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Abstract

From Leonhard Euler to Alfred Lotka and in recent years understanding the stationary process of 

the human population has been of central interest to scientists. Population reproductive measure 

NRR (net reproductive rate) has been widely associated with measuring the status of population 

stationarity and it is also included as one of the measures in the millennium development 

goals.This article argues how the partition theorem-based approach provides more up-to-date 

and timely measures to find the status of the population stationarity of a country better than the 

NRR-based approach. We question the timeliness of the value of NRR in deciding the stationary 

process of the country. We prove associated theorems on discrete and continuous age distributions 

and derive measurable functional properties. The partitioning metric captures the underlying age 

structure dynamic of populations at or near stationarity. As the population growth rates for an ever-

increasing number of countries trend towards replacement levels and below, new demographic 

concepts and metrics are needed to better characterize this emerging global demography.
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1. INTRODUCTION

The value of the net reproduction rate (NRR) of the population of a country computed for 

a year is used to understand the degree of population replacement level for that country 

[1]. There are several limitations of using NRR as a measure to understand the population 

replacement level of a country or a region [2]. In technical demography literature, the 

replacement level of a population means the level at which a generation of a population 

will be replaced by a new population that is produced by the original population [3, 4, 

5]. Alfred Lotka [4, 5] associated the population replacement level of a population with 

the reproduction rate of that population. The data used in NRR computation is of female 

births only and hence it is generally regarded as the average number of girls replaced by 

a woman before she successfully completes her replacement age [2]. The quantity NRR is 

denoted by the symbol R0 by Alfred Lotka [4, 5]. There were advancements in understanding 

net reproduction functions within a framework of population growth, epidemic spread [6, 

7, 8, 9, 10, 11], structured populations [12, 13, 14, 15, 16, 17], and continuous structured 

populations [18, 19, 20]. Our focus in this article is net reproductive functions within the 

classical demography perspective. When R0 = 1 is attained for a country in a year we say 

the population of that country reached the exact replacement level [1]. When R0 > 1 we 

say the population is at above replacement level and if R0 < 1 we say the population is 

below replacement level or sub-replacement level. Reaching the exact replacement level of a 

country could have happened from that country being above the replacement level or being 

below the replacement level (see Figure 1.1).

Before we move our discussion on measuring replacement levels through R0 let us 

understand the technicalities in R0. The quantity R0 in demography [4, 5, 9] is defined as

R0 = ∫
x ∈ Rep

f(x, G)g(x, G)dx, (1.1)

where f(x, G) is the age-specific fertility rates (only girl children born) of women of age x in 

the year t, g(x, G) is the survival probability function for the women to live up to the age x
in the year t. In (1.1), x ∈ Rep indicates that we are integrating with respect to x over all the 

reproductive ages (Rep) of women. The length of generation L in population theories using 

R0 (demography) is defined as

L = 1
R0

∫
x ∈ Rep

xf(x, G)g(x, G)dx . (1.2)

The function f(x, G) could be computed from the observed data either from Census records 

or from a large population survey. The function g(x, G) is obtained from life tables (either 

5-year abridged or complete life tables). The product f(x, G)g(x, G) gives us a product of 

fertility rates and survival probability of the newborn girl babies surviving up to each age 

x, and integrating this product gives us the number of new girls that will be produced by 

a cohort of women in their reproductive life time. Hence, R0 is a measure of the average 
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rate of replacement of a woman by girl babies who will survive up to her reproductive age 

by combining our current knowledge of fertility rates to produce girl babies and current 

age specific mortality rates of women in the reproductive ages. Since the sex ratio at birth 

is close to 1 (approximately 1.05), R0 can also be treated as an approximate measure to 

understand the average replacement rate for men in their reproductive lifetime [21, 22, 23]. 

Please note that much before in epidemiology the notation of R0 was used in demographic 

literature [24, 25].

The technicalities of gross and net reproductive rates and the data used in their computations 

were well discussed in other articles, for example [24, 25, 26, 27, 28, 29]. Although there 

were some concerns regarding limitations of R0 in terms of interpretations due to using of 

life table survival rates [2], hardly there were any concerns whether R0 is able to predict 

the stationarity of actual populations (non-life table populations). The generations and time 

sensitives of the generations in computation of NRR and the associated lags were discussed 

in earlier studies [30, 31, 32, 33, 34, 35, 36, 37, 38]. Moreover, the concerns raised on the 

usage of life table-based survival rates in the computation of R0 did not find much interest 

among demographers and there are no evidences of any alternate strategies. The quantity R0, 

in general, is accepted widely for capturing the true rate of natural increase of a population 

whose fertility and mortality data for a period is used in the computation. Mortality data 

and fertility data are used for an age range, and survival probabilities are adopted from the 

corresponding life tables. The value of R0 can be used to obtain the rate of natural increase, 

r by the relation r = L−1 lnR. We see that r = 0 if, and only if, R0 = 1. However, the timing 

of the data used in the computation of R0 is very crucial. One of the limitations of R0, 

especially, in its utility with respect to timeliness is that the value of the replacement rate 

equal to 1 would not be effective for the period in which it was computed [2]. That is, 

although the value of R0 is equal to one is generally perceived as the population attained 

stationary, however, population do not attain stationary in the same period for which the 

data was used. To overcome the the limitations of conventional NRR formula, three new 

formulae were introduced in [2] which were denoted by Q0, Q0
′, and Q0

′′. We describe them 

briefly below:

The quantity Q−0 was defined as

Q0 = ∫
α

β

p1(x, t)p2(x, t)dx, (1.3)

where p1(x, t) = Bx
t /W x

t  and p2(x, t) = Fx
t + x/B0

t. Here Bx
t  is the total number of female children 

born to the women of age x for the year t, W x
t  is the effective number of women of age 

x for the year t, and B0
t = ∑α

β Bx
t . The quantities α and β are the reproductive age range 

of women W x
t . The survivors of B0

t after several years would be part of the set, Fα
β for 

Fα
β = Fα

t + α, Fα + 1
t + α + 1), …, Fβ

t + β , where Fx
t + x is the size of the female population of age x in the 

year t + x who was born in the year t, for x = α, α + 1, …, β. where Fx
t + x is the size of the 

female population of age x in the year t + x who was born in the year t, for j = α, α + 1, …, β. 

The probability of actual survival of girl babies to age x who were born in the year t will 
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be p2(x, t) for x = α, α + 1, …, β. The quantity Q0 in (1.3) will be equal to R0 under the stable 

population [39, 40, 41, 42, 38, 43, 44, 45, 46]. The formulae in (1.3), is a continuous version 

of the discrete formula introduced in [2].

The quantity Q0
′ in [2] was defined as

Q0
′ =

∑s = t
s = t + β B s: ∑α

β W x
t

∑α
β W x

t
, (1.4)

where B s: ∑α
β W x

t  is the total number of girl babies born for survivors of the women ∑α
β W x

t

until these women completed their childbearing period.

The quantity Q0
′′ in [2] was defined as

Q0
′′ =

∑c = α
c = β Bc

t

∑c = α
c = β W c

t
(1.5)

where Bc
t is the total number of children born to the women who completed their 

childbearing at the age c for c ∈ [α, β]. The quantity W c
t is the number of women in the 

year t who have completed their childbearing at the age c. Both the definitions in (1.4) and 

(1.5) are newly introduced in [2] with an aim to over the limitations of NRR described 

above.

This timeliness aspect of R0 in demographic studies has been ignored so far, perhaps, the 

computation involves generation time which usually is of several years. As long as we use 

life table-based survival rates as a multiplier, we will be unable to overcome this limitation 

of timeliness. On the other hand, by using period life table population computed from the 

mortality data and then comparing the remaining life as described in the partition Theorem 

in [47] and in the current article could avoid timeliness limitation.

For the reasons above, R0 value is often treated as a population replacement measure rather 

than measure to understand female replacement level only. Although, R0 = 1 in demography 

indicates exact replacement of a generation of population, but that replacement phase is 

not going to complete in the year in which two functions f(x, G) and g(x, G) are computed 

[47]. Further, R0 = 1 in the year t for a population does not guarantee that this population 

is a stationary population in the year t, because there is no guarantee that the schedules 

of mortality and fertility that went into computation of f(x, G) and g(x, G) will remain the 

same during the years after t. So the question of what is the current level of replacement (or 

stationary status) of a population in the year of t based on two functions f(x, G) and g(x, G)
computed in the year is still unanswered by computing R0.

Through this article, we have advanced the methods and arguments built on recent 

advancements in stationary population theory and its role in understanding the true status of 

population replacement levels in a country or in a region [2, 47, 48, 49, 50, 51, 52]. Our 

methods proposed could lead to a proper quantitative analysis of population replacement 
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levels in the world and in countries/regions which is one of the important annual country-

level population exercises conducted by the United Nations [53].

In section 2, we prove two sets of theorems for the conditions of population attaining 

stationary. One set of theorems is proved by considering the age of individuals in a 

population as discrete elements of a set, and the second set of theorems is proved by 

considering age distribution in the population as continuous age. In section 3, we describe 

the advantages of new measures and compare them with the traditional NRR of populations. 

In section 4, we demonstrate results for nine selected countries that are at different 

demographic population transitions. We conclude the article in section 5.

2. THEORIES ON POPULATION ATTAINING STATIONARY STATUS

To address the limitations of NRR discussed in the previous section in bringing timely 

conclusions on population replacement level we have taken the notation and terminology 

from the recent articles and then we built on their theories. The partition theorem [47] was 

used as a tool to decide if a given population in a country or a region attained stationary 

status. We state the theorem in [47] below:

Theorem 1.

Statement of Partition Theorem of Population [47]: Stationary Population Identity 
(SPI) partitions a randomly selected large population into stationary and non-stationary 
components (if such components are non-empty).

Partition theorem uses life table identity or stationary population identity [47] as a tool to 

decide for which of the single-year ages, the fraction of the population who are at age x in 

the year t is exactly equal to the fraction of the people in the life table constructed for the 

year t who have x years remaining. They called the set of all ages x for which the above 

identity satisfied as the stationary component of the population and other ages (say y’s) as 

the non-stationary component of the population. Sum of the stationary and non-stationary 

components would become total population. Let S and N be stationary and non-stationary 

components of the population described above whose elements consist of ages xi’s and yj
′s, 

respectively, i.e.

S = xi: i = 1, 2, …ω1
N = yj: j = 1, 2, …ω2

(2.1)

The stationary population identity (or the life table identity) is satisfied for the ages xi’s and 

it is not satisfied for the ages yj
′s. See Figure 2.1. When for all the ages the above identity 

is satisfied, we call the population is at replacement level (stationary), i.e. when N = ϕ
(empty set), the total population is in the stationary state. Even if N ≠ ϕ, still there are ages 

for which life-table identity satisfies. When |S | > |N| in (2.1) i.e. the size of the set S is 

larger than the size of the set N, the stationary component is more than the non-stationary 

component and vice-versa when |S | < |N|. The concept of partition theorem is helpful for 

instant measurement of population replacement in a year in which life table identity or 
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stationary population identity is constructed. This partitioning principle can be repeated 

using every year’s population data and using the corresponding life table constructed for that 

year’s data to check the status of stationary in the population.

Suppose the total number of births in a year b(x) born to women w(x) of age x is divided into 

female births b(x, G) and male births b(x, B), respectively. Let g(x) be the survival function 

corresponding to b(x). In general for all the countries’ data, the inequality b(x) < w(x) is 

satisfied, so we assume b(x)
(w) < 1. Then we will have

∫
x ∈ Rep

b(x)
w(x)g(x)dx > ∫

x ∈ Rep

b(x, G)
w(x) g(x, G)dx (2.2)

If R0 = 1, then

∫
x ∈ Rep

b(x)
w(x)g(x)dx

−1
< 1.

Even if R0 ≠ 1, the age-specific fertility rates are less than the survival rates in most of the 

situations, which gives us the inequality

∫
x ∈ Rep

g(x)dx
−1

> ∫
x ∈ Rep

b(x)
w(x)g(x)dx

−1

> ∫
x ∈ Rep

b(x)
w(x)dx

−1

. (2.3)

Similarly, we can obtain another inequality

∫
x ∈ Rep

g(x, G)dx
−1

> ∫
x ∈ Rep

b(x, G)
w(x) g(x, G)dx

−1

> ∫
x ∈ Rep

b(x, G)
w(x) dx

−1

.

(2.4)

Note that the function g(x, G) provides the survival probability of the newborn girl babies 

surviving up to each age x and obtained from life tables (either 5-year abridged or complete 

life tables). The quantity b(x) is the total births (female and male combined) born to women 

w(x) of age x such that b(x) = b(x, G) + b(x, B). For this reason, we have defined g(x) and 

g(x, G) separately. The function g(x) accounts for the total births b(x) and the function g(x, G)
accounts for only female births born to w(x).

2.1. Age as discrete elements in a set.

Let L(x, t) and P (x, t) be the life table and observed populations in the age x and at time t. Let
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L(x, t)
∑x = 0

ω L(x, t)
, P (x, t)

∑x = 0
ω P (x, t)

(2.5)

be the pair of values computed for each x ∈ A = 0, 1, 2, …, ω  at time t. We define two sets 

Et and Nt
† as below

Et = x ∈ A: L(x, t)
∑x = 0

ω L(x, t)
= P (x, t)

∑x = 0
ω P (x, t)

(2.6)

Nt = x ∈ A: L(x, t)
∑x = 0

ω L(x, t)
≠ P (x, t)

∑x = 0
ω P (x, t)

(2.7)

When Et > Nt  we consider the partition of stationary component in a population (or a 

country or a region) is larger than the partition of non-stationary component. Et  and Nt

represent the cardinalities of two sets Et and Nt, respectively. If Et < Nt , then, we consider 

the partition of non-stationary component in a population is larger than the partition of 

stationary component. We have,

Et ∪ Nt = A and Et ∩ Nt = ϕ at each time t,

and

A = Et if Nt = ϕ
Nt if Et = ϕ, (2.8)

where ϕ is the empty set. Also, Et ≤ |A| and Nt ≤ |A|. Since A = Et ∪ Nt, so the elements of 

A are partitioned into Et and Nt, so we can write equivalence of these sets as

A Et if Nt = ϕ
Nt if Et = ϕ, (2.9)

At any given time t, one of the inequalities Et > Nt  or Et ≤ Nt  is true. The relation (2.9) 

also holds because Et ∩ Nt = ϕ. This gives us

Et < Nt < A

or

Nt < Et < A , (2.10)

Et + Nt = Et + Nt . (2.11)
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The elements in the set Nt are mapped to a quantity which could be either positive or 

negative. If we define two functions,  f1 and  f2 such that

f1:Nt
L(x, t)

∑x = 0
ω L(x, t)

− P (x, t)
∑x = 0

ω P (x, t)
, (2.12)

f2:Et
L(x, t)

∑x = 0
ω L(x, t)

− P (x, t)
∑x = 0

ω P (x, t)
. (2.13)

The function  f1 is bijective and  f2 is not because  f2 is a constant function taking only 

singleton 0. In the next following theorems, we will study further properties of  f1 by 

studying the quantity

L(x, t)
∑x = 0

ω L(x, t)
− P (x, t)

∑x = 0
ω P (x, t)

for elements in the set Nt.

Theorem 2.—∑x ∈ A
L(x, t)

Σx = 0
ω L(x, t) − P (x, t)

Σx = 0
ω P (x, t) = 0, if, and only if,

L(x, t)
Σx = 0

ω L(x, t)
= P (x, t)

Σx = 0
ω P (x, t)

for all x ∈ A.

Proof.: We omit the proof as one can easily see the result is true. □

Consider an unordered age set A1, where

A1 = x1, x2, …, xk1, y1, y2, …, yk2, z1, z2, …, zk3

such that A1 A, i.e. A1 and A have 1 − 1 correspondence. Further, A1 is written as union of 

unordered sets X, Y  and Z such that

A1 = X ∪ Y ∪ Z, (2.14)

where

X = x1, x2, …, xk1 ,

Y = y1, y2, …, yk2 ,
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Z = z1, z2, …, zk3 ,

such that

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) > 0, (2.15)

∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) < 0, (2.16)

∑
x ∈ Z

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) = 0. (2.17)

Theorem 3.—∑x ∈ A
L(x, t)

Σx = 0
ω L(x, t) − P (x, t)

Σx = 0
ω P (x, t) = 0, if, and only if,

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t)
− P (x, t)

Σx = 0
ω P (x, t)

= − Σx ∈ Y
L(x, t)

Σx = 0
ω L(x, t)

− P (x, t)
Σx = 0

ω P (x, t)

for all x ∈ A.

Proof.

Suppose

∑
x ∈ A

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) = 0. (2.18)

Then, one trivial possibility would be

L(x, t)
Σx = 0

ω L(x, t)
= P (x, t)

Σx = 0
ω P (x, t)

for all x ∈ A. 

This gives us

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) = − ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) . (2.19)

Let us now consider a non-trivial situation. Suppose

L(x, t)
Σx = 0

ω L(x, t) ≠ P (x, t)
Σx = 0

ω P (x, t) (2.20)
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holds for some values of x within the set A. Then, there must be a minimum of two such 

values of x in A such that

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) > 0 (2.21)

for exactly one values of x in X (say, x = a1), and

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) < 0 (2.22)

for exactly one values of x in Y  (say, x = a2) and simultaneously (2.17) also holds. This 

implies, (2.18) is true for one value of x in X and one value of y in Y . Therefore

L a1, t
Σx = 0

ω L(x, t) − P a1, t
Σx = 0

ω P (x, t) = − L a2, t
Σx = 0

ω L(x, t) − P a2, t
Σx = 0

ω P (x, t) . (2.23)

Suppose, there are three values of x in A for which (2.20) holds and suppose for the rest of 

the x in A values (2.17) holds. Then, there arises two following cases:

case (i): two values of x in X ⊂ A satisfy (2.15) and one value of y in Y ⊂ A satisfy (2.16).

case (ii): one value of x in X ⊂ A satisfy (2.15) and two values of y in Y ⊂ A satisfy (2.16).

Under case (i), (2.15) holds for the two values of x in X, say x = a1, a2 and (2.16) holds for 

one value of y in Y , say, x = a3. This implies (2.17) is true for three values of x in A (two 

values of X, one value of Y  and rest from the set Z). Therefore

L a1, t
Σx = 0

ω L(x, t) − P a1, t
Σx = 0

ω P (x, t) + L a2, t
Σx = 0

ω L(x, t) − P a2, t
Σx = 0

ω P (x, t)
= − L a3, t

Σx = 0
ω L(x, t) − P a3, t

Σx = 0
ω P (x, t) .

(2.24)

Under case (ii), (2.15) holds for the one values of x in X, say x = b1 and (2.16) holds for 

two values of y in Y , say, x = b2, b3. This implies (2.17) is true for three values of x in A (one 

values of X, one value of Y  and rest from the set Z). Therefore

L b1, t
Σx = 0

ω L(x, t) − P b1, t
Σx = 0

ω P (x, t)
= − L b2, t

Σx = 0
ω L(x, t) − P b2, t

Σx = 0
ω P (x, t)

(2.25)

− L b3, t
Σx = 0

ω L(x, t) − P b3, t
Σx = 0

ω P (x, t) (2.26)
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The forward part of the proof is done for the situation of three values of x in A.

case (iii): n values of x in A. Suppose, there are n(n > 3) values of x in A for which (2.20) 

holds and suppose for the rest of the x in A values (2.17) holds. The combination of the 

number of values of x in A and y in Y  are listed in Table 1.

For each of the combinations of numbers of x and y values in X and Y  in Table 1, (2.15) and 

(2.16) holds. Similar to the three-element situation explained above, we can see that

∑
i = 1

n − 1 L bi, t
Σx = 0

ω L(x, t) − P bi, t
Σx = 0

ω P (x, t)

= − L bn, t
Σx = 0

ω L(x, t) − P bn, t
Σx = 0

ω P (x, t)

(2.27)

where x = bi ∈ X for i = 1, 2, …, n − 1, and y = bn ∈ Y , and

L b1, t
Σx = 0

ω L(x, t) − P b1, t
Σx = 0

ω P (x, t)

= ∑
n

i = 2 L bi, t
Σx = 0

ω L(x, t) − P bi, t
Σx = 0

ω P (x, t)
(2.28)

where  x = b1 ∈ X and y = bi ∈ Y  for i = 2, …, n. All other combinations of X and Y  in Table 1 

can be expressed. With this, we proved (2.19) in general and the forward part of the theorem 

is proved. Conversely, suppose (2.19) is given. We need to prove (2.18). Since (2.19) holds, 

we have

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) + ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) = 0. (2.29)

Adding the quantity

∑
x ∈ Z

L(x, t)
Σx = 0

ω L(x, t)
− P (x, t)

Σx = 0
ω P (x, t)

on both sides of (2.29), we get

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) + ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t)

+ ∑
x ∈ Z

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t)

= ∑
x ∈ Z

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t)

(2.30)

The equation (2.30) becomes
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∑
x ∈ A

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) = 0 . (2.31)

Corollary 4.—∑x ∈ A
L(x, t)

Σx = 0
ω L(x, t) − P (x, t)

Σx = 0
ω P (x, t) ≠ 0 whenever

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) ≠ − ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) . (2.32)

Proof.: When (2.32) holds, then

∑
x ∈ A

L(x, t)
Σx = 0

ω L(x, t)
− P (x, t)

Σx = 0
ω P (x, t)

< 0,

or

∑
x ∈ A

L(x, t)
Σx = 0

ω L(x, t)
− P (x, t)

Σx = 0
ω P (x, t)

> 0.

Theorem 5.—(a) ∑x ∈ A
L(x, t)

Σx = 0
ω L(x, t) − P (x, t)

Σx = 0
ω P (x, t) > 0 if, only if,

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) > − ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) . (2.33)

(b) ∑x ∈ A
L(x, t)

Σx = 0
ω L(x, t) − P (x, t)

Σx = 0
ω P (x, t) < 0 if, only if,

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) < − ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) . (2.34)

Proof.: (a) Forward part. Suppose

∑
x ∈ A

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) > 0. (2.35)

This imples,

∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) + ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) > 0, (2.36)

and (2.33) follows. For the ‘only if’ part, suppose (2.33) is true, then (2.36) follows, and
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∑
x ∈ X

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) + ∑
x ∈ Y

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t)

+ ∑
x ∈ Z

L(x, t)
Σx = 0

ω L(x, t) − P (x, t)
Σx = 0

ω P (x, t) > 0,
(2.37)

and, it follows the required inquality (2.35).

(b) Forward part and the ‘only if’ part are proved similar to proof in (a). □

2.2. Continuous age interval.

Let B = [0, ω] be the interval of all ages on which we are interested to understand the role 

of the partition theorem (Theorem 1). Here the age variable x is represented as a continuous 

value such that 0 ≤ x ≤ ω and

∫
0

ω L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx = 0 (2.38)

implies the population at time t attains stationary. There exits two continuous mappings, one 

mapping from

[0, ω] to L(x, t)
∫x = 0

ω L(x, t)dx
, (2.39)

and second mapping from

[0, ω] to P (x, t)
∫x = 0

ω P (x, t)dx
. (2.40)

Let us denote the two mappings (2.39) and (2.40) by f3 and f4, respectively, such that

f3: [0, ω] L(x, t)
∫x = 0

ω L(x, t)dx
, (2.41)

f4: [0, ω] P (x, t)
∫x = 0

ω P (x, t)dx
. (2.42)

Suppose the interval [0, ω]  is partitioned into three components U, V , W  such that,

B = U ∪ V ∪ W
U ∩ V ∩ W = ϕ (2.43)

The set U consists of all the elements of B such that
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L(x, t)
∫x = 0

ω L(x, t)dx
> P (x, t)

∫x = 0
ω P (x, t)dx

, (2.44)

the set V  consists of all the elements of B such that

L(x, t)
∫x = 0

ω L(x, t)dx
< P (x, t)

∫x = 0
ω P (x, t)dx

, (2.45)

and the set W  consists of all the elements of B such that

L(x, t)
∫x = 0

ω L(x, t)dx
= P (x, t)

∫x = 0
ω P (x, t)dx

. (2.46)

The functions f3 and f4 have the same domain  [0, ω]. We can define a new function 

ψ(a, b) on the domain [0, ω] × [0, ω]  for each b ∈ [0, ω]. The function defined on  [0, ω] is a 

measurable on  [0, ω]. The function ψ(a, t) as t b for a fixed b ∈ [0, ω] is almost everywhere 

converges on [0, ω]. Here ψ(a, t): [0, ω] × [0, ω] ℝ.

Theorem 6.—The Lebesgue integral ∫
[0, ω]

ψ(a, b)da exists for each b ∈ [0, ω].

Proof.: Let us consider f3(x, t) and f4(x, t) at time t. Then, for an arbitrary b ∈ [0, ω],

we have

lim
t b ∫

[0, ω]
ψ(a, b)da = ∫

[0, ω]
lim

t b
ψ(a, b)da . (2.47)

Since f3(x, t) and f4(x, t) re bounded functions, ψ(a, b) is a Lebesgue integrable. Suppose 

bn n ≥ 1 be a sequence of points on [0, ω]. Then,

∫
[0, ω]

ψ a, bn da (2.48)

exists, and

lim
n ∞

ϕ bn = ϕ(b), (2.49)

where

lim
n ∞

ϕ bn = ∫
[0, ω]

ψ(a, b)da . (2.50)

Suppose Δφ(x) = φ(x) − φ(x), where
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φ(x) = sup L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

for x ∈ B, (2.51)

φ(x) = inf L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

for x ∈ B.  (2.52)

Both φ(x) and φ(x) exist and Δφ(x) is bounded. Two PDEs that govern the dynamics over 

age within [0, ω] are

∂P (x, t)
∂x = r1

∂P (x, t)
∂t , (2.53)

∂L(x, t)
∂x = − r2

∂L(x, t)
∂t , (2.54)

where r1 is defined as

r1 = ∫
x ∈ B

x P (x, t)
∫x = 0

ω P (x, t)dx
dx, (2.55)

where r2 is defined as

r2 = ∫
x ∈ B

x L(x, t)
∫x = 0

ω L(x, t)dx
dx . (2.56)

Theorem 7.—f3. f4 is Lebesgue integrable on [0, ω].

Proof.: f3 is measurable and f4 is measurable and both f3 and f4 are boinded on [0, ω].

So, f3 is a Lebesgue integrable on [0, ω] and f4 is a Lebesgue integrable on [0, ω]. Also, 

f3(x)f4(x)  is bounded for x ∈ [0, ω]  (because f3, f4 ≤ f3 f4 ). Since bn b for some 

b ∈ [0, ω], we have

∫
[0, ω]

f3(x)f4(x)db(x) = f5 x1, x2 ∫
[0, ω]

f3 x1, x3 f4 x2, x3 db(x)

≤ f5 x1, x2 ∫
[0, ω]

f3 x1, x3
2db(x)

1/2

.
(2.57)
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∫
[0, ω]

f4 x2, x3 db(x)
1/2

, (2.58)

where x1, x2, and x3 are in [0, ω], and f5 could be equal to either f3 or f4. □

Theorem 8.— ∫
x ∈ B

L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx = 0, if, and only, if,

∫
x ∈ U

L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx =

− ∫
x ∈ V

L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx .
(2.59)

Proof.: We first prove the forward part. Suppose

∫
x ∈ B

L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx = 0 (2.60)

is true. The two elements 0 , ω  could be in any of the sets U, V , W  and all possible 

combinations of their locations are listed in Table 2.

Let us consider the case (i) 0 ∈ U and ω ∈ U in Table 2. Since 0 ∈ U, we have

L(0, t)
∫x = 0

ω L(x, t)dx
> P (0, t)

∫x = 0
ω P (x, t)dx

. (2.61)

This implies f4 touches f3 from below at some value of the set B. Refer to Figure 2.1 for 

an overall concept. Let z1 be that point in B and z1 ∈ W  because at z1 the condition (2.46) is 

satisfied. The function f4 either crosses f3 such that (2.45) is true for x > z1 or the function 

f4 satisfies (2.44) for x > z1 or the function f4 satisfies (2.42) for x > z1. If f4 crosses at z1

to satisfy (2.45) then f4 must touch f3 from the above at least once because (2.60) is true. 

Suppose it touches once from the above, say it touches at x = z2, and f4 < f3 for x ∈ z2, ω
then

∫
0

z1 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx + ∫
z2

ω L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

= − ∫
z1

z2 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

(2.62)

holds (since (2.60) is true). Refer to Figure 2.2 for understanding (2.62).
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If f4 < f3 holds only for x ∈ z2, z3 , where (2.46) is satisfied at z3, then f4 at x > z3 will have 

three possibilities those were discussed above. Let us say f4 touches f3 from above at x = z4, 

and f4 < f3 for x ∈ z2, ω , then

∫
0

z1 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx + ∫
z2

z3 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

∫
z4

ω L(x, t)
∫x = 0

ω L(x, t)
− P (x, t)

∫x = 0
ω P (x, t)dx

dx = − ∫
z1

z2 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

− ∫
z3

z4 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

(2.63)

Refer to Figure 2.3 for understanding (2.63). Suppose after f3 = f4 at x = z1, after f3 = f4 is 

satisfied for x ∈ z1, z2 , f3 > f4 is satisfied for x ∈ z2, z3 , f3 > f4 is satisfied for x ∈ z3, ω , 

then

∫
0

z1 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

+ ∫
z3

ω L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx =

− ∫
z2

z3 L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx

(2.64)

Refer to Figure 2.4 for understanding (2.64). Instead of the above situation, suppose after 

f3 = f4 at x = z1, f4 starts satisfying (2.60) for x > z1, then after some x for x = z1, f4 must 

cross f3, (say at z2) from below to satisfy (2.45) and crosses f3 again from above, because 

(2.60) is true. If f4 does not cross from above after x > z1, then condition (2.60) is not 

satisfied and there arrives a contradiction for ω ∈ U in case (i) of Table 2. We could build 

several other possibilities of positions of f3 and f4 after x = z1 under the case (i). For all other 

combinations of locations of ages 0  and ω  in Table 2 we can construct equations of types 

(2.62) – (2.64).

Let us consider the ‘only if’ part of Theorem 8. That is, assume (2.59) is true. Note that

∫
x ∈ W

L(x, t)
∫x = 0

ω L(x, t)dx
− P (x, t)

∫x = 0
ω P (x, t)dx

dx = 0. (2.65)

Adding (2.59) to (2.65), we get (2.60). That proves the theorem. □

Remark 9.—The quantity R0 = 1 for an year does not mean N = ϕ will hold for the same 

year.
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Proof.: When R0 = 1 then replacement level in the population is not realized immediately 

for the reasons described in the section II. Where as N = ϕ Indicates stationary population 

identity is realized in the population in the same year in which N = ϕ is observed. Hence R0

based approach is not an instant measure for stationary population model in the population.

The objective of the stable stationary population model we present here is identical to that 

outlined in [21, 54, 55, 56]. See [21, 55] for stable population models more generally—to 

trace the dynamic characteristics of a population that starts off with an arbitrary age structure 

and is submitted from that moment on to a specified demographic regime. The regime for 

the stationary model assumes a closed population, one sex, fixed death rates and constant, 

replacement-level births.

The assumptions of stable models including the stationary model reveal the limitations 

of its application to real-world populations of humans as well as of non-human species—

i.e., actual populations are seldom closed, most consist of two sexes, and vital rates are 

virtually never fixed for long periods. None-the-less we believe that understanding the 

stationary population model as a special case of stable population theory is important in 

both basic and practical contexts. First, the stationary model unites cohorts and populations 

both conceptually and mathematically since stationary populations and life table populations 

are identical. Thus per capita birth and death rates in cohorts equal these same rates in a 

replacement population. Second, the stationary model provides demographic baselines for 

use in comparing the properties of the subset of actual populations throughout the world 

that are presently at or near replacement levels (e.g., Italy; Japan). Thus historical and 

current age structures of countries can be compared with each of their respective stationary 

(theoretical) distributions using period life tables corresponding to the year. Third, the 

demographic “distance” from stationarity as defined by stable theory can be estimated from 

projections for different populations using period life tables and replacement-level fertility. 

The results can provide an idealized framework for considering the world population as a 

series of subpopulations (countries) each of which is converging to a hypothetical stable 

stationary age distribution.

3. ADVANTAGES OF NEW APPROACH

New ideas proposed using the partition theorem uses the age-structured data from life tables 

and actual population census. Traditional NRR is obtained through the equation (3.1),

NRR = 1
2.05 ∑

x = 15

49
 1 Lx

tfx
t

(3.1)

where, 2.05 is generally taken as the sex ratio at birth, i.e. on an average 1 female child is 

born per 1.05 male children,  1 Lx
t  is the life table population of women at age x obtained 

from single-age life tables constructed for the year t, fx
t  is the age-specific fertility rates 

computed for the year t. When NRR = 1 for the year t, we say that the population is 

stationary in the year t. See [23, 32, 30, 34] for more discussion on the formula for NRR 

and see [2] for the limitations of NRR. The differences between the data that is required for 

computing NRR, and new NRR formulas suggeted in (1.3) – (1.5) are thoroughly discussed 
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in [2]. See Table 3 for data requirements in the traditional NRR and the partition theorem 

approach of this article.

New measure of stationary is not a replacement for the measure to understand whether a 

population is stationary through traditional NRR approach. However, the new measure can 

provide more timely measure of stationary status because momentum generated through 

the equation (3.1) is avoided in the new approach. Another key distinction is that by the 

population theorem approach, stationary component of the population is instantly identified 

which does not have any momentum in the component.

4. RESULTS

We have plotted the proportion of the population at each age within the age-group [0, 100] 

of single-age life table in 2017 for nine countries for which we have readymade life tables 

are available [57]. These countries in alphabetical order are, namely, Australia, Canada, 

Germany, Greece, Hong Kong, Italy, Poland, South Korea, and the U.S.A. We have also 

plotted the corresponding year’s proportion of the population from the census data for all 

these countries (See Table 4). Below we provide analysis of the partition theorem-based 

status of stationary population component and NRR-based status of a stationary population.

We illustrate comparative aspects of population partitioning using summary information 

contained in two figures. The age frequency distributions for the 2017 populations of nine 

countries and their hypothetical life table (stationary) populations based on 2017 period 

life tables are jointly plotted in Figure 4.1. The red-filled areas in these plots depict the 

magnitude of the differences at each age. These nine sets of plots can be grouped into 

three subsets by row based on these age distributions. The bottom-most row of plots for 

Greece, Germany and Italy show that, relative to their respective stationary cases, the age 

distributions of their 2017 populations have a dearth of individuals under ages 30 or 40, an 

excess of individuals from around 40 to 60 or 70 and nearly equal proportions of individuals 

after age 70. The set of plots in the middle row include those for South Korea, Australia and 

USA with all showing an excess of individuals at ages less than around 60 relative to their 

hypothetical stationary populations, and a dearth of individuals at all ages beyond. The set 

of plots in the top row include those for Canada, Hong Kong and Poland. The partitioning 

for these countries is similar to that for those in the bottom row in that they show a relative 

dearth of individuals at younger ages followed by an excess at middle ages. However, their 

age distributions relative to their stationary cases differ from the countries in the bottom row 

in that, unlike Greece, Germany and Italy which have nearly identical age distributions as 

the stationary case, these countries have a dearth of individuals. Along with each country’s 

2017 net reproductive rates, the sum totals of the proportional age distribution differences 

between the hypothetical stationary populations for each country and their 2017 population 

(i.e., red-shaded areas of plots in Figure 3) are presented in Figure 4.2. Three aspects of 

these relationships merit comment. First, the age distributions of the 2017 populations of 

Hong Kong and South Korea depart from their respective stationary cases far greater than 

any of the other countries but each due to substantially different age distributions as was 

described above. Whereas Hong Kong’s large value is due to excesses of middle aged and 

deaths for early and late ages, South Korea’s is due to excesses of individuals at young and 
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middle ages and a dearth at older ages. Also noteworthy is that the net reproductive rate 

of South Korea is substantially higher than Hong Kong’s NRR. Second, the USA has the 

lowest value for the partitioning parameter but one of the highest NRR’s. This leads to the 

third point which is that there is virtually no correlation between NRR and the partitioning 

parameter.

We anticipate the stationary proportion to reach close to 100% as the NRR values reduced 

further. The relation between NRR values below replacement and proportion of stationary 

component in a population follows a pattern, but a direct quantifiable association was not 

seen among the countries considered in Table 4. For example, between Canada, Australia, 

and Hong Kong, the NRR values are declining but the stationary component of the current 

population did not show a similar trend (Figure 4.2). In general, for all the countries 

considered in Figure 4, the proportion of people who are in the stationary component are 

within the range of 0.8–0.90 whereas the range of NRR values for these countries range 

within 0.62–0.88.

5. CONCLUSIONS

Understanding population replacement levels are one of the millennium development goals 

(MDG) of the United Nations [59]. Despite such important annual exercises to understand 

the population replacement levels and stationary status of populations, there are several 

limitations in their approaches discussed in our article. We argue that a proper measure 

needs to be adopted by the UNDP that can compute the annual level of population 

replacement. We are not discussing through our article other MDG goals, like global disease 

burden, poverty measures, etc that heavily depend on accurate population estimates [60, 61].

Deeper investigations are needed to identify the criteria required for specifying population 

stationarity than are currently used with the inherently static measure of NRR. This 

requirement is because of the paradox that a population is inherently dynamic due, not 

only to its age structure but also to the trajectories of birth and death rates. Thus conducting 

repeated comparisons of the age structure proposed in the article and NRR (through partition 

theorem-based) over several decades will shed important light on the dynamic component of 

stationarity in a country.

One of the highly intuitive results that we theoretically proved was Theorem 3. The idea 

was that when the sum of the difference between proportions of the lifetable population 

and the actual population at the age x for all such age x in a population becomes zero 

then the sum of the difference between proportions of populations for a set of age x values 

greater than zero will be exactly equal to the negative sum for all those values of age 

x below zero. The vice-versa of the previous statement was also proved here. Theorem 

3 brings an innovative implication of the partition Theorem of [47]. Such implications 

and interpretations of population stationary were not seen earlier. A continuous version of 

Theorem 3 was stated in proved through Theorem 8. The implications of Theorem 3 and 

Theorem 8 was shown in Figure 2.1 as well.
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Apart from the theoretical gains, the construction of sets of populations A and representing 

it as the union of various sets X and Y  based on certain properties that they obey brings an 

easier and more holistic approach in handling population data sets.

A summary Figure 2.1 is central to all the novel ideas of the article. We provide first-time 

country-specific analysis for selected under the newly proposed measure. The traditional 

survival analysis-based or life table-based approaches are applicable for shorter-time 

projections, and what we propose through this article provides population replacement levels 

in a given year based on the data available around that year [62, 63, 64, 65, 66]. Our article 

not only adds to the recent developments in stationary population models but brings fresh 

thoughts on the interpretation of stationary populations and more meaningful population 

analysis involving both stationary and non-stationary populations. The theoretical gains of 

the article were enormous.
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Highlights

• The traditional formula of NRR in Demography is questioned.

• Proposed an alternative measure for the population replacement levels.

• New theories were developed on measuring instant population replacement 

levels.
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Figure 1.1. 
Trend line of Net Reproductive Rate (NRR or R0) and replacement direction. R0 value of 1.0 

of a country could be reached from the above replacement level, a situation we depict here 

as R0 1+ or it could be reached from the below replacement level, a situation we depict 

here as R0 1−.
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Figure 2.1. 
Partitioning of stationary and non-stationary populations. Proportion population obtained 

from the Census data for a year is compared with the same year’s life table population. The 

values x1, x2, …, x8 forms the stationary component set S.
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Figure 2.2. 
Relationship between f3 and f4 associated with the equation (2.62).
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Figure 2.3. 
Relationship between f3 and f4 associated with the equation (2.63).
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Figure 2.4. 
Relationship between f3 and f4 associated with the equation (2.64).
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Figure 4.1. 
Country-specific comparison of stationary population identity and actual population 

proportionate age-structure.
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Figure 4.2. 
Country-specific proportions of people in the stationary component of actual population and 

corresponding NRR values.
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Table 1.

Possible combinations of number of elements in the sets X and Y.

Number of x values in X Number of y values in Y
n − 1
n − 2

⋮
n − (n − 1)

1
2
⋮

n − 1
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Table 2.

The list of all possible combinations of locations of 0 and ω

(i) 0 ∈ U  and ω ∈ U
(ii) 0 ∈ V  and ω ∈ V

(iii) 0 ∈ W  and ω ∈ W
(iv) 0 ∈ U  and ω ∈ V
(v) 0 ∈ U  and ω ∈ W
(vi) 0 ∈ V  and ω ∈ U

(vii) 0 ∈ V  and ω ∈ W
(viii) 0 ∈ W  and ω ∈ U
(ix) 0 ∈ W  and ω ∈ V
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Table 3.

Data required to compute NRR and new approach proposed

NRR for year t Population Theorem metric for year t
Sex-ratio at birth Actual population size by single year

Life table for female Life table for total population

Age-specific fertility rates at single-year ages –
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Table 4.

Population partitioning metrics for nine countries including mean ages of either the 2016 or 2016 population 

and the stationary population, the percentage differences between the age distributions, and the net 

reproductive rates (Data sources: United Nations (2019) and Berkeley Mortality Database).

Mean Age
Fractional differences

2016*/2017 Population Stationary Population NRR

Poland* 40.7 40.1 0.1990 0.685

Hong Kong 42.8 43 0.3309 0.635

Canada* 40.5 42.1 0.1834 0.736

S. Korea 35.0 42.2 0.3152 0.897

Australia 38.3 42.3 0.1701 0.884

USA 38.5 40.9 0.1239 0.855

Greece 43.5 41.5 0.1628 0.626

Germany 44.0 41.3 0.1644 0.767

Italy 44.6 42.1 0.1843 0.641
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