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Abstract

In this article | propose that categorization decisions are
often made relative to causal models of categories that
people possess. According to this causal-model theory of
categorization, evidence of an exemplar's membership 1n a
category consists of the likelihood that such an exemplar
can be generated by the category's causal model. Bayesian
nerworks are proposed as a representation of these causal
models. Causal-model theory was fit to categorization data
from a recent study, and yielded better fits than either the
prototype model or the exemplar-based context model, by
accounting, for example, for the confirmation and
violation of causal relationships and the asymmetries
inherent in such relationships.

Several investigators have argued that category learning and
categorization are strongly influenced by the theoretical,
explanatory, and causal knowledge that people bring to bear
(Murphy & Medin, 1985; Murphy, 1993; Heit, 1998). For
example, manipulations of stimulus materials affect
category learning by eliciting different aspects of people's
background knowledge (e.g., Pazzani, 1989; Murphy &
Allopenna, 1994). Performance on a variety of tasks has
been correlated with the amount of relevant domain
knowledge individuals possess (Keil, 1989; Medin, Lynch,
Coley, & Atran, 1997). However, there has been relatively
little development of this "theory-based" view of categories
in terms of detailed theory and computational models (c.f.
Heit, 1994). This state of affairs arises in part because of the
uncertainty surrounding exactly what knowledge participants
deploy in an experimental task. A few recent studies have
addressed this problem by employing novel domains and
teaching participants "background” knowledge as part of the
experimental session (e.g., Ahn & Lassaline, 1996; Rehder
& Hastie, 1999; Sloman, et al. 1998). For example, Rehder
and Hastie taught participants about fictitious categories
described as possessing causal relationships between binary-
valued category attributes, and manipulated experimentally
whether those causal relationships formed a common-cause
or a common-effect causal schema (Figure 1). In the
common-cause schema, one attribute (Al) is described as
causing the three other attributes, whereas in the common-
effect schema one attribute (A4) is caused by three other
attributes. For example, one of the fictitious categories was
Kehoe Ants, a species of ants described as living on an
island in the Pacific Ocean, and one of that category's causal
relationships was "Blood high in iron sulfate causes a
hyperactive immune system. The iron sulfate molecules are
detected as foreign by the immune system, and the immune
system is highly active as a result." After learning about
such categories and their causal relationships participants
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performed a transfer categorization task. Rehder and Hastie
found that the presence of both a cause and its effect in an
instance (e.g., an ant with iron sulfate blood and a
hyperactive immune system) led to the instance receiving a
higher category membership rating compared to control
categories with no causal relationships. Because ratings were
also higher when both the cause and effect were absent
(normal blood and normal immune system), and lower when
either the cause or the effect was present and the other absent
(iron sulfate blood and normal immune system, or normal
blood and hyperactive immune system), Rehder and Hastie
concluded that participants were attending not merely to the
presence of the cause/effect configuration, but rather to
whether instances confirmed or violated causal relationships.
Category membership ratings also reflected the asymmetries
inherent in causal relationships. For example, a distinct
characteristic of common-cause causal networks is that the
effect attributes (e.g., A2, A3, and A4 in Figure 1) will be
correlated, and indeed the categorization ratings of substantial
numbers of common-cause participants were sensitive to
whether those correlations were preserved or violated.

Common-Cause Schema Common-Effect Schema

Figure 1

Although these results are suggestive of explicit causal
reasoning in participants, it is important to consider whether
they can be accounted for by the well-known similarity-
based categorization models, such as the prototype model
and the context model (Medin & Shaffer, 1978; Nosofsky,
1986). Similarity-based models are able to accommodate
seemingly disparate categorization strategies by adjusting
similarity parameters to differentially shrink or expand the
dimensions of the stimulus space. In fact, Rehder and Hastie
fitted these models to their transfer categorization data, and
found that the models yielded only moderate-quality fits. The
fits of instances that possessed many confirmations or many
violations of causal relationships were particularly poor.

The failure of the similarity-based models to account for
these data leads to a search for alternative categorization
models that can account for people's apparent ability to
reason causally while categorizing. In this article I propose
that categorization decisions are often made relative to causal
models of categories that people possess, and test Bayesian
networks as a candidate representation of such models.
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(a) Common-Cause Causal Model

(b) Common-Effect Causal Model

(c) No-Cause Control Model
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Figure 2

Below I present this causal-model theory of categorization,
review the procedures employed in the Rehder and Hastie
study, and compare data fits produced by the similarity-based
models and the causal-model approach. When causal
knowledge was present, causal models produced better fits
than the similarity-based models by accounting for the
categorization ratings of those instances especially affected
by the confirmation or violation of causal relationships, and
for the asymmetries inherent in causal relationships.

A Causal-Model Theory of Categorization

As in other categorization models, 1 assume that the
classification process consists of both an evidence stage and
a decision stage. and that the decision stage is given by a
relative-ratio rule (Luce, 1963),

P(Calt) = EA(/ZE () (1)

where P(Cxlt) is the probability that instance t is classified
into Category A, i ranges over the set of categories that t
may belong to, and E;(t) is the evidence in favor of t
belonging to category C;. The core of the current proposal is
that evidence of t's membership in category C; consists of
the likelihood that t could have been generated by C;'s causal
model. Figure 2 presents Bayesian networks that serve as
common-cause and common-effect causal models. Bayesian
networks are directed acyclic graphs in which nodes represent
variables (in this work, binary variables whose values are
referred to as "present” and "absent”, or "1" and "0"), and
edges represent direct dependency relations among variables.
In particular, Bayesian networks can be used to represent
causal dependencies among variables in which the only direct
causes of a variable are its immediate parents (Pearl, 1988).
For example, the common-cause network (Figure 2a) has
one variable (a;) that directly causes three other variables (a,,
a3, a4). The common-effect network (Figure 2b) has three
variables (a;, ap, a3) that each directly causes one other
variable (ag). The no-cause control network (Figure 2c)
specifies no causal relationships among variables.

For each variable with no edge into it (i.e., for each
"exogenous  variable"), Bayesian networks require
specification of the probability that its value will be present.
These probabilities are referred to as g. In addition, each edge
requires the probability that the effect is caused when the
cause is present, referred to as c. Finally, u is the probability
that a caused (endogenous) variable is present even when its
causes are absent. (u can be interpreted as the probability
that an effect is brought about by some unspecified cause.)
These probabilities can be treated as the parameters of the
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causal model that the Bayesian networks represents’.

Given a causal model and its parameters, it is possible to
calculate the likelihood that it will generate a particular
value on a variable, or a particular set of values. Table 1
presents the equations for computing the likelihood for any
settings of the four binary variables in the common-cause,
common-effect, and no-cause control models. For example,
the probability that the common-cause model will generate
the values 1000 (that is, a; present, az4 absent) is the
probability that aj is present (g) times the probability that
all three causal mechanisms fail to operate ((1-¢)’) times the
probability that the effects are not otherwise caused (( 1-u)).

When the variables of a causal model are interpreted as
attributes of a category, and the edges are interpreted as
causal relationships between category attributes, the
equations of Table 1 can be used to compute the likelihood
that the category will generate a particular exemplar, that is,
a particular set of attribute values.

The causal-model approach to categorization assumes that
categorizers estimate for each candidate category the
likelihood that the category generated the exemplar, and then
combine this evidence in accord with the relative-ratio rule
(Eq. 1) in order to reach a categorization decision.

The Experiments

In addition to Kehoe Ants, Rehder and Hastie (1999)
employed five other fictitious categories: one other
biological kind, two nonliving natural kinds, and two
artifacts. For each of the four binary attributes the base rates
of its two values was stated to be 75% and 25%. To relate
these attribute values to the networks in Figure 2, the 75%
and 25% values are henceforth referred to as "present” and
"absent” (or "1" and "0"), respectively. Causal relationships
were written such that the "presence” of one attribute caused
the presence of another.

'The networks shown in Figure 2 exhibit a number of
restrictions, any of which can be lifted. First, all causal links
are assumed to have the equal strength (i.e., the same ¢) because
in the Rehder and Hastie study all relationships were pretested to
equate their plausibility. Second, exogenous variables are
assumed to have the same base rate (g). because all participants
were explicitly told that attributes exhibited equal base rates
(see description of the experiments below). Third, endogenous
variables are assumed to have the same u for the same reason.
Fourth, in the common-effect network 1 assume that the
probabilities that each cause will bring about its effects are
independent, that is, the common-effect causal model is related
to a "fuzzy or gate" (Pearl, 1988). These restrictions have the
advantage of reducing the number of free parameters, facilitating
comparison with similarity-based models (see below).



Table 1 Table 2
Common Cause Common Effect No-Cause Neutral-Data Congruent-Data Experiment
Causal Causal Control Experiment Target

Exemplar Model Model Model Exemplar _Target Contrast CC _CE_Control Contrast
0000 q'u” q"u' q" 0000 0 11 4 | 0 15
0001 q'u”u q"'u qq" 0001 0 3 2 0 5
0010 qu”u qq"cu 99" 0010 0 4 2 1 0 5
0100 qu’u qq"c'u’ 99" 0100 0 4 2 1 0 5
1000 gc’u’” q9"”cu’ 9" 1000 0 4 0o 1 1 5
0011 q'u'u’ qq”(1-c'u’) 7q” 0011 1 1 11 2 2
0101 q'u'’ 99" (1-c'u’) 7q” 0101 1 1 i 2 1
0110 q'u'u’? g'q'c’u’ 7q” 0110 1 ] 1 2 2 2
1000 gc”u”(l-c'u’) qq”(l-c'u’) qq” 1001 1 ] 0 1 2 2
1010 gc”?u”(l-c'u’)  g’'q'c”u’ 7q” 1010 1 1 0 2 1 2
1100 ge?u*(l-c'u’) q'q'c’u’ 7q” 1100 1 I 0o 2 2 2
0111 q'v’ aq'(l-c”u') qTq o111 4 0 0 5 5 1
1011 ge'u'(l-c'u’y gq'(1-c*u’) Tq 1011 4 0 3 5 5 0
1101 ge'u'(l-c'u’)* gq'(1-c*u’) Tq 1101 4 0 3 5 5 0
1110 ge'u'(l-c'u'y  gc’u’ aq 1110 3 0 3 2 5 1
111 g(l-c'u)’  g(-c”u’) q* 1111 11 0 26 18 15 0

Note. g'=(1-g). r'=(1-r). s'=(1-5).

In each of three experiments, each participant learned of
one category, and the category's causal schema was
manipulated as a between-subjects factor: Participants were
given either a common-cause or a common-effect set of
causal relationships, or no causal relationships.

After learning about a category and its causal schema,
participants were exposed to exemplars of the target category
(e.g., Kehoe Ants) in the guise of a training classification
task. Participants classified a series of exemplars into the
target category or a contrast category labeled "other”, with
feedback provided on every trial. In the Neutral-Data
Experiment, target-category exemplars exhibited no
correlations between attributes. That is, the inter-attribute
correlations that might be expected from the causal
relationships learned by the common-cause or common-
effect participants were nor reflected in the target category
exemplars (as a result participants in all conditions observed
the same training exemplars). In the Congruent-Data
Experiment target-category exemplars exhibited the inter-
attribute correlations implied by the causal relationships: the
common-cause participants saw common-cause correlations
and the common-effect participants saw common-effect
correlations (and the no-cause control participants saw no
inter-attribute correlations). Finally, in the Neo-Data
Experiment participants were presented with no training
exemplars and hence received no empirical information about
the target category. Table 2 presents the number of instances
of each exemplar presented to participants as members of the
target and contrast categories in the Neutral-Data and
Congruent-Data experiments. Note that the target category
samples exhibited the 75%/25% attribute base rates that
participants were told the category possessed. The attribute
base rates in the contrast category samples were 25%/75%.

All three experiments concluded with participants
performing three transfer tasks: a categorization task, a
similarity rating task, and a property induction task. (The
similarity and induction results are not discussed further.)
During the categorization task, participants rated on a 100-

Note. CC=Common-Cause Schema. CE=Common-Effect
Schema. Control=No-Cause Control Schema.

point scale the category membership of 32 exemplars,
consisting of all possible 16 examples that could be formed
from four binary attributes, each presented twice. No
feedback was provided.

216, 234, and 180 University of Colorado undergraduates
participated in the Neutral-Data, No-Data, and Congruent-
Data  experiments, respectively.  Average category
membership ratings for each exemplar in each condition of
the Neutral-Data, No-Data, and Congruent-Data experiments
are presented in the Appendix.

Model Fitting Procedure

To fit the transfer categorization data from Rehder and Hastie
(1999), causal models must be assumed for both the target
category (e.g., Kehoe Ants) and the contrast category. It was
assumed that for the target category participants employed a
causal model appropriate to the causal schema they learned: a
common-cause model for the common-cause schema, a
common-effect model for the common-effect schema, and a
no-cause control model when they leammed of no causal
relationships. It was also assumed that all participants
employed a no-cause control model for the contrast category,
because no causal knowledge was provided about that
category. As a result, fits of data from the common-cause
and the common-effect schema conditions involve four
parameters (q, ¢, and u for the target category, and g for the
contrast category), and fits to the no-cause control condition
involve two (one g each for the target and contrast category).
Data fitting involved finding the set of parameters that
minimized squared error, with predictions being given by the
equations in Table 1.

The transfer categorization data were also fitted to the
prototype and context model (Nosofsky, 1992). The
prototype model assumes that evidence of category
membership consists of the (additive) similarity of a
stimulus to the category's prototype. In fitting the prototype
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Table 3

Common Cause Schema

Common Effect Schema

No-Cause Control Schema

Model No Neutral Congruent No Neutral  Congruent No Neutral Congruent
Parameters Data Data Data Data Data Data Data Data Data
Prototype Model
s, 0.03 0.00 0.00 0.25 0.04 0.11 0.10 0.00 0.00
8, 0.57 0.00 0.19 0.41 0.00 0.21 0.32 0.00 0.10
S5 0.53 0.01 0.28 0.53 0.05 0.25 0.33 0.00 0.08
S, 0.57 0.00 0.33 0.16 0.00 0.00 0.35 0.00 0.05
RMSE 0.097 0.080 0.071 0.077 0.090 0.078 0.023 0.071 0.033
Context Model
s - 0.21 0.29 - 0.36 0.37 - 0.22 0.26
S - 0.31 0.44 - 0.33 0.42 - 0.29 0.33
S: - 0.32 0.44 - 0.35 0.41 - 0.27 0.29
Sy - 0.34 0.52 - 0.26 0.24 - 0.30 0.37
RMSE - 0.046 0.045 — 0.067 0.051 - 0.029 0.025
Causal Models
Common Cause Causal Model  Common Effect Causal Model No-Cause Control Model
Target Category
q 0.52 0.74 0.63 0.47 0.65 0.60 0.56 0.66 0.63
¢ 0.30 0.31 0.29 0.22 0.40 0.35 -~ - -
u 0.36 0.55 0.47 0.31 0.38 0.39 - - -
Contrast Category
q 0.37 0.30 0.39 0.35 0.32 0.38 0.41 0.31 0.36
RMSE 0.039 0.025 0.038 0.037 0.018 0.024 0.030 0.025 0.030

model, the prototypes of the target and contrast categories
were assumed to be 1111 and 0000, respectively. The
context model assumes that evidence of category
membership is the total (multiplicative) similarity of a
stimulus to all stored category exemplars. In fitting the
context model, it was assumed that all exemplars presented
during training classification were stored in memory with
their category membership. Because of the absence of
training exemplars in the No-Data experiment, the context
model was not fit to that experiment's data. Both the
prototype and context model produce four parameters (s, s,
s3, and s4) in the range (0,1] representing the saliency of
each dimension (where smaller numbers mean more salient).

Although the relative-ratio rule (Eq. 1) is typically used to
predict the probability of category membership, in the
Rehder and Hastie study participants produced continuously-
valued category membership ratings rather than binary-
valued categorization decisions. Accordingly, the rule is used
to predict category membership ratings, which are divided by
100 to bring them into the range [0-1].

Results

Fits of the prototype model, the context model, and causal-
model theory to the Rehder and Hastie (1999) transfer
categorization data are presented in Table 3 as a function of
causal schema and experiment. In all common-cause and
common-effect conditions, causal models produced better fits
than either the prototype model or the context model in
terms of residual error variance (RMSE), and did so with the
same number of free parameters as the similarity-based
models (four). In the no-cause control experimental
conditions, participants were not instructed on the presence
of inter-attribute causal relationships, and the prototype
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model and the context model produced adequate data fits in
those conditions (with one exception: the prototype model
fit in the Neutral-Data experiment). However, causal models
produced equally good fits in those conditions, and did so
with two fewer free parameters®.

One reason for the poorer fits of the prototype and context
models in the common-cause and common-effect conditions
is their inability to account for the category membership
ratings of those exemplars especially sensitive to the
confirmation or violation of causal relationships. To
illustrate, Figure 3 presents context model and causal model
fits in the Neutral-Data experiment for such exemplars. As
is apparent from the figure, in the common-cause condition
the context model underestimates the category membership
ratings of exemplars that possess three confirmations of
causal relationships: 1111 (the common-cause, aj, and its
effects all present) and 0000 (common-cause and its effects
all absent). It also overestimares the ratings of exemplars
that possess three violations of causal relationships: 1000
(the common-cause is present but its effects are absent) and
0111 (the common-cause absent, but its effects are present).
Analogously, in the common-effect condition the context
model underestimates the ratings of exemplars that possess
three confirmations of causal relationships (1111 and 0000),
and overestimates the ratings of exemplars that possess three
violations (0001 and 1110).

In comparison, in both the common-cause and common-
effect conditions causal model theory yielded quite good fits
of these exemplars (Figure 3). The causal models' parameter

* Participants in the No-Cause Control condition of the No-Data
Experiment exhibited a substantial response bias in favor of the
target category, and hence data fits in that condition include the
addition of a bias parameter b=.58 (b=.50 means zero bias).
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values support the view that their superior data fits were due
to participants' use of causal relationships when generating
categorization ratings. For example, parameter ¢, which
reflects the strength of the causal relationship between a
cause and an effect attribute, was large and positive in all
common-cause and common-effect schema conditions (Table
3). One effect of those parameter values is to make the
generation of exemplars that confirm causal relationships
(1111 and 0000 for both the common-cause and common-
effect models) more likely, and the generation of exemplars
that violate causal relationships (1000 and 0111 for the
common-cause model, and 0001 and 1110 for the common-
effect model) less likely. Because the likelihood of
generation controls category membership ratings (Eq. 1),
causal models account for the sensitivity to the correlations
between causally-connected features shown in Figure 3.

The context model can also exhibit sensitivity to inter-
attribute correlations, but only when category exemplars are
present in memory that manifest those correlations. Such
exemplars were absent in both the Neutral-Data and No-Data
experiments, and hence participants' sensitivity to
correlations between causally-connected features in those
experiments must be attributed to the causal knowledge they
learned. However, exemplars that manifested the appropriate
correlations were present in the Congruent-Data experiment
and hence that experiment established the most favorable
conditions for the context model. Nevertheless, even in the
Congruent-Data experiment causal model theory yielded the
best fits, apparently because participants weighed the critical
inter-attribute correlations more heavily than is predicted by
the context model's multiplicative-similarity rule.
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Discussion

The failure of the prototype and context models to account
for the Rehder and Hastie (1999) categorization data implies
that participants were not rating the category membership of
exemplars on the basis of (only) similarity, a result that led
Rehder and Hastie to suggest that their participants were
engaging in explicit causal reasoning while categorizing. In
this article "causal reasoning" is rendered computationally
explicit in the form of causal-model theory. In fact, the good
fits of the categorization data produced by causal models,
together with the specific parameter values responsible for
those fits, support the claim that people can engage in
causal reasoning while categorizing when causal knowledge
is present that enables that reasoning.

An alternative way to account for the current data in terms
of similarity is to argue that the feature space is expanded to
include higher-order features encoding the confirmation or
violation of causal relationships, and that similarity is
computed in that expanded space. However, Rehder and
Hastie also collected ratings of the similarity of pairs of
category members, and found that such ratings were
insensitive to whether exemplars matched on those higher-
order features (also see Rehder & Hastie, 1998), suggesting
that the presence of causal knowledge did not result in an
expansion of the feature space. Such higher-order features
also fail to account for the asymmetries inherent in causal
relationships. For example, when the direction of causality
in the common-cause and common-effect models (Figure 2)
is reversed, the result is substantially worse fits of the data
of many common-cause and common-effect participants,
respectively. In other words, when classifying exemplars
many participants did not just evaluate each causal link in
isolation but rather considered interactions among links
produced by the entire network, where the nature of those
interactions is determined by the links' direction of causality.

Despite differing assumptions regarding the form of
category representations (prototypes, exemplars, rules, etc.),
traditional similarity-based models assume that such
representations are built with information taken from the
data people observe (i.e., exemplars). Causal model theory
diverges sharply from this approach by assuming instead
that category representations are formed from the category
knowledge people possess. The superior fits of causal model
theory reported here for the Neutral- and Congruent-Data
experiments reflects the greater importance of category
knowledge versus category data on categorization in those
experiments. Causal model theory also applies when no
exemplars of the category have been observed at all (e.g., the
No-Data experiment), a domain beyond the purview of the
traditional models. In contrast to the traditional models,
causal model theory is thus applicable to the many real-
world categories about which people know far more than
they have observed first hand.

Causal models have been implicated in other domains.
For example, Glymour (1998) argues that people's ability to
estimate the strength of causal influences controlling for
other causes (i.e., Cheng's, 1997, causal power theory) is
equivalent to estimating the conditional probability
associated with an edge in a Bayesian network (in this
article, parameter ¢). Waldmann, Holyoak, and Fratianne



(1995) demonstrated that the speed of category learning
depends on the match between the correlational structure of
the learning data and the learner's causal model of the
category. An important area of development for causal model
theory 1s to specity the learning algorithm by which learners
integrate thewr category knowledge (in the form of causal
models) with data (i.e., observations of the category).

In this article | have demonstrated how the claim that
causal knowledge affects categorization can be formalized as
an explicit computational model, how it can be fitted to
empirical data, and how it can be rigorously tested against
other models. Bayesian networks were utilized as a device
with which causal knowledge was represented and evidence
in favor of category membership was calculated. Future
work may advance causal model theory by specifying the
processes by which likelihood functions (e.g., Table 1) are
computed (or approximated). The success of parallel network
algorithms in implementing complex reasoning processes in
other domains (Pearl, 1988, Thagard, 1989) make the
prospect for this development promising.
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Common Cause Schema Common Effect Schema No-Cause Control Schema
No Neutral Congruent No Neutral Congruent No Neutral Congruent
Exemplar Data Data Data Data Data Data Data Data Data
0000 50.2 13.4 27.1 40.7 12.1 18.1 33.1 9.9 8.8
0001 41.4 19.9 32.8 34.6 16.8 24.1 41.4 20.4 26.8
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0110 40.7 43.8 47.2 46.2 40.8 38.7 55.2 49.2 47.3
1001 50.8 51.1 48.9 56.5 47.8 529 59.7 56.8 533
1010 51.4 50.5 50.8 48.6 38.9 40.0 60.3 56.2 49.]
1100 52.4 54.4 50.4 52.4 41.3 44.5 60.4 54.2 55.0
o111 45.5 67.2 50.0 66.1 84.5 76.1 69.6 80.7 72.4
1011 65.3 86.2 67.9 68.1 84.5 78.2 72.8 84.2 79.5
1101 65.2 84.2 70.9 71.0 84.8 76.8 74.6 83.4 74.7
1110 67.2 86.5 70.7 53.1 61.3 49 .8 73.4 82.6 76.1
1111 90.0 98.6 97.8 90.0 97.2 92.3 §8.6 95.0 92.2
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