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ABSTRACT OF THE DISSERTATION

Generalized Kubelka-Munk Theory -
A Derivation And Extension From Radiative Transfer

by

Christopher Sandoval

University of California, Merced, 2016

Dr. Harish Bhat, Chair

Abstract

Kubelka-Munk (KM) theory is a broadly used simplification to the radiative transfer equa-
tion (RTE) that is solvable analytically for a restricted set of very simple problems. Despite
this simplicity and popularity, KM theory has never had its theoretical basis formally es-
tablished. In this work, we derive KM theory systematically from the radiative transfer
equation (RTE) by application of the spectrally convergent double spherical harmonics
method, of order one, and analysis of the resulting, transformed, system of equations in the
positive- and negative-going fluxes. We call these the generalized Kubelka-Munk (gKM)
equations, and they are able to account for general boundary sources and nonhomogeneous
terms. Having established theoretical footing for KM theory, we extend gKM’s four-flux
method to higher dimensions, applying it to a Gaussian boundary source and demonstrating
the method’s range of validity. Finally, we examine the application of the gKM method to
the vector radiative transport equation (vRTE), allowing for the modeling of sources with
polarized light. These methods offer a low cost approximation to the solutions of the scalar
and vector RTE’s, which we validate through comparison with benchmark solutions of the
transport equation.
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Chapter 1

Introduction

The theory of radiative transfer describes light propagation in a multiple scattering medium
[1, 2]. This theory takes into account absorption and scattering due to inhomogeneities in
the propagating medium. Radiative transfer has important applications in atmospheric
and ocean optics [3] and biomedical optics [4] among others. However, applying radiative
transfer is challenging for practical problems because exact solutions of the radiative trans-
port equation (RTE) are known only for simple problems. Even numerical solutions are
challenging due to the large number of variables involved.

Kubelka-Munk theory [5, 6] is an approximation of the one dimensional radiative
transfer equation. Rather than computing the full specific intensity, Kubelka-Munk (KM)
theory describes the flow of power in “forward” and “backward” directions, defined with
respect to the direction in which light is incident on the turbid medium. The Kubelka-
Munk equations form a 2×2 system that is much easier to solve than the radiative transfer
equation. However, a systematic derivation of the KM equations from the RTE was still
needed to determine all coefficients and its range of validity.

It is well known that the Kubelka-Munk equations are limited to plane-parallel prob-
lems in one spatial dimension with isotropic or weakly anisotropic scattering and diffuse
illumination. Additionally, it is well known that there exist more sophisticated approxima-
tions that are more accurate over a broader range of settings. Nonetheless, KM theory is
widely used for a variety of applications. Presumably, KM theory is used for all of these
applications because of its simplicity and its ability to model the qualitative behavior of
light in complex media. Consequently, extending and generalizing Kubelka-Munk to other
settings would be desirable to the application areas that already make extensive use of it.

We present in this thesis a systematic derivation of the KM equations from the RTE.
By doing so, we are able to address the outstanding issues in KM theory and overcome its
restrictions. A key step in this derivation is the application of the double spherical harmonics
method [7, 8, 9, 10] of order one to solve the general boundary value problem for the one
dimensional RTE. This theoretical framework also provides a means to generalize KM theory
to a larger class of problems including general boundary conditions, nonhomogeneous terms,
higher dimensions, and polarized light.
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1.1 Kubelka-Munk theory

If we denote the flux in the positive- and negative-going directions as F±(z), respectively,
through a plane parallel slab of scattering medium, then the Kubelka-Munk equations are

dF+

dz
+ (K + S)F+ = SF−, (1.1.1a)

−dF
−

dz
+ (K + S)F− = SF+. (1.1.1b)

The constants, K and S are related to absorption and scattering, respectively.
This so-called two-flux theory is intuitive and much simpler than the RTE. However,

despite several studies [11]-[20], the theoretical basis of KM theory was not entirely estab-
lished [2], including the exact values of K and S or their direct connection to the absorption
and scattering constants of radiative transfer theory. Other limitations plague KM theory
as well. The first of which is that it is limited to plane parallel geometry with very little
or no absorption ($0 ∼ 1). Secondly, scattering within the slab must be isotropic or near
isotropic, and third, there can be diffuse illumination only. In spite of these limitations,
KM theory has found a home in a variety of applications.

In the context of the paints, inks/dyes, and papers industries, applications of KM
theory include the prediction of the visual appearance of stratified layers of medium [21,
22, 23]. It has also been employed in the field of target recognition and remote sensing,
where predicted properties of brands of paints have been used in friend-or-foe identification
of vehicles [24]. Recently, KM theory has been used to measure the optical degradation in
classic artwork [25].

KM theory has also been combined with the diffusion approximation to model light
interaction with layered biological tissue systems [26]. Scattering is typically dominant in
these regimes, which is a domain KM theory works well. Furthermore, light trapping by
plant tissues [27, 28], which is crucial for photosynthesis, has also been modeled using KM
theory.

It is clear that, despite the limitations of scope and a lack of solid theoretical foun-
dation, Kubelka-Munk theory has enjoyed much success. This very breadth of application
and simplicity in its ability to model a complex media is motivation for its generalization
and extension.

1.2 The scalar radiative transfer equation

A more complete description of the scattering of light comes in the form of radiative transfer
theory. Here, we prescribe the specific intensity, I(Ω̂, r), which gives the power flowing
in direction Ω̂ = (θ, ϕ), a vector on the unit sphere, S2, with θ and ϕ the zenith and
azimuthal angles, respectively, shown in Diagram (i), at position r. It is governed by the
scalar radiative transfer equation

Ω̂ · ∇I + I =
$0

4π

∫
S2

P(Ω̂ · Ω̂′)I(Ω̂′, r)dΩ̂′ +Q(Ω̂, r). (1.2.1)

Here, $0 = µs/(µs + µa) is the single scattering albedo with µa and µs denoting the
absorption and scattering coefficients, respectively, P(Ω̂·Ω̂′) is the scattering phase function,
and Q(Ω̂, r) is a source. In (1.2.1), the position vector is nondimensionalized according to
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r = (µs + µa)r
′.

x̂

ŷ

ẑ

Ω Ω′
θ

θ′

ϕ− ϕ′

Diagram (i) (Courtesy of Julia Clark1)

The scattering phase function, P, gives the fraction of light scattered in direction Ω̂
due to light incident in direction Ω̂′. It is normalized according to

1

4π

∫
S2

P(Ω̂ · Ω̂′) dΩ̂′ = 1. (1.2.2)

Consequently, I = constant is a solution of (1.2.1) when $0 = 1. In addition,

1

4π

∫
S2

P(Ω̂ · Ω̂′)Ω̂′ dΩ̂′ = gΩ̂ (1.2.3)

Here we define the domain as D(r) with boundary ∂D(r), and boundary conditions
defined over the inward portion, i.e. Ω̂ · n̂ < 0, where n̂ is the outward unit normal
of ∂D. Hence, for well posedness, we prescribe boundary conditions as I = I0(µ, ϕ) on
{(Ω̂, r) ∈ S2×∂D : Ω̂ · n̂(r) < 0}. In this work, we seek to solve (1.2.1) in the plane-parallel
slab, D = {r ∈ R3| −∞ < x, y <∞, 0 < z < z1}.

Defining µ = cos θ allows us to rewrite (1.2.1) in terms of µ and the azimuthal angle,
ϕ, as

µ∂zI+
√

1− µ2(cosϕ∂xI + sinϕ∂yI) + I

=
$0

4π

∫ 2π

0

∫ 1

−1
P(µ, µ′, ϕ− ϕ′)I(µ′, ϕ′, r) dµ′dϕ′ +Q(µ, ϕ, r),

(1.2.4)

subject to boundary conditions I(µ, ϕ, x, y, 0) = f+(µ, ϕ, x, y), on 0 < µ ≤ 1, and I(µ, ϕ, x, y, z1) =
f−(µ, ϕ, x, y), on −1 ≤ µ < 0. Consider a one-dimensional slab, 0 ≤ z ≤ z1, with
−∞ < x, y < ∞. Suppose that any sources of light do not depend on x and y. For

1Julia Clark is currently affiliated with the University of California, Merced, Ph.D. program
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that case, we find that (1.2.4) reduces to

µ∂zI + I =
$0

4π

∫ 2π

0

∫ 1

−1
P(µ, µ′, ϕ− ϕ′)I(µ′, ϕ′, z) dµ′dϕ′ +Q(µ, ϕ, z), (1.2.5)

with boundary conditions I(µ, ϕ, 0) = f+(µ, ϕ) on (0, 1]× [0, 2π] and I(µ, ϕ, z1) = f−(µ, ϕ)
on [−1, 0)× [0, 2π]. When f+, f−, and Q are independent of ϕ, we may reduce (1.2.5) even
further to obtain

µ∂zI + I =
$0

2

∫ 1

−1
P(µ, µ′)I(µ′, z) dµ′ +Q(µ, z), (1.2.6)

subject to I(µ, 0) = f+(µ) on (0, 1] and I(µ, z1) = f−(µ) on [−1, 0). This can be viewed as
one dimensional, axi-symmetric, scattering in a slab.

1.3 Singular structure of the radiance

It is clear that the RTE is discontinuous for µ = 0. To explore this, we consider the following
boundary value problem for the following one dimensional RTE in a slab [0, z1]

µ
∂I

∂z
+ µaI = G, (1.3.1a)

I(µ, 0) = f1(µ) on (0, 1], (1.3.1b)

I(µ, z1) = f2(µ) on [−1, 0). (1.3.1c)

Here, G is a source term. In what follows, we show that I has a finite discontinuity at
µ = 0. Since the boundary value problem (1.3.1) is well posed, this discontinuity must
result solely from discontinuities in the boundary conditions and/or any sources.

We will first set µa = 0 and G = 0. For that case, (1.3.1a) becomes

µ
∂I

∂z
= 0. (1.3.2)

The solution is easily found as

I(µ, z) =

{
f1(µ), 0 < µ ≤ 1
f2(µ), −1 ≤ µ < 0

. (1.3.3)

Here, unless f1(0+) = f2(0−), I has a jump discontinuity. The jump is finite so long as
f1(0+) and f2(0−) are bounded.

Next, let us take into account absorption, so µa 6= 0 but G = 0. For that case, (1.3.1a)
becomes

µ
∂I

∂z
+ µaI = 0. (1.3.4)

This is solved readily, yielding

I(µ, z) =

{
f1(µ)e−µaz/µ, 0 < µ ≤ 1

f2(µ)e−µa(z−z1)/µ, −1 ≤ µ < 0
(1.3.5)

Note that here I(0+, z) = I(0−, z) = 0 for z ∈ (0, z1); however, if we examine the solution
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at the boundary, we find

I(µ, 0) =

{
f1(µ), 0 < µ ≤ 1

f2(µ)eµaz1/µ, −1 ≤ µ < 0
(1.3.6a)

I(µ, z1) =

{
f1(µ)e−µaz1/µ, 0 < µ ≤ 1

f2(µ), −1 ≤ µ < 0
. (1.3.6b)

Hence, unless f1(0+) = 0 and f2(0−) = 0, I is discontinuous at z = 0 and z = z1.
To solve (1.3.1), we represent I by its forward and backward components, i.e. I+ =

I(+µ, z) and I− = I(−µ, z) for µ ∈ (0, 1]. Now, (1.3.1) can be written as

µ
∂I+

∂z
+µaI

+ = G+, (1.3.7a)

−µ∂I
−

∂z
+µaI

− = G−, (1.3.7b)

subject to I+(µ, 0) = f1(µ), (1.3.7c)

I−(µ, z1) = f2(−µ), (1.3.7d)

where G+ = G(µ, z) and G− = G(−µ, z). We may readily solve (1.3.7) to get

I+(µ, z) = f1(µ)e−µaz/µ +
1

µ

∫ z

0
G+(µ, z′)e−µa(z−z′)/µ dz′, (1.3.8a)

I−(µ, z) = f2(−µ)eµa(z−z1)/µ − 1

µ

∫ z1

z
G−(µ, z′)eµa(z−z′)/µ dz′. (1.3.8b)

Assuming that G is an integrable and continuous function of µ, and a twice continuously
differentiable function of z, we integrate by parts twice and obtain

I+(µ, z) = f1(µ)e−µaz/µ +
1

µa

[
G+(µ, z)−G+(µ, 0)e−µaz/µ

]
− µ

µ2
a

[
G+
z (µ, z)−G+

z (µ, 0)e−µaz/µ
]

+
µ

µ2
a

∫ z

0
G+
zz(µ, z

′)e−µa(z−z′)/µ dz′ (1.3.9a)

I−(µ, z) = f2(−µ)eµa(z−z1)/µ +
1

µa

[
G−(µ, z1)eµa(z−z1)/µ −G−(µ, z)

]
+

µ

µ2
a

[
G−z (µ, z1)eµa(z−z1)/µ −G−z (µ, z)

]
− µ

µ2
a

∫ z1

z
G−zz(µ, z

′)eµa(z−z′)/µ dz′ (1.3.9b)
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Now consider the quantity

∆I(µ, z) = I+(µ, z)− I−(µ, z)

= f1(µ)e−µaz/µ − f2(−µ)eµa(z−z1)/µ

+
1

µa

[
G+(µ, z)−G+(µ, 0)e−µaz/µ +G−(µ, z)−G−(µ, z1)eµa(z−z1)/µ

]
− µ

µ2
a

[
G+
z (µ, z)−G+

z (µ, 0)e−µaz/µ +G−z (µ, z)−G−z (µ, z1)eµa(z−z1)/µ
]

+
µ

µ2
a

[∫ z

0
G+
zz(µ, z

′)e−µa(z−z′)/µ dz′ +

∫ z1

z
G−zz(µ, z

′)eµa(z−z′)/µ dz′
]
.

(1.3.10)

Letting µ→ 0+, we can now see that

lim
µ→0+

∆I(µ, 0) = f1(0+) +
1

µa
G−(0+, 0), (1.3.11a)

lim
µ→0+

∆I(µ, z1) = −f2(0−) +
1

µa
G+(0+, z1), (1.3.11b)

and

lim
µ→0+

∆I(µ, z) =
1

µa

[
G+(0+, z) +G−(0+, z)

]
, z ∈ (0, z1). (1.3.12)

Hence, at least at the boundaries, we find that as µ→ 0+ that I(µ, z) is finitely discontin-
uous. This singularity carries upwards to the three dimensional and vector cases as well.
In these cases, I will have finite discontinuities anywhere tangent to the boundary of the
domain.

Within the scope of the one dimensional problem, we consider the particular form of
the source term,

G(µ, z) = −µsI(µ, z) + µs

∫ 1

−1
P(µ, µ′)I(µ′, z) dµ′ (1.3.13)

Hence, the forward and backward version can be shown to be

G+(µ, z) = −µsI+(µ, z) + µs

∫ 1

0
P(µ, µ′)I+(µ′, z) dµ′ + µs

∫ 1

0
P(µ,−µ′)I−(µ′, z) dµ′,

(1.3.14a)

G−(µ, z) = −µsI−(µ, z) + µs

∫ 1

0
P(−µ, µ′)I+(µ′, z) dµ′ + µs

∫ 1

0
P(−µ,−µ′)I−(µ′, z) dµ′.

(1.3.14b)

From the above work, we see clearly that any discontinuities stem only from boundary and
internal sources. These decay exponentially with the depth of the slab so long as absorption
is present.
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1.4 Double spherical harmonics

We have demonstrated that (1.2.4) is discontinuous for µ = 0 on the boundaries and that
this discontinuity decays exponentially away from these boundaries due to scattering and
absorption. In light of this discontinuity, we use the double spherical harmonics (DPn)
method to solve boundary value problem (1.2.4). The DPn method explicitly takes into
account this discontinuity by defining I piecewise over the half-ranges, 1 ≤ µ < 0 and
0 < µ ≤ 1.

The DPn method is a well established approximation method [8]. In contrast to the
spherical harmonics method, Pn, the DPn method involves expanding the angular depen-
dence of the specific intensity in half ranges. Mengüç and Iyer [29] have compared Pn and
DPn results and have shown that DPn to be a better approximation. For example, they
found that the DP1 approximation to be nearly as accurate as the P9 approximation in
most cases. We describe the DPn method in detail below.

1.4.1 Basis functions

Consider the set of spherical harmonics {Ynm}, where Ynm is defined as

Ynm(µ, ϕ) =

[
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

]1/2

(−1)(m+|m|)/2P |m|n (µ)eimϕ, (1.4.1)

and where {P |m|n } denotes the set of associated Legendre functions. Let Ỹnm(µ, ϕ) =√
2Ynm(2µ − 1, ϕ) for the half-range, 0 < µ ≤ 1. These functions obey the orthogonal-

ity relation ∫ 2π

0

∫ 1

0
Ỹnm(µ, ϕ)Ỹ ∗n′m′(µ, ϕ) dµdϕ = δn,n′δm,m′ , (1.4.2)

where δ is the Kronecker delta and the star denotes the complex conjugate. It can also be
shown they satisfy the following recurrence relation:

√
2n+ 1Ỹnm(µ, ϕ) =

√
n2 −m2

2n− 1
Ỹn−1,m(µ, ϕ) +

√
(n+ 1)2 −m2

2n+ 3
Ỹn+1,m(µ, ϕ). (1.4.3)

1.4.2 The DPn method

We now denote I±(µ, ϕ, r) = I(±µ, ϕ, r) and Q±(µ, ϕ, r) = Q(±µ, ϕ, r), for 0 < µ ≤ 1.
Now we approximate I± using the truncated expansion in Ỹnm(µ, ϕ),

I±(µ, ϕ, r) ≈ I±N (µ, ϕ, r) =
N∑
n=0

n∑
m=n

c±nm(r)Ỹnm(µ, ϕ), (1.4.4)

where c±nm are coefficients to be determined.
For simplicity, we begin by considering the one dimensional, axi-symmetric, scattering

in a slab, (1.2.6). In this case, (1.4.4) reduces to

I±(µ, z) ≈ I±N (µ, z) =
N∑
n=0

c±n (z)P̃n(µ), (1.4.5)
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with P̃n(µ) =
√

2n+ 1Pn(2µ − 1), over 0 < µ ≤ 1, and {Pn(µ)} the set of Legendre
polynomials. Substituting this into (1.2.6), we get the coupled pair of equations

µ
∂I+

∂z
+ I+ =

$0

2

∫ 1

0

[
P(µ, µ′)I+(µ′, z) + P(µ,−µ′)I−(µ′, z)

]
dµ′ +Q+(µ, z), (1.4.6a)

−µ∂I
−

∂z
+ I− =

$0

2

∫ 1

0

[
P(µ,−µ′)I+(µ′, z) + P(µ, µ′)I−(µ′, z)

]
dµ′ +Q−(µ, z), (1.4.6b)

I+(µ, 0) = f+(µ), (1.4.6c)

I−(µ, z1) = f−(µ). (1.4.6d)

Here, due to the spherically symmetric scattering, we have P(−µ,−µ′) = P(µ, µ′) and
P(µ,−µ′) = P(−µ, µ′). Substituting (1.4.5) into (1.4.6) and making us of orthogonality
yields the system of equations in the vectors of coefficients, c± = [c±0 , c

±
1 , . . . , c

±
N ]T ,

d

dz

[
A 0
0 −A

] [
c+

c−

]
=

[
$0H

(1) − I $0H
(2)

$0H
(2) $0H

(1) − I

] [
c+

c−

]
+

[
q+

q−

]
, (1.4.7)

with I denoting the identity matrix. The entries of A are given by

Am+1,n+1 =

∫ 1

0
P̃m(µ)P̃n(µ)µ dµ

=
1

2

[
m√

(2m− 1)(2m+ 1)
δm,n−1 + δmn +

m+ 1√
(2m+ 1)(2m+ 3)

δm,n+1

]
,

(1.4.8)

for m = 0, 1, . . . , N and n = 0, 1, . . . , N . Note that the matrix A is symmetric and tridiag-
onal. The entries of H(1) and H(2) are given by

H
(1)
m+1,n+1 =

1

2

∫ 1

0
P̃m(µ)

∫ 1

0
P(µ, µ′)P̃n(µ′) dµdµ′ (1.4.9a)

and H
(2)
m+1,n+1 =

1

2

∫ 1

0
P̃m(µ)

∫ 1

0
P(µ,−µ′)P̃n(µ′) dµdµ′, (1.4.9b)

for m = 0, 1, . . . , N and n = 0, 1, . . . , N . These matrices are also symmetric. We have also
denoted the components of the source term vectors, q±, are q± = [q±1 , q

±
2 , . . . , q

±
N+1]T , with

q±n+1(z) =

∫ 1

0
Q±(µ, z)P̃n(µ) dµ, (1.4.10)

for n = 0, 1, . . . , N .
Boundary conditions (1.4.6c) and (1.4.6d) are prescribed over the half-range, 0 < µ ≤

1. Consequently, for the DPn method, we prescribe the boundary conditions

c+(0) = f+, (1.4.11a)

c−(z1) = f−, (1.4.11b)
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where f± are the vectors whose components are

f+
n+1 =

∫ 1

0
f+(µ)P̃n(µ) dµ, (1.4.12a)

f−n+1 =

∫ 1

0
f−(−µ)P̃n(µ) dµ, (1.4.12b)

for n = 0, 1, . . . , N . This 2(N + 1) system, which we call the DPn system is suitable for
numerical solution as is done in the later sections.

Suppose we have performed this truncation. Consider the following 2(N+1)×2(N+1)
generalized eigenvalue problem:

λ

[
A 0
0 −A

] [
u
v

]
=

[
$0H

(1) − I $0H
(2)

$0H
(2) $0H

(1) − I

] [
u
v

]
, (1.4.13)

resulting from substituting c+ = eλzu and c− = eλzv into (1.4.7) with q± = 0. We will
now prove a few facts about these eigenvalues and eigenvectors.

First we will show that (1.4.13) has real eigenvalues. Suppose the pair (λ,x) satis-
fies (1.4.13), i.e.

λ

[
A 0
0 −A

]
x = Lx, (1.4.14)

with L the matrix operator on the right side of (1.4.13), which we know is symmetric and
real. Now consider

λx†
[
A 0
0 −A

]
x = x†(Lx

=
(
x†L†x

)†
=
(
x†Lx

)†
=

(
x†λ

[
A 0
0 −A

]
x

)†
= λ∗x†

[
A 0
0 −A

]
x.

(1.4.15)

Here, we have used † to denote the conjugate transpose. Hence, λ = λ∗, and therefore, λ is
real valued.

Furthermore, we will now show that if λ is an eigenvalue of (1.4.13) with eigenvector
[u,v]T , then −λ is also an eigenvalue with corresponding eigenvector [v,u]T . Substituting
−λ and [v,u]T into (1.4.13), we get

−λ
[
A 0
0 −A

] [
v
u

]
=

[
$0H

(1) − I $0H
(2)

$0H
(2) $0H

(1) − I

] [
v
u

]
. (1.4.16)

Note that this is easily rewritable as

−λ
[
−A 0
0 A

] [
u
v

]
=

[
$0H

(1) − I $0H
(2)

$0H
(2) $0H

(1) − I

] [
u
v

]
, (1.4.17)
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which once the negative is multiplied into the left hand matrix we get identically (1.4.13).
In light of this symmetry, we index and order the eigenvalues according to

λ−(N+1) ≤ · · · ≤ λ−1 < 0 < λ1 ≤ · · · ≤ λN+1, (1.4.18)

where λ−j = −λj . We denote the eigenvectors corresponding to λj as [uj ,vj ]
T for j =

1, 2, · · · . When $0 = 1, λ = 0 is an eigenvalue, but otherwise λ 6= 0 as indicated in (1.4.18).

1.4.3 Convergence of cn

To estimate the rate of convergence for these Fourier series, we examine the one dimensional
expansion coefficients:

cn(z) =

∫ 1

−1
f(µ, z)Pn(µ) dµ, (1.4.19)

with f(µ, z) being an N -times differentiable function in µ, N ≥ 1. Using the fact that

(2n+ 1)Pn(µ) =
d

dµ

(
Pn+1(µ)− Pn−1(µ)

)
, (1.4.20)

and integrating (1.4.19) by parts, we find

cn(z) =
1

2n+ 1

[
f(µ, z)

(
Pn+1(µ)− Pn−1(µ)

)∣∣∣∣1
−1

−
∫ 1

−1
fµ(µ, z)

(
Pn+1(µ)− Pn−1(µ)

)
dµ

]

= − 1

2n+ 1

∫ 1

−1
fµ(µ, z)

(
Pn+1(µ)− Pn−1(µ)

)
dµ.

(1.4.21)

Here we used the fact that Pn(1) = 1 and Pn(0) = (−1)n. If we repeatedly integrate by
parts, applying the following relations,

k∑
i=0

(
k

i

)
(−1)iPn+k−2i(−1) =

∑
i=0

(−1)i(−1)n+k−2i = 0 (1.4.22a)

and
k∑
i=0

(
k

i

)
(−1)iPn+k−2i(1) =

∑
i=0

(
k

i

)
(−1)i = 0, (1.4.22b)

we find that

cn(z) =
(−1)n

(2n+ 1)n

∫ 1

−1

∂nf(µ, z)

∂µn

n∑
i=0

(
n

i

)
(−1)iP2(n−i)(µ) dµ. (1.4.23)
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Since |Pn(µ)| ≤ 1, we see that

cn(z) =
(−1)n

(2n+ 1)n

∫ 1

−1

∂nf(mu, z)

∂µn

n∑
i=0

(
n

i

)
(−1)iP2(n−i)(µ) dµ

≤ (−1)n

(2n+ 1)n

∫ 1

−1

∂nf(µ, z)

∂µn

n∑
i=0

(
n

i

)
dµ

=
(−1)n

(2n+ 1)n

∫ 1

−1

∂nf(µ, z)

∂µn
(2n)

= (−1)n
2n+1

(2n+ 1)n
f̄ (n)(µ, z).

(1.4.24)

Since we presume that f is finite, we may bound its average, f̄ , by some constant. Hence,
as n→∞, the coefficients, cn(z), decay to zero at a rate on the order of 1/nn.

1.4.4 Equivalence with discrete ordinate method

Here we justify DPn being equivalent to the discrete ordinate method, another well known
method, employing a double-Gauss quadrature. We begin by examining (1.2.6) with Q = 0,
which we evaluate over the quadrature points µj = 2µ′j−1, where µ′j is the Gauss-Legendre
quadrature points over [−1, 1], and weights wj = 0.5w′j , yielding

µj∂zIj(z) = −Ij(z) +

K∑
k=0

P(µj , µk)Ik(z)wk. (1.4.25)

Here, we have written Ij(z) = I(µj , z). Expanding Ij(z) =
∑N

n=0 cn(z)P̃n(µj), and splitting
(1.4.25) into the positive and negative directions, gives us

N∑
n=0

{
µj

d

dz
c+
n (z)P̃n(µj) = −P̃n(µj)c

+
n (z)

+
K∑
k=0

[
P(µj , µk)P̃n(µk)wkc

+
n (z) + P(µj ,−µk)P̃n(µk)wkc

−
n (z)

]}
, (1.4.26a)

N∑
n=0

{
− µj

d

dz
c−n (z)P̃n(µj) = −P̃n(µj)c

−
n (z)

+
K∑
k=0

[
P(−µj , µk)P̃n(µk)wkc

+
n (z) + P(−µj ,−µk)P̃n(µk)wkc

−
n (z)

]}
. (1.4.26b)

The term on the left hand side of both (1.4.26a) and (1.4.26b) can be modified by
using the recurrence relation

µP̃n(µ) =
1√

2n+ 1

[
(n+ 1)P̃n+1(µ) + (2n+ 1)P̃n(µ) + nP̃n−1(µ)

]
(1.4.27)
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to get

N∑
n=0

{[
n+ 1√
2n+ 1

P̃n+1(µj) +
√

2n+ 1P̃n(µj) + nP̃n−1(µj)

]
d

dz
c+
n (z) = −P̃n(µj)c

+
n (z)

+

K∑
k=0

[
P(µj , µk)P̃n(µk)wkc

+
n (z) + P(µj ,−µk)P̃n(µk)wkc

−
n (z)

]}
, (1.4.28a)

N∑
n=0

{
−
[

n+ 1√
2n+ 1

P̃n+1(µj) +
√

2n+ 1P̃n(µj) + nP̃n−1(µj)

]
d

dz
c−n (z) = −P̃n(µj)c

−
n (z)

+
K∑
k=0

[
P(−µj , µk)P̃n(µk)wkc

+
n (z) + P(−µj ,−µk)P̃n(µk)wkc

−
n (z)

]}
. (1.4.28b)

Shifting indices and using the fact that for spherical scattering, P(µ, µ′) = P(−µ,−µ′) and
P(µ,−µ′) = P(−µ, µ′), we may write (1.4.28a) and (1.4.28b) as

N∑
n=0

n√
2n− 1

P̃n(µj)
d

dz
c+
n−1(z)+

N∑
n=0

√
2n+ 1P̃n(µj)

d

dz
c+
n (z)+

N∑
n=0

n+ 1√
2n+ 3

P̃n(µj)
d

dz
c+
n+1(z)

=
N∑
n=0

[
−P̃n(µj)c

+
n (z) +H(1)

n (µj)c
+
n (z) +H(2)

n (µj)c
−
n (z)

]
, (1.4.29a)

−
N∑
n=0

n√
2n− 1

P̃n(µj)
d

dz
c−n−1(z)−

N∑
n=0

√
2n+ 1P̃n(µj)

d

dz
c−n (z)−

N∑
n=0

n+ 1√
2n+ 3

P̃n(µj)
d

dz
c−n+1(z)

=
N∑
n=0

[
−P̃n(µj)c

−
n (z) +H(2)

n (µj)c
+
n (z) +H(1)

n (µj)c
−
n (z)

]
. (1.4.29b)

Here we have written

H(1)
n (µj) =

M∑
m=0

P(µj , µm)P̃m(µm)wm, (1.4.30a)

and H(2)
n (µj) =

M∑
m=0

P(−µj , µm)P̃m(µm)wm, (1.4.30b)

and we use the fact that c−1(z) ≡ 0, cN+1(z) ≡ 0, and we may choose µj in such a fashion
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as to force P̃N+1(µj) ≡ 0. Since P̃0(µj) = 1, we rewrite (1.4.29a) and (1.4.29b) as

N∑
n=0

P̃n(µj)

{
n√

2n− 1

d

dz
c+
n−1(z) +

√
2n+ 1

d

dz
c+
n (z) +

n+ 1√
2n+ 3

d

dz
c+
n+1(z)

+ c+
n (z)− δn,0

N∑
n′=0

[
H

(1)
n′ (µj)c

+
n′(z) +H

(2)
n′ (µj)c

−
n′(z)

]}
= 0, (1.4.31a)

N∑
n=0

P̃n(µj)

{
− n√

2n− 1

d

dz
c−n−1(z)−

√
2n+ 1

d

dz
c−n (z)− n+ 1√

2n+ 3

d

dz
c−n+1(z)

+ c−n (z)− δn,0
N∑

n′=0

[
H

(2)
n′ (µj)c

+
n′(z) +H

(1)
n′ (µj)c

−
n′(z)

]}
= 0, (1.4.31b)

where δ is the Kronecker delta. Since P̃n(µj) 6= 0 for all µj , we conclude the expression
in the brackets is equal to zero. However, we note that this expression is simply the DPn
equations with the integral expressions being approximated by the sums in H

(1)
n and H

(2)
n .

Since the numerical integration is exact for polynomials of up to degree 2(N + 1), we find
this is then exactly the DPn equations evaluated at the quadrature points, µj .
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Chapter 2

Generalized Kubelka-Munk theory

In this chapter, we present the formal derivation of the Kubelka-Munk equations system-
atically from the radiative transfer equation. We do this by introducing what we call the
generalized Kubelka-Munk equations, a modified DP1 method, expanding the KM system
from a two-flux system to a four-flux system. We justify numerically the advantages of such
a small increase in complexity at the end of the chapter, comparing the KM system, the
gKM system, and actual solutions of the RTE computed via the discrete ordinate method.

2.1 The generalized Kubelka-Munk system

The key step in deriving KM theory from the RTE lies in analyzing the DP1 system. To see
why this relationship is important, recall that KM theory provides the governing equations
for the positive- and negative-going fluxes defined in terms of the specific intensity as

F±(z) =

∫ 1

0
µI±(µ, z) dµ. (2.1.1)

Inserting the expansion for I from (1.4.5), we find that

F±(z) =
1

2

(
c±0 (z) +

1√
3
c±1 (z)

)
. (2.1.2)

In other words, the power flowing in the positive- and negative-going directions can be
expressed simply in terms of the first two expansion coefficients in (1.4.5). The smallest
DPn system involving just c±0 and c±1 is the DP1 system.

Let us introduce the auxiliary quantities G± defined as

G± =
1

2

(
1√
3
c±0 + c±1

)
. (2.1.3)

Then, we have the following linear transformations[
F±

G±

]
=

[
1
2

1
2
√

3
1

2
√

3
1
2

] [
c±0
c±1

]
. (2.1.4)

The 2 × 2 matrix in (2.1.4) is the matrix A whose entries are defined in (1.4.8) for
m,n = 0, 1. Let y± = [F± G±]T . Using the inverse transformation c± = A−1y±, we
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transform the DP1 system given in (1.4.7) to

d

dz

[
I 0
0 −I

] [
y+

y−

]
=

[
S1 S2

S2 S1

] [
y+

y−

]
+

[
q+

q−

]
, (2.1.5)

with S1 = $0H
(1)A−1−A−1 and S2 = $0H

(2)A−1. By left-multiplying boundary conditions
(1.4.12) by A, we obtain the boundary conditions

y+(0) = Af+, (2.1.6a)

y−(z) = Af−. (2.1.6b)

We call (2.1.5), the generalized Kubelka-Munk (gKM) equations because it is a system
governing the fluxes F± and the auxiliary quantities G±. Boundary conditions for the gKM
equations are given in (2.1.6). The gKM equations are valid when the truncation associated
with the DP1 system is valid. Since the DPn approximation is based on (1.4.5), which
represent I± as an expansion in orthogonal polynomials, the DP1 system gives the optimal,
piecewise linear representation of the specific intensity in the least-squares sense.

Consider the 4× 4 eigenvalue problem

λ̃

[
I 0
0 −I

] [
ũ
ṽ

]
=

[
S1 S2

S2 S1

] [
ũ
ṽ

]
, (2.1.7)

associated to homogeneous gKM equations. Just as with the eigenvalue problem given
in (1.4.13), if λ̃ is an eigenvalue with eigenvector [ũ, ṽ]T , then −λ̃ is an eigenvalue with
eigenvector [ṽ, ũ]T . Thus, we index and order the eigenvalues according to

λ̃−2 ≤ λ̃−1 < 0 < λ̃1 ≤ λ̃2, (2.1.8)

with λ̃−j = −λ̃j . The eigenvectors corresponding to λ̃j are denoted by [ũj , ṽj ]
T for j = 1, 2.

Consequently, the eigenvectors for λ̃−j are given by [ṽj , ũj ]
T for j = 1, 2. Thus, the general

form of the solution of (2.1.7) is given by[
y+

y−

]
=

2∑
j=1

{[
ũj
ṽj

]
aj(z) +

[
ṽj
ũj

]
bj(z)

}
, (2.1.9)

where the functions aj(z) and bj(z), for j = 1, 2, are to be determined. For the homogeneous

problem, in which q± = 0, these functions are given by ãj(z) = α̃je
λ̃j(z−z1), and b̃j(z) =

β̃je
−λ̃jz where the coefficients α̃j and β̃j for j = 1, 2 are determined by imposing that the

solution satisfies the boundary conditions in (2.1.6).

2.2 Deriving the Kubelka-Munk equations

The generalized Kubelka-Munk equations are a 4× 4 system of first-order differential equa-
tions. Its general solution given in (2.1.9) is a superposition of four linearly independent
solutions. From the homogeneous solution, we identify two scales: λ̃1 and λ̃2. In contrast,
the Kubelka-Munk equations given in (1.1.1) is a first-order system with only one scale:√
K(K + 2S). This is a known quantity, and in order to justify this, we examine (1.1.1),
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written in matrix form as

d

dz

[
F+

F−

]
=

[
−(K + S) S
−S K + S

] [
F+

F−

]
. (2.2.1)

The corresponding eigenvalue problem is

λ

[
u
v

]
=

[
−(K + S) S
−S K + S

] [
u
v

]
, (2.2.2)

whose characteristic equation is λ2 − (K + S)2 + S2 = 0. This is readily solved to yield
λ = ±

√
K(K + 2S).

To derive the Kubelka-Munk equations, we study the DP1 system for the case of
strong multiple scattering. When multiple scattering is dominant, $0 ∼ 1. For that case,
we compute an asymptotic solution of the generalized eigenvalue problem (1.4.13) for the
DP1 system from which we derive the Kubelka-Munk equations. To make the assumption
of strong multiple scattering precise, we introduce the small, dimensionless parameter, 0 <
ε � 1, and write $0 = 1 − ε2, where ε2 = µa/(µs + µa). For that case, after rearranging
terms, (1.4.13) becomes

λ

[
A 0
0 −A

] [
u
v

]
+ ε2

[
H(1) H(2)

H(2) H(1)

] [
u
v

]
=

[
H(1) − I H(2)

H(2) H(1) − I

] [
u
v

]
. (2.2.3)

We obtain below an asymptotic solution to this generalized eigenvalue problem in the limit
as ε→ 0+.

When ε = 0, (2.2.3) reduces to

λ

[
A 0
0 −A

] [
u
v

]
=

[
H(1) − I H(2)

H(2) H(1) − I

] [
u
v

]
. (2.2.4)

We recognize that this is the case when $0 = 1 for (1.4.7), for which I = constant is a
solution. This constant solution corresponds to the solution λ = 0 and u = v = ê1, where
ê1 = [1, 0]T . Substituting this solution into (2.2.4) yields H(1)ê1 + H(2)ê1 = ê1. In other
words, the sum of the first columns of H(1) and H(2) must be equal to ê1, a consequence of
the normalization of the scattering phase function in (1.2.2).

The eigenvalue λ = 0 is a double root of the characteristic polynomial associated
with (2.2.4). By factoring out this double root from the characteristic polynomial, we
obtain a quadratic equation with roots ±λ2, with λ2 = O(1). We now use perturbation
theory to obtain higher order corrections to the λ = 0 eigenvalue. We will therefore, with
the symmetry property given in (1.4.18), find the smallest (in magnitude) eigenvalues, ±λ1,
and their corresponding eigenvectors, given by [u1,v1]T and [v1,u1]T , respectively.

We seek these higher order corrections in the form λ1 = ελ′1 + ε2λ′′1 + O(ε3) and
[u,v]T = [ê1, ê1]T + ε[u′1,v

′
1]T + ε2[u′′1,v

′′
1 ]T +O(ε3). Substituting these asymptotic expan-

sions into (1.4.13), and collecting like-powers of ε, we find to O(ε) that

λ′1

[
Aê1

−Aê1

]
=

[
H(1) − I H(2)

H(2) H(1) − I

] [
u′1
v′1

]
. (2.2.5)

For (2.2.5) to have a unique solution, its left-hand side must be orthogonal to [ê1, ê1]T .
Multiplying the left-hand side of (2.2.5) by [ê1, ê1], we obtain zero identically, so that
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this condition is satisfied. Next, we recognize that m1 = Aê1 is the first column of A,
whose entries, according to (1.4.8), correspond to the projection of µ onto P̃m(µ) for m =
0, 1, 2, · · · . Therefore, the vector [m1,−m1]T corresponds to expansion coefficients for the
functions I± = ±µ. According to (1.2.3), µ (over the whole range [−1, 1]) is an eigenfunction
of the integral operator in (1.2.6), with eigenvalue g. Consequently, the vector [m1,−m1]T

is an eigenvector of the matrix in the right-hand side of (2.2.5), with eigenvalue −(1 − g).
Therefore, we find that [

u′1
v′1

]
= − λ′1

1− g

[
m1

−m1

]
. (2.2.6)

To determine λ′1, we continue on to O(ε2), in which we find that

λ′′1

[
A 0
0 −A

] [
ê1

ê1

]
+ λ′1

[
A 0
0 −A

] [
u′1
v′1

]
+

[
H(1) H(2)

H(2) H(1)

] [
ê1

ê1

]
=

[
H(1) − I H(2)

H(2) H(1) − I

] [
u′′1
v′′1

]
. (2.2.7)

The left-hand side of (2.2.7) must be orthogonal to [ê1, ê1]T . By left-multiplying [ê1, ê1] to
the left-hand side of (2.2.7), setting that result to zero, substituting (2.2.6), and making
use of the fact that H(1)ê1 +H(2)ê1 = ê1, we obtain, upon solving for λ′1

2, that

λ′1
2

=
(1− g)

‖m1‖2
. (2.2.8)

According to (1.4.8), m1 = [1
2 ,

1
2
√

3
]T . Thus, ‖m1‖2 = 1/3, and so λ′1 =

√
3(1− g).

Thus, we have determined that λ1 = ε
√

3(1− g) +O(ε2) is an eigenvalue with corre-
sponding eigenvector [u1,v1]T = [ê1 − ε

√
3/(1− g)m1, ê1 + ε

√
3/(1− g)m1]T +O(ε2). By

the symmetry property of the eigenvalues, −λ1 = −ε
√

3(1− g) is also an eigenvalue with
corresponding eigenvector [v1,u1]T = [ê1 + ε

√
3/(1− g)m1, ê1− ε

√
3/(1− g)m1]T +O(ε2).

Since λ1 = O(ε) is much smaller than λ2 = O(1), the leading order behavior of c±,
governed by (1.4.7) when q± = 0, is given by[

c+

c−

]
∼
[
u1

v1

]
eλ1(z−z1)α1 +

[
v1

u1

]
e−λ1zβ1 (2.2.9)

in 0 < z < z1, where α1 and β1 are undetermined, scalar coefficients. Using (2.1.1) and our
asymptotic results for u1 and v1, we find that[

F+

F−

]
=

[
ū v̄
v̄ ū

] [
eλ1(z−z1) 0

0 e−λ1z

] [
α1

β1

]
, (2.2.10)

with ū = 1/2 − ε/
√

3(1− g) and v̄ = 1/2 + ε/
√

3(1− g). Equation (2.2.10) is the general
solution of the first-order system

d

dτ

[
F+

F−

]
=

[
ū v̄
v̄ ū

] [
λ1 0
0 −λ1

] [
ū v̄
v̄ ū

]−1 [
F+

F−

]
. (2.2.11)

Substituting λ1 = ε
√

3(1− g), ε =
√

1−$0, and carrying out the matrix products in (2.2.11),
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we obtain the Kubelka-Munk equations, given in (1.1.1), with

K = 2(1−$0), (2.2.12)

S =
3

4
(1− g)− (1−$0). (2.2.13)

Let K̃ = (µs + µa)K and S̃ = (µs + µa)S. Using $0 = µs/(µs + µa) and (2.2.12), we find
that K̃ = 2µa. Similarly, using (2.2.13), we find that S̃ = 3

4µs(1− g)− 1
4µa(1− 3g).

The physically correct values for K̃ and S̃ have been the subject of several studies (see
Refs. [16, 18, 30, 31] and references contained therein). Thennadil [18] summarizes different
values found in the literature by introducing the parameters x and y and a general form for
these coefficients: K̃ = 2µa and S̃ = yµs(1− g)− xµa. For example, Gate [12] gives x = 0,
and y = 3

4 . Brinkworth [11] gives x = 1 and y = 3
4 . Star et al. [32] give x = 1

4 and y = 3
4 ,

which resembles the results above closest. The difference in the value for S̃ obtained above
in that it has an additional term that is proportional to the product µag.

This derivation of the Kubelka-Munk equations is based on the assumption of strong
multiple scattering. For that case, we find a separation of scales corresponding to λ1 � λ2.
Notice that the leading order asymptotic behavior given in (2.2.9) is defined on the open
interval 0 < z < z1. This leading order asymptotic behavior is equivalent to neglecting
terms with λ̃2 in the solution of the generalized Kubelka-Munk equations. Consequently,
we have neglected two of the four linearly independent solutions for F± in generalized
Kubelka-Munk to derive Kubelka-Munk. It is for this reason that one must introduce the
so-called four-flux theory to deal with collimated sources [2], for example. The addition of
those two fluxes in four-flux theory is compensating for neglecting those other two solutions
that are in the generalized Kubelka-Munk equations.

2.3 Numerical results

In this section, we compare results from numerical solutions of the radiative transfer equa-
tion, the generalized Kubelka-Munk equations, and the Kubelka-Munk equations. We first
study numerical solutions of these equations for a homogeneous problem. Then, we study
the nonhomogeneous problem for the diffuse flux.

2.3.1 Homogeneous problem

We begin by studying the following homogeneous boundary value problem for the radiative
transfer equation

µ
∂I

∂τ
+ I =

$0

2

∫ 1

−1
h(µ, µ′)I(µ′, τ)dµ′ in 0 < τ < τ1, (2.3.1a)

I(µ, 0) = e−100(µ−1)2 on 0 < µ ≤ 1, (2.3.1b)

I(µ, τ1) = 1 on −1 ≤ µ < 0. (2.3.1c)

Here we have replaced z by τ to maintain consistency with the work the author has done
previously [33]. To solve boundary value problem (2.3.1), we use the discrete ordinate
method described in Chapter 11 of [2]. In particular, we use the Henyey-Greenstein scat-
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tering phase function to compute the redistribution function defined as

h(µ, µ′) =
2(1− g2)

π(a− b)
√
a+ b

E

(
2b

a+ b

)
, (2.3.2)

where a = 1+g2−2gµµ′, b = 2g
√

1− µ2
√

1− µ′2, and E(k) is the complete elliptic integral
of the second kind. Upon numerical solution of boundary value problem (2.3.1), we compute
F± defined in (2.1.1) using the same Gauss-Legendre quadrature rule used for the discrete
ordinate method.

For the generalized Kubelka-Munk system, we calculated numerically the entries of
H(1) and H(2) using h defined in (2.3.2), and Gauss-Legendre quadrature. We also compute
the vectors f± defined in (1.4.12) using Gauss-Legendre quadrature. With those matrices
and vectors defined, we solve numerically the generalized eigenvalue problem (1.4.13) and
obtain λ̃j , ũj , and ṽj for j = 1, 2. The solution of the generalized Kubelka-Munk equations

is given by (2.1.9) with ãj(τ) = eλ̃j(τ−τ1)α̃j , and b̃j(τ) = e−λ̃jτ β̃j . Evaluating this solution
at τ = 0 and substituting that result into (2.1.6a), we find that

2∑
j=1

{
ũje
−λ̃jτ1α̃j + ṽj β̃j

}
= Af+. (2.3.3)

Evaluating the solution at τ = τ1 and substituting that result into (2.1.6b), we find that

2∑
j=1

{
ṽjα̃j + ũje

−λ̃jτ1 β̃j

}
= Af−. (2.3.4)

Combining (2.3.3) and (2.3.4) yields a 4 × 4 linear system of equations for α̃j and β̃j for
j = 1, 2. With α̃j and β̃j determined, we compute F± through evaluation of

F+(τ) =

2∑
j=1

{Ũ1je
λ̃j(τ−τ1)α̃j + Ṽ1je

−λ̃jτ1 β̃j}, (2.3.5)

F−(τ) =
2∑
j=1

{Ṽ1je
λ̃j(τ−τ1)α̃j + Ũ1je

−λ̃jτ1 β̃j}. (2.3.6)

Here, Ũ1j denotes the first entry of ũj , and Ṽ1j denotes the first entry of ṽj .
We solve the Kubelka-Munk system (1.1.1) using K and S defined in (2.2.12) and

(2.2.13), respectively. We supplement this system with the boundary conditions

F+(0) =

∫ 1

0
f+(µ)µdµ, (2.3.7)

F−(τ1) =

∫ 1

0
f−(−µ)µdµ. (2.3.8)

We compute the integrals in (2.3.7) and (2.3.8) using Gauss-Legendre quadrature.
In Fig. 2.1 we show results comparing solutions to (2.3.1) computed using the radiative

transfer equation (solid curves), the generalized Kubelka-Munk equations (dashed curves),
and the Kubelka-Munk equations (dot-dashed curves). Here, we have set τ1 = 1, $0 = 0.99,
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Figure 2.1: Comparisons of F+(τ) (left) and F−(τ) (right) computed from solutions of
boundary value problem (2.3.1) using the radiative transfer equation (RTE), the generalized
Kubelka-Munk (gKM) equations, and the Kubelka-Munk (KM) equations. Here, τ1 = 1,
$0 = 0.99, and g = 0.

and g = 0. The left plot shows F+ as a function of τ , and the right plot shows F− as
a function of τ . The generalized Kubelka-Munk theory gives a more accurate solution
compared to Kubelka-Munk theory. It is nearly indistinguishable from that computed
through the solution of the radiative transport equation.
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Figure 2.2: Comparisons of F+(τ) (left) and F−(τ) (right) computed from solutions of
boundary value problem (2.3.1) using the radiative transfer equation (RTE), the generalized
Kubelka-Munk (gKM) equations, and the Kubelka-Munk (KM) equations. Here, τ1 = 1,
$0 = 0.99, and g = 0.8.

In Fig. 2.2 we plot the results when $0 = 0.99, and g = 0.8. For this case, scattering is
forward-peaked. Consequently, the specific intensity is not approximated well by a piecewise
linear approximation. Thus, DP1 is not as good of an approximation, which, in turn, means
that the generalized Kubelka-Munk and Kubelka-Munk systems are less accurate. This is
evidenced by the fact that both the generalized Kubelka-Munk and Kubelka-Munk results
are less accurate than those shown in Fig. 2.1. Nonetheless, Fig. 2.2 shows that the gKM
equations are still much more accurate than the KM equations.
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Figure 2.3: Comparisons of F+(τ) (left) and F−(τ) (right) computed from solutions of
boundary value problem (2.3.1) using the radiative transfer equation (RTE), the generalized
Kubelka-Munk (gKM) equations, and the Kubelka-Munk (KM) equations. Here, τ1 = 1,
$0 = 0.5, and g = 0.

Next, we investigate reducing the value of $0. For this case, the Kubelka-Munk
equations are known to be inaccurate [18, 20, 30]. Fig. 3.3 shows results for $0 = 0.5 and
g = 0. Although scattering is isotropic, so that g = 0, we find that the KM equations
are much less accurate than the generalized Kubelka-Munk equations. The error is worse
for F+(τ) than for F−(τ) presumably because it must also take into account the non-
constant boundary condition (2.3.1b). When scattering is also forward-peaked, as shown
in Fig. 2.4, we find that the Kubelka-Munk equations produce negative values for F+,
which are unphysical. However, even with $0 = 0.5, the gKM equations yield accurate
results. Even at a lower albedo ($ ∼ 0), the generalized Kubelka-Munk equations yield
qualitatively correct results. Although we do not show these results here, we have found
that computing solutions with smaller (τ1 ∼ 0.1) and larger (τ1 ∼ 10) optical thicknesses
yield similar results to those shown here.
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Figure 2.4: Comparisons of F+(τ) (left) and F−(τ) (right) computed from solutions of
boundary value problem (2.3.1) using the radiative transfer equation (RTE), the generalized
Kubelka-Munk (gKM) equations, and the Kubelka-Munk (KM) equations. Here, τ1 = 1,
$0 = 0.5, and g = 0.8.
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2.3.2 Nonhomogeneous problem for the diffuse flux

We now study the boundary value problem

µ
∂I

∂τ
+ I =

$0

2

∫ 1

−1
h(µ, µ′)I(µ′, τ)dµ′ in 0 < τ < τ1, (2.3.9a)

I(µ, 0) = δ(µ− µ0) on 0 < µ ≤ 1, (2.3.9b)

I(µ, τ1) = 0 on −1 ≤ µ < 0. (2.3.9c)

This boundary value problem governs a plane wave with unit incident flux on a plane-
parallel slab in the direction µ = µ0. It is a fundamental problem in the study of radiative
transfer [1, 2]. A complication in solving boundary value problem (2.3.9) is the Dirac delta
function appearing in boundary condition (2.3.9b). To study this problem, one represents
the specific intensity as the sum I = Iri + Id. Here, Iri denotes the reduced intensity
satisfying

µ
∂Iri

∂τ
+ Iri = 0, (2.3.10a)

Iri(µ, 0) = δ(µ− µ0) on 0 < µ ≤ 1, (2.3.10b)

Iri(µ, τ1) = 0 on −1 ≤ µ < 0. (2.3.10c)

The solution of boundary value problem (2.3.10) is readily found to be Iri = δ(µ−µ0)e−τ/µ.
The diffuse intensity, Id, satisfies the following nonhomogeneous, boundary value problem
for the radiative transfer equation:

µ
∂Id

∂τ
+ Id =

$0

2

∫ 1

−1
h(µ, µ′)Id(µ′, τ)dµ′ +Qri, (2.3.11a)

Id(µ, 0) = 0 on 0 < µ ≤ 1, (2.3.11b)

Id(µ, τ1) = 0 on −1 ≤ µ < 0. (2.3.11c)

The nonhomogeneous term, Qri = 1
2$0h(µ, µ0)e−τ/µ0 , in (2.3.11a) comes from inserting Iri

into the integral operation in the radiative transport equation.
We compute the diffuse fluxes, defined as

F±d (τ) =

∫ 1

0
Id(µ, τ)µdµ, (2.3.12)

by solving boundary value problem (2.3.11) directly, and by solving the generalized Kubelka-
Munk equations for this problem. To solve boundary value problem (2.3.11), we use the
same method that we use to solve boundary value problem (2.3.1). The generalized Kubelka-
Munk equations for this problem take the form[

I 0
0 −I

]
d

dτ

[
y+

y−

]
=

[
S1 S2

S2 S1

] [
y+

y−

]
+
$0

2

[
h+

h−

]
e−τ/µ0 , (2.3.13)

where the entries of the vectors h± are given by

h±n+1 =

∫ 1

0
h(±µ, µ0)Pn(µ)dµ, n = 0, 1. (2.3.14)
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We compute the solution of (2.3.13) as the sum of the homogeneous and particular solutions:
y± = y±H + y±P . We seek the particular solution in the form y±P = η±e−τ/µ0 , where η±

satisfies the 4× 4 linear system[
−I− S1 −S2

−S2 I− S1

] [
η+

η−

]
=
$0

2

[
h+

h−

]
. (2.3.15)

The homogeneous solution y±H is given by (2.1.9) with ãj(τ) = eλ̃jτ α̃j , and b̃j(τ) = e−λ̃jτ β̃j .
Evaluating our results for y± = y±H + y±P at τ = 0 and substituting that result into (2.1.6a)
with f+ = 0, we find that

2∑
j=1

{
ũje
−λ̃jτ1α̃j + ṽj β̃j

}
= −η+ (2.3.16)

Evaluating the solution at τ = τ1 and substituting that result into (2.1.6b) with f− = 0,
we find that

2∑
j=1

{
ṽjα̃j + ũje

−λ̃jτ1 β̃j

}
= −η−e−τ1/µ0 . (2.3.17)

Combining (2.3.3) and (2.3.4) yields a 4 × 4 linear system of equations for α̃j and β̃j for
j = 1, 2. With α̃j and β̃j determined, we compute F± through evaluation of

F+(τ) =

2∑
j=1

{Ũ1je
λ̃j(τ−τ1)α̃j + Ṽ1je

−λ̃jτ β̃j}+ η+
1 e
−τ/µ0 , (2.3.18)

F−(τ) =
2∑
j=1

{Ṽ1je
λ̃j(τ−τ1)α̃j + Ũ1je

−λ̃jτ β̃j}+ η−1 e
−τ/µ0 , (2.3.19)

with η±1 denoting the first entries of η±.
In Fig. 2.5, we compare the diffuse fluxes computed from solutions of (2.3.11) by

solving the radiative transfer equation (solid curves), and the generalized Kubelka-Munk
equations (dashed curves). Here, we have set τ1 = 1, $0 = 0.99, and g = 0 with µ0 = 1.0.
Here, the gKM equations provide a very accurate approximation to the radiative transfer
equation. Fig. 2.6 compares the diffuse fluxes for the case in which g = 0.7. As expected, the
approximation produced by the generalized Kubelka-Munk equations are less accurate when
scattering is forward-peaked than when it is isotropic. Nonetheless, the gKM equations
still provide an accurate approximation to the radiative transfer equation for the diffuse
fluxes. Although we do not show these results here, we find that generalized Kubelka-Munk
equations still approximate the radiative transfer equation in the manner shown in Figs. 2.5
and 2.6 with lower albedo values, and for both smaller and larger optical thicknesses.

2.4 Summary of results

We have systematically derived the KM equations from the RTE. This derivation involves
the application of the DPn method to solve the RTE. By transforming the DP1 system of
equations, we obtained the gKM equations. Then, by studying the DP1 system of equations
in the limit of strong multiple scattering, we derived the KM equations.
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Figure 2.5: Comparisons of F+(τ) (left) and F−(τ) (right) computed from solutions of
boundary value problem (2.3.11) using the radiative transfer equation (RTE), and the gen-
eralized Kubelka-Munk (gKM) equations. Here, τ1 = 1, $0 = 0.99, and g = 0 with
µ0 = 1.0.

For the KM equations, we have determined all coefficients explicitly. In particular,
we have found that K̃ = 2µa and S̃ = (3/4)µs(1− g)− (1/4)µa(1− 3g). These results agree
closely with those found in the literature. However, the significant difference in the results
found here is the term in S̃ proportional to µag. Moreover, we established this theory’s
range of validity as a consequence of the asymptotic analysis used to derive it.

The gKM equations can easily account for general boundary conditions and nonhomo-
geneous problems. The numerical results shown here demonstrate that the gKM equations
are much better than the KM equations at approximating the solutions of the RTE. The
complexity of the gKM equations is only slightly larger, since it is a 4 × 4 system rather
than a 2× 2 one. Since it is more accurate than the KM system of equations, more broadly
applicable, and only slightly more difficult to solve, the gKM equations should be very
useful in all areas that KM theory currently is favored and more.
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Figure 2.6: Comparisons of F+(τ) (left) and F−(τ) (right) computed from solutions of
boundary value problem (2.3.11) using the radiative transfer equation (RTE), and the gen-
eralized Kubelka-Munk (gKM) equations. Here, τ1 = 1, $0 = 0.99, and g = 0.7 with
µ0 = 1.0.
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Chapter 3

Extending gKM to three
dimensions

Now that we have established the theoretical foundation for KM, we are poised to extend
generalized Kubelka-Munk theory to three-dimensions and use that to study the backscat-
tering and transmission of collimated beams by a plane-parallel slab composed of a uniform
absorbing and scattering medium. This particular problem is fundamentally important to
several applications such as geophysical remote sensing [34, 35] and biomedical optics [4].
In both of these applications, measurements of the radiance due to a collimated beam inci-
dent on the medium are used to determine optical properties, thereby revealing important
characteristics for these applications. The result of this extension is a 8×8 system of partial
differential equations that can be solved readily. Through comparisons with Monte Carlo
simulations of the radiative transfer equation, we study the effectiveness of this approxi-
mation and identify its range of validity. Besides one dimensional plane-parallel problems,
the DPn approximation has been applied to problems in two dimensions [36], problems
with spherically symmetric geometry [37], and two dimensional problems with cylindrically
symmetric geometry [29]. To the best of our knowledge, this approximation has not been
applied to the problem we study here.

3.1 Three-dimensional transfer equation

We seek to solve (1.2.1) in the plane-parallel slab, {r ∈ R3| − ∞ < x, y < ∞, 0 < z < z0}.
On the boundary plane, z = 0, we prescribe that

I(Ω̂, x, y, 0) = F0δ(Ω̂− ẑ)e−2(x2+y2)/W 2
0 , on Ω̂ · ẑ > 0. (3.1.1)

Boundary condition (3.1.1) corresponds to a Gaussian beam with beam size W0 incident
normally on the z = 0 boundary plane with total power 1

2πW
2
0F0 [2, 38, 39]. On the

boundary plane, z = z0, we prescribe

I(Ω̂, x, y, z0) = 0 on Ω̂ · ẑ < 0, (3.1.2)

corresponding to no light entering into the slab through this boundary.
We seek the solution of the boundary value problem comprised of (1.2.1) with bound-

ary conditions (3.1.1) and (3.1.2) as the sum I = Iri + Id where Iri is the reduced intensity
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and Id is the diffuse intensity. The reduced intensity is given by [2, 38, 39]

Iri(Ω̂, x, y, z) = F0δ(Ω̂− ẑ)e−2(x2+y2)/W 2
0−z. (3.1.3)

This result is an approximation that assumes that beam spread and other geometric factors
are negligible compared to attenuation [2]. Consequently, the diffuse intensity satisfies

Ω̂ · ∇Id + Id = $0

∫
S2

p(Ω̂ · Ω̂′)Id(Ω̂′, r)dΩ̂′ +Qrie
−z, (3.1.4)

where the source term, Qri, is defined as

Qri = $0F0p(Ω̂ · ẑ)e−2(x2+y2)/W 2
0 . (3.1.5)

The boundary conditions are

Id(Ω̂, x, y, 0) = 0 on Ω̂ · ẑ > 0. (3.1.6)

and
Id(Ω̂, x, y, z0) = 0 on Ω̂ · ẑ < 0. (3.1.7)

Upon solution of the boundary value problem consisting of (3.1.4) subject to boundary
conditions (3.1.6) and (3.1.7), we obtain Id. We then study the spatial distribution of the
power flow in the ±ẑ directions by computing

F±(x, y, z) =

∫
Ω̂·(±ẑ)

Id(Ω̂, x, y, z)Ω̂ · (±ẑ)dΩ̂, (3.1.8)

respectively. Note that this particular problem possesses axisymmetry since the beam is
incident normally on the slab. This axisymmetry can be used to simplify this problem as is
done in [39, 40] and for the results given in Section 8. We proceed first without addressing
explicitly this axisymmetry to keep the analysis general.

3.2 Three dimensional generalized Kubelka-Munk equations

In terms of µ and ϕ, (3.1.4) is given by

µ∂zId +
√

1− µ2(cosϕ∂xId + sinϕ∂yId) + Id

=$0

∫ 2π

0

∫ 1

−1
p(µ, µ′, ϕ− ϕ′)Id(µ′, ϕ′, x, y, z)dµ′dϕ′

+Qri(µ, x, y)e−z.

(3.2.1)

In light of Id being discontinuous at µ = 0 due to boundary conditions (3.1.6) and (3.1.7),
we introduce I±d (µ, ϕ, x, y, z) = Id(±µ, ϕ, x, y, z), for 0 < µ ≤ 1, satisfying the coupled
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system

±µ∂zI±d +
√

1− µ2(cosϕ∂xI
±
d + sinϕ∂yI

±
d ) + I±d

= $0

∫ 2π

0

∫ 1

0
p(1)(µ, µ′, ϕ− ϕ′)I±d (µ′, ϕ′, x, y, z)dµ′dϕ′

+$0

∫ 2π

0

∫ 1

0
p(2)(µ, µ′, ϕ− ϕ′)I∓d (µ′, ϕ′, x, y, z)dµ′dϕ′

+Q±ri (µ, x, y)e−z,

(3.2.2)

with

Q±ri (µ, x, y) = Qri(±µ, x, y), (3.2.3)

p(1)(µ, µ, ϕ− ϕ′) = p(µ, µ′, ϕ− ϕ′) (3.2.4)

p(2)(µ, µ′, ϕ− ϕ′) = p(µ,−µ′, ϕ− ϕ′). (3.2.5)

Because p = p(Ω̂·Ω̂′), it follows that p(−µ,−µ′, ϕ−ϕ′) = p(1)(µ, µ′, ϕ−ϕ′), and p(−µ, µ′, ϕ−
ϕ′) = p(2)(µ, µ′, ϕ − ϕ′), which we have used in writing (3.2.2). In terms of I±d , boundary
conditions (3.1.6) and (3.1.7) are given by

I+
d (µ, ϕ, x, y, 0) = 0, (3.2.6)

and
I−d (µ, ϕ, x, y, z0) = 0, (3.2.7)

respectively.
We now apply the double spherical harmonics method to solve (3.2.2) subject to

boundary conditions (3.2.6) and (3.2.7). Here, we use the set of spherical harmonics, defined
in (1.4.1), to expand I as in (1.4.4). We set N = 1 and derive the system of equations for
the expansion coefficients, c±nm. Instead of using Ỹnm directly, we expand I±1 as

I±1 =
4∑

k=1

Φk(µ, ϕ)u±k (x, y, z), (3.2.8)

where the orthonormal set of basis functions {Φk}4k=1 are defined as

Φ1 =
1√
2π
, (3.2.9a)

Φ2 =

√
3

2π
(2µ− 1), (3.2.9b)

Φ3 =

√
3

2π

√
1− (2µ− 1)2 cosϕ, (3.2.9c)

Φ4 =

√
3

2π

√
1− (2µ− 1)2 sinϕ. (3.2.9d)
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The expansion coefficients, u±k , for k = 1, 2, 3, 4, in (3.2.8) satisfy the following system[
A 0
0 −A

] [
u+

u−

]
z

+

[
B 0
0 B

] [
u+

u−

]
x

+

[
C 0
0 C

] [
u+

u−

]
y

+

[
I−$0H

(1) −$0H
(2)

−$0H
(2) I−$0H

(1)

] [
u+

u−

]
=

[
q+

ri (x, y)
q−ri (x, y)

]
e−z. (3.2.10)

Here, u± = (u±1 , u
±
2 , u

±
3 , u

±
4 ). Boundary conditions for u± are

u+(x, y, 0) = 0, (3.2.11)

u−(x, y, z0) = 0, (3.2.12)

respectively. We call the system (3.2.10) subject to boundary conditions (3.2.11) and
(3.2.12) the DP1 equations.

Let (f, g) denote the inner product defined as

(f, g) =

∫ 2π

0

∫ 1

0
f(µ, ϕ)g(µ, ϕ)dµdϕ. (3.2.13)

The entries of the 4× 4 matrix A are defined as Aij = (Φi, µΦj), which yields

A =
1

2


1 1√

3
0 0

1√
3

1 0 0

0 0 1 0
0 0 0 1

 . (3.2.14)

The entries of the 4× 4 matrices B and C are defined as Bij = (Φi,
√

1− µ2 cosϕΦj) and

Cij = (Φi,
√

1− µ2 sinϕΦj), respectively, which yield

B =


0 0 b 0
0 0 c 0
b c 0 0
0 0 0 0

 , and C =


0 0 0 b
0 0 0 c
0 0 0 0
b c 0 0

 , (3.2.15)

with b = (11
√

2−9 sinh−1(1))/(8
√

3) and c = (75 sinh−1(1)−49
√

2)/32. The 4×4 matrices,
H(1) and H(2), have entries

H
(1,2)
ij =

∫ 2π

0

∫ 1

0
Φi(µ, ϕ)

∫ 2π

0

∫ 1

0
p1,2(µ, µ′, ϕ− ϕ′)Φj(µ

′, ϕ′)dµ′dϕ′dµdϕ, (3.2.16)

respectively. We compute these matrix entries numerically. Note that the matrices A, B, C,
and H(1,2) are all symmetric. The entries of the vectors q±ri are defined as [q±ri ]i = (Φi, Q

±
ri ).

The system of generalized Kubelka-Munk equations is simply a linear transformation
of the system of DP1 equations [33]. Substituting I±1 given by (3.2.8) into (3.1.8), we find
that

F± =
√

2π

[
1

2
u±1 +

1

2
√

3
u±2

]
. (3.2.17)
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We also introduce the auxiliary quantities

G± =
√

2π

[
1

2
√

3
u±1 +

1

2
u±2

]
. (3.2.18)

In light of (3.2.17) and (3.2.18), we introduce the linear transformation v± =
√

2πAu±,
where the components of v± are v± = (F±, G±,

√
2πu3,

√
2πu4). Substituting this linear

transformation into (3.2.10), we obtain[
I 0
0 −I

] [
v+

v−

]
z

+

[
B̃ 0

0 B̃

] [
v+

v−

]
x

+

[
C̃ 0

0 C̃

] [
v+

v−

]
y

+

[
H̃(1) H̃(2)

H̃(2) H̃(1)

] [
v+

v−

]
=
√

2π

[
q+

ri (x, y)
q−ri (x, y)

]
e−z, (3.2.19)

with

B̃ = BA−1 =


0 0 2b 0
0 0 2c 0

3b−
√

3c 3c−
√

3b 0 0
0 0 0 0

 , (3.2.20)

C̃ = CA−1 =


0 0 0 2b
0 0 0 2c
0 0 0 0

3b−
√

3c 3c−
√

3b 0 0

 , (3.2.21)

H̃(1) = (I−$0H
(1))A−1, and H̃(2) = −$0H

(2)A−1. By transforming boundary conditions
(3.2.8) and (3.2.9), we obtain

v+(x, y, 0) = 0, (3.2.22)

v−(x, y, z0) = 0. (3.2.23)

We call (3.2.19) subject to boundary conditions (3.2.22) and (3.2.23) the generalized Kubelka-
Munk equations.

3.3 Numerical results

We now evaluate the accuracy of the generalized Kubelka-Munk (gKM) approximation by
comparing its results with those of Monte Carlo (MC) simulations of the full radiative
transfer equation. For all of the numerical results shown here, we have set the total power
to P0 = 1 and the beam radius to W0 = 1.

For the gKM results, we have used a quasi-fast Hankel transforms, computed on a
256 point radial grid over the interval, 0 < ρ < 20. For the MC results, we have used the
Virtual Photonics Technology Initiative software (http://virtualphotonics.codeplex.
com). This MC software implements the discrete absorption weighting, which was shown to
be more accurate than continuous absorption weighting for moderate to highly absorbing
media or isotropic scattering media [41]. For the MC simulations results shown below, we
have used 107 photons for all cases except for the case in which $0 = 0.85 and z0 = 10,
where we have used 108 photons. The results shown here used 200 radial detectors over the
interval 0 < ρ < 20.
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For one dimensional problems in Chapter 2, the gKM approximation was shown to
work best for strong, isotropic scattering media [33]. The gKM approximation is quantita-
tively accurate for those problems, and it improves as the optical thickness of the medium
increases, thereby approaching the diffusion limit. For media with higher absorption, the
gKM approximation was shown to be qualitatively accurate, but exhibited larger quanti-
tative error. The gKM approximation exhibited a very large error for highly anisotropic
scattering media because the approximation made is not capable of taking into account the
angular dependence of the intensity for anisotropic scattering problems. Since the exten-
sion to three dimensions presented here is based on the same approximation used for the
one dimensional problem, we find in the results below that the performance of the gKM
approximation is largely consistent with the performance evaluated for the one dimensional
problem.

3.3.1 Isotropic scattering

We first investigate the gKM approximation for isotropic scattering problems for which the
scattering phase function is

p =
1

4π
. (3.3.1)

For that case, H
(1)
11 = H

(2)
11 = 1/2, and H

(1)
ij = H

(2)
ij = 0 otherwise. In Fig. 3.1, we plot the

power backscattered, F−(ρ, 0), [left column] and transmitted, F+(ρ, z0), [right column] for
a strongly isotropic scattering medium with $0 = 0.99 for optical thicknesses z0 = 1 [top
row], 5 [middle row], and 10 [bottom row]. The solid curves show the MC results and the
dashed curves show the gKM results.

These results show that the gKM approximation is accurate for optically thick,
isotropic scattering media. For the z0 = 1 results, we see that the gKM approximation
is accurate for ρ . 4, but diverges from the MC results for ρ & 4 values. For the z0 = 5
and 10 results, we see that gKM accurately approximates the MC results. In fact, the
gKM results for z0 = 10 are nearly indistinguishable from the MC results. To quantify the
error, we have interpolated the numerical results on a uniformly spaced radial grid over the
interval 0 < ρ < 10 with grid spacing ∆ρ = 0.1, and then computed the error made by
the gKM approximation relative to the MC results. The minimum and maximum relative
errors are given in Table 3.1. The relative errors are quite large for z0 = 1 due to the errors
observed for ρ & 4. As z0 increases, we see that the relative errors decrease significantly.
For the z0 = 10 case, we find that the relative error made by the gKM approximation for
F−(ρ, 0) is less than 14% and for F+(ρ, z0) is less than 5%.

Table 3.1: Minimum (MIN) and maximum (MAX) errors made by the gKM approximation
relative to MC results for the results shown in Fig. 3.1.

F−(ρ, 0) F+(ρ, z0)
z0 MIN MAX MIN MAX

1 0.0033 0.9996 0.0012 0.9999
5 0.0012 0.2778 0.0020 0.2530
10 0.0002 0.1369 0.0005 0.0545

The results shown in Fig. 3.1 demonstrate that the gKM approximation improves as
the optical thickness of the medium increases in its approach to the diffusion limit. However,
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Figure 3.1: Plots of F−(ρ, 0) [left column] and F+(ρ, z0) [right column] computed using
Monte Carlo (MC) simulations [solid curves] and the generalized Kubelka-Munk (gKM)
equations [dashed curves] with $0 = 0.99, g = 0, and z0 = 1 [top row], 5, [middle row] and
10 [bottom row].

we observe here the gKM approximation does not correctly capture the transition to the
diffusion limit. As a beam penetrates deep into an optically thick medium, it spreads due
to multiple scattering and eventually diffuses. The beam governed by the gKM does not
spread correctly in the transition to diffusion. This incorrect spread accounts for the error
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seen for the z0 = 1 case for ρ & 4.
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Figure 3.2: Same as Fig. 3.1 except that $0 = 0.85.

In Fig. 3.2 we show results when the medium has more absorption, specifically with
$0 = 0.85. We observe in Fig. 3.2 that the gKM approximation is qualitatively accurate in a
manner consistent with the results shown in Fig. 3.1. However, there appears to be a larger
error introduced for large ρ values. The quantitative errors that the gKM approximation
made relative to the MC results are given in Table 3.2. These relative errors show that the
gKM approximation is less accurate for this case than the $0 = 0.99 case. In particular, the
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maximum relative errors have significantly increased for z0 = 5 and 10 due to the decreased
accuracy of the gKM approximation for large ρ values.

Table 3.2: Minimum (MIN) and maximum (MAX) errors made by the gKM approximation
relative to MC results for the results shown in Fig. 3.2.

F−(ρ, 0) F+(ρ, z0)
z0 MIN MAX MIN MAX

1 0.0015 0.9999 0.0001 1.0006
5 0.0007 0.5755 0.0011 0.5109
10 0.0004 0.4476 0.0014 0.0892

For this problem, F+(ρ, z0) → 0 and F−(ρ, 0) → R∞(ρ) as z0 → ∞, where R∞(ρ)
denotes the distribution of power backscattered by the semi-infinite half space, z > 0. The
gKM approximation appears to capture these limits correctly. Errors made by the gKM
approximation are most apparent for the z0 = 1 results. In those results, we find that the
gKM approximation does not capture the correct asymptotic behavior as ρ → ∞. The
transverse spatial variables, x and y, are coupled to the azimuthal angle, ϕ, in (3.2.1).
Since basis functions Φ3 and Φ4, given in (3.2.9c) and (3.2.9d), respectively, only involve
cosϕ and sinϕ, the gKM approximation is limited in its ability to take into account high
azimuthal angle modes. This, in turn, affects the gKM approximation’s ability to take into
account steep transverse spatial gradients. The inaccuracy of the gKM approximation in
capturing the correct asymptotic behavior for large ρ when z0 = 1 is due to the fact that the
gKM approximation is unable to resolve the high space-angle modes that are non-negligible
in the true solution. As a consequence to all of this, the beam width, W0, also plays an
important role in the accuracy of this approximation. As W0 → 0, thereby approaching
an infinitesimally narrow pencil beam, the transverse spatial gradient becomes infinitely
steep. The gKM approximation will be inaccurate until a sufficient amount of scattering
has effectively smoothed those steep transverse spatial gradients. In contrast, the accuracy
of the gKM approximation will generally improve for wider beam widths.

3.3.2 Anisotropic scattering

We now consider forward-peaked, anisotropic scattering using the Henyey-Greenstein scat-
tering phase function

p =
1

4π

1− g2

(1 + g2 − 2gξ)3/2
, (3.3.2)

with
ξ = µµ′ +

√
1− µ2

√
1− µ′2 cos(ϕ− ϕ′). (3.3.3)

Here, −1 ≤ g ≤ 1 denotes the anisotropy factor or mean cosine of the scattering angle.
For forward-peaked anisotropic scattering media, g ∼ 1. To compute the H(1) and H(2)

matrices defined in (3.2.16), we have used a product quadrature rule that uses 32-point
Gauss-Legendre quadrature rule in µ and a 64-point repeated trapezoid rule in ϕ.

In Fig. 3.3, we plot the power backscattered, F−(ρ, 0), [left column] and transmitted,
F+(ρ, z0), [right column] for a forward-peaked anisotropic scattering medium with g = 0.85
and $0 = 0.99 for optical thicknesses z0 = 1 [top row], 5 [middle row], and 10 [bottom row].
The solid curves show the MC results and the dashed curves show the gKM results.

The results show overall that the gKM approximation is much less accurate for
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Figure 3.3: Same as Fig. 3.1, except that the medium is composed of a forward-peaked
anisotropic scattering medium governed by the Henyey-Greenstein scattering phase function
given in (3.3.2) with g = 0.8.

anisotropic scattering than for isotropic scattering. Similar to the isotropic scattering results
for z0 = 1 shown above, the gKM results shown in Fig. 3.3 show that the gKM approxi-
mation does not accurately capture the large ρ behaviors correctly. For z0 = 5 and 10 we
observe that the gKM approximation yields results that are at the same order of magnitude
as the MC simulation results. However, they are qualitatively different. Table 3.3 gives the
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errors made by the gKM approximation relative to the MC results. Those relative errors
show that the gKM approximation is doing a poor job for this case. In particular, errors
appear in Fig. 3.3 as spurious oscillations in ρ for both F−(ρ, 0) and F+(ρ, z0). In fact,
these errors grow monotonically as g increases. For even larger values of g, we have found
that the oscillations in the gKM solutions cause negative values which are nonphysical.

Table 3.3: Minimum (MIN) and maximum (MAX) errors made by the gKM approximation
relative to MC results for the results shown in Fig. 3.3.

F−(ρ, 0) F+(ρ, z0)
z0 MIN MAX MIN MAX

1 0.1400 1.0000 0.0130 1.0001
5 0.0062 0.5069 0.0036 0.8160
10 0.0048 0.4880 0.0014 0.3480

Because the gKM system given in (3.2.19) is just a linear transformation of the DP1

system given in (3.2.10), the fundamental assumption of the gKM approximation is that
(3.2.8) provides an accurate approximation of the forward and backward half-range inten-
sities, I±. For strong, isotropic scattering, this assumption is accurate and is demonstrated
by the agreements seen between the gKM approximation and MC simulation results in
Fig. 3.1. For isotropic scattering with moderate absorption, the gKM approximation is less
accurate in that this approximation over-damps the decay of F+(ρ, z0) to zero as z0 → 0.
When scattering is anisotropically forward-peaked, the angular distribution of the forward
and backward half-range intensities, I±, cannot be accurately approximated by (3.2.8).
Consequently, the gKM approximation is less accurate for anisotropic scattering problems.
This inaccuracy was shown to be the case for the one dimensional problem [33]. The re-
sults shown here demonstrate further that the gKM approximation is limited in its use for
forward-peaked anisotropic scattering problems.

3.4 Summary of results

We have systematically extended the gKM approximation to the three-dimensional RTE.
The resulting 8 × 8 system of partial differential equations, resulting from application of
the DP1 method, is much easier to solve than the full RTE. We then specialized this result
to axisymmetric problems to study a collimated Gaussian beam incident normally on a
plane-parallel slab composed of a uniform absorbing and scattering medium.

By comparing the gKM approximation with results from MC simulations, we demon-
strate the effectiveness of this approximation. In particular, we have found that the gKM
approximation is accurate for isotropic scattering. The approximation loses some accuracy
as the absorption increases, but maintains excellent qualitative agreement. Finally, we have
found that the gKM approximation is not accurate for anisotropic, forward-peaked scat-
tering media. In fact, if scattering is too sharply forward-peaked, the gKM approximation
yields unphysical results. Overall, the accuracy of the gKM equations is improved as the
beam width, W0, increases.

This extension opens up the ability to consider three-dimensional problems with
nonuniform sources in a relatively simple mathematical framework. The key advantage
to studying multiple scattering of light using the gKM approximation is that they are sub-
stantially easier to solve than the radiative transfer equation. The disadvantage of using
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them is that accuracy is limited to isotropic or weakly anisotropic scattering media. Even
in those cases, one must take care to consider the relationship between the beam width and
the thickness of the medium to ensure that transverse spatial gradients are not too steep
for this approximation to be accurate. Because the KM equations have been successfully
applied to a broad variety of problems, the advantages of using this extension of the gKM
approximation should be very useful in several practical problems.
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Chapter 4

Generalized Kubelka-Munk for
polarized light

In this chapter, we further explore the extension of the gKM method to polarized light.
The previous chapters studied the scalar radiative transfer problem, whereas we require
the vector radiative transfer equation (vRTE) for when polarization is considered. As
in previous chapters, we seek to apply the double spherical harmonics method of order
one, DP1, to the vRTE and transform the result to obtain the gKM equations for the
vectorized problem. Once we have established the gKM equations for this case, we derive
the polarized KM coefficients and compare numerical outputs to benchmark results. This
is done for Rayleigh scattering for a finite depth slab as well as for larger size scatterers
over a semi-infinite slab.

4.1 Vector radiative transfer equation

We have derived the generalized Kubelka-Munk equations for the scalar, or unpolarized,
case for radiative transfer. If light is polarized, it may be expressed via Stokes parameters
in the form of the Stokes vector I(µ, ϕ, z) = [I,Q, U, V ]T . Here, I is the specific intensity,
which is what we have been studying for the scalar case done prior, Q and U represent the
linear polarizations, and V is the circular polarization. This Stokes vector satisfies the one
dimensional vector radiative transfer equation

µ
∂

∂z
I(µ, ϕ, z) + I(µ, ϕ, z) = $0

∫ 2π

0

∫ 1

−1
Z(µ, µ′, ϕ− ϕ′)I(µ′, ϕ′, z) dµ′ dϕ′ + Q(µ, ϕ, z),

(4.1.1)
over the slab 0 ≤ z ≤ z1. We define Z(µ, µ′, ϕ − ϕ′) as the 4 × 4 scattering matrix, and
Q(µ, ϕ, z) is a source. We also impose the boundary conditions

I(µ, ϕ, 0) = f+(µ, ϕ), 0 < µ ≤ 1, (4.1.2a)

I(µ, ϕ, z1) = f−(µ, ϕ), −1 ≤ µ < 0. (4.1.2b)

with f± = [f±I , f
±
Q , f

±
U , f

±
V ]T .
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4.2 Polarized gKM equations

We make the usual definition I±(µ, ϕ, z) = I(±µ, ϕ, z) over 0 < µ ≤ 1, and we expand over
the gKM basis, {Φj(µ, ϕ)}, j = 1, . . . , 4, defined in (3.2.9), as

I±(µ, ϕ, z) =
4∑
j=1

c±j (z)Φj(µ, ϕ). (4.2.1)

Here, we have written c±j (z) = [I ±j (z),Q±j (z),U ±
j (z),V ±j (z)]T , with entries denoting co-

efficients for I,Q, U, and V , respectively. Substituting (4.2.1) into (4.1.1) yields

4∑
j=1

{
± µΦj

(
c±j

)′
= −Φjc

±
j +$0

∫ 2π

0

∫ 1

0
Z(±µ, µ′, ϕ− ϕ′)Φj(µ

′, ϕ′, z) dµ′ dϕ′c+
j

+$0

∫ 2π

0

∫ 1

0
Z(±µ,−µ′, ϕ− ϕ′)Φj(µ

′, ϕ′, z) dµ′ dϕ′c−j

}
+ Q(±µ, ϕ, z)

(4.2.2)

Multiplying (4.2.2) by Φk and integrating with respect to µ and ϕ, we obtain

4∑
j=1

{
± (Φk, µΦj)

(
c±j

)′
= −(Φk,Φj)c

±
j +$0(Φk,P1,j)c

+
j

+$0(Φk,P2,j)c
−
j

}
+ (Φk,Q

±),

(4.2.3)

where we have notated

P1,j =

∫ 2π

0

∫ 1

0
Z(±µ, µ′, ϕ− ϕ′)Φj(µ

′, ϕ′, z) dµ′ dϕ′ (4.2.4a)

and P2,j =

∫ 2π

0

∫ 1

0
Z(±µ,−µ′, ϕ− ϕ′)Φj(µ

′, ϕ′, z) dµ′ dϕ′, (4.2.4b)

and (f, g) =
∫ 2π

0

∫ 1
0 f(µ, ϕ)g(µ, ϕ) dµdϕ. Now, let us define w± = [ ~I ±, ~Q±, ~U ±, ~V ±]T ,

where each component vector is the vector of those coefficients, i.e. ~I ± = [I ±j ], j =

1, . . . , 4. Recall that A = [Anm] = (Φn, µΦm), and let us further define Z1 = [(Φk,P
+
1,j)],

Z2 = [(Φk,P
−
1,j)], Z3 = [(Φk,P

+
2,j)], and Z4 = [(Φk,P

−
2,j)]. Now, we rewrite (4.2.3) in

matrix form as[
AB 0
0 −AB

] [
w+

w−

]′
= −

[
w+

w−

]
+$0

[
Z1 Z2

Z3 Z4

] [
w+

w−

]
+

[
Γ+

Γ−

]
=

[
−I +$0Z1 $0Z2

$0Z3 −I +$0Z4

] [
w+

w−

]
+

[
Γ+

Γ−

]
.

(4.2.5)
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Here we have defined, for simplicity, AB = diag(A,A,A,A) and Γ± = (Φk,Q
±). The

boundary conditions, projected onto the basis functions are given by

w+(0) =


(Φk, f

+
I )

(Φk, f
+
Q)

(Φk, f
+
U )

(Φk, fV )

 , (4.2.6a)

w−(z1) =


(Φk, f

−
I )

(Φk, f
−
Q)

(Φk, f
−
U )

(Φk, f
−
V )

 . (4.2.6b)

As we have done in previous chapters, we make the linear transform y± =
√

2πABw±.
With this, (4.2.5) becomes[

I 0
0 −I

] [
y+

y−

]′
=

[
S̃1 S̃2

S̃3 S̃4

] [
y+

y−

]
+
√

2π

[
Γ+

Γ−

]
, (4.2.7)

where S̃1,4 = (−I +$0Z1,4) A−1
B and S̃2,3 = $0Z2,3A

−1
B . The system given by (4.2.7) are

the polarized gKM equations, subject to the transformed boundary conditions

y+(0) =
√

2πABw+(0), (4.2.8a)

y−(z1) =
√

2πABw−(z1), (4.2.8b)

We write the Stokes vector now, as before, as the sum of the diffuse and reduced
intensities, I = Id + Iri. Here, Iri satisfies the homogeneous boundary value problem

µ
∂

∂z
Iri(µ, ϕ, z) + Iri(µ, ϕ, z) = 0, (4.2.9a)

subject to Iri(µ, ϕ, 0) = Q0δ(µ− µ0)δ(ϕ− ϕ0), 0 < µ ≤ 1, (4.2.9b)

Iri(µ, ϕ, z1) = 0, −1 ≤ µ < 0, (4.2.9c)

with Q0 denoting the polarization state of the incident light. The solution is Iri(µ, ϕ, z) =
Q0δ(µ− µ0)δ(ϕ− ϕ0)e−z/µ. Substituting I = Id + Iri into (4.1.1), we find that Id satisfies
(4.1.1) subject to boundary conditions (4.1.2) with

Q± = $0

∫ π

−π

∫ 1

−1
Z(±µ, µ′, ϕ− ϕ′)Q0δ(µ− µ0)δ(ϕ− ϕ0)e−z/µ

′
dµ′ dϕ′,

= $0Z(±µ, µ0, ϕ− ϕ0)Q0e
−z/µ0 .

(4.2.10)

To solve this boundary value problem, we use the generalized eigenvalue problem below to
solve (4.1.1) for Id with zero boundary conditions.

λ

[
I 0
0 −I

] [
u
v

]
=

[
Z̃1 Z̃2

Z̃3 Z̃4

] [
u
v

]
. (4.2.11)
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Setting y = yh + yp, with

yh =

16∑
j=1

(
aj

[
uj
vj

]
eλj(z−z1) + bj

[
vj
uj

]
e−λjz

)
(4.2.12)

satisfying (4.2.11), where λ−j = −λj , and assuming that yp = ηe−z/µ0 , we find that η must
satisfy [

−I− Z̃1 −Z̃2

−Z̃3 I− Z̃4

] [
η+

η−

]
=
√

2π

[
Γ+

Γ−

]
. (4.2.13)

We write the general solution as

y =
16∑
j=1

(
aj

[
uj
vj

]
eλj(z−z1) + bj

[
vj
uj

]
e−λjz

)
+ ηe−z/µ0 . (4.2.14)

To determine the coefficients aj and bj , we apply boundary conditions (4.2.8), resulting in
the system of equations

16∑
j=1

(
ajuje

−λjz1 + bjvj

)
= y+(0)− η+, (4.2.15a)

16∑
j=1

(
ajvj + bjuje

−λjz1
)

= y+(z1)− η−e−z1/µ0 , (4.2.15b)

which we solve numerically.

4.3 Deriving the polarized KM equations

We derive the KM equations for polarized light, and as with our study in Chapter 2, we
consider the case when µa = 0, i.e. $0 = 1. Here the vRTE is solved by a constant vector
solution, and hence has a zero eigenvalue. (4.2.11) yields[

−I + Z̃1 Z̃2

Z̃3 I + Z̃4

] [
u
v

]
= 0, (4.3.1)

which when coupled with the normalization of Z, i.e. 1
4π

∫∫
Ω Z dΩ = I, yields that Z1ê

B
1 +

Z2ê
B
1 = êB1 and Z3ê

B
1 + Z4ê

B
1 = êB1 . Here we define êB1 = [ê1, ê1, ê1, ê1]T , and, hence, for

λ = 0, [
u0

v0

]
=

[
êB1
êB1

]
(4.3.2)

As before, we perturb from this zero eigenvalue, quantifying it by setting $0 = 1 − ε2,
ε� 1. (4.2.11) becomes

λ

[
AB 0
0 −AB

] [
u
v

]
+ ε2

[
Z1 Z2

Z3 Z4

] [
u
v

]
=

[
Z1 − I Z2

Z3 Z4 − I

] [
u
v

]
. (4.3.3)
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We expand λ1 = ελ′1 + ε2λ′′1 +O(ε3) and[
u1

v1

]
=

[
êB1
êB1

]
+ ε

[
u′1
v′1

]
+ ε2

[
u′′1
v′′1

]
+O(ε3), (4.3.4)

and (4.3.3) becomes, to O(ε),

λ′1

[
AB 0
0 −AB

] [
êB1
êB1

]
=

[
Z1 − I Z2

Z3 Z4 − I

] [
u′1
v′1

]
(4.3.5)

We again recognize the left-hand side as the projection onto µ, which is an eigenfunction of
the scattering matrix [42]. This once more yields[

u′1
v′1

]
= − λ′1

1− g

[
m1

−m1

]
, (4.3.6)

with m1 = AB êB1 . Now, to O(ε2), (4.3.3) becomes

λ′′1

[
AB 0
0 −AB

] [
êB1
êB1

]
+ λ′1

[
AB 0
0 −AB

] [
u′1
v′1

]
+

[
Z1 Z2

Z3 Z4

] [
êB1
êB1

]
=

[
Z1 − I Z2

Z3 Z4 − I

] [
u′′1
v′′1

]
,

(4.3.7)
which when projected on [êB1 , ê

B
1 ] yields λ′1 =

√
3(1− g) as before. This gives us the familiar

result of [
u1

v1

]
=

[
êB1
êB1

]
+ ε
√

3/(1− g)

[
−m1

m1

]
+O(ε2) (4.3.8)

As with the scalar case, we find this satisfies the system of differential equations for the
flux,

d

dz

[
F+

F−

]
= ŨLŨ−1

[
F+

F−

]
, (4.3.9)

with ũ = 1/2− ε/
√

3(1− g), ṽ = 1/2 + ε/
√

3(1− g), and

Ũ =



ũ ṽ 0 0 0 0 0 0
0 0 ũ ṽ 0 0 0 0
0 0 0 0 ũ ṽ 0 0
0 0 0 0 0 0 ũ ṽ
ṽ ũ 0 0 0 0 0 0
0 0 ṽ ũ 0 0 0 0
0 0 0 0 ṽ ũ 0 0
0 0 0 0 0 0 ṽ ũ


, (4.3.10a)

L =



λ1 0 0 0 0 0 0 0
0 −λ1 0 0 0 0 0 0
0 0 λ1 0 0 0 0 0
0 0 0 −λ1 0 0 0 0
0 0 0 0 λ1 0 0 0
0 0 0 0 0 −λ1 0 0
0 0 0 0 0 0 λ1 0
0 0 0 0 0 0 0 −λ1


. (4.3.10b)
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We may write this in a more familiar form, which we call the polarized Kubelka-Munk
equations,

d

dz
F+ = −(K + S)F+ + SF−, (4.3.11a)

d

dz
F− = −SF+ + (K + S)F−, (4.3.11b)

with S = 3
4(1− g)− (1−$0) and K = 2(1−$0). As before this gives the same result as

the scalar case,

K̃ = (µs + µa)K = 2µa, (4.3.12a)

S̃ = (µs + µa)S =
3

4
µs(1− g)− 1

4
µa(1− 3g). (4.3.12b)

4.4 Numerical Results

The scattering operator for spherical particles, given by (A.1.1), is derived from Mie scat-
tering theory [44]. It is described using the set of “scattering” constants, (A.1.5), for each of
the Fourier modes in ϕ−ϕ′. In this section, we evaluate the accuracy of the polarized gKM
equations, (4.2.7), for various sizes of the spherical scatterers that constitute the medium.
We also seek to analyze their performance for non-normally incident boundary sources, i.e.
for 0 < µ0 < 1.

Rayleigh scattering corresponds to the case when the wavelength of the incident
source is much larger than the size of the scattering particles within the medium. We
may use (A.4.6) to compute the scattering operator in (4.2.5) for increased speed and less
storage. Here we choose the depolarization ratio, ρ, to be zero, and we have the boundary
source to be normally incident to the slab, i.e. µ0 = 1.

We proceed by computing and comparing ratios for the cross-polarization discriminant
and circular polarization for the flux, pl(z) and pc(z), respectively, defined as

pl(z) =
FI(z) + FQ(z)

FI(z)− FQ(z)
(4.4.1a)

pc(z) = FV (z)/FI(z), (4.4.1b)

where F(z) = [FI(z), FQ(z), FU (z), FV (z)]T is the Stokes vector for the flux.
For an unpolarized source, we have the amplitude vector for the source term given

by Q0 = [1, 0, 0, 0]T in (4.2.9). Figure 4.1 shows the results of applying the polarized gKM
equations to this unpolarized source, and we compare them to a discrete ordinate solution
of the vector transport equation (4.1.1). For a slab of thickness z1 = 25.0 with an albedo
of $0 = 0.99, we show the linear polarization ratio (top) and the circular polarization ratio
(bottom). We see that as the solutions decay toward zero (left column), small errors are
magnified in the relative error computations (right column). These manifest for the deeper
portions of the slab, with the largest error occurring in a boundary layer about the far
boundary of the slab. This is due to the zero boundary condition imposed at the end of the
slab causing near zero denominators in (4.4.1). We report only the absolute error for pc,
as the solution in this case is identically zero. Qualitatively, gKM captures the behavior of
the solution’s decay quite well.

Figure 4.2 shows the same situation as Fig. 4.1 but with a polarized source, Q0 =
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Figure 4.1: Here we show (left column) comparisons of pl(z) (top) and pc(z) (bottom)
computed from solutions of boundary value problem consisting of (4.1.1) and (4.1.2), us-
ing (4.4.1) for the forward (red) and backward (black) fluxes. Here, z1 = 25 and $0 = 0.99
with an unpolarized source, i.e. Q0 = [1, 0, 0, 0]T in (4.2.9), and zero boundary conditions.
The right column shows the relative error for each, computed across the slab.

[2, 1, 0, 1]T . As with the unpolarized case, the gKM approximation qualitatively captures
the behavior of the solutions, though the relative error increases, as before, as the solutions
decay to zero.

It is apparent that the gKM system for polarized light normally incident on the slab
provides a good approximation for Rayleigh scattering, when the incident wavelength is
much larger than the scattering particles of the slab. This is due to small number of Fourier
modes associated with the Rayleigh scattering matrix (see Appendix A.4), as it depends
solely on modes l = 0, 1, and 2. For l = 0, we simply have the scalar case, and we have
demonstrated that gKM is a good approximation in this regime. When l = 1, we introduce
the first dependence on ϕ − ϕ′, which is accommodated by the basis functions Φ3(µ, ϕ)
and Φ4(µ, ϕ) in (3.2.9c) and (3.2.9d), respectively. Despite not including a basis function
explicitly for the terms including cos 2(ϕ − ϕ′) and sin 2(ϕ − ϕ′), i.e. when l = 2, we find
that gKM maintains good agreement with solutions of the vRTE for this type of scattering.
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Figure 4.2: Same as Fig. 4.1 but with Q0 = [2, 1, 0, 1]T .

4.5 Summary of results

In this chapter, we have derived the gKM equations for a polarized source, incident normally
on a slab governed by Rayleigh scattering. We apply the DP1 approximation for each of the
components of the Stokes vector and transform them to create the 16× 16 polarized gKM
system. The resulting boundary value problem is then solved numerically and the values
of the linear cross-polarization discriminant, pl(z), and the circular polarization ratio, pc,
were compared to those computed using the discrete ordinate method.

We find that the polarized gKM approximation performs with nearly the same level
of accuracy as the scalar case. It is clear that the ratio pl is approximated well across the
slab. We also so from the results for pc for a polarized source that the exclusion of higher
Fourier modes in the gKM solutions hinders the accuracy of the model. Despite this, it
clearly captures the qualitative behavior of this more complex scenario across the slab, only
diminishing in accuracy for very thin slabs while modeling the diffusion limit for thicker
slabs well. This extension of the gKM method to the vector, polarized case should allow
for many other areas of study to make use of this rather simple approximation.

48



Chapter 5

Reflectance by a half-space

We examine the case of a semi-infinite slab, computing the half-space reflectance from a
boundary source incident on the slab. Here, we use the gKM approximation for larger
spherical scatterers and non-normal incident angles. We compare the gKM results to those
computed via code available for the full vRTE by Mishchenko (http://www.giss.nasa.
gov/staff/mmishchenko/brf/). Here we find that dependence on higher Fourier modes
(l > 2) increases (see Appendix A.1).

For this half-space problem, we compute the reflectance [43] defined according to

Ĩ(0,−µ, ϕ) =
µ0

π
R(µ, ϕ;µ0, ϕ0)I0, (5.0.1)

where R(µ, ϕ;µ0, ϕ0) is the 4 × 4 half-space reflectance matrix described by Mishchenko,
(µ0, ϕ0) is the incident direction, and I0(µ, ϕ) is the four-component Stokes vector of the
incident light. We note that we may relate (5.0.1) to the boundary source term in (4.2.9)
via Q0 = (2µ0

√
2/π)I0. To quantify our results, we use the dimensionless ratio of the

scatterer’s radius to the wavelength of the incident light, χ = 2πr/λ, where r is the radius
and λ the wavelength. Here, r has values from 0.001 to 1.000 and λ = 0.55. Rayleigh
scattering corresponds to a value of χ � 1, with moderate to larger values ranging from
χ ∼ 5 to χ ∼ 10, respectively.

We calculate the linear cross-polarization discriminant and the circular polarization
ratio, pl and pc, respectively defined in (4.4.1a) and (4.4.1b), over this range of χ. We
approximate a semi-infinite slab by setting z1 = 500 for the gKM method. In the following,
we examine the performance of the gKM method for a range of sphere radii and for angles of
incidence. For the latter, we expect a poorer performance from gKM due to larger incident
angles having a larger dependence on higher modes for ϕ− ϕ′.

5.1 Linear polarization

In this section, we study pl for a linearly polarized source, incident normally on the slab
with I0 = [1, 1, 0, 0]T . Since the last two components of I0 are zero, we find that pc is
identically zero as well for this case. In light of this, we only show results for pl and note
that the gKM method comes within machine precision for pc ≡ 0.

We first examine the gKM approximation as a function of χ. The left plot of Fig-
ure 5.1 shows how well the gKM method (dashed line) calculates the cross-polarization
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discriminant, pl, when compared to values computed using (5.0.1) (solid line) 1. The right
plot shows the relative error over the range of χ. We can see that the gKM method shows
excellent agreement with the true solution for the entire range, maintaining accuracy near
that of the scalar case. This dwindles only slightly at the larger size scatterers, approx-
imately χ ≥ 8. It is apparent that the gKM approximation succeeds in capturing the
qualitative behavior of the system. This also implies that is capable of modeling essential
features to correctly capture the physics involved.

Figure 5.1: Results for pl computed using gKM (dashed) and Mishchenko et. al. (solid) for
a linearly polarized source, incident normally on the slab (left plot). The right plot shows
the relative error over the range of χ. Here, I0 = [1, 1, 0, 0]T with z1 = 500.

For oblique angles of incidence, we find, not unexpectedly, that the accuracy of the
gKM method decreases as the angle of incidence increases. This is shown in Figure 5.2,
where we have plotted the gKM values (dotted line) versus the values computed using (5.0.1)
for the linear cross-polarization discriminant, pl. Here we fix χ ∼ 0.011, corresponding to
a sphere radius of r = 0.001, which is within the domain of Rayleigh scattering. We see
that gKM is doing a poor job for values below µ0 ∼ 0.8. This decay is due to increasing
dependence of the full vRTE solution on the higher Fourier modes. The gKM approximation
is not able to capture these modes.

It is clear that the performance of the gKM method for a linearly polarized source
is limited by the direction of the incidence. However, we see that gKM yields remarkable
agreement over the range of values for χ used. This is demonstrated by the computation
of the linear cross-polarization ratio in Figures 5.1 and 5.2, and is due to the higher modes
being negligible for a linearly polarized source. This allows the gKM method to maintain
the accuracy demonstrated in the scalar case.

5.2 Circular polarization

For a circularly polarized source, we set I0 = [1, 0, 0, 1]T , and consider, once again, normal
incidence. For this case, neither pl nor pc are identically zero, and we report both values’

1computed using Mishchenko, et. al.’s code
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Figure 5.2: Results for pl computed using gKM (dashed) and Mishchenko et. al. (solid) for
a linearly polarized source for the range of incident source directions, µ0 (left plot). Here,
I0 = [1, 1, 0, 0]T with z1 = 500 and χ = 0.011. The right plot shows the relative error.

results. As before, we compare the results of the gKM method to that of Mishchenko
via (5.0.1).

We find results similar to the linearly polarized source for near normal angles of
incidence, and the performance of the gKM approximation wanes greatly for more oblique
incident angles. Figure 5.3 shows this case, plotting pl over the incident direction, µ0, for
χ = 0.011, in the left plot. Here, we see in the error plot, on the right, that the range
of scalar-level accuracy is now much smaller, and hovers closer to values near normally
incident (µ0 ≈ 0.9 and higher). Below this, we once more see that gKM cannot capture the
behavior of the solution for these more skewed angles of incidence.
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Figure 5.3: Results of pl computed using gKM (dashed) and the Mishchenko et. al. (solid)
for various incident directions (left plot) over the range of incident directions. Here, I0 =
[1, 0, 0, 1]T with z1 = 500 and χ = 0.011. The right column shows the relative error for the
pl ratio.

The left column of Figure 5.4 shows the performance of the gKM approximation as
a function of χ for the ratios pl (top row) and pc (bottom row). The right column displays
the relative error for both ratios. Here, we see that the approximation for the linear cross-
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polarization ratio is similar to the previous, linearly polarized, case. This is again due to pl
having negligible dependence on the angular quantity ϕ− ϕ′, a domain in which gKM has
been shown to perform well.

We see that the gKM method is not nearly as accurate for the circular polarization
ratio, pc, decaying in accuracy for values of approximately χ ≥ 3. The higher values of
χ indicate larger radius spheres, which require the higher Fourier modes for which gKM
is unable to completely reconcile. However, despite this, it is clear that it qualitatively
captures the behavior of the solution for the whole range of χ. For smaller values of χ, we
enjoy the accuracy the gKM approximation has previously demonstrated.

This region of smaller spheres contains a critical value for χ where the value of the
circular polarization ratio changes sign. This indicates that the circular component of the
light is the same helicity as the incident’s. This phenomenon is known as “polarization
memory,” and is a subject of study in recent decades. We see that the gKM approximation
is robust enough to capture complex scattering phenomenon such as this. We intend on
utilizing this robustness to study polarization memory in future work.

Figure 5.4: Same as Fig. 5.1, but with I0 = [1, 0, 0, 1]T for both pl and pc.
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5.3 Summary of results

Here we have furthered the domain of applicability for the gKM approximation. We have
explored its extension to oblique angles of incidence and larger sized scatterers. To examine
the range of validity for these, we have once more computed the ratios pl and pc and
compared them to results obtained by Mishchenko et. al. for a semi-infinite slab.

For when the angle of incidence is non-normal, we find that the gKM approximation
expectedly dwindles in accuracy as the incident angle grows. These larger angles invoke
larger dependence on the higher Fourier modes that the gKM approximation neglects, and
it is not able to capture the behavior well in these cases. For angles approaching normalcy,
we see the expected accuracy of the gKM approximation, providing a good estimate to the
actual solution.

The previous chapter explored when scattering was governed by Rayleigh scattering,
when the wavelength of the incident light is much larger than the size of the scattering
particles. When this ratio, χ, is higher, we see a decrease in the accuracy of the gKM
approximation, which once more stems from larger dependence on the higher modes. This,
however, does not detract from the ability of gKM to model the qualitative behavior of the
system. It is clear that the gKM system is capable of capturing the physics of this complex
system, and should provide an excellent method to study such phenomenon as polarization
memory.
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Chapter 6

Conclusion

In this work, we began by establishing the theoretical foundation for the two-flux, Kubelka-
Munk theory. We derived the KM equations by analyzing the DP1 system of equations via a
perturbation on the single scattering albedo, $0. This yielded two scales, for which the KM
system only captures one, and produced the generalized Kubelka-Munk system. This four-
flux approximation provided much greater accuracy and a wider domain of applicability.
We were then able to accommodate non-isotropic scattering and non-homogeneous source
terms, which the original KM theory lacked. Once solid theoretical underpinnings were
established, we were then able to compute the long sought KM coefficients and tie them to
radiative transfer theory.

From here, we sought to extend gKM to higher dimensions and incorporate a Gaussian
beam source. We did this via expansion using spherical harmonics basis functions, once more
exploring the application of the gKM approximation in this setting. We demonstrated the
range of validity of this model, finding that the interdependence of the spatial terms and
the angular quantity, ϕ, directly affects the accuracy. This is affected further for when the
width of the beam is sufficiently small, though all these errors decay as the diffusion limit
is approached. Outside this range, the gKM approximation provided good approximation
to the outgoing fluxes in a three-dimensional planar slab.

Lastly, we were able to apply gKM theory to the vector, or polarized, case using the
vector radiative transfer equation. We did so by creating four sets of coupled 1-D gKM
approximations, for each of the Stokes components of the polarized light. This system was
solved numerically and the linear cross-polarization discriminant and circular polarization
ratio were computed to evaluate the effectiveness of the approximation. We compared these
to benchmark results for Rayleigh scattering in a finite one-dimensional slab, showing that
gKM provided a good approximation for the case when sphere size is much smaller than
the wavelength of the incident light. Next, we considered the semi-infinite slab in order
to examine the effects of the size of the spherical scatterers and incident direction. We
compared results from the gKM method to results obtained by Mishchenko, establishing
that, qualitatively, it captures the behavior of the solution. This includes capturing com-
plex physical phenomenon such as polarization memory, hence further demonstrating an
extended flexibility and range of validity for the gKM model.

Over the decades, KM theory has found a home in a breadth of applications, from
spectroscopy to remote imaging. Generalized Kubelka-Munk theory broadens this already
popular method’s ability and range of applicability. The usage of gKM theory will enhance
the performance and accuracy of fields that already make use of KM theory, and it has the
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potential to now be applied to many fields beyond the original theory’s domain of use. This
improvement in performance and utility should allow gKM theory to enjoy as much success
as, if not more than, its predecessor.
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Appendix A

gKM basis and the scattering
matrix

A.1 The scattering matrix

The scattering matrix, Z(µ, µ′, ϕ− ϕ′), following Siewert’s convention [44], may be written
as

Z(µ, µ′, ϕ− ϕ′) =
L∑

m=0

1

2
(2− δ0,m)

[
Cm(µ, µ′) cos(m(ϕ− ϕ′)) + Sm(µ, µ′) sin(m(ϕ− ϕ′))

]
.

(A.1.1)
Here,

Cm(µ, µ′) = Am(µ, µ′)+DAm(µ, µ′)D, Sm(µ, µ′) = Am(µ, µ′)D−DAm(µ, µ′), (A.1.2)

Am(µ, µ′) =
L∑
l=m

Pml (µ)BlPml (µ′), and D = diag{1, 1,−1,−1} (A.1.3)

The matrices, Pml (µ), have the form

Pml (µ) =


Pml (µ) 0 0 0

0 Rml (µ) −Tml (µ) 0
0 −Tml (µ) Rml (µ) 0
0 0 0 Pml (µ)

 , (A.1.4)

Now, we adopt the definition of these “normalized auxiliary functions” as Pml (cos θ) =
dl0,m(θ),

Rml (cos θ) = 1
2

(
dl2,m(θ) + dl−2,m(θ)

)
, and Tml (cos θ) = 1

2

(
dl2,m(θ)− dl−2,m(θ)

)
, with dlkm(θ)

denoting the Wigner-d functions using the convention of Varshalovich et. al. [45] We also
call the set of Bl the “scattering law,” and has the form

Bl =


βl γl 0 0
γl αl 0 0
0 0 ζl −εl
0 0 εl δl

 (A.1.5)
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Multiplying the matrix product in (A.1.3), we find that

Am(µ, µ′) =

L∑
l=m


Pm
l (µ)Pm

l (µ′)βl Pm
l (µ)Rm

l (µ′)γl
Rm

l (µ)Pm
l (µ′)γl Rm

l (µ)Rm
l (µ′)αl + Tm

l (µ)Tm
l (µ′)ζl

−Tm
l (µ)Pm

l (µ′)γl −Tm
l (µ)Rm

l (µ′)αl −Rm
l (µ)Tm

l (µ′)ζl
0 −Pm

l (µ)Tm
l (µ′)εl

−Pm
l (µ)Tm

l (µ′)γl 0
−Rm

l (µ)Tm
l (µ′)αl − Tm

l (µ)Rm
l (µ′)ζl Tm

l (µ)Pm
l (µ′)εl

Tm
l (µ)Tm

l (µ′)αl +Rm
l (µ)Rm

l (µ′)ζl −Rm
l (µ)Pm

l (µ′)εl
Pm
l (µ)Rm

l (µ′)εl Pm
l (µ)Pm

l (µ′)δl

 .
(A.1.6)

We will begin by examining the integral portion of the transport equation, i.e.

1

4π

∫ 1

−1

∫ 2π

0
Z(µ, µ′, ϕ− ϕ′)I(µ′, ϕ′, z) dµ′dϕ′. (A.1.7)

Furthermore, since projection onto the gKM basis functions (3.2.9) is also done, we are
interested in the quantity

1

4π

∫ 1

0

∫ 2π

0
Φj(µ, ϕ)

∫ 1

0

∫ 2π

0
Z(µ, µ′, ϕ− ϕ′)Φk(µ

′, ϕ′) dµ′dϕ′ dµdϕ. (A.1.8)

A.2 Integrating over ϕ− ϕ′

According to equation (A.1.1), we write (A.1.8) as

1

4π

L∑
m=0

1

2
(2− δ0,m)

∫ 2π

0
Φj(µ, ϕ)

×
∫ 2π

0

[
Cm(µ, µ′) cos(m(ϕ− ϕ′)) + Sm(µ, µ′) sin(m(ϕ− ϕ′))

]
Φk(µ

′, ϕ′) dϕ′ dϕ

(A.2.1)

Expressing this in matrix form, we get

1

8π

L∑
m=0

(2− δ0,m)

∫ 2π

0

∫ 2π

0

[
Cm(µ, µ′) cos(m(ϕ− ϕ′)) + Sm(µ, µ′) sin(m(ϕ− ϕ′))

]
⊗ Φ(µ, µ′, ϕ, ϕ′) dϕ′ dϕ,

(A.2.2)

where we have written the matrix

Φ(µ, µ′, ϕ, ϕ′) = [Φ1(µ, ϕ),Φ2(µ, ϕ),Φ3(µ, ϕ),Φ4(µ, ϕ)]T [Φ1(µ, ϕ),Φ2(µ, ϕ),Φ3(µ, ϕ),Φ4(µ, ϕ)]

= [Φ̃1(µ), Φ̃2(µ), Φ̃3(µ) cosϕ, Φ̃4(µ) sinϕ]T [Φ̃1(µ), Φ̃2(µ), Φ̃3(µ) cosϕ, Φ̃4(µ) sinϕ],

(A.2.3)

and ⊗ is the Kronecker product. Observing that for values of m > 1, the set of {Φj} is
orthogonal to cos(m(ϕ− ϕ′)) and sin(m(ϕ− ϕ′)), we need only consider the values m = 0
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and 1. For m = 0, we find that (A.2.2) yields

1

8π

∫ 2π

0

∫ 2π

0
C0(µ, µ′)⊗Φ(µ, µ′, ϕ, ϕ′) dϕ′ dϕ. (A.2.4)

Completing the integrations, we find (A.2.4) becomes

π

2
C0(µ, µ′)⊗


Φ̃1(µ)Φ̃1(µ′) Φ̃1(µ)Φ̃2(µ′) 0 0

Φ̃2(µ)Φ̃1(µ′) Φ̃2(µ)Φ̃2(µ′) 0 0
0 0 0 0
0 0 0 0

 =
π

2
C0(µ, µ′)⊗ Γ1(µ, µ′) (A.2.5)

Meanwhile, for m = 1, (A.2.2) gives

1

4π

∫ 2π

0

∫ 2π

0

[
C1(µ, µ′) cos(ϕ− ϕ′) + S1(µ, µ′) sin(ϕ− ϕ′)

]
⊗Φ(µ, µ′, ϕ, ϕ′) dϕ′ dϕ. (A.2.6)

Performing the integrations and writing in matrix form, (A.2.6) becomes

π

4
C1(µ, µ′)⊗


0 0 0 0
0 0 0 0

0 0 Φ̃3(µ)Φ̃3(µ′) 0

0 0 0 Φ̃4(µ)Φ̃4(µ′)



+
π

4
S1(µ, µ′)⊗


0 0 0 0
0 0 0 0

0 0 0 −Φ̃3(µ)Φ̃4(µ′)

0 0 Φ̃4(µ)Φ̃3(µ′) 0


=
π

4

[
C1(µ, µ′)⊗ Γ2(µ, µ′) + S1(µ, µ′)⊗ Γ3(µ, µ′)

]
(A.2.7)

Hence, (A.1.8) now may be written as

π

4

∫ 1

0

∫ 1

0

[
2C0(µ, µ′)⊗ Γ1(µ, µ′) + C1(µ, µ′)⊗ Γ2(µ, µ′) + S1(µ, µ′)⊗ Γ3(µ, µ′)

]
dµ′dµ.

(A.2.8)
Equation (A.2.8) shows that only certain projections need be made in µ and µ′, and equa-
tions (A.1.2) and (A.1.3) require these computed onto the components of A0,1(µ, µ′) only.
Hence, we consider the quantities∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)A0(µ, µ′) dµ′dµ, j, k = 1, 2 (A.2.9a)∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)A1(µ, µ′) dµ′dµ, j, k = 3, 4 (A.2.9b)
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This in turn allows us to further consider only the quantities∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)Pml (µ)Pml (µ′) dµ′dµ, (A.2.10a)∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)Pml (µ)Rml (µ′) dµ′dµ, (A.2.10b)∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)Pml (µ)Tml (µ′) dµ′dµ, (A.2.10c)∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)Rml (µ)Rml (µ′) dµ′dµ, (A.2.10d)∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)Rml (µ)Tml (µ′) dµ′dµ, (A.2.10e)∫ 1

0

∫ 1

0
Φ̃j(µ)Φ̃k(µ

′)Tml (µ)Tml (µ′) dµ′dµ. (A.2.10f)

In light of equation (A.2.8), we only need evaluate these for j, k = 1, 2 when m = 0 and
for j, k = 3, 4 when m = 1. These direct computations of the scattering matrix projections
should allow for less overhead and more efficient and accurate computations.

A.3 Normalized auxiliary functions

We need only examine these normalized auxiliary functions for m = 0, 1. Hence for when
m = 0, we find that P 0

l (µ) = Pl(µ), R0
l (µ) = P 2

l (µ), and T 0
l (µ) = 0. For m = 1, we’re

forced to turn to the recurrence relations

l
√

(l + 1)2 − 4
√

(l + 1)2 − 1R1
l+1(x) = l(l + 1)(2l + 1)xR1

l (x)− (l + 1)
√
l2 − 4

√
l2 − 1R1

l−1(x)

− 2(2l + 1)T 1
l (x),

(A.3.1a)

l
√

(l + 1)2 − 4
√

(l + 1)2 − 1T 1
l+1(x) = l(l + 1)(2l + 1)xT 1

l (x)− (l + 1)
√
l2 − 4

√
l2 − 1T 1

l−1(x)

− 2(2l + 1)R1
l (x)

(A.3.1b)

for R1
l (x) and T 1

l (x), while P 2
l (x) is simply the normalized associated Legendre function.

We calculate the basis for the recursion as

R1
2(x) = −1

2
x
√

1− x2, (A.3.2a)

R1
3(x) =

1

4

√
5

2

√
1− x2(1− 3x2), (A.3.2b)

T 1
2 (x) = −1

2

√
1− x2, (A.3.2c)

T 1
3 (x) = −1

2

√
5

2
x
√

1− x2. (A.3.2d)

Note that R1
l (x) = T 1

l (x) = 0 for l < 2.
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A.4 Rayleigh scattering

When the wavelength of the incident light is much larger than the size of the scattering
paricles within the medium, known as Rayleigh scattering, we find that the scattering
matrix requires only modes 0,1, and 2 in its Fourier expansion over ϕ − ϕ′. Hence, we
need only consider 0 ≤ l ≤ 2 in computing (A.1.6) and, hence, equation (A.2.10). The
scattering law associated with it is α2 = 6(1 − ρ)/(2 + ρ), β0 = 1, β2 = (1 − ρ)/(2 + ρ),
γ2 = −

√
6(1−ρ)/(2+ρ), and δ1 = 3(1−2ρ)/(2+ρ). Here, ρ is the depolarization ratio [46].

The remaining entries of Bl are 0. Using these values, we may rewrite (A.1.6) as

Am(µ, µ′)

=


Pm0 (µ)Pm0 (µ′)β0 + Pm2 (µ)Pm2 (µ′)β2 Pm2 (µ)Rm2 (µ′)γ2 −Pm2 (µ)Tm2 (µ′)γ2 0

Rm2 (µ)Pm2 (µ′)γ2 Rm2 (µ)Rm2 (µ′)α2 −Rm2 (µ)Tm2 (µ′)α2 0
−Tm2 (µ)Pm2 (µ′)γ2 −Tm2 (µ)Rm2 (µ′)α2 Tm2 (µ)Tm2 (µ′)α2 0

0 0 0 Pm1 (µ)Pm1 (µ′)δ1


(A.4.1)

For the values of m = 0, 1, we find

A0(µ, µ′) =


P0(µ)P0(µ′)β0 + P2(µ)P2(µ′)β2 P2(µ)P 2

2 (µ′)γ2 0 0
P 2

2 (µ)P2(µ′)γ2 P 2
2 (µ)P 2

2 (µ′)α2 0 0
0 0 0 0
0 0 0 P1(µ)P1(µ′)δ1


(A.4.2)

and

A1(µ, µ′) =


P 1

2 (µ)P 1
2 (µ′)β2 P 1

2 (µ)R1
2(µ′)γ2 −P 1

2 (µ)T 1
2 (µ′)γ2 0

R1
2(µ)P 1

2 (µ′)γ2 R1
2(µ)R1

2(µ′)α2 −R1
2(µ)T 1

2 (µ′)α2 0
−T 1

2 (µ)P 1
2 (µ′)γ2 −T 1

2 (µ)R1
2(µ′)α2 T 1

2 (µ)T 1
2 (µ′)α2 0

0 0 0 P 1
1 (µ)P 1

1 (µ′)δ1


(A.4.3)

Using the definitions in (A.1.2) and (A.1.3), we can use (A.4.2) and (A.4.3) to write

C0(µ, µ′) = A0(µ, µ′) +DA0(µ, µ′)D = 2A0(µ, µ′), (A.4.4a)

C1(µ, µ′) = 2


P 1

2 (µ)P 1
2 (µ′)β2 P 1

2 (µ)R1
2(µ′)γ2 0 0

R1
2(µ)P 1

2 (µ′)γ2 R1
2(µ)R1

2(µ′)α2 0 0
0 0 T 1

2 (µ)T 1
2 (µ′)α2 0

0 0 0 P 1
1 (µ)P 1

1 (µ′)δ1

 = 2A1
C(µ, µ′),

(A.4.4b)

S1(µ, µ′) = 2


0 0 P 1

2 (µ)T 1
2 (µ′)γ2 0

0 0 R1
2(µ)T 1

2 (µ′)α2 0
−T 1

2 (µ)P 1
2 (µ′)γ2 −T 1

2 (µ)R1
2(µ′)α2 0 0

0 0 0 0

 = 2A1
S(µ, µ′),

(A.4.4c)
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Now, equation (A.2.8) becomes

π

2

∫ 1

0

∫ 1

0

[
2A0(µ, µ′)⊗ Γ1(µ, µ′) +A1

C(µ, µ′)⊗ Γ2(µ, µ′) +A1
S(µ, µ′)⊗ Γ3(µ, µ′)

]
dµ′dµ

(A.4.5)
Hence, equation (A.1.8) for Rayleigh scattering is

1

4π

∫ 1

0

∫ 2π

0
Φj(µ, ϕ)

∫ 1

0

∫ 2π

0
P(µ, µ′, ϕ− ϕ′)Φk(µ

′, ϕ′) dµ′dϕ′ dµdϕ

=
π

2

∫ 1

0

∫ 1

0

[
2A0(µ, µ′)⊗ Γ1(µ, µ′) +A1

C(µ, µ′)⊗ Γ2(µ, µ′) +A1
S(µ, µ′)⊗ Γ3(µ, µ′)

]
dµ′dµ

(A.4.6)
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