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Abstract

Gut microbial communities are shaped by a myriad of extrinsic factors, including diet and the environment. Although distinct hu-
man populations consistently exhibit different gut microbiome compositions, variation in diet and environmental factors are almost
always coupled, making it difficult to disentangle their relative contributions to shaping the gut microbiota. Data from discrete an-
imal populations with similar diets can help reduce confounds. Here, we assessed the gut microbiota of free-ranging and captive
rhesus macaques with at least 80% diet similarity to test the hypothesis that hosts in difference environments will have different
gut microbiomes despite a shared diet. Although we found that location was a significant predictor of gut microbial composition, the
magnitude of observed differences was relatively small. These patterns suggest that a shared diet may limit the typical influence of
environmental microbial exposure on the gut microbiota.

Keywords: captivity, diet, microbiome, primate

Introduction
Environmental factors can affect the microbiota by dictating the
extent to which microbes can be transmitted between individu-
als and between individuals and their environments (Stamper et
al. 2016, Tasnim et al. 2017, Parajuli et al. 2018, Manus et al. 2020).
These factors include exposure from social networks, the built en-
vironment, xenobiotics, and outdoor green space (Maurice et al.
2013, Lax et al. 2014, Mills et al. 2017, Sarkar et al. 2020). Accord-
ingly, we commonly see differences in microbiome composition
and structure in both human and animal populations living in
different locations. For example, humans living in more urban, in-
dustrialized settings have distinct gut microbiomes compared to
humans living in more rural, nonindustrialized settings (De Filipo
et al. 2010, Obregon-Tito et al. 2015). Similarly, wild and captive

conspecific mammals have different microbial signatures (Clay-
ton et al. 2016, Gibson et al. 2019). However, large diet shifts are
often associated with processes such as industrialization in hu-
mans (Jew et al. 2009, Mancabelli et al. 2017) and captivity in ani-
mals (Gibson et al. 2019, Van Leeuwen et al. 2020). As such, obser-
vational studies of human and animal populations involve natu-
ral confounds of diet, geography, and environment (Yatsunenko et
al. 2012, Obregon-Tito et al. 2015, Van Leeuwen et al. 2020), often
even when a single population is targeted (Urlacher et al. 2016,
Gurven et al. 2017). Further, human intervention studies typically
do not alter diets or environments for more than a few weeks or
months, making it difficult to assess long-term impacts (Wu et
al. 2011, David et al. 2014). Finally, controlled studies of laboratory
animal models involve settings with reduced opportunities for mi-
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crobial transmission due to high sanitation and altered social con-
tact, limiting applicability to free-ranging populations (Clayton et
al. 2016).

To better understand the potential factors underlying micro-
biome differences in conspecific hosts sampled in distinct loca-
tions, it is crucial to measure microbial differences in popula-
tions with similar diets but distinct environments. Natural experi-
ments in which populations of wild animals have been exposed to
human-influenced diets, similar to those of captive populations,
offer this approach. These populations are currently understudied
but can provide insight into whether the effect of host population
or location persists despite a similar diet.

Here, we use data from free-ranging and captive rhesus
macaques (Macaca mulatta) occupying distinct environments in
Puerto Rico with at least 80% diet similarity to explore the ex-
tent to which microbiome structure varies with location despite
a shared diet. Rhesus macaques were introduced to Cayo Santi-
ago (CS), a small uninhabited island off the coast of Puerto Rico,
in the early 20th century, resulting in a free-ranging, semiwild
population that exists to this day and has been extensively stud-
ied (Kessler and Rawlins 2016). Between 1974 and 1984, a sub-
set of macaques from CS were transferred to the Sabana Seca
(SS) Field Station on the mainland, where they are maintained
in a captive research environment. Because the population on CS
has outgrown the naturally available resources on the island, the
macaques are provided with commercial monkey chow, i.e. deliv-
ered by boat daily. Therefore, in addition to originating from the
same founder population, the macaques at SS and at CS have the
same core diet. However, macaques at SS inhabit a built environ-
ment with reduced outdoor exposure and social contact as well
as increased sanitation and medical intervention. Populations of
wild primates that are provisioned with humanized food—much
of which is low fiber high fat commercial chow – while also liv-
ing in natural social groups and environments are rare, mak-
ing this a unique system for exploring these microbial dynam-
ics. We hypothesized that despite similarities in diet, we would
observe microbiome differences in macaques at each location.
Specifically, we predicted that the macaques from CS would have
increased microbial diversity compared to those from SS since
their environments are more conducive to microbial dispersal. We
also expected SS macaques would have decreased relative abun-
dances of microbial taxa that have been associated with environ-
mental exposure in previous studies of wild cercopithecines [e.g.
specific strains of Actinobacteria, Firmicutes, and Proteobacteria
(Grieneisen et al. 2019)] compared to the CS macaques.

Methods
Study site
CS is a free-ranging semiwild population of rhesus macaques (M.
mulatta) inhabiting the island of CS off the coast of Puerto Rico.
CS rhesus macaques are provisioned daily with water and com-
mercial monkey chow (8773 Teklad NIB Primate Diet Modified).
Additionally, CS macaques have no predators and limited home
ranges (Maestripieri and Hoffman 2012), which may lead to longer
lifespans and less group dispersal as well as less energy put to-
ward vigilance and more time for social interactions compared to
completely wild macaques. Nevertheless, CS individuals occupy
an otherwise wild environment where they inhabit cliffs, forests,
thickets, and scrub areas, are exposed to other animals such as
birds and lizards and engage in behaviors such as geophagy. Ad-
ditionally, CS monkeys also inadvertently consume seaweed and

other debris when they forage. Medical intervention, and associ-
ated exposure to pharmaceuticals and antimicrobials, are rare.

SS is a captive research population of rhesus macaques on
mainland Puerto Rico. At SS, macaques consume a diet made
up almost entirely of the same commercial monkey chow pro-
vided at CS, and are housed in enclosures of different sizes—all
of which are smaller than the average group home range on CS.
Some individuals live in groups of about 15 individuals in indoor–
outdoor corrals with concrete tiled floors. Others are housed in-
doors in groups of 1–4 in enclosures with metal floors. SPF (specific
pathogen free) macaques are housed in these types of indoor en-
closures as well. All of our samples were collected from macaques
in indoor enclosures. All enclosures lack air conditioning and uti-
lize natural light, and even indoor enclosures are housed in “out-
door rooms” that allow animals to see the outdoors. All enclosures
have access to a well-water system so the animals can have water
ad libitum. Enclosures are cleaned daily; disinfection is performed
every 2 weeks. SS individuals have continuous veterinary care, in-
cluding biannual tuberculosis testing, biannual deworming with
Ivermectin, and rabies vaccination.

Dietary data collection
At CS, feeding ecology data was collected in 2010 and 2012 us-
ing 10-minute continuous focal animal samples (Altmann 1974).
These data were collected from individuals in the two social
groups from which most of our individuals were sampled. In-
dividuals were sampled randomly once a day, where activity of
focal subjects was recorded as one of four mutually exclusive
states: feeding, resting, traveling, or grooming. Doing so, allowed
us to compute the duration of time a subject spend in any given
state during the sample. When subjects were feeding, we recorded
whether they were consuming monkey chow or naturally avail-
able vegetation. We collected behavioral data between 07:30 a.m.
and 14:00 p.m. and data collection was stratified to ensure equal
sampling of individuals throughout the day and over the course of
the year. We collected a total of 4819 focals for a total of 803.2 h of
observation. During all recorded feeding events (i.e. when a focal
animal was feeding on either chow or plants) CS monkeys con-
sumed 81% (+/− 12.7%) chow and 19% (+/− 12.7%) plants (i.e.
tree leaves, grass, and flowers; Table S1, Supporting Information).
Consumption of chow vs. plants did not vary across seasons. At SS,
macaques eat once a day between 9:00 and 11:00 a.m. and are pro-
visioned with the same chow as the CS macaques. They generally
do not have access to natural vegetation but are supplemented
with fruit (2–3 times a week) and seeds (1–2 times a week). There-
fore, chow does not make up 100% of their diet. However, because
most of the provisioned food is consumed and the enrichment
foods are a very small proportion of the monkeys’ diet (SS staff,
personal communication), we are confident that chow makes up
more of the SS diet than the CS diet. As a result, we estimate that
the diets of the two populations is at least 80% similar. The mon-
keys at both CS and SS are fed the dry, pelleted 8773 Teklad NIB
Primate Diet Modified, which is made up of 20% protein, 5% fat,
and 10% fiber. Ingredients are listed in Table S2 (Supporting Infor-
mation).

Sample collection
In 2010, there were 2295 macaques at SS (969 conventional and
1326 SPF) and 1211 macaques at CS. We collected data from two
groups at CS (N = 32) and opportunistically collected samples
from individuals at SS (N = 34) across rainy and dry seasons. Fe-
ces uncontaminated with urine, water, or another animal’s feces
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Table 1. Sample demographics.

Location Total N

N adults
(4.08–21
years)

N Juveniles
(0.58–3.33

years) Year Season

CS 32 19 13 See below Rainy, dry
0 7 2009
0 6 2010
19 0 2012

SS 34 15 19 See below Rainy, dry
7 8 2009
8 11

2010

were collected noninvasively and immediately after defecation in
2009–2010 in both conventional and SPF indoor enclosures from
adults and juveniles at SS and from juveniles at CS. All fecal sam-
ples were linked to an animal with a confirmed identity. To sup-
plement our dataset, we also integrated noninvasively collected
samples from adults at CS that were collected 24 months later
(2012). A summary of sample demographics can be found in Ta-
ble 1. Samples were collected in both rainy and dry seasons across
all years. We detected no marked interannual patterns in micro-
biota composition (2009 vs. 2010 vs. 2012, P > .05) and no differ-
ences between conventional and SPF colonies at SS (PERMANOVA,
P > .05; distinct microbial taxa listed in Table S3, Supporting Infor-
mation), allowing us to combine all samples in the same analysis.
Samples from SS were frozen immediately while samples from
CS were stored in a cooler on ice packs for a period of approx-
imately 2–7 h until they could be transferred to a −20◦C freezer.
Samples were maintained at either −20 or −80◦C until processing.
All research procedures were approved by the Caribbean Primate
Research Center in Puerto Rico and the University of Colorado,
Boulder.

Microbiota analyses
We assessed gut microbiota taxonomic composition in adult and
juvenile macaques from both populations (N = 66) using 16S rRNA
gene amplicon sequencing. DNA was extracted from the fecal
samples using the MOBio PowerSoil Kit. The V4 region of the 16S
rRNA gene was amplified using the Earth Microbiome Project pro-
tocol (Thompson et al. 2017) and the 515Fa/806 primer set (Capo-
raso et al. 2010). Extraction and PCR negative controls were both
included in the sequencing run. We barcoded and pooled all am-
plicons in equimolar concentrations for sequencing on an Illu-
mina MiSeq V2 platform at the University of Colorado, Boulder,
Colorado.

Forward single-end sequences were demultiplexed and pro-
cessed using QIIME2 version 2020.2 (Bolyen et al. 2019). The dada2
algorithm was used to trim sequences and cluster amplicon se-
quence variants (ASVs). The removal of chloroplast and mito-
chondria sequences as well as chimeric sequences resulted in a
total of 1 542 122 reads with an average of 23 265 reads per sam-
ple, and taxonomy was assigned using the GreenGenes 13.8 ref-
erence database. All samples were rarefied to 10 000 reads per
sample based on alpha rarefaction curves (Figure S1, Support-
ing Information). A total of three samples were rarefied out, so
subsequent microbiota and statistical analyses were conducted
on a dataset of 63 individuals. Alpha and beta diversity metrics
were calculated in QIIME2, where alpha diversity metrics included
Faith’s phylogenetic distance, Shannon diversity index, and bacte-
rial richness, and beta diversity metrics included unweighted and

weighted UniFrac and Bray–Curtis distances. We also calculated
core microbiotas for adults and juveniles at 96% (what microbial
taxa 96% of individuals shared) and 100% (what microbial taxa
100% of individuals shared).

Statistical analyses
All statistical analyses were performed in R (version 4.1.2; Bunn
and Korpela 2013) on the filtered relative abundance table at the
microbial ASV taxonomic level, with P-value cutoffs at 0.05. To
identify predictors of microbial community composition, we uti-
lized permutational analyses of variance (PERMANOVA) on the
unweighted and weighted UniFrac distance matrices using the
adonis function (Oksanen and Simpson 2009) in the vegan package
in R. The model was structured with dependent variables: loca-
tion (CS vs. SS), age group (adults vs. juveniles), season, and sex (N
= 63). Collection year was initially included in the models but was
not significant; as such, we did not include it in reported models.
We used beta dispersion tests to evaluate variation in the mag-
nitude of interindividual differences between locations and age
groups (betadisp in vegan; N = 63; Anderson 2006). We also used
the nlme package in R (PINHEIRO and J. 2012) to run a linear re-
gression to examine the effects of the fixed variables location, age,
sex, and season on alpha diversity indices (N = 63). Additionally,
we used analysis of composition of microbiomes with bias cor-
rection (ANCOM-BC) with a cut-off of log fold changes above two
or below two to estimate differential abundance of gut microbes
at the genus level between locations and age groups. Finally, we
visualized UniFrac distances and alpha diversity metrics by con-
structing nonmetric multidimensional scaling (NMDS) and violin
plots, respectively, using the ggplot2 package (Wickham 2015).

Results
Location (PERMANOVA, unweighted UniFrac: F1,62 = 3.57, R2 =
0.054, P-value < .001; weighted UniFrac: F1,62 = 6.78, R2 = 0.097,
P-value < .001) was the most significant predictor of overall gut
microbial community composition, followed by age group (adults
vs. juveniles; unweighted UniFrac: F1,62 = 1.48, R2 = 0.022, P-value
= .025; Fig. 1) and season (unweighted UniFrac: F2,62 = 1.43, R2 =
0.043, P-value = .007). Sex was not a significant predictor of mi-
crobial composition within and between locations. Yet, it must be
noted that each of these variables explained less than 10% of mi-
crobial variation. Linear mixed effects models demonstrated that
gut microbial diversity did not differ across locations, age groups,
sexes or season. When examining which taxa characterized each
location, we found that the abundances of only 22 out of 284
microbial genera (7%) were significantly different (ANCOM-BC, q-
value < 0.01) between CS and SS (Table 2). We found that no indi-
vidual taxon exhibited significantly different relative abundances
across age groups between both locations or within SS.

Because the microbiome is shaped early in life by environmen-
tal exposures, we wanted to compare juveniles and adults across
locations to see if patterns differed by age. We found no effect of
age on microbial diversity across or within populations. While age
was a predictor of overall gut microbial community composition,
the effect of age was no longer significant within each location.
Across both populations, beta dispersion tests showed differences
between age groups for unweighted UniFrac distances (F-model
= 15.339, P-value < .001). Within each population, dispersion pat-
terns also differed significantly between adults and juveniles (CS
unweighted UniFrac, F-model = 22.702, P-value < .001; SS un-
weighted UniFrac, F-model = 24.956, P-value < .001; SS weighted
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Figure 1. NMDS plots (unweighted and weighted UniFrac distances) to assess differences in gut microbial composition in adult and juvenile macaques
sampled at CS (semiwild) and SS (captive).

Table 2. Genera which were significantly different between
locations.

CS SS

Taxa

Average relative
abundance (%

+/-SD)

Average relative
abundance (%

+/-SD)

Prevotella 0.084 (0.012) 0.966 (0.016)
Eubacterium 0.054 (0.001) 0.026 (0.0003)
Mogibacterium 0.028 (0.001) 0.005 (0.0002)
Phascolarctobacterium 0.020 (0.0005) 0.011 (0.0005)
Sarcina 12.67 (0.124) 7.908 (0.059)
Bulleidia 0.272 (0.012) 0.122 (0.006)
Bacteroides 0.982 (0.001) 0.766 (0.007)
Oscillospira 0.584 (0.003) 0.211 (0.004)
Dialister 0.757 (0.014) 0.294 (0.012)
Prevotellaceae 0.196 (0.0001) 0.028 (0.0004)
Methanobrevibacter 3.562 (0.035) 2.216 (0.049)
Coprococcus 0.034 (0.001) 0.009 (0.0003)
Erysipelotrichaceae 0.179 (0.001) 0.153 (0.002)
Ruminococcaceae 0 (0) 0.001 (4.38E-05)
Faecalibacterium 1.223 (0.016) 0.845 (0.010)
Streptococcus 0.233 (0.004) 0.860 (0.005)
Catenibacterium 0.446 (0.005) 0.991 (0.012)
Methanosphaera 0.003 (0.0001) 0.038 (0.0007)
Lactobacillus 0.01 (0.0002) 0.196 (0.002)
Rickettsiales 0.004 (0.0001) 0.013 (0.00 001)
Treponema 0.016 (0.0003) 0.758 (0.012)
Prevotella spp. 0.021 (0.004) 0.328 (0.0004)

UniFrac, F-model = 5.306, P-value = .01). ANCOM-BC showed
that the abundances of four out of 87 microbial genera spe-
cific to CS, including those from the families Erysipelotrichaceae,
Ruminococcaceae, Bacteroidaceae, and Lactobacilliceae, signifi-
cantly differed between adults and juveniles (Table 3).

Table 3. Microbial families and genera which were significantly
different between ages within CS.

Adults Juveniles

Taxa

Average relative
abundance (%

+/−SD)

Average relative
abundance (%

+/−SD)

Erysipelotrichaceae
0.043 (0.079) 0.141 (0.013)

Gemmiger 0.708 (0.254) 0.316 (0.042)
Bacteroides 0.214 (0.226) 0.163 (0.254)
Lactobacillus 0.138 (0.208) 0.259 (0.498)

Discussion
This study used captive and semiwild macaques in Puerto Rico
with at least 80% diet similarity to examine if microbial differ-
ences could be detected across locations despite a shared diet.
Although we found that location (captive vs. semiwild), age, and
season were significant predictors of gut microbial composition,
the magnitude of observed differences was relatively small. These
patterns suggest that diet and its effects on microbial commu-
nities may shape the gut microbiota to a greater extent than do
other environmental differences associated with location. Moving
forward, studies should quantitatively assess the impact of diets
alongside other factors to determine the relative influence of di-
etary and environmental factors on the gut microbiota.

Location impacts macaque microbial community
composition
We found small, significant differences in CS and SS macaque gut
microbial community composition. It is possible that these differ-
ences are a result of the slight dietary divergence between popula-
tions. Although monkey chow comprised the majority of the diet
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at both locations, CS macaques were observed to dedicate 19% of
their feeding time to natural vegetation on the island. Addition-
ally, CS macaques sometimes eat or chew on debris that washes
up on the beach, including seaweed and plastic, and inadvertently
consume small amounts of sea water. Studies of captive primates
suggest that dietary supplementation with natural browse from
multiple plant species can influence the composition and diver-
sity of the gut microbiota (Greene et al. 2018, 2020). We do not have
individual-level data describing the types of plants CS macaques
use to supplement their diets, or the nutritional content of those
plants. However, when CS macaques supplementally feed, they
undoubtedly draw from a higher diversity of plant food items with
higher fiber content than SS macaques do, who feed on domesti-
cated fruits and seeds that are provided a few times per week.
These differences could lead to the observed microbiome differ-
ences.

Furthermore, although we do not have quantitative environ-
mental data, it is likely that some of the observed microbial differ-
ences stem from the differences in the macaques’ physical envi-
ronments and associated microbial exposures. As the physical en-
vironment has been shown to transmit and potentially select for
certain environmental bacteria (Liu et al. 2021, Li et al. 2016, Born-
bush et al. 2022), it can serve as a strong influence on gut micro-
biota composition. Indeed, in wild baboons, soil and other geolog-
ical properties predicted gut microbiota composition across sites
(Grieneisen et al. 2019). This is likely a result of baboons’ terres-
trial lifestyle increasing exposure to soil microbial communities.
Like baboons, macaques are terrestrial primates. Therefore, it is
possible that differential exposure to soil at CS and SS leads to dif-
ferences in gut microbial community composition, especially be-
cause the CS macaques engage in geophagy (Mahaney et al. 1995).
Indeed, between CS and SS, we observed differences in the rela-
tive abundances of microbial taxa such as Paraprevotellaceae and
Mogibacterium, whose relative abundances in baboon guts were
previously associated with variation in soil properties (Grieneisen
et al. 2019). Since diet does not change across seasons at both
sites, the seasonal differences in microbiome structure that we
detected in our models are likely driven by temporal variation in
other factors such as these environmental exposures.

Macaque social environments may also contribute to the pat-
terns in our data. SS macaques sampled for this study were
housed in indoor enclosures with limited contact with other
macaques, while CS macaques live in large social groups and fre-
quently contact other macaques and animals (e.g. they share their
habitat with iguanas). Direct and indirect social contact among
hosts sharing the same environment shapes pathways of micro-
bial transmission, and variation in these pathways can lead to dif-
ferences in the gut microbiota both within and between groups of
hosts (Tung et al. 2015, Burns et al. 2017, Raulo et al. 2018).

Finally, differences in prophylactic medical treatment could re-
sult in different microbial communities across locations. Unlike at
CS, antibiotics such as Tylosin, Enrofloxacin, and Trimethoprim-
sulfa are administered as needed for diarrhea at SS, and individ-
uals are treated annually with antiparasitics such as Ivermectin.
Antibiotics have been shown to affect host physiology long-term
as they deplete microbial members, leaving increased niche and
nutrient availability within the gut ecosystem (Francino 2016). In
particular, Tylosin exposure results in reduced microbial diversity
and reduced relative abundances of Fusobacteraceae and Veil-
loneaceae in dogs (Manchester et al. 2019), while humans exposed
to Enrofloxacin exhibit reduced Bacteroidetes and Proteobacteria
relative abundances (Kim et al. 2012). Similarly, helminth and par-
asite prevalence has been associated with variation in the gut mi-

crobiota (Berrilli et al. 2012, Kuthyar et al. 2021, Martínez-Mota
et al. 2021). For example, Prevotellaceae, Paraprevotellaceae, and
Faecalibacterium relative abundances have previously been pos-
itively correlated with increased helminth abundance (Lee et al.
2014, Ramanan et al. 2016, Martínez-Mota et al. 2021). Patterns
such as reduced relative abundances of Bacteroides and unknown
Paraprevotellaceae in SS individuals could be linked to antibiotics
and antiparasitics, but more targeted studies are necessary to ad-
dress this question.

Shared diet may limit differences in free-ranging
and captive macaque microbiotas
Overall, our data indicate that gut microbiota differences between
CS and SS macaques are relatively limited. Despite inhabiting dis-
parate social and physical environments, less than 10% of the
variation in the microbiota composition data was explained by lo-
cation. In contrast, studies of macaques in wild and semiwild en-
vironments generally report much higher variation in microbiota
composition. These include studies of captive and wild long-tailed
macaques in Thailand (M. fascicularis, 53% of variation explained
by location; Sawaswong et al. 2021), wild, provisioned, and captive
Tibetan macaques in China (M. thibetana, mycobiome data, 23%–
39%; Sun et al. 2021), and Japanese macaques in Japan (M. fuscata,
28%–32%; Lee et al. 2019). Similarly, in contrast to most studies of
wild and captive primates (Frankel et al. 2019, Hale et al. 2019, Lee
et al. 2019), including macaques, microbial diversity did not differ
significantly between sites in our study, and only 7% of microbial
genera exhibited differences in relative abundances between sites.

Because the diets of the two macaque populations in our study
were both composed primarily of low-fiber monkey chow, with
much greater qualitative differences in the physical and social en-
vironments, the microbiome similarities we detected suggest that
a high fat, low fiber humanized diet shapes the macaque gut mi-
crobiota to a greater extent than do other environmental factors.
Low-fiber diets have previously been shown to lead to marked dif-
ferences in the microbiome over multiple time scales in exper-
imental lab studies in which the environment is held constant.
(David et al. 2014, Sonnenburg et al. 2016). However, the current
study represents one of the first instances of two populations in
distinct environmental conditions consuming such a similar diet.
While we cannot completely disentangle diet and genetics in this
study since SS and CS macaques share genetic origins, previous
studies consistently demonstrate that diet and other environmen-
tal factors have a stronger effect on intrahost species microbial
community structure than does genetics (Carmody et al. 2015,
Rothschild et al. 2018). In fact, a study of captive and wild vervets
with shared genetic origins but distinct diets and environmental
exposures reported marked differences in gut microbiome com-
position, indicating that shared genetic variation is not sufficient
to override the influence of other factors on microbial community
structure (Amato et al. 2015). Therefore, we are confident that the
limited genetic variation that exists is not significantly influenc-
ing the microbiotas between the two macaque populations in our
study.

Moving forward, it will be important to determine whether
there is a threshold of diet alteration necessary to shift the gut
microbiota. Given that there is interindividual variation in the
amount of monkey chow individuals consume on CS, this popula-
tion can continue to be leveraged to explore these questions. Sim-
ilarly, with the addition of quantitative data describing macaque
physical and social environments, we can more robustly test the
relative importance of individual host factors in shaping the gut
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microbiota. For example, at SS, social groups are kept in different
enclosures, which may exhibit microhabitat differences in envi-
ronmental microbial exposure. Varying social group sizes in out-
door and indoor corals may also allow different levels of microbial
transmission between conspecifics (Tung et al. 2015). Careful mea-
surements of these factors at the individual level in each popula-
tion as well as experimental manipulation will provide additional
insight into the dynamics driving urban-industrialized microbiota
phenotypes.

Potential effects of microbiota differences on
health
While the microbiota differences that we detected across loca-
tions were relatively limited, they may still have important health
impacts. For example, there may be health outcomes relevant
to the Old Friends hypothesis (Rook 2009), which argues that
exposure to a diverse array of environmental microbes is nec-
essary for training the immune system in early life and that
limited exposure to these microbes can result in impaired im-
mune development and function. Because the built environment
and periodic medical intervention at SS alters macaque expo-
sure to environmental microbes and influences which taxa can
stably establish, early life immune priming may be altered in
this population, leading to potential downstream health impli-
cations. In addition to immune training, other aspects of phys-
iology and development may be impacted as a result of dis-
rupted microbial exposure in early life. Integrating detailed health
and microbiome data collected from individuals longitudinally
will allow us to test these relationships and identify potential
thresholds of microbial divergence necessary to affect health
outcomes.

Conclusions
Our data comparing captive and semiwild macaques consuming
similar diets allowed us to explore the extent to which diet can
limit the impact of differential environmental exposure on gut mi-
crobiota structure. While we found evidence that variation in host
environments is associated with differences in gut microbial com-
munity composition, the magnitude of these differences suggest
that a shared diet plays a more important role in shaping the gut
microbiota. Future studies should further quantify environmental
differences across sites and consider experimentally varying ac-
cess to chow on CS. By capitalizing on human-influenced wild an-
imal populations such as the one here, we can continue to disen-
tangle the multitude of covariates associated with diet and isolate
mechanisms through which the microbiota can be altered. Fur-
ther, these data contribute to the overall literature on the primate
gut microbiota and importantly provide insight on how provision-
ing captive animals with humanized chow may impact the gut mi-
crobiota, which could then impact animal health. Understanding
these connections may improve health outcomes for both free-
ranging and captive primate populations.

Supplementary data
Supplementary data are available at FEMSEC online.
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