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When a single cell senses a chemical gradient and chemotaxes,
stochastic receptor–ligand binding can be a fundamental limit to
the cell’s accuracy. For clusters of cells responding to gradients,
however, there is a critical difference: Even genetically identical
cells have differing responses to chemical signals. With theory and
simulation, we show collective chemotaxis is limited by cell-to-
cell variation in signaling. We find that when different cells coop-
erate, the resulting bias can be much larger than the effects of
ligand–receptor binding. Specifically, when a strongly responding
cell is at one end of a cell cluster, cluster motion is biased toward
that cell. These errors are mitigated if clusters average measure-
ments over times long enough for cells to rearrange. In conse-
quence, fluid clusters are better able to sense gradients: We derive
a link between cluster accuracy, cell-to-cell variation, and the clus-
ter rheology. Because of this connection, increasing the noisiness
of individual cell motion can actually increase the collective accu-
racy of a cluster by improving fluidity.

fundamental bounds | collective motion | chemotaxis | cell-to-cell
variability | rheology

Many cells follow signal gradients to survive or perform their
functions, including white blood cells finding a wound, cells

crossing a developing embryo, and cancerous cells migrating from
tumors. Chemotaxis, sensing and responding to chemical gradi-
ents, is crucial in all of these examples (1, 2). Chemotaxis is tra-
ditionally studied by exposing single cells to gradients—but cells
often travel in groups, not singly (3, 4). Collective cell migra-
tion is essential to development and metastasis (5) and can have
remarkable effects on chemotaxis. Even when single cells can-
not sense a gradient, a cluster of cells may cooperate to sense it.
While collective chemotaxis is our primary focus, this “emergent”
gradient sensing is found in response to many signals, including
soluble chemical gradients (chemotaxis) (6–8), conditioned sub-
strates (haptotaxis) (9), substrate stiffness gradients (durotaxis)
(10), and electrical potential (galvanotaxis) (11, 12).

Cells can cooperate to sense gradients—but the physical prin-
ciples limiting a cluster’s sensing accuracy are not settled. For
single cells, the fundamental bounds on sensing chemical concen-
trations and gradients are well studied (13–23), showing unavoid-
able stochasticity in receptor–ligand binding limits chemotactic
accuracy. Is this true for cell clusters? Is a cell cluster simply
equivalent to a larger cell? The answer is no! There is an essen-
tial difference between many clustered cells and a single large
cell: Even clonal populations of cells can have highly variable
responses to signals, due to many factors, including intrinsic vari-
ations in regulatory protein concentrations (24–26). These cell-
to-cell variations (CCVs) can be persistent over timescales much
larger than the typical motility timescale of the cell (26). CCV
has not been addressed in models of collective chemotaxis and it
is not clear whether collective gradient sensing is limited by CCV
or by stochastic receptor–ligand binding (7, 8, 27–33).

Using a combination of analytics and simulations, we show
that unless CCV is tightly controlled, collective guidance of a
cluster of cells is limited by these variations: Gradient sens-
ing is biased toward cells with intrinsically strong responses.

This bias swamps the effects of stochastic ligand–receptor bind-
ing. Cell clusters may reduce this error by time averaging their
gradient measurements only if the cells rearrange their posi-
tions, creating an unavoidable link between the mechanics of
the cell cluster and its gradient-sensing ability. As a result, sur-
prising new tradeoffs arise: Clusters must balance using motil-
ity to follow a biased signal with using motility to reduce error
and compromise between reducing noise and increasing cluster
fluidity.

Gradient-Sensing Error Is Dominated by Cell-to-Cell
Variation, Not Receptor Noise
We study a 2D model of gradient sensing with CCV and ligand–
receptor dynamics where cells sense a chemoattractant with con-
centration gradient g. Each cell at position r measures local
concentration, c(r) = c0(1 + g · r), via ligand–receptor bind-
ing, which is stochastic. This noise leads to unavoidable errors
in the cluster’s estimate of g. In addition, even if concentra-
tion is perfectly sensed, each cell responds differently to a fixed
c, which models known CCV in signal response (34, 35). As a
result, when the cluster combines measurements from its cells, it
may develop a drift in the direction of stronger-responding cells
(Fig. 1). To combine these effects, we specify the “measured” sig-
nal in cell i , Mi , which is what the cluster believes the chemoat-
tractant signal in cell i to be, including ligand–receptor binding
and CCV,

M i =
[
c(ri) + δciηi

]
/c̄ + ∆i , [1]
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Cells cooperate to sense the direction of a chemical gradient
by communicating with each other, which may be important
when clumps of cancer cells metastasize or embryos develop.
However, because each cell is distinct, we find these clumps
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ately large signals. Cell clusters can reduce this bias by rear-
ranging themselves so loud cells change their locations. This
means the mechanical dynamics of the cluster matter—fluid,
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fluid—so adding noise can actually make a cluster of cells a
better sensor.
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Fig. 1. Cell-to-cell variation creates systematic biases that can be significantly larger than the effects of receptor–ligand binding. (A) Schematic of how cell-

to-cell variation can create bias in gradient sensing toward high-signaling and away from low-signaling cells. (B) Gradient-sensing error σ2
g =

〈
|ĝ− g|2

〉
,

derived from numerical maximum likelihood (symbols), is well approximated by Eq. 2 (dashed lines) at low gradient strengths. Symbols are plotted for four
cluster sizes: N = 7, 19, 37, and 61 cells (hexagonally packed clusters of unit spacing with Q = 1, 2, 3, 4 layers, illustrated in Computation of χ for Cells in
Hexagonally Packed Cluster). In A–D, we use nr = 105 and g = 0.05, in units where the cell–cell spacing is 1. (C) Gradient-sensing error decreases as cluster
size increases as σ2

g ∼ N−2. In C, σ∆ = 0.23 and c̄ = KD. (D) Strong CCV can mask concentration dependence of accuracy. In absence of CCV, gradient-sensing
accuracy is maximized when c̄ ≈ KD; this effect is screened when CCV dominates gradient sensing. D is shown for N = 7 cells.

where c̄ is the mean concentration over the cluster, c̄ =
N−1∑

i c(ri), ηi are uncorrelated Gaussian noises with zero
mean and unit variance, and ∆i are uncorrelated Gaussian
noises with zero mean and variance σ2

∆. Stochastic fluctuations in
ligand–receptor binding are taken into account in the term δci ,

where (δci/c(ri))2
= 1

nr

(ci+KD )
2

ciKD
. This is the error in concentra-

tion sensing from a single snapshot of nr receptors with simple
ligand–receptor kinetics and dissociation constant KD (ref. 14
and Review of Concentration Sensing Accuracy). Eq. 1 assumes
that cell–cell variance additively corrupts the measurement of
the concentration c(r) after an adaptation to the overall level
of signal across the cluster c̄. This is natural if the primary cell-
to-cell variation is downstream of adaptation, as found to be a
reasonable model in ref. 34. We expect similar results for CCV
upstream of adaptation in certain limits (Cell-to-Cell Variation
Upstream of Adaptation). We have also assumed that the CCV
∆i is uncorrelated between different cells; this is a useful initial
model describing large variations in protein levels that remain
localized within each cell. Extensions of the model could poten-
tially address correlations arising from, e.g., extracellular vesi-
cle transport or cell division, where daughter cells’ ∆i may be
correlated.

To determine gradient-sensing accuracy, we perform maximum-
likelihood estimation (MLE) of g in Eq. 1, as in past approaches
for single-cell gradient sensing (16). We obtain the MLE ĝ
numerically (Materials and Methods and MLEs of Gradient Direc-
tion via Collective Guidance in the Presence of Cell–Cell Vari-
ation and Ligand–Receptor Noise) and thus the uncertainty
σ2

g ≡
〈
|ĝ− g|2

〉
(Fig. 1B, symbols), where 〈· · · 〉 is an aver-

age over CCV and ligand–receptor binding. For fixed and
roughly circular (isotropic) cluster geometry, if the concentra-

tion change across the cluster is small, gRcluster� 1, σ2
g can be

approximated by assuming δci is constant across the cluster,
resulting in

〈
|ĝ− g|2

〉
≈ 2

χ

(
σ2

∆ +
1

nr

(c̄ + KD)2

c̄KD

)
. [2]

Here, χ= 1
2

∑
i |δri |2 is a shape parameter, and δri = ri − rcm

is cell position relative to cluster center of mass. Evaluat-
ing this expression reveals that it is an excellent approxima-
tion to the numerically obtained uncertainty (dashed lines,
Fig. 1B).

The approximate expression for the uncertainty, Eq. 2, allows
us to quantify the relative contribution of receptor–ligand fluc-
tuations and CCV to the gradient-sensing error. For background
concentrations c̄ near the receptor–ligand equilibrium constant
KD and for typical receptor numbers in eukaryotic cells [nr ∼ 105

(36, 37)], δc/c̄ can be smaller than 0.01. Protein concentra-
tions, on the other hand, often vary between cells to 10–60%
of their mean (25)—hence we estimate σ∆≈ 0.1 − 0.6. Thus,
we expect CCV to dominate gradient-sensing error and that the
error from concentration sensing and receptor binding can be
neglected completely if σ∆ > 0.1 (Fig. 1B). Eq. 2 also reveals
that CCV masks the impact of changing background concentra-
tion. When σ∆ = 0, gradient sensing is limited by ligand–receptor
fluctuations and increases as c̄ moves away from KD (Fig. 1D)—
accuracy decreases if either few receptors are bound or recep-
tors are saturated. As CCV increases, σ2

g no longer depends
strongly on c̄ (Fig. 1D). Finally, Eq. 2 shows that gradient-sensing
accuracy depends on the shape parameter χ and, therefore, on
cluster size. For hexagonally packed clusters of cells with unit
spacing (we measure in units of the cell diameter; Materials and
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Methods), a cluster with Q layers has N = 1 + 3Q + 3Q2 cells
and χ(Q) = (5/8)Q4 + (5/4)Q3 + (7/8)Q2 + (1/4)Q (Compu-
tation of χ for Cells in Hexagonally Packed Cluster); i.e., χ(Q) ∼
Q4 ∼ N 2. Clusters of increasing size then have an error that
decreases as 1/N 2 (Fig. 1C); this scaling is similar to earlier
results for single cells (Computation of χ for Cells in Hexagonally
Packed Cluster).

Reducing Estimation Error by Time Averaging
If a cluster made n independent measurements, it could reduce
σ2

g by a factor of n . In single-cell gradient sensing, independent
measurements can be made by averaging over time—improving
errors by a factor ∼ T/τcorr, where T is the averaging time
and τcorr the measurement correlation time. At first glimpse,
time averaging seems unlikely to help with CCV, when cor-
relation times for protein levels can be longer than cell divi-
sion times, reaching 48 h in human cells (26). However, since
gradient-sensing bias from CCV depends on the locations of
strong- and weak-signaling cells within the cluster, time aver-
aging can be successful if it is over a time long enough for
the cluster to rearrange. This is true even if, as we initially
assume, CCV biases ∆i are time independent. We expect gra-
dient sensing error with time averaging, σ2

g,T , will decrease by
a factor of T/τr from σ2

g,0, where τr is a correlation time
related to cell positions (Fig. 2). Is this true, and how should we
define τr?

Our earlier results suggest that CCV dominates the gradient-
sensing error. Ligand–receptor noise will also be even less rel-
evant in the presence of time averaging, as the receptor relax-
ation time [seconds to minutes (38)] is much faster than that
for cluster rearrangement (tens of minutes or longer). We
therefore completely neglect ligand–receptor binding fluctua-
tions, allowing an analytical solution for the MLE ĝ (Materials
and Methods and MLEs of Gradient Direction via Collective
Guidance in the Presence of Cell–Cell Variation and Ligand–
Receptor Noise).

How much does time averaging reduce error? If we average
the MLE ĝ over a time T by applying a kernel KT (t), i.e., we
define ĝT (t)≡

∫∞
−∞ ĝ(t ′)KT (t − t ′)dt ′ and σ2

g,T ≡
〈
|ĝT − g|2

〉
,

we can derive (Detailed Derivation of Time-Averaged Gradient-
Sensing Error)

A B

C

Fig. 2. Time averaging links fluidity and accuracy. (A) Schematic draw-
ing of how cell–cell rearrangement can change bias due to CCV. Shades
of gray indicate measured signal M; a cell with strong response (marked
with X) moves through the cluster, leading to biases in gradient estimate
(blue arrow). The characteristic relaxation time for this bias is τr (main text).
(B) This leads to a link between the timescale τr , which is a measure of the
cluster’s rheology, and chemotactic accuracy σg,T (box). (C) Different rear-
rangement mechanisms will depend on cluster size in different ways (main
text and Characteristic Timescales of Different Rearrangement Mechanisms).

σ2
g,T =σ2

g,0 ×
∫ ∞
−∞

dω

2π
|KT (ω)|2Crr (ω), [3]

where Crr (t ′− t ′′)≡〈δr(t ′) · δr(t ′′)〉/〈|δr|2〉 is the normal-
ized cell position–position correlation function, Crr (ω) is its
Fourier transform, and σ2

g,0 = 2σ2
∆/χ is the error in the absence

of time averaging. To derive Eq. 3, we make two approxi-
mations: (i) The cluster has a constant and isotropic shape
and (ii) rearrangement of cell positions relative to the cen-
ter of mass is independent of the particular values of ∆. The
first approximation is not necessary, but is a useful simplifi-
cation; a generalized result is given in Detailed Derivation of
Time-Averaged Gradient-Sensing Error. The second approxima-
tion assumes that averaging over CCV and averaging over cell
positions are independent. This decoupling approximation is
necessary to characterize cluster fluidity and mechanics sepa-
rately from the details of signaling. It excludes, e.g., models
where cells with larger-than-average ∆ sort out from the cluster.
We discuss potential errors due to this approximation later in
this paper.

For exponential position–position correlation functions and
averaging, Crr (t) = exp(−t/τr ) and KT (t) = θ(t) 1

T
e−t/T , where

θ(t) is the Heaviside step function, Eq. 3 is simple:

σ2
g,T =

σ2
g,0

1 + T/τr
. [4]

In other words, gradient-sensing accuracy can be improved by
taking T/τr independent measurements in a time T . [The
assumption of exponential averaging here is not crucial, and
many averaging functions can be used in Eq. 3. We choose this
average because it can be computed easily by a combination of
accumulation and decay; i.e., ∂t ĝT =−T−1(ĝT − ĝ).]

Crucial in this reduction is the position–position correlation
time τr which depends on the cluster rearrangement mecha-
nism. Two natural mechanisms are persistent cluster rotation
and neighbor rearrangements within the cluster (Fig. 2C). These
mechanisms may coexist, as when cells slide past one another
during cluster rotation (39). τr can depend on cluster size; for
diffusive rearrangements, we expect τr ∼ R2/Deff, and for per-
sistently rotating clusters, τr ∼ R/vcell (Characteristic Timescales
of Different Rearrangement Mechanisms).

We have assumed that the CCV is time independent over our
scale of interest—consistent with the long memory found in ref.
26. If ∆ changes faster than the cluster rearranges, our results
can be straightforwardly modified. Generalizations of Eqs. 3
and 4 to this case are provided in Detailed Derivation of Time-
Averaged Gradient-Sensing Error.

Tradeoffs in Collective Accuracy and Motility: Cluster
Rotation
Our central result (Eq. 3) shows that clusters can improve their
chemotactic accuracy by changing cell positions. The simplest
mechanism to do this is cluster rotation, which occurs in border
cell clusters (40) and transiently in leukocyte clusters (7). When
should a cluster actively rotate to increase its accuracy? Rota-
tion creates an important tradeoff: More work must be put into
rotating and therefore less into crawling up the gradient. [We
note that this is most relevant if motility is a large portion of the
cluster’s energy budget, a complex question that may be cell-type
dependent (41–43).]

For constant work of motility, the maximum speed of a cluster
of radius R that rotates with angular speed Ω is (Materials and
Methods)

v(Ω) = vmax

√
1− 1

2
Ω2τ2

rot, [5]

where τrot =R/vmax and vmax the maximum cluster speed absent
rotation. The cluster cannot rotate faster than Ωmax =

√
2/τrot.
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Fig. 3. Cluster rotation can improve directed cluster motility. (A) As the averaging time T is increased above the characteristic rotational timescale
τrot = R/vmax, the mean cluster velocity in the gradient direction 〈vx〉 is maximized for nonzero rotational speed. SNR0 = 1 in A. ω= Ωτrot is the unit-
less rotational speed. (B) Rotation improves chemotaxis at long averaging times T and low SNR0 (bad gradient sensing in the absence of rotation). Color
map shows the value of ω that maximizes 〈vx〉, found by numerical evaluation; black line shows the ω ≈ 0 contour. (C) Cluster rotation is preferred at small
cluster radii. In this graph, SNR0 is estimated by using χ ≈ π

4 ρcR4, where ρc ≈ 3.2× 10−3 µm−2 is the number of cells per unit area in the cluster (Materials
and Methods).

If a cluster follows its best estimate ĝT with speed v(Ω) given
by Eq. 5, it can improve its velocity in the gradient direction
by rotating when the averaging time T is long compared with
τrot (Fig. 3A). (The cluster’s directionality is always improved by
rotating, so there is no tradeoff unless speed of motion matters.)
We find that the optimal rotation speed Ω that maximizes the
up-gradient speed depends only on the signal-to-noise ratio
(SNR) without rotation, SNR0≡ 1

2
g2/σ2

g,0 and T/τrot (Fig. 3B
and Materials and Methods). Mammalian cells have speeds in the
range of micrometers per minute and radii of tens of microme-
ters, so to benefit from averaging (T & τrot), T must be longer
than tens of minutes. The timescale τrot and SNR0 both depend
on cluster size—larger clusters with more cells are both bet-
ter gradient sensors and more difficult to drive to large angular
speeds. As a consequence, the optimal Ω is highly cluster-size
dependent: As cluster size decreases, there is a continuous tran-
sition to nonzero optimal Ω if T is sufficiently long (Fig. 3C).

Linking Chemotactic Accuracy and Fluidity
Clusters with more cell rearrangement are more accurate by Eq.
4. To further quantify the consequences of cell rearrangements,
we model a cluster of cells as self-propelled particles that follow
the cluster estimate ĝT with a noise characterized by angular dif-
fusion Dψ and with cell–cell connections modeled as springs of
strength κ between Delaunay neighbors (Materials and Methods).
We emphasize that the angular diffusion parameterized by Dψ is
an additional source of noise: As Dψ increases, cells are less accu-
rate in following the cluster’s estimate of the gradient. These two
parameters are systematically varied to study the effects of clus-
ter fluidity on chemotactic accuracy.

Cluster Fluidity Improves Cluster Chemotaxis. Within our model,
increasing cell–cell adhesion κ makes clusters more ordered,
moving between fluid-like and crystalline states (Fig. 4A). As a
consequence, rearrangement slows significantly (Fig. 4C) with
τr ∼ exp(κ/2) [Crr (t) is single exponential].

Cluster structure and size change when clusters fluidize (Fig.
4A), which may in principle affect the shape parameter χ, which
also strongly affects the chemotactic accuracy (Eq. 2). However,
in our simulations χ is not significantly dependent on κ, chang-
ing by under 10% (Fig. 4D). Averaging time T also has only a
weak effect on cluster shape and dynamics—changes in τr and χ
when the averaging time T is increased by orders of magnitude
are small (Fig. 4). This is consistent with our assumption decou-
pling the gradient estimate and cell rearrangements, suggesting
clusters should obey the bound [3].

We can, using the results in Reducing Estimation Error by Time
Averaging, predict the cluster chemotactic index, CI≡〈Vx/|V|〉,
where V is the cluster velocity. Assuming V ∼ ĝT , we can
compute the CI from σg,T given by Eq. 4 (Materials and
Methods). This requires parameters τr and χ (measured from
simulations) and g, T , and σ∆ (known). We note that our
approach, which extracts τr and χ from cell trajectories, could
also be applied to experimental data; in that case, g would
still be known, but the extent of time averaging (T ) and the
error due to CCV (σ∆) would have to be determined by fit-
ting to the data. This prediction should be an upper bound
to the measured CI, because our model includes additional
noise beyond the assumptions of Eq. 4, via Dψ . As expected,
the cluster CI decreases significantly as clusters solidify and
the relaxation time τr increases. The simulation data qualita-
tively follow the predicted upper bound (Fig. 4B). When the
averaging time T is reduced below typical relaxation times,
the CI significantly decreases. In addition, for this short time
averaging, changing cluster stiffness no longer strongly affects
the CI.

Our model describes cell–cell adhesion by controlling the stiff-
ness of springs connecting circular cells. Within this scheme,
increasing adhesion reduces cluster fluidity; other models and
experiments have suggested adhesion increases jamming and
decreases rearrangement (44). However, descriptions of epithe-
lial sheets using models that resolve cell shape, including ver-
tex and cellular Potts models, suggest that increasing adhesion
actually promotes a more fluid state (45–48). With this in mind,
whether adhesion increases or decreases cluster fluidity may be
an open question. We use adhesion in our model as a simple
control knob to adjust cluster fluidity; our results in Eq. 4 do not
depend on the origin of the tissue’s fluidity, only on its character-
istic relaxation time τr .

Increasing the Stochasticity of Single-Cell Motility Can Increase
Cluster Accuracy. Any mechanism that fluidizes the cluster can
decrease the correlation time τr . Because of this, increasing
motility noise can improve cluster chemotactic accuracy (Fig. 5).
We increase single-cell angular noise Dψ and see an initial sharp
increase in cluster CI as Dψ > 0 (Fig. 5B). At larger values of
Dψ , cluster CI decreases below the bound set by Eq. 4, as the
additional noise added degrades the gradient-following behavior.
Without significant time averaging (T = 0.2), additional noise
primarily impedes chemotactic accuracy.

Why can extra noise Dψ help sensing? For Dψ = 0, all cells fol-
low the best estimate ĝT precisely, leading to an ordered cluster
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Fig. 4. Cluster fluidity increases cluster accuracy. (A) Typical configurations of cell clusters (plotted from simulations with T = 0.2). Color indicates mea-
sured signal Mi , lines connect neighboring cells, and the arrows indicate the polarity p. (B) When time averaging is significant, chemotactic index of clus-
ters decreases as cell–cell adhesion stiffness is increased; this behavior is captured by the upper bound computed using Eq. 3. (C) Positional relaxation
time τr increases with stiffness κ roughly as τr ∼ eκ/2; τr does not strongly depend on averaging time T . (D) Cluster size parameter χ is not strongly
dependent on κ in this range of κ. All plots are computed by averaging over 600 simulations of N = 50 cells, each composed of 2× 104 time steps with
∆t = 0.02. σ∆ = 0.3, Dψ = 1, τ = 1, `= 1, and g = 0.025. The first 2 × max(τ , T) time units of the simulation are discarded, to allow the system to reach a
steady state. Error bars indicate 68% CIs.

(Fig. 5A) with τr effectively infinite. As Dψ is increased, the clus-
ter fluidizes, and the relaxation time decreases strongly (Fig. 5C),
resulting in more independent measurements. As in Fig. 4, this
fluidization is relevant only if the averaging time T exceeds the
relaxation time, so when T = 0.2, the effect of increasing Dψ is
solely detrimental to chemotaxis.

In deriving our bound, we made two key approximations: clus-
ter isotropy and decoupling. These approximations are exact
for the rigid cluster rotation in Tradeoffs in Collective Accuracy
and Motility: Cluster Rotation, but only approximate for this self-
propelled particle model. As a consequence, at small Dψ , sim-
ulated clusters have chemotactic indexes slightly exceeding our
predictions (Fig. 5B). This error likely arises from emergent
couplings between cluster shape and ∆i—clusters may spread
perpendicular to ĝT , weakening the decoupling approximation
(Fig. 5A). The approximation of cluster isotropy can be removed
(Detailed Derivation of Time-Averaged Gradient-Sensing Error)
and does not resolve the violation of the bound (Fig. 5B). Despite
this potential error source, the model captures CI variation over
a broad range of parameters (Bounds Capture Variation of CI over
a Large Range of Parameters).

Discussion
Our study results in several predictions and suggestions for
experiments that investigate collective chemotaxis. For example,
we predict that, when CCV is large, gradient-sensing error is
insensitive to background concentration (Fig. 1C). This is con-
sistent with recent measurements on developing organoids that
show that the up-gradient bias is not strongly dependent on mean
concentration (8), although in contrast with results on lympho-
cyte clusters (7). Furthermore, if CCV limits collective chemo-
taxis, clusters that gradient sense in vivo should have tightly reg-
ulated expression of proteins relevant to the signal response.
Interestingly, measurements of zebrafish posterior lateral line
primordium (49) show tightly controlled Sdf1 signaling, mea-
sured by Cxcr4b internalization, suggesting that CCV may be
small enough to allow for accurate collective gradient sensing.

We also show that there is a direct link between fluidity
and chemotaxis as illustrated by Eq. 3. Verifying this expres-
sion in experiments requires simultaneous measurement of sev-
eral quantities, including cluster size, cluster rearrangement, and
signal gradient. Therefore, care has to be taken when modify-
ing experimental conditions as these might change many key
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Fig. 5. Finite levels of stochasticity in single-cell motility increase accuracy. (A) Typical configurations of cell clusters (plotted from simulations with
T = 100). Color indicates measured signal Mi , lines connect neighboring cells, and the arrows indicate the polarity p. (B) When time averaging is signif-
icant, the CI of clusters first increases as increasing single-cell noise Dψ fluidizes the cluster and then falls below the upper bound computed using Eq.
3. We also plot an extended theory not assuming cluster isotropy, derived in Detailed Derivation of Time-Averaged Gradient-Sensing Error. Simulations
for small Dψ may slightly exceed the upper bound (main text). (C) Positional relaxation time τr first decreases and then increases as Dψ is increased;
the point Dψ = 0, which has τr effectively infinite, is not shown. τr does not strongly depend on averaging time T . (D) Cluster size parameter χ weakly
depends on fluidization by Dψ . All plots are computed by averaging over 600 simulations of N = 50 cells, each composed of 2 × 104 time steps with
∆t = 0.02. σ∆ = 0.3, κ= 1, τ = 1, `= 1, and g = 0.025. The first 2 × max(τ , T) time units of the simulation are discarded, to allow the system to reach a
steady state. Error bars indicate 68% CIs.

quantities simultaneously. Altering adhesion, for example,
changes both cluster fluidity and spreading as shown in a recent
study using neural crest clusters (50), creating a confounding fac-
tor. Nevertheless, these types of experiments may be successful in
setting bounds on possible time averaging and the link between
fluidity and chemotaxis. In principle, given detailed cell position
tracks, our analysis could be performed on experimental data.
However, there are significant technical details to be worked out.
In comparing theory and simulation, we have full tracks of every
cell in the cluster over every time point, allowing simple compu-
tations; experimental data, however, may have only transient or
partial tracks or show clusters that fragment or merge. Critical in
this comparison will be assessing potential sources of bias from
missing data or including more complex cluster dynamics.

Our results suggest that many recent experiments may need
reinterpretation. Measured chemotactic accuracies can depend
on cluster size (6, 7, 31); these results have been modeled with-
out time averaging or CCV (7, 27, 28, 31). Our results show that
rearrangement times τr also influence chemotaxis—and that τr
depends on cluster size. Cluster relaxation dynamics are there-

fore an unexplored potential issue for interpreting collective
gradient-sensing experiments.

Essential in the reduction of gradient-sensing errors due to
CCV is the existence of a biochemical or mechanical memory
that can perform a time average over tens of minutes. There
are several possibilities. First, memory could be external to the
cluster—e.g., stored in extracellular matrix structure or a long-
lived trail (51). Second, supracellular structures like actin cables
influence cell protrusion and leader cell formation (52), suggest-
ing that collective directional memory could be kept by regulat-
ing actin cable formation and maintenance. Third, memory may
be kept at the individual cell level by cells attempting to estimate
their own bias level ∆i and compensating for it. This contrasts
with our straightforward average of the collective estimate ĝ, but
could be an important alternative mechanism.

Our model states that the cluster can take its information
about signal levels, modulated only by CCV and ligand–receptor
noise, and make the optimal computation of the gradient esti-
mator ĝ. We do not explicitly identify a biochemical or mechani-
cal mechanism by which the cluster can compute this estimate.
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However, at least in the limit where receptor noise is negligi-
ble and ĝ = (χ−1)

∑
i M

iδri , the estimate depends simply on the
cluster geometry. To compute ĝ, the cluster would have to be
able to estimate only the cell location relative to the cluster cen-
ter of mass δri ; this could potentially be done by secreting and
sensing a signal. Other possibilities could include generalizing
the tug-of-war scheme proposed in ref. 27 so that cells farther
away from the cluster center exert larger forces. We also note
that, even if cell clusters use a different estimator than the opti-
mal MLE ĝ we have described here [e.g., estimators derived from
local excitation, global inhibition (LEGI), or tug-of-war models
(7, 27, 28, 30)], similar qualitative results will hold: Relaxation of
any position-dependent estimator ĝ will be faster if the cluster is
more fluid.

We have so far addressed gradient sensing in only two dimen-
sions. In higher dimensions, we expect some aspects of our
results to be relatively unchanged; for instance, Eq. 2 will change
only by a prefactor, and the results of Eq. 3 straightforwardly
generalize to three dimensions. However, the scaling laws that
determine how the shape factor χ changes with cluster size
and the relaxation times τr change with cluster size will natu-
rally differ in three dimensions. For instance, we would expect
χ ∼

∑
i |δri |2 ∼ R5

cluster ∼ N 5/3.
Our results are critical for understanding the ubiquitous phe-

nomenon of collective gradient sensing. The importance of CCV
provides a valuable design principle: CCV must either be tightly
controlled or be mitigated by time averaging. We also estab-
lished a surprising link between a central mechanical property
of a cluster—its rheology—and its sensing ability. This connects
mechanical transitions like unjamming (47) to sensing, opening
up more areas of study. In addition, our results show cluster
accuracy depends strongly on cluster rearrangement mechanism.
Finally, our results show that noise in cell motility can be benefi-
cial for collective sensing.

Materials and Methods
MLE of Gradient Direction in the Presence of Cell–Cell Variation and Ligand–
Receptor Noise. We compute the MLE of gradient direction given the mea-
sured signal at cell i, Mi , given by Eq. 1. If the cluster of cells is in a shal-
low linear gradient, with concentration c0 at the cluster’s center of mass
rcm = N−1∑

i ri , then c(r) = c0 [1 + g · (r− rcm)] and thus c̄ = c0. Mi is then

Mi = 1+g ·δri + (δci/c0)ηi +∆i with δri = r− rcm and (δci/ci)
2

= 1
nr

(ci+KD)
2

ciKD
;

i.e., (δci/c0)
2

= 1
nr

(1 + g · δri + KD/c0)
2 1+g·δri

KD/c0
.

∆i are uncorrelated between cells, with a Gaussian distribution of zero
mean and SD σ∆; i.e.,

〈
∆i∆j

〉
=σ2

∆δ
ij with δij the Kronecker delta func-

tion. As ηi and ∆i are both Gaussian, the sum of these variables is also
Gaussian, and the likelihood of observing a configuration of measured
signals {Mi} is L(g; {Mi}) = P({Mi}|g), where P({Mi}|g) is the probabil-
ity density function of observing the configuration {Mi} given param-
eters g. The likelihood is

L(g; {Mi}) =
∏

i

1
√

2πhi
exp

[
−

(Mi −µi)
2

2hi

]
, [6]

where µi = 1 + g · δri is the mean value of Mi and hi = (δci/c0)
2

+ σ2
∆ is its

variance. We want to apply the method of maximum likelihood by finding
the gradient parameters ĝ that maximize this likelihood; i.e.,

ĝ = arg max
g
L(g; {Mi}). [7]

However, because of the complex dependence of hi on the gradient g,
this is not possible analytically. We perform this optimization numerically,
using a Nelder–Mead method (Matlab’s fminsearch), with an initial guess set
by the maximum for nr→∞ (i.e., neglecting concentration-sensing noise),
which can be found exactly. For numerical convenience, we maximize the

log-likelihood lnL(g; {Mi}), lnL(g; {Mi}) =− 1
2

∑
i ln hi −

∑
i

(Mi−µi )
2

2hi up
to an additive constant.

In the limit of nr→∞ (neglecting concentration noise), our model
becomes a simple linear regression, and the log likelihood can be max-
imized analytically by finding ĝ such that ∂g lnL(g; {Mi})|ĝ = 0 (MLEs of

Gradient Direction via Collective Guidance in the Presence of Cell–Cell Vari-
ation and Ligand–Receptor Noise). The result is ĝ =A−1 ·

∑
i Miδri , where

Aαβ ≡
∑

i δri
αδri

β . This estimator is simplest in the limit of roughly circular

(isotropic) clusters, where
∑

i (δxi)
2 ≈

∑
i (δyi)

2�
∑

i δxiδyi . In this case,
ĝ = (χ−1)

∑
i Miδri , where χ= 1

2

∑
i |δri|2.

Cluster Rotation Dynamics. How much speed does a cluster lose by rotat-
ing? One possibility is to assume the power expended in generating motil-
ity is constant. Consider a circular cluster propelling itself over a surface,
with the cells having velocity v(r); we expect that the frictional force per
unit area between the cluster and substrate will be fdrag =−ξv, where ξ
is a friction coefficient with the substrate. If all of the power available
for motility is going into driving the cluster over the substrate, then we
can write P =−

∫
d2r v · fdrag = ξ

∫
d2r|v|2. If the cluster is traveling as a

rigid, circular cluster with its maximum possible velocity, v = vmaxx̂, then
P = ξπR2v2

max≡ γtv2
max, where γt = ξπR2 is the translational drag coeffi-

cient of the cluster. If, instead, the cluster puts its entire power into rigid-
body rotation with v(r) = Ωmaxr(− sin θ, cos θ) (in polar coordinates), then
P = ξΩ2

max

∫
d2rr2 = ξ π2 R4Ω2

max≡ γrΩ
2
max, where γr = ξπ

2 R4 is the rotational
drag coefficient of the cluster. In general, the power dissipated if the clus-
ter is moving rigidly with velocity v and angular speed Ω is P = γtv2 + γrΩ

2

and hence we find that the speed v(Ω) that a cluster rotating with angular
velocity Ω is able to travel to obtain is

v(Ω) =

√
v2

max−
γr

γt
Ω2. [8]

This quantifies one reasonable tradeoff between speed and angular velocity
for a cluster. If the power available for cell motility is a small amount of the
cell’s energy budget (41–43), other tradeoffs may be more important and
additional modeling will be necessary.

We consider a circular cluster traveling toward its best estimate of the
gradient with speed v(Ω) given by Eq. 8 and traveling in the direction of the
estimator ĝT . We can then determine when the cluster maximizes its mean
velocity in the direction of the increasing gradient, which we choose to be
x, 〈vx〉, as a function of Ω. This average is

〈vx〉 =

√
v2

max−
γr

γt
Ω2 ×

〈
ĝT ,x

|ĝT |

〉
. [9]

We know from our results above and in Detailed Derivation of Time-
Averaged Gradient-Sensing Error that, for a fixed configuration, ĝT

has a Gaussian distribution with mean g = gx̂ and variance given by

Eq. 3. The average of
ĝT ,x
|ĝT |

depends only on SNRT ≡ 1
2 (g2/σ2

g,T ), with〈
ĝT ,x
|ĝT |

〉
= C(SNR−1/2

T ) (Computing Chemotactic Indexes, below).

Given the angular velocity Ω, we can work out the distribution of ĝT by
Eq. 3. We know r(t) · r(0) = |r(0)|2 cos Ωt, and hence Crr (t) = cos Ωt and its
Fourier transform Crr (ω) =π [δ(ω−Ω) + δ(ω + Ω)], and thus σ2

g,T =σ2
g,0 ×

|KT (Ω)|2 =σ2
g,0/(1 + Ω2T2).

Fig. 6. Relationship between instantaneous CI and SNR. C(σ) is plotted
numerically from definition in Eq. 18.
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By rescaling to unitless parameters, we then find that

〈vx〉 /vmax =

√
1−

1

2
ω2 × C

([
SNR0(1 + ω

2T̃2)
]−1/2

)
, [10]

where ω= ΩR/vmax is the unitless angular velocity, SNR0 =σ−2
∆ g2χ is the

usual SNR with no averaging, T̃ = Tvmax/R is the ratio of the averaging time
to the characteristic rotational time R/vmax, and C(σ) is the function given
by Eq. 18. When SNR0 is sufficiently small and T̃ sufficiently large, 〈vx〉 /vmax

has a maximum at finite ω (Fig. 3).
In the limit of low SNR, C(σ)≈

√
π/8σ−1, and we find 〈vx〉 /vmax is

maximized by ω=±
√

1− 1
2 T̃−2 when T̃ > 1/

√
2 and ω= 0 otherwise.

For the large SNR limit, C(σ)≈ 1−σ2/2 and rotation will increase the
mean velocity in the direction of the gradient when T̃2 > SNR0/2− 1/4.
More generally, it is possible to find the value of ω that max-
imizes 〈vx〉 numerically. We show the complete phase diagram in
Fig. 3B.

Particle-Based Model of Collective Cell Migration. We use a minimal model
of collective cell migration, describing cells as self-propelled particles con-
nected by springs,

d

dt
ri

= pi
+
∑
j∼i

Fij [11]

pi
= (cos θi , sin θi) [12]

θ
i
= arctan(ĝT ,y/ĝT ,x) + ψ

i [13]

d

dt
ψ

i
=−τ−1 sinψi

+
√

2Dψξ
i(t), [14]

where ξi(t) is a Gaussian Langevin noise with zero mean and 〈ξi(t)ξj(t′)〉=
δijδ(t− t′), with δij the Kronecker delta. In this model, the orientation of
an individual cell θi is the cluster’s best estimate of the gradient direc-
tion, arctan(ĝT ,y/ĝT ,x), plus a noise ψi which varies from cell to cell. τ here
controls the persistence of this noise and Dψ its amplitude; when Dψ is
increased, each individual cell is worse at following the estimate ĝT . The
cell–cell forces are

Fij
=−κ(|dij − `|)̂rij , [15]

where dij = |ri − rj| and r̂ij = (ri − rj)/dij . The forces are only between neigh-
boring cells j ∼ i, where we define neighboring cells as any cells connected
by the Delaunay triangulation of the cell centers (Fig. 4A); this approach

resembles that of ref. 53. We use the Euler–Maruyama method to integrate
Eqs. 11–14.

Simulation Units. We have chosen our parameters in the simulation and
throughout the paper to be measured in units where the equilibrium cell–
cell separation `= 1 (i.e., the cell diameter is unity), and the velocity of a
single cell in the absence of cell–cell forces v = p = (cos θ, sin θ) has unit
magnitude. For, e.g., neural crest cells, the cell diameters are of order 20 µm
and the cell speeds on the order of micrometers per minute—so a unitless
time of T corresponds to roughly 20 min × T in real time. However, cell
size and speed vary strongly from cell type to cell type, so we prefer to
present these results in their unitless form so that they can be more easily
converted.

Computing Chemotactic Indexes. If we use the maximum-likelihood method
to make an estimate for the direction in which the cell moves, how do we
translate between the uncertainty σ2

g and the distribution of velocities? We
found that the MLE for the gradient is ĝ = g+Λ, with Λ a Gaussian random

variable with zero mean and variance
〈

Λ2
x

〉
=
〈

Λ2
y

〉
=σ2

g/2—and similar

results for the time-average ĝT . One measure of this estimate’s accuracy is
the instantaneous chemotactic index—or the cosine of the angle between
the estimate and the gradient direction. To compute this, if g = gx̂ without
loss of generality, we find〈

ĝx

|ĝ|

〉
=

〈
g + Λx

(g + Λx)2 + Λ2
y

〉
[16]

=

∫
dxdy

2πσ

1 + x[
(1 + x)2 + y2

]1/2
e
− (x2+y2)

2σ2 [17]

≡ C(σ), [18]
where σ= SNR−1/2, with SNR = 1

2 (g2/σ2
g) (Fig. 6). These results carry over

naturally to the time-averaged case if ĝT remains Gaussian—we find〈
ĝT,x
|ĝT |

〉
= C(SNR−1/2

T ).

The integral for C(σ) cannot be solved analytically, but we can find
asymptotic forms for C(σ) or evaluate it numerically. For σ� 1, we find
C(σ) ≈

√
π/8σ−1, and C(σ) ≈ 1− 1

2σ
2 for σ � 1.
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