Col(ω,µ) which

weakly captures B over P [y]. Moreover, τ ′ is definable in P [y] from τ and y (uniformly).

Proof. Col(ω, µ) is universal for pointclasses of size µ. So there is a complete embedding

Φ : Eap × Col(ω, µ) → Col(ω, µ).5 If g is Col(ω, µ)-generic over P , let (yg, fg) be the

EaP × Col(ω, µ)-generic consisting of all conditions (p, q) ∈ EaP × Col(ω, µ) such that

Φ((p, q)) ∈ g (see Chapter 7, Theorem 7.5 of [18]). Let

τ ∗ = {(σ, (p, q)) : σ is an EaP -term for a Col(ω, µ)-standard term for a real,

(p, q) ∈ EaP × Col(ω, µ), and Φ((p, q)) ⊩P
Col(ω,µ) σ[yg][fg] ∈ τ [g]}.

Claim 3.3.5. For any (y, f) which is EaP×Col(ω, µ)-generic over P , τ ∗[y][f ] = B∩P [y][f ].

Proof. Suppose x ∈ τ ∗[y][f ]. x = σ[y][f ] for some (σ, (p, q)) ∈ τ ∗ such that p ∈ y and q ∈ f .

Let g be Col(ω, µ)-generic such that yg = y and fg = f . In particular, Φ((p, q)) ∈ g. Then

P [g] |= σ[yg][fg] ∈ τ [g]. Since x = σ[yg][fg] and τ [g] = B ∩ P [g], x ∈ B ∩ P [g].

Now suppose x ∈ B ∩ P [y][f ]. Let σ be an EaP -term for a Col(ω, µ)-standard term for

a real such that x = σ[y][f ].⋃
Φ′′{(p, q) : (p, q) ∈ y × g} is a function g1 : S → µ for some S ⊆ ω. Let

Q = {r ∈ Col(ω, µ) : domain(r) ∩ S = ∅}

5In the sense of Definition 7.1 of Chapter 7 of [18].
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(Q is the quotient of Col(ω, µ) by g1). Let g2 be Q-generic over P [g1]. Then g = g1 ∪ g2 is

Col(ω, µ)-generic over P .

We have x ∈ τ [g]. Pick s ∈ g such that s ⊩P
Col(ω,µ) σ[yg][fg] ∈ τ [g]. s = r1 ∪ r2 for some

r1 ∈ g1 and r2 ∈ g2.

Subclaim 3.3.6. r1 ⊩P
Col(ω,µ) σ[yg][fg] ∈ τ .

Proof. Suppose not. Then there is g′2 which is Q-generic over P [g1] such that, letting g′ =

g1 ∪ g′2, σ[yg′ ][fg′ ] /∈ τ [g′]. σ[yg′ ][fg′ ] = x, since yg and fg depend only on g ↾ S. But then

x ∈ (B ∩ P [g′])\τ [g′], contradicting that τ weakly captures B.

Pick p ∈ y and q ∈ f such that Φ((p, q)) extends r1. Then (σ, (p, q)) ∈ τ ∗. So x ∈

τ ∗[y][f ].

Let

τ ′ = {(σ[y], q) : ∃p ∈ y such that (σ, (p, q)) ∈ τ ∗}.

τ ′ is definable in P [y] from τ and y. It is clear from Claim 3.3.5 that τ ′ weakly captures B

over P [y].

Lemma 3.3.7. Let P be Γ-ss and y be EaP -generic over P . Then for any a ∈ P [y],

LpΓ(a) ⊂ P [y].

Proof. Let N be a Γ-suitable mouse built over P . N has a Woodin cardinal δN above δP .

The iteration strategy for any proper initial segment of N |δN restricted to trees above δP is

in ∆. And no initial segment of N above δN projects strictly below δN . It follows that any

cardinal of P remains a cardinal in N . In particular, δP remains Woodin in N and y is also

EaP -generic over N .

Suppose R is an ω-sound a-premouse with an ω1-iteration strategy in ∆ such that R

projects to a. It suffices to show R ∈ P [y].
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Let α be the height of R. Iterating N above R if necessary, we may assume there is

a real g which is Col(ω, δN)-generic over N such that some real in N [y][g] codes R. By

Lemma 3.3.4, there is a Col(ω, δN)-term τ in N [y] which weakly captures G0. Then R is

the unique premouse in N [y][g] of height α such that if xa codes a and xR codes R, then

(xa, xR) ∈ τ [g]. By homogeneity of the forcing, for any g′ which is Col(ω, δN)-generic over

N , there is a premouse R′ ∈ N [y][g′] of height α and reals xa and xR′ in N [y][g′] coding

a and R′, respectively, such that (xa, xR′) ∈ τ [g′]. The uniqueness of R implies R ∈ N [y].

Since R is coded by a subset of a, R ∈ P [y].

Corollary 3.3.8. If P is Γ-ss and y is EaP -generic over P , then the map with domain

P [y]|νP defined by a 7→ LpΓ(a) is definable in P [y] from τP0,νP and y (uniformly in P and y).

Proof. P [y] is LpΓ-closed by Lemma 3.3.7. Then by Lemma 3.3.1, the map a→ LpΓ(a) with

domain P [y]|νP is definable from any term τ ∈ P [y]Col(ω,νP ) which weakly captures G0 over

P [y].

Lemma 3.3.4 shows there is a term τ ∈ P [y]Col(ω,µ) which weakly captures G0 over P [y]

and is definable from τP0,νP and y in P [y].

Corollary 3.3.9. Suppose P is Γ-ss, y is EaP -generic over P , and N ∈ P [y]|νP is Γ-

suitable. Then {τNn,µ : µ is an uncountable cardinal of N} is definable in P [y] from N , y,

and τPn,νP (uniformly in P , y, and N).

Proof. This is by the proof of Lemma 3.3.3, using from Lemma 3.3.4 that there is a term in

P which weakly captures Gn over P [y] and is definable from τPn,νP and y.

3.4 Internalizing the Direct Limit

Let x0 ∈ R be any real which is Turing above some real coding W and consider some M

which is a countable, complete iterate of Mx0 . For elements of M |νM , being a Γ-suitable

premouse, a Γ-short iteration tree, or a Γ-maximal iteration tree is definable over M from
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τM0,νM (This follows easily from Corollary 3.3.2). Let

IM = {P ∈M |νM : P ∈ I}.

Lemma 3.4.1. Let T ∈ M |νM be a Γ-short tree on some Γ-suitable P ∈ M . Then the

branch b picked by the iteration strategy for P is in M and b is definable in M from T and

τM0,νM (uniformly). In particular, MT
b and the iteration map iTb : P → MT

b are definable in

M from T and τM0,νM .

Proof. Let g be Col(ω, νM)-generic over M . Note b is the unique branch through T which

absorbs Q(T ). So by Shoenfield absoluteness, b ∈ M [g] (in M [g] the existence of such a

branch is a Σ1
2 statement about reals). But b is independent of the generic g, so b ∈M .

It then follows from Corollary 3.3.2 that b, and therefore also MT
b and iTb , are definable

in M from τM0,νM .

Corollary 3.4.2. Suppose P ∈ IM and Σ is the iteration strategy for P . Suppose also

T ∈M |νM is a normal iteration tree on P below δP of limit length. Whether T is according

to Σ is definable in M from parameter τM0,νM by a formula independent of T and the choice

of Γ-ss mouse M .

Lemma 3.4.3. Suppose P,Q ∈ IM . Then there is R ∈ IM such that R is a complete iterate

of both P and Q by normal iteration trees in M |νM . Moreover, R is definable in M from P ,

Q, and τM0,νM (uniformly).

Proof. We perform a coiteration of P and Q inside M . Suppose so far from the coiteration

we have obtained iteration trees T and U on P and Q, respectively.

Suppose T and U have successor length. Let P ′ and Q′ be the last models of T and

U , respectively. First consider the case P ′ ⊴ Q′ or P ′ ⊴ Q′. If either is a proper initial

segment of the other, or there are any drops on the branches to P ′ or Q′, we have violated

the Dodd-Jensen property. So P ′ = Q′ and P ′ is a common complete iterate of P and Q.

Otherwise, we continue the coiteration as usual by applying the extender at the least point

of disagreement between the last models of T and U , respectively.
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Now suppose T and U are of limit length. In this case M(T ) = M(U). If T is Γ-short,

so is U , and by Lemma 3.4.1 M can identify the branches the iteration strategies for P

and Q pick through T and U , respectively. So the coiteration can be continued inside M .

Otherwise, T and U are Γ-maximal. In this case let R be the unique Γ-suitable mouse

extending M(T ). R is just the result of applying LpΓ to M(T ) ω times, so M can identify

R by Lemma 3.3.1. Then R is a complete iterate of P and Q.

It only remains to show that when the coiteration terminates trees T and U have length

less than νM . We cannot directly apply Theorem 2.3.1 —M cannot locate branches through

Γ-maximal trees, so P and Q are not iterable in M . However, the proof of 2.3.1 still gives

T and U have length less than the cardinal successor of max{|P |M , |Q|M} in M . Since νM

is inaccessible in M , this implies lh(T ) and lh(U) are less than νM .

The lemma implies IM is a directed system. IM is countable and contained in I, so we

may define the direct limit HM of IM , and HM ∈ I. Let

ĨM = {P ∈ IM : P is realized to be a complete iterate of W

by a tree in M |νM}.

. ĨM is definable in M by Corollary 3.4.2.

Lemma 3.4.4. ĨM is cofinal in IM . In particular, the direct limit of ĨM is HM .

Proof. Suppose P ∈ IM . By Lemma 3.4.3, there is R ∈ IM which is a common, complete

iterate of both P and W by trees in M . Then R is below P in IM and R ∈ ĨM .

Lemma 3.4.5. Suppose P ∈ IM . Let Σ be the (unique) iteration strategy for P . Suppose

T ∈ M |νM is an iteration tree on P according to Σ. Let b = Σ(T ) and let Q = Mb(T ).

Then Q is definable in M from T and τM0,νM . And πP,Q ↾ γPn is definable in M from T and

⟨τMk,νM : k < n⟩ (uniformly).

Proof. If T is Γ-short this is by Lemma 3.4.1.
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Suppose T is Γ-maximal. Then Q =
⋃
i<ωQi, where Q0 = M(T ) and Qi+1 = LpΓ(Qi).

So Q is definable from M(T ) and τM0,νM by Corollary 3.3.2. And πP,Q ↾ γPn = πc ↾ γPn , where

c is any branch through T respecting G⃗n. The argument of Lemma 3.4.1 shows there is a

branch c in M respecting G⃗n. Then πP,Q ↾ γPn = πc ↾ γPn for any wellfounded branch c ∈ M

through T such that πc(⟨τPk : k < n⟩) = ⟨τQk : k < n⟩. ⟨τPk : k < n⟩ and ⟨τQk : k < n⟩ are

definable in M from P , Q, and ⟨τMk,νM : k < n⟩ by Lemma 3.3.3. So πP,Q ↾ γPn is definable in

M from T and ⟨τMk,νM : k < n⟩.

It follows from the previous lemma that for any P ∈ IM , πP,HM ↾ γPn is definable in

M from P and ⟨τMk,νM : k < n⟩ (uniformly in M). The same lemmas hold in M [y] for y

EaM -generic over M . In particular, we have:

Lemma 3.4.6. Suppose y is EaM -generic over M and P ∈ I ∩ M [y]|νM . Let Σ be the

(unique) iteration strategy for P . Suppose T ∈M [y]|νM is an iteration tree on P according

to Σ. Let b = Σ(T ) and let Q = Mb(T ). Then Q is definable in M [y] from T and τM0,νM .

And πP,Q ↾ γPn is definable in M [y] from T and ⟨τMk,νM : k < n⟩ (uniformly). Moreover, the

definition is independent not just of the choice of Γ-ss mouse M , but also of the generic y.

Lemma 3.4.7. Suppose p ∈ EaM and Ṡ is an EaM -name in M |νM such that p ⊩EaM “Ṡ

is a complete iterate of W .” Then there is R ∈ ĨM such that R is a complete iterate of S[y]

for every y ∈ R which is EaM -generic over M . Moreover, we can pick R such that R is

(uniformly) definable in M from parameters Ṡ and p.

Proof. Let P be the finite support product Πj<ωPj, where each Pj is a copy of the part of

EaM below p. Let H be P-generic over M . We can represent H as Πj<ωHj, where Hj is

Pj-generic over M . Let Ṡj be a P-name for Ṡ[Hj]. Let Sj = Ṡj[H] for j ∈ ω and S−1 = W .

Lemma 3.4.6 tells us that M [H] can perform the simultaneous coiteration of all of the

Sj for j ∈ [−1, ω). The proof of Lemma 2.3.1 gives that this coiteration terminates after

fewer than νM steps. Let Rj be the last model of the iteration tree on Sj produced by the

coiteration. Since each Sj is a complete iterate of W , the Dodd-Jensen property implies
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there are no drops on the branches from Sj to Rj and Rj = Ri for all i, j ∈ [−1, ω). Let

R = Rj for some (equivalently all) j ∈ [−1, ω). Then R is a complete iterate ofM and R is a

complete iterate of Sj for each j ∈ ω. Let U be the iteration tree on W from the coiteration.

Claim 3.4.8. R is independent of the choice of generic H.

Proof. Code R by a set of ordinals X contained in νM . Let Ẋ be a name for X. If R is

not independent of H, then there is α < νM and q1, q2 ∈ P such that q1 ⊩ α̌ ∈ Ẋ and

q2 ⊩ α̌ /∈ Ẋ.

Let N > max(support(q2)). Let q̄1 be the condition q1 shifted over by N — that is,

support(q̄1) = {j ∈ [N,ω) : j−N ∈ support(q1)} and for j ∈ support(q̄1), q̄1(j) = q1(j−N).

So q̄1 is compatible with q2 and by symmetry, q̄1 ⊩ α̌ ∈ Ẋ. But then there is r ≤ q2, q̄1 which

forces both α̌ ∈ Ẋ and α̌ /∈ Ẋ.

Claim 3.4.9. U is independent of the choice of generic H.

Proof. The same proof as in Claim 3.4.8 works.

Claim 3.4.8 implies R ∈ M |νM and R is a complete iterate of S[y] for any y which is

EaM -generic over M . Claim 3.4.9 gives that U ∈M and thus R ∈ ĨM .

3.5 The StrLe Construction

Recall the mouse operator x → Mx defined in Section 3.1. In the following lemmas let

z, x ∈ R be such that z ∈Mx and let M =Mx.

Lemma 3.5.1. Suppose P = StrLe[M, z]. Then P is Γ-ss and δP = δM .

Proof. Let δ = δM . By Lemma 2.6.1, the cardinals of P above δ are the same as the cardinals

of M and νM is inaccessible in P . Any inaccessible of P above δ is inaccessible in M , since

M is a generic extension of P by a δ-c.c. forcing. In particular, νM is the unique inaccessible

of P above δ. Then it suffices to show the following claim.
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Claim 3.5.2. (a) If η < δP , then Lp
Γ(P |η) ◁ P .

(b) δ is a Γ-Woodin of P . That is, δ is Woodin in LpΓ(P |δ).

(c) If η ∈ P and η ≥ δ, then P |(η+)P ⊴ LpΓ(P |η).

(d) P |= δ is Woodin.

(e) If η < δ, η is not Woodin in LpΓ(P |η).

(f) If η ∈ P and δP ≤ η, then LpΓ(P |η) ⊆ P .

Proof. To prove (a), it suffices to show if η < δP , R ◁ LpΓ(P |η), and ρω(R) = η, then R ◁ P .

Coiterate R against Le[M, z]. Suppose T and U are the iteration trees on R and Le[M, z],

respectively, from the coiteration. T is above η because Le[M, z]|η = R|η and η is a cutpoint

of R. Let λ < lh(T ) be a limit ordinal and Q = Q(T ) = Q(U). Since R ∈ LpΓ(P |η) and T

is above η, Q ∈ LpΓ(M(T )). [0, λ]T and [0, λ]U are the unique branches through T and U ,

respectively, which absorb Q. By Corollary 3.3.2, these branches can be identified in M . In

particular, the coiteration of R and Le[M, z] can be performed in M . Theorem 2.5.3 gives

that R cannot outiterate Le[M, z]. Then since R is ω-sound, R projects to η, and Le[M, z]

does not project to η, R is a proper initial segment of Le[M, z]|(η+)Le[M,z]. Le[M, z] agrees

with P up to δ, so R ◁ P .

(b) is by the proof of Theorem 11.3 of [13]. For (c), the iteration strategies for initial

segments of P |(η+)P restricted to iteration trees above δ are in ∆ by Fact 2.6.2. (d) is

immediate from (b) and (c). See Sublemma 7.4 of [12] for a proof of (e).

Towards (f), let Q = LpΓ(P |η). Let P be the extender algebra in P at δ with δ generators.

M |δ is P-generic over P . Note δ is Woodin in Q by (b). In particular, P is also δ-c.c. in Q,

so any antichain of P in Q is also in P and M |δ is also P-generic over Q.

Let B ∈ LpΓ(P |η). B is in M = P [M |δM ] since P |η is in M and M is closed under LpΓ.

So let Ḃ be a P-name in P such that Ḃ[M |δ] = B.

Choose p ∈ P such that p ⊩Q
P Ḃ = B̌.
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Any G which is P-generic over P is also P-generic over Q. So for any G which is P-generic

over P such that p ∈ G, Ḃ[G] = B. But then B is in P , since B = {ξ < δ : p ⊩P
P ξ̌ ∈ Ḃ}.6

Lemma 3.5.3. Suppose P = StrLe[M, z]. Let µ ≥ δP be a cardinal of P . τPn,µ exists and is

definable in M from τMn,µ and z.

Proof. This is similar to the proof of 3.3.3. Let

σ = {ẏ ∈ P : ẏ is a Col(ω, µ)-standard term for a real and ∅ ⊩M
Col(ω,µ) ẏ ∈ P [ġ] ∩ τMn,µ}.

Since τMn,µ ∈M and P is definable over M from z, σ ∈M and is definable from τMn,µ and

z.

Claim 3.5.4. σ[g] = P [g] ∩Gn for any g which is Col(ω, µ)-generic over M .

Proof. First, we have σ[g] ⊆ P [g] ∩ τMn,µ[g] = P [g] ∩ (Gn ∩M [g]) = P [g] ∩Gn.

Now suppose y ∈ P [g] ∩ Gn. Let ẏ be a name for y in P . Let w ∈ P ∩ Gn and let

r ∈ Col(ω, µ) be such that r ⊩M
Col(ω,µ) ẏ ∈ τMn,µ and r ∈ g. In P , there is a name ẏ′ such

that whenever h is Col(ω, µ)-generic over P , r ∈ h implies ẏ′[h] = ẏ[h] and r /∈ h implies

ẏ′[h] = w. Then ẏ′ ∈ σ and ẏ′[g] = y. So y ∈ σ[g].

A comeager set of Col(ω, µ)-generics over M are also generic over P . So by the previous

claim, and Lemma 3.1.5, σ[g] = P [g] ∩Gn for any g which is Col(ω, µ)-generic over M .

It is not hard to see that τPn,µ is definable in M from σ. So τPn,µ is definable in M from

τMn,µ and z.

Lemma 3.5.5. Suppose P = StrLe[M, z]. The iteration strategy for P is fullness-preserving

and guided by G.
6Viewing B as a subset of δ.
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Proof. Let Σ be the (unique) iteration strategy for P . The proof of Theorem 2.5.4 gives

that Σ is determined by lifting an iteration on P to one on M . More precisely, if T is a

non-dropping iteration tree on P0 = P with ⟨Pα⟩ the models of the iteration and iβ,α the

associated iteration maps for β <T α, then we maintain an iteration tree T ∗ on M0 = M

with models ⟨Mα⟩ and associated iteration embeddings i∗β,α. We also maintain embeddings

πα : Pα → StrLe[Mα, z] such that πα ◦ iβ,α = i∗β,α ◦ πβ and π0 = id. In particular, πα ◦ i0,α =

i∗0,α.

Let µ be a cardinal of P above δP . By Lemma 3.5.3, i∗0,α(τ
P
n,µ) = τ

StrLe[Mα,z]
n,µ for

each n < ω. Then πα ◦ i0,α(τPn,µ) = τ
StrLe[Mα,z]
n,µ . Then by Lemma 3.1.8, Pα is Γ-ss and

πα(τ
Pα
n,µ) = τ

StrLe[Mα,z]
n,µ . This gives Σ is fullness-preserving. A second application of 3.1.8

gives i0,α(τ
P
n,µ) = τPα

n,µ. So Σ is guided by G.

Corollary 3.5.6. Suppose P = StrLe[M, z]. Then the ω1-iteration strategy for P is not in

Γ.

Proof. Immediate from Lemmas 3.1.15 and 3.5.5.

Lemma 3.5.7. Suppose x, z ∈ R and x codes a mouse N which is a complete iterate of Mz.

Let P = StrLe[Mx, z]. Then P is a complete iterate of N below δN .

Proof. Coiterate N and P . Let T and U be the iteration trees on N and P , respectively,

from the coiteration. Let N∗ and P ∗ be the last models of T and U , respectively.

Suppose P outiterates N . One possibility is that there is a drop on the branch of T from

P to P ∗. Since the iteration strategy for P is fullness-preserving by Lemma 3.5.5, P ∗ has an

ω1-iteration strategy in ∆. But the strategy for N is fullness-preserving and guided by G.

So N∗ cannot have an iteration strategy in ∆, contradicting that N∗ ⊴ P ∗.

If there is no drop between P and P ∗, then N∗ ◁ P . Since neither side of the coiteration

drops, N∗ and P ∗ are both Γ-ss. But no Γ-ss mouse can have a proper initial segment which

is Γ-ss.
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An identical argument shows N cannot outiterate P . Thus N∗ = P ∗ and T and U

realize N∗ and P ∗ are complete iterates of N and P , respectively. Since there are no total

extenders on N above δN , T is below δN . Similarly, U is below δP . Then stationarity of the

Mitchell-Steel construction7 implies that P ∗ = P . So T realizes that P is a complete iterate

of N .

3.6 A Reflection Lemma

In this section we prove a lemma that any Σ1 statement true in Mx also holds in some

N ◁ Mx|κMx with the property that StrLe[N ] ◁ StrLe[M ]. A thorough reader not already

familiar with the fully-backgrounded Mitchell-Steel construction may wish to review Section

2.5 before proceeding. A lazy one may read the statement of Lemma 3.6.4 and skip to

Section 3.7.

First, we need to showMx can compute the iteration strategies of its own initial segments

below its Woodin cardinal. More precisely, we have:

Lemma 3.6.1. Let x ∈ R, N ◁Mx|δMx and T ∈Mx be an iteration tree on N of limit length

< δMx, according to the (unique) iteration strategy for N . The cofinal branch b through T

determined by the iteration strategy for N is definable in Mx (uniformly in N and T , from

the parameter τMx
0,νMx

).

Proof. Let M = Mx. By Corollary 3.3.2, the function a 7→ LpΓ(a) with domain M |δM is

definable in M from the parameter τM0,νM .

Let N and T be as in the statement of the lemma. Let S = M(T ). Clearly S is definable

from T . Let Q = Q(T ). Q is an initial segment of LpΓ(S). The previous paragraph implies

Q is definable in M from S and τM0,νM . The branch b through T chosen by the iteration

strategy for N is the unique branch which absorbs Q.

It remains to show b is in M . Iterate M to M ′ well above where T is constructed to

7See e.g. 3.23 of [19].
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make some g generic over EaM
′

δM′ so that g codes b. M ′[g] satisfies that b is the unique branch

which absorbs Q. Since b is in fact the unique such branch in V , symmetry of the forcing

gives b is in M ′. But the iteration from M to M ′ does not add any subsets of lh(T ), so in

fact b is in M .

We need to put down a few more properties of the Mitchell-Steel construction before

proving the main lemma of this section.

Lemma 3.6.2. Suppose N is a mouse with a Woodin cardinal δN . Let z ∈ N∩R. There is a

club C of τ < δN such that Le[N |δN , z]|τ = Mτ , where Mτ is the Mitchell-Steel construction

of length τ in N |δN . Moreover, we can take C to be definable in N .

Proof. Let ⟨Mξ : ξ < δN⟩ be the models from the Mitchell-Steel construction of length δN

over z, done inside N |δN . Let C ′ ⊂ δN be the set of τ < δN such that Mτ has height τ and

ρω(Mξ) ≥ τ whenever ξ is between τ and the height of N . It is not hard to see from the

material in Section 2.5 that C is a club and if τ ∈ C, then Mτ = Le[N |δN , z]|τ .

Corollary 3.6.3. Let N , z, and C be as in Lemma 3.6.2. Let S be the set of inaccessible

cardinals of N below δN . Then Le[N |δN , z] =
⋃
τ∈C∩S Le[N |τ, z].

Proof. Since δN is Woodin in N , N |= “S is stationary.” And C is definable in N , so C ∩ S

is cofinal in δN . Since Le[N |δN , z] has height δN , Le[N |δN , z] =
⋃
τ∈C∩S Le[N |δN , z]|τ . So it

suffices to show if τ ∈ C ∩ S, then Le[N, z]|τ = Le[N |τ, z].

Let ⟨Mξ : ξ < δN⟩ be the models from the Mitchell-Steel construction of length δN over

z, done inside N . τ ∈ C guarantees Le[N, z]|τ = Mτ . And by Remark 2.5.5, τ ∈ S gives

Mτ = Le[N |τ, z]. So Le[N, z]|τ = Le[N |τ, z] for τ ∈ C ∩ S.

Lemma 3.6.4. Suppose Mx |= ϕ[⃗a] for some Σ1 formula ϕ, z ∈ R∩Mx, and a⃗ ∈ R|⃗a| ∩Mx.

Then there exists N ◁Mx|κMx such that

(a) N has one Woodin cardinal,

(b) δN is an inaccessible cardinal of Mx,
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(c) N |= ϕ[⃗a], and

(d) StrLe[N, z] ◁ StrLe[Mx, z].

Proof. Denote Mx by M . For ease of notation we will assume z = 0. Let µ be a cardinal of

M above δM such that M |µ |= ϕ[⃗a].

Claim 3.6.5. There is a stationary set of τ < δM such that τ is inaccessible in M and if

τ ≤ ζ < δM , then ζ is not definable in M |µ from parameters below τ .

Proof. Work inM . Let S be the set of inaccessible cardinals below δM . Since δM is Woodin,

S is stationary. Define f : S → δM by setting f(ζ) to be the least η such that there is

ζ ≤ ι < δM definable in M |µ from parameters in η. If the claim is false, then f is regressive

on a stationary set. Then by Fodor’s Lemma, there is a stationary set S0 and η < δM such

that f ′′S0 = {η}. But cof(δM) > |η<ω| × ℵ0, so we cannot have cofinally many elements of

δM defined by some formula and parameters from η.

Fix τ as in Lemma 3.6.2 and Claim 3.6.5. Let H = HullM |µ(τ). Let N be the transitive

collapse of H and π : N →M |µ the anti-collapse map.

By Theorem 2.3.6, N ◁M |µ. Clearly N ◁M |δM , N |= ϕ[⃗a], τ is the unique Woodin of N ,

τ is inaccessible in M , and ρω(N) = τ .

Claim 3.6.6. Le[N |τ ] ◁ Le[M |δM ]

Proof. For ζ < τ , Le[N |ζ] ◁ Le[N |τ ] ⇐⇒ Le[M |ζ] ◁ Le[M |δM ] by elementarity. But

Le[N |ζ] = Le[M |ζ] for ζ < τ . So if Le[N |ζ] is an initial segment of Le[N |τ ], then it is also

an initial segment of Le[M |δM ]. But this implies Le[N |τ ] ◁ Le[M |δM ], since by Corollary

3.6.3, Le[N |τ ] is a union of mice of the form Le[N |ζ] for ζ < τ .

We have found N ◁M |δM satisfying (a), (b), (c), ρω(N) = δN , and Le[N |δN ] ◁ Le[M |δM ]

(since δN = τ). Our next step is to reflect this below κM . Let F be a total extender in M

such that the strength of F is greater than On∩N . In particular, we have N ◁Ult(M |δM , F ).
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Claim 3.6.7. Le[N |τ ] ◁ Le[Ult(M |δM , F )].

Proof. τ is inaccessible in Ult(M |δM , F ). So by Remark 2.5.5, Le[N |τ ] equals the Mitchell-

Steel construction of length τ in Ult(M |δM , F ).

Suppose the claim fails. Then there is a mouse Q built during the Mitchell-Steel con-

struction in Ult(M |δM , F ) after Le[N |τ ] is constructed, such that Q projects to some β < τ .

Pick such a Q which minimizes β. By Lemma 3.6.1, any initial segment of M below δM is

iterable inM . ThenM has iteration strategies for Ult(P, F ) for any P ◁M |δM . Q is a mouse

built during the Mitchell-Steel construction in Ult(P, F ) for some P ◁ M |δM , so Q is also

iterable in M . Let Q′ = Cω(Q). Then Q′ is an ω-sound mouse over Le[N |τ ]|β projecting to

β which is iterable inM . It follows from Theorem 2.5.3 that Le[M |δM ] outiterates Q′. Since

both extend Le[N |τ ]|β, and Q′ is ω-sound and projects to β, Q′ ◁ Le[M |δM ]. But then since

τ is inaccessible in M , Le[M |τ ] has height τ , and Le[M |τ ] ◁ Le[M |δM ], Q′ is in Le[M |τ ].

This is a contradiction, since a subset of β which is not in Le[M |τ ] is definable over Q′.

By elementarity of iF , there exists N ◁ M |κM satisfying (a), (b), (c), ρω(N) = δN , and

Le[N |δN ] ◁ Le[M |δM ]. It remains to prove the following claim.

Claim 3.6.8. StrLe[N ] ◁ StrLe[M ].

Proof. Since N projects to δN , so does StrLe[N ] (by Lemma 2.6.1). And StrLe[N ] agrees

with StrLe[M ] up to δN since Le[N |δN ] ◁ Le[M |δM ]. So it suffices to show StrLe[M ] out-

iterates StrLe[N ]. But StrLe[N ] has an iteration strategy in Γ, and StrLe[M ] cannot by

Lemma 3.5.6.

3.7 Main Theorem

We are ready to prove Theorem 1.0.10. Suppose for contradiction ⟨Aα|α < δ+
Γ ⟩ is a sequence

of distinct Γ sets. Let U ⊂ R× R be a universal Γ set.
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Let J = {(P, ξ) : P ∈ I∧ξ < δP}. Say (P, ξ) ≤∗ (Q, ζ) if (P, ξ), (Q, ζ) ∈ J and whenever

S is a complete iterate of both P and Q, πP,S(ξ) ≤ πQ,S(ζ). By Lemma 3.2.2, the relation

≤∗ has length > δ+
Γ . Fix n such that for some (equivalently any) P ∈ I, πP,∞(γPn ) > δ+

Γ .

Let ≤′
∗ be ≤∗ restricted to pairs (P, ξ) such that ξ < γPn . Then ≤′

∗ has length ≥ δΓ and ≤′
∗

is in Jβ′(R).8 Let Bα = {y : Uy = Aα}. By the Coding Lemma there is a set D in Jβ′(R)

such that (x, y) ∈ D implies x codes a pair in the domain of ≤′
∗ and y ∈ B|x|≤′∗

, and Dx is

nonempty for all x in the domain of ≤′
∗.

Let z0 ∈ R be such that z0 codes W and D ∈ OD<β′
(z0). Let I ′ be the directed system

of all countable, complete iterates of Mz0 . Let M
′
∞ be the direct limit of I ′. For M,N ∈ I ′

and N an iterate of M , let πM,N : M → N be the iteration map and πM,∞ : M → M ′
∞ the

direct limit map (We also used πM,N and πM,∞ for M,N ∈ I, but this should not cause any

confusion).

For M ∈ I ′, let τM = τMD,δM . There is a slight issue in that our current definitions do

not obviously guarantee that τM is moved correctly. That is, we might have a complete

iterate N ofM such that πM,N(τ
M) ̸= τN . This can happen because we defined the operator

x → Mx so that Mx is guided by G, but it is possible D /∈ G. There is no real issue here,

since we can expand G to a larger self-justifying system G ′ such that D ∈ G ′ and require Mx

be guided by G ′. However, we should leave the operator x → Wx as is, otherwise we risk

altering our construction of D. This raises another minor complication, because in Sections

3.3 and 3.4 we assumed our Γ-ss mouse M was guided by the same self-justifying system

as our Γ-suitable mouse W . Fortunately, the results of those sections remain true so long

as G ⊆ G ′, modulo increasing the number of terms required as parameters in some of the

lemmas. For simplicity, in what follows we will just assume τM is moved correctly.

Definition 3.7.1. Say M ∈ I ′ is locally α-stable if there is ξ ∈M such that πHM ,∞(ξ) = α.

Write αM for this ordinal ξ.

Definition 3.7.2. Say M ∈ I ′ is α-stable if M is locally α-stable and whenever N ∈ I ′ is

a complete iterate of M , πM,N(αM) = αN .
8This is done by similar arguments to those in Section 3.4.
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Lemma 3.7.3. For any α < δ+
Γ , there is an α-stable M ∈ I ′.

Proof. This is essentially the same as the proof of the analogous lemma in [2]. We will show

for any P ∈ I ′, there is an iterate of P which is α-stable.

Claim 3.7.4. For any P ∈ I ′, there is a countable, complete iterate R of P which is locally

α-stable

Proof. Fix S ∈ I and ζ ∈ S such that πS,∞(ζ) = α. Let R be a countable, complete iterate

of P such that S is EaR-generic over R.

Let Ṡ be an EaR-name for S such that ∅ ⊩R
EaR

“Ṡ is a complete iterate of W .” Applying

Lemma 3.4.7 yields S ′ ∈ IR which is a complete iterate of S. Then

πHR,∞ ◦ πS′,HR ◦ πS,S′(ζ) = πS,∞(ζ)

= α.

In particular, α ∈ range(πHR,∞).

Now suppose no M ∈ I ′ is α-stable. Let ⟨Rj : j < ω⟩ be a sequence in I ′ such that for

all j, Rj is locally α-stable and Rj+1 is an iterate of Rj, but πRj ,Rj+1
(αRj

) ̸= αRj+1
.

Claim 3.7.5. πRj ,Rj+1
(αRj

) ≥ αRj+1

Proof. By elementarity, πRj ,Rj+1
↾ HRj is an embedding of HRj into HRj+1 . Then the Dodd-

Jensen property implies for any common complete iterate Q of HRj and HRj+1 ,

πHRj+1 ,Q ◦ πRj ,Rj+1
(αRj

) ≥ πHRj ,Q(αRj
).

Then

πHRj+1 ,∞ ◦ πRj ,Rj+1
(αRj

) ≥ πHRj ,∞(αRj
)

= α

= πHRj+1 ,∞(αRj+1
).

So πRj ,Rj+1
(αRj

) ≥ αRj+1
.
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Let Rω be the direct limit of the sequence ⟨Rj : j < ω⟩. Let αj = πRj ,Rω(αRj
). Claim

3.7.5 implies αj+1 < αj for all j, contradicting the wellfoundedness of Rω.

Let pM be a maximal condition in EaM such that p forces the generic ea is a pair

(ea1, ea2), where ea1 codes a pair (Rea1 , ξea1) such that there exists an iteration tree on W

(according to the strategy for W ) with last model Rea1 and ξea1 < δRea1
.9 In fact let pM be

the least such condition in the construction of M , to ensure pM is definable in M .

Lemma 3.7.6. There is QM ∈ IM such that pM forces QM is a complete iterate of Rea1.

Moreover, QM is definable in M from parameter pM (uniformly in M).

Proof. Apply Lemma 3.4.7 to the condition pM and a name for Rea1 .

Definition 3.7.7. For α-stable M ∈ I ′, say p ∈ EaM is α-good if p extends pM and p forces

1. πQ̌M ,HM ◦ πRea1 ,Q̌
M (ξea1) = αM and

2. (ea1, ea2) ∈ τM .

Remark 3.7.8. If α < δ+
Γ , being α-good is definable over α-stable M ∈ I ′ from αM , τM ,

and ⟨τMk,νM : k < n⟩ (uniformly in M). This follows from Lemmas 3.4.5 and 3.4.6.

Let pMα be the maximal α-good condition in M which is least in the construction of M .

Note if M is α-stable and N is a complete iterate of M , then πM,N(p
M
α ) = pNα .

For w ∈ R ∩ M and a Σ1 formula ψ(w), write M |= [ψ(w)] to mean whenever g is

Col(ω, δM)-generic over M , there is a proper initial segment of M [g] which is a ⟨ψ′, g⟩-

witness, where ψ′(x) is a formula expressing “ψ(f(x))” for some computable function f such

that f(g) = w. Note “M |= [ψ(w)]” is Σ1 over M if M is iterable.

For α-stable M ∈ I ′, let SMα be the set of conditions q such that there exist N, r ∈ M

satisfying

(a) N ◁M |κM ,

9This is first order by Corollary 3.3.8 and Lemma 3.4.6.
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(b) N has one Woodin,

(c) δN is a cardinal of M ,

(d) q, r ∈ EaN and (q, r) ⊩N
EaN×EaN [U(eal, ea

2
r)],

10 and

(e) r is compatible with pMα .

Let Sα = πM,∞(SMα ) for some (equivalently any) α-stable M ∈ I ′. Sα can be viewed as

an element of P (κM ′
∞)M

′
∞ .

Let A′
α be the set of reals x such that there is an α-stable M ∈ I ′ and q ∈M satisfying

1. q ∈ SMα ,

2. x |= q, and

3. x is EaM -generic over M .

Lemma 3.7.9. A′
α = Aα

It suffices to show Lemma 3.7.9. The lemma implies α ̸= β =⇒ Sα ̸= Sβ. By the same

proof as for M∞ given in Lemma 3.2.1, κM ′
∞ ≤ δΓ. So we have δ+

Γ distinct subsets of δΓ

in M ′
∞. Then the successor of δΓ in M ′

∞ is the successor of δΓ in L(R), contradicting the

following claim.

Claim 3.7.10. Let η = δΓ. Then (η+)M
′
∞ < (η+)L(R)

Proof. Let λ = (η+)M
′
∞ . Since λ is regular in M ′

∞ but not measurable, Lemma 3.2.6 implies

λ has cofinality ω in L(R).

Let f ∈ L(R) be a cofinal function from ω to λ. Let ⟨gξ : ξ < λ⟩ be a sequence of

functions in M ′
∞ such that gξ : η → ξ is a surjection. Such a sequence exists because M ′

∞

satisfies AC. Then in L(R) we can construct from f and ⟨gξ⟩ a surjection from η onto λ.

10Here by U we really mean some fixed Σ1-formula defining U in Jα0
(R).
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Proof of Lemma 3.7.9. First suppose x ∈ Aα. Pick y ∈ R such that y = (y1, y2), D(y1, y2)

holds, and |y1|≤∗ = α. Pick an α-stable M̄ ∈ I ′ such that αM̄ exists. Let z be a real coding

M̄ and let P =M⟨x,y,z⟩. Let S = StrLe[P, z0].

Claim 3.7.11. x and y are EaS-generic over S.11

Claim 3.7.12. S is a complete iterate of M̄ by an iteration below δM̄ .

Proof. See Lemma 3.5.7.

Claim 3.7.13. There exist conditions q, r ∈ EaS such that x |= q, y |= r, and (q, r) ⊩S
EaS×EaS

[U(eal, ea
2
r)].

Proof. By the choice of y, y satisfies some α-good condition r. Let y0 be S[x]-generic such

that y0 |= r. Then by the definition of α-good, y0 = (y10, y
2
0) where (y10, y

2
0) ∈ D and

|y10|≤∗ = α. It follows that Uy20 = Aα. So x ∈ Uy20 .

Subclaim 3.7.14. S[x][y0] |= [U(x, y20)].

Proof. Let g be Col(ω, δS)-generic over S[x][y0]. Note S[x][y0][g] = S[g] is a g-mouse. By

the proof of Lemma 3.3.7, LpΓ(g) is contained in S[g]. Let f be a computable function such

that f(g) = (x, y20) and let U ′(v) be a formula expressing U(f(v)) holds. By Lemma 3.1.22,

there is a ⟨U ′, g⟩-witness which is sound, projects to ω, and has an iteration strategy in ∆.

Since LpΓ(g) ⊆ S[g], this witness is an initial segment of S[g].

We have shown S[x][y0] |= [U(x, y20)] for any y0 which satisfies r and is S[x]-generic. Thus

there is q ∈ EaS such that x satisfies q and (q, r) ⊩ [U(eal, ea
2
r)].

We next would like to find some N ◁ S|κS with the properties of S we obtained above.

Note Claims 3.7.11 and 3.7.13 are not first order over S, since x and y are not in S. So a

straightforward reflection argument inside S will not suffice. The point of introducing P and

obtaining S as a construction inside P is that these claims are first order in P . The next

11This is a standard property of the fully-backgrounded construction - see Section 1.7 of [2].
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claim demonstrates we can perform a reflection in P to obtain the desired initial segment of

S.

Claim 3.7.15. There is N◁S|κS such that N has one Woodin, δN is an inaccessible cardinal

of S, x and y are generic for EaN , and there exist q, r ∈ EaN×EaN such that x |= q, y |= r,

and (q, r) ⊩ [U(eal, ea
2
r)].

Proof. By Claims 3.7.11 and 3.7.13, P satisfies

1. x and y are EaStrLe[P,z0]-generic over StrLe[P, z0] and

2. there exist conditions q, r ∈ StrLe[P, z0] such that x |= q, y |= r, and

(q, r) ⊩StrLe[P,z0]
EaStrLe[P,z0]

×EaStrLe[P,z0]
[U(eal, ea

2
r)].

Both properties are Σ1 over P in parameters x, y, and z0. Then we may apply Lemma

3.6.4 to obtain P ′◁P |κP such that P ′ has one Woodin cardinal, δP ′ is an inaccessible cardinal

of P , StrLe[P ′, z0] ◁ S, and P
′ satisfies properties 1 and 2.

Let N = StrLe[P ′, z0]. Note δN = δP ′ is an inaccessible cardinal of S. Then all the

properties we required of N are apparent except that N ◁ S|κS. Standard properties of the

Mitchell-Steel construction imply that κS ≥ κP .
12 Then N has cardinality less than κS in

P , since N is contained in P ′. Since also N ◁ S, we have N ◁ S|κS.

To get x ∈ A′
α, it remains to show the following claim.

Claim 3.7.16. r is compatible with pSα.

Proof. Note by choice of y, y1 codes a pair (R, ξ) such that R is a complete iterate of W ,

πR,HS(ξ) = αS, and D(y1, y2) holds. Then there is p ∈ EaS such that y |= p, p forces

πQ̌S ,HS ◦ πRea1 ,Q̌
S(ξea1) = αS, and (ea1, ea2) ∈ τS. We may assume p extends r. p is α-good,

so by maximality p is compatible with pSα. Then r is compatible with pSα as well.

12Suppose λ < δS = δP and E is an extender on the fine extender sequence of S witnessing κS is λ-strong
in S. Let E∗ be the background extender for E on the fine extender sequence of P . Then E∗ witnesses κS

is λ-strong in P .
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Now suppose x ∈ A′
α. Let M, q realize this and let N, r realize q ∈ SMα . Let y be

M [x]-generic for EaM such that y |= r ∧ pMα . Since y |= pMα , y = (y1, y2) where Uy2 = Aα.

Since (x, y) |= (q, r), M [x][y] |= [U(x, y2)]. Let g ⊂ Col(ω, δM) be M [x][y]-generic. Then

M [x][y][g] =M [g] has an initial segment R witnessing U(x, y2). By taking the least such R,

we may assume R projects to ω and hence R ∈ LpΓ(g). It follows that x ∈ Uy2 = Aα.
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CHAPTER 4

Remarks on Some Projective-Like Cases

Here we provide a few brief comments on the problem of unreachability for projective-like

cases. Section 4.1 covers the projective pointclasses. In Section 4.2, we discuss what appears

to be the main obstacle to proving the rest of the following conjecture.

Conjecture 4.0.1. Assume ZF+AD+DC+V = L(R). Suppose κ ≤ δ2
1 is a Suslin cardinal

and κ is either a successor cardinal or a regular limit cardinal. Then κ+ is S(κ)-unreachable.

4.1 The Projective Cases

In the introduction, we discussed Sargsyan’s theorem solving the problem of unreachability

for the projective pointclasses:

Theorem 4.1.1 (Sargsyan). Assume ZF + AD +DC. Then δ1
2n+2 is Σ1

2n+2-unreachable.

Our technique for proving Theorem 1.0.10 gives an alternative proof of Sargsyan’s theo-

rem, which we outline below. We will assume ZF + AD +DC for the rest of this section.

Let W =M#
2n+1. Let I be the directed system of countable, complete iterates of W and

let M∞ be the direct limit of I. Sargsyan performed an analysis of I in [20].

Fact 4.1.2. κM∞ < δ1
2n+2 and δM∞ > (δ1

2n+2)
+.

The iteration strategy forW is guided by indiscernibles, analogously to how our iteration

strategies in Chapter 3 were guided by terms for sets in a sjs. [20] covers this analysis of the

iteration strategy for W in detail. Also analogously to Sections 3.3 and 3.4 of Chapter 3,
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inside an iterate M of M#
2n+1(x0) for some x0 ∈ R coding W , we can form the direct limit

HM of countable iterates of W in M and approximate the iteration maps from W to HM .

This internalization is covered in [2].

The following fact gives us an analogue of the notion of a ⟨ϕ, z⟩-witness.

Fact 4.1.3. There is a computable function which sends a Σ1
2n+2-formula ϕ to a formula

ϕ∗ = ϕ∗(u0, ..., u2n−1, v) in the language of mice such that the following hold:

1. If x ∈ R, M is a countable, ω1+1-iterable x-premouse, M |= ZFC, M has 2n Woodin

cardinals δ0, ..., δ2n−1, ϕ is a Σ1
2n+2 formula, and M |= ϕ∗[δ0, ..., δ2n−1, x], then ϕ(x)

holds.

2. If x ∈ R, δ0, ..., δ2n−1 are the Woodin cardinals of M#
2n(x), ϕ is a Σ1

2n+2 formula,

and ϕ(x) holds, then a proper initial segment of M above δ2n−1 satisfies ZFC and

ϕ∗[δ0, ..., δ2n−1, x].

With these tools it is not difficult to adapt our proof of Theorem 1.0.10 into a proof of

Theorem 4.1.1.

Here is a brief overview of the proof of Theorem 4.1.1 in [2]. The basis of this proof is

also studying the directed system I ′ of countable iterates of M#
2n+1(z0) for some z0 ∈ R.

Suppose ⟨Aα : α < δ1
2n+2⟩ is a sequence of distinct Σ1

2n+2 sets. Fix a Π1
2n+3\Σ1

2n+3 set

A ⊂ ω. If n ∈ A, this is witnessed in a proper initial segment of any M2n+1-like Π1
2n+2-

iterable premouse M . Then there is a Σ1
2n+3 set A′ ⊂ A consisting of, roughly speaking,

all n ∈ ω which are witnessed in such an M before some x ∈ Aα is witnessed. There is

n0 ∈ A′\A. This is witnessed in some proper initial segment N̄M of M |κM for any M ∈ I ′.

A coding set SM is defined analogously to our coding sets in the proof of 1.0.10, but with

the additional requirement that the conditions appear below N̄M . The coding sets are used

to show a Σ1
2n+2 code for Aα is small generic over M . The contradiction is obtained from

this.

The technique described in the previous paragraph is a stronger argument than the one
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we used for Theorem 1.0.10, since it gives coding sets which are uniformly bounded below the

least strong cardinal. It is not clear whether a similar argument could work for inductive-like

pointclasses. There is no obvious analogue of the Π1
2n+3\Σ1

2n+3 set A for an inductive-like

pointclass Γ, since there is no universal Γ\Γc set of integers. So the proof from [2] is not

applicable to inductive-like pointclasses. On the other hand, the techniques of Chapter 3

are applicable to the projective pointclasses. And this yields a substantially simpler proof

of Theorem 4.1.1, since it eliminates the need for a uniform bound on our coding sets.

4.2 Mouse Sets and Open Problems

In this section we discuss the relationship between the problem of unreachability and well-

known conjectures on mouse sets. We will assume ZF + AD +DC + V = L(R), although

this is overkill for some of the results stated below.

Definition 4.2.1. X ⊂ R is a mouse set if there is an ω1 + 1-iterable premouse M such

that X =M ∩ R.

Theorem 4.2.2 (Steel). Suppose Γ = Σ1
n+2 for some n ∈ ω. Then CΓ is a mouse set.

Theorem 4.2.3 (Woodin). Suppose λ is a limit ordinal and let

Γ = {A ⊆ R : A is definable in Jβ(R) for some β < λ}. Then CΓ is a mouse set.

See [21] and [9] for proofs of Theorems 4.2.2 and 4.2.3, respectively. [9] also gives the

following conjecture.

Conjecture 4.2.4 (Steel). Suppose Γ is a level of the (lightface) Levy hierarchy. Then CΓ

is a mouse set.

Conjecture 4.2.4 is a way of asking if there is a mouse corresponding exactly to the

pointclass Γ. For each Γ in the Levy hierarchy, the core model induction constructs a mouse

which contains CΓ, but in some cases the mouse constructed is too large. For example, let
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J be the mouse operator J(x) =
⋃
n<ωM

#
n (x). If Γ = Σn+2(J2(R)), then

MJ#

n ∩ R ⊊ CΓ ⊊MJ#

n+1 ∩ R.

There are many similar cases in which the mice constructed in [16] skip the (hypothesized)

mouse realizing Conjecture 4.2.4. Recent progress has been made towards Conjecture 4.2.4

in [22], which resolves the case Γ = Σ2(J2(R)).

The problem of unreachability is connected to a boldface version of Conjecture 4.2.4.

Conjecture 4.2.5. Suppose α ∈ ON and n ∈ ω. For x ∈ R, let Γx consist of all pointsets

A for which there is a Σn formula ϕ with parameter x such that A = {y : Jα(R) |= ϕ[y]}.

Then for any y ∈ R, there is x ∈ R such that y ≤T x and CΓx is a mouse set.

Presumably a proof of Conjecture 4.2.4 would relativize, so a proof of Conjecture 4.2.4

would also resolve Conjecture 4.2.5.

The mouse operator x 7→M#
2k(x) realizes Conjecture 4.2.5 holds for α = 1 and n = 2k+2.

To prove δ1
2n+2 isΣ

1
2n+2-unreachable, we studied the direct limit ofM =M#

2n+1(x0) for some

x0 ∈ R. Note if g is Col(ω, δM)-generic over M , then M [g] =M#
2n(g).

For α admissible, the mouse operator x 7→ Mx of Theorem 3.1.16 realizes Conjecture

4.2.5 holds in the case n = 1. Note if g is Col(ω, δMx)-generic over Mx, then Mx[g] ∩ R =

LpΓ(g) ∩ R = CΓ(g). So in the inductive-like case as well we studied the direct limit of a

mouse such that collapsing its least Woodin yields a mouse realizing one case of Conjecture

4.2.5.

Thus for each pointclass Σn(Jα(R)) for which we have proven Conjecture 1.0.9 holds,

we used a mouse operator realizing Conjecture 4.2.5 holds for α and n. It seems likely a

proof of Conjecture 4.0.1 would involve proving Conjecture 4.2.5 for each α and n such that

Σn(Jα(R)) = S(κ) for some Suslin cardinal κ which is a successor cardinal or a regular limit

cardinal.
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