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Process-Based Models: 
A Synthesis of Models and Applications to 
Address Environmental and Management Issues*

Guy R. Larocque, Alexander Komarov, Oleg Chertov, Vladimir Shanin, 
Jinxun Liu, Jagtar S. Bhatti, Weifeng Wang, Changhui Peng, 
Herman H. Shugart, Weimin Xi, and Jennifer A. Holm

8.1  Introduction

The development of process-based models, also known as mechanistic or ecosystem models, 
has a shorter history than empirical or gap models (Chapters 6 and 7). Numerous empiri-
cal models have been developed since the early 1960s to simulate forest growth using for-
est inventory data. For forest managers, empirical models became more useful tools than 
the traditional growth and yield tables, as their implementation on computers facilitated 

*	 This chapter is dedicated to our colleague Alexander Komarov, Professor at the Institute of Physicochemical 
and Biological Problems in Soil Science of Russian Academy of Sciences, who passed away in Pushchino, 
Russia, on May 31, 2015.
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the management of large datasets of predicted stand growth attributes and the simula-
tion of silvicultural treatments. The development of gap models, which simulate forest 
succession using semiempirical relationships, began in the early 1970s with the JABOWA 
model (Botkin et al. 1972) (see Chapter 7). It is only in the 1980s that the development of 
process-based models really began when the need to simulate the effects of environmental 
disturbances, such as acid rain, air pollution, or climate change, on the functioning of for-
est ecosystems was identified.

Process-based models represent and simulate physiological and biogeochemical pro-
cesses and their interactions with the abiotic environment (water, climate, and nutrients) 
in forest ecosystems by using functional relationships (Johnsen et  al. 2001; Landsberg 
and Sands 2011). These functional cause–effect relationships are structured within a com-
plex hierarchy of processes of different levels of importance within a system. As forest 
ecosystems are characterized by many interactions and feedbacks between vegetation, 
soil, and the atmosphere, the capacity of process-based models to make realistic predic-
tions depends on a logical integration of matter and energy fluxes (Friend et al. 1997). 
Key physiological processes that may be considered for tree growth modeling include 
photosynthesis; mineral metabolism; respiration; carbon partitioning; absorption and 
accumulation of water, minerals, and gases; translocation; growth regulation; and litter 
decomposition (Pastor and Post 1985; Dixon 1990; Landsberg 2003a). Other processes that 
may be found in process-based models include tree phenology, plant functional–type 
competition, mortality, responses to fire or pest disturbances, and effects of human and 
land management. However, few process-based models include representations of all 
these processes, as the amount of data to initialize them is considerable. Also, for the pre-
diction of some ecosystem processes, such as growth or turnover rate of some ecosystem 
pools, it is not necessary to include model components for all possible ecophysiological 
processes. The challenge that modelers face when they develop process-based models is 
to determine the extent to which the complexity in the representation of processes is suf-
ficient to meet specific objectives and make realistic predictions. As there are many pro-
cesses and interactions in forest ecosystems, the relationships can have a high degree of 
complexity that cannot necessarily be solved using analytical mathematical techniques, 
which explains why the majority of process-based models have been developed by apply-
ing the basic principles of systems analysis. Process-based models are seen as powerful 
tools that allow scientists to better understand ecosystem functioning and give a realistic 
prognosis if some factors change in the future (Landsberg 2003b).

The basic framework of the majority of process-based models includes model compo-
nents that interact to simulate productivity and nutrient, water, and carbon cycles. There 
are different levels of complexity in these models. Also, some models focus on the simula-
tion of only some of the ecosystem components or fluxes, such as nutrient or water cycles. 
These are abiotic interactions, but there are also biotic interactions, such as competition. 
Typical models include the representation of the effects of environmental factors, includ-
ing temperature, precipitation, photosynthetic active radiation (PAR), or soil properties, 
on the ecosystem processes: photosynthesis, respiration, organic matter decomposition, 
and so on. Concerning productivity, two basic levels are to be considered. For trees and 
understory woody and herbaceous vegetation, productivity is the allocation of the net 
production of carbohydrates in the different compartments: stems, branches, foliage, and 
roots. Productivity at the ecosystem (or stand) level is the result of biotic processes, such 
as competition, that affect carbon allocation among individual trees. As stand density 
increases, each individual tree sees its available growing space reduced by the presence 
of neighboring trees. As a result, crown development is inhibited because the potential 
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amount of PAR they can absorb for photosynthesis is reduced by neighboring crowns 
and the amount of nutrients they can potentially uptake is captured by neighboring root 
systems. Carbon, water, and nutrients are transferred among ecosystem compartments 
from trees to the forest floor and to the soil. The soil system is a biological reactor that 
is responsible for the biomass decomposition and elements’ return in trees and forest 
vegetation. The rate of soil processes influences tree and forest productivity as well as 
photosynthesis. These cycles influence tree and ecosystem productivity by regulating 
the movement of water from the canopy to the soil, transferring and synthesizing carbon 
from vegetation to the soil, and recycling nutrients contained in the litters of vegetation 
and roots.

There are two main benefits of process-based models. First, their development, validation, 
and application may lessen the need for expensive experimental studies. For instance, the 
analysis of the dynamics of a forest ecosystem type to all possible combinations of climatic 
conditions, site properties, and management regimes that would require the establish-
ment of a statistically replicated large-scale experimental design is theoretically possible, 
but very expensive and impractical (Korzukhin et al. 1996). The development of models 
based on the representation of the rules of changes in the main processes may be used as 
substitutes for experimentation, as long as the rules of change are adequately represented. 
Second, process-based models have the potential to address issues related to the basic 
principles of ecosystem management and to provide sound predictions of the dynamics 
of ecosystems when changes in environmental conditions are unprecedented (Korzukhin 
et al. 1996). This is the case of climate change or any external impacts such as pollution. 
Many short-term studies have examined the effects of increase in temperature and atmo-
spheric CO2 concentration either in growth chambers or in FACE experiments. However, 
the contributions of these types of experiments have limits, as they cannot consider all 
ecosystem components and interactions and capture the longevity factor (Ceulemans and 
Mousseau 1994; Luo and Reynolds 1999).

The objective of this chapter is to review different types of process-based models and 
describe how they can be used in a context of the application of the basic principles of 
ecological forest management. Relatively, few process-based models have been used to 
address forest management questions (Battaglia and Sands 1998; Johnsen et  al. 2001; 
Shanin et al. 2011; Bond-Lamberty et al. 2014). However, as the international community 
increasingly demands that forests be managed sustainably, which requires that forest 
managers evaluate the impacts of environmental disturbances on ecosystem dynamics, it 
is likely that process-based models will be used more frequently in the decision-making 
process for forest management. The next section gives a short overview of physiologi-
cal models that focus on the modeling of single processes: light-use and photosynthesis 
models. Section 8.3 describes the basics of different ecosystem process-based models. The 
term ecosystem model is used here to include different types of model formulations to 
simulate ecological processes. Thus, hybrid models may combine empirical as well as 
process-based formulations and may facilitate the linkage with traditional forest inven-
tory data. Process-based models are commonly viewed as focusing on ecosystem-level 
predictions, but there are global-scale process-based models that were developed to sim-
ulate ecological processes over large regions. Finally, linkages between process-based 
models and ecological indicators are discussed in the context of biodiversity and eco-
system management. In Section 8.4, model evaluation and uncertainty analyses will be 
discussed to highlight their importance for model development and usefulness. Different 
case studies that used process-based models to predict the effects of climate change, fire, 
and management will be reviewed in Section 8.5.
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8.2  Physiological Single-Process Models

8.2.1  Light-Use Models

Light-use models are among the simplest forms of process-based models to predict forest 
growth. They have the following general form (Landsberg and Sands 2011):

	 P N T Rn abs= ( )e q f, , - 	 (8.1)

where
Pn is the net primary production (NPP)
ε is the light-use efficiency factor that converts the absorbed photosynthetic radiation, 

ϕabs, to carbohydrates
θ is the soil water effect
N is the nutrient effect
T is the temperature effect
R is the total respiration

According to Landsberg and Sands (2011), the model developed by Byrne et al. (1986) is an 
early application example of forest growth prediction of the monthly biomass production 
of Pinus radiata grown in three sites differing in climatic conditions. Light-use models are 
relatively simple models that can easily be linked to remote sensing data to predict NPP 
or global terrestrial balance (Medlyn 1998). However, there are examples to estimate light 
interception at the individual crown level (see Duursma and Mäkelä 2007).

8.2.2  Photosynthesis Models

The modeling of photosynthesis has been the subject of many papers since the 1970s 
and 1980s. This situation can be attributed to the increased availability of gas exchange 
instruments (Landsberg 2003a). Several types of models were developed to predict 
photosynthetic rate. There are different levels of complexity with respect to the details 
included in the representation of biochemical processes and scaling methods, which may 
vary from individual leaves to canopy levels. Only the models that have been studied and 
used most often will only be reviewed in this section.

One of the simplest forms of photosynthesis model was derived by McMurtrie et  al. 
(1990) using a Blackman function:

	
A P Rn max d= ( )( )min ,df - r - t -1 l l 	 (8.2)

where
An is the net photosynthetic rate
δ is the quantum yield
ϕ is the photosynthetic photon flux density on a leaf
ρl and τl are the leaf reflectance and transmittance to PAR, respectively
Pmax is the light saturated photosynthetic rate at ambient CO2

Rd is the dark respiration rate
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Photosynthesis models based on the nonrectangular hyperbola model have been used 
very often to model canopy photosynthesis for different species (Johnson et al. 2010). It is 
defined as follows (Johnson and Thornley 1984; Thornley 1998):

	
P

I P I P I P
leaf

leaf max leaf max leaf max

=
+ +( )é

ë
ù
û

a - a qa

q

2
4

2

-
	 (8.3)

where
Pleaf is the leaf gross photosynthetic rate
α is the initial slope value of the photosynthetic light response (PLR) curve (also known 

as photochemical efficiency)
Ileaf is the incident light on the upper leaf surface
Pmax is the photosynthetic rate that can be reached at saturated light conditions
θ is the convexity parameter of the PLR curve

The nonrectangular hyperbola model was used in several studies in which the effect 
of environmental factors was integrated. For instance, Johnson et al. (2010) incorporated 
equations to account for the effect of temperature, nitrogen, protein, and CO2 atmospheric 
concentrations on the parameters of the nonrectangular hyperbola model. Calama et al. 
(2013) examined the effect of leaf temperature and soil water content on Pmax and of 
leaf temperature on α. Xu et al. (2014) incorporated the influence of chlorophyll and leaf 
nitrogen.

The photosynthesis model that has had the greatest influence in terms of conceptual 
development and application was developed by Farquhar et al. (1980) and Farquhar and 
von Caemmerer (1982) (Landsberg 2003a). This model is universally recognized and is 
used to simulate photosynthesis in many ecosystem process-based models. This model 
assumes that the net photosynthetic rate is regulated by the ribulose bisphosphate 
(RUBP) concentration, the activity of RUBP carboxylase/oxygenase (Rubisco) at saturat-
ing RUBP, or by triosephosphate utilization. However, most applications of the model 
do not consider the triosephosphate utilization. Only the basic model components will 
be presented here. For more details, readers are encouraged to browse the abundant 
literature on this model.

The model component regulated by the RUBP concentration is as follows:

	
A J

C
C

Rn
i

i
d=

+( )
- G

G4 2
- 	 (8.4)

where
An is the net photosynthetic rate
J is the potential electron transport rate
Ci is the CO2 intercellular concentration
Γ is the CO2 compensation point
Rd is the dark respiration rate
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The model component when An is regulated by the activity of RUBP carboxylase/oxygen-
ase is

	
A V

C
C K O K

Rn cmax
i

i c o
d=

+ +( )
- G

-
1 /

	 (8.5)

where
Vcmax is the Rubisco potential capacity for CO2 fixation per unit leaf area
Kc is the Michaelis–Menten coefficient for carboxylation
O is the intercellular O2 concentration
Ko is the Michaelis–Menten coefficient for oxygenation

Since this model was developed, several studies have been conducted to improve its 
potential applicability for different species. Wullschleger (1993) conducted an analysis of 
An/Ci curves for 109 species that resulted in a dataset of coefficients for Vcmax and maxi-
mum potential electron transport rate (Jmax). Parameters were related to site conditions, 
including the influence of temperature or concentrations of nitrogen and proteins in the 
foliage (e.g., McMurtrie and Wang 1993; Leuning et al. 1995; Niinemets and Tenhunen 
1997; Evans and Poorter 2001; Larocque 2002; Sharkey et al. 2007). The spatial variation 
within crowns through change in  specific leaf area in different crown sections was mod-
eled by Niinemets and Tenhunen (1997), Larocque (2002), and Evans and Poorter (2001).

8.3  Ecosystem Process-Based Models

8.3.1  Biogeochemical Cycles

Process-based models that simulate the functioning of forest ecosystems usually include 
mathematical representations of several ecophysiological processes and carbon, water, 
and nutrient cycles in a hierarchy of cause–effect relationships. They are characterized 
by a sufficient degree of flexibility to predict the impacts of external environmental influ-
ences (Landsberg and Sands 2011). The modeling of the allocation of carbohydrates syn-
thesized in the different physiological processes and carbon partitioning in the different 
pools in forest ecosystems has been the focus of the great majority of ecosystem process-
based models. Table 8.1 includes examples of biogeochemical models, with a summary 
of the main processes modeled, domains of application, and main contributions. As indi-
cated by the examples of Table 8.1, these models simulate several processes; some of them 
are common to nearly all models, such as photosynthesis, but some models focus on the 
detailed modeling of specific processes, such as the cycling of soil organic matter (SOM) 
(e.g., model of Raw hummus, mOder and MUL [ROMUL], European Forest Institute 
Model [EFIMOD]).

The majority of process-based models that have been developed in the last three decades 
are descendant of FOREST-BGC (BioGeochemical Cycles) (Running and Coughlan 1988; 
Running and Gower 1991). FOREST-BGC was one of the early models with detailed 
mechanistic model components that established a benchmark for the modeling of car-
bon, water, and nitrogen cycles (Landsberg and Sands 2011). The design of its framework 
facilitates the use of remote sensing data, surface climate and vegetation structure and 
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topographic and physical site characteristics obtained from geographic information sys-
tems to make predictions at regional scales. For processes at the canopy level, such as 
photosynthesis or respiration, FOREST-BGC is based on the big-leaf approach in which 
the canopy is viewed as a giant leaf, using leaf area index (LAI) values that can be obtained 
from remote sensing data. Thus, the predictions of FOREST-BGC are very sensitive to 
LAI. FOREST-BGC simulates the main processes of the carbon, nitrogen, and water cycles, 
including photosynthesis, maintenance and growth respiration, evapotranspiration, root 
turnover, litterfall, litter decomposition, and carbon allocation in the foliage, stems, and 
roots (Figure 8.1). There are 20 state variables and 41 parameters, and daily temperature 
and precipitation data must be provided as input. While photosynthesis, evaporation, 
maintenance respiration, evaporation, evapotranspiration, and litter mineralization are 
simulated daily, the allocation of carbon and nitrogen in trees, foliage, roots, and soil is 
simulated on an annual time cycle. Good examples of the application of FOREST-BGC 
for different forest ecosystem types can be found in Running (1994), Chiesi et al. (2002), 
Hoff et al. (2002), Luckai and Larocque (2002), Rodrigues et al. (2010), or Veganzones et al. 
(2010). Subsequently, FOREST-BGC evolved toward BIOME-BGC (Running and Hunt 
1993), which retained the basic framework of FOREST-BGC, but with modifications in 
some model components, such as photosynthesis and the dynamics of soil fluxes. Also, 
the interface with remote sensing data was improved. Recent examples of the application 
of BIOME-BGC can be found in Tatarinov and Cienciala (2006), Chiesi et al. (2007), Jung 
et al. (2007), Pietsch et al. (2005), Petritsch et al. (2007), and Wang et al. (2009).

The giant leaf approach used in FOREST-BGC to model canopy CO2 fluxes is one of the 
methods that have been considered in different models. The modeling of the scaling of phys-
iological processes from leaf to canopy is very complex, as there are nonlinear relationships 
involved (Leuning et al. 1995; Friend 2001). In addition to the giant leaf approach, other meth-
ods were proposed, such as the stratification of the canopy into foliage under sunlight and 
foliage in shade conditions, the establishment of scale factors based on photochemical effi-
ciency and PAR absorption, and the average illumination or foliage energy balance related 
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FIGURE 8.1
Basic diagram illustrating the main pools and daily and annual fluxes of FOREST-BGC. C, carbon; N, nitrogen; 
LAI, leaf area index. (Reprinted from Ecol. Modell., A general model of forest ecosystem processes for regional 
applications. I. Hydrologic balance, canopy gas exchange and primary production processes,  42, Running, S.W. 
and Coughlan, J.C., p. 125, Copyright 1988, with permission from Elsevier.)
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to environmental gradients (Norman 1993). Examples of the application of sunlit and shaded 
leaf portions of the canopy can be found in Chen et al. (1999) and Wang (2000). Further devel-
opments were inspired by these approaches. For instance, Larocque (2002) used the Weibull 
function to represent the change in foliage area and biomass with canopy depth and a linear 
relationship between foliage nitrogen content per unit leaf area and leaf dry mass area from 
the top to the bottom of crowns of sugar maple (Acer saccharum Marsh.).

For the last three decades, the literature on process-based models has considerably 
increased. A complete review of all the models is beyond the scope of this chapter, but some 
models will be discussed to illustrate the evolution in the concepts or modeling approaches 
that took place. The hybrid model is a biogeochemical model that is similar in concept to 
FOREST-BGC (Friend et al. 1997). In fact, its development was based on both FOREST-BGC 
and ZELIG (Urban 1990), a gap model, and the soil decomposition model component shares 
similarities with CENTURY (Parton et al. 1993). Hybrid is an individual tree model that 
simulates 14 processes in two time cycles, daily and annual time steps (Table 8.1). It also 
includes a grass layer that is subject to the same processes as the trees, and the values of 40 
parameters and daily temperature and precipitation data must be provided as input. Hybrid 
was subsequently modified to allow global-scale simulations of different plant functional 
types (PFTs) under preindustrial conditions (Friend and White 2000). In particular, it was 
parameterized for two grass and six tree PFTs by accounting for differences in physiologi-
cal and phenological characteristics. The model TREEDYN is also similar in concept to 
FOREST-BGC (Bossel and Schäfer 1989) (Table 8.1). However, compared to FOREST-BGC, 
the modeling of the physiological processes is simplified and there are more state variables 
and fluxes among the ecosystem pools. Good examples of other models with similar con-
cepts that have been developed and applied include BIOMASS (McMurtrie et al. 1990, 1992; 
Bergh et al. 1998, 2003) or G’DAY (Comins and McMurtrie 1993; Marsden et al. 2013).

PnET-CN is another process-based model that simulates the carbon, nitrogen, and 
water dynamics with a monthly time step. Temperature, precipitation, PAR condi-
tions, wet and dry nitrogen deposition, and atmospheric CO2 concentration drive the 
model (Aber and Driscoll 1997; Aber et al. 1997; Ollinger et al. 2002). The developers of 
PnET-CN modeled complex interactions using measurable parameters or state variables 
(e.g., foliar nitrogen concentration) to simulate key carbon, nitrogen, and water dynam-
ics. For example, the model simulates potential photosynthesis as a function of foliar 
nitrogen concentration and light-use efficiency with a multilayered canopy approach 
(Aber and Federer 1992). CO2 fertilization is considered through constant ratios of leaf 
internal to ambient CO2 concentrations (Ollinger et  al. 2002). More details about the 
model structures and functions were previously reported (Aber et  al. 1997; Ollinger 
et al. 2002). PnET-CN was used to simulate the effects of disturbances. Good examples 
can be found in Peters et al. (2013) and Wang et al. (2014). Forest management operations 
in PnET-CN can be treated as prescribed disturbance events that can be simulated in 
the model through four parameters: disturbance year, disturbance intensity, biomass 
removal fraction, and the loss rate of SOM. Regarding the tests performed by Peters 
et al. (2013), PnET-CN was used to investigate how the type, intensity and frequency of 
disturbances influenced forest net primary productivity across 107 stands in midwest 
region, United States. They suggested that soil disturbance had greater negative effects 
on net primary productivity than on stand mortality and biomass removal. Wang et al. 
(2014) used PnET-CN to simulate the effects of clearcuts on forest carbon dynamics 
against observations from two northern temperate forest eddy covariance chronose-
quences, indicating that forest management practices should aim at decreasing soil 
disturbance caused by clearcut operations.
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Recognizing the need for simplified ecophysiological models that could be accessible 
by forest practitioners for operational needs and easily linked to remote sensing and geo-
graphic information system data, Landsberg and Waring (1997) developed the general-
ized model physiological principles in predicting growth (3-PG). This model, which drew 
much attention, is based on the use of the general knowledge of physiological processes. 
Compared to the models described earlier, soil processes are more simplified. The allo-
cation of photosynthate production to foliage, stems, and roots is based on empirically 
derived ratios obtained from field data, allometric equations, or the literature. Respiration 
rate is only indirectly considered by computing the ratio of NPP to gross primary produc-
tion. The value of this ratio, 0.45, is assumed to be constant for many forest types. The 
changes in stand density over time are based on the application of the −3/2 power law, and 
the physiological effect of age on stand growth rate decrease is represented in the model. 
As aforementioned, 3-PG drew much attention and has been applied for many forest 
types around the world. Good examples can be found in Landsberg et al. (2003), Paul et al. 
(2003), Nightingale et al. (2008), Xenakis et al. (2008), Rodriguez-Suárez et al. (2010), Pérez-
Cruzado (2011), and Potithep and Yasuoka (2011). In particular, Xenakis et al. (2008) com-
bined 3-PG with a SOM model. Paul et al. (2003) combined 3-PG with CAMFor, a carbon 
accounting model, GENDEC, a  litter decomposition model, and ROTHC, a soil carbon 
turnover model.

The majority of biogeochemical models perform simulations at the stand, landscape, or 
regional levels. Relatively, few models were developed to simulate the development of indi-
vidual trees using mechanistic relationships. Korol et al. (1995a,b) developed TREE-BGC using 
FOREST-BGC as a framework to better integrate the effect of stand density and structure on 
productivity. Photosynthate production is computed at the stand level, but its partitioning 
among individual trees is computed using a competition algorithm based on tree height, leaf 
area, and light saturation threshold. The amount of carbon allocated to each tree in a stand is 
converted into diameter and height growth using allometric relationships. Zavala and Bravo 
de la Parra (2005) used a similar approach for Mediterranean forests. However, compared to 
TREE-BGC, the allocation to individual trees was directly linked to physiological resource 
limitation factors, including light and water availability and transpiration. A review of dif-
ferent single-tree process-based models may be found in Le Roux et al. (2001).

8.3.2  Soil Processes and Tree and Stand Development

Soil is a destructive component of terrestrial ecosystems responsible for nutrients and 
water supply to ecosystem organisms (first of all for plants) due to (1) dead organic matter 
decomposition with both its full mineralization and accumulation in soil and (2) weath-
ering of minerals in geological substrate. These processes lead to the release of nutrients 
for plant growth from decomposing organic matter and soil minerals; the accumulation 
of transformed organic matter, nutrients, and water in a soil profile; and the formation of 
underground pathways of biological cycle of elements in terrestrial ecosystems.

There are abiotic and biotic factors responsible for soil functioning and especially for 
forest ecosystem productivity. Abiotic, environmental factors are as follows:

	 1.	Solar radiation and heat flow from the atmosphere responsible for energy input 
and the rate of all biochemical, chemical, and physical processes.

	 2.	Atmospheric input (deposition) of water, elements (N, S, P, etc.), mineral and organic 
dust, and pollutants. These substances seriously influence soil development. 
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It is especially clear in relation to water and nitrogen. Nitrogen is absent in geolog-
ical rocks and sediments. The nitrogen input from the atmosphere goes in a form 
of nitrogen oxides and ammonium that can be consumed by soil biota. In pure 
atmosphere, nitrogen input varies from 1 to 4 kg [N] ha−1 year−1, but due to air pol-
lution nitrogen deposition can reach 40–60 kg [N] ha−1 year−1.

	 3.	Weathering of minerals in a soil leads, first, to element release for green plants and 
soil biota (all elements with the exception of nitrogen) and, second, to formation 
of friable loose soil material, which are favorable for plants and soil biota physi-
cal properties. It is the disintegration of solid geological rocks, clay formation in 
sandy soils, and loss of clay in heavy loamy soils.

	 4.	Lateral input and output of water and nutrients that can significantly modify soil 
development and ecosystem functioning.

	 5.	Heterogeneity of water regime and parent material that form complex spatial 
mosaics of microsites in forest ecosystems. This mosaic structure can increase 
ecosystem stability.

Biotic factors of soil functioning can be arranged as follows:

	 1.	Biological fixation of atmospheric nitrogen (symbiotic and nonsymbiotic) is a very 
powerful process in all terrestrial and forest ecosystems, especially after their dis-
turbance by various natural and anthropogenic factors. It is a natural process to 
cover nitrogen deficit, and the value of fixed nitrogen can be 10–20 kg [N] ha−1 
year−1 in temperate forests and up to 150 kg [N] ha−1 year−1 in humid tropics.

	 2.	Accumulation of SOM, humus, and elements in topsoil due to input of organic 
litter as a product of ecosystem functioning. This is the main process of soil forma-
tion from an ecological point of view.

	 3.	Spatial heterogeneity of SOM and elements’ accumulation as determined by trees’ 
growth. This “biogenic” mosaics of soil conditions (which can interfere with abi-
otic mosaics) plays an important role on ecosystem functioning.

Minimally, the soil functioning can be expressed by the following equations:

	

dH/dt = L k + k + + k H

dM/dt = D k + k + + k M

k = f C, 

1 2 n

4 5 m

i

-

-

�

�

( )

( )
RR, P,W, B, A, t ,( ) 	

(8.6)

where
H and M are the SOM and mineral matrix, respectively
L is the input of organic matter to soil (litterfall)
D is the input of mineral particles to the soil due to various deposition processes
k1,…ki,…km are the kinetic parameters expressing the rate of various processes of SOM 

and soil mineral transformation and destruction
C is the climate
R is the landform (relief)
P is the parent rock
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B is the soil biota and vegetation
t is the time
W is the soil water regime
A represents the effect of anthropogenic factors

In this conceptual model, consideration of H and M in definite temperature and moisture 
regimes allows for calculations of all other soil parameters (physical and chemical charac-
teristics, cation exchange capacity, available nutrients, etc.), depending on these two basic 
soil components.

The aim of SOM dynamic modeling is to solve a mathematical problem: if the initial 
values of SOM pools are known, then it is possible to predict the amounts and pools of 
available nutrients for plant growth and carbon dioxide evolution using data on (1) organic 
litter input and its chemical composition, (2) soil temperature and moisture, (3) impact of 
other environmental factors (e.g., effect of frost melting, soil drainage, and erosion), and (4) 
land use regimes (various regimes of forest management, damages due to forest fires and 
insect attacks, etc.).

In recent SOM models, the rate of organic matter mineralization is mostly expressed by 
a negative exponential function as in early Olson (1963) model for prediction of the rate of 
forest floor mineralization:

	

X
X

= e
0

kt- 	 (8.7)

where
X is the residual mass of organic layer at time “t”
X0 is the initial mass of the layer
k is the mineralization rate

The model by Pastor and Post (1985), a component of the ecosystem model LINKAGE, was 
applied in numerous forest ecosystem models, resulting in a good correlation between 
the rate of organic debris mineralization and vegetation evapotranspiration at yearly time 
step. It is a one-compartment model where the rate of decomposition is determined by the 
following equation:

	 PWTLOS AET   AET R= + - +( ) ( )0 9804 0 09352 0 4956 0 00193. . . .´ ´ ´ 	 (8.8)

where
PWTLOS is the annual percent weight loss
AET is the actual evapotranspiration rate (mm year−1)
R is the lignin/nitrogen ratio of organic litter

The Institute of Terrestrial Ecology model of Thornley and Cannell (1992) is a two-​
compartment (SOM and soil bugs) model. It takes into account four types of organic debris 
and calculates the mineral nitrogen transformation from ammonium to nitrates.

The CENTURY model (Parton et al. 1988, 1993) for grassland ecosystems was success-
fully tested in different natural zones and forest ecosystem models as well. The litter 
is divided into two classes: metabolic (fast decomposing compounds) and structural 
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(slow  decomposing lignin and cellulose). The SOM compartments are represented by 
pools of active soil C (biomass of microorganisms), slow soil C, and passive soil C. The 
model also calculates soil nitrogen and other elements’ dynamics with the formation of 
mineral nutrient pools for plant growth. There are four other agricultural SOM models 
with forest versions as well. The ROTHC model (Coleman and Jenkinson 1995) has two 
inputs of litter and a cascade of repeated pairs of biomass (microorganisms) and humified 
material, distinguished by the rate of SOM mineralization. The additional specific feature 
of ROTHC is a pool of inert organic matter (IOM) that is not participating in SOM turn-
over. This pool is included in the DAISY model (Hansen et al. 1991; Bruun et al. 2003) and 
CANDY model (Franko et al. 1995) by taking into consideration litter and SOM C/N ratios 
and transformation of nitrogen with more detailed SOM compartmentalization. The Yasso 
forest soil model (Liski et al. 2005) is also related to these types of models.

The SOM modeling is a crucial issue for the development of forest ecosystems models. 
These models are widely implemented for the evaluation of the carbon balance dynamics 
in terrestrial ecosystems under the impact of changing environmental factors. The SOM 
criterion of ecosystem sustainability has also been proposed (Morris et al. 1997). This crite-
rion postulates that the sustainable use of ecosystems can be reached only if SOM and soil 
elements’ pools will not be decreased or unbalanced by ecosystem exploitation, modifica-
tion, or transformation to other ecosystem types. Following is a description in details of 
the ROMUL model of SOM dynamics in forest soils.

ROMUL (Chertov et  al. 2001) and its earlier version, SOMM (Chertov and Komarov 
1997; Chertov et al. 2002), describe the biological turnover of organic matter and nitrogen. 
It simultaneously allows for the calculation of the rate of mineralization and humification 
of litter and SOM with the corresponding CO2 emission and nitrogen release for plant 
growth. The initialization of the model uses pools of organic matter and nitrogen in corre-
spondence with usually discriminable horizons of forest floor in field studies: L, F, H, and 
top horizon of mineral soil Ah. This definition of main variables shows that the ROMUL 
model best describes the specificity of forest boreal soils, even though it is possible to apply 
it with corresponding average of the variables for arable and more differentiated soils. 
The experimental basis of the ROMUL model consists of laboratory experiments (Chertov 
and Komarov 1997; Chertov et al. 2001) in controlled temperature and moisture conditions 
with validation using field experimental data.

The model also has input pools of fractions of above- and belowground litters that dif-
fer in nitrogen and ash contents (decomposition rates for belowground litter fractions are 
calculated with different temperature and moisture dependencies) and a cascade of SOM 
fractions: undecomposed litters, partly humified organic materials (forest floor, peat, and 
so-called labile humus [Lh] in mineral topsoil), and relatively stable humus (Sh) bonded 
with the mineral matrix of the topsoil. The litter input in the model can be represented 
by an unlimited number of fractions that have species-specific ash and nitrogen contents. 
There are three processes of SOM humification by three communities of microorganisms 
and soil fauna (without consideration of their biomass) and three processes of mineral-
ization. The model is represented by a system of ordinary differential equations with 
coefficients that depend on the soil temperature and moisture, the nitrogen and ash con-
tent in litter, and the C/N ratio in the mineral topsoil. The model also considers nitrogen 
release and gross carbon dioxide emission from the soil.

There are several variables in ROMUL that represent different pools of organic matter 
(Figure 8.2). Labove (kg m−2) is a pool of organic matter corresponding with the L horizon 
of the forest floor. It contains undecomposed and partly decomposed litter with big 
plant fragments. Lbelow (kg m−2) is a pool of SOM that contains undecomposed and partly 
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decomposed root litter. Part of this pool is metabolized by the decomposing organisms and 
the corresponding carbon is released as gaseous CO2 (flows with rates Ri marked arrows in 
Figure 8.2). The majority of the organic matter ends up in a more slowly decomposing com-
plex of partly decomposed organic matter F (kg m−2), which is a pool of organic matter that 
contains partly decomposed litter with small plant fragments treated as humus substances 
and corresponds to the F horizon of the forest floor. This pool is transformed by several 
groups of organism destructors into different forms. The community of bacteria, fungi, and 
arthropod species with rate dkF transforms part of the SOM into a H pool and part of the 
SOM (1 − dKF) into Sh of mineral horizons pool Sh that produces raw humus with a C/N 
ratio 15. The parameter d is a ratio between both pathways that depends on the C/N and 
F/B (fungi to bacteria) ratios in F. The greater part of humified matter stays in the organic 
layer H as C/N is increased. Transformation (humification) of SOM by community of earth-
worms and soil invertebrates forms the mull humus Sh in mineral horizons with rate kE 
and a C/N ratio ≤8. Lh (kg m−2) is a pool of “belowground forest floor.” The transformation 
of this pool also goes by two groups of organism destructors. kLh is the rate of transforma-
tion by bacteria and arthropod species. kEf is the rate of transformation by earthworms. 
The immobilized humus pool H decomposes at a rather slow rate modified by the soil 
temperature and moisture conditions. The decomposition flux has a range of a minimum 
1%–2% annually up to 15% annually, depending on the soil texture and the clay content. 
The maximal rate of H decomposition may be observed for arable soils. On the other hand, 
as roughly half of the SOM in the boreal zone is in the compartment H, the value of the rate 
factor kEf has a significant effect on the total storage of organic matter in the soil.
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FIGURE 8.2
Flowchart of the ROMUL model. Explanations of symbols are in the text.
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The temperature and soil moisture modifiers of the fluxes have various patterns given as 
stepwise defined functions. Typically, all these show an optimal range of values, where the 
decomposition takes place at a full rate and tapers off outside the optimal conditions. The opti-
mal conditions for different fluxes are, however, somewhat different (Linkosalo et al. 2013). This 
simple scheme of SOM transformation allows for the description of elements contained in the 
pools of organic matter, but using some modifiers in the main scheme of SOM decomposition, 
because carbon and nitrogen dynamics have different rates of transformation (Chertov et al. 
2001). For instance, the transformation of nitrogen in the compartment H, that is, two different 
mass flows (Figure 8.2), is based on the assumption that all the matter in the compartment H 
is mostly produced by the metabolism of the decomposing organisms (bacteria, protozoan, 
arthropod, and lumbricid species), and the C/N ratio is used for these groups obtained from 
soil biology experiments. Therefore, nitrogen has a special role in this phase: first, the rates 
kE and kF of nitrogen moving from compartments Fi into the compartment H are calculated, 
and, thereafter, a corresponding amount of organic matter, typical for the type of decomposers 
and depending on the C/N ratio of produced humus (24.0 for bacteria and arthropod species 
and 12.8 for lumbricid species), is moved from the compartment Fi to the compartment H.

Soil stability is an important additive criterion of sustainable forest management in 
the changing environmental and economic world (Kimmins 1996; Morris et  al. 1997; 
Boyle and Powers 2001; Akselsson et al. 2007; Komarov et al. 2007). Many forest ecosys-
tem models do not accentuate and analyze the dynamics of SOM and elements of forest 
nutrition, particularly nitrogen, in relation to stand productivity, soil formation, manage-
ment, disturbances, and environmental changes. There is an example of the model that 
describes closed turnover of carbon and nitrogen in a tree–soil system of the EFIMOD 
model (Komarov et al. 2003).

The EFIMOD model is an individual-based model that simulates the development of 
tree–soil systems (Figure 8.3). The simple approach used successfully in statistical phys-
ics was applied for the representation of the standby separate trees with simple growth 
models and located in space as a sessile organism with precise locations, but with detailed 
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FIGURE 8.3
Flowchart of the EFIMOD system of models.
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description of its interactions with its neighbor trees. Simple models of tree growth may 
be used in the EFIMOD system of models, depending on the problem to solve: from simple 
regression models of potential (usually maximal) growth to more complicated growth 
models accounting for available PAR with dependencies on available soil nitrogen, water 
regime, and other factors if necessary. Then, tree increment is reduced by two types of 
competition: shadowing that defines concrete light flux and belowground root competi-
tion that distributes available nitrogen for tree growth.

The simulated stand consists of separate trees that are located on a square lattice whose 
cell is small enough. Each tree creates a shadow zone Si, which is a quadrate centered at 
a tree’s cell xi with quadrate size Ri. The tree xi shadows the neighbor tree xj if (1) shadow 
zone Si covers the tree’s cell xj, and (2) ratio of the height Hi of a tree xi to the height Hj of a 
tree xj is greater than a fixed value β, that is, Hi/Hj > β. The symmetric shadowing occurs 
when two trees shadow each other. A contribution of a tree in the shadow formed by all 
trees shadowing the cell is assumed to be additive. Thus, we have for the shadow coeffi-
cient 0 ≤ KE ≤ 1 corresponding to the tree xi:

	
K x kE i( ) å= 1 1 1- l 	 (8.9)

where
λl is a species-specific parameter describing the proportion of PAR absorbed by the 

crowns of shadowing trees
kl is a numbers of trees of certain species shadowing the xi tree (when some trees of dif-

ferent species shade one cell and then the total shadowing of the cell represents a sum 
of their λl values)

The values of λl are calculated on the basis of experimental data on the absorbed radiation 
under canopies of different tree species at maximal crown density (Tselniker 1978).

After the calculation of a spatial mosaic of shadowing (available light in every cell), the 
light response multiplier, KSH, is calculated for every tree. The value of KSH as a function 
of shadowing has different shapes for shade-tolerant and shade-intolerant species, that 
is, KSH is linearly dependent on KE for the Scots pine (Pinus sylvestris L.) and silver birch 
(Betula pendula Roth) (shadow-intolerant trees):

	 K KSH E= 	 (8.10)

It is also nonlinearly dependent for shadow-tolerant Norway spruce (Picea abies (L.) 
H. Karst.) (Tselniker 1978):

	 K 1 0.44log KSH E= + 	 (8.11)

Thus, the light response multiplier KSH reflects the local stand density in relation to a set of 
neighbors for each tree in the form of overlapping of shadowing zones and species-specific 
light response of trees.

Each tree has also a nutrition zone that is a second form of competition acting together 
with shadowing. The average and maximal distance of lateral root spreading are calcu-
lated on the basis of stem diameter derived from empirical data using a logistic equation. 
As maximum and average root spreading distances decrease with increasing soil fertility 
and moisture, these parameters have site-specific modifiers. The model calculates potential 
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rooting area as the surface of a circle with a radius equal to the average root spreading dis-
tance. Then, for each cell, the probability of occupation is calculated, which is positively 
related to the amount of available nitrogen in the current cell and inversely related to 
the distance between this cell and stem base and the mass of roots of other plants. The 
distance from each cell to the rooting cell cannot be more than the maximal root spread-
ing distance for the given tree. All cells in the rooting area of individual trees must be 
arranged in continuous connected contours. The vertical distribution of roots depends on 
species-specific features, soil characteristic, and strength of belowground competition. It 
is calculated as the decreasing exponential function of depth. The model also calculates 
horizontal distribution of biomass of coarse and fine roots as a function of the distance 
from the base. The uptake rate for water and nutrients depends on the biomass of fine roots 
in each cell, tree age, and species-specific modifier.

Areas of nutrition for neighboring trees can overlap, and available nitrogen is consumed 
proportionally to the mass of fine roots of neighboring trees in these overlapped areas. 
This definition of belowground competition is species specific and depends on the spread-
ing of roots and their density per square unit, which are different for different species. 
Thus, two possible types of tree increment can be calculated: that due to light or that due 
to soil nitrogen (Komarov et al. 2003). The calculation requires species-specific estimates of 
foliage and fine root biomass, maximal biological productivity of foliage, and the specific 
consumption rate of nitrogen. The joint impact of both types of competition can be evalu-
ated either by the minimal value of two types of increment taken as the annual increment, 
following Liebig’s principle or using weighting of particular reducing coefficients. Due 
to the two different types of competition, simple procedures were inserted to simulate 
adaptations of trees to the lack of some resources: (1) if tree increment is restricted by light, 
then its biomass gain will be allocated mainly to increases in stem height and foliage bio-
mass; (2) conversely, if the growth of a tree is limited by nitrogen uptake, then the relative 
increase in biomass of fine roots and stem diameters will be higher than those of foliage 
and stem height. A deterministic procedure of tree death is based on the idea of lethal 
threshold, defined by the ratio of leaf mass Bl to total biomass BT, below which the tree dies:

	 r g g lnB1 2 T= -

where
r is the lethal ratio Bl/BT

g1 and g2 are the species-specific parameters evaluated from corresponding regional 
growth tables

In addition, we inserted a probabilistic mortality function that depends on tree age, which 
reaches 1.0 at a species-specific maximal tree age.

The sensitivity analysis and simulation experiments with the model showed that 
the spatial structure of plant community had a stronger influence on competition than 
species-specific features or environmental conditions.

8.3.3  Hybrid Models

Models that contain both empirical and process-based components are termed hybrid 
models (Mäkelä et al. 2000; Landsberg 2003a,b). The hybrid approach explores methods that 
combine forest growth and yield equations, based on statistical relationships derived from 
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empirical data (see Chapter 6) and mechanistic or theoretical relationships that represent 
physiological and biogeochemical processes that govern the dynamics of forest ecosys-
tems (see Mäkelä et al. 2000). These models may be driven by both environmental vari-
ables (e.g., PAR, temperature, precipitation, or soil properties) and dendrometric variables 
obtained from forest inventories to simulate a set of tree and stand growth characteristics 
(e.g., diameter at the breast height, tree height, and stand density) and the effects of forest 
management (e.g., harvesting and thinning) on forest productivity (e.g., gross primary 
productivity and net primary productivity) for a given stand. In addition, many empirical 
relationships (e.g., diameter distribution and biometrical equations) have been incorpo-
rated into hybrid models to simulate some largely less known ecological processes (e.g., 
plant carbon allocation). For example, diameter distribution—a type of growth and yield 
model—has been demonstrated to be able to help ecosystem process-based models to pre-
dict stand structure (e.g., Lasch et al. 2005; Wang et al. 2011), since climate change has little 
effect on competition mechanisms for even-aged pure stands. Therefore, these models can 
be effective tools for exploring the effects of forest management and climate change on 
forest growth and carbon sequestration (Landsberg 2003a,b).

Several hybrid models have been developed for this purpose like 3-PG (Landsberg and 
Waring 1997), CroBas (Mäkelä 1997), FORCYCTE-11 (Kimmins 1993), FORECASE (the 
successor to FORCYTE-11 Kimmins et al. 1999), FVS-BGC (Milner et al. 2003), CanSPBL 
(Pinjuv et al. 2006), TRIPLEX (Peng et al. 2002), and SECRETS-3PG (Sampson et al. 2006). 
These models have been used to explore the best practices of forest management under 
climate change. For example, Wang et al. (2013) conducted a simulation experiment that 
combined three climate change scenarios and 36 forest management scenarios with dif-
ferent thinning intensities and occurrence and rotation length using the TRIPLEX model. 
They argue that precommercial thinning does not change mean annual net ecosystem 
productivity for boreal coniferous stands over their simulation period (2010–2100), while 
moderate warming with the rotation length of 50 years could enhance mean annual net 
ecosystem productivity. Simulations showed that intensive forest harvests may obstruct 
forest recovery for a very long time for Douglas fir stands in British Columbia, Canada 
(Blanco 2012). Using FORECAST, Wei and Blanco (2014) suggested that mixed planta-
tions in subtropical regions with stand densities in the 2000–3000 stems ha−1 range could 
increase their amount of carbon by 68% compared with traditional pure plantations. As 
the understanding of physiological process improves, the use of such hybrid models 
will likely continue to investigate the effects of forest management and climate on forest 
growth (Twery and Weiskittel 2013).

8.3.4  Global-Scale Models

Local process-based models can be used in very detailed situations, such as being used 
against a forest stand with single-tree species. At large regional scales, tree species 
usually have to change to loosely defined tree groups such as PFTs in some Dynamic 
Global Vegetation Models (DGVMs) like MCI (Bachelet et al. 2001a,b) or IBIS (Foley et al. 
1996). Also, there is a need to better represent biosphere–atmosphere interactions with 
vegetation dynamics (Olchev et  al. 2008; Quillet et  al. 2010). Many large-scale model-
ing exercises need to consider potential new processes because environmental condi-
tions become different from that of the site scale. For example, the effect of lateral C 
redistribution across landscapes becomes noticeable at large-scale C accounting and has 
been considered to link with carbon models (e.g., the General Ensemble Biogeochemical 
Modeling System [GEMS], Liu et al. 2003). Also, some expected constant driving factor, 
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such as atmospheric CO2 concentration, can become variable across a large region, and 
therefore, a regional model application may need additional treatment on using spatial 
varying CO2 data instead of a fix ppm value (e.g., Zhang et  al. 2014). Broader model 
expansions can be seen when simulation considers wider simulation scope like includ-
ing fire disturbance, land use change effect, and movement of C from land to aquatic 
systems (e.g., USGS LandCarbon Project, Zhu et al. 2010). The NCAR community earth 
system model (CESM) is a recent development trend for large-scale process models.* The 
biogeochemical models used in the system need additional links with other models. In 
addition, models like CESM also need modern high-performance computing resources 
to perform intensive simulations. This alone requires significant computational changes 
of the models.

When process-based model are applied to large regions, some key sources of uncer-
tainty will become significant, such as model incompleteness, limited input and validation 
data, limited computing ability over large regions, and spatial scaling issues. When the 
study region is large enough, differences between subregions could be quite different, 
such as tropical region compared to temperate region. Ecoregions, provinces, states, and 
counties are all examples of regions that each may have their distinct geographical fea-
tures, including climate, soil, vegetation, and land use. Process-based models may need to 
change parameter sets, driving variables or some algorithms to deal with significant loca-
tion changes. Without those significant model processes or component changes, spatial 
variability can sometimes be dealt with empirical spatial scalars. For example, the USGS 
LandCarbon project (Zhu and Reed 2012) used county-level forest growth and grain yield 
data to calibrate the GEMS model (Liu et al. 2003) to generate spatial scalars to deal with 
the unknown causes of county-level differences. Another example is the GHG modeling 
in the Triplex-GHG model, in which a different Q10 parameter value is used to control 
GHG emission for different regions: boreal = 2.03, temperate = 2.66, and subtropical and 
tropical = 3.75 (Zhu et al. 2014, 2015).

For large regions, simulation on higher spatial resolutions faces the issue of availability 
of high-resolution input data. Many models like IBIS (Liu et  al. 2011) use internal data 
interpolation procedure to solve this problem. A simple nearest-neighbor procedure was 
built in IBIS to do spatial interpolation so that all input layers are of the same resolution. 
On the other hand, spatial sampling simulation is useful for quick testing and calibration 
runs for large region with higher-resolution input data. With a sampling interval of 5, 
which means selecting one land pixel every five rows and five columns on the land cover 
map, IBIS will first read in the original coarse-resolution inputs, perform spatial interpo-
lation to base resolution, conduct spatial data sampling by the interval, perform actual 
simulation on sample data, and produce outputs at the coarser resolution defined by the 
sampling interval.

Pure land cover at high resolution will change to mixed land pixel when aggregated 
to coarse resolution. IBIS is a DGVM that allows multiple PFTs to potentially coexist in a 
single land pixel. Also, it allows competition among the PFTs under the changing climate 
and land use conditions. In recent modified IBIS, unlike most biogeochemical models, 
IBIS takes in fractional land cover data and allows fractional vegetation changes follow-
ing fire or land use change events. Although a typical land pixel in simulation can change 
relative LAI of trees and grasses, the extent of change is limited by both physiological 
parameter and physical area fraction. For example, a land pixel with a small forest frac-
tion may have healthy trees and high LAI per forest area, but the whole pixel may be 

*	 http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12–00565.1.
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dominated by grass or crop. Therefore, the land pixel could be classified as a grassland 
or cropland. The nonvegetation fraction is a major controlling factor in rocky areas, des-
ert, water body, and urban development areas so that simulated vegetation will not take 
over a whole land pixel in the model. When logging happens, the forest area fraction will 
remain unchanged and only the forest biomass level will be reset. When deforestation 
happens, the forest cover is converted to the target land cover (cropland, grassland, or 
urban) and the forest fraction decreases. When reforestation happens, other land covers 
convert to forest; hence, forest fraction increases. Fractional land cover data products can 
be seen in a recent large global land cover dataset generated from the Global Change 
Assessment Model (GCAM*), which indicates the upcoming trend of ecosystem model-
ing with fractional input data. Other related data changes also exist. For example, bio-
mass initialization for a single land pixel could include forest biomass, shrub biomass, 
and grass biomass separately. Fire disturbance on a land pixel could be containing per-
centages of low, medium, and high burn severity.

Process-based models can be calibrated at the local scale with actual field observation 
data (e.g., flux tower data). When changed to large regions, local calibrated parameters may 
not always fit in other locations or broader extents. This is partly because regional input 
datasets are often interpolated data and may be at very coarse resolution. For example, 
the spatial resolution of interpolated climate data for the United States could be 4–50 km, 
which is potentially much different from the field data. So simulation with interpolated 
data will likely give a different output than the simulation with local field observation 
data. This indicates that regional-level simulations need regional observations for cali-
bration. There exist some regional-level inventories and statistics that serve as validation 
data. For example, the global MODIS NPP maps (1 km MODIS NPP of 2001–2005, Zhao 
et al. 2005), the Forest Inventory and Analysis (FIA) growth curves at county level, and 
the crop grain yield statistics by county are used in IBIS for coterminous U.S. simula-
tions. In order to validate the model, an automatic calibration procedure against county-
level averages of forest biomass, NPP, and grain yield is developed as a postprocessing 
step. NPP observations from remote sensing products are first aggregated to county level 
and then compared with IBIS NPP outputs averaged at county level. Then IBIS calculates 
the county-level differences and the related adjustment scalars. The scalars are assumed 
to help dealing with unknown environmental factors. For example, the scalars for each 
county will be used to modify the forest Vmax parameter (maximum Rubisco-limited rate 
of carboxylation) in a second simulation. On the other hand, forest biomass inventory 
data and crop grain yield statistics data are also summarized at county level in order for 
IBIS to compare with. The forest growth curves published by USDA Forest Service, the 
Carbon OnLine Estimator (COLE†) database, are the general forest growth references to 
be compared with IBIS growth curves. An indicator of growth rate, for example, total 
biomass carbon increase from 1 to 100  years, can be calculated from the IBIS biomass 
pool. Comparing simulated biomass values with the COLE 100 year growth values for the 
same geolocations, a scalar can be generated to increase or decrease IBIS biomass pools 
in a renewed simulation. When iterated three to four times, a stable carbon scalar can be 
obtained. For forest ecosystems, the NPP and biomass scalars can be used at the same 
time. It may happen that one observation could be better than other observations. Or the 
IBIS model can be calibrated to match one type of observation well, but fail with the other. 
Then more in-depth manual adjustments are used.

*	 http://www.globalchange.umd.edu/models/gcam/.
†	 http://www.fs.fed.us/ccrc/tools/cole.shtml.
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8.3.5  Process-Based Models and Ecological Indicators

Ecological indicators are defined here, and in Chapter 7 (see also Chapters 11–17), as an 
index of measures that characterizes an ecosystem or one of its critical components. In 
addition, ecological indicators are typically used to assess the state of a specific environ-
ment and evaluate the trajectory of that system under current and future conditions. 
Ecological indicators should represent key information about the composition, structure, 
function, and/or vigor of an ecosystem. For example, biodiversity, including genetic diver-
sity and functional diversity, can be an important ecosystem service (Mace et al. 2012) and 
an ecological indicator of forest health.

To be able to quantify the potential changes in biodiversity, it is necessary to understand 
the role and impact that climate has on species’ ranges at the regional and continental 
scale. There are many ecological, evolutionary, and physiological processes that influ-
ence species’ distribution and abundance, thus biodiversity (Kearney and Porter 2009). 
Similarly, limits and enhancements to plant functional processes, which can be simu-
lated with process-based models, can be used to predict changes to biodiversity patterns, 
species abundances, tree distributions, and potential future migration patterns. As an 
example, the process-based model PHENOFIT was used to identify the climatic factors 
and biological processes that limit the ranges of 17 North American boreal and temperate 
tree species, ultimately with a goal of predicting potential species distributions (Morin 
et al. 2007). The model PHENOFIT (Chuine and Beaubien 2001) simulates species’ distri-
butions based on a phenological submodel, a frost-injury submodel, a survival submodel, 
and a reproductive-success submodel. This study showed that species distributions were 
limited, due to climatic constraints that impact phenological processes, such as the inabil-
ity to achieve full fruit ripening or flowering. Later, the same model was used to reduce 
uncertainty in species range shifts under future climate change scenarios (Morin and 
Thuiller 2009). The need for understanding the implications of climate change on bio-
diversity and forecasting the shifts in biodiversity under climate change is immediate 
(Thuiller 2007).

Araujo and New (2007) argue that utilizing process-based models in conjunction with 
additional model classes and ensemble forecasting is an improved framework to diagnos-
ing bioclimatic constraints on species distributions. An example of using multiple pro-
cess-based perspectives was conducted in the study by Kleidon and Mooney (2008), which 
used components from the land surface model ECHAM4 (Roeckner et al. 1996), and the 
terrestrial biosphere models CASA (Potter et al. 1993), SDBM (Knorr and Heimann 1995), 
and SILVAN (Kaduk and Heimann 1996) to create a “generic” plant model. This method 
was applied at a global scale with multiple climatic forcing constraints, finding that a 
major factor leading to distribution of diversity occurs during the early stage of a plant’s 
life when a plant is more sensitive to changes in water availability due to variability in 
precipitation.

Ecological indicators linked with models can be used as a guide and/or enhance forest 
management (Lindenmayer et  al. 2000), but can have challenges (Dale and Beyeler 2001; 
Failing and Gregory 2003). For example, indicators that express vulnerability to environmen-
tal disturbance and land use change can be useful to forest managers. For example, the study 
of Morales et al. (2005) compared and evaluated the ability of four process-based models (i.e., 
RHESSys, GOTILWA+, LPJ-GUESS, and ORCHIDEE) to simulate fluxes of water and carbon 
within terrestrial ecosystems and can be a useful tool and methodology when evaluating 
ecosystem flux vulnerability to disturbance and/or climate change impacts. In addition, 
quantifying the consequences of land use change on the terrestrial carbon budget, water 
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resources, and nutrient availability can be achieved with process-based models (McGuire 
et al. 2001). For example, four process-based terrestrial biosphere models were used to evalu-
ate the 20th century carbon balance as a result of land use, in addition to CO2 and climate 
effects (McGuire et al. 2001). Cramer et al. (2001) used six DGVMs as a tool to report the 
varying ranges and uncertainties in the terrestrial carbon sink as a function of rising CO2 
and climate change. It is likely that process-based models will be used more often in for-
est management planning and the evaluation of the impacts on ecological indicators as a 
result of environmental disturbance, climatic changes, and land use change. However, varia-
tions among and between models and large uncertainties in simulating response variables 
and ecological indicators (Cramer et al. 2001; Morales et al. 2005; Balshi et al. 2007) warrant 
improvements to the models and our understanding of ecosystem processes.

8.4  Model Evaluation and Uncertainty Analysis

The majority of process-based models are deterministic: their predictions are provided 
without estimates of the errors. Regardless of their level of complexity or degree of realism, 
accuracy, or precision, there is always a degree of uncertainty in the predictions because 
models are imperfect representations of reality. For biogeochemical as well as biological 
models, uncertainty originates from different sources (O’Neil and Rust 1979; Medlyn et al. 
2005; Larocque et al. 2008a,b, 2011; Matott et al. 2009): (1) errors in measurements, estimates, 
or spatial or temporal scales, (2) lack of understanding of the mechanisms of the biological 
processes and interactions, (3) model structure and adequacy of the mathematical repre-
sentations of processes, (4) parameter estimates, and (5) amplitude of natural variation 
within ecosystems under study.

Any modeling exercise should include two major steps: evaluation and uncertainty 
analysis. The model evaluation step contributes to the development of more reliable and 
accurate models to address the problems of the real world and is one of the important 
steps in model development and application. It can help to either build up confidence 
for model applications or allow model selections (Tedeschi 2006). Uncertainty analysis, 
which consists in computing the variability in model outputs that may be attributed to 
errors associated with the aforementioned sources, allows model users to evaluate the 
level of confidence in the predictions and draw appropriate inferences. For instance, the 
uncertainty analysis that Larocque et al. (2008b) performed in a soil carbon cycle model 
to compare different scenarios of temperature increase allowed them to conclude that the 
gradual increase in temperature was likely to have a marginal effect over a short time 
period. Significant effects were evident only on some soil carbon pools and over a long 
time period.

To understand the model evaluation process, it is necessary to understand the following 
concepts (Rykiel 1996):

•	 Verification is defined as a technical step on the extent to which a mathematical 
model is logically consistent or represents well the mechanisms being modeled. In 
some cases, it is not easy to verify whether a complex computer program (model) 
is entirely error free. For model developers, model verification process needs to be 
addressed prior to any other processes in testing process-based models.
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•	 Calibration is the estimation and adjustment of model parameters to improve the 
accuracy and precision of model simulations against a measured dataset.

•	 Validation is often defined as a process to evaluate the model output against 
another independent dataset using the calibrated parameters. This process indi-
cates if the model is acceptable for use within a certain domain. It is important to 
distinguish the terms verification and validation in the modeling circumstance. As 
validation of ecological models is impossible to some extent (Oreskes et al. 1994), 
hereafter such a process is referred to as model evaluation.

Model evaluation/model testing could be generally categorized into two groups: (1) quali-
tative evaluations that compare the model behavior with hypothesized patterns and (2) 
quantitative methods that compare model simulations with observatory data.

Qualitative testing aims at evaluating the model behaviors, which is included in a stan-
dard development routine (Jakeman et  al. 2006). The key point of qualitative testing is 
to find out if model behaviors match hypothesized patterns or observational patterns by 
using visualization techniques. If the comparison of simulated results between the model 
and observation data or theoretical patterns is unfavorable, then the model users or devel-
opers have to figure out why and how the model behaviors do not match as expected. 
A list of graphical display techniques is listed as follows:

•	 Comparison of matched estimated and measured time series values and/or 
residuals

•	 Comparison of measurements and estimates (bivariate plots)
•	 Comparison of ranges, medians, and means (box plots)
•	 Cumulative/probability frequency distributions (histograms)

Many different statistical techniques can be used to test the performance of a model in the 
case when observatory data are available and the model behaved as expected. It could be 
more useful to statistically test the model directly against observation data than to com-
pare the time series (Kirchner et al. 1996). Previous review work has summarized these 
techniques for accessing model accuracy and precision, which are two important aspects 
of model testing (Tedeschi 2006). Accuracy measures the ability of a model to predict the 
right values and precision measures the ability of a model to predict similar values consis-
tently (Tedeschi 2006). Some quantitative methods are listed as follows:

•	 Linear regression and its analysis (Tedeschi 2006)
•	 Correlation coefficient (parametric and nonparametric)
•	 Nonparametric analysis: Kolmogorov–Smirnov test, rank test, etc.
•	 Distribution comparison and its analysis: χ2 test, Kolmogorov–Smirnov D test
•	 Residual analysis: mean bias, mean square error, root mean square error, mean 

absolute error, etc.
•	 Model efficiency: the Willmott index (d) (Willmott 1982), Nash–Sutcliffe model 

efficiency coefficient (E), etc.

No single evaluation index is sufficient to adequately assess the model performance when 
comparing observed and predicted values. Therefore, we suggest that multiple statistics 
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in evaluating precision and accuracy should be used in model evaluation. In the context 
of modeling forest management under changing climate conditions, multiple variables 
(e.g., DBH, height, biomass, and gross primary productivity) and multiple statistics should 
be used to compressively evaluate the performance of models.

Model evaluation is important and delivers important messages in model structure 
and/or sensitive model parameters to model developers and users. Such a feedback can 
contribute to developing useful models. Identifiability analysis is one of such a process 
that is defined as the identification of the model structure and its corresponding parameter 
set that are most representative of study area by taking into account research questions 
(Wagener et al. 2003). In many cases, identifiability analysis was used to estimate sequen-
tial parameters or to identify the discrepancy of the model behavior from the expected 
ecosystem behavior (Wagener et al. 2003; Matott et al. 2009). Sensitivity analysis is per-
formed by varying systematically the model parameters or inputs and quantifying their 
relative effect on model predictions. Thus, it contributes to identifying how the uncertainty 
in the output of an ecological model can be attributed to uncertainty in its inputs and 
parameters (Saltelli et al. 2008). Overall, model evaluation is not a straightforward process 
over the course of model development, as such analyses (e.g., sensitivity and identifiability 
analysis) play an important role in developing credible and useful ecological models for 
decision-making purpose.

Different approaches are available to conduct uncertainty analysis, but two methods 
have been used most often in process-based models:  the Taylor series technique and the 
Monte Carlo technique. Both techniques are described in Chapter 6.

8.5 � Case Studies: Prediction of the Effects of Climate 
Change, Fire, and Management

It is in the 1980s that the development of process-based models really began when there 
was a need to simulate the effects of climate change and physical and human disturbances, 
such as acid rain, air pollution, harvesting, or wildfire, on the functioning of forest eco-
systems. This trend accentuated in the 1990s. An important advantage of process-based 
models is that they can simulate multiple what-if scenarios. It is especially true when novel 
climates are predicted.

Many aspects of projected climate change and altered disturbances will likely affect 
forest growth and productivity. Climate change could alter the frequency and intensity of 
forest disturbances, such as insect outbreaks, invasive species, wildfires, or storms. These 
disturbances can reduce forest productivity and change the distribution of tree species. 
In some cases, forests can recover from a disturbance. In other cases, existing species may 
shift their range or die out. In these cases, the new species of vegetation that colonize the 
area create a new type of forest (U.S. Climate Change Science Program 2008).

8.5.1  Climate Change

There is increasing evidence that climate change has had and will continue to have 
a significant effect on forest ecosystems by affecting the ecophysiological processes 
that govern their dynamics (Dresner et  al. 2009; Fischlin et  al. 2009; Lucier et  al. 2009; 
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Medlyn et al. 2011; Seidl et al. 2014). Forest models are key tools that have the potential 
to contribute to better understanding the long-term changes in the complex interactions 
between changing environmental conditions and ecosystem processes, allowing the pre-
diction of the likely impact of climate change on forest productivity (Medlyn et al. 2011). 
There are good examples in the literature of studies that examined different scenarios of 
climate change on forest ecosystem dynamics.

The EFIMOD model was used to predict the long-term effects of different scenarios of 
climate change, fire, and harvesting on the carbon cycle of black spruce (Picea mariana 
(Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) forests in central Canada (Bhatti et al. 
2009; Chertov et  al. 2009). The scenarios of change in temperature and precipitations 
were estimated from three global circulation models: CGM2, HadCM3, and CSIRO. For 
black spruce, 150-year simulation results indicated that the disturbances resulted in a 
decrease in net primary productivity (NPP), stand productivity, and SOM content and an 
increase in CO2 emission to the atmosphere. Similar results were obtained for jack pine, 
but differed among the three climate change scenarios. Bergh et al. (2003) used the model 
BIOMASS (McMurtrie et al. 1990) to predict the effect of both increases in temperature and 
atmospheric CO2 concentration on NPP of Scots pine, Norway spruce, European beech, 
and black cottonwood (Populus trichocarpa Torr. & A. Gray) forests located in Denmark, 
Finland, Iceland, Norway, and Sweden. Simulation results indicated that both temperature 
and atmospheric CO2 increase resulted in increasing NPP, but there was substantial varia-
tion among forest types.

Existing studies using process-based models to examine the effect of climate change 
have provided realistic results and have also generated many questions and uncertain-
ties. For instance, Luckai and Larocque (2002) compared the long-term simulation results 
between CENTURY and FOREST-BGC by using identical scenarios of climate change in 
black spruce in northwestern Ontario, Canada. Predictions between both models differed 
in the amount of carbon content in large wood (stems, coarse roots, and branches) in the 
scenario of both temperature and CO2 increases. While CENTURY predicted a decrease, 
FOREST-BGC predicted an increase. They attributed the discrepancies in the predictions 
to differences in the structures, algorithmic approaches, and assumptions between both 
models and lack of empirical and scientific knowledge. Medlyn et al. (2011) recently high-
lighted these issues by suggesting specific questions to consider in modeling studies to 
improve the capacity of models to predict climatic impacts on forest productivity: the type 
of model under study, the representation of the effects of increase in atmospheric CO2 and 
temperature, the representation of water availability and nutrient cycling, the potential 
influence of other global change effects, and the climate change scenarios used in the 
simulations.

Loustau et  al. (2005) used three process-based models, CASTANEA, GRAECO, and 
ORCHIDEE, to model the effects of climate change and two forest management scenarios 
on wood production and forest carbon balance in French forests. All models predicted a 
slight increase in potential forest yield until 2030–2050, followed by a plateau or a decline 
around 2070–2100, with an overall greater increase in yield in northern France than in 
the south.

PnET is a suite of nested process-based models (PnET-Day, PnET-II, PnET-CN) that pro-
vide a modular approach to simulate the carbon, water, and nitrogen dynamics of forest 
ecosystems. They have been used to predict forest productivity under climate change in 
various forests. Aber et al. (1995) described an improved version of a forest carbon and water 
balance model (PnET-11) and the application of the model to predict stand- and regional-
level effects of changes in temperature, precipitation, and atmospheric CO2 concentration. 
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They found that a combination of increased temperature (+6°C), decreased precipitation 
(−15%), and increased water use efficiency (2×, due to doubling of CO2) generally resulted 
in increase in NPP and decrease in water yield over regional levels.

Process-based models are also better able to deal with the enhanced productivity pos-
sible via elevated CO2 and increased water use efficiency. Peters et al. (2013) used PnET-CN 
to compare the long-term effects of changing climate and atmospheric CO2 on productiv-
ity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes 
forest types. The results suggested that ecosystem responses varied among geographic 
locations and forest types. With rising CO2 and without changes in forest type, average 
regional productivity could increase from 67% to 142%, changes in evapotranspiration 
could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineraliza-
tion could increase by 10%–12%.

Process-based models are used to predict the effects of climate change on various 
aspects of forest ecosystems. Bachelet et al. (2001a,b) used the DVGM MC1 to predict con-
tinental-scale changes in tree life forms and carbon in a warming climate. The warmer 
and drier scenarios in these experiments showed some potentials for the habitats of the 
eastern deciduous and mixed forests to shift to a more open canopy woodland or savanna 
type, while the boreal forests disappeared almost entirely from the Great Lakes area by 
the end of the 21st century (Bachelet et al. 2001a,b). These changes would obviously mark-
edly modify the character of these biomes and greatly reduce carbon storage in the eastern 
United States. Other studies using DGVMs have shown potential large impacts of climate 
change in high latitudes over the tropics on the African continent and globally.

Another process-based model that incorporates climate is the Regional Hydro-Ecologic 
Simulation System (RHESSys) (Tague and Band 2004). In a Sierra Nevada mountain sys-
tem, Tague et al. (2009) found significant elevational differences in vegetation water use 
and sensitivity to climate, which will probably be critical for the vulnerability of similar 
ecosystems under climate change. In these model results, transpiration was consistent 
across years at the lowest elevations because of topographically controlled high moistures. 
The middle-elevation transpiration rates were controlled primarily by precipitation and 
the high-elevation transpiration rates were controlled primarily by temperature. These 
dynamics, along with evidence for reduced snow accumulation and earlier melt of sea-
sonal snowpacks, are expected to influence future species composition in mountainous 
systems. These studies generally provide evidence, as with the SDMs, that forest composi-
tion and productivity are likely to change, often substantially, as the climate changes dur-
ing this century and beyond.

8.5.2  Impact of Forest Fires on Coniferous Forest Ecosystems

The EFIMOD model was also used to simulate the dynamics of coniferous forest ecosystem 
dynamics in western European taiga and North American boreal forests with different 
forest fire scenarios (Chertov et al. 2013). The simulation scenarios comprise canopy and 
ground fires in combination with clearcutting (Table 8.2). The simulation results showed 
that forest fires led to a decrease in growing stock and SOM in both regions in comparison 
with a clearcutting scenario without fires. The long-term reduction of net biological pro-
ductivity was also found with a negative carbon balance (net ecosystem exchange, NEE). 
A maximal simulated loss of carbon took place after crown and ground fires and after 
clearcutting. In Europe, the negative carbon balance with a loss of carbon from forest eco-
systems was found only in the case of crown fires with burned wood cutting. In other 
cases, there was a slight amount of carbon sequestered even after fires. In North America, 
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all fires led to negative carbon balances with the maximal carbon losses at crown fires with 
cutting burned wood. This effect was determined by the soil reaction on any forest fires: a 
carbon loss from burned forest floor and a decrease in soil carbon in young stands due to 
imbalance between carbon input with litter and carbon output with soil respiration. These 
differences reflect the influence of a rather mild climate of European sites in comparison 
with extracontinental cold climate of modeled sites in central Canada.

8.5.3  Forest Management

Ecosystem models have played key roles by providing guidance on uncertain future or 
unexpected problems to decision makers and information for public debate in the man-
agement of terrestrial ecosystems (Harris et al. 2003). As they focus on the modeling of 
processes and flows of nutrients, water, and energy in ecosystems, process-based models 
are well adapted to predict the impacts of environmental disturbances (see Mäkelä et al. 
2000). For instance, Driscoll et al. (2003) used two process-based models, PnET-BGC and 
WATERSN, to examine the effects of different management options on the reduction of 
nitrogen deposition to forests and watersheds in the northeastern United States. Process-
based models can also contribute to improving the modeling of the productivity of mixed 

TABLE 8.2

Changes in Soil Carbon Pools and Growing Stock at the End of a Second 70-Year Rotation with 
One Thinning and Clearcutting Management Scenario and Average Net Ecosystem Exchange 
(NEE) over Two Rotations

Forest Stands 
Disturbance 

Regimesa
Changes of Soil 

C Pools, %
Changes of Growing 

Stock, %
Average NEE, kg[C] 

m−2 year−1

East European taiga
Scots pine 1 0 0 0.053
Pinus sylvestris 2 −31.80 −3.1 0.054

3 −11.20 −13.8 −0.008
4 −40.20 −9.9 0.015

Norway spruce 1 0 0 0.024
Picea abies 2 −23.30 −6.1 0.022

3 −7.30 −8.5 −0.018
4 −17.70 −6.7 0.015

North American boreal forest
Jack pine 1 0 0 0b

Pinus banksiana 2 −34.40 −25.9 −0.034
3 −18.70 −23.4 −0.053
4 −27.80 −16.9 −0.004

Black spruce 1 0 0 0.003
Picea mariana 2 −43.30 −19.5 −0.002

3 −24.60 −21.3 −0.034
4 −35.60 −14.6 −0.011

Source:	 Chertov, O.G. et al., Contemp. Probl. Ecol., 6, 747, 2013.
Negative values are in bold
a	 1, two 70-year rotations and clearcutting without fires; 2, two canopy fires at the end of every 70-year 

rotations before cutting; 3, two ground fires after thinning at 30 year, 4, two ground fires after final 
clearcutting.

b	 NPP=Rh, that is, the carbon of net primary productivity is equal to one of soil respiration.
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species or heterogeneous tropical forests and planning for the analysis of the impact of 
management scenarios on water balance and nutrient cycling (Mäkelä et al. 2000) or eco-
system services. Ooba et al. (2010) used the biogeochemical model BGC-ES to evaluate the 
impacts of different management practices on ecosystem services, including water supply, 
carbon sequestration, timber production, and biodiversity conservation. The predictions 
of the different scenarios were associated with economic values. The next two sections are 
case studies that illustrate the application of process-based modeling to address manage-
ment issues.

8.5.3.1  Modeling the Effects of Rotation Length on Forest Productivity and Soil

The aim of this simulation using EFIMOD was to demonstrate the effect of various 
silvicultural regimes on carbon balance and wood production on forest ecosystems. 
The experimental data on soil and climate for a very productive Norway spruce ecosystem 
on Distric Cambisols in Höglwald, Germany were used as initial parameters for stand, 
soil, and climate (Kreutzer and Göttlein 1991). The site had mild temperate climate with 
a mean annual temperature of +8.2°C and a total annual precipitation of 811  mm. The 
simulations were conducted between 1961 and 2050 with scenarios of increasing tempera-
ture and high atmospheric nitrogen deposition. Initial stand density was 10,000 3-year-old 
seedlings per hectare. The rotation lengths simulated were 15, 30, 45, and 90 years. There 
was regular thinning at 35, 45, 55, and 65 years in the 90-year rotation scenario and one 
thinning in the 45-year one. Two types of cutting were simulated: ecological (EC) with 
the remaining cutting residues on the harvested area for decomposition and whole tree 
harvesting (WTH) with the removing of all the aboveground biomass from the ecosystem.

The results demonstrated the productivity potential of the clearcutting regimes with 
different rotation lengths (Figure 8.4). They indicated that the shortest rotation had twice 
lower accumulated wood productivity over a long-term time interval. One can also see that 
the WTH had a little bit lower productivity in comparison with the ecological wood harvest-
ing. These results can be seen in relation to soil carbon dynamics as well (Figure 8.5). There 
was no negative soil organic carbon effect following the ecological cutting. While the soil 
carbon slightly decreased at a 15-year rotation with WTH, there is no soil carbon loss at 45- 
and 90-year rotations. These results clearly showed that the short rotation system was not 
an ecologically and economically optimal forestry practice without site amendments. It 
can be concluded that the methodology of this simulation can be used to evaluate in more 
depth carbon sequestration potentials of different wood harvesting methods.

8.5.3.2  Combination of Silvicultural Regimes

EFIMOD can be used to demonstrate the possibilities of forestry regime combination at 
the forest enterprise/regional level to reach a satisfactory balance between carbon budget 
and forest productivity from an environmental and economic point of view. The case study 
is an area of forest unit in central eastern Europe 100 km south from Moscow with Scots 
pine and mixed stands of average ages of 30–70 years that had high productivity on sandy 
mesic forest sites on the Oka River terraces. The modeling of four management regimes was 
performed for every stand in the selected forest lots to compare ecological and silvicultural 
consequences of different management regimes (Chertov et al. 2005; Komarov et al. 2007, 
Figure 8.6). It was assumed that the initial structure of forest sites, stand composition, and 
age structure were identical for all simulated forest regimes. The total simulated area corre-
sponded to the area of the Dankovsky management unit (7000 ha). It was also assumed that 
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FIGURE 8.4
Accumulated harvested wood over a 90-year time span with different rotation lengths and two different 
clearcutting scenarios: ecological with the exposure of cutting residues for decomposition in the forest and 
whole tree harvesting with extraction of all aboveground tree biomass from ecosystems.
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Predicted soil carbon dynamics for different rotation lengths and a scenario of whole tree harvesting.
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the scenario of “business cutting” corresponded to “legislation breach” with the following 
principle “take the best just now.” Some preliminary model runs showed that this regime 
was very close to the short rotation forest plantations demonstrating the negative carbon 
balance on the territory. The scenarios represented a consecutive series from “Russian leg-
islative clearcut system” (scenario I) to scenarios with decreased ratio of clearcutting and 
finally to combinations of natural development and “business cutting” with clear and selec-
tive cutting (scenarios VII and VIII). Relations between different silvicultural operations are 
presented in Figure 8.6. The parameters of carbon balance from the basic simulations were 
recalculated for every scenario as weighted averages proportionally to the percentage of 
every regime area:

	
P

P A P A P A P A
comb =

+ +( )1 1 2 2 3 3 4 4
100

+
	 (8.12)

where
Pcomb is a calculation parameter of carbon balance or productivity at the combination of 

forestry regimes
P1–P4 are the parameters for every separate regime
A1–A4 are the areas of every regime in the modeled scenario

The results of this exercise (Figures 8.7 and 8.8) showed a consistent increase in net primary 
productivity and soil carbon dioxide emissions as soon as the proportion of clearcutting 
decreased on the territory (Figure 8.7). A small admixture of naturally developed forests 
and business cutting did not change this trend. The maximal values of NPP and soil car-
bon dioxide emission occurred for scenarios with a domination of selective cutting with 
20% clearcutting and 10% natural forest and business cutting (scenario VI). This scenario 
also demonstrated a maximum carbon production of harvested wood: 1.05 ton [carbon] 
ha−1 year−1 in average for 200-year simulations that correspond approximately to 4.5 m3 
ha−1 of wood annually. It was found unexpectedly that two regimes with 30% of business 
cutting and 20% of naturally developed forest (scenarios VII and VIII) demonstrated rather 
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good parameters of carbon balance and forest productivity. Moreover, scenario VIII with 
combination of selective and business cutting had just the same capacity of harvested wood 
carbon as scenario VI with domination of selective cuttings.

These results were confirmed by the patterns of NEE for different combinations of sil-
vicultural regimes (Table 8.3). This table shows that all combinations with some ratios of 
naturally developing forests had a positive carbon budget. Again, the maximum carbon 
sequestration in the territory for this 200-year simulation was observed for the combina-
tion of natural development with selective and business cutting (scenario VIII).

Figure 8.8 shows carbon pools in forest biomass and SOM at the end of the simulations 
and exhibits similar dynamic trends as previous ones: the accumulated carbon in stands 
and soils increased as soon as clearcutting reduction took place. However, the largest pools 
were found for scenario VIII and the lowest pools for clearcutting scenario I. In addition, 
similar work was conducted for suburban forests in dense populated areas and recre-
ational management (Table 8.4). Recreational scenario means a modest selective cutting 
to increase a scenic beauty of landscapes in combination with the creation of recreational 
infrastructure. In this case, the results give also a possibility for the selection of optimal 
combination of regimes taking into account both recreational and productive functions of 
suburban forests. The fourth and fifth scenarios seem to be optimal from a carbon balance 
point of view, allowing also to get some wood from forest plantations, though it is disput-
able that plantations represent a good option for this area.

We can conclude that this is an idealized picture because the productivity and stand 
characteristics can be in reality different combinations of forestry practices. For example, 
the best productive sites can be used for business cutting and forests of lower productivity 
for other regimes.

These case studies demonstrate an exploratory potential of the forest ecosystem simu-
lation for the investigation of carbon budget, wood productivity, and even biodiversity 
of different silvicultural regimes. These simulations demonstrate an effectiveness of the 
idea of “offset areas” (Knaus et al. 2006): making of some areas with a positive effect of 

TABLE 8.3

Components of Carbon Budget (ton [C]) Averaged over 200-Year Simulations for an Entire Forest 
Unit in Central Eastern Europe Composed of Scots Pine and Mixed Stands with Combination of 
Different of Silvicultural Regimes and Proportions of Management Regimes

Proportion of the Area 
of Natural Development/
Selective Cutting/Clearcutting/
Plantation Forests, % 

NPPa

Soil C 
Respiration 
(Emission) 

C Removed 
with 

Cuttings NEEb 
Tree 

Biomass Cc Soil Cc

ton [C] ha−1 year−1 ton [C] ha−1

0/0/100/0 4.75 3.48 0.81 0.000 38 36
10/0/90/0 4.91 3.67 0.73 0.099 45 41
10/0/80/10 4.85 3.61 0.76 0.074 44 44
10/20/60/10 5.01 3.75 0.84 0.112 45 43
10/40/40/10 5.17 3.89 0.91 0.150 46 45
10/60/20/10 5.33 4.03 0.99 0.188 48 47

a	 NPP, C of a net primary productivity, increment of total biomass (leaves, branches, bole, roots).
b	 NEE, net ecosystem exchange, a measure of carbon balance: NEE_C = NPP_C – (Soil_respiration_C + Cutting_C 

+ Deadwood_decomposition_C + Disturbance_loss_C); deadwood decomposition and disturbance losses did 
not reflect in the table.

c	 Average values of stand, soil (with deadwood) C for the entire forest area at the end of a 200-year simulation.
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any management action to compensate negative effects of the other ones. In our case, it 
is the regimes of “natural development” versus business cutting in relation to carbon bal-
ance of forest territory at a long-term prospect. The other conclusion can be as follows: 
the larger the diversity of management regimes, the more optimal are the parameters of 
carbon balance and forest productivity, but it needs additional verification. Nevertheless, 
it is clear that forest model could be an effective science-based forest planning instru-
ment for an optimization of forest area splitting by management regimes to harmonize 
conflicting environmental and economic criteria of sustainable forest management.

There are other examples in the literature on the application of process-based models to 
predict the effects of human disturbances, such as harvesting forest ecosystems. Thompson 
et  al. (2006) used the Landscape Management Policy Simulator (LAMPS) to project the 
effects of several forest policies, including disturbance-based policies. Simulated distur-
bance-based policies produced age-class distributions closer to the estimated histori-
cal range than those created by the current policy. Within 100 years, the proportions of 
younger forests were within the historical range, while older forests moved closer to, but 
remained below, historical conditions. In the near term, disturbance-based policies pro-
duced annual harvest volumes 20%–60% lower than those produced by the current policy. 
However, relative costs of disturbance-based policies diminished over time. The results 
suggest that if expediting a return to historical age-class distributions at a provincial scale 
was a goal, then public lands would be needed to provide large patches of old forests. In 
addition, this experiment illustrated that distributing costs and benefits of conservation 
policies equitably across multiple private landowners is a significant challenge.

8.5.4  Limitations and Challenges for Practical Implementation

Process-based models have limitations in that they require (1) detailed parameterization of 
life histories and physiologies, (2) capacity to capture the complexity of many interacting 
disturbance factors, and (3) high-resolution modeling over very large areas. A limitation 

TABLE 8.4

Components of Carbon Budget (ton [C] year−1 ha−1) Averaged over 200-Year Simulations for an 
Entire Forest Unit in Central Eastern Europe Composed of Scots Pine and Mixed Stands with 
Combination of Different Silvicultural Regimes in a Dense Populated and Industrial Region

Proportion of the Area of 
Natural Development/
Recreational/Plantation 
Forests, %

NPPa

Soil C 
Respiration 
(Emission) 

C Removed 
with Cuttings NEEb 

Tree 
Biomass Cc Soil Cc 

ton [C] ha−1 year−1 ton [C] ha−1

0/100/0 5.54 4.17 1.18 0.190 45 47
0/90/10 5.40 4.04 1.20 0.146 43 46
10/80/10 5.48 4.16 1.06 0.226 49 49
30/60/10 5.65 4.41 0.84 0.386 62 57
50/40/10 5.82 4.65 0.61 0.546 75 64
100/0/0 6.37 5.38 0.00 0.990 110 83

a	 NPP, C of a net primary productivity, increment of total biomass (leaves, branches, bole, roots).
b	 NEE, net ecosystem exchange, a measure of carbon balance: NEE_C = NPP_C – (Soil_respiration_C + 

Cutting_C + Deadwood_decomposition_C + Disturbance_loss_C); deadwood decomposition and disturbance 
losses did not reflect in the table.

c	 Average values of stand, soil (with deadwood) C for the entire forest area at the end of 200-year simulation.
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that affects the precision and realism of many process-based models is that they do not 
cover the full range of forest dynamic processes. Some of the important aspects that mod-
els often lack include the effects of climatic conditions, disturbance, and site quality. In 
addition to model complexity, difficulties associated with their implementation, accessibil-
ity to user guidance, and degree of relevancy to answer questions important for decision 
makers are other factors that explain their marginal application to forest management 
planning (Sands et al. 2000). Besides these logistical limitations, there are intrinsic prob-
lems with controlling cumulative errors associated with the sheer number and diverse 
spatiotemporal scales of parameters, most of which ultimately being derived from a lim-
ited number of empirical studies.

Continued research is needed to move the science forward on detecting and modeling 
and potential assisting of actual and potential forest change in a changing climate and 
disturbance. Understanding the effect of individual assumptions allows the identification 
of major uncertainties in the models and working toward improving them. Process-based 
models are also better able to deal with the enhanced productivity possible via elevated 
CO2 and increased water use efficiency. An assumption-centered approach to modeling 
could improve our understanding of the effects of rising CO2, temperature, and water 
availability on forest function.

Much of this uncertainty can be incorporated in reporting projections. Medlyn et al. (2011) 
reviewed several process-based models that simulate forest productivity under climate 
change and provided a checklist for evaluating modeling studies and argued that models 
and experimental research should be closely integrated. Long-term, intensively studied 
experiments are needed to generate sufficient data to test alternative model hypotheses. 
Many additional advances will be possible by making continued improvements in the 
integration among the avenues here. The merging of process-based models, demography 
models, and species distribution models allows for some of the best attributes of each.

In summary, process-based models of forest ecosystems are widely used to predict the 
likely future impacts of environmental change and disturbance. These models are valu-
able tools in predicting the effect of climate change and disturbances on forest ecosystems 
and have the potential to address issues related to the basic principles of ecosystem man-
agement and provide sound predictions of the dynamics of ecosystems when changes in 
environmental conditions are unprecedented. This is the case of climate change or any 
external impacts such as large disturbance events.
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