
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

ACCURATE GENOME ANALYSIS WITH NANOPORE
SEQUENCING USING DEEP NEURAL NETWORKS.

A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOMOLECULAR ENGINEERING AND BIOINFORMATICS

by

Kishwar Shafin

March 2022

The Dissertation of Kishwar Shafin
is approved:

Professor Benedict Paten, Chair

Professor David Haussler

Professor Mark Akeson

Peter F. Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Kishwar Shafin

2022

Contents

List of Figures viii

List of Tables xxv

Abstract xxxviii

Dedication xxxix

Acknowledgments xl

I Introduction 1

1 Introduction 2

II Background 6

2 Background 7
DNA sequencing technology . 7

Sanger sequencing . 8
Next-generation sequencing technology 8
Third-generation sequencing technology 9

Genome inference . 12
De novo assembly . 13
Variant calling . 14

Deep learning for genome inference . 16
Applications of deep neural network in nanopore sequencing 18

iii

III Haplotype-aware variant calling 20

3 PEPPER-Margin-DeepVariant: Haplotype-aware variant calling
pipeline for long reads. 21
Preamble . 21
Introduction . 22
Results . 25

Haplotype-aware variant calling . 25
Nanopore variant calling performance 33
Nanopore, Illumina and PacBio HiFi variant calling performance comparison 37
Phaseset and Haplotagging Accuracy . 41
Gene Analysis . 46
Diploid polishing of de novo assemblies 48
Diploid de novo assembly polishing performance 51

Discussion . 55
Methods . 58

Analysis methods and data pre-processing 58
Mendelian Analysis . 59
Method description . 65
PEPPER . 65
Margin . 77
Local Phasing Correctness . 86
DeepVariant . 88
Adapting DeepVariant to Oxford Nanopore reads 88
Assembly polishing with PEPPER-Margin-DeepVariant 91

IV Efficient de novo assembly of eleven human genomes in nine
days 94

4 Nanopore sequencing and Shasta toolkit enables de novo assembly of
eleven human genomes in nine days. 95
Preamble . 95
Introduction . 96
Results . 98

Nanopore sequencing eleven human genomes in nine days 98
Shasta: assembling a human genome from nanopore reads in under 6 hours102
Contiguously assembling MHC haplotypes 109
Deep neural network based polishing achieves greater than QV30 long-read

only haploid polishing accuracy 111
Long-read assemblies contain nearly all human coding genes 115
Comparing to a PacBio HiFi Assembly 117

iv

Assembling, polishing and scaffolding 11 human genomes at near chromo-
some scale . 118

Discussion . 119
Code Availability . 123
Online Methods . 124

Sample selection . 124
Cell culture . 125
DNA extraction and size-selection . 125
Nanopore sequencing . 126
Analysis methods . 129

MarginPolish . 146
Training . 158

HELEN: Homopolymer Encoded Long-read Error-corrector for Nanopore . . 159
Image Generation . 160
The model . 166
Sliding window mechanism . 168
Training the model . 169
Sequence stitching . 170
Generating trained models . 171
Implementation notes . 173

V Validation and polishing of the first complete human genome. 175

5 Validation and polishing strategies for telomere-to-telomere genome
assemblies 176
Preamble . 176
Introduction . 177
Results . 180

Initial evaluation of CHM13v0.9 . 180
Identification and correction of assembly errors 184
Validation of CHM13v1.0 . 189
Toward a completely polished sequence of a human genome 192
A comparison to automated assembly polishing 194

Discussion . 197

VI Fastest clinical diagnosis of a human genome 200

6 Ultra-rapid whole genome nanopore sequencing in a critical care setting201
Preamble . 201
Introduction . 202
Results . 204

Patient recruitment . 204

v

Primary phase . 205
Secondary phase . 207
Speed and accuracy . 208
Sequencing, base calling and alignment 208
Variant Calling and Curation . 209
Diagnosis . 211

Discussion . 214
Methods . 216

Patient recruitment . 216
Sample collection and preparation . 217
Base Calling and Alignment . 218
Variant Calling . 219
Annotation . 219
Variant filtering and prioritization . 219
Variant curation and molecular board review 220

VII Discussion 222

7 Discussion 223

VIII Appendices 227

A Appendix A: Supplementary information for haplotype-aware variant
calling with PEPPER-Margin-DeepVariant 228
Preamble . 229
Supplementary Figures . 229
Supplementary Results . 235

B Appendix B: Supplementary information for efficient de novo assembly
of eleven human genomes in nine days 258
Preamble . 260
Supplementary Results . 260

C Appendix C: Supplementary information for validation and polishing
of the first complete human genome 292
Preamble . 294
Supplementary Results . 294

D Appendix A: Supplementary information for ultra-rapid whole genome
nanopore sequencing in a critical care setting 310
Preamble . 311
Supplementary Figures . 311

vi

Bibliography 316

vii

List of Figures

3.1 Nanopore variant calling results. (a) Illustration of haplotype-aware

variant calling using PEPPER-Margin-DeepVariant. (b) Nanopore variant

calling performance comparison between different nanopore-based variant

callers. (c) Evaluating variant calling performance at different coverage of

HG003. (d) Variant calling performance of PEPPER-Margin-DeepVariant

on six GIAB samples. 32

3.2 Comparison between Nanopore, Illumina and PacBio HiFi vari-

ant calling performance. (a) SNP and INDEL performance comparison

of Nanopore, Illumina and PacBio HiFi in all benchmarking regions. (b)

SNP performance comparison in difficult-to-map regions of the genome.

(c) SNP performance comparison in low-complexity regions of the genome. 38

viii

3.3 Margin and WhatsHap phasing results. (a) Phaseset switch rate to

N50. (b) Novel metric “Local Phasing Correctness” analyzing phaseset

accuracy across different length scales. (c) “Natural Switch Rate” de-

scribing haplotagging accuracy for reads. (d) Phaseset N50 for Nanopore

and PacBio HiFi data on HG003 and HG004. (e) Cost and runtime

comparison between Margin and Whatshap. 42

3.4 Gene analysis. (a) Phasing analysis for HG001 over GENCODE an-

notated gene regions, stratified by GIAB high confidence coverage. Per-

centages are relative to their predecessor. (b) Wholly phased GENCODE

annotated gene regions. Percentages are relative to the total genes anno-

tated on the reference. (c) Error statistics including wholly phased genes,

genes without SNP or INDEL errors, and wholly phased genes without

SNP, INDEL, or switch errors over a subset of the protein coding genes.

(d) The same statistics on HG001 with 35x PacBio HiFi data. 46

3.5 Diploid assembly polishing results. (a) Illustration of the diploid

assembly polishing pipeline. (b) Estimated quality values of assemblies us-

ing YAK. (c) CHM13-chrX run-length confusion matrix between different

assemblies and PacBio HiFi reads aligned to the corresponding assembly.

(d) Switch error and hamming error comparison between assemblies. . . 50

ix

4.1 Nanopore sequencing results. (a) Throughput in gigabases from each

of three flowcells for eleven samples, with total throughput at top. (b)

Read N50s for each flowcell. (c) Alignment identities against GRCh38.

Medians in a, b and c shown by dashed lines, dotted line in c is mode.

(d) Genome coverage as a function of read length. Dashed lines indicate

coverage at 10 and 100 Kb. HG00733 is bolded as an example. (e)

Alignment identity for standard and run-length encoded (RLE) reads.

Data for HG00733 chromosome 1 are shown. Dashed lines denote quartiles. 100

4.2 Assembly results for four assemblers and three human samples,

before polishing. (a) NGx plot showing contig length distribution. The

intersection of each line with the dashed line is the NG50 for that assembly.

(b) NGAx plot showing the distribution of aligned contig lengths. Each

horizontal line represents an aligned segment of the assembly unbroken

by a disagreement or unmappable sequence with respect to GRCh38. The

intersection of each line with the dashed line is the aligned NGA50 for

that assembly. (c) Assembly disagreement counts for regions outside of

centromeres, segmental duplications and, for HG002, known SVs. (d)

Total generated sequence length vs. total aligned sequence length (against

GRCh38). (e) Balanced base-level error rates for assembled sequences.

(f) Average runtime and cost for assemblers (Canu not shown). 104

x

4.3 Shasta MHC assemblies vs GRCh38. Unpolished Shasta assembly

for CHM13 and HG00733, including HG00733 trio-binned maternal and

paternal assemblies. Shaded gray areas are regions in which coverage (as

aligned to GRCh38) drops below 20. Horizontal black lines indicate contig

breaks. Blue and green describe unique alignments (aligning forward and

reverse, respectively) and orange describes multiple alignments. 109

4.4 Polishing Results. (a) Balanced error rates for the four methods on

HG00733 and CHM13. (b) Row-normalized heatmaps describing the

predicted run-lengths (x-axis) given true run lengths (y-axis) for four

steps of the pipeline on HG00733. (c) Error rates for MarginPolish and

HELEN on four assemblies. (d) Average runtime and cost. 114

4.5 HiRise scaffolding for 11 genomes. (a) NGx plots for each of the 11

genomes, before (dashed) and after (solid) scaffolding with HiC sequencing

reads, GRCh38 minus alternate sequences is shown for comparison. (b)

Dot plot showing alignments between the scaffolded HG00733 Shasta

assembly and GRCh38 chromosome scaffolds. Blue indicates forward

aligning segments, green indicates reverse, with both indicating unique

alignments. 118

xi

4.6 A) An example POA, assuming approximately 30x read coverage. The

backbone is shown in red. Each non-source/sink node has a vector of

weights, one for each possible base. Deletion edges are shown in teal, they

also each have a weight. Finally insertion nodes are shown in brown, each

also has a weight. (B) A pruned POA, removing deletions and insertions

that have less than a threshold weight and highlighting plausible bases in

bold. There are six plausible nucleotide sequences represented by paths

through the POA and selections of plausible base labels: G;AT;A;T;A;C:A,

G;AT;A;T;A;C:G, G;A;T;A;C:A, G;A;T;A;C:G, G;A;C:A, G;A;C:G. To

avoid the combinatorial explosion of such enumeration we identify sub-

graphs (C) and locally enumerate the possible subsequences in these

regions independently (dotted rectangles identify subgraphs selected). In

each subgraph there is a source and sink node that does not overlap any

proposed edit. 154

4.7 Visual representation of run length inference. This diagram shows

how a consensus run length is inferred for a set of aligned lengths (X) that

pertain to a single position. The lengths are factored and then iterated

over, and log likelihood is calculated for every possible true length up to a

predefined limit. Note that in this example, the most frequent observation

(4bp) is not the most likely true length (5bp) given the model. 156

xii

4.8 MarginPolish Images A graphical representation of images from two

labeled regions selected to demonstrate: the encoding of a single POA

node into two run-length blocks (i), a true deletion (i), and a true insert

(ii). The y-axis shows truth labels for nucleotides and run-lengths, the

x-axis describes features in the images, and colors show associated weights.161

4.9 The sequence-to-sequence model implemented in Helen. 166

4.10 Run-length confusion in different versions of Guppy base caller 173

5.1 An overview of the evaluation and polishing strategy developed to achieve

a complete , polished, human genome. a. The evaluation strategies applied

to assess consensus genome assembly accuracy both before (CHM13v0.9)

and after (CHM13v1.0 and CHM13v1.1). b. The “do no harm” polish-

ing strategy developed and implemented to generate CHM13v1.0 and

CHM13v1.1 after the initial evaluation of the CHM13v0.9 consensus

assembly. 181

xiii

5.2 Sequencing biases in PacBio HiFi and Illumina reads. a. Venn Diagram of

the distinct “error” k-mers found only in the assembly and not in the HiFi

reads (blue) or Illumina reads (green). Except the 1,085 k-mers that did

not exist in either HiFi or Illumina reads, error k-mers were found in the

other sequencing platform with expected frequency, matching the average

sequencing coverage (lower panels). b. Missing k-mers from a with its GC

contents, colored by the frequency observed. Low frequency erroneous k-

mers did not have a clear GC bias. K-mers found only in HiFi had a higher

GC percentage, while higher frequency k-mers tend to have more AT rich

sequences in Illumina. c. Homopolymer length distribution observed in

the assembly and in HiFi reads (upper) or Illumina reads (lower) aligned

to that position. The longer the homopolymer length became in the

consensus, the length became variable in HiFi reads especially in the

GC homopolymers. Majority of the Illumina reads were continuously

concordant with the consensus. 183

xiv

5.3 Errors corrected after polishing. a. Three SV-like errors corrected. b.

Bionano optical maps indicating the missing telomeric sequence on Chr. 18

p-arm (left) with a higher than average mapping coverage. This excessive

coverage were removed after adding the missing telomeric sequence (right)

and most of the bionano molecules end at the end of the sequence. c.

Variant allele frequency (VAF) of each variant called by DeepVariant

hybrid (HiFi + Illumina) mode, before and after polishing. Most of

the high frequency variants (errors) are removed after polishing, which

were called as ‘Homozygous’ variants. d. Total number of reads in each

observed length difference (bp) between the assembly and the aligned

reads at each edit positions. Positive numbers indicate more bases are

found in the reads, while negative number indicates less numbers in the

reads. Both homopolymer and micro-satellite (dimers in homopolymer

compressed space) length difference became 0 after polishing. 186

xv

5.4 Examples of the largest CHM13 regions with a copy number in the

reference that differs from GRCh38 and most individuals. a. One of the

two largest examples of rare collapses in CHM13, where one copy of a

common 72 kb tandem duplication is absent in CHM13. b. The largest

rare duplication in CHM13, a 142 kb tandem duplication of sequence

in GRCh38 that is rare in the population. CHM13 and HG002 PacBio

HiFi coverage tracks are displayed for both references, GRCh38 (top) and

CHM13v1.0 (bottom), to demonstrate that CHM13 reads support the

CHM13 copy-number but HG002 reads are consistent with the GRCh38

copy-number. Read-depth copy-number estimates in CHM13 are shown at

the bottom for ‘k-merized’ versions of GRCh38 and CHM13v1.0 references,

CHM13 Illumina reads, and Illumina reads from a diverse subset (n=34)

of SGDP individuals. 190

5.5 Errors made by automated polishing. a, Distribution of the number of

polishing edits made in non-overlapping 1 Mb windows of the CHM13v0.9

assembly. b, Two Racon polishing edits causing false frameshift errors in

the FAM156B gene. Light blue indicates UTR and dark blue indicates

the single coding sequence exon. Highlighted sequence indicates GC-rich

homopolymers. 196

xvi

6.1 (a) The ultra-rapid whole genome sequencing pipeline. The schema depicts

all processes from sample collection to a diagnosis. Vertically stacked

processes are run in parallel. (b) The performance of the pipeline on

twelve patients in two phases. Run-time of individual components are

shown by corresponding color from panel (a). The fastest runtime was

7:18 hours (Patient 11) with a positive diagnosis. 206

6.2 (. Variants are filtered and prioritized through a custom decision tree

designed to surface the most likely pathogenic variants. Major filtration

steps are depicted in dark blue (numbers represent average number of

variants across all samples). Locations of prioritization scoring within

the decision tree, as well as possible points assigned for variants meeting

each criterion, are listed in light blue; points applied for each reported

pathogenic/likely pathogenic variant are listed in adjacent green columns.

The final prioritization score of each variant is shown in the dark green

table. 210

A.1 Precision-Recall plot of HG003 for nanopore-based variant callers. . . . 229

A.2 HG003 ONT 90x candidate finding performance comparison between 10%

heuristic based approach and PEPPER. 230

A.3 Full Natural Switch plot for chr1 of an admixture of HG005 and HG02723’s

maternal haplotypes from nanopore data phased by Margin 230

xvii

A.4 Full Natural Switch plot for chr1 of an admixture of HG005 and HG02723’s

maternal haplotypes from nanopore data phased by WhatsHap 231

A.5 Full Natural Switch plot for chr1 of an admixture of HG005 and HG02723’s

maternal haplotypes from PacBio HiFi data phased by Margin 231

A.6 Full Natural Switch plot for chr1 of an admixture of HG005 and HG02723’s

maternal haplotypes from PacBio HiFi data phased by WhatsHap . . . 232

A.7 PEPPER-SNP image generation scheme. 232

A.8 PEPPER-SNP inference scheme. 233

A.9 PEPPER-HP haplotype specific image generation scheme. Each row de-

scribes an encoded feature and each column describes a reference position.

The top summary is derived from reads with haplotag 1 (HP-1) and the

bottom is derived from reads with haplotag 2 (HP-2). 234

A.10 PEPPER-HP haplotype-specific inference scheme. 234

B.1 Size distribution of structural variants (>50 bp) extracted from the Shasta

assembly graph for HG002 and the structural variants in the Genome In

A Bottle (GIAB) catalog for the same sample. a) Full size distribution

for deletions (top) and insertion (bottom), in log-scale. b) and c) zoom

in the two peaks caused by Alu (300 bp) and L1 (6 Kbp) insertion

polymorphisms. 271

xviii

B.2 Dotplot of unpolished CHM13 MHC assembly vs hg38 chr6:28000000-

34000000 for the each of the 4 assemblers tested. (a) Shasta (b) Canu (c)

Flye (no native polish) (d) wtdbg2. Blue dots represent unique alignments

and orange dots represent repetitive alignments. 273

B.3 Dotplot of unpolished HG00733 diploid MHC assembly vs hg38

chr6:28000000-34000000 for the each of the 4 assemblers tested. (a)

Shasta (b) Canu (c) Flye (no native polish) (d) wtdbg2. Blue dots

represent unique alignments and orange dots represent repetitive

alignments. 274

B.4 Dotplot of unpolished HG00733 maternal haploid MHC assembly vs hg38

chr6:28000000-34000000 for the each of the 4 assemblers tested. (a) Shasta

(b) Canu (c) Flye (no native polish) (d) wtdbg2. Blue dots represent

unique alignments and orange dots represent repetitive alignments. . . 275

B.5 Log frequency of each run length as found in the GRCh38 reference for

all bases A,C,G,T up to 100bp. Run lengths greater than 15 account for

approximately 0.012% of all homopolymer runs in GRCh38. 282

B.6 Contig NGx for CHM13 Shasta-HELEN nanopore assembly vs Canu CCS

(HiFi) assembly . 289

B.7 Contig NGAx for CHM13 Shasta-HELEN nanopore assembly vs Canu

CCS (HiFi) assembly . 290

xix

B.8 Dotplot for the scaffolded HG002 assembly, aligned with GRCh38. Blue

dots represent unique alignments and orange dots represent repetitive

alignments. 291

C.1 Sequencing biases observed in missing kmers. a, missing k-mers with its

GA composition. b-d, v0.9 assembly and k-mer copy number spectrum

from HiFi, Illumina, and hybrid k-mer sets (left) and per-chromosome

missing (likely error) k-mer counts from the HiFi derived consensus or

patches (right). Most missing k-mers in HiFi overlapped sequences from

patched regions. No missing k-mer was found on Chromosomes indicated

with red arrows. 294

C.2 Error detection and polishing pipeline. A detailed overview of the polishing

pipeline along with the number of errors identified and polished at each

step. Additionally, data type and polishing tools utilized are highlighted.

Illumina, 100X PCR-free library Illumina reads; HiFi, 35x PacBio HiFi

reads; ONT, 120x Oxford Nanopore reads. 295

C.3 SNV-like error filtering. ONT PEPPER-DeepVariant SNP call were more

reliable with both higher precision and recall over Medaka. 296

C.4 Number of SV-like errors called from long-read platforms. 297

xx

C.5 Globally unique single-copy kmers used for marker assisted alignment.

a. Range of k-mer counts defined as ‘single-copy’ markers from Illumina

reads and in the assembly. The cutoffs were chosen to minimize inclusion

of low-frequency erroneous kmers and 2-copy k-mers. b. Number of

markers in every 10 kb window. c. Cumulative number of bases covered

by the number of markers in each 10 kb window. 298

C.6 Post-polishing evaluation. a. Left, genotype quality and number of reads

supporting the reference and alternate alleles from the combined Illumina-

hifi hybrid and ONT homozygous variant calls, with AF > 0.5. Right,

balanced insertion (red) and deletion (blue) length distribution from the

Illumina-HiFi hybrid DeepVariant heterozygous calls in v1.0. b. Number

of errors detected in each chromosome, before and after polishing. . . . 299

C.7 Polishing inside and outside of repeats. The distribution of v0.9 polishing

rates within and without repeats. 300

C.8 Three SV-like errors corrected. HiFi and ONT marker assisted alignments,

post correction of the 3 large SV-like edits visualized with IGV. HiFi

coverage track is shown in data range up to 60, ONT up to 150. Clipped

reads are flagged for >100bp. INDELs smaller than 10bp are not shown.

Reads are colored by strands; positive in red and negative in blue. . . . 301

C.9 An illustration of chr 2 telomere sequence reads from HiFi, ONT and

CLR platform. 302

xxi

C.10 Distribution of maximum perfect match to the canonical k-mer observed

at each position in the telomere before (CHM13 v1.0) and after (CHM13

v1.1) polishing the telomeres. 303

C.11 Mapping biases found and corrected. On simulated HiFi reads, we found

excessive clippings in highly identical satellite repeats in Minimap and

Winnowmap by the time of evaluation. We have addressed this issue in

Winnowmap 2.01+. Clipped (%) indicates the percentage of reads clipped

in every 1024 bp window, shown in 0 40% range with a midline of 10%. 303

C.12 HiFi, CLR, ONT read coverage, alignment identity, and read length from

Winnowmap2 v2.01 alignments and Bionano DLE-1 molecule coverage

from Bionano Solve. Upper panel shows a zoomed in region of Chromo-

some 9, while the upper panel shows the whole-genome alignment view.

HiFi, CLR, ONT, and Bionano coverage are shown up to 70x, 70x, 200x,

and 250x, respectively. Median read identity in every 1024 bp is shown in

80-100% range. Median read length in every 1024 bp is shown in 0-100kb

range. Read identity was the worst in CLR, and between HiFi and ONT.

Bionano molecules were lacking coverage in most of the centromeric repeats. 304

xxii

C.13 Collapsed simple tandem repeat. The collapse in the Intronic sequences of

gene FAM227A was undetected, due to the variable insertion breakpoints

and insertion length in the HiFi and ONT alignments. The panels above

the alignments show marker density and percent microsatellites (GA / AT

/ TC / GC) in each 64 bp window, which indicates this region is highly

repetitive with GA enriched sequences, which later alternates with AT

enriched sequences. 305

C.14 Chimeric junction of two haplotypes. In the shown above regions, both

HiFi and ONT reads indicate that the consensus has a chimeric junction

of the two haplotypes. 306

D.1 Ligating barcodes reduces the final yield of the sequencing library. The

mean DNA loading mass per flow cell of barcoded libraries (red) was

155 ng (78 ng—243 ng) compared to non-barcoded libraries (blue) 333

ng (208 ng—345 ng). This difference was observed in phase one (white

background), and it was decided to continue with the non-barcoding

protocol in phase 2 (gray background). 311

xxiii

D.2 Eliminating barcoding results in higher pore occupancy. Barcoded libraries

(red) have an average pore occupancy of 64% compared to non-barcoded

libraries (Blue) of 82%. This difference was observed in phase one (white

background), and it was decided to continue with the non-barcoding

protocol in phase 2 (gray background). This increased pore occupancy

is suspected to be a direct result of the increased yield of library in the

non-barcoded samples . 312

D.3 Alignment identities against GRCh37. Median of 0.944 is shown by the

dashed line and the mean of 0.931 is shown by the dotted line. 312

D.4 NGx plot: Total aligned sequence (Gb) for the samples as a function of

the read length. 313

D.5 Heterozygous/Homozygous ratio. Diamonds are colored based on the

patient’s ethnicity. The dashed line indicates a mean of 1.5 314

D.6 Transition/Transversion ratio for the SNP calls across all the patient

samples. The dashed line indicates a mean of 2.0 315

xxiv

List of Tables

3.1 Small variant accuracy evaluation of HG005 assemblies against GIAB

HG005 v3.3.2 benchmarking set. We derive a small variant set against

GRCh37 from the assemblies using dipcall[112] and compare the variant

calls against HG005 GIAB benchmark. We restrict our analysis in regions

that are assembled by both Shasta and trio-hifiasm and falls in the high-

confidence region defined by GIAB. 53

4.1 CAT transcriptome analysis of human protein coding genes for HG00733

and CHM13. 116

4.2 The truth assembly files with download URLs. 132

4.3 Description of trained models for HELEN. 172

6.1 Patient demographics and variant call statistics. The prioritization scheme

places variants on a scale of 4–12. SV—structural variant; SNV—single

nucleotide variant;indel—insertion or deletion. 204

xxv

6.2 Patient description and genetic findings. MGP–Multiple Gene Panel,

INDEL–insertion or deletion, NSVT–non sustained ventricular tachycar-

dia, STR–short tandem repeat, LV–left ventricular, EF–ejection fraction,

VUS–variant of unknown significance . 212

A.1 Oxford nanopore variant calling performance comparison between Medaka,

Clair, Longshot and PEPPER-Margin-DeepVariant (P-M-DV) on HG003

and HG004 with 90× coverage. 235

A.3 Mendelian consistency for HG005, HG006, HG007 trio in and out of

GIAB high confidence regions v4.2.1 using rtg mendelian on GRCh38.

“Checked records” denotes output from the tool with description “Records

were variant in at least 1 family member and checked for Mendelian

constraints”, “Indeterminate Consistency” denotes output from the tool

with description “Records had indeterminate consistency status due to

incomplete calls”, and “Mendelian Violoations” denotes output from the

tool with description “Records contained a violation of Mendelian con-

straints”. GIAB Low was generated by excluding GIAB’s high confidence

BED from GRCh38 as well as centromeric regions. 235

A.2 Oxford nanopore variant calling performance comparison between Medaka,

Clair, Longshot and PEPPER-Margin-DeepVariant (P-M-DV) on HG005

sample between two reference (GRCh37 and GRCh38) and GIAB truth

set (v3.3.2 and v4.2.1). 236

xxvi

A.10 PacBio HiFi variant calling performance and runtime comparison be-

tween three haplotype-aware pipelines on 35× coverage HG003 and

HG004 samples. For PEPPER, Margin and DeepVariant we used $4.56/h

n1-standard-96 and for WhatsHap we used $0.09/h n1-standard-2

instance types on google cloud platform. The F1-scores are derived by

comparing the variant calls against GIAB v4.2.1 benchmark variants for

HG003 and HG004. 236

A.11 Run-time and cost analysis of Oxford nanopore-based variant

calling pipelines on 50x and 75x HG001 data. We used various

n1-series instance types available on Google Cloud Platform

(GCP). The we calculated the cost using the GCP cost calculator

(https://cloud.google.com/products/calculator). Logs of all the

runs are publicly available (See supplementary Notes). 237

A.13 PacBio HiFi variant calling run-time comparison between three haplotype-

aware pipelines on 35× coverage HG003 and HG004 samples. We used

$4.56/h n1-standard-96 (n1-std-96) and $0.09/h n1-standard-2

(n1-std-2) instance types on google cloud platform for this analysis. . 238

A.14 SNP Variant accuracy statistics for HG003 and HG004 against GIAB

v4.2.1 on GRCh38 using PacBio CLR data 238

A.19 Performance comparson of Illumina, PacBio HiFi and Oxford nanopore

data in repeat and non-repeat regions. 239

xxvii

A.21 Comparison of Margin and WhatsHap phasesets of HG001 sample with

Oxford Nanopore (ONT) and PacBio HiFi data. Comparison is performed

with whatshap compare command. 240

A.22 Haplotagging results comparing Margin and WhatsHap on an Admixed

sample with an approximately equal amount of reads from the maternal

haplotypes of HG005 and HG02723. Accuracy is determined for each

kilobase bucket by comparing the number of direct-matched reads Rd

(truth H1 to tagged H1 or truth H2 to tagged H2) and cross-matched reads

Rc (truth H1 to tagged H2 or truth H2 to tagged H1) and calculating

max(Rc,Rd)/(Rc + Rd), then averaging this value across all buckets in

the HG003 high confidence regions. 240

A.23 Oxford Nanopore variant calling perfomance comparison between

PEPPER-Margin-DeepVariant (P-M-DV) and PEPPER-WhatsHap-

DeepVariant (P-WH-DV) only. 241

A.24 Margin/WhatsHap Runtimes. Total runtimes are sum of Haplotag and

Phase VCF runtimes for Margin, and sum of 2x Phase and 1x Haplotag

for WhatsHap, as whatshap haplotag requires a phased VCF. 242

A.25 Accuracy stats for ONT and CCS calls made on GRCh37 with HG001

data in high confidence regions against GIAB v3.3.2 stratified by all gene

and protein coding gene, further stratified by whole gene, exon, CDS as

annotated by GENCODE v35lift37. CDS regions are coding sequences,

and include start and stop codons for this analysis. 243

xxviii

A.26 Size of GENCODE Gene Regions . 244

A.27 Gencode protein coding genes with coding sequence (CDS, start_codon,

and stop_codon) 80% spanned by high confidence stratified by how phased

it is by Margin, whether there were switch errors, whether there were SNP

or INDEL errors, and gene region for HG001 with 75x Nanopore data on

GRCh37. Three gene length quartiles are presented for the groupings. . 245

A.28 Gencode protein coding genes with coding sequence (CDS, start_codon,

and stop_codon) 80% spanned by high confidence stratified by how phased

it is by Margin, whether there were switch errors, whether there were SNP

or INDEL errors, and gene region for HG001 with 35x PacBio HiFi data

on GRCh37. Three gene length quartiles are presented for the groupings. 246

A.30 Haploid assembly polishing results of PEPPER-Margin-DeepVariant (P-

M-DV) pipeline on CHM13-chrX. We report estimated quality value (QV)

using YAK assembly assessment tool. 247

A.31 Evaluation of the accuracy and completeness of SV reconstruction of

Shasta and PEPPER-Margin-DeepVariant assemblies. Recall and preci-

sion were computed using the SVbenchmark tool inside the Tier1 high-

confidence regions defined in the HG002 curated set of SVs. Since the

set of curated SVs was only available for the HG002 genome, for the

remaining genomes SVs recovered from the hifiasm assemblies were used

as reference. 247

xxix

A.4 Comparison on INDEL performance between Medaka, Clair and PEPPER-

Margin-DeepVariant (P-M-DV) variant callers at different coverages of

HG003 sample. 248

A.5 Comparison on SNP performance between Medaka, Clair and PEPPER-

Margin-DeepVariant (P-M-DV) variant callers at different coverages of

HG003 sample. 249

A.6 Sample-wise nanopore read coverage for seven Genome-In-A-Bottle

(GIAB) samples. 250

A.7 Details of Genome-In-A-Bottle truth set used for each genome. 250

A.8 PEPPER-Margin-DeepVariant performance on six GIAB samples with

Oxford nanopore data. 251

A.9 Oxford nanopore variant calling performance comparison between

PEPPER-HP (tuned for balanced precision and recall), Medaka and

PEPPER-Margin-DeepVariant on HG003 and HG004 with 90× coverage. 251

A.12 PacBio HiFi variant calling perfomance comparison between PEPPER-

Margin-DeepVariant (P-M-DV), DeepVariant-WhatsHap-DeepVariant

(DV-WH-DV), DeepVariant-Margin-DV (DV-M-DV), DeepVariant only. 252

A.15 Variant calling performance comparison in all benchmark regions between

Oxford Nanopore Technology (ONT), Illumina NovaSeq (Illumina) and

PacBio HiFi sequencing technology. Illumina variant calls are gener-

ated with DeepVariant v1.1 and ONT and PacBio HiFi variant calls are

generated with PEPPER-Margin-DeepVariant. 253

xxx

A.16 SNP performance in difficult-to-map regions with Illumina, PacBio HiFi

and Oxford nanopore data. 254

A.17 SNP performance in low-complexity regions with Illumina, PacBio HiFi

and Oxford nanopore data. 255

A.18 Performance in not all difficult regions (easy regions) with Illumina, PacBio

HiFi and Oxford nanopore data. 256

A.20 Details of Margin and WhatsHap phasing output on HG001 sample with

Oxford Nanopore (ONT) and PacBio HiFi data. Results are generated

with whatshap stats command. 256

A.29 Diploid assembly polishing results of PEPPER-Margin-DeepVariant (P-

M-DV) pipeline on HG005, HG00733 and HG02723 samples. We report

estimated quality value (QV), switch error rate and hamming error using

YAK assembly assessment tool. 257

B.1 Read N50s stratified by sample and flowcell for 11 samples. 260

B.2 Throughput stratified by sample and flowcell (three for each sample) in

gigabases (Gb) for 11 samples. 261

B.3 Mean, median, and modal values for read alignment identities of 11

samples, aligned to GRCh38. Metrics were generated per read. Total

gigabases of read data for each sample are detailed in Supplementary

Table B.2 . 262

B.4 Summary read statistics derived from human saliva sequencing. 262

xxxi

B.5 QUAST assembly metrics of three samples on four assemblers. 263

B.6 QUAST disagreement count for four assemblers on different regions of

the genome for four samples. We report disagreements that happen in all

chromosomes of GRCh38, then incrementally exclude centromeric regions,

segmental duplication regions (Seg Dups), and all other regions enriched

for SVs (chrY, acrocentric chromosome arms, and QH-regions) 264

B.7 Disagreement count in the intersection of the assemblies for each sample

(see Online Methods). Total Disagreements describes all disagreements

found in 100bp windows before taking the intersection; note that these

counts are very close to those reported by QUAST. Consensus Disagree-

ments describes disagreements in the intersection of the four assemblies.

Genome fraction describes total coverage over GRCh38 for the consensus

sequence. 265

B.8 Disagreement count and fraction of genome covered on chromosome X

for four assemblers on CHM13 assemblies with no polishing, compared to

the chromosome X assembly from the Telomere-to-Telomere Consortium.

These numbers were obtained via running QUAST. 265

xxxii

B.9 BAC analysis on selected dataset. BACs were selected (31 of CHM13 and

16 of HG00733) for falling within unique regions of the genome, specifically

>10 Kb away from the closest segmental duplication. Closed refers to

the number of BACs for which 99.5% of their length aligns to a single

locus in the assembly. Attempted refers to the number of BACs which

have an alignment for >5 Kb of sequence with >90% identity to only

one contig (BACs which have such alignments to multiple contigs are

excluded). Identity metrics are for closed BACs. 266

B.10 BAC analysis on full dataset, 341 on CHM13 and 179 on HG00733. Closed

refers to the number of BACs for which 99.5% of their length aligns to

a single locus. Attempted refers to the number of BACs which have an

alignment for >5Kb of sequence with >90% identity to only one contig

(BACs which have such alignments to multiple contigs are excluded).

Identity metrics are for closed BACs. 266

B.11 BAC analysis intersection of attemted BACs by all four assemblers, 65 on

CHM13 and 27 on HG00733. Closed refers to the number of BACs for

which 99.5% of their length aligns to a single locus. Attempted refers to

the number of BACs which have an alignment for >5Kb of sequence with

>90% identity to only one contig (BACs which have such alignments to

multiple contigs are excluded). Identity metrics are for closed BACs. . . 267

B.12 Base-level accuracies on four different assemblers for three samples. Anal-

ysis is performed with whole-genome truth sequences. 267

xxxiii

B.13 Base-level accuracies on four different assemblers for three samples in the

regions of intersection of the assemblies. Analysis is performed only on

regions where all assemblers have an assembled sequence. 268

B.14 Runtime and cost of three assembly workflows on Amazon Web Services

(AWS) platform. 269

B.15 Runtime breakdown for each step of the Shasta assembler. 270

B.16 Structural variants extracted from HG002 assembly graph compared to

GIAB SV set in high-confidence regions. 270

B.17 CHM13 MHC unpolished Shasta assembly as compared to the nearest

matching haplotype in hg38 (GL000251.2) 272

B.18 QUAST results for the HG00733 trio-binned maternal reads, using all

four assemblers. 272

B.19 HG00733 Maternal trio binned MHC unpolished Shasta assembly as

compared to the nearest matching haplotype in hg38 (GL000255.1) . . . 272

B.20 Base-level accuracies comparing Racon & Medaka and MarginPolish &

HELEN pipelines on Shasta assemblies for three samples. Analysis is

performed with whole-genome truth sequences. 276

B.21 QUAST results for the Shasta assemblies for all samples, post polishing

with MarginPolish-HELEN. 276

B.22 Base-level accuracies comparing Racon & Medaka and MarginPolish & HE-

LEN pipelines against CHM13 Chromosome-X. The truth Chromosome-X

sequence used reflects the most accurate haploid truth sequence available. 277

xxxiv

B.23 Base-level accuracies improvements with MarginPolish and HELEN

pipeline on four different assemblers for two samples. Analysis is

performed with whole-genome truth sequences. 278

B.24 Single-chromosome error rates after polishing with short reads. 10X

Chromium reads for sample CHM13 were used to polish via Pilon polishing

software. The top half of the table shows the results of three rounds of

Pilon, starting from the CHM13 Shasta chrX assembly that had been

polished with MarginPolish and HELEN. The bottom half shows the

results of three rounds of Pilon, starting from the raw Shasta assembly. 279

B.25 Runtime and cost of two polishing workflows on Amazon Web Services

(AWS) platform. 280

B.26 Runtime and cost of two polishing workflows run on a 29 Mb contig from

the HG00733 Shasta assembly. MarginPolish uses an improved stitch

method not used in original runs and Racon was run once instead of four

times as was done in the full runs. All runs were configured to use 32

CPUs, except for the GPU runs which were performed with 16 CPUs and

1 GPU (Tesla P100). 281

B.27 Transcript-level analysis with Comparative Annotation Toolkit (CAT) of

MarginPolish & HELEN and Racon & Medaka on three samples from

Shasta assemblies. 283

xxxv

B.28 Gene-level analysis with Comparative Annotation Toolkit (CAT) of

MarginPolish & HELEN and Racon & Medaka on three samples from

Shasta assemblies. 284

B.29 Transcript-level analysis with Comparative Annotation Toolkit (CAT) of

four HG00733 assemblies polished with MarginPolish and HELEN. . . . 285

B.30 Gene-level analysis with Comparative Annotation Toolkit (CAT) of four

HG00733 assemblies polished with MarginPolish and HELEN 286

B.31 BUSCO results of three samples using two polishing workflows on Shasta

assemblies. 287

B.32 BUSCO results for four assemblers on HG00733, post polishing with

MarginPolish and HELEN. 287

B.33 CHM13 QUAST results for Shasta, MarginPolish, HELEN and PacBio

HiFi assembly. Stratified disagreement counts were added after manual

determination. 288

B.34 Disagreement count in the intersection of the assemblies between the

PacBio-HiFi and the Shasta assembly of CHM13. Total Disagreements

is all disagreements found in 100bp before windows before taking the

intersection, note it is very close to that reported by QUAST. Consensus

disagreements: Disagreements in the intersection of the four assemblies. 288

B.35 CHM13 Chromosome-X error rate analysis with Pomoxis for Shasta,

MarginPolish, HELEN, and PacBio HiFi assembly. 288

xxxvi

B.36 QUAST results for all 11 Shasta assemblies scaffolded with HiRise, post

polishing with MarginPolish-HELEN . 291

C.1 K-mer based consensus quality evaluation. From each sequencing dataset

and assembly versions, 21-mers were collected and compared with Merqury.307

C.2 Correcting invalid ORFs via polishing. This considers the classification

of GRCh38 transcripts with valid ORFs. True/False Positives/Negatives

for each query assembly were assessed as follows: If a transcript has a

valid ORF in the CHM13v0.9 assembly and it remains valid in the query

assembly, it is a "True Negative". If a transcript has a valid ORF in the

CHM13v0.9 assembly but it has an invalid ORF in the query assembly, it

is a "False Positive". If a transcript has an invalid ORF in the CHM13v0.9

assembly and it remains invalid in the query assembly, it is a "False

Negative", and if a transcript has an invalid ORF in the CHM13v0.9

assembly but it has a valid ORF in the query assembly, it is a "True

Positive". Only transcripts that mapped to all assemblies were considered. 308

C.3 Remaining issues identified from both PacBio HiFi and ONT 308

C.4 Low coverage regions detected only from HiFi alignments. Regions with

<7x Winnowmap primary read alignments were collected and categorized

given the mapping quality, alignment identity, and sequence context (%

microsatellites within 10 kb). 309

xxxvii

Abstract

Accurate genome analysis with nanopore sequencing using deep neural networks.

by

Kishwar Shafin

Nanopore sequencing, commercialized by Oxford Nanopore Technology (ONT), is a

high-throughput genome sequencing platform. Unlike traditional sequencing-by-synthesis

methods, nanopore sequencing uses measured current signals to sense the nucleotide

sequence flowing through the pore. The signal-to-base conversion process introduces

unique error patterns, making it challenging to design methods that rely on hand-crafted

features. Deep learning uses multiple layers to progressively learn complex patterns in

the input data, making it suitable for genome analysis. In this dissertation research, I

present methods I developed based on deep neural networks to improve genome inference

with nanopore sequencing. First, I introduce haplotype-aware variant calling pipeline

PEPPER-Margin-DeepVariant that produces state-of-the-art results for nanopore long-

reads. Next, I demonstrate a pipeline to perform de novo assembly of eleven human

genomes in nine days. Then I show the application of the methods to validate and

correct errors in the first complete human genome assembly. Finally, I demonstrate

the utility of PEPPER-Margin-DeepVariant paired with highly multiplexed nanopore

sequencing for rapidly identifying disease-causing variants.

xxxviii

To my wife,

Sanaiya Islam,

Among infinite universes, there doesn’t exist one where I achieved this without your

support.

xxxix

Acknowledgments

I want to thank my committee members, Benedict Paten, Mark Akeson, and David

Haussler, for taking the time to assess the work I presented in my dissertation. I also

want to thank Kevin Karplus, Olena Vaske, Manual Ares for being on my advancement

committee. A special thanks to Benedict Paten for the years of mentoring he has provided.

Benedict’s mentorship and trust in me to solve some most challenging problems has

made my journey rewarding.

Five years ago, I moved 7,731 miles from Dhaka, Bangladesh, to Santa Cruz to pursue

the highest level of education in bioinformatics with zero previous experience. The move

that was near twice the size of the earth’s radius didn’t scare me that much, but getting

up to speed within the first year of my graduate program with no background felt like

being haunted in a horror movie. I was terrified, had no control over anything, and all I

wanted was everything to stop. It often felt that I could not do this, and graduate school

was not for me. The alternatives were even scarier as an international student. However,

after five years and four months, when I am defending my dissertation, I am enormously

proud and happy that I did this. I would not trade my graduate school experience with

anything. I want to thank David Bernick and Richard E. Green for providing me with

the cushion I needed at that time and my family and friends for saying all the good

things you always say. For once, those made a pretty big difference.

As an international student in Santa Cruz, I never felt like I was too far away from home.

xl

Bryan Thornlow, Brandon Saint-John, Roger Volden, Colleen Bosworth, Jon Akutagawa,

Akshar Lohith, and Alison Tang thank you for making Santa Cruz feel like home.

I had a great experience at Computational Genomics Lab. I am grateful to have worked

with Marina Haukness, Ryan Lorig-Roach, Jordan Eizenga, Melissa Meredith, Hugh

Olsen, Xian Chang, Adam Novak, Robin Rounthwaite, Cecilia Cisar, and Mobin Asri.

Working with such a vibrant group of people was a privilege. I would also like to thank

Louise Cabansay for helping me get started with my research.

One person I owe a lot of gratitude to is Trevor Pesout. Graduate school felt like being

a part of a team because of Trevor. I could not ask for a better colleague and friend.

Thank you for stepping up every time, work-related or not.

Thank you, Miten Jain, for your support as a friend and colleague; you have greatly

supported this journey. I am also grateful to Paolo Carnevali from CZI for guiding me

in many problems related to genome assembly.

I think I was the luckiest in terms of having the best collaborators. Andrew Carroll and

Pi-Chuan Chang, I can’t thank you enough for countless support and help. It has been

the most fulfilling experience. I want to thank Maria Nattestad, Daniel Cook, Gunjan

Baid, and Ted Yun for welcoming me into their team during my internship at Google.

The telomere-to-telomere consortium was an exceptional experience of my graduate life.

I am humbled to be a part of the T2T consortium. I want to thank Karen Miga, Adam

xli

Phillippy, Arang Rhie, Michael Alonge, Ann McCartney, Giulio Formenti, Arkarachai

Fungtammasan, Samantha Zarate, Sergey Koren, Justin Zook, Michael Schatz for helping

me to learn quickly.

I want to thank Euan Ashley, Sneha Goenka, John Gorzynski, and the entire Stanford

Clinical team for allowing us to take our pipelines closer to the patients. The amount

of trust this group has shown on our work is tremendous. I really did not expect to

have real life impact of our research during graduate school. I am also grateful to the

patients who trusted our research. I want to thank Johnny Israeli and Eric Dawson for

the internship opportunity at NVIDIA.

Last but not least, thanks to my family. My mom Begum Saleha and dad Abul Kalam,

thank you for supporting me throughout my journey. My sister Sazia Sabrin and niece

Mahdia Maliyat, thank you, it means a lot to go back to a supporting family. Sanaiya

Islam, thank you for constantly reminding me to be the best version of myself and

reminding me that life is an experience that can not be measured in successes and

failures.

xlii

Part I

Introduction

1

Chapter 1

Introduction

Whole-genome sequencing has enabled the comprehensive study of the genome to answer

a more extensive set of questions. Majority of the experiments in human genomics are

centered around understanding the genomic variation between samples or populations of

samples. Studying genomic variation at the whole genome scale is more potent than

microarray-based methods that only look at a handful of variations. Microarray-based

methods have limited application and often suffer to provide a scientific understanding

through a handful of variations. On the other hand, whole-genome sequencing aims to

unravel every nucleotide base, providing a way to study the genome comprehensively.

Since the early 2000s, as genome sequencing got cheaper and more accessible, we saw

whole-genome analysis helping to understand biological processes, diagnose rare diseases,

and uncover the evolutionary history through the lens of population genetics.

2

Our ability to sequence and analyze genomic variation largely depends on a set of resources

we build around it, known as reference genome materials. The reference genome is a

genome assembly of a sample of the same species that we consider representative of

the species. The genome reference consortium (GRC) has created a human reference

genome available that we can use to study human genomes. As a species, we humans

have sequenced an extensive amount of human genomes; however, the quality of the

inference and our understanding of the human genome still depends on what technology

we use for genome sequencing and which reference we use.

Next-generation short-read sequencing technology provided an affordable solution to

genome inference. However, mapping the short reads to the repetitive regions of the

genome remains challenging. It requires assembling a large cohort of human genomes to

create a haplotype map so short reads can use the human genome variation to map to

the right haplotype, which is an expensive endeavor. In short, short-read sequencing

is unable to provide de novo genome assemblies that can span through the repeat-rich

regions of the genome, limiting researchers to study the difficult regions of the genome,

analyze large structural variations or map to the repetitive regions of a linear reference

to provide a complete picture of the genomic variations.

Recently, nanopore long-read sequencing technology promised the ability to generate

contiguous de novo assemblies, map through the repetitive regions of the genome, provide

a comprehensive view of the structural variation that significantly improves our ability

to study the genome. Nanopore sequencing uses sensed electrical signals to derive the

3

nucleotide base sequence going through the pore. This process is fundamentally different

than sequencing-by-synthesis and has unique error modalities in homopolymer regions.

Although nanopore long-read sequencing can potentially change how we study human

genomes, designing genome inference methods requires deriving a complex set of features

that correctly capture the error modalities.

Deep learning provides a set of algorithms that can automatically learn complex features

of the input data. The ability to seamlessly learn intricate abstractions has made deep

learning algorithms a success in fields that deal with large and complex data, and

biology generates one of the most complex data sets. The difficulty in designing deep

learning methods for long-read sequencing lies in understanding the error modalities and

representing them correctly so the model can learn from the data.

My research has focused on developing methods to improve genome inference with

nanopore sequencing technology. Initially the research seemed highly ambitious as the

initial error of nanopore was around 7%, and many were skeptical about its ability to be

go beyond microbial genomes and used on complex human genomes in a clinical setting.

Having an accurate variant calling and de novo assembly method meant that we could

radically change the speed of genome sequencing used for clinical diagnosis and the study

of the difficult regions of the human genome. One could only imagine taking on and

succeeding in resolving both de novo assembly and variant calling problems for nanopore

sequencing. For this reason, it has been highly satisfying to be a part of the story of the

maturation of nanopore sequencing. My work played a crucial role in showing accurate

4

de novo assembly of a large cohort and taking the variant caller I helped develop in a

critical care setting to diagnose 13 critically ill patients with nanopore sequencing.

This dissertation details my primary contributions to analysis methods for nanopore

long-read sequencing. Most of the chapters in this dissertation correspond to a published

work and can be read independently. Chapter 2 provides an overview of DNA sequencing

technologies, genome inference techniques and applications of deep neural networks

for nanopore sequencing technology. Chapter 3 describes the nanopore variant caller

PEPPER-Margin-DeepVariant I developed that outperformed short-reads in identifying

single nucleotide polymorphisms when using a linear reference. Chapter 4 describes a

de novo genome assembler Shasta and an assembly polisher HELEN that I developed

to generate contiguous and accurate assemblies with highly multiplexed promethION

sequencing device. Chapter 5 describes my contributions to validate and polish the

first complete telomere-to-telomere human genome assembly. Chapter 6 describes my

contributions to a pipeline that uses PEPPER-Margin-DeepVariant to diagnose 12

critically ill patients with a 42% positive diagnosis rate. Finally, chapter 7 concludes

this work by discussing current state of long-read sequencing and future directions.

5

Part II

Background

6

Chapter 2

Background

Providing a background in genome analysis and deep learning requires drawing attention

to many biotechnology and computer science milestones. Deep learning is so widely used

in bioinformatics that a critical review would deter our attention from the core topic of

applying deep learning to improve human genome analysis with nanopore sequencing. To

restrict my attention to the relevant topics, I provide a background of DNA sequencing

technologies, genome inference methods and deep learning applications in nanopore

sequencing for human genomics in this chapter.

DNA sequencing technology

Sequencing technologies aim to reconstruct the arrangement of nucleic acid within a

DNA, which contains all genetic instructions for an organism to function. The application

7

of DNA sequencing can range from the individual prognosis of disease to uncovering

the history through the lens of population genetics. The ever-improving sequencing

technologies provide modern biologists a versatile tool to investigate life and doctors to

provide personalized care. Today, several platforms can sequence a molecule of interest.

The difference between platforms ranges in sequencing read length to accuracy and

applicability. In this section, I will describe commonly used DNA sequencing technologies.

Sanger sequencing

The first solution to DNA sequencing came from Fredrick Sanger in the year 1977, which

is famously named Sanger Sequencing. Fredrick Sanger used electrophoresis and radiola-

beling to identify chain-terminating synthesized DNA molecules[185]. Later fluorescent

chain terminators replaced radiolabeling, and capillary electrophoresis replaced elec-

trophoresis, which resulted in a sequencing technology that can produce reads up to 1000

bp that are highly accurate[199]. Although this technology is highly accurate (99.999%)

and cost-effective for small-scale sequencing, the throughput bottleneck prohibits tackling

most large-scale problems in human genomics. However, Sanger Sequencing is used for

orthogonal confirmation of genetic variants and in many small-scale projects.

Next-generation sequencing technology

The successor of Sanger Sequencing is next-generation sequencing (NGS) technology.

Although NGS used to mean an array of sequencing technologies, the vast popularity of

8

Illumina made the phrase NGS synonymous with Illumina sequencing technology [134].

Illumina sequencing technology uses a modified polymerase chain reaction (PCR) to

generate identical copies of a DNA molecule in a cluster using a modified PCR. The

clusters are then read one base at a time and terminated with a fluorophore-labeled

nucleotide which is then detected optically by its fluorescence. Illumina sequencing

technology is massively parallel and can generate millions of short reads (50-400bp) from

a single sample. As the reads generated by this technology are generally short in length,

this technology is often referred to as short-read sequencing technology [13].

Third-generation sequencing technology

Short-read sequencing technology provides a cost-effective way to study the genome, but

short-reads have a difficult time in aligning to the repetitive and difficult regions of the

genome[153]. In recent years, a new sequencing technology known as third-generation

long-read sequencing technology has emerged to be useful as long-reads can map more

accurately in difficult regions, including highly-repetitive centromeres[136]. In contrast

to 50bp-400bp reads with short-read sequencing, long-read sequencing can generate reads

in the range of 10kb to several Mb in length directly from native DNA [89, 90, 223, 194].

Two popular sequencing platforms, Pacific Biosciences (PacBio) and Oxford Nanopore

Technology (ONT), provide a range of long-read sequencing devices. For all long-read

sequencing platforms, having longer reads over short reads come at the cost of accuracy

[118].

9

PacBio sequencing technology

PacBio is a Single Molecule, Real-Time (SMRT) sequencing platform that can generate

reads in the length of kilobases. PacBio SMRT sequencing starts by creating a template

known as SMRTbell. SMRTbell is a circular DNA molecule constructed with a DNA insert

with single-stranded hairpin adapters on either end. The length of the DNA insert can

range from hundreds of bases to several kilobases. Once the circular SMRTbell templates

are generated, it is loaded onto a SMRTCell which contains millions of zero-mode

waveguides to perform the sequencing. The sequencing process starts with a polymerase

process to incorporate fluorescence labels into the strand. During the fluorescence

incorporation, the emitted fluorophore gets recorded. This process is repeated to decode

the sequence of the DNA template[118]. The first read data type introduced by PacBio

is known as Continuous Long Reads (CLR), which can produce much longer (60kb -

100kb) but erroneous reads with read accuracy around 88% to 90%[178, 118].

PacBio subsequently introduced HiFi reads [221] which are an improvement over its

previous continuous long reads (CLR). In HiFi mode, the DNA insert is limited to

10kb-25kb, which allows the polymerase to read the template multiple times, generating

multiple subreads for each DNA template. The subreads of each template are assembled

to create a consensus sequence using the PBCCS algorithm. PBS first creates a partial

order alignment (POA) of the subreads and then uses a hidden Markov model to generate

the highly accurate consensus sequence known as circular consensus sequence (CCS) [7].

PacBio HiFi sequencing can generate reads that are 99% accurate using this circular

10

consensus approach [118]. Higher accuracy CCS reads require a higher number of passes

of each template [7, 101] which subsequently results in a much longer run-time [118].

Recently, a new method called DeepConsensus [7] showed the read quality can be further

improved by applying deep neural network-based inference to further polish the CCS

sequences.

Oxford nanopore sequencing technology

Oxford Nanopore Technology (ONT) is a long-read sequencing platform that passes the

DNA molecule through a pore embedded in a membrane. An electric potential is applied

to the membrane, resulting in a signal encoded as current flow as the DNA transits

through the pore. Different DNA bases create distinct current signals that can be used

to decode the sequence going through the pore [174]. The process of decoding bases

from signals is known as basecalling [174, 118, 194].

ONT sequencing starts by attaching a sequencing adapter to the double-stranded linear

DNA molecule loaded with a motor protein. Then the resulting DNA mixture is loaded

onto a flow cell containing several thousands of nanopores embedded in a membrane.

The motor protein helps the negatively-charged DNA molecule pass through the pore

using an electric current. As the DNA bases go through the pore, it disrupts the current

to create unique signals that can infer the sequence of the DNA molecule. ONT provides

the flexibility to generate much longer reads where 100kb+ reads are common [194] with

megabase-length reads are often reported [135].

11

Oxford nanopore sequencing technology provides a scalable solution to long-read se-

quencing. However, the error rate of this sequencing platform is much higher compared

to PacBio HiFi data type[118]. The majority of the errors in nanopore reads happen

in homopolymer regions where a single base is repeated multiple times [174, 193]. The

current signal in homopolymer regions makes it difficult to distinguish how many bases

passed through the pore. However, recent advancements in basecalling algorithms and

flowcell updates show continuous improvement with this sequencing platform [190, 225].

Genome inference

DNA sequencing of a sample produces millions of reads representing the fragments of

the DNA molecule. As most of the reads are usually much smaller than a chromosome,

we need a process to infer the sample sequence using the read fragments. The process

of deriving a sample’s genome using data from DNA sequencing is known as genome

inference. Genome inference methods depend heavily on sequencing platforms and the

characteristics of sequencing technology. Depending on the type of inference required for

genome inference, the methods can be broken into two parts: de novo assembly where a

reference genome is not used and variant calling where the sequence is compared against

a known or established reference genome.

12

De novo assembly

de novo assembly of a genome determines a sample’s genome using the reads and their

overlaps without using a reference genome. Generally, the process starts with finding

overlaps between the reads and creating a genome graph, and then untangling the graph

to reveal the linear sequence that represents the sequence of the sample [26, 194, 149, 148].

Accurate genome assembly is challenging as the reads are generally shorter than whole

chromosomes.

The assembly methods are specific to sequencing platforms to model their error charac-

teristics and take advantage of the read lengths. The process of finding overlaps between

reads needs to consider sequencing errors that are platform-specific [118, 174, 128]. Once

the overlaps between reads are sufficiently determined to occur due to reads originating

from the same region of the genome and not due to sequencing errors, they can be

represented as a graph.

The most common sequence graphs used in genome assembly are overlap graphs and

de Bruijn graphs. A vertex in an overlap graph corresponds to a sequencing read, and

edges are added between reads when sufficient evidence of a match between reads. These

graphs can then be used to generate a consensus sequence to produce an assembly [142].

In de Bruijn graphs, the sequence of each node is a k-mer found on a read. Edges

represent exact match between two k-mers between reads [165, 175]. Overall, de Bruijn

graphs contain much less information than overlap graphs but benefit from being more

13

efficient.

Genome inference through de novo assembly aims to achieve the highly contiguous and

accurate reconstruction of the genome. The sequencing data type used for genome

assembly can directly affect the continuity and quality of the genome assembly. Short-

read sequencing technology has mainly been problematic in generating contiguous genome

assemblies[98, 82, 23] as it is challenging to find overlaps between short-reads in repetitive

regions[198, 90, 135].

The telomere-to-telomere (T2T) consortium recently published the first complete se-

quence of a human genome[148]. The construction of the gapless complete human

genome was done with two contemporary long-read sequencing platforms, PacBio-HiFi

and ONT[148]. Although short-reads were used to validate and remove platform-specific

errors from the assembly[128], it was the long-read sequencing platforms that made the

primary assembly possible. The consortium also shed light on the centromere [5] and

how the complete genome assembly improved the assessment of human genetic variation

[2]. In all of these studies, long-reads played a central role in showing that longer and

more accurate reads enable the study of the most repetitive regions of the genome.

Variant calling

Variant calling is the process of deriving the difference between a sample’s genome

sequence and a reference sequence. Variant calling starts by mapping the reads to a

14

reference genome that closely represents the sample sequence. Then using the alignment,

computational methods determine the differences between the reference and the sample

in the form of a set of variants. The advantages of using reference-based variant calling

can be the utilization of heavily studied and recorded information about the reference

sequence and a reasonably straightforward way to determine the variation. However,

reference-based methods are known to introduce bias which is exacerbated when the

sample of interest has different genomic sequence construction due to ethnicity[198].

Genomic variation of a sample compared to a reference can range from small variations

1bp to 50bp including single nucleotide polymorphisms (SNPs) or insertions and deletions

(INDELs), to large scale (50bp+) Structural Variatoins (SVs). Variant calling methods are

generally classified between small variant calling and structural variant calling methods.

There is a general agreement that SVs require different treatment and algorithm design

compared to small variant calling methods [193, 153, 216].

Sequencing technology and the error rate of the sequencing data have direct implica-

tions in deriving accurate variant calls. Short-reads can produce precise, highly small

variants [153] in mappable regions of the genome but fails to derive structural variants

accurately[187] as short-reads do not span through the variant. Highly accurate short-

reads can generate precise variant calls but have difficulty mapping to repetitive regions

like segmental duplications or MHC regions. Recently, a community challenge called

precisionFDA v2 revealed that variant calling with long-reads has the advantage over

short reads while using a linear reference sequence as long-reads map accurately to the

15

most repetitive regions of the genome[153].

Although long-reads are desirable for deriving small variants, the high error rate of

Oxford Nanopore reads makes it difficult to call variants accurately. SNP calling with

ONT is highly accurate, but INDEL calling suffers significantly due to the non-random

errors in the sequencing platform. PacBio-HiFi, on the other hand, is highly precise and

recent surveys show that HiFi is the most suitable data type to derive small variant calls

[153, 216, 193].

Computational methods for variant calling generally use a probabilistic model curated for

the sequencing platform to tell true variants apart from sequencing errors. Traditional

methods like GATK [130] or freebayes [64] used statistical models that are tuned for

Illumina short-read sequencing technology. As long-read sequencing technology came

along, tuning parameters for the statistical models became increasingly difficult due to

the error characteristic between sequencing platforms being vastly different [174]. Later

the DeepVariant [166] variant caller used a deep neural network-based approach that

can be simply re-trained for different sequencing platforms to call variants.

Deep learning for genome inference

Genomics aims to unravel the functional utility of genomic elements through various

technologies, including genome sequencing [81]. The field of genomics is centered around

data that captures the properties of the biological element of interest[18, 71]. In genome

16

inference, we aim to discover novel properties of a sample’s genome, like genomic variation

[33]. However, genomics data can be too large or complex to simply do a visual inspection

[51, 174]. The human genome is 3.3 GigaBases, making it impossible to visually inspect

every base.

Similarly, technologies that we use to generate genomic data can directly affect the

inference process [174, 193]. For example, studying the genome with short reads vs.

long reads would pose different challenges. Short reads will have difficulty mapping to

repetitive regions [153], whereas long reads have higher sequencing errors than short reads

[174]. The genomics community depends on statistical models to assist in automating

the genome inference process [162]. The statistical or machine learning models require

features to capture patterns in the data [141]. Thus these tools are often platform-

specific, and designing these tools requires domain expertise to create handcrafted

features [141, 51].

Unlike traditional algorithms where hypothesis about the data is hardcoded or assumed,

deep learning algorithms are designed to find patterns in data automatically [73, 103].

Deep learning is a discipline of machine learning that proposes deep neural networks

which perform successive operations to compute increasingly complex features in the

data [141]. Deep neural networks are particularly well suited for genomics as they can

improve inference quality by revealing patterns in extensive genomic data where finding

hypotheses based on the spatial or morphological pattern is difficult [141, 51, 21].

17

Applications of deep neural network in nanopore sequencing

Nanopore sequencing measures DNA or RNA molecules flowing through the pore as

current signals and this method is fundamentally different from the traditional sequencing-

by-synthesis approach[39]. The sequencing process then converts current signals to the

nucleotide sequence. This conversion of the signal to sequence is an inference problem

known as basecalling that needs statistical modeling based on the features observed in the

signal. The first generation of nanopore basecallers like Nanocall used Hidden Markov

Models (HMMs) for basecalling [36]. These HMM-based models used k-mer emission

probabilities to predict the observed sequence [36, 174]. However, the sequencing device’s

translocation speed is not constant, and encoding such features became increasingly

difficult [174]. Rather than using hand-crafted attributes, Albacore and Guppy introduced

Recurrent Neural Networks for basecalling [225]. Recurrent Neural Networks are most

effective in sequence translation problems as they can find abstraction in sequential data

[132]. A recent iteration of the basecaller named Bonito uses convolutional layers on top

of a Connectionist Temporal Classification (CTC) decoder [76] and currently known to

have the highest accuracy [225]. The introduction of deep neural networks in basecalling

and additional chemistry improvements boosted the intial sequence accuracy of nanopore

from 60% to current state-of-the-art 98.2% in over six years [118].

Nanopore reads usually encounter INDEL-like errors in homopolymer regions [174, 118,

225, 224]. As a result of the reads being erroneous, genome assemblers that do not

perform any read correction generally produce consensus sequence that has small INDEL-

18

like errors which creates issues in downstream analysis like gene annotation [74, 128].

These errors can generally be eliminated using consensus correction methods or polishers

[209]. Initial methods used high-quality short-reads from same sample to correct these

errors [218]. Current improvements in basecallers and polishers that use deep neural

networks can produce highly-accurate (99.9%) consensus sequences using nanopore reads

only [128, 194].

The utility of nanopore goes beyond traditional genome sequencing as it can sequence

full-length RNA molecules and detect methylation or modification in nucleotide bases.

Deep Neural Networks (DNNs) have proven to be driving factors of these applications.

DNNs have been applied to detect DNA base modifications [146, 117] and differential

modification from direct RNA sequencing with nanopore [169]. As nanopore long reads

can span most difficult regions of the genome, these application made it possible to study

the epigenetic regulation in repeat-rich regions [135].

19

Part III

Haplotype-aware variant calling

20

Chapter 3

PEPPER-Margin-DeepVariant:

Haplotype-aware variant calling pipeline

for long reads.

Preamble

This chapter contains the text from "Haplotype-aware variant calling with PEPPER-

Margin-DeepVariant enables high accuracy in nanopore long-reads," published in Nature

Methods in November 2021. The manuscript details a long-read variant calling pipeline

PEPPER-Margin-DeepVariant that can utilize the haplotype information of the sample

for genotyping. The described method won two awards in precisionFDA challenge v2 in

Oxford Nanopore category.

21

I share the first co-authorship of this manuscript with Trevor Pesout who developed

Margin and Pi-Chuan Chang who enabled DeepVariant to work on nanopore reads.

My contribution in this manuscript is designing the pipeline, developing PEPPER and

deploying the pipeline for general usage. I want to thank Maria Nattestad, Alexey

Kolesnikov, Sidharth Goel, Gunjan Baid, Mikhail Kolmogorov, Jordan Eizenga, Karen

Miga, Paolo Carnevali, Miten Jain, Andrew Carroll, Benedict Paten, who are the co-

authors of this manuscript. I consider this collaborative work between Google genomics

and the UCSC genomics institute as the highlight of my graduate research.

Introduction

Most existing reference-based small variant genotyping methods are tuned to work

with short-reads [34, 130]. Short-reads have high base-level accuracy but frequently

fail to align unambiguously in repetitive regions [115]. Short-reads are also generally

unable to provide substantial read-based phasing information, and therefore require

using haplotype panels for phasing [24] that provide limited phasing information for

rarer variants.

Third-generation sequencing technologies, like linked-reads [10, 53, 220] and long-reads

[87, 50], produce sequences that can map more confidently in the repetitive regions of

the genome [85], overcoming the fundamental limitations of short-reads. Long-reads can

generate highly contiguous de novo assemblies [135, 120, 194, 26, 149, 92, 183], and they

22

are increasingly being used by reference-based analysis methods [123, 125, 48, 221, 46,

82, 187, 163]. The Genome-In-A-Bottle Consortium (GIAB) [232] used the additional

power of long-reads and linked-reads to expand the small variant benchmarking set to

cover more of the genome [216]. This was essential to the PrecisionFDA challenge V2,

which quantified the limitations of short read-based methods to accurately identify small

variants in repetitive regions[153].

Oxford Nanopore Technologies (ONT) is a commercial nanopore-based high-throughput

[194] long-read sequencing platform that can generate 100kb+ long reads [194, 88].

Nanopore long-reads can confidently map to repetitive regions of the genome [85]

including centromeric satellites, acrocentric short arms, and segmental duplications

[135, 90, 56, 49]. Nanopore sequencing platform promises same-day sequencing and

analysis [52], but the base-level error characteristics of the nanopore-reads, being both

generally higher and systematic, make small variant identification challenging [174].

Pacific Biosciences (PacBio) provides a single-molecule real-time (SMRT) sequencing

platform that employs circular consensus sequencing (CCS) to generate highly-accurate

(99.8%) high-fidelity (PacBio HiFi) reads that are between 15kb-20kb long [221]. The

overall accuracy of PacBio-HiFi-based variant identification is competitive with short-

read based methods [221]. These highly accurate long-reads enabled the small variant

benchmarking of major histocompatibility complex (MHC) region [30] and difficult-to-

map regions [216].

23

In our previous work, we introduced DeepVariant, a universal small variant calling

method based on a deep convolutional neural network (CNN) [166]. We showed that

by retraining the neural network of DeepVariant, we can generate highly accurate

variant calls for various sequencing platforms [166]. To limit the computational time,

DeepVariant only uses the neural network on candidate sites identified with simple

heuristics. However, the higher error-rate of nanopore-reads [194, 174] causes too many

candidate variants to be picked up by the heuristic-based candidate finder of DeepVariant,

limiting the extension of DeepVariant to nanopore sequencing platform.

Phasing long reads has been shown to enable or improve methods for small variant calling,

structural variant calling, and genome assembly [24, 221, 82, 163, 47, 180, 29, 95, 168].

Previously, we trained DeepVariant on PacBio HiFi long-read data and showed highly

competitive performance against short-read based methods for small variant identification

[221]. However, the run-time of the haplotype-aware mode of DeepVariant with PacBio

HiFi reads remain a bottleneck for production-level scaling.

Sufficiently accurate nanopore long-read based accurate small variant identification would

enable new research. It could allow same-day sequencing and variant calling by using

highly multiplexed sequencing with the PromethION device. It could allow researchers

to study genomic variants in the most difficult regions of the genome. Similarly, making

PacBio HiFi haplotype-aware genotyping efficient would allow researchers to adopt to

production scale haplotype-aware genotyping.

24

Here we present a haplotype-aware genotyping pipeline PEPPER-Margin-DeepVariant

that produces state-of-the art small variant identification results with nanopore and

PacBio HiFi long-reads. PEPPER-Margin-DeepVariant outperforms other existing

nanopore-based variant callers like Medaka[123], Clair [125], and longshot [48]. For

the first time we report that nanopore-based single nucleotide polymorphism (SNP)

identification with PEPPER-Margin-DeepVariant outperforms short-read based SNP

identification with DeepVariant at whole genome scale. For PacBio HiFi reads, we report

PEPPER-Margin-DeepVariant is more accurate, 3× faster, and 1.4× cheaper than the

current haplotype-aware pipeline DeepVariant-WhatsHap-DeepVariant. We analyzed

our pipeline in the context of GENCODE [79] genes and report phasing errors in less

than 1.5% of genes, with over 88% of all genes being contiguously phased across six

samples. Finally, we extended PEPPER-Margin-DeepVariant to polish nanopore-based

de novo assemblies with nanopore and PacBio HiFi reads in a diploid manner. We report

Q35+ nanopore-based and Q40+ PacBio-HiFi-polished assemblies with lower switch

error rate compared to the unpolished assemblies.

Results

Haplotype-aware variant calling

PEPPER-Margin-DeepVariant is a haplotype-aware pipeline for identifying small variants

against a reference genome with long-reads. The pipeline employs several methods to

generate highly-accurate variant calls (Figure 3.1a). Details of these methods are in the

25

online methods section. An overview is presented here:

1. PEPPER-SNP: PEPPER-SNP finds single nucleotide polymorphisms (SNPs)

from the read alignments to the reference using a recurrent neural network (RNN).

The method works in three steps:

• Image generation: We take the reads aligned to a reference genome and

generate base-level summary statistics in a matrix-like format for each location

of the genome. We do not encode insertions observed in reads at this stage.

• Inference: We use a gated recurrent unit (GRU)-based RNN that takes the

base-level statistics generated in the previous step and the provides likelihood

of the two most likely bases present at each genomic location.

• Find candidates: We take all of the base-mismatches observed in the reads-to-

reference alignment. We calculate a likelihood using the predictions from the

inference step and if a base-mismatch has high likelihood of being a potential

variant, we pick the mismatch to be a potential SNP. The likelihood of the

bases at any location also helps to assign a genotype.

2. Margin: Margin is a phasing and haplotyping method that takes the SNPs

reported by PEPPER-SNP and generates a haplotagged alignment file using a

hidden Markov Model (HMM).

• Read-allele alignment: We first extract read substrings around allelic sites

26

and generate alignment likelihoods between reads and alleles. These are used

as emission probabilities in the phasing HMM.

• Phasing Variants: We construct an HMM describing genotypes and read

bipartitions at each variant site which enforces consistent partitioning between

sites. After running the forward-backward algorithm, we marginalize over

the posterior probability distribution at each site to calculate the most likely

phased genotype (aka diplotype).

• Haplotagging reads: After determining haplotypes using the maximum proba-

bility haplotype decoding, we decide from which haplotype each read origi-

nated from by calculating the probability of the read arising from each of the

two haplotypes and picking the haplotype with maximum likelihood. If a read

spans no variants or has equal likelihood for each haplotype, it is assigned

the a “not haplotagged” tag.

• Chunking: The genome is broken up into 120kb chunks with 20kb of overlap

between chunks. Variant and read phasing occurs separately on each chunk,

enabling a high degree of parallelism. Chunks are stitched together using the

haplotype assignment of the reads shared between adjacent chunks.

3. PEPPER-HP: PEPPER-HP takes the haplotagged alignment file and finds

potential SNP, insertion, and deletion (INDEL) candidate variants using a recurrent

neural network (RNN). In this step PEPPER-HP ranks all variants arising from

27

the read-to-reference alignment and picks variants with high-likelihood derived

from the RNN output. Filtering candidates enables DeepVariant to efficiently

genotype the candidates and produce a highly accurate variant set as it removes

errors. PEPPER-HP is used only during Oxford Nanopore-based variant calling

and has proved unnecessary while using PacBio HiFi reads.

• Image generation: We generate base-level summary statistics for each haplo-

type independently. Summary statistics for each haplotype use both reads

that were haplotagged to that haplotype and which were not haplotagged. In

this scheme, we encode insertions observed in the reads.

• Inference: We use a GRU-based RNN that takes the haplotype-specific

summary statistics and predicts two bases at each location of the genome,

one for each haplotype. This haplotype-aware inference scheme allows us to

determine most likely alleles in a haplotype-specific manner.

• Find candidates: In the find candidates step we find all SNP and INDEL

candidates arising from the read alignment to the reference. We use the

haplotype-specific predictions from the inference step to generate the likelihood

of each candidate variant belonging to haplotype-1 or haplotype-2. Using the

likelihood values we propose candidates with high likelihood for genotyping

with DeepVariant.

4. DeepVariant: DeepVariant identifies variants in a three step process:

28

• Make examples: Prior to this work [166], the make examples stage of Deep-

Variant used simple heuristics to identify possible variant positions for classi-

fication. The different error profile of Oxford Nanopore required the more

sophisticated logic from PEPPER to generate a tractable number of can-

didates for classification. DeepVariant was modified to take the candidate

variant set from PEPPER-HP and the haplotagged alignment from Margin,

and to generate the tensor input set with read features as channels (base, base

quality, mapping quality, strand, whether a read supports the variant, and

the bases that mismatch the reference). Reads are sorted by their haplotype

tag.

• Call variants: This stage applies a model trained specifically for Oxford

Nanopore data with inputs provided by PEPPER-Margin. Apart from training

on new data, and the sorting of reads by haplotype, other software components

of this step are unchanged.

• Postprocess variants: Converts the output probability into a VCF call and

resolves multi-allelic cases. No other changes were made from previously

published descriptions.

DeepVariant has more total parameters than PEPPER, and models with more

parameters can generally train to higher accuracy at the cost of increased runtime.

By combining PEPPER with DeepVariant in this way, we allow the faster neural

29

network of PEPPER to efficiently scan much more of the genome, and to leverage

the larger neural network of DeepVariant to achieve high accuracy on a tractable

number of candidates.

5. Margin: Margin takes the output of DeepVariant and the alignment file to generate

a phased VCF file using the same Hidden Markov Model as described before. In

this mode, it annotates the VCF with high-confidence phasesets using heuristics

over the reads assigned to each variant’s haplotype. It creates a new phaseset if

there is no linkage between adjacent sites, if there is an unlikely binomial p-value

for the bipartition of reads at a site, or if there is high discordancy between read

assignments over adjacent variants.

It is challenging to identify accurate variants with Oxford nanopore reads due to the error

rate. Heuristic-based approaches show robust solutions for highly-accurate sequencing

platforms [166, 221] but fail when introduced with erroneous reads. For example, in 90x

HG003 ONT data, at 10% allele frequency, we find 20× more erroneous variants than

true variants (Supplementary Figure A.2).

Existing variant callers, like Clair[125], that use allele frequency to find a set of candidates

often need to set the threshold too high, excluding many true variants from being detected.

Our pipeline demonstrates an efficient solution using an RNN to find candidates with

PEPPER and genotype the candidates accurately with DeepVariant.

The use of haplotype information to get better genotyping results with erroneous reads

30

has been demonstrated before[46, 221]. The schema of the PEPPER-Margin-DeepVariant

pipeline follows a similar design of PacBio HiFi-based DeepVariant[221] and Medaka[123]

that use haplotyping to provide better genotyping results. However, Medaka[123] is a

consensus caller that presents the predicted sequence per position that does not match

with reference sequence as variants. In contrast, PEPPER applies the predictions of the

RNN to the candidates to find likely candidate variants for DeepVariant to accurately

genotype. While maintaining similar candidate sensitivity of the heuristic-based approach,

PEPPER reduces the number of erroneous homozygous candidate variants significantly

(Supplementary figure A.2).

We trained PEPPER-Margin-DeepVariant on HG002 sample using Genome-In-A-Bottle

(GIAB) v4.2.1 benchmarking set [216]. We trained PEPPER and DeepVariant on

chr1-chr19 and tested on chr20 and used chr21-chr22 as holdout sets (See Online

Methods).

31

a

b

c

Haplotype-aware variant callingSNP-based Haplotyping

Haplotyping(HMM)

SNP Calling
(RNN)

Margin
Haplotag

Alignment Phased BAM

CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT

CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATC
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT

TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
TCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT

CGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATT
TGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT
GGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTT

ACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTG
GTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTGATTTCTCT

CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATC
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT
 TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
 TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
 TCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT
 CGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATT
 TGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT
 GGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTT
 ACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTG

GTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTGATTTCTCT

Genotyping (CNN)

Candidate finding
(RNN)

DeepVariant
Phased

VCFMargin
Phase

PEPPER
SNP

PEPPER
HP

Phasing (HMM)

20 × 30 × 40 × 50 × 60 × 70 × 80 × 90 ×
Coverage depth

0.90

0.92

0.94

0.96

0.98

1.00

F1
-S

co
re

PEPPER−Margin−DeepVariant
Medaka
Clair

20 × 30 × 40 × 50 × 60 × 70 × 80 × 90 ×
Coverage depth

0.30

0.40

0.50

0.60

0.70

0.80

PEPPER−Margin−DeepVariant
Medaka
Clair

d

0.990

0.995

1.000

Va
lu

e

R
ec

al
l

0.
99

8
Pr

ec
is

io
n

0.
99

6
F1

-s
co

re
0.

99
7

HG001

R
ec

al
l

0.
99

6
Pr

ec
is

io
n

0.
99

7
F1

-s
co

re
0.

99
6

HG003

R
ec

al
l

0.
99

7
Pr

ec
is

io
n

0.
99

7
F1

-s
co

re
0.

99
7

HG004

R
ec

al
l

0.
99

8
Pr

ec
is

io
n

0.
99

6
F1

-s
co

re
0.

99
7

HG005

R
ec

al
l

0.
99

7
Pr

ec
is

io
n

0.
99

5
F1

-s
co

re
0.

99
6

HG006

R
ec

al
l

0.
99

7
Pr

ec
is

io
n

0.
99

4
F1

-s
co

re
0.

99
5

HG007 0.50

0.75

1.00

R
ec

al
l

0.
60

7
Pr

ec
is

io
n

0.
88

8
F1

-s
co

re
0.

72
1

HG001

R
ec

al
l

0.
60

1
Pr

ec
is

io
n

0.
91

3
F1

-s
co

re
0.

72
5

HG003

R
ec

al
l

0.
58

8
Pr

ec
is

io
n

0.
90

4
F1

-s
co

re
0.

71
2

HG004

R
ec

al
l

0.
66

3
Pr

ec
is

io
n

0.
89

8
F1

-s
co

re
0.

76
2

HG005

R
ec

al
l

0.
61

5
Pr

ec
is

io
n

0.
89

0
F1

-s
co

re
0.

72
7

HG006

R
ec

al
l

0.
59

6
Pr

ec
is

io
n

0.
87

5
F1

-s
co

re
0.

70
9

HG007

0.95 0.96 0.97 0.98 0.99 1.00

0.
98

5
0.

99
0

0.
99

5
1.

00
0 SNP performance (all benchmarking regions)

Recall

Pr
ec

is
io

n

PEPPER−Margin−DeepVariant
Medaka
Clair
Longshot
HG003
HG004

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

INDEL performance (all benchmarking regions)

Recall

Pr
ec

is
io

n

PEPPER−Margin−DeepVariant
Medaka
Clair

HG003
HG004

INDEL performance (all benchmarking regions)SNP performance (all benchmarking regions)

SNP performance (all benchmarking regions) INDEL performance (all benchmarking regions)

Figure 3.1: Nanopore variant calling results. (a) Illustration of haplotype-aware
variant calling using PEPPER-Margin-DeepVariant. (b) Nanopore variant calling
performance comparison between different nanopore-based variant callers. (c) Evalu-
ating variant calling performance at different coverage of HG003. (d) Variant calling
performance of PEPPER-Margin-DeepVariant on six GIAB samples.

32

Nanopore variant calling performance

We compared the nanopore variant calling performance of PEPPER-Margin-DeepVariant

against Medaka[123], Clair[125], and Longshot[48]. We called variants on two samples

HG003 and HG004, with 90× coverage. We also compared the performance against

Medaka and Clair for the HG003 sample at various coverages ranging from 20× to

90×. Finally, we benchmarked the variant calling performance of PEPPER-Margin-

DeepVariant on six Genome-In-A-Bottle (GIAB) samples.

PEPPER-Margin-DeepVariant produces more accurate nanopore-based SNP calls (F1-

scores of 0.9969 and 0.9977) for HG003 and HG004 respectively than Medaka (0.9926,

0.9933), Clair (0.9861, 0.9860), and Longshot (0.9775, 0.9776). We also observe higher IN-

DEL performance with PEPPER-Margin-DeepVariant (F1-scores of 0.7257 and 0.7128 for

HG003 and HG004) compared to Medaka (0.7089, 0.7128) and Clair (0.5352, 0.5260)(Fig-

ure 3.1b, Supplementary table A.1).

To assess the robustness of our method, we evaluated the variant calling performance with

HG005 sample on GRCh38 and GRCh37 against two GIAB truth versions (v3.3.2 [236]

and v4.2.1 [216]). In this comparison, we see PEPPER-Margin-DeepVariant perform

similarly between GRCh37 GIABv3.3.2 (SNP F1-Score: 0.9971, INDEL F1-Score: 0.7629)

and GRCh38 v4.2.1 (SNP F1-Score: 0.9974, INDEL F1-Score: 0.7678) and has higher

accuracy compared to Medaka (GRCH37: SNP 0.9938, INDEL 0.7629, GRCh38: SNP

0.9927, INDEL 0.7406), Clair (GRCH37: SNP 0.9789, INDEL 0.5666, GRCh38: SNP

33

0.9787, INDEL 0.5675) and longshot (GRCh37: SNP 0.9803, GRCh38: SNP 0.9767)

(Supplementary table A.2). Overall, we see PEPPER-Margin-DeepVariant has consistent

performance between different samples, reference sequence and truth sets.

We performed a Mendelian concordance analysis of our method with the

HG005/HG006/HG007 trio on GRCh38 inside and outside of the HG005 v4.2.1

high-confidence regions (Supplementary table A.3). In the 2.5 Gb high confidence region

we observed a paternal and maternal concordance of 99.90%, with overall concordance

of 99.75%. In the 315Mb region outside of high confidence excluding centromeres we

observed a paternal concordance of 98.20%, maternal concordance of 97.80%, with

overall concordance of 95.52%.

To understand performance over realistic coverage ranges, we downsampled the HG003

nanopore sample at coverages varying between 20× and 90× and compared PEPPER

Margin-DeepVariant against Medaka and Clair. The INDEL performance of PEPPER-

Margin-DeepVariant achieves the highest F1-score at any coverage compared to other

tools (Figure 3.1c, Supplementary table A.4). At coverage above 30×, PEPPER-Margin-

DeepVariant achieves a higher F1-score than Medaka and Clair (Supplementary table

A.5). Overall, we observe that PEPPER-Margin-DeepVariant can yield high-quality

variant calls at above 40× coverage on Oxford Nanopore data.

We investigated the nanopore variant calling performance of PEPPER-Margin-

DeepVariant on six GIAB samples (HG001, HG003-HG007), each sample with various

34

coverage (Supplementary Table A.6) and against GRCh37 and GRCh38 reference

genomes (Supplementary Table A.7). PEPPER-Margin-DeepVariant achieves SNP

F1-score 0.995 or higher and INDEL F1-score of 0.709 or higher for each sample,

demonstrating the ability to generalize the variant calling across samples and reference

genomes (Figure 3.1d, Supplementary table A.8).

We also assessed the ability to use PEPPER-HP as a variant caller if we tune the method

for a balanced precision and recall. We find that PEPPER-HP outperforms Medaka in

SNP accuracy while having a comparable INDEL accuracy. However, PEPPER-HP in

itself is not able to achieve the genotyping accuracy DeepVariant provides. As PEPPER-

HP uses a compressed representation of nucleotide bases, it fails to achieve the high

genotyping accuracy compared to DeepVariant’s CNN (Supplementary table A.9).

Similar to the nanopore-based haplotype-aware pipeline, the PacBio HiFi-based PEPPER-

Margin-DeepVariant pipeline produces highly accurate variant calls. In the PacBio HiFi

pipeline, we do not use PEPPER-HP to find candidate variants; the highly accurate

(99.8%) PacBio HiFi reads are suitable for the heuristic-based candidate generation

approach of DeepVariant [221, 166]. We analyzed the PacBio HiFi PEPPER-Margin-

DeepVariant variant calling performance on the 35x HG003 and HG004 from preci-

sionFDA [153] against DeepVariant-WhatsHap-DeepVariant (current state-of-the-art

method [153, 221]) and DeepVariant-Margin-DeepVariant. In this comparison we see

that DeepVariant-Margin-DeepVariant produces the best performance (HG003 SNP-F1:

0.9991 INDEL-F1: 0.9945 , HG004 SNP-F1: 0.9992, INDEL-F1: 0.9942) compared to

35

DeepVariant-WhatsHap-DeepVariant (HG003 SNP-F1:0.9990 INDEL-F1:0.9942 , HG004

SNP-F1: 0.9992 , INDEL-F1: 0.9940) and PEPPER-Margin-DeepVariant (HG003

SNP-F1:0.9990, INDEL-F1:0.9944, HG004 SNP-F1: 0.9992 , INDEL-F1: 0.9941) (Sup-

plementary table A.10).

We compared the run-time and cost of Oxford nanopore-based variant calling pipelines

on 50× and 75× HG001 data (Supplementary table A.11) using the GCP platform

with instance sizes best matching CPU and memory requirements. Clair (HG001-50×:

2.5h/$11.40, HG001-75×: 3.1h/$14.13) is the fastest and cheapest, but fails to generate

high-quality variant calls (Figure 3.1, Supplementary Table A.1). Longshot (HG001-50×:

51h/$49, HG001-75×: 74h/$139) and Medaka (CPU-HG001-50×: 95h/$90, CPU-HG001-

75×: 117h/$175, GPU-HG001-50×: 40h/$97, GPU-HG001-75×: 46h/$22) fail to use

all available CPU resources, resulting in long runtimes. PEPPER-Margin-DeepVariant

is designed for CPU and GPU platforms. On a CPU-platform, PEPPER-Margin-

DeepVariant (HG001-50×: 13h/$60, HG001-75×: 15h/$68) is 8× faster than Medaka

and 4× faster than Longshot while providing the best variant calling performance. On

GPU-platforms we see further runtime improvement with PEPPER-Margin-DeepVariant

(HG001-50×: 7h/$70, HG001-75×: 9h/$94). On PacBio HiFi data the PEPPER-Margin-

DeepVariant pipeline outperforms DeepVariant-WhatsHap-DeepVariant and is 3× faster

and 1.4× cheaper, establishing a faster and more accurate solution to haplotype-aware

variant calling with PacBio HiFi data (Supplementary table A.12, Supplementary table

A.13). Overall, PEPPER-Margin-DeepVariant provides a scalable solution to haplotype-

36

aware variant calling with nanopore-based long reads, as it is designed to efficiently use

all available resources.

Nanopore, Illumina and PacBio HiFi variant calling performance com-

parison

We compared the variant calling performance of Oxford Nanopore and PacBio HiFi long-

read based PEPPER-Margin-DeepVariant against Illumina short-read based DeepVariant

method [8]. We used 35x Illumina NovaSeq, 35x PacBio HiFi, and 90x Oxford Nanopore

reads basecalled with Guppy v4.2.2 for HG003 and HG004 samples available from

PrecisionFDA [153]. We used GIAB v4.2.1 benchmarking data for HG003 and HG004,

which is notable for including difficult-to-map regions. Finally we used GIAB v2.0

stratificiations to compare variant calling performance in difficult-to-map regions and

low-complexity regions of the genome.

37

a

b

c

Recall
0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000

0.
99

3
0.

99
4

0.
99

5
0.

99
6

0.
99

7
0.

99
8

0.
99

9
1.

00
0 SNP performance (all benchmarking regions)

Pr
ec

is
io

n

0.5 0.6 0.7 0.8 0.9 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

INDEL performance (all benchmarking regions)

Recall

Pr
ec

is
io

n

Major Histocompatibility
Complex (MHC) Segmental Duplications Low mappability regions 250bp+ non-unique regions

Homopolymer
(7bp - 11bp)

Homopolymer
(>11bp)

Di-Mer repeat regions
(11bp - 50bp)

Tri-Mer repeat regions
(15bp - 50bp)

0.92 0.96 1.00
Value

Nanopore

Illumina

PacBio
HiFi

Nanopore

Illumina

PacBio
HiFi

0.994
0.997
0.995

0.989
0.998

0.993
0.992

0.997
0.995

0.995
0.997
0.996

0.985
0.998

0.992
0.991

0.999
0.995

Recall

Recall

Precision

Precision

F1-Score

F1-Score

Recall

Recall

Precision

Precision

F1-Score

F1-Score

Recall

Recall

Precision

Precision

F1-Score

F1-Score

0.92 0.96 1.00
Value

0.982
0.981
0.981

0.920
0.974

0.946
0.975

0.993
0.984

0.982
0.986
0.984

0.919
0.976

0.946
0.979

0.994
0.987

0.92 0.96 1.00
Value

Nanopore

Illumina

PacBio
HiFi

Nanopore

Illumina

PacBio
HiFi

0.970
0.965
0.967

0.998
0.999
0.998
0.998
0.998
0.998

0.968
0.962
0.965

0.998
0.999
0.999
0.998
0.998
0.998

Recall

Recall

Precision

Precision

F1-Score

F1-Score

Recall

Recall

Precision

Precision

F1-Score

F1-Score

Recall

Recall

Precision

Precision

F1-Score

F1-Score

0.84 0.92 1.00
Value

0.878
0.887

0.883
0.999
0.998
0.998

0.985
0.984
0.984

0.860
0.882

0.871
0.998
0.997
0.997

0.987
0.986
0.986

Nanopore (PEPPER-Margin-DeepVariant)
Illumina (DeepVariant)
PacBio HiFi (PEPPER-Margin-DeepVariant)
HG003
HG004

Nanopore (PEPPER-Margin-DeepVariant)
Illumina (DeepVariant)
PacBio HiFi (PEPPER-Margin-DeepVariant)
HG003
HG004

0.92 0.96 1.00
Value

0.988
0.988
0.988

0.907
0.979

0.942
0.984

0.995
0.989

0.989
0.991
0.990

0.904
0.980

0.940
0.986

0.996
0.991

0.60 0.80 1.00
Value

0.925
0.955

0.940
0.545

0.843
0.662

0.853
0.968

0.907

0.934
0.968

0.951
0.536

0.845
0.656

0.878
0.976

0.924

H
G

003 (SN
P)

H
G

004 (SN
P)

0.92 0.96 1.00
Value

0.973
0.965

0.969
0.997
0.998
0.998
0.997

0.993
0.995

0.973
0.965
0.969

0.997
0.997
0.997
0.997

0.994
0.995

0.92 0.96 1.00
Value

0.988
0.979

0.983
0.998
0.999
0.998

0.993
0.994
0.994

0.990
0.978

0.984
0.999
0.999
0.999

0.995
0.995
0.995

H
G

003 (SN
P)

H
G

004 (SN
P)

Figure 3.2: Comparison between Nanopore, Illumina and PacBio HiFi variant
calling performance. (a) SNP and INDEL performance comparison of Nanopore,
Illumina and PacBio HiFi in all benchmarking regions. (b) SNP performance comparison
in difficult-to-map regions of the genome. (c) SNP performance comparison in low-
complexity regions of the genome.

The SNP F1-score of PacBio HiFi (HG003 SNP-F1: 0.9990, HG004 SNP-F1: 0.9992) is

38

higher than Oxford Nanopore (HG003 SNP-F1: 0.9969, HG004 SNP-F1: 0.9977) and

Illumina (HG003 SNP-F1: 0.9963, HG004 SNP-F1: 0.9962) in all benchmarking regions.

Notably, both long-read sequencing platforms outperform the short-read based method

in accurate SNP identification performance. The INDEL F1-score of Oxford Nanopore

(HG003 INDEL-F1: 0.7257, HG004 INDEL-F1: 0.7128) is well below the performance

with PacBio HiFi (HG003 INDEL-F1: 0.9945, HG004 INDEL-F1: 0.9941) and Illumina

(HG003 INDEL-F1: 0.9959, HG004 INDEL-F1: 0.9958) suggesting further improvement

required for nanopore-based methods. On HG003 PacBio-CLR data, we observed a

SNP-F1 score of 0.9892 with our method and 0.9755 with Longshot (Supplemental

Table A.14). Overall, we find that haplotype-aware long-read-based variant calling

produces high-quality SNP variant calls comparable to those produced by short-read-

based variant identification methods (Figure 3.2a, Supplementary table A.15). This is

the first demonstration we are aware of in which SNP variant calls with Oxford Nanopore

data achieved similar accuracy to Illumina SNP variant calls.

In segmental duplications, 250bp+ non-unique regions, and low-mappability regions

where short-reads have difficulty in mapping, we observe the average SNP F1-scores of

Illumina (Seg. Dup. F1-score: 0.94, 250bp+ non-unique:0.66, Low-mappability: 0.94)

drop sharply for both HG003 and HG004 samples. Long-read based PacBio HiFi (Seg.

Dup. F1-score: 0.99, 250bp+ non-unique:0.90, Low-mappability: 0.99) and Oxford

Nanopore (Seg. Dup. F1-score: 0.98, 250bp+ non-unique:0.94, Low-mappability: 0.98)

produce more accurate SNP variants. In the major histocompatibility complex (MHC)

39

region, we see Oxford Nanopore (HG003 SNP F1-score: 0.9958, HG004 SNP F1-score:

0.9966) achieve best performance followed by PacBio HiFi (HG003 SNP F1-score: 0.9951,

HG004 SNP F1-score: 0.9955) and Illumina HG003 SNP F1-score: 0.9939, HG004 SNP

F1-score: 0.9921). In general, the long-read-based haplotype-aware methods outperform

short-reads in more repetitive regions of the genome (Figure 3.2b, Supplementary table

A.16).

In low-complexity regions like homopolymer, di-mer and tri-mer repeat regions of

the genome, the average variant calling performance of Nanopore drops (7bp-11bp

homopolymer SNP F1-score: 0.96, 11bp+ homopolymer SNP F1-Score: 0.88) for both

HG003 and HG004 samples compared to Illumina (7bp-11bp homopolymer SNP F1-

score: 0.998, 11bp+ homopolymer SNP F1-Score: 0.998) and PacBio HiFi (7bp-11bp

homopolymer SNP F1-score: 0.998, 11bp+ homopolymer SNP F1-Score: 0.984). In

11bp-50bp di-mer and 15bp-50bp tri-mer repeat regions of the genome, we see the

average performance of Oxford Nanopore (di-mer SNP F1-score: 0.969, tri-mer SNP

F1-score: 0.984) is lower than PacBio HiFi (di-mer SNP F1-score: 0.995, tri-mer SNP

F1-score: 0.995) and Illumina (di-mer SNP F1-score: 0.998, tri-mer SNP F1-score: 0.998).

Overall, the Illumina short-read based variant calling method achieves higher accuracy

in low-complexity regions of the genome (Figure 3.2c, Supplementary table A.17).

We further compare the variant calling performance of Illumina, PacBio HiFi and

ONT in “easy regions” (the inverse of all difficult regions: excluding all tandem repeats,

homopolymers, imperfect homopolymers, difficult to map regions, segmental duplications,

40

and GC <25% or >65%) which cover 76% of the genome [216]. In this comparison, we

see ONT variant calling performance (SNP: 0.9988 INDEL: 0.9719) is comparable to

Illumina (SNP: 0.9997, INDEL: 0.9996) and HiFi (SNP: 0.9999, INDEL: 0.9997) showing

that in easy regions, all technologies can generate high-quality variants (Supplementary

table A.18). We further look into regions with no tandem repeats (covering 86% of the

genome) and see that ONT performance (SNP: 0.9981, INDEL: 0.97) is comparable to

Illumina (SNP: 0.996, INDEL: 0.996). However in tandem repeat and homopolymer

regions, the ONT SNP calling performance drops from 0.998 to 0.9748, and the INDEL

calling performance drops from 0.97 to 0.54 (Supplementary Table A.19) suggesting that

ONT variant calling can generate competitive variant calling in the 86% of the genome

outside tandem repeat and homopolymer regions, and it suffers only in the 4% of the

genome which is highly repetitive.

Phaseset and Haplotagging Accuracy

We compared phaseset accuracy for Margin and WhatsHap on HG001 against GIAB’s

phased v3.3.2 variants with 25× nanopore, 50× nanopore, 75× nanopore, and 35×

PacBio HiFi data. We generated genotyped variants with PEPPER-Margin-DeepVariant,

and used both Margin and WhatsHap to phase the final variant set. The phasesets

produced by both tools were analyzed using whatshap stats and whatshap compare

against the trio-confirmed truth variants in high-confidence regions.

41

a

c

d

Chromosome 1 positions (Mbp)

Co
nc

or
da

nt
/d

isc
or

da
nt

 d
ep

th

b

−50

0

50

100

N
anopore

0 2 4 6 8

N50 (Mbp)

0.000

0.002

0.004

0.006

0.008

0.010

Sw
itc

h
ra

te

Margin
WhatsHap

HG001 25x Nanopore

HG001 50x Nanopore
HG001 75x Nanopore

HG001 35x PacBio HiFi

0 50 100 150 200 250
−100

−50

0

50

PacBio H
iFi

Runtime (mins)

0 250 500 750 1000

Nanopore 25x

Nanopore 50x

Nanopore 75x

PacBio HiFi 35x

Cost (USD)

$0.00 $1.00 $2.00 $3.00

Nanopore 25x

Nanopore 50x

Nanopore 75x

PacBio HiFi 35x

Margin haplotag
Margin phase
Whatshap haplotag
Whatshap phase

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative Coverage

0

1

2

3

4

Si
ze

 (M
bp

)

1e7

Nanopore and PacBio HiFi
phase-block size comparison.

HG003 Nanopore
HG004 Nanopore
HG003 PacBio HiFi
HG004 PacBio HiFi

e

0100 101 102 103 104 1 5

Length scale (bp)

0.980

0.985

0.990

0.995

1.000

100 101

0.997

0.998

0.999

1.000

101 103 105 107

Length scale (bp)

0.800

0.850

0.900

0.950

1.000

Lo
ca

l p
ha

si
ng

 c
or

re
ct

ne
ss

 (L
PC

) s
co

re

Margin
WhatsHap

HG001 25x Nanopore

HG001 50x Nanopore

HG001 75x Nanopore

HG001 35x PacBio HiFi

Length (bp)

Margin and WhatsHap
Runtime and cost comparison

Comparison of natural switch between Nanopore and PacBio HiFi with Margin

Margin and WhatsHap
switch rate comparison

Margin and WhatsHap
local phasing correctness comparison

Figure 3.3: Margin and WhatsHap phasing results. (a) Phaseset switch rate to
N50. (b) Novel metric “Local Phasing Correctness” analyzing phaseset accuracy across
different length scales. (c) “Natural Switch Rate” describing haplotagging accuracy for
reads. (d) Phaseset N50 for Nanopore and PacBio HiFi data on HG003 and HG004.
(e) Cost and runtime comparison between Margin and Whatshap.

For all datasets, Margin had a lower switch error rate (0.00875, 0.00857, 0.00816, 0.00895)

42

than WhatsHap (0.00923, 0.00909, 0.00906, 0.00930), but lower phaseset N50 (2.07, 4.21,

6.13, 0.24 Mb) than WhatsHap (2.37, 4.90, 8.27, 0.25 Mb) (Figure 3.3a, Supplementary

Tables A.20 and A.21).

We also compared phaseset accuracy for Margin and WhatsHap on the same data using

a novel metric we call “Local Phasing Correctness” (LPC). In brief, the LPC is a value

between 0 and 1 that summarizes whether every pair of heterozygous variants is correctly

phased relative to each other. The contribution of each pair of variants is weighted

based on the distance between them, with the weights varying according to a tunable

parameter, the “length scale”. The length scale can be understood roughly as the scale

of distances that influence the metric (see online methods). The LPC is a generalization

of the standard metrics of switch error rate and Hamming rate, which have a close

relationship with the LPC at length scales 0 and infinity respectively. We plot the

LPC across various length scale values (Figure 3.3b). Margin produced more accurate

phasing for all length scales for 25× nanopore and 35× CCS. Margin also produced more

accurate phasing for 50× nanopore for length scales up to 128kb and for 75× nanopore

for length scales up to 242kb, after which WhatsHap outperforms Margin. Both tools

exhibit local maxima for length scales from 20-30 kilobases.

To analyze haplotagging accuracy, we artificially constructed an admixture sample by

trio-binning reads from HG005 and HG02723 and combining an equal amount of maternal

reads from each sample, resulting in a 55× nanopore alignment and a 35× PacBio HiFi

alignment. We ran PEPPER-SNP, haplotagged each alignment with Margin using these

43

variants, and compared the number of direct-matched reads Rd (truth H1 to tagged H1

or truth H2 to tagged H2) and cross-matched reads Rc (truth H1 to tagged H2 or truth

H2 to tagged H1) of the output. In Figure 3.3c, for each 10kb bucket in chr1 we plot

the number of reads that were direct-matched (top, red) and cross-matched (bottom,

blue) for both data types, with phasesets plotted in black alternating between top and

bottom. With this “Natural Switch” plot, it is possible to identify consistent phasing

as regions where the majority of reads are either direct- or cross-matched, and switch

errors in the haplotagging as regions where the majority of reads transition between the

two. As the plot shows, nanopore reads allow us to haplotag consistently with phase

sets in the range of tens of megabases, whereas PacBio HiFi reads cannot be used for

long-range haplotagging. For each bucket we can calculate a local haplotagging accuracy

using the ratio: max(Rc,Rd)/(Rc +Rd). On average the haplotagging accuracy is 0.9626

for ONT data and 0.9800 for HiFi data using Margin (Supplementary Table A.22). Full

plots including local haplotagging accuracy visualization are shown in Supplementary

Figures A.3, A.4, A.5, A.6. As Margin has higher haplotagging accuracy compared

to WhatsHap, we see that the variant calling with Margin exhibits higher accuracy

compared to WhatsHap for both Oxford Nanopore and PacBio HiFi data (Supplementary

Table A.23, Supplementary Table A.12).

Lastly we compare the runtime and cost for the haplotag and phase actions on the

four HG001 datasets using Margin and WhatsHap. When configured to use 64 threads,

Margin at peak used 35GB of memory on a GCP instance n1-highcpu-64 costing

44

$2.27/hr. This results in a total cost (for haplotagging and phasing) of $1.35 (36m) for

25x ONT, $3.17 (84m) for 50x ONT, $4.64 (123m) for 75x ONT, $1.23 (33m) for 35x

PacBio HiFi. Given WhatsHap’s concurrent use of two threads and three GB of memory

we determined it could be run most cheaply on the GCP n1-standard-2 instance type

for $0.095/hr, resulting in a total cost of $1.48 (941m), $2.10 (1336m), $2.66 (1688m),

and $1.20 (764m) respectively (Supplementary table A.24)

45

Gene Analysis
a b

0

Classification

Wholly
in high confidence

Partly
in high confidence

Not
in high confidence

5000

10000

15000

20000

25000
G

en
e

C
ou

nt

23
71

2 26
77

0

11
37

222
49

1
(9

4.
9%

)

24
87

7
(9

2.
9%

)

98
07

 (8
6.

2%
)

22
19

1
(9

8.
7%

)

24
56

3
(9

8.
7%

)

To
ta

l G
en

es

W
ho

lly
 P

ha
se

d

N
o

Sw
itc

h
Er

ro
rs

To
ta

l G
en

es

W
ho

lly
 P

ha
se

d

N
o

Sw
itc

h
Er

ro
rs

To
ta

l G
en

es

W
ho

lly
 P

ha
se

d

Nanopore phasing statistics in
Gencode annotated gene regions

stratified by high confidence regions
Wholly phased Gencode annotated genes

in six samples with nanopore

Reference / Sample

Total
genes

(GRCh38)

HG003
(GRCh38)

HG004
(GRCh38)

Total
genes

(GRCh37)

HG001
(GRCh37)

HG005
(GRCh37)

HG006
(GRCh37)

HG007
(GRCh37)

0

10000

20000

30000

40000

50000

60000

G
en

e
C

ou
nt

60
65

6

53
81

7
(8

8.
7%

)

55
23

4
(9

1.
1%

)

62
43

8

57
17

5
(9

1.
6%

)

53
15

0
(8

5.
1%

)

53
11

2
(8

5.
1%

)

54
11

6
(8

6.
7%

)

c

Classification

0

500

1000

1500

2000

2500

3000

3500

G
en

e
C

ou
nt

37
93

 (1
00

.0
%

)
Al

l G
en

es

35
40

 (9
3.

3%
)

W
ho

lly
 P

ha
se

d

35
02

 (9
2.

3%
)

N
o

Sw
itc

h

37
70

 (9
9.

4%
)

C
D

S

33
84

 (8
9.

2%
)

Ex
on

18
84

 (4
9.

7%
)

G
en

e

34
81

 (9
1.

8%
)

C
D

S

31
21

 (8
2.

3%
)

Ex
on

17
38

 (4
5.

8%
)

G
en

e

Gene
phasing

Genes
without SNP, INDEL

errors

Wholly phased genes
without SNP, INDEL

or switch errors

Gene
phasing

Genes
without SNP, INDEL

errors

Wholly phased genes
without SNP, INDEL

or switch errors

Classification

0

500

1000

1500

2000

2500

3000

3500

G
en

e
C

ou
nt

37
93

 (1
00

.0
%

)
Al

l G
en

es

25
00

 (6
5.

9%
)

W
ho

lly
 P

ha
se

d

24
76

 (6
5.

3%
)

N
o

Sw
itc

h

37
91

 (9
9.

9%
)

C
D

S

37
45

 (9
8.

7%
)

Ex
on

30
37

 (8
0.

1%
)

G
en

e

24
74

 (6
5.

2%
)

C
D

S

24
46

 (6
4.

5%
)

Ex
on

20
86

 (5
5.

0%
)

G
en

e

Error statistics in protein coding regions in
PacBio-HiFi variant callsError statistics in protein coding regions in

nanopore variant calls

d

Figure 3.4: Gene analysis. (a) Phasing analysis for HG001 over GENCODE annotated
gene regions, stratified by GIAB high confidence coverage. Percentages are relative to
their predecessor. (b) Wholly phased GENCODE annotated gene regions. Percentages
are relative to the total genes annotated on the reference. (c) Error statistics including
wholly phased genes, genes without SNP or INDEL errors, and wholly phased genes
without SNP, INDEL, or switch errors over a subset of the protein coding genes. (d)
The same statistics on HG001 with 35x PacBio HiFi data.

We performed an analysis of Margin’s phasing over genic regions to understand its utility

for functional studies. With 75× nanopore data from HG001 on GRCh37, we classified

46

each of the GENCODE v35 genes[60] (coding and non-coding) as wholly, partially, or

not spanned for the GIAB v3.3.2 high confidence regions, the phasesets proposed by

Margin, and the switch errors determined by whatshap compare between the two. In

Figure 3.4a, we first plot the number of gene bodies as spanned by high confidence

regions (23712 wholly, 26770 partly, 11372 not), then further compare how many of each

division were wholly spanned by Margin’s phasesets (22491, 24877, 9807), and finally

how many of these had no detected phasing errors (22191, 24563, unknown). In Figure

3.4b, we plot the number of genes wholly phased by Margin on GRCh38 (60656) for

HG003 and HG004 (53817, 55234) and on GRCh37 (62438) for HG001, HG005, HG006,

and HG007 (57175, 53150, 53112, 54116).

We analyzed accuracy statistics for PEPPER-Margin-DeepVariant with the same HG001

data used above stratified by GENCODE annotations. SNP and INDEL accuracies are

largely similar between stratifications of all regions, all genes, and all protein coding

genes, with improved performance for protein coding sequence (including CDS, start

codon, and stop codon annotations for protein coding genes) (Supplementary Tables

A.25, A.26).

We combined the accuracy and phasing analysis by selecting the 3793 protein coding

genes which had at least 80% of their coding sequence covered by the high confidence

regions and analyzed the presence of phasing and SNP/INDEL errors on HG001 with

75x nanopore (Figure 3.4c) and 35x PacBio HiFi (Figure 3.4d) reads (Supplementary

Tables A.27, A.28). Nanopore had better read phasing for these genes, with 3540

47

wholly spanned by Margin’s phasesets and only 38 exhibiting a switch error (1.07%), as

compared to PacBio HiFi with 2500 wholly spanned genes and 24 switch errors (0.96%).

We then counted the number of genes which had no SNP or INDEL errors in the high

confidence region for the entire gene, all annotated exons in the gene, and all coding

sequences in the gene; PacBio HiFi performs best for this metric with 3037, 3745, and

3791 respectively as compared to nanopore with 1884, 3384, and 3770 perfectly called

regions. Lastly, we identified how many of these gene regions were perfectly captured

(wholly phased with no switch errors and having no SNP or INDEL miscalls) for the

entire gene (1738 for nanopore, 2086 for PacBio HiFi), for all annotated exons (3121,

2446), and for all coding sequences (3481, 2471). For nanopore data, we find that for

91.8% of genes the CDS is fully phased and genotyped without error, and for 82.3% of

genes all exons are fully phased and genotyped without error.

Diploid polishing of de novo assemblies

Oxford Nanopore-based assemblers like Flye [92] and Shasta [194] generate haploid

assemblies of diploid genomes. By calling and phasing variants against the haploid

contigs they produce, it is possible to polish the haploid assembly into a diploid assembly.

We implemented such a diploid de novo assembly polishing method with PEPPERMargin-

DeepVariant (Figure 3.5a). It can polish haploid Oxford Nanopore-based assemblies

with either Nanopore or PacBio HiFi reads.

The assembly polishing pipeline employs the modules similarly to the variant calling

48

pipeline. The difference between variant calling and assembly polishing is after we phase

the alignment file using the initial set of SNPs, we take candidates from each haplotype

independently and classify the candidate as error or not-error using DeepVariant. This

entails converting the genotyping classification used in variant calling to a binary

classification to predict if a candidate is true error or not. A detailed description of this

method is presented in the online methods.

49

a

b

Haplotyping

Haplotyping

SNP Calling
(RNN)

Margin
Haplotag

Alignment
reads to assembly

Haplotype-aware polishingPhased BAM

CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT

CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATC
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT

TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
TCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT

CGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATT
TGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT
GGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTT

ACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTG
GTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTGATTTCTCT

CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTAT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTT
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATC
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
CCTAATTGCTTAGGTTTAGTTTTATTTTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAATTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT
 TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
 TTCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCA
 TCCTATTGTGTCGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCAT
 CGAGGTGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATT
 TGGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTT
 GGACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTT
 ACCACGTTAGGTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTG

GTTGTTGATTTGCAATCTTTAGGATAGGTATTTATAGCTATTAACTTCCTTTATATAAGTTTTGGTATATTATGTCTTTATTTTACATCCATCTCGAAGTATTTCCCTTTTGATTTCTCT

PEPPER
SNP

PEPPER
HP

DeepVariant

DeepVariant HP:2
FASTA

Candidates
HP:1

Homozygous
variants

HP:1

Candidates
HP:2

Homozygous
variants

HP:2

HP:1
FASTA

1 10 20

1

10

20

30

40

50

1 10 20

1

10

20

30

40

50

1 10 20

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

Run-length observed in
 HiFi read alignments

R
un

-le
ng

th
 o

bs
er

ve
d

in
 a

ss
em

bl
y

30 40 50

30 40 50

30 40 50

Shasta haploid assem
bly

Shasta assem
bly

polished w
ith N

anopore reads
Shasta assem

bly
polished w

ith H
iFi reads

H
ifiasm

 assem
bly

CHM13 chrX
homopolymer run-length analysisc

d Switch error and hamming error estimation with YAK

Estimated quality value

0 10 20 30 40 50 60 70

H
G

00
5

H
G

00
73

3
H

G
02

72
3

C
H

M
13

ch
rX

Q31.08Flye haploid (ONT)

Q31.88Flye haploid (ONT)

Q31.93Flye haploid (ONT)

Q32.85Flye haploid (ONT)

Q32.00Shasta haploid (ONT)

Q32.52Shasta haploid (ONT)

Q32.70Shasta haploid (ONT)

Q34.60Shasta haploid (ONT)

Q35.06Shasta polished (ONT) HP1

Q35.80Shasta polished (ONT) HP1

Q35.83Shasta polished (ONT) HP1

Q37.47Shasta polished (ONT) HP1

Q35.06Shasta polished (ONT) HP2

Q35.79Shasta polished (ONT) HP2

Q35.84Shasta polished (ONT) HP2

Q43.54Shasta polished (HiFi) HP1

Q43.46Shasta polished (HiFi) HP1

Q43.83Shasta polished (HiFi) HP1

Q42.85Shasta polished (HiFi) HP1

Q43.50Shasta polished (HiFi) HP2

Q43.38Shasta polished (HiFi) HP2

Q43.85Shasta polished (HiFi) HP2

Q51.81Trio-hifiasm (HiFi) Mat

Q56.27Trio-hifiasm (HiFi) Mat

Q53.60Trio-hifiasm (HiFi) Mat

Q53.19Trio-hifiasm (HiFi)

Q51.72Trio-hifiasm (HiFi) Pat

Q55.94Trio-hifiasm (HiFi) Pat

Q53.35Trio-hifiasm (HiFi) Pat

Reference-free quality estimation with YAK

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Switch error-rate

0.0

0.1

0.2

0.3

0.4

H
am

m
in

g
er

ro
r

HG005
HG00733
HG02723

Shasta polished (Nanopore)
Shasta polished (PacBio HiFi)
Trio-Hifiasm (PacBio HiFi)

Shasta haploid assembly (Nanopore)
Flye haploid assembly (Nanopore)

Figure 3.5: Diploid assembly polishing results. (a) Illustration of the diploid
assembly polishing pipeline. (b) Estimated quality values of assemblies using YAK.
(c) CHM13-chrX run-length confusion matrix between different assemblies and PacBio
HiFi reads aligned to the corresponding assembly. (d) Switch error and hamming error
comparison between assemblies.

50

Diploid de novo assembly polishing performance

We generated haploid assemblies using Shasta [194] and Flye [92] for diploid samples

HG005, HG00733, HG02723, and haploid sample CHM13 (chrX) using nanopore reads,

and we polished the Shasta assemblies using ONT and PacBio HiFi reads. To evaluate

the base-level accuracy of the assemblies we use the kmer-based tool YAK[26], which uses

Illumina trio data to estimate sequence quality, switch error rates, and hamming error

rates. We compare the haploid assemblies, polished diploid assemblies, and trio-aware

diploid assemblies generated with hifiasm[26]. Hifiasm uses parental short-read data to

generate maternal and paternal assemblies.

The estimated quality values (QV) of nanopore-based assemblies with Shasta (HG005:

QV32, HG00733: QV32.7, HG02723: QV32.52) assembler are higher than the nanopore-

based Flye assemblies (HG005: QV31.08, HG00733: QV31.93, HG02723: QV31.88). Fur-

thermore, the NG50s of the Shasta assemblies (HG005: 39.83Mbp, HG00733: 42.49Mbp,

HG02723: 49.18Mbp) are higher compared to the Flye assemblies (HG005: 37.25Mbp,

HG00733: 36.60Mbp, HG02723: 39.65Mbp) (Supplementary table A.29).

As Shasta generated higher quality assemblies compared to Flye, we polished the Shasta

assemblies with the PEPPER-Margin-DeepVariant diploid polisher. The nanopore-

polished assemblies achieve Q35+ estimated quality (HG005: Q35.06, HG00733: QV35.83,

HG02723: QV35.8) and PacBio-HiFi-polished assemblies achieve Q40+ estimated quality

(HG005: Q43.5, HG00733: QV43.8, HG02723: QV43.8) for all three diploid samples.

51

Finally, we show that the unpolished CHM13-chrX Shasta assembly (QV34.6) can be

improved to QV36.9 with nanopore-based and QV42.7 PacBio-HiFi-based assembly

polishing with PEPPER-Margin-DeepVariant. Compared to the nanopore-based Shasta

assemblies, the trio-aware PacBio HiFi assembler hifiasm achieves higher quality assem-

blies with respect to base-level accuracy (HG005: QV51.81, HG00733: 53.6, HG02723:

55.94, CHM13-chrX: QV53.03) but the NG50 of the hifiasm assemblies are lower for

HG00733 and HG02723 samples (HG005: 51.32Mbp, HG00733: 32.47Mbp, HG02723:

22.21Mbp). In summary, PEPPER-Margin-DeepVariant achieves Q35+ ONT-based

assembly polishing and Q40+ PacBio-HiFi-based assembly polishing of ONT assemblies

(Figure 3.5b, Supplementary table A.29, Supplementary table A.30).

The dominant error modality for ONT data are homopolymers[194]. In Figure 3.5c

we show the run-length confusion matrix of PacBio HiFi read alignments to four chrX

assemblies of CHM13-chrX. The Shasta assembly starts to lose resolution at run-lengths

greater than 7 (RL-7) and loses all resolution around RL-25. The nanopore-polished

assembly improves homopolymer resolution up to RL-10, but also fails to resolve run-

lengths greater than RL-25. The PacBio HiFi polished assembly has fair resolution up

to RL-25. The trio-hifiasm assembly shows accurate homopolymer resolution up to and

beyond RL-50.

52

Method
Polished

with
Type

True

positives

False

negatives

False

positives
Recall Precision F1 score

Shasta -
INDEL 128989 253403 1629782 0.3373 0.0732 0.1203

SNP 1279988 1696540 939228 0.4300 0.5769 0.4928

Shasta Nanopore
INDEL 279793 102605 906353 0.7317 0.2397 0.3611

SNP 2940462 36058 68863 0.9879 0.9771 0.9825

Shasta
PacBio

HiFi

INDEL 367819 14575 19341 0.9619 0.9512 0.9565

SNP 2971733 4787 9689 0.9984 0.9968 0.9976

Hifiasm -
INDEL 374002 8390 12451 0.9781 0.9686 0.9733

SNP 2973193 3320 3730 0.9989 0.9987 0.9988

Table 3.1: Small variant accuracy evaluation of HG005 assemblies against GIAB HG005
v3.3.2 benchmarking set. We derive a small variant set against GRCh37 from the assem-
blies using dipcall[112] and compare the variant calls against HG005 GIAB benchmark.
We restrict our analysis in regions that are assembled by both Shasta and trio-hifiasm
and falls in the high-confidence region defined by GIAB.

Figure 3.5d shows the switch error-rate of the assemblies. The switch error-rate of

haploid Shasta assemblies (HG005: 0.16, HG00733: 0.26, HG02723: 0.28) reduce after

polishing with PEPPER-Margin-DeepVariant (HG005: 0.05, HG00733: 0.09, HG02723:

0.10) with ONT data. Similarly, the hamming error rate of the Shasta assemblies

(HG005: 0.29, HG00733: 0.43, HG02723: 0.42) reduce after polishing the assemblies

with ONT-data (HG005: 0.20, HG00733: 0.31, HG02723: 0.24). Compared to the

ONT-polished assemblies the PacBio-HiFi-polished assemblies have higher hamming

error-rate (HG005: 0.26, HG00733: 0.40, HG02723: 0.36) but lower switch error-rate

(HG005: 0.02, HG00733: 0.04, HG02723: 0.04). The trio-hifiasm that use maternal

and paternal short-reads to resolve haplotypes have much lower switch error-rate and

hamming error-rate (Figure 3.5d, Supplementary table A.30).

53

The trio-hifiasm method is able to phase large structural variants in the assemblies. There-

fore, trio-hifiasm is expected to produce globally higher quality assemblies. PEPPER-

Margin-DeepVariant can not achieve similar global accuracy by polishing haploid as-

semblies in a diploid manner with small variants. In table 3.1, we compare HG005

assemblies at the small variant level. The analysis show that the F1-score of unpolished

Shasta assembly (INDEL: 0.1203, SNP: 0.4928) improves significantly after polishing

with nanopore reads using PEPPER-Marin-DeepVariant (INDEL: 0.3611, SNP: 0.9825).

The PacBio-HiFi-polished Shasta assembly achieves similar F1-score (INDEL: 0.9565,

SNP: 0.9976) compared to the trio-hifiasm assembly (INDEL: 0.9733, SNP: 0.9988). This

analysis provide evidence that PEPPER-Margin-DeepVariant can effectively improve

the assembly quality at small variant level.

The current version of the PEPPER-Margin-DeepVariant pipeline does not attempt to

polish structural variants (SVs, >50bp in size). The resulting haplotypes preserve all

SVs initially contained in the input assembly. Since the input assemblies are haploid,

only one (randomly assembled) allele for each heterozygous SV is retained within the

pair of output haplotypes. To benchmark SV recall and precision, we first called SVs

from the assemblies using svim-asm [80] and then validated the reconstructed SV sets

using the previously described approach [233]. Our benchmarks using HG002, HG005,

HG0073 and HG02733 genomes show that input Shasta assemblies on average contained

signatures of 94.6% and 48.3% of homozygous and heterozygous SVs, respectively. After

polishing using PEPPER-Margin-DeepVariant, the average reconstruction rate slightly

54

increased to 95.7% and 50.9% for homozygous and heterozygous SVs, respectively. The

average SV precision was 81.6% before and 83.2% after polishing (Supplementary Table

A.31).

Discussion

Long-read sequencing technology is allowing gapless human genome assembly [135] and

enabling investigations in the most repetitive regions of the genome[153].

In this work, we present PEPPER-Margin-DeepVariant, a state-of-the-art long-read

variant calling pipeline for Oxford nanopore data. For the first time, we show that

nanopore-based SNP identification outperforms a state-of-the-art short-read based

method at whole genome scale. Particularly in segmental duplication and difficult-

to-map regions, the nanopore-based method outshines the short-read based method.

It seems likely, therefore, that the anticipated widespread application of long-read

variant calling will for the first time accurately illuminate variation in these previously

inaccessible regions of the genome.

The genomic contexts where nanopore SNP accuracy suffers for our pipeline are identifi-

able, meaning that variant calls in these regions can be treated with skepticism while

calls outside these contexts can be handled with confidence. The one obvious area that

Nanopore variant calling lags is in INDEL accuracy. While the results achieved here are

to our knowledge the best shown so far, we believe it is likely that further technological

55

innovations at the platform level will be required to make nanopore INDEL accuracy on

par with other technologies in all genomic contexts. However, we find that in the 86% of

the genome without tandem repeats or homopolymers, INDEL calls from our method

are already of high quality.

PEPPER-Margin-DeepVariant is designed for whole-genome sequencing analysis. Al-

though targeted sequencing with the Oxford Nanopore platform is reasonably popular,

several issues may limit the application. For example, read length, read quality, coverage,

and heterozygosity of the target region are expected to be fairly different than whole-

genome sequencing. Further investigation and benchmarking are required to extend

support for variant calling on amplicon sequencing data.

Oxford Nanopore provides a highly-multiplexed sequencing solution with its PromethION

device [194]. With this device and the PEPPER-Margin-DeepVariant pipeline described

here it should be comfortably possible to go from biosample collection to complete

genome inferences in under half a day. This fast turnaround should enable its use in a

medical context, where diagnosis for acute disease situations requires speed.

We have demonstrated our nanopore-based phasing is able to wholly phase 85% of

all genes with only 1.3% exhibiting a switch error. This phasing ability could play a

useful role in population genetics studies [204, 19] and clinical genomics [69]. For clinical

applications the accurate identification of compound-heterozygotes should be particularly

valuable.

56

We have extended PEPPER-Margin-DeepVariant to PacBio HiFi reads and demonstrated

a more accurate and cheaper solution to the existing WhatsHap-DeepVariant variant

calling methods, making cohort-wide variant calling and phasing with PacBio-HiFi more

accessible. Currently, we find PacBio-HiFi sequencing analyzed with our method has

the best performance, but we expect that improvements to nanopore pore technology

and basecalling may close this gap.

We have demonstrated diploid polishing of nanopore-based haploid assemblies with

PEPPER-Margin-DeepVariant. We achieve Q35+ nanopore polished assemblies and

Q40+ PacBio-HiFi-polished assemblies. We observe that our polishing method can

resolve homopolymer errors up to 20bp with PacBio HiFi data. However, our polishing

method fails to resolve 25bp+ long homopolymers indicating that they need to be resolved

during the consensus generation of the de novo assembly methods. As nanopore assembly

methods like Shasta move toward generating fully resolved diploid genome assemblies

like trio-hifiasm, our polishing method can enable nanopore-only Q40+ polished diploid

assemblies.

57

Methods

Analysis methods and data pre-processing

Read alignment

We used minimap2 [110] version 2.17-r941 and pbmm2 version 1.4.0 to align reads to

a reference genome. The supplementary notes have details on execution parameters.

Subsampling alignment files to different coverages

We used samtools [113] version 1.10 to generate alignment files of different coverages.

The supplementary notes have details on execution parameters.

Variant calling

We used the following methods to call variants with nanopore data:

• PEPPER-Margin-DeepVariant version r0.4.

• Medaka [123] version v1.2.1.

• Clair [125] version v2.1.1.

• Longshot [48] version v0.4.2.

For Illumina short-reads and PacBio HiFi we used DeepVariant version v1.1.0. The

details on execution parameters are available in supplementary notes.

58

Benchmarking variant calls

We used hap.py [99] version v0.3.12 to assess the variant calls against GIAB truth set.

The hap.py program is available via jmcdani20/hap.py:v0.3.12 docker image. The

command used for the assessment is described in the supplementary note.

For HG002, HG003, HG004, HG005 we used GIAB v4.2.1 truth set [216] against GRCh38

reference and for HG001, HG005, HG006, HG007 samples, we used v3.3.2 variant

benchmarks [236] against GRCh37 reference genome. We used GIAB stratification v2.0

files with hap.py to derive stratified variant calling results. The GIAB benchmarking

data availability is listed in data availability section of supplementary notes.

Mendelian Analysis

For our Mendelian Analysis we used RTG version 3.12 [32].

Phasing and haplotagging

We used Margin version v2.0 and WhatsHap [46] version v1.0 to haplotag and phase

the variants. Margin is available in https://github.com/UCSC-nanopore-cgl/margin

and WhatsHap is available in https://github.com/whatshap/whatshap. The details

on how we ran these tools is described in supplementary notes.

59

Small variant switch error rate and hamming error rate determination

We used a Workflow Description Language (WDL)-based analysis pipeline whatshap.wdl

available in https://github.com/tpesout/genomics_scripts to derive the switch

error rate and hamming error rate compared to the GIAB truth set. The whatshap.wdl

workflow invokes the stats and compare submodules available in whatshap version

v1.0.

In our analysis, we compared phased variants against GRCh37 reference against GIAB

v3.3.2 truth set to derive switch error rate and Hamming error rate. We only considered

variants that have PATMAT annotation in the truth set and that fall in the high-confidence

region defined by GIAB benchmarking set. The non-PATMAT annotated variants in

the GIAB benchmarking variant set are not trio-confirmed so we did not use those to

benchmarking our phasing methods. We used whatshap compare command to generate

the whole genome switch error rate and used a custom script defined in whatshap.wdl

to derive the hamming error rates.

Local phasing correctness calculation

For the Local Phasing Correctness (LPC) analysis, we used the

calcLocalPhasingCorrectness executable found in the

https://github.com/UCSC-nanopore-cgl/margin repository. The LPC analysis re-

quire a truth variant set and a query variant set. We used GIAB benchmarking set as

truth. The calcLocalPhasingCorrectness generates a tsv file describing the results.

60

We used

https://github.com/tpesout/genomics_scripts/plot_haplotagging_lpc.py

script to visualize the results. The details of parameters is described in supplementary

notes. The methods used in local phasing correctness as a metric is presented separately

in the methods description.

Haplotagging accuracy and natural switch determination

We used

https://github.com/tpesout/genomics_scripts/haplotagging_stats.py

to calculate the haplotagging accuracy. The script calculates average haplotagging

accuracy and average tagged reads per 10kb. Details on execution parameters is available

in supplementary notes.

We visualized the natural switch error using compare_read_phasing_hapBam.py avail-

able in https://github.com/tpesout/genomics_scripts. Details on execution pa-

rameters is available in supplementary notes.

Phaseblock N50 calculation

An N50 value is a weighted median; it is the length of the sequence in a set for which

all sequences of that length or greater sum to 50% of the set’s total size. We used the

ngx_plot.py available from

https://github.com/rlorigro/nanopore_assembly_and_polishing_assessment/

61

to plot phaseblock N50. From a phased VCF file, we extracted the phaseblock name,

contig, start position, and end position to create the input file. We used 3272116950 as

the size of the genome to maintain consistency with previous work [194].

Variant calling and phasing analysis on Gencode annotated regions

We used Gencode v35 [79] to determine the variant calling and phasing accuracy in

gene regions. The Gencode data is publicly available and can be found in data availably

section of supplementary notes. We used

https://github.com/tpesout/genomics_scripts/gencode_to_stratification.py

script to convert the Gencode regions to a bed file that is acceptable to hap.py. With

the newly defined stratified regions from Gencode, we ran hap.py to determine the

variant calling accuracy in gene regions.

Nanopore and PacBio HiFi de novo assembly generation

We used Shasta [194] with a development build after version 0.7.0 available from

https://github.com/chanzuckerberg/shasta

(commit 06a639d36d26a4203c0b934d6e63c719750c5398) and Flye [92] version 2.8.2

available from https://github.com/fenderglass/Flye to generate nanopore-based

de novo assemblies. For PacBio-HiFi-based assemblies we used hifiasm [26] version

0.14 available from https://github.com/chhylp123/hifiasm. The commands used

to generate the assemblies are provided in execution parameters section of supplementary

62

notes.

Assembly QV and switch error rate analysis

We assessed the assemblies with yak [26] version 0.1 available from

https://github.com/lh3/yak. YAK is a short-read kmer-based assembly quality

estimator. We use short-reads for each sample to estimate the quality of the assembly

with k-mer size of 31, With parental short-reads, YAK can also estimate the switch

error rate in the assembly. WDL version of the pipeline standard_qc_haploid.wdl is

available in https://github.com/human-pangenomics/hpp_production_workflows/.

Homopolymer run-length analysis

We used runLengthMatrix module of margin to derive the homopolymer run-length

analysis between assembly and reads. In runLengthMatrix, we convert each read

sequence into RLE form and track a map of raw positions to RLE positions. We convert

from a raw alignment to RLE alignment by iterating through the matches in raw space

and tracking the previous RLE match indices. From this set of matched read and

reference RLE positions, we construct a confusion matrix. Details of the command are

provided in execution parameters section of supplementary notes.

63

Small variant accuracy evaluation of assemblies

We used dipcall [112] to identify the small variants from the assemblies. The dipcall

variant identification takes the maternal and paternal haplotypes generated by a phased

assembly and a reference genome sequence. It maps the haplotypes to the reference

and generates a VCF file containing all small variants identified in the assembly. For

the haploid assembly, we provided the haploid assembly as both maternal and paternal

haplotypes to dipcall. dipcall also generates a bed file containing regions where the

assembly maps to the reference. We intersected the bed files to get regions that are

assembled by all assembly methods and intersected with GIAB high-confidence region.

Finally, we used hap.py to compare the variant calls derived from the assemblies against

GIAB benchmarking VCF to get the accuracy statistics. Please see supplementary notes

for dipcall parameters.

Structural variant accuracy evaluation of assemblies

We evaluated SV precision and recall for each assembly as follows. We aligned each set

of contigs (either haploid or diploid) against the reference with minimap2 v2.18 using

default parameters and the “asm5” preset. We have selected the hg19 reference (instead

of the hg38 version) to be able to compare against the curated set of SVs in the HG002

genome [233] that was initially produced using the hg19 reference. Given the reference

alignments, we used svim-asm 1.0.2 [80] in the respective (haploid or diploid) mode to

call SV of size more than 50bp. Given two sets of SV calls, we used the SVbenchmark

64

tool from the SVanalyzer package v0.36 with default parameters to estimate recall and

precision. To estimate recall for homozygous and heterozygous SVs separately, we split

each truth set into two respective parts. The statistics were evaluated within the GIAB

Tier1 high-confidence regions that cover 2.51Gb of the human genome [233].

The assemblies produced by hifiasm had high recall (97.8% homozygous 97.0% het-

erozygous) and precision (93%) against the HG002 curated SVs set (Supplementary

Table A.31). In addition, the recall and precision of the Shasta and PEPPER-Margin-

DeepVariant assemblies measured against the HG002 curated SVs were highly correlated

with recall and precision measured against the hifiasm SV calls. This allowed us to

estimate the SV recovery accuracy of the Shasta and PEPPER-Margin-DeepVariant

assemblies for the HG005, HG0073, and HG02733 genomes, for which curated sets of

SVs were not available.

Method description

PEPPER

PEPPER is a recurrent neural network-based sequence prediction tool. In PEPPER,

we use summary statistics derived from reads aligned to a reference to produce base

probabilities for each genomic location using a neural network. We translate the position-

specific base probabilities to the likelihood values of candidate variants observed from

the read alignments. We propose candidate variants with likelihood value above a set

threshold to DeepVariant for genotyping. Candidate pre-filtering with PEPPER ensures

65

a balanced classification problem for DeepVariant and achieves high-quality variant

calling from erroneous long-reads.

We use PEPPER in two steps in the variant calling pipeline. Initially, we use the

PEPPER-SNP submodule to find single nucleotide polymorphisms (SNPs) from the

initial unphased alignment file. In this setup, we tune PEPPER-SNP to have high

precision so Margin can use the SNPs confidently to phase the genome. To this end, we

also exclude insertions and deletions (INDELs) from the callset as they have notably

worse performance for nanopore reads. Margin can then tag reads in the alignment file

with predicted haplotypes.

After Margin, we use the PEPPER-HP submodule on the phased alignment file to

generate haplotype-specific likelihoods for each candidate variant observed from the read

alignments. In PEPPER-HP, we consider SNPs, insertions, and deletions as potential

candidate variants. We propose the candidate variants with likelihood values higher than

a set threshold to DeepVariant for genotyping with a more extensive convolutional neural

network (CNN). We tune PEPPER-HP to achieve high-sensitivity but low-precision

during candidate finding. The PEPPER-Margin-DeepVariant suite can identify small

variants with high-quality from erroneous reads.

66

PEPPER-SNP

PEPPER-SNP is a submodule of PEPPER used to identify single nucleotide polymor-

phisms from reads aligned to a reference sequence. PEPPER-SNP works in three steps:

image generation, inference, and candidate finding. First, we generate summary statistics

from reads aligned to a reference sequence. We encode basic alignment statistics at each

genomic location in an image-like tensor format. Second, we apply a recurrent neural

network to predict the two most likely bases at each genomic location. Finally, we use

the base predictions from each genomic location to compute the likelihoods of SNPs

we observe from the reads. We filter candidate variants with a likelihood value below

a set threshold to find a set of SNPs. Likelihood thresholds for PEPPER-SNP were

determined by training the model on HG002 chr1-19, selecting an appropriate threshold,

and verifying on chr20. The SNP set we get from PEPPER-SNP is used by Margin to

phase the alignment file.

PEPPER-SNP: Image generation

In the image generation step of PEPPER-SNP, we generate summary statistics of base-

level information per genomic location. The summary provides weighted observation of

bases from all reads divided into nucleotide and orientation.

In PEPPER-SNP, we do not encode insert bases observed in reads to reference alignment

as we only look for SNPs. We use a position value to represent a location in the reference

sequence. For each genomic location, we iterate over all reads that align to that genomic

67

location and encode ten features to encode base-level information: {A,C,G,T,Gap(∗)}

divided into two read orientations: {forward,reverse}. Finally, we normalize the

weights of each genomic position based on the read coverage.

Supplemental figure A.7 describes the feature encoding scheme we use in the image

generation step of PEPPER-SNP. The top row of the image, annotated as REF ,

describes the reference base observed at each genomic location. The colors describing

the bases are {A : Blue,C : Red,G : Green,T : Y ellow,Gap(∗) : White}. Each row after

REF describes a feature; each feature encodes an observation of nucleotide bases

from a forward, or a reverse strand read. We use ten features to encode base-level

information: {A,C,G,T,Gap(∗)} divided into two read orientations: {forward,reverse}.

For example, AF encodes the observations of base A from forward-strand reads, and

AR encodes observations of base A from reverse-strand reads. The columns describe

genomic locations to the reference sequence.

In each column, we encode each observation as weights, which we show as alpha of each

base. The grey weights are zero weights. At position (23), the weight distribution of

{C,G} bases indicates a potential heterozygous variant at that position. The REF row

is shown in the figure to describe the scheme; in practice, we do not encode the REF

row.

In the inference step of PEPPER-SNP, we use a recurrent neural network for sequence

prediction. The network architecture consists of two bidirectional gated recurrent

68

unit (GRU) layers and a linear transformation layer. The linear transformation layer

produces a prediction of two bases for each genomic location present in the sum-

mary image. To identify potential variants, we use 15 class-labels for base prediction:

{AA,AC,AG,AT,A∗,CC,CG,CT,C∗,GG,GT,G∗,TT,T∗,∗∗}. We do not use co-linear

classes like CA and AC as two separate classes, as it is not possible to differentiate

between these two classes from the summary observations.

From the image-generation module of PEPPER-SNP, we get summary images in 1kb

chunks. We use a sliding window method during inference and chunk the 1kb segments

into multiple overlapping windows of 100bp segments. We first run inference on the

leftmost window and go to the next window with 50bp overlapping bases. We pass the

hidden state output from the left window to the next window and keep a global inference

counter to record base-predictions.

PEPPER-SNP: Inference model

Supplemental figure A.8 describes the neural network-based inference scheme. The two

dotted boxes indicate two adjacent windows with overlapping sequences. The top panel

shows the inference scheme. We start with the first window and produce base predictions

for each genomic location present in that window; then, we slide the window to the

right. We do this from left to right on the entire genomic sequence. We record the base

predictions from all windows in a global counter and report them to the candidate finder

to calculate candidate likelihoods.

69

We trained the inference model using a gradient descent method. We use adaptive

moment estimation (Adam [145]) to compute gradients based on a cross-entropy loss

function. The loss function is defined to calculate the prediction performance at each

genomic location against a labeled set of expected base observations derived from the

Genome-In-A-Bottle (GIAB) truth set. The gradient optimization attempts to minimize

the loss function by tuning the parameters of the neural network.

We trained PEPPER-SNP with 100× coverage of HG002 data subsampled at different

coverage values (20x-100x). We split the training sets into three sets: train, test, and

holdout. We use chromosome 1 to 19 for training, chromosome 20 for testing, and we

keep 21 and 22 as holdout sets. We train the models for several epochs and test after

each epoch. Finally, we pick a model that performs the best on the holdout dataset.

PEPPER-SNP: Candidate finding

In the candidate finding step of PEPPER-SNP, we take the base-predictions and derive

likelihoods of SNPs we observe from the read alignments. If the likelihood value of a

variant is above a set threshold, we pick that allele to be a real variant.

In PEPPER-SNP, we derive a allele probability (AP) and a non-reference observation

likelihood (NR) for each observed SNP. First, at each genomic location (pos) we use the

prediction vector of base-classes

{AA,AC,AG,AT,A∗,CC,CG,CT,C∗,GG,GT,G∗,TT,T∗,∗∗} to derive two prediction

70

vectors V1[pos] = [A1,C1,G1,T1,Gap(∗)1] and V2[pos] = [A2,C2,G2,T2,Gap(∗)2]. For

example, the predicted value of class {GT} contributes to V1[pos][G1] and V2[pos][T2]

values. Then, we iterate over all the reads to find potential SNPs by recording each read

base that does not match the reference base. We calculate the likelihood of candidate

base b, observed at position pos, by taking the maximum likelihood from the prediction

vectors V1[pos] and V2[pos] as shown in equation 3.1 where we denote allele likelihood as

AP .

AP [b,pos] = max(V1[pos][b],V2[pos][b]) (3.1)

We also calculate the likelihood of non-reference base observation (NR) to estimate the

likelihood of observing any allele other than the reference allele at a location. We derive

non-reference base observation likelihood from prediction vectors V1 and V2 independently

and take the maximum value between two values. For each prediction vector, we take

the sum of the values, subtract the observation likelihood of the reference base, and

divide by the sum of the prediction vector. Equation 3.2 describes the calculation NR

in PEPPER-SNP.

NR[pos] = max(
∑

(V1[pos])−V1[pos][R[pos]]∑
(V1[pos]) ,

∑
(V2[pos])−V2[pos][R[pos]]∑

(V2[pos])) (3.2)

Finally, we derive a genotype for the variant from the prediction vector V1 and V2. If a

variant has a likelihood above a set threshold observed in both V1 and V2, we set the

71

genotype as a homozygous alternate (1/1). If the likelihood is above the threshold in

one vector but not in the other, we call it a heterozygous variant (0/1). For each variant,

we use NR value of that position to be the genotyping quality.

PEPPER-SNP: Code availability

PEPPER-SNP is available at https://github.com/kishwarshafin/pepper.

PEPPER-HP: Haplotype-aware sequence prediction.

PEPPER-HP is a haplotype-aware sequence prediction tool designed to find candidate

variants from read alignments. In PEPPER-HP, we take a phased alignment file as

input where each read has a haplotag of {0,1,2} indicating which haplotype the read

represents (or lack of haplotype information), and we output a set of SNP, insertion, and

deletion candidates for genotyping using DeepVariant.

Similar to the PEPPER-SNP submodule, PEPPER-HP has three steps, image generation,

inference, and candidate finding. In the image generation step, we generate two sets

of summary statistics, one per haplotype, and save them as image-like tensors. We

use a recurrent neural network to predict bases on each haplotype for each genomic

location in the inference step. Finally, we calculate likelihood values for SNP and INDEL

candidates based on base-predictions of each haplotype. We consider candidates with

likelihood values over a certain threshold to be candidate variants and propose them

to DeepVariant for genotyping. Similarly, likelihood thresholds for PEPPER-HP were

72

determined by training the model on HG002 chr1-19, selecting an appropriate threshold,

and verifying on chr20.

PEPPER-HP: Image generation

In the image generation step of PEPPER-HP, the input is an alignment file with phased

reads, and we generate image-like summary statistics of base-level information per

genomic location for each haplotype {0,1}. The summary of haplotype 1 provides

weighted observation of bases from reads with haplotag 1 divided into nucleotide and

orientation. Similarly, the haplotype 2 summary provides weighted observations of bases

from reads with haplotag 2. Reads that are unphased or have haplotag 0 contribute to

summary statistics for both haplotypes.

In PEPPER-HP, we represent position in reference sequence using two values: position

and index. The position value indicates a location in the reference sequence, and

we use the index to accommodate insert alleles anchored to a position. All reference

sequence positions have an index of 0. On each haplotype {0,1}, we iterate over all

haplotype associated reads that align a genomic location and encode ten features to

encode base-level information: {A,C,G,T,Gap(∗)} divided into two read orientations:

{forward,reverse}. The weights depend on the mapping quality and base quality of

the associated reads. Finally, we normalize the weights of each genomic position based

on the haplotype associated read coverage.

73

PEPPER-HP: Inference model

In Supplemental figure A.9, we describe the feature encoding scheme of PEPPER-HP.

We derive two summary statistics based on the haplotype association of the reads.

The top row of the image, annotated as REF , describes the reference base observed

at each genomic location. The colors describing the bases are {A : Blue,C : Red,G :

Green,T : Y ellow,Gap(∗) : White}. Each column represents a reference position with

two values (pos, index). For example, pos (14,0) is the reference reference position 14

and (14,1) is the insert base anchored in position (14,0). For each haplotype, we use

ten features to encode base-level information: {A,C,G,T,Gap(∗)} divided into two read

orientations: {forward,reverse}. From the summary, we can see that at location (23,0)

HP-1 observers C bases where the reference is T but in HP-2 the reads observe C bases

that match with the reference, denoting a heterozygous variant present in haplotype-1

sequence.

We use a recurrent neural network for sequence prediction on haplotype-specific images

of PEPPER-HP. The network architecture consists of two bidirectional gated recurrent

unit (GRU) layers and a linear transformation layer. For each haplotype, the linear

transformation layer predicts a base for each genomic location present in the image-like

tensor. We use five class-labels for base prediction: {A,C,G,T,Gap(∗)}.

The haplotype-specific images in 1kb chunks, and we use a sliding window method

to go over the 1kb chunk in overlapping 100bp segments on both haplotype images

74

simultaneously. We start from the leftmost window of 100bp and slide the window to

50bp to the right for the next step. We use two global counters from the base predictions,

one per haplotype, to record the haplotype-specific base predictions.

The inference scheme of PEPPER-HP is shown in Supplemental figure A.10. We have

two haplotype-specific image for each genomic region representing two haplotypes. For

each haplotype, we start from the leftmost window and generate haplotype-specific base

predictions. The base predictions are recorded in two global counters.

We train the PEPPER-HP inference model using a gradient descent method. We use

adaptive moment estimation (Adam) to compute gradients based on a cross-entropy loss

function. The loss function is defined to calculate the prediction performance at each

genomic location against a labeled set of expected base observations derived from the

Genome-In-A-Bottle (GIAB) truth set. We use GIAB v3.3.2 truth set as the variants

in v3.3.2 are phased. We use phase-specific base predictions to optimize PEPPER-HP

model for each haplotype.

We train PEPPER-HP with three sets of HG002 data with 50×, 80×, and 100× coverage.

We further generate multiple train sets by arbitrarily downsampling the three training

sets at different fractions. We split the training sets into three sets: train, test, and

holdout. We use chromosome 1 to 19 for training, chromosome 20 for testing, and we

keep 21 and 22 as holdout sets. We train the models for several epochs and test after

each epoch. Finally, we pick the model that performs the best on the holdout dataset.

75

PEPPER-HP: Candidate finding

In the candidate finding step of PEPPER-HP, we evaluate variants observed from the

read alignments. We use the base-predictions from the neural network to calculate the

likelihood of an observed allele. If the likelihood value of a candidate variant is above a

set threshold, we pick that variant as a potential candidate for DeepVariant to assess.

We evaluate the SNPs and INDELs observed in read alignments to find potential

candidate variants. First, at each genomic location (pos, index) we use the haplotype-

specific prediction values of base-classes VH1[pos, index] = [A1,C1,G1,T1,Gap(∗)1] and

VH2[pos, index] = [A2,C2,G2,T2,Gap(∗)2]. We iterate over all the reads to find potential

variants by recording the read base that does not match the reference base. We calculate

the allele likelihood of a SNP candidate APSNP with base observation b, observed at

position (pos, index), by taking the maximum likelihood from the prediction vectors

VH1[(pos, index)] and VH2[(pos, index)] as described in equation 3.3. For inserts and

deletes we extend the likelihood calculation to cover the length of the allele.

APSNP [b,pos] = max(VH1[(pos,0)][b],VH2[(pos,0)][b]) (3.3)

We also calculate the likelihood of observing a variant other than the reference allele

at any location. In equation 3.4, let R[(pos, index)] be the reference base at location

(pos, index) and N be the maximum index value observed in position pos. The reference

base at any position with index > 0 is gap(∗). We take the maximum value of observing

76

a non-reference base between (pos,0) and (pos,max_index[pos]). For each index, we

calculate the total value of the prediction vector, subtract the observation likelihood of

the reference base and divide by the sum of the prediction vector. The non-reference

observation likelihood NR is the maximum value we observe across index values. For

insertion and deletion alleles we cover the allele length and take the maximum value as

the NR for those candidates.

NR[pos] = Nmax
i=0

(
∑

(VH1[(pos,i)])−VH1[(pos,i)][R[pos,i]]∑
(VH1[(pos,i)]) ,

∑
(VH2[(pos,i)])−VH2[(pos,i)][R[pos,i]]∑

(VH2[(pos,i)]))

(3.4)

Based on the allele likelihood and non-reference observation likelihood, we calculate a

likelihood value for each type of candidate SNP, insert and delete. Then for each type,

we set a threshold value and if a candidate passes the threshold value, we propose the

candidate to DeepVariant for genotyping.

PEPPER-HP: Code availability

PEPPER-HP is available at https://github.com/kishwarshafin/pepper as a sub-

module.

Margin

Margin is a suite of tools employing Hidden Markov Models (HMMs) to perform genomic

analysis with long reads. MarginPhase (the first module) was introduced alongside

77

WhatsHap as a tool performing joint genotyping and phasing [46]. MarginPolish (the

second module) was introduced as a graph-based assembly polisher which can do

standalone polishing and is the first step in a two-part polishing framework MarginPolish-

HELEN [194]. Release 2.0 of Margin incorporates both tools into one suite, including

diploid-aware polishing in MarginPolish which has informed improvements in a new

iteration of MarginPhase.

In this paper we focus exclusively on improvements made to the phasing submodule.

The core partitioning algorithm is described in our previous work [46], but we provide a

summary here of the previous methodology, followed by a description of the modifications

made in the current iteration. First, we give a high-level overview of the phasing workflow.

Overview

Margin takes as input an alignment (BAM), reference (FASTA), and variant set (VCF). It

determines regions to run on from the alignment and variant set, and it breaks the input

into chunks to enable multiprocessing. For each chunk, it extracts reference substrings

around each variant site, and read substrings aligning around each variant site. For each

variant site, it calculates the alignment likelihood between all substrings and all variant

alleles. These likelihoods are used in the core phasing algorithm which bipartitions reads

and assigns alleles to haplotypes. After all chunks have been analyzed, we stitch the

chunks together to produce results across whole contigs. Last, we output a copy of the

input BAM with haplotagged reads and a copy of the input VCF with phased variants.

78

Parameterization. Margin is parameterized with a configuration file. For each config-

uration, parameters are grouped into polish and phase sections. There is overlap in

the parameters used by both submodules, so some parameters used by the phasing algo-

rithm fall under the polish heading and vice versa. When referenced in this document,

we specify the full path of the parameter and the default value associated with the

intended configuration. Default parameter values and thresholds were determined by

experimentation on the HG002 sample.

Core Phasing Algorithm

For the core phasing algorithm, we construct a graph G = (VG,EG) describing all

possible bipartitions of reads with positions as variant sites, vertices as a combination of

position and read bipartitions, and edges as possible transitions between bipartitions

for adjacent positions. For example, at position Pi with aligned reads R1 and R2, we

have the possible vertices Vi0 with haplotypes H1 = {R1,R2} and H2 = {} (R1,R2/.),

Vi1 = R1/R2, Vi2 = R2/R1, and Vi3 = ./R1,R2. At position Pj with the same aligned

reads R1, R2 and a new read R3, vertex Vj0 = R1,R2,R3/. and Vj1 = R1,R2/R3 are

both connected to vertex Vi0 because all reads shared between vertices are have the

same haplotype assignment, but Vj2 = R1/R2,R3 is not connected to Vi0 because read

R2 has different haplotype assignments in the two vertices. We extend each vertex

as described above to additionally represent all possible genotypes. After running the

forward-backward algorithm on this graph, at each position the posterior distribution

79

over states describing read bipartitions and genotypes can be marginalized to determine

the most likely genotype.

The state space for this algorithm increases exponentially with the number of reads at

each position. To account for this, Margin implements a pruning and merging heuristic

where the input is divided into smaller pieces, unlikely states are pruned, and the

resulting graphs are merged before running the full forward-backward algorithm.

Improved Functionality

One of the most significant changes to the Margin workflow is that we now only

analyze sites proposed by the input VCF. Previously we considered any reference

position where less than 80% of the nucleotides agreed with the reference base as

a candidate variant site. To determine which proposed variants are considered, we

read the input VCF and remove all INDEL variants (phase.onlyUseSNPVCFEntries

= false), all homozygous variants (phase.includeHomozygousVCFEntries = false),

all non-PASS variants (phase.onlyUsePassVCFEntries = true), and all variants with

a quality score below phase.minVariantQuality = 10. For each chunk, we perform an

adaptive sampling of variants (phase.useVariantSelectionAdaptiveSampling

= true) where we start by taking all variants with a quality score above

phase.variantSelectionAdaptiveSamplingPrimaryThreshold = 20. If the av-

erage distance between these variants for the chunk is greater than phase.

variantSelectionAdaptiveSamplingDesiredBasepairsPerVariant = 2000, we take

80

variants ordered by quality score descending until we achieve the desired number of

variants. These values were determined after experimentation on HG002.

Instead of considering only the nucleotide aligned directly to the variant position as the

first iteration of Margin had done, we now extract substrings from the reference and reads

and perform an alignment to determine which allele the read most likely originated from.

In theory, this allows Margin to use INDELs during phasing, although for our current

evaluations we do not test this functionality. When extracting reference bases, we take

phase.columnAnchorTrim = 12 bp from the reference before the variant position, and

the same amount upstream from the end of the variant position. All alleles (including

the reference allele) in the VCF are recreated by substituting the replaced reference base

with the allelic sequence from the VCF. Note that there is no further modification of

the reference sequences for cases where multiple variants fall within the extracted region.

From the reads, we extract all sequence between the first and last position matched to

the reference over the extracted reference region. Reads substrings for which the average

base-level quality score over the substring is less than polish.minAvgBaseQuality =

10 are excluded at these positions.

The original Margin phasing HMM used an emission model based off of a read error

model (empirically determined) and a mutation likelihood model (based on likelihood

of specific mutations). In the new implementation, we replace this with a likelihood

generated by aligning the read substrings to the allelic substrings.

81

As in the previous iteration, after running the forward-backward algorithm on the HMM

we marginalize over possible genotypes at each variant site to determine final predicted

haplotypes. Given these haplotypes and the read-to-allele alignment likelihoods, we

compute from which haplotype the read most likely originated using the joint probability

of the read substrings aligning to the alleles for each haplotype. This haplotyping step is

performed for all reads used for phasing, as well as other reads filtered out before phasing

(as described below in the Chunking section). If a read does not span any variants or

has equal likelihood of aligning to both haplotypes, no prediction is made regarding the

haplotype from which it originated.

Chunking

Margin divides input into polish.chunkSize = 100000 bp chunks with polish.chunkBoundary

= 10000 bp boundary on both ends, resulting in 2x polish.chunkBoundary overlap

between chunks. Once the boundaries have been determined, the ordering of the chunks

is mutated (polish.shuffleChunks = true) by default based on descending order of

size (polish.shuffleChunksMethod = size_desc), with random ordering (random)

also as a configurable option. While the ordering does not have a large effect on the

runtime during phasing, we found that deep chunks would take drastically longer to

complete for polishing, and ensuring that they were completed first would reduce overall

runtime for the submodule.

When operating on a chunk, Margin first extracts all the reads that have an align-

82

ment between the start and end of the chunk, tracking all alignments falling be-

tween the start and end of the extended boundary. Margin then collects a set of

reads to run the main algorithm on, first by removing reads that have a MQ score

below polish.filterAlignmentsWithMapQBelowThisThreshold = 10, are secondary

alignments (polish.includeSecondaryAlignments = false), or are supplementary

alignments (polish.includeSupplementaryAlignments = false). Given this set of

reads, we downsample to an expected depth of polish.maxDepth = 64 for haplotag-

ging and polish.maxDepth = 32 for variant phasing. The downsampling is biased

to maximize coverage over heterozygous variants given the constraint on expected

coverage. To accomplish this, we compute the sampling probabilities for each read

according to the following linear program, which we solve using the LP Solve library

(http://lpsolve.sourceforge.net/).

max
p

N∑
i=1

vipi

subject to 0 ≤ p ≤ 1 (3.5)
N∑

i=1
lipi ≤ CL,

where pi is the probability of selecting read i, vi is the number of heterozygous variants

on read i, li is the length of read i, C is the desired coverage, and L is the length of the

chunk.

The algorithm runs on the chunk region with the primary set of reads (all reads kept

83

after filtering and downsampling) and assigns reads and variants to haplotypes. Then it

takes any removed reads (either through filtering or downsampling) and assigns them to

haplotypes as described above. Margin tracks the assignment of variants to haplotypes

within the chunk (not including the boundaries), and of reads to haplotypes for the

whole region (including the boundaries).

To stitch two chunks together, we need to determine whether the two previous haplotypes

(P1,P2) are oriented with the two current haplotypes (C1,C2) in cis (P1C1,P2C2) or in

trans (P1C2,P2C1). To do this, we compare the number of reads that are in cis and in

trans between the two chunks; if there are more reads in trans, we switch the haplotypes

of the current chunk’s reads and variants. To mulithread this process, Margin separates

all the chunks in a contig into numThreads contiguous groups. The chunks in each of

the groups are stitched together by a single thread, and then the same stitching process

is used to stitch each of these groups together to complete the whole contig.

The final assignment of a read to a haplotype is determined by the haplotype it was

assigned to in the first chunk for the contig. The final assignment of an allele to a

haplotype is determined by the chunk it falls within (boundary region excluded).

Phaseset Determination

When writing the output VCF, Margin makes predictions about which sets of

variants are confidently inherited together and annotates the output with phaseset

84

(PS) tags. Margin will assign a phaseset to a variant if it is heterozygous, a SNP

(phase.onlyUseSNPVCFEntries = true), and if it agrees with the genotype from

the input VCF (phase.updateAllOutputVCFFormatFields = false). For variants

meeting this criteria, as Margin iterates through the VCF it will extend the current

phaseset unless (a) the variant is the first in the contig, (b) there are no reads spanning

between the current variant and the previous variant, (c) there is an unlikely division of

reads for the variant (explained below), or (d) the reads spanning the current variant

and the previous variant are discordant above some threshold (explained below). The

values described below were determined after experimentation on HG002.

To identify unlikely divisions of reads (which we take as potential evidence there is an

error in the phasing), we take the number of primary reads assigned to each haplotype

and find the binomial p-value for that division of reads. If that probability is less

than the threshold phase.phasesetMinBinomialReadSplitLikelihood = 0.0000001,

we create a new phase set for this variant.

Within each chunk region (boundary region excluded) and after determining haplotype

assignment for the reads, we track which primary reads were used for phasing and

to which haplotype they were assigned in the chunk. This serves as a check against

poorly-phased or poorly-stitched chunks. To determine discordancy in the phasing

between variants, we compare the number of reads which are in cis or “concordant”

(Cc) given the read assignment to adjacent variants, and the number in trans or “dis-

cordant” (Cd) between variants. If the discordancy ratio Cd/(Cc +Cd) is greater than

85

phase.phasesetMaxDiscordantRatio = 0.5, we create a new phase set for this variant.

Margin: Code availability

Margin is available at https://github.com/UCSC-nanopore-cgl/margin.

Local Phasing Correctness

The local phasing correctness (LPC) is a novel metric for measuring phasing accuracy that

we developed for this study. More precisely, the LPC is a family of metrics parameterized

by a varying parameter ρ ∈ [0,1], which controls the degree of locality. The LPC can

be seen as a generalization of the two most common metrics used to evaluate phasing

accuracy: the switch error rate and the Hamming rate. The switch error rate corresponds

to the LPC with ρ = 0 (fully local), and the Hamming rate is closely related to the LPC

with ρ = 1 (fully global). With intermediate values of ρ, the LPC can measure meso-level

phasing accuracy that the two existing metrics cannot quantify.

The LPC consists of a sum over all pairs of heterozygous variants where each pair

contributes an amount that decays with greater genomic distance. If the variants are

incorrectly phased relative to each other, the pair contributes 0. This sum is normalized

by its maximum value so that the LPC is always takes a value between 0 and 1. In

mathematical notation,

86

LPCρ =

∑N
i=1

∑N
j=1
j ̸=i

ρd(i,j)δ(i, j)∑N
i=1

∑N
j=1
j ̸=i

ρd(i,j)
, (3.6)

where d(i, j) is the distance between variants i and j, and δ(i, j) is an indicator for

whether variants i and j are correctly phased relative to each other. In the case that

ρ = 0 the above formula is undefined, and we instead take the limit of LPCρ as ρ → 0.

If we take d(i, j) to be |i − j|, then it can be shown that LPC0 is equivalent to the

complement of the switch error rate (i.e. the “switch correctness” rate). LPC1 is not

equivalent to the Hamming rate, but they are monotonic functions of each other. Thus,

LPC1 and Hamming rate always produce the same relative ranking but not the same

numerical value. Alternatively, we can take d(i, j) to be the genomic distance between

the variants, measured in base pairs. In doing so, the LPC no longer has the provable

relationships to switch error rate and Hamming rate, neither of which has any mechanism

to incorporate genomic distance. However, we consider the genomic distance to be a

more relevant measurement of distance for phasing accuracy than the variants’ ordinal

numbers. Accordingly, we believe that this amounts to a further strength of the LPC

over existing metrics, and all LPC values reported in this work use this definition of

distance.

The ρ parameter is mathematically convenient but difficult to interpret. To improve

interpretability, we can reparameterize the LPC with λ = − log2/ logρ, which we call the

“length scale”. This is the distance (measured either in base pairs or number of variants)

87

at which a pair of variants has 1/2 of the maximum weight. The length scale gives an

approximate sense of the scale of distances that the LPC incorporates, although it is

worth stressing that pairs that are closer together always receive more weight than pairs

that are further apart.

Local Phasing Correctness: Code availability

The code used to calculate LPC is available at https://github.com/UCSC-nanopore-cgl/margin.

DeepVariant

DeepVariant is a small variant identification method based on deep neural networks that

achieve high performance on different short-read and long-read sequencing platforms

[166]. DeepVariant has released models for different datatypes and a details of the

methods implemented in DeepVariant can be found in associated releases [166, 221].

Here we present an overview of the methods we implemented to achieve high performance

with nanopore data.

Adapting DeepVariant to Oxford Nanopore reads

DeepVariant performs variant calling in three stages, “make examples”, “call variants”,

and “postprocess variants”. In “make examples”, potential variant positions are identified

by applying a minimal threshold for evidence. In positions meeting the candidate

generation criteria, the reads overlapping the position are converted into a pileup of a

88

221-bp window centered at the variant. Multiple features of the reads are represented

as different dimensions in the pileup, including the read base, base quality, mapping

quality, strand, whether the read supports the variant, and whether the base matches the

reference. Prior to this work, the heuristics for candidate generation were simple (at least

2 reads supporting a variant allele and a variant allele fraction at least 0.12). However,

the higher error rate of Oxford Nanopore data generated far too many candidates for

DeepVariant to call variants in a genome in a reasonable time. To integrate DeepVariant

with PEPPER, we developed the ability to import candidates directly from a VCF to

replace the logic in “make examples”. This allows DeepVariant to read the output of

PEPPER, and in theory, can be used in a similar manner with the outputs of other

methods.

DeepVariant has released models for different datatypes [166, 221]. In order to achieve

high performance on Oxford Nanopore data, a new DeepVariant model trained for this

datatype was required. For this, we modified the training process for DeepVariant. The

training process for DeepVariant is very similar to the variant calling process (generating

candidates from make examples in a similar manner), but with the addition of a step

which reconciles a candidate variant with the truth label from Genome-in-a-Bottle. We

adapted this process to use the VcfCandidateImporter to propose PEPPER candidates.

Because the representations of variants can diverge from the representation in GIAB

(even for the same event), modifying the process for training required multiple rounds

of iteration to identify mislabeled edge cases and to modify the proposed candidate

89

representation for training.

With these modifications, training of DeepVariant models using the existing machinery

could proceed. These modifications also allowed existing logic for the stages “call variants”

and “postprocess variants” to work directly with the trained Oxford Nanopore model.

DeepVariant: Code availability

All code in the DeepVariant repository incorporates the improvements made for this

paper (https://github.com/google/deepvariant). This repository also contains a model

retraining tutorial (https://github.com/google/deepvariant/blob/r1.1/docs/deepvariant-

training-case-study.md).

Training PEPPER-DeepVariant for ONT basecallers

It is necessary to train new models once the underlying read quality of Oxford

Nanopore changes (i.e. basecaller update). The amount of compute resources depends

on the amount of data for training, and the degree of difference between the old

data for the model and the new data. It is possible to take the existing PEPPER

model and re-train it with 100x HG002 on one gpu for few hours to get a model

for the newer chemistry. Similarly, it is possible to take the existing DeepVariant

model and train the model for few hours on one GPU to get a model for the new

basecaller. A case study of re-training an Illumina model for BGISEQ is available

here (https://github.com/google/deepvariant/blob/r1.1/docs/deepvariant-training-case-

90

study.md). As the basecaller updates of ONT are incremental, we believe retraining to

newer basecall sets will not have resource bottleneck.

Assembly polishing with PEPPER-Margin-DeepVariant

The assembly polishing method of PEPPER-Margin-DeepVariant is described below:

1. PEPPER-SNP: PEPPER-SNP finds single nucleotide polymorphisms (SNPs)

from the read alignments to a haploid assembly using a RNN. For assembly

polishing, we use the same infrastructure described in the haplotype-aware variant

calling section.

2. Margin: Margin takes the SNPs reported by PEPPER-SNP and generates a

haplotagged alignment file using a HMM. For assembly polishing, we use the same

infrastructure described in the haplotype-aware variant calling section.

3. PEPPER-HP: PEPPER-HP takes the haplotagged alignment file and evaluates

each haplotype independently and produces haplotype-specific candidate SNP and

INDEL-like errors present in the assembly.

• Haplotype-1 and Haplotype-2 candidate finding: For haplotype-1, we take

reads with HP-1 and HP-0 and generate base-level summary statistics. Then

we use a RNN to produce nucleotide base predictions for each location of the

genome. Finally, we find all the observed SNP or INDEL-like candidates in

91

the reads with HP-1 and HP-0 tag and calculate a likelihood of each candidate

to be a potential error in the assembly. If the likelihood of the candidate

is above a set threshold, we propose that candidate as a potential edit for

haplotype-1(HP-1) of the assembly. For haplotype-2, we take reads with HP-2

and HP-0 and find SNP and INDEL-like candidate errors following the same

process described in Haplotype-1 candidate finding.

4. DeepVariant: DeepVariant takes the haplotype-specific candidate set from

PEPPER-HP and the haplotagged alignment from Margin to identify errors

present in the assembly using a convolutional neural network (CNN).

• Haplotype-1 and haplotype-2 polishing: For each candidate error from

haplotype-1 set proposed by PEPPER-HP, we generate a feature set

representing base, base-quality, mapping quality etc. in a tensor like format.

In haplotype-specific polishing setup, reads are sorted by their haplotags in

the order {HP-1, HP-0, HP-2}. Then we use a pre-trained inception_v3

CNN to generate a prediction of {0/0, 1/1} for each candidate. Candidates

in haplotype-1 that are classified as {1/1} are considered as missing

heterozygous variants from the haploid assembly or an error present in the

assembly. We apply the candidates of haplotype-1 classified as {1/1} to

the haploid assembly using bcftools consensus to get a polished assembly

haplotype_1.fasta representing one haplotype of the sample.

92

For haplotype-2, we sort the reads by their haplotags in the order {HP-2,

HP-0, HP-1}. Candidates in haplotype-2 that are classified as {1/1} are

similarly considered to be a missing heterozygous variant or an error present

in the assembly, and are applied to the haploid assembly to get the second

polished haplotype (haplotype_2.fasta).

We trained the PEPPER-Margin-DeepVariant assembly polishing method with HG002

assembly generated by the Shasta assembler. We first aligned the HG002 Shasta

assembly to GRCh38 reference with dipcall[112] to associate assembly contigs with

GRCh38 reference. Then we aligned HG002 GIAB v4.2.1 small variant benchmarking

set to the assembly and marked the high-confidence regions to restrict training only in

regions that GIAB notes as high-quality. The alignment between HG002 GIAB v4.2.1

to the assembly produced the training set. We trained PEPPER and DeepVariant on

contigs that associate to chr1-chr19 and used chr20 as a holdout set. We used the

same approach for Oxford Nanopore and PacBio HiFi based models.

93

Part IV

Efficient de novo assembly of

eleven human genomes in nine

days

94

Chapter 4

Nanopore sequencing and Shasta toolkit

enables de novo assembly of eleven

human genomes in nine days.

Preamble

This chapter contains the text from "Nanopore sequencing, and the Shasta toolkit enables

efficient de novo assembly of eleven human genomes," published in Nature Biotechnology

in May 2020. The manuscript details a de novo assembly and polishing pipeline aimed

at a large cohort of samples. The core contribution to this manuscript comes from Paolo

Carnevali, who developed the Shasta assembler, which holds the core results of this

manuscript. Paolo Carnevali shares the corresponding authorship of this manuscript

95

with Miten Jain and Benedict Paten.

I share the first authorship of this manuscript with Trevor Pesout, Ryan Lorig-Roach,

Marina Haukness, and Hugh E. Olsen. My contribution in this manuscript is designing

the polisher HELEN and performing analysis between the assemblies. This manuscript

received contributions from Colleen Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas

Maurer, Sergey Koren, Fritz J. Sedlazeck, Tobias Marschall, Simon Mayes, Vania Costa,

Justin M. Zook, Kelvin J. Liu, Duncan Kilburn, Melanie Sorensen, Katy M. Munson,

Mitchell R. Vollger, Jean Monlong, Erik Garrison, Evan E. Eichler, Sofie Salama,

David Haussler, Richard E. Green, Mark Akeson, Adam Phillippy, Karen Miga. This

manuscript was the first demonstration of the multiplexed sequencing ability of the

nanopore promethION device. I consider this a significant achievement to showcase the

ability to scale nanopore sequencing to cohort level.

Introduction

Short-read sequencing reference-assembly mapping methods only assay about 90% of

the current reference human genome assembly [46], and closer to 80% at high-confidence

[236]. The latest incarnations of these methods are highly accurate with respect to

single nucleotide variants (SNVs) and short insertions and deletions (indels) within this

mappable portion of the reference genome [166]. However, short reads are much less able

to de novo assemble a new genome [14], to discover structural variations (SVs) [3, 97]

96

(including large indels and base-level resolved copy number variations), and are generally

unable to resolve phasing relationships without exploiting transmission information or

haplotype panels [24].

Third generation sequencing technologies, including linked-reads [10, 53, 220] and long-

read technologies [87, 50], get around the fundamental limitations of short-read sequencing

for genome inference by providing more information per sequencing observation. In

addition to increasingly being used within reference guided methods [46, 82, 187, 163],

long-read technologies can generate highly contiguous de novo genome assemblies [29].

Nanopore sequencing, as commercialized by Oxford Nanopore Technologies (ONT),

is particularly applicable to de novo genome assembly because it can produce high

yields of very long 100+ kilobase (Kb) reads [88]. Very long reads hold the promise of

facilitating contiguous, unbroken assembly of the most challenging regions of the human

genome, including centromeric satellites, acrocentric short arms, rDNA arrays, and recent

segmental duplications [49, 56, 90]. We contributed to the recent consortium-wide effort

to perform the de novo assembly of a nanopore sequencing based human genome [88].

This earlier effort required considerable resources, including 53 ONT MinION flow cells

and an assembly process that required over 150,000 CPU hours and weeks of wall-clock

time, quantities that are unfeasible for production scale replication.

Making nanopore long-read de novo assembly easy, cheap and fast will enable new

research. It will permit both more comprehensive and unbiased assessment of human

97

variation, and creation of highly contiguous assemblies for a wide variety of plant and

animal genomes. Here we report the de novo assembly of eleven diverse human genomes

at near chromosome scale using a combination of nanopore and proximity-ligation (HiC)

sequencing [10]. We demonstrate a substantial improvement in yields and read lengths

for human genome sequencing at reduced time, labor, and cost relative to earlier efforts.

Coupled to this, we introduce a toolkit for nanopore data assembly and polishing that is

orders of magnitude faster than state-of-the-art methods.

Results

Nanopore sequencing eleven human genomes in nine days

We selected for sequencing eleven, low-passage (six passages), human cell lines of the

offspring of parent-child trios from the 1000 Genomes Project (1KGP) [34] and Genome-

in-a-Bottle (GIAB) [232] sample collections. Samples were selected to maximize captured

allelic diversity (see Online Methods).

We performed PromethION nanopore sequencing and HiC Illumina sequencing for the

eleven genomes. Briefly, we isolated HMW DNA from flash-frozen 50 million cell pellets

using the QIAGEN Puregene kit, with some modifications to the standard protocol to

ensure DNA integrity (see Online Methods). For nanopore sequencing, we performed a

size selection to remove fragments <10 kilobases (Kb) using the Circulomics SRE kit,

followed by library preparation using the ONT ligation kit (SQK-LSK109). We used

98

three flow cells per genome, with each flow cell receiving a nuclease flush every 20-24

hours. This flush removed long DNA fragments that could cause the pores to become

blocked over time. Each flow cell received a fresh library of the same sample after the

nuclease flush. A total of two nuclease flushes were performed per flow cell, and each

flow cell received a total of three sequencing libraries. We used Guppy version 2.3.5 with

the high accuracy flipflop model for basecalling (see Online Methods).

99

Figure 4.1: Nanopore sequencing results. (a) Throughput in gigabases from each
of three flowcells for eleven samples, with total throughput at top. (b) Read N50s for
each flowcell. (c) Alignment identities against GRCh38. Medians in a, b and c shown by
dashed lines, dotted line in c is mode. (d) Genome coverage as a function of read length.
Dashed lines indicate coverage at 10 and 100 Kb. HG00733 is bolded as an example.
(e) Alignment identity for standard and run-length encoded (RLE) reads. Data for
HG00733 chromosome 1 are shown. Dashed lines denote quartiles.

100

The nanopore sequencing for these eleven genomes was performed in nine days, producing

2.3 terabases of sequence. This was made possible by running up to 15 flow cells in

parallel during these sequencing runs. Results are shown in Fig. 4.1 and Supplementary

Tables B.1, B.2, and B.3. Nanopore sequencing yielded an average of 69 gigabases (Gb)

per flow cell, with the total throughput per individual genome ranging between 48x

(158 Gb) and 85x (280 Gb) coverage per genome (Fig. 4.1a). The read N50s for the

sequencing runs ranged between 28 Kb and 51 Kb (Fig. 4.1b). We aligned nanopore

reads to the human reference genome (GRCh38) and calculated their alignment identity

to assess sequence quality (see Online Methods). We observed that the median and

modal alignment identity was 90% and 93% respectively (Fig. 4.1c). The sequencing

data per individual genome included an average of 55x coverage arising from 10 Kb+

reads, and 6.5x coverage from 100 Kb+ reads (Fig. 4.1d). This was in large part due

to size-selection which yielded an enrichment of reads longer than 10 Kb. To test the

generality of our sequencing methodology for other samples, we sequenced high-molecular

weight DNA isolated from a human saliva sample using identical sample preparation. The

library was run on a MinION (approximately one sixth the throughput of a ProMethION

flow cell) and yielded 11 Gb of data at a read N50 of 28 Kb (Supplementary Table B.4),

extrapolating both are within the lower range achieved with cell line derived DNA.

101

Shasta: assembling a human genome from nanopore reads in under 6

hours

To assemble the genomes, we developed a new de novo assembly algorithm, Shasta.

Shasta was designed to be orders of magnitude faster and cheaper at assembling a

human-scale genome from nanopore reads than the Canu assembler used in our earlier

work [88]. A detailed description of algorithms and computational techniques used is

provided in the Online Methods section. Here we summarize key points:

• During most Shasta assembly phases, reads are stored in a homopolymer-

compressed (HPC) form using Run-Length Encoding (RLE) [110, 181, 140]. In

this form, identical consecutive bases are collapsed, and the base and repeat count

are stored. For example, GATTTACCA would be represented as (GATACA, 113121).

This representation is insensitive to errors in the length of homopolymer runs,

thereby addressing the dominant error mode for Oxford Nanopore reads [87]. As

a result, assembly noise due to read errors is decreased, and significantly higher

identity alignments are facilitated (Fig. 4.1e).

• A marker representation of reads is also used, in which each read is represented

as the sequence of occurrences of a predetermined, fixed subset of short k-mers

(marker representation) in its run-length representation.

• A modified MinHash [17, 11] scheme is used to find candidate pairs of overlapping

reads, using as MinHash features consecutive occurrences of m markers (default

102

m = 4).

• Optimal alignments in marker representation are computed for all candidate

pairs. The computation of alignments in marker representation is very efficient,

particularly as various banded heuristics are used.

• A Marker Graph is created in which each vertex represents a marker found to be

aligned in a set of several reads. The marker graph is used to assemble sequence

after undergoing a series of simplification steps.

• The assembler runs on a single machine with a large amount of memory (typically

1-2 TB for a human assembly). All data structures are kept in memory, and no

disk I/O takes place except for initial loading of the reads and final output of

assembly results.

103

Figure 4.2: Assembly results for four assemblers and three human samples,
before polishing. (a) NGx plot showing contig length distribution. The intersection of
each line with the dashed line is the NG50 for that assembly. (b) NGAx plot showing the
distribution of aligned contig lengths. Each horizontal line represents an aligned segment
of the assembly unbroken by a disagreement or unmappable sequence with respect to
GRCh38. The intersection of each line with the dashed line is the aligned NGA50 for
that assembly. (c) Assembly disagreement counts for regions outside of centromeres,
segmental duplications and, for HG002, known SVs. (d) Total generated sequence length
vs. total aligned sequence length (against GRCh38). (e) Balanced base-level error rates
for assembled sequences. (f) Average runtime and cost for assemblers (Canu not shown).

104

To validate Shasta, we compared it against three contemporary assemblers: Wtdbg2

[182], Flye [93] and Canu [96]. We ran all four assemblers on available read data from two

diploid human samples, HG00733 and HG002, and one haploid human sample, CHM13.

HG00733 and HG002 were part of our collection of eleven samples, and data for CHM13

came from the T2T consortium [206].

Canu consistently produced the most contiguous assemblies, with contig NG50s of 40.6,

32.3, and 79.5 Mb, for samples HG00733, HG002, and CHM13, respectively (Fig. 4.2a).

Flye was the second most contiguous, with contig NG50s of 25.2, 25.9, and 35.3 Mb,

for the same samples. Shasta was next with contig NG50s of 21.1, 20.2, and 41.1 Mb.

Wtdbg2 produced the least contiguous assemblies, with contig NG50s of 15.3, 13.7, and

14.0 Mb.

Conversely, aligning the samples to GRCh38 and evaluating with QUAST [138], Shasta

had between 4.2 to 6.5x fewer disagreements (locations where the assembly contains

a breakpoint with respect to the reference assembly) per assembly than the other

assemblers (Supplementary Table B.5). Breaking the assemblies at these disagreements

and unaligned regions with respect to GRCh38, we observe much smaller absolute

variation in contiguity (Fig. 4.2b, Supplementary Table B.5). However, a substantial

fraction of the disagreements identified likely reflect true SVs with respect to GRCh38. To

address this we discounted disagreements within chromosome Y, centromeres, acrocentric

chromosome arms, QH-regions, and known recent segmental duplications (all of which

are enriched in SVs[6, 202]); in the case of HG002, we further excluded a set of known

105

SVs [234]. We still observe between 1.2x to 2x fewer disagreements in Shasta relative to

Canu and Wtdbg2, and comparable results against Flye (Fig. 4.2c, Supplementary Table

B.6). To account for differences in the fraction of the genomes assembled, we analysed

disagreements contained within the intersection of all the assemblies (i.e. in regions

where all assemblers produced a unique assembled sequence). This produced results

highly consistent with the prior analysis, and suggests Shasta and Flye have the lowest

and comparable rates of misassembly (Online Methods, Supplementary Table. B.7).

Finally, we used QUAST to calculate disagreements between the T2T Consortium’s

chromosome X assembly, a highly curated, validated assembly [206] and the subset

of each CHM13 assembly mapping to it; Shasta has 2x to 17x fewer disagreements

than the other assemblers while assembling almost the same fraction of the assembly

(Supplementary Table B.8).

Canu consistently assembled the largest genomes (avg. 2.91 Gb), followed by Flye (avg.

2.83 Gb), Wtdbg2 (avg. 2.81 Gb) and Shasta (avg. 2.80 Gb). We would expect the vast

majority of this assembled sequence to map to another human genome. Discounting

unmapped sequence, the differences are smaller: Canu produced an avg. 2.86 Gb of

mapped sequence per assembly, followed by Shasta (avg. 2.79 Gb), Flye (avg. 2.78 Gb)

and Wtdbg2 (avg. 2.76 Gb) (Fig. 4.2d; see Online Methods). This analysis supports

the notion that Shasta is currently relatively conservative vs. its peers, producing the

highest proportion of directly mapped assembly per sample.

For HG00733 and CHM13 we examined a library of bacterial artificial chromosome

106

(BAC) assemblies (see Online Methods). The BACs were largely targeted at known

segmental duplications (473 of 520 BACs lie within 10 Kb of a known duplication).

Examining the subset of BACs for CHM13 and HG00733 that map to unique regions

of GRCh38 (see Online Methods), we find Shasta contiguously assembles all 47 BACs,

with Flye performing similarly (Supplementary Table B.9). In the full set we observe

that Canu (411) and Flye (282) contiguously assemble a larger subset of the BACs

than Shasta (132) and Wtdbg2 (108), confirming the notion that Shasta is relatively

conservative in these duplicated regions (Supplementary Table B.10). Examining the

fraction of contiguously assembled BACs of all BACs represented in each assembly we

can measure an aspect of assembly correctness. In this regard Shasta (97%) produces a

much higher percentage of correct BACs in duplicated regions vs. its peers (Canu: 92%,

Flye 87%, Wtdbg2 88%). In the intersected set of BACs attempted by all assemblers

(Supplementary Table B.11) Shasta: 100%, Flye: 100%, Canu: 98.50% and Wtdbg2:

90.80% all produce comparable results.

Shasta produced the most base-level accurate assemblies (avg. balanced error rate 0.98%

on diploid and 0.54% on haploid), followed by Wtbdg2 (1.18% on diploid and 0.69% on

haploid), Canu (1.40% on diploid and 0.71% on haploid) and Flye (1.64% on diploid and

2.21% on haploid) (Fig. 4.2e); see Online Methods, Supplementary Table B.12. We also

calculated the base level accuracy in regions covered by all the assemblies and observe

results consistent with the whole genome assessment (Supplementary Table B.13).

Shasta, Wtdbg2 and Flye were run on a commercial cloud, allowing us to reasonably

107

compare their cost and run time (Fig. 4.2e; see Online Methods). Shasta took an average

of 5.25 hours to complete each assembly at an average cost of $70 per sample. In contrast,

Wtdbg2 took 7.5x longer and cost 3.7x as much, and Flye took 11.9x longer and cost

9.9x as much. The Canu assemblies were run on a large compute cluster, consuming up

to $19,000 (estimated) of compute and took around 4-5 days per assembly (see Online

Methods, Supplementary Tables B.14, B.15).

To assess the utility of using Shasta for SV characterization we created a workflow

to extract putative heterozygous SVs from Shasta assembly graphs (Online Methods).

Extracting SVs from an assembly graph for HG002, the length distribution of indels shows

the characteristic spikes for known retrotransposon lengths (Supplementary Fig. B.1).

Comparing these SVs to the high-confidence GIAB SV set we find good concordance,

with a combined F1 score of 0.68 (Supplementary Table B.16).

108

Contiguously assembling MHC haplotypes

Figure 4.3: Shasta MHC assemblies vs GRCh38. Unpolished Shasta assembly for
CHM13 and HG00733, including HG00733 trio-binned maternal and paternal assemblies.
Shaded gray areas are regions in which coverage (as aligned to GRCh38) drops below 20.
Horizontal black lines indicate contig breaks. Blue and green describe unique alignments
(aligning forward and reverse, respectively) and orange describes multiple alignments.

109

The Major Histocompatibility Complex (MHC) region is difficult to resolve using short

reads due to its repetitive and highly polymorphic nature [15], but recent efforts to

apply long read sequencing to this problem have shown promise [88, 207]. We analyzed

the assemblies of CHM13 and HG00733 to see if they spanned the region. For the

haploid assembly of CHM13 we find MHC is entirely spanned by a single contig in all 4

assemblers’ output, and most closely resembles the GL000251.2 haplogroup among those

provided in GRCh38 (Fig. 4.3a; Supplementary Fig. B.2 and Supplementary Table

B.17). In the diploid assembly of HG00733 two contigs span the large majority of the

MHC for Shasta and Flye, while Canu and Wtdbg2 span the region with one contig (Fig.

4.3b; Supplementary Fig. B.3). However, we note that the chimeric diploid assembly

leads to sequences that do not closely resemble any haplogroup (see Online Methods).

To attempt to resolve haplotypes of HG00733 we performed trio-binning [95], where we

partitioned all the reads for HG00733 into two sets based on likely maternal or paternal

lineage and assembled the haplotypes (see Online Methods). For all haplotype assemblies

the global contiguity worsened significantly (as the available read data coverage was

approximately halved, and further, not all reads could be partitioned), but the resulting

disagreement count decreased (Supplementary Table B.18). When using haploid trio-

binned assemblies, the MHC was spanned by a single contig for the maternal haplotype

(Fig. 4.3c, Supplementary Fig. B.4, Supplementary Table B.19), with high identity to

GRCh38 and having the greatest contiguity and identity with the GL000255.1 haplotype.

For the paternal haplotype, low coverage led to discontinuities (Fig. 4.3d) breaking the

110

region into three contigs.

Deep neural network based polishing achieves greater than QV30 long-

read only haploid polishing accuracy

Accompanying Shasta, we developed a deep neural network based consensus sequence

polishing pipeline designed to improve the base-level quality of the initial assembly. The

pipeline consists of two modules: MarginPolish and HELEN. MarginPolish uses a banded

form of the forward-backward algorithm on a pairwise hidden Markov model (pair-HMM)

to generate pairwise alignment statistics from the RLE alignment of each read to the

assembly [44]. From these statistics MarginPolish generates a weighted RLE Partial

Order Alignment (POA) graph [104] that represents potential alternative local assemblies.

MarginPolish iteratively refines the assembly using this RLE POA, and then outputs

the final summary graph for consumption by HELEN. HELEN employs a multi-task

recurrent neural network (RNN) [131] that takes the weights of the MarginPolish RLE

POA graph to predict a nucleotide base and run-length for each genomic position. The

RNN takes advantage of contextual genomic features and associative coupling of the

POA weights to the correct base and run-length to produce a consensus sequence with

higher accuracy.

To demonstrate the effectiveness of MarginPolish and HELEN, we compared them with

the state-of-the-art nanopore assembly polishing workflow: four iterations of Racon

polishing [210] followed by Medaka [123]. Here MarginPolish is analogous in function to

111

Racon, both using pair-HMM based methods for alignment and POA graphs for initial

refinement. Similarly, HELEN is analogous to Medaka, in that both use a deep neural

network and both work from summary statistics of reads aligned to the assembly.

Figure 4.4a and Supplementary Tables B.20, B.21 and B.22 detail error rates for the four

methods performed on the HG00733 and CHM13 Shasta assemblies (see Online Methods)

using Pomoxis [124]. For the diploid HG00733 sample MarginPolish and HELEN achieve

a balanced error rate of 0.388% (QV 24.12), compared to 0.455% (QV 23.42) by Racon

and Medaka. For both polishing pipelines, a significant fraction of these errors are likely

due to true heterozygous variations. For the haploid CHM13 we restrict comparison to

the highly curated X chromosome sequence provided by the T2T consortium [206]. We

achieve a balanced error rate of 0.064% (QV 31.92), compared to Racon and Medaka’s

0.110% (QV 29.59).

For all assemblies, errors were dominated by indel errors, e.g. substitution errors are

3.16x and 2.9x fewer than indels in the polished HG000733 and CHM13 assemblies,

respectively. Many of these errors relate to homopolymer length confusion; Fig. 4.4b

analyzes the homopolymer error rates for various steps of the polishing workflow for

HG00733. Each panel shows a heatmap with the true length of the homopolymer run

on the y-axis and the predicted run length on the x-axis, with the color describing the

likelihood of predicting each run length given the true length. Note that the dispersion

of the diagonal steadily decreases. The vertical streaks at high run lengths in the

MarginPolish and HELEN confusion-matrix are the result of infrequent numerical and

112

encoding artifacts (see Online Methods, Supplementary Fig. B.5).

Figure 4.4c and Supplementary Table B.23 show the overall error rate after running

MarginPolish and HELEN on HG00733 assemblies generated by different assembly tools,

demonstrating that they can be usefully employed to polish assemblies generated by

other tools.

To investigate the benefit of using short reads for further polishing, we polished chro-

mosome X of the CHM13 Shasta assembly after MarginPolish and HELEN using 10X

Chromium reads with the Pilon polisher [218]. This led to a ~2x reduction in base errors,

increase the Q score from ~QV32 (after polishing with MarginPolish and HELEN) to

~QV36 (Supplementary Table B.24). Notably, attempting to use Pilon polishing on the

raw Shasta assembly resulted in much poorer results (QV24).

Figure 4.4d and Supplementary Table B.25 describe average runtimes and costs for the

methods (see Online Methods). MarginPolish and HELEN cost a combined $107 and

took 29 hours of wall-clock time on average, per sample. In comparison Racon and

Medaka cost $621 and took 142 wall-clock hours on average, per sample. To assess

single-region performance we additionally ran the two polishing workflows on a single

contig (roughly 1% of the assembly size), MarginPolish/HELEN was 3.0x faster than

Racon (1x)/Medaka (Supplementary Table B.26).

113

Figure 4.4: Polishing Results. (a) Balanced error rates for the four methods on
HG00733 and CHM13. (b) Row-normalized heatmaps describing the predicted run-
lengths (x-axis) given true run lengths (y-axis) for four steps of the pipeline on HG00733.
(c) Error rates for MarginPolish and HELEN on four assemblies. (d) Average runtime
and cost.

114

Long-read assemblies contain nearly all human coding genes

To evaluate the accuracy and completeness of an assembled transcriptome we ran the

Comparative Annotation Toolkit [55], which can annotate a genome assembly using

the human GENCODE [59] reference human gene set (Table 4.1, Online Methods,

Supplementary Tables B.27, B.28, B.29, and B.30.).

For the HG00733 and CHM13 samples we found that Shasta assemblies polished with

MarginPolish and HELEN were close to representing nearly all human protein coding

genes, having, respectively, an identified ortholog for 99.23% (152 missing) and 99.11%

(175 missing) of these genes. Using the restrictive definition that a coding gene is complete

in the assembly only if it is assembled across its full length, contains no frameshifts,

and retains the original intron/exon structure, we found that 68.07% and 74.20% of

genes, respectively, were complete in the HG00733 and CHM13 assemblies. Polishing

the Shasta assemblies alternatively with the Racon-Medaka pipeline achieved similar

but uniformly less complete results.

Comparing the MarginPolish and HELEN polished assemblies for HG00733 generated

with Flye, Canu and Wtdbg2 to the similarly polished Shasta assembly we found that

Canu had the fewest missing genes (just 51), but that Flye, followed by Shasta, had

the most complete genes. Wtdbg2 was clearly an outlier, with notably larger numbers

of missing genes (506). For comparison we additionally ran BUSCO [197] using the

eukaryote set of orthologs on each assembly, a smaller set of 303 expected single-copy

115

Sample Assembler Polisher
Genes

Found %

Missing

Genes

Complete

Genes %

HG00733

Canu HELEN 99.741 51 67.038

Flye HELEN 99.405 117 71.768

Wtdbg2 HELEN 97.429 506 66.143

Shasta HELEN 99.228 152 68.069

Shasta Medaka 99.141 169 66.27

CHM13
Shasta HELEN 99.111 175 74.202

Shasta Medaka 99.035 190 73.836

Table 4.1: CAT transcriptome analysis of human protein coding genes for HG00733 and
CHM13.

116

genes (Supplementary Tables B.31 and B.32). We find comparable performance between

the assemblies, with small differences largely recapitulating the pattern observed by the

larger CAT analysis.

Comparing to a PacBio HiFi Assembly

We compared the CHM13 Shasta assembly polished using MarginPolish and HELEN

with the recently released Canu assembly of CHM13 using PacBio HiFi reads [215];

HiFi reads being based upon circular consensus sequencing technology that delivers

significantly lower error rates. The HiFi assembly has lower NG50 (29.0 Mb vs. 41.0

Mb) than the Shasta assembly (Supplementary Fig. B.6). Consistent with our other

comparisons to Canu, the Shasta assembly also contains a much lower disagreement count

relative to GRCh38 (1073) than the Canu based HiFi assembly (8469), a difference which

remains after looking only at disagreements within the intersection of the assemblies

(380 vs. 594). The assemblies have an almost equal NGAx (~20.0Mb), but the Shasta

assembly covers a smaller fraction of GRCh38 (95.28% vs. 97.03%) (Supplementary Fig.

B.7, Supplementary Table B.33). Predictably, the HiFi assembly has a higher QV value

than the polished Shasta assembly (QV41 vs. QV32).

117

Assembling, polishing and scaffolding 11 human genomes at near chro-

mosome scale

Figure 4.5: HiRise scaffolding for 11 genomes. (a) NGx plots for each of the
11 genomes, before (dashed) and after (solid) scaffolding with HiC sequencing reads,
GRCh38 minus alternate sequences is shown for comparison. (b) Dot plot showing
alignments between the scaffolded HG00733 Shasta assembly and GRCh38 chromosome
scaffolds. Blue indicates forward aligning segments, green indicates reverse, with both
indicating unique alignments.

To achieve chromosome length sequences we scaffolded all of the polished Shasta as-

semblies with HiC proximity-ligation data using HiRise [172] (see Online Methods, Fig.

4.5a). On average, 891 joins were made per assembly. This increased the scaffold NG50s

to near chromosome scale, with a median of 129.96 Mb, as shown in Fig. 4.5a, with

additional assembly metrics in Supplementary Table B.36. Proximity-ligation data can

also be used to detect misjoins in assemblies. In all 11 Shasta assemblies, no breaks to

existing contigs were made while running HiRise to detect potential misjoins. Aligning

HG00733 to GRCh38, we find no major rearrangements and all chromosomes are spanned

by one or a few contigs (Fig. 4.5b), with the exception of chrY which is absent because

118

HG00733 is female. Similar results were observed for HG002 (Supplementary Fig. B.8).

Discussion

In this paper we demonstrate the sequencing and assembly of eleven diverse human

genomes in a time and cost efficient manner using a combination of nanopore and

proximity ligation sequencing.

The PromethION realizes dramatic improvements in yield per flow cell, allowing the

sequencing of each genome with just three flow cells at an average coverage of 63x.

This represents a large reduction in associated manual effort and a dramatic practical

improvement in parallelism; a single PromethION allows up to 48 flow cells to be run

concurrently. Here we completed all 2.3 terabases of nanopore data collection in nine

days on one PromethION, running up to 15 flow cells simultaneously (it is now possible

to run 48 concurrently). In terms of contemporary long-read sequencing platforms, this

throughput is unmatched.

Due to the length distribution of human transposable elements, we found it better to

discard reads shorter than 10 Kb to prevent multi-mapping. The Circulomics SRE kit

reduced the fraction of reads <10 Kb to around 13%, making the majority usable for

assembly. Conversely, the right tail of the read length distribution is long, yielding an

average of 6.5x coverage per genome in 100 Kb+ reads. This represents an enrichment of

around 7 fold relative to our earlier MinION effort [88]. In terms of assembly, the result

119

was an average NG50 of 18.5 Mb for the 11 genomes, ~3x higher than in that initial

effort, and comparable with the best achieved by alternative technologies [50, 222]. We

found the addition of HiC sequencing for scaffolding necessary to achieve chromosome

scale, making 891 joins on average per assembly. However, our results are consistent

with previous modelling based on the size and distribution of large repeats in the human

genome, which predicts that an assembly based on 30x coverage of such 100 Kb+ reads

would approach the continuity of complete human chromosomes [88, 206].

Relative to alternate long-read and linked-read sequencing, the read identity of nanopore

reads has proven lower [87, 88]. However, original reports of 66% identity [87] for

the original MinION are now historical footnotes: we observe modal read identity

of 92.5%, resulting in better than QV30 base quality for haploid polished assembly

from nanopore reads alone. The accurate resolution of highly repetitive and recently

duplicated sequence will depend on long-read polishing, because short-reads are generally

not uniquely mappable. Further polishing using complementary data types, including

PacBio HiFi reads [222] and 10x Chromium [126], will likely prove useful in achieving

QV40+ assemblies.

The advent of third generation technologies has dramatically lowered the cost of high-

contiguity long-read de novo assembly relative to earlier methods [106]. This cost

reduction is still clearly underway. The first MinION human assembly cost ~$40,000 in

flow cells and reagents [88]. After a little over a year, the equivalent cost per sample here

was ~$6,000. At bulk with current list-pricing, this cost would be reduced to ~$3,500 per

120

genome. It is not unreasonable to expect further yield growth and resulting cost reduction

of nanopore and competing platforms such that we foresee $1,000 total sequencing cost

high-contiguity de novo plant and animal genome assembly being achieved - a milestone

that will likely make many ambitious comparative genomic efforts economic [152, 108].

With sequencing efficiency for long-reads improving, computational considerations are

paramount in figuring overall time, cost and quality. Simply put, large genome de novo

assembly will not become ubiquitous if the requirements are weeks of assembly time on

large computational clusters. We present three novel methods that provide a pipeline for

the rapid assembly of long nanopore reads. Shasta can produce a draft human assembly

in around six hours and $70 using widely available commercial cloud nodes. This cost and

turnaround time is much more amenable to rapid prototyping and parameter exploration

than even the fastest competing method (Wtdbg2), which was on average 7.5x slower

and 3.7x more expensive. Connected together, the three tools presented allow a polished

assembly to be produced in ~24 hours and for ~$180, against the fastest comparable

combination of Wtdbg2, Racon, and Medaka which costs 5.3x more and is 4.3x slower

while producing measurably worse results in terms of disagreements, contiguity and

base-level accuracy. Substantial further parallelism of polishing, the dominant time

component in our current pipeline, is easily possible. We are now working toward the

goal of having a half-day turn around of our complete computational pipeline. With

real-time base calling, a DNA-to-de novo assembly could be achieved in less than 96

hours with little difficulty. Such speed could make these techniques practical for screening

121

human genomes for abnormalities in difficult-to-sequence regions.

All three presented computational methods employ run-length encoding of reads. By

operating on homopolymer-compressed nucleotide sequences, we mitigate effects of the

dominant source of error in nanopore reads [174] and enable the use of different models

for addressing alignment and run-length estimation orthogonally.

Shasta produces a notably more conservative assembly than competing tools, trading

greater correctness for contiguity and total produced sequence. For example, the ratio

of total length to aligned length is relatively constant for all other assemblers, where

approximately 1.6% of sequence produced does not align across the three evaluated

samples. In contrast, on average just 0.38% of Shasta’s sequence does not align to

GRCh38, representing a more than 4x reduction in unaligned sequence. Additionally,

we note substantially lower disagreement counts, resulting in much smaller differences

between the raw NGx and corrected NGAx values. Shasta also produces substantially

more base-level accurate assemblies than the other competing tools. MarginPolish and

HELEN provide a consistent improvement of base quality over all tested assemblers, with

more accurate results than the current state-of-the-art long read polishing workflow.

We have assembled and compared haploid, trio-binned and diploid samples. Trio binned

samples show great promise for haplotype assembly, for example contiguously assembling

an MHC haplogroup, but the halving of effective coverage resulted in ultimately less

contiguous human assemblies with higher base-error rates than the related, chimeric

122

diploid assembly. This can potentially be rectified by merging the haplotype assemblies to

produce a pseudo-haplotype or increasing sequencing coverage. Indeed the improvements

in contiguity and base accuracy in CHM13 over the diploid samples illustrate what can

be achieved with higher coverage of a haploid sample. We believe that one of the most

promising directions for the assembly of diploid samples is the integration of phasing into

the assembly algorithm itself, as pioneered by others [29, 63, 107]. We anticipate that

the novel tools we’ve described here are suited for this next step: the Shasta framework

is well placed for producing phased assemblies over structural variants, MarginPolish is

built off of infrastructure designed to phase long reads [46], and the HELEN model could

be improved to include haplotagged features for the identification of heterozygous sites.

Code Availability

The three novel software tools, Shasta (https://github.com/chanzuckerberg/

shasta), MarginPolish (https://github.com/UCSC-nanopore-cgl/marginPolish),

and HELEN (https://github.com/kishwarshafin/helen) are publicly available.

They have open source MIT license which fully supports the open source initiative.

123

Online Methods

Sample selection

The goal of sample selection was to select a set of individuals that collectively captured

the maximum amount of weighted allelic diversity [186]. To do this, we created a list of

all low-passage lymphoblastoid cell lines that are part of a trio available from the 1000

Genomes Project collection [35] (We selected trios to allow future addition of pedigree

information, and low-passage line to minimize acquired variation). In some cases, we

considered the union of parental alleles in the trios due to not having genotypes for

the offspring. Let a weighted allele be a variant allele and its frequency in the 1000

Genomes Project Phase 3 VCF. We selected the first sample from our list that contained

the largest sum of frequencies of weighted alleles, reasoning that this sample should

have the largest expected fraction of variant alleles in common with any other randomly

chosen sample. We then removed the variant alleles from this first sample from the set

of variant alleles in consideration and repeated the process to pick the second sample,

repeating the process recursively until we had selected seven samples. This set greedily,

heuristically optimizes the maximum sum of weighted allele frequencies in our chosen

sample subset. We also added the three Ashkenazim Trio samples and the Puerto Rican

individual (HG00733). These four samples were added for the purposes of comparison

with other studies that are using them [232].

124

Cell culture

Lymphoblastoid cultures for each individual were obtained from the Coriell Institute

Cell Repository (coriell.org) and were cultured in RPMI 1640 supplemented with

15% fetal bovine serum (Life Technologies). The cells underwent a total of six passages

(p3+3). After expansion, cells were harvested by pelleting at 300xg for 5 minutes. Cells

were resuspended in 10 ml PBS and a cell count was taken using a BiRad TC20 cell

counter. Cells were aliquoted into 50 ml conical tubes containing 50 million cells, pelleted

as above and washed with 10 ml PBS before a final pelleting after which the PBS was

removed and the samples were flash frozen on dry ice and stored at -80oC until ready

for further processing.

DNA extraction and size-selection

We extracted high-molecular weight (HMW) DNA using the QIAGEN Puregene kit.

We followed the standard protocol with some modifications. Briefly, we lysed the cells

by adding 3 ml of Cell Lysis Solution per 10 million cells, followed by incubation at

37oC for up to 1 hour. We performed mild shaking intermediately by hand, and avoided

vortexing. Once clear, we split the lysate into 3 ml aliquots and added 1 ml of Protein

Precipitation Solution to each of the tubes. This was followed by pulse vortexing three

times for five seconds each time. We next spun this at 2000 x g for 10 minutes. We added

the supernatant from each tube to a new tube containing 3 ml of isopropanol, followed

by 50x inversion. The HMW DNA precipitated and formed a dense thread-like jelly. We

125

used a disposable inoculation loop to extract the DNA precipitate. We then dipped the

DNA precipitate, while it was on the loop, into ice-cold 70% ethanol. After this, the

DNA precipitate was added to a new tube containing 50-250 µl 1x TE buffer. The tubes

were heated at 50oC for 2 hours and then left at room temperature overnight to allow

resuspension of the DNA. The DNA was then quantified using Qubit and NanoDrop.

We used the Circulomics Short Read Eliminator (SRE) kit to deplete short-fragments

from the DNA preparation. We size-selected 10 µg of DNA using the Circulomics

recommended protocol for each round of size-selection.

Nanopore sequencing

We used the SQK-LSK109 kit and its recommended protocol for making sequencing

libraries. We used 1 µg of input DNA per library. We prepared libraries at a 3x scale

since we performed a nuclease flush on every flow cell, followed by the addition of a fresh

library.

We used the standard PromethION scripts for sequencing. At around 24 hours, we

performed a nuclease flush using the ONT recommended protocol. We then re-primed

the flow cell, and added a fresh library corresponding to the same sample. After the

first nuclease flush, we restarted the run setting the voltage to -190 mV. We repeated

the nuclease flush after another around 24 hours (i.e. around 48 hours into sequencing),

re-primed the flow cell, added a fresh library, and restarted the run setting the run

126

voltage to -200 mV.

We performed basecalling using Guppy v.2.3.5 on the PromethION tower using the

GPUs. We used the MinION DNA flipflop model (dna_r9.4.1_450bps_flipflop.cfg),

as recommended by ONT.

Chromatin Crosslinking and Extraction from Human Cell Lines

We thawed the frozen cell pellets and washed them twice with cold PBS before resuspen-

sion in the same buffer. We transferred Aliquots containing five million cells by volume

from these suspensions to separate microcentrifuge tubes before chromatin crosslinking

by addition of paraformaldehyde (EMS Cat. No. 15714) to a final concentration of

one percent. We briefly vortexed the samples and allowed them to incubate at room

temperature for fifteen minutes. We pelleted the crosslinked cells and washed them twice

with cold PBS before thoroughly resuspending in lysis buffer (50 mM Tris-HCl, 50 mM

NaCl, 1 mM EDTA, 1% SDS) to extract crosslinked chromatin.

The Hi-C Method

We bound the crosslinked chromatin samples to SPRI beads, washed three times with

SPRI wash buffer (10 mM Tris-HCl, 50 mM NaCl, 0.05% Tween-20), and digested by

DpnII (20 U, NEB Catalog No. R0543S) for 1 hour at 37oC in an agitating thermal

mixer. We washed the bead-bound samples again before incorporation of Biotin-11-dCTP

(ChemCyte Catalog No. CC-6002-1) by DNA Polymerase I, Klenow Fragment (10 U,

127

NEB Catalog No. M0210L) for thirty minutes at 25oC with shaking. Following another

wash, we carried out blunt-end ligation by T4 DNA Ligase (4000 U, NEB Catalog No.

M0202T) with shaking overnight at 16oC. We reversed the chromatin crosslinks, digested

the proteins, eluted the samples by incubation in crosslink reversal buffer (5 mM CaCl 2

, 50 mM Tris-HCl, 8% SDS) with Proteinase K (30 µg, Qiagen Catalog No. 19133) for

fifteen minutes at 55oC followed by forty-five minutes at 68oC.

Sonication and Illumina Library Generation with Biotin Enrichment

After SPRI bead purification of the crosslink-reversed samples, we transferred DNA from

each to Covaris® microTUBE AFA Fiber Snap-Cap tubes (Covaris Cat. No. 520045)

and sonicated to an average length of 400 ± 85 bp using a Covaris® ME220 Focused-

Ultrasonicator™. Temperature was held stably at 6oC and treatment lasted sixty-five

seconds per sample with a peak power of fifty watts, ten percent duty factor, and two-

hundred cycles per burst. The average fragment length and distribution of sheared DNA

was determined by capillary electrophoresis using an Agilent® FragmentAnalyzer 5200

and HS NGS Fragment Kit (Agilent Cat. No. DNF-474-0500). We ran sheared DNA

samples twice through the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®

(Catalog No. E7645S) End Preparation and Adaptor Ligation steps with custom Y-

adaptors to produce library preparation replicates. We purified ligation products via

SPRI beads before Biotin enrichment using Dynabeads® MyOne™ Streptavidin C1 beads

(ThermoFisher Catalog No. 65002). We performed indexing PCR on streptavidin beads

128

using KAPA HiFi HotStart ReadyMix (Catalog No. KK2602) and PCR products were

isolated by SPRI bead purification. We quantified the libraries by Qubit™ 4 fluorometer

and FragmentAnalyzer 5200 HS NGS Fragment Kit (Agilent Cat. No. DNF-474-0500)

before pooling for sequencing on an Illumina HiSeq X at Fulgent Genetics.

Analysis methods

Read alignment identities

To generate the identity violin plots (Fig. 4.1c/e) we aligned all the reads for each

sample and flowcell to GRCh38 using minimap2 [110] with the map-ont preset. Us-

ing a custom script get_summary_stats.py in the repository https://github.com/

rlorigro/nanopore_assembly_and_polishing_assessment, we parsed the alignment

for each read and enumerated the number of matched (N=), mismatched (NX), in-

serted (NI), and deleted (ND) bases. From this, we calculated alignment identity as

N=/(N= +NX +NI +ND). These identities were aggregated over samples and plotted

using the seaborn library with the script plot_summary_stats.py in the same reposi-

tory. This method was used to generate both Figure 4.1c and Figure 4.1e. For Figure

4.1e, we selected reads from HG00733 flowcell1 aligned to GRCh38 chr1. The “Standard”

identities are used from the original reads/alignments. To generate identity data for

the “RLE” portion, we extracted the reads above, run-length encoded the reads and

chr1 reference, and followed the alignment and identity calculation process described

above. Sequences were run-length encoded using a simple script (github.com/rlorigro/

129

runlength_analysis/blob/master/runlength_encode_fasta.py) and aligned with

minimap2 using the map-ont preset and –k 19.

Base-level error-rate analysis with Pomoxis

We analyzed the base-level error-rates of the assemblies using the assess_assembly tool

of Pomoxis toolkit developed by Oxford Nanopore Technology https://github.com/

nanoporetech/pomoxis. We further modified the program to avoid large insertions and

deletions (>50bp) and submitted a merge request https://github.com/nanoporetech/

pomoxis/pull/37. The assess assembly tool is tailored to compute the error rates in a

given assembly compared to a truth assembly. It reports an identity error rate, insertion

error rate, deletion error rate, and an overall error rate. The identity error rate indicates

the number of erroneous substitutions, the insertion error rate is the number of incorrect

insertions, and the deletion error rate is the number of deleted bases averaged over the

total aligned length of the assembly to the truth. The overall error rate is the sum of

the identity, insertion, and deletion error rates. For the purpose of simplification, we

used the indel error rate, which is the sum of insertion and deletion error rates.

The assess_assembly script takes an input assembly and a reference assembly to

compare against. The assessment tool chunks the reference assembly to 1 Kb regions

and aligns it back to the input assembly to get a trimmed reference. Next, the input

is aligned to the trimmed reference sequence with the same alignment parameters to

get an input assembly to the reference assembly alignment. The total aligned length

130

is the sum of the lengths of the trimmed reference segments where the input assembly

has an alignment. The total aligned length is used as the denominator while averaging

each of the error categories to limit the assessment in only correctly assembled regions.

Then the tool uses stats_from_bam, which counts the number of mismatch bases, insert

bases, and delete bases at each of the aligned segments and reports the error rate by

averaging them over the total aligned length.

The Pomoxis section in Supplementary Notes describe the commands we ran to perform

this assessment.

Truth assemblies for base-level error-rate analysis

We used HG002, HG00733, and CHM13 for base-level error-rate assessment of the

assembler and the polisher. These three assemblies have high-quality assemblies publicly

available, which are used as the ground truth for comparison. Two of the samples, HG002

and HG00733, are diploid samples; hence, we picked one of the two possible haplotypes

as the truth. The reported error rate of HG002 and HG00733 include some errors arising

due to the zygosity of the samples. The complete hydatidiform mole sample CHM13

is a haploid human genome which is used to assess the applicability of the tools on

haploid samples. We have gathered and uploaded all the files we used for assessment in

one place: https://console.cloud.google.com/storage/browser/kishwar-helen/

truth_assemblies/.

131

Table 4.2: The truth assembly files with download URLs.

Sample name Region File type URL

HG002 Whole genome
fasta HG002_GRCh38_h1.fa

bed HG002_GRCh38.bed

HG00733 Whole genome fasta hg00733_truth_assembly.fa

CHM13
Whole genome fasta CHM13_truth_assembly.fa

Chr-X fasta CHRX_CHM13_truth_assembly.fa

To generate the HG002 truth assembly, we gathered the publicly available Genome-in-a-

bottle (GIAB) high-confidence variant set (VCF) against GRCh38 reference sequence.

Then we used bedtools to create an assembly (FASTA) file from the GRCh38 reference

and the high-confidence variant set. We got two files using this process for each of the

haplotypes, and we picked one randomly as the truth. All the diploid HG002 assembly

is compared against this one chosen assembly. GIAB also provides a bed file annotating

high-confidence regions where the called variants are highly precise and sensitive. We

used this bed file with assess_assembly to ensure that we compare the assemblies only

in the high confidence regions.

132

https://storage.googleapis.com/kishwar-helen/truth_assemblies/HG002/HG002_GRCh38_h1.fa
https://storage.googleapis.com/kishwar-helen/truth_assemblies/HG002/HG002_GRCh38.bed
https://storage.googleapis.com/kishwar-helen/truth_assemblies/HG00733/hg00733_truth_assembly.fa
https://storage.googleapis.com/kishwar-helen/truth_assemblies/CHM13/CHM13_truth_assembly.fa
https://storage.googleapis.com/kishwar-helen/truth_assemblies/CHM13/CHRX_CHM13_truth_assembly.fa

The HG00733 truth is from the publicly available phased PacBio high-quality assembly

of this sample [157]. We picked phase0 as the truth assembly and acquired it from

NCBI under accession GCA_003634895.1. We note that the assembly is phased but

not haplotyped, such that portions of phase0 will include sequences from both parental

haplotypes and is not suitable for trio-binned analyses. Furthermore, not all regions

were fully phased; regions with variants that are represented as some combination of

both haplotypes will result in lower QV and a less accurate truth.

For CHM13, we used the v0.6 release of CHM13 assembly by the T2T consortium [206].

The reported quality of this truth assembly in Q-value is QV 39. One of the attributes of

this assembly is chromosome X. As reported by the T2T assembly authors, chromosome

X of CHM13 is the most complete (end-to-end) and high-quality assembly of any human

chromosome. We obtained the chromosome X assembly, which is the highest-quality

truth assembly (QV >= 40) we have.

QUAST / BUSCO

To quantify contiguity, we primarily depended on the tool QUAST [138]. QUAST

identifies misassemblies as major rearrangement events in the assembly relative to the

reference. We use the phrase disagreement in our analysis, as we find “misassembly”

inappropriate considering potentially true structural variation. For our assemblies, we

quantified all contiguity stats against GRCh38, using autosomes plus chromosomes X

and Y only. We report the total disagreements given that their relevant “size” descriptor

133

was greater than 1 Kb, as is the default behavior in QUAST. QUAST provides other

contiguity statistics in addition to disagreement count, notably total length and total

aligned length as reported in Figure 4.2d. To determine total aligned length (and

unaligned length), QUAST performs collinear chaining on each assembled contig to find

the best set of non-overlapping alignments spanning the contig. This process contributes

to QUAST’s disagreement determination. We consider unaligned sequence to be the

portions of the assembled contigs which are not part of this best set of non-overlapping

alignments. All statistics are recorded in Supplementary Table B.5. For all QUAST

analyses, we used the flags min-identity 80 and fragmented.

QUAST also produces an NGAx plot (similar to an NGx plot) which shows the aligned

segment size distribution of the assembly after accounting for disagreements and un-

alignable regions. The intermediate segment lengths that would allow NGAx plots to be

reproduced across multiple samples on the same axis (as is shown in Figure 4.2b) are not

stored, so we created a GitHub fork of QUAST to store this data during execution: https:

//github.com/rlorigro/quast. Finally, the assemblies and the output of QUAST were

parsed to generate figures with an NGx visualization script, ngx_plot.py, found at

github.com/rlorigro/nanopore_assembly_and_polishing_assessment/. For NGx

and NGAx plots, a total genome size of 3.23Gb was used to calculate cumulative

coverages.

BUSCO [197] is a tool which quantifies the number of Benchmarking Universal Single-

Copy Orthologs present in an assembly. We ran BUSCO via the option within QUAST,

134

comparing against the eukaryota set of orthologs from OrthoDB v9.

Disagreement assessments

To analyze the QUAST-reported disagreements for different regions of the genome, we

gathered the known segmental duplication (SD) regions [24], centromeric regions for

GRCh38, and known regions in GRCh38 with structural variation for HG002 from

GIAB [234]. We used a Python script quast_sv_extractor.py that compares each

reported disagreement of QUAST to the SD, SV and centromeric regions and discounts

any disagreement that overlaps with these regions. The quast_sv_extractor.py script

can be found at https://github.com/kishwarshafin/helen/blob/master/modules/

python/helper/.

The segmental duplication regions of GRCh38 defined in the ucsc.collapsed.sorted.segdups

file can be downloaded from https://github.com/mvollger/segDupPlots/.

The defined centromeric regions of GRCh38 for all chromosomes are used from the

available summary at https://www.ncbi.nlm.nih.gov/grc/human.

For GIAB HG002, known SVs for GRCh38 are available in NIST_SVs_Integration_v0.6/

under ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/

analysis/. We used the Tier1+2 bed file available at the GIAB ftp site.

We further exclude SV enriched regions like centromeres, secondary constriction

135

regions, acrocentric arms, large tandem repeat arrays, segmental duplications

and the Y chromosome plus 10 kbp on either side of them. The file is available

here https://github.com/kishwarshafin/helen/blob/master/masked_regions/

GRCh38_masked_regions.bed.

To analyse disagreements within the intersection of the assembled sequences we

performed the following analysis. For each assembly we used minimap2 and samtools

to create regions of unique alignment to GRCh38. For minimap2 we used the

options –secondary=no -a –eqx -Y -x asm20 -m 10000 -z 10000,50 -r 50000

–end-bonus=100 -O 5,56 -E 4,1 -B 5. We fed these alignments into samtools

view with options -F 260 -u - and then samtools sort with option -m. We then

scanned 100 basepair windows of GRCh38 to find windows where all assemblies for

the given sample were aligned with a 1-1 mapping to GRCh38. We then report

the sum of disagreements across these windows. The script for this analysis is here:

https://github.com/mvollger/consensus_regions.

Trio-binning

We performed trio-binning on two samples HG002 and HG00733 [95]. For HG00733, we

obtained the parental read sample accessions (HG00731, HG00732) from 1000 genome

database. Then we counted k-mers with meryl to create maternal and paternal k-mer

sets. Based on manual examination of the k-mer count histograms to determine an

appropriate threshold, we excluded k-mers occurring less than 6 times for maternal set

136

and 5 times for paternal set. We subtracted the paternal set from the maternal set to

get k-mers unique to the maternal sample and similarly derived unique paternal k-mer

set. Then for each read, we counted the number of occurrences of unique maternal

and paternal k-mers and classified the read based on the highest occurrence count.

During classification, we avoided normalization by k-mer set size. This resulted in 35.2x

maternal, 37.3x paternal, and 5.6x unclassified for HG00733. For HG002, we used the

Illumina data for the parental samples (HG003, HG004) from GIAB project [232]. We

counted k-mers using meryl and derived maternal paternal sets using the same protocol.

We filtered k-mers that occur less than 25 times in both maternal and paternal sets. The

classification resulted in 24x maternal, 23x paternal, and 3.5x unknown. The commands

and data source are detailed in the Supplementary Notes.

Transcript analysis with comparative annotation toolkit

We ran the Comparative Annotation Toolkit [55] to annotate the polished assemblies in

order to analyze how well Shasta assembles transcripts and genes. Each assembly was

individually aligned to the GRCh38 reference assembly using Cactus [160] to create the

input alignment to CAT. The GENCODE [79] V30 annotation was used as the input

gene set. CAT was run in the transMap mode only, without Augustus refinement, since

the goal was only to evaluate the quality of the projected transcripts. All transcripts

on chromosome Y were excluded from the analysis since some samples lacked a Y

chromosome.

137

Run-Length Confusion Matrix

To generate run-length confusion matrices from reads and assemblies, we run-length

encoded (RLE) the assembly/read sequences and reference sequences using a purpose-

built python script, measure_runlength_distribution_from_fasta.py. The script

requires a reference and sequence file, and can be found in the GitHub repo https:

//github.com/rlorigro/runlength_analysis/. The RLE nucleotides were aligned to

the RLE reference nucleotides with minimap2. As RLE sequences cannot have identical

adjacent nucleotides, the number of unique k-mers is diminished with respect to standard

sequences. As minimap2 uses empirically determined sizes for seed k-mers, we used a

k-mer size of 19 to approximately match the frequency of the default size (15) used by

the presets for standard sequences. For alignment of reads and assemblies we used the

map-ont and asm20 presets respectively.

By iterating through the alignments, each match position in the cigar string (mismatched

nucleotides are discarded) was used to find a pair of lengths (x,y) such that x is a

predicted length and y is the true (reference) length. For each pair, we updated a matrix

which contains the frequency of every possible pairing of prediction vs truth, from length

1bp to 50bp. Finally, this matrix is normalized by dividing each element by the sum of

the observations for its true run length, ∑50
i=1(xi,y), and plotted as a heatmap. Each

value represents the probability of predicting a length for a given true length.

138

Runtime and Cost Analysis

Our runtime analysis was generated with multiple methods detailing the amount of time

the processes took to complete. These methods include the unix command time and a

home-grown resource tracking script which can be found in the https://github.com/

rlorigro/TaskManager repository. We note that the assembly and polishing methods

have different resource requirements, and do not all fully utilize available CPUs, GPUs,

and memory over the program’s execution. As such, we report runtimes using wall clock

time and the number of CPUs the application was configured to use, but do not convert

to CPU hours. Costs reported in the figures are the product of the runtime and AWS

instance price. Because portions of some applications do not fully utilize CPUs, cost

could potentially be reduced by running on a smaller instance which would be fully

utilized, and runtime could be reduced by running on a larger instance which can be fully

utilized for some portion of execution. We particularly note the long runtime of Medaka

and found that for most of the total runtime, only a single CPU was used. Lastly, we

note that data transfer times are not reported in runtimes. Some of the data required

or generated exceeds hundreds of gigabytes, which could be potentially significant in

relation to the runtime of the process. Notably, the images generated by MarginPolish

and consumed by HELEN were often greater than 500 GB in total.

All recorded runtimes are reported in the supplement. For Shasta, times were recorded

to the tenth of the hour. All other runtimes were recorded to the minute. All runtimes

reported in figures were run on the Amazon Web Services cloud platform (AWS).

139

Shasta runtime reported in Fig. 4.2f was determined by averaging across all 12 samples.

Wtdbg2 runtime was determined by summing runtimes for wtdbg2 and wtpoa-cns and

averaging across the HG00733, HG002, and CHM13 runs. Flye runtime was determined

by averaging across the HG00733, HG002, and CHM13 runs, which were performed on

multiple instance types (x1.16xlarge and x1.32xlarge). We calculated the total cost and

runtime for each run and averaged these amounts; no attempt to convert these to a

single instance type was performed. Precise Canu runtimes are not reported, as they

were run on the NIH Biowulf cluster. Each run was restricted to nodes with 28 cores (56

hyperthreads) (2x2680v4 or 2x2695v3 Intel CPUs) and 248GB of RAM or 16 cores (32

hyperthreads) (2x2650v2 Intel CPUs) and 121GB of RAM. Full details of the cluster are

available at https://hpc.nih.gov. The runs took between 219 and 223 thousand CPU

hours (4-5 wall-clock days). No single job used more than 80GB of RAM/12 CPUs. We

find the r5.4xlarge ($1.008 per hour) to be the cheapest AWS instance type possible

considering this resource usage, which puts estimated cost between $18,000 and $19,000

per genome.

For MarginPolish, we recorded all runtimes, but used various thread counts that did

not always fully utilize the instance’s CPUs. The runtime reported in the figure was

generated by averaging across 8 of the 12 samples, selecting runs that used 70 CPUs

(of the 72 available on the instance). The samples this was true for were GM24385,

HG03492, HG01109, HG02055, HG02080, HG01243, HG03098, and CHM13. Runtimes

for read alignments used by MarginPolish were not recorded. Because MarginPolish

140

requires an aligned BAM, we found it unfair to not report this time in the figure as it is

a required step in the workflows for MarginPolish, Racon, and Medaka. As a proxy for

the unrecorded read alignment time used to generate BAMs for MarginPolish, we added

the average alignment time recorded while aligning reads in preparation for Medaka

runs. We note that the alignment for MarginPolish was done by piping output from

minimap2 directly into samtools sort, and piping this into samtools view to filter for

primary and supplementary reads. Alignment for Medaka was done using mini_align,

which is a wrapper for minimap2 bundled in Medaka that simultaneously sorts output.

Reported HELEN runs were performed on GCP except for HG03098, but on instances

that match the AWS instance type p2.8xlarge in both CPU count and GPU (NVIDIA

Tesla P100). As such, the differences in runtime between the platforms should be

negligible, and we have calculated cost based on the AWS instance price for consistency.

The reported runtime is the sum of time taken by call_consensus.py and stitch.py.

Unannotated runs were performed on UCSC hardware.

Racon runtimes reflect the sum of four series of read alignment and polishing. The time

reported in the figure is the average of the runtime of this process run on the Shasta

assembly for HG00733, HG002, and CHM13.

Medaka runtime was determined by averaging across the HG00733, HG002, and CHM13

runs after running Racon 4× on the Shasta assembly. We again note that this application

in particular did not fully utilize the CPUs for most of the execution, and in the case of

141

HG00733 appeared to hang and was restarted. The plot includes the average runtime

from read alignment using minialign; this is separated in the tables in the supplementary

results. We ran Medaka on an x1.16xlarge instance, which had more memory than was

necessary. When determining cost, we chose to price the run based on the cheapest AWS

instance type that we could have used accounting for configured CPU count and peak

memory usage (c5n.18xlarge). This instance could have supported 8 more concurrent

threads, but as the application did not fully utilize the CPUs we find this to be a fair

representation.

Assembly of MHC

Each of the 8 GRCh38 MHC haplotypes were aligned using minimap2 (with preset

asm20) to whole genome assemblies to identify spanning contigs. These contigs were then

extracted from the genomic assembly and used for alignment visualization. For dot plots,

Nucmer 4.0 [100] was used to align each assembler’s spanning contigs to the standard

chr6:28000000-34000000 MHC region, which includes 500Mb flanks. Output from this

alignment was parsed with Dot [144] which has a web-based GUI for visualization. All de-

faults were used in both generating the input files and drawing the figures. Coverage plots

were generated from reads aligned to chr6, using a script, find_coverage.py, located

at (github.com/rlorigro/nanopore_assembly_and_polishing_assessment/).

The best matching alt haplotype (to Shasta, Canu, and Flye) was chosen as a reference

haplotype for quantitative analysis. Haplotypes with the fewest supplementary align-

142

ments across assemblers were top candidates for QUAST analysis. Candidates with

comparable alignments were differentiated by identity. The highest contiguity/identity

MHC haplotype was then analyzed with QUAST using –min-identity 80. For all

MHC analyses regarding Flye, the unpolished output was used.

BAC Analysis

At a high level, the BAC analysis was performed by aligning BACs to each assembly,

quantifying their resolution, and calculating identity statistics on those that were fully

resolved.

We obtained 341 BACs for CHM13 [98, 214] and 179 for HG00733 [24] (complete BAC

clones of VMRC62), which had been selected primarily by targeting complex or highly

duplicated regions. We performed the following analysis on the full set of of BACs (for

CHM13 and HG00733), and a subset selected to fall within unique regions of the genome.

To determine this subset, we selected all BACs which are greater than 10 Kb away from

any segmental duplication, resulting in 16 of HG00733 and 31 of CHM13. This subset

represents simple regions of the genome which we would expect all assemblers to resolve.

For the analysis, BACs were aligned to each assembly with the command minimap2

–secondary=no -t 16 -ax asm20 assembly.fasta bac.fasta > assembly.sam

and converted to a PAF-like format which describes aligned regions of the BACs and

assemblies. Using this, we calculated two metrics describing how resolved each BAC

143

was: closed is defined as having 99.5% of the BAC aligned to a single locus in the

assembly; attempted is defined as having a set of alignments covering >= 95% of the

BAC to a single assembly contig where all alignments are at least 1kb away from the

contig end. If such a set exists, it counts as attempted. We furthermore calculate

median and mean identities (using alignment identity metric described above) of the

closed BACs. These definitions were created such that a contig that is counted as

attempted but not closed likely reflects a disagreement. The code for this can be found

at https://github.com/skoren/bacValidation.

Short Read Polishing

Chromosome X of the CHM13 assembly (assembled first with Shasta, then polished

with MarginPolish and HELEN) was obtained by aligning the assembly to GRCh38

(using minimap2 with the –x asm20 flag). 10X Chromium reads were downloaded from

the Nanopore WGS Consortium (https://github.com/nanopore-wgs-consortium/

CHM13/). These were from a NovaSeq instrument at a coverage of approximately 50X.

The reads corresponding to chromosome X were extracted by aligning the entire read set

to the whole CHM13 assembly using the 10X Genomics Long Ranger Align pipeline

(v2.2), then extracting those corresponding to the corresponding chromosome X contigs

with samtools. Pilon [218] was run iteratively for a total of three rounds, in each round

aligning the reads to the current assembly with Long Ranger and then running Pilon

with default parameters.

144

Structural Variant Assessment

To create an assembly graph in GFA format Shasta v0.1.0 was run using the HG002

sequence data with –MarkerGraph.simplifyMaxLength 10 to reduce bubble removal

and –MarkerGraph.highCoverageThreshold 10 to reduce the removal of edges normally

removed by the transitive reduction step.

To detect structural variation inside the assembly graphs produced by Shasta, we

extracted unitigs from the graph and aligned them back to the linear reference. Unitigs

are walks through the assembly graph that do not traverse any node end that includes

a bifurcation. We first processed the Shasta assembly graphs (in GFA format) with

gimbricate (https://github.com/ekg/gimbricate c1c6d1a) to recompute overlaps

in non run-length encoded space and to remove nodes in the graph only supported by

a single sequencing read. To remove overlaps from the graph edges, we then "blunti-

fied" resulting GFAs with vg find -F (https://github.com/vgteam/vg v1.19.0

Tramutola). We then applied odgi unitig (https://github.com/vgteam/odgi

463ba5b) to extract unitigs from the graph, with the condition that the starting node

in the unitig generation must be at least 100 bp long. To ensure that the unitigs

could be mapped back to the linear reference, we appended a random walk of 25 Kb

after the natural end of each unitig, with the expectation that even should unitigs

would yield around 50 Kb of mappable sequence. Finally, we mapped the unitigs to

GRCh38 with minimap2 with a bandwidth of 25 Kb (-r25000), and called variants in

the alignments using paftools.js from the minimap2 distribution. We implemented

145

the process in a single script that produces variant calls from the unitig set of a given graph

https://github.com/ekg/shastaGFA/blob/master/shastaGFAtoVCF_unitig_paftools.sh.

The extracted variants were compared to the structural variants from the Genome In A

Bottle benchmark in HG002 (v0.6, [235]). Precision, recall and F1 scores were computed

on variants not overlapping simple repeats and within the benchmark’s high-confidence

regions. Deletions in the assembly and the GIAB benchmark were matched if they had

at least 50% reciprocal overlap. Insertions were matched if located at less than 100 bp

from each other and similar in size (50% reciprocal similarity).

MarginPolish

Throughout we used MarginPolish (https://github.com/ucsc-nanopore-cgl/

MarginPolish) version 1.0.0.

MarginPolish is an assembly refinement tool designed to sum over (marginalize) read to

assembly alignment uncertainty. It takes as input a genome assembly and set of aligned

reads in BAM format.

It outputs a refined version of the input genome assembly after attempting to correct

base-level errors in terms of substitutions and indels (insertions and deletions). It can

also output a summary representation of the assembly and read alignments as a weighted

partial order alignment graph (POA), which is used by the HELEN neural network

146

based polisher described below.

It was designed and is optimized to work with noisy long ONT reads, although pa-

rameterization for other, similar read types is easily possible. It does not yet consider

signal-level information from ONT reads. It is also currently a haploid polisher, in that

it does not attempt to recognize or represent heterozygous polymorphisms or phasing

relationships. For haploid genome assemblies of a diploid genome it will therefore fail to

capture half of all heterozygous polymorphisms.

Algorithm Overview

MarginPolish works in overview as follows:

1. Reads and the input assembly are converted to their run-length encoding (RLE)

(see Shasta description above for description and rationale).

2. A restricted, weighted Partial Order Alignment [104] (POA) graph is constructed

representing the RLE input assembly and potential edits to it in terms of substitu-

tions and indels.

3. Within identified regions of the POA containing likely assembly errors:

• A set of alternative sequences representing combinations of edits are enumer-

ated by locally traversing the POA within the region.

147

• The likelihood of the existing and each alternative sequence is evaluated given

the aligned reads.

• If an alternative sequence with higher likelihood than the current reference

exists then the assembly at the location is updated with this higher likelihood

sequence.

4. Optionally, the program loops back to step 2 to repeat the refinement process (by

default it loops back once).

5. The modified RLE assembly is expanded by estimating the repeat count of each

base given the reads using a simple Bayesian model. The resulting final, polished

assembly is output. In addition, a representation of the weighted POA can be

output.

Innovations

Compared to existing tools MarginPolish is most similar to Racon [210], in that they are

comparable in speed, both principally use small-parameter HMM like models and both

do not currently use signal information. Compared to Racon MarginPolish has some key

innovations that we have found to improve polishing accuracy:

• MarginPolish, as with our earlier tool in the Margin series [46], uses the forward-

backward and forward algorithms for pair hidden Markov models (HMMs) to sum

148

over all possible pairwise alignments between pairs of sequences instead of the

single most probable alignment (Viterbi). Considering all alignments allows more

information to be extracted per read.

• The POA graph is constructed from a set of weights computed from the posterior

alignment probabilities of each read to the initial assembled reference sequence

(see below), the result is that MarginPolish POA construction does not have a

read-order dependence. This is somewhat similar to that described by HGAP3 [28].

Most earlier algorithms for constructing POA graphs have a well known explicit

read order dependence that can result in undesirable topologies [104].

• MarginPolish works in run-length encoded space, which results in considerably less

alignment uncertainty and correspondingly improved performance.

• MarginPolish, similarly to Nanopolish [121], evaluates the likelihood of each alter-

native sequence introduced into the assembly. This improves performance relative

to a faster but less accurate algorithm that traces back a consensus sequence

through the POA graph.

• MarginPolish employs a simple chunking scheme to break up the polishing of the

assembly into overlapping pieces. This results in low memory usage per core and

simple parallelism.

Below steps 2, 3 and 5 of the MarginPolish algorithm are described in detail. In addition,

149

the parallelization scheme is described.

Partial Order Alignment Graph Construction

To create the POA we start with the existing assembled sequence s = s1,s2, . . .sn

and for each read r = r1, r2, . . . , rm in the set of reads R use the Forward-Backward

algorithm with a standard 3-state, affine-gap pair-HMM to derive posterior alignment

probabilities using the implementation described in [160]. The parameters for this model

are specified in the polish.hmm subtree of the JSON formatted parameters file, including

polish.hmm.transitions, and polish.hmm.emissions. Current defaults were tuned

via expectation maximization [87] of R9.4 ONT reads aligned to a bacterial reference; we

have observed the parameters for this HMM seem robust to small changes in base-caller

versions. The result of running the Forward-backward algorithm is three sets of posterior

probabilities:

• Firstly match probabilities: the set of posterior match probabilities, each the

probability P (ri ⋄sj) that a read base ri is aligned to a base sj in s.

• Secondly insertion probabilities: the set of posterior insertion probabilities, each

the probability P (ri ⋄−j) that a read base ri is inserted between two bases sj and

sj+1 in s, or, if j = 0, inserted before the start of s, or, if j = n, after the end of s.

• Thirdly deletion probabilities, the set of posterior deletion probabilities, each the

probability P (−i⋄sj) that a base sj in s is deleted between two read bases ri and

150

ri+1. (Note, because a read is generally an incomplete observation of s we consider

the probability that a base in s is deleted before the first position or after the last

position of a read as 0).

As most probabilities in these three sets are very small and yet to store and compute all

the probabilities would require evaluating comparatively large forward and backward

alignment matrices we restrict the set of probabilities heuristically as follows:

• We use a banded forward-backward algorithm, as originally described here [161].

To do this we use the original alignment of the read to s as in the input BAM file.

Given that s is generally much longer than each read this allows computation of

each forward-backward invocation in time linearly proportional to the length of

each read, at the cost of restricting the probability computation to a sub-portion

of the overall matrix, albeit one that contains the vast majority of the probability

mass.

• We only store posterior probabilities above a threshold

(polish.pairwiseAlignmentParameters.threshold, by default 0.01), treating

smaller probabilities as equivalent as zero.

The result is that these three sets of probabilities are a very sparse subset of the complete

sets.

To estimate the posterior probability of a multi-base insertion of a read substring

151

ri, ri+1, . . . rk at a given location j in s involves repeated summation over terms in the

forward and backward matrices. Instead to approximate this probability we heuristically

use:

P (ri, ri+1, . . . rk ⋄−j) = argmin
l∈[i,k]

P (rl ⋄−j)

the minimum probability of any base in the multi-base insertion being individually

inserted at the location in s as a proxy, a probability that is an upper-bound on the

actual probability.

Similarly we estimate the posterior probability of a deletion involving more than one

contiguous base s at a given location in a read using analogous logic. As we store a

sparse subset of the single-base insertion and deletion probabilities and given these

probability approximations it is easy to calculate all the multi-base indel probabilities

with value greater than t by linear traversal of the single-based insertion and deletion

probabilities after sorting them, respectively, by their read and s coordinates. The result

of such calculation is expanded sets of insertion and deletion probabilities that include

multi-base probabilities.

To build the POA we start from s, which we call the backbone. The backbone is a graph

where each base sj in s corresponds to a node, there are special source and sink nodes

(which do not have a base label), and the directed edges connect the nodes for successive

bases sj , sj+1 in s, from the source node to the node for s1, and, similarly, from the

node for sn to the sink node.

152

Each non-source/sink node in the backbone has a separate weight for each possible base

x ∈ {A,C,G,T}. This weight:

w(j,x) =
∑
r∈R

∑
i

1x(ri)P (ri ⋄sj)

where 1x(ri) is an indicator function that is 1 if ri = x and otherwise 0, corresponds to

the sum of match probabilities of read elements of base x being aligned to sj . This weight

has a probabilistic interpretation: it is the total number of expected observations of the

base x in the reads aligned to sj , summing over all possible pairwise alignments of the

reads to s. It can be fractional because of the inherent uncertainty of these alignments,

e.g. we may predict only a 50% probability of observing such a base in a read.

We add deletion edges, which connect nodes in the backbone. Indexing the nodes in the

backbone from 0 (the source) to the source n + 1 (the sink), a deletion edge between

positions j and k in the backbone corresponds to the deletion of bases j,j +1, . . .k −1 in

s. Each deletion edge has a weight equal to the sum of deletion probabilities for deletion

events that delete the corresponding base(s) in s, summing over all possible deletion

locations in all reads. Deletions with no weight are not included. Again, this weight has

a probabilistic interpretation: it is the expected number of times we see the deletion in

the reads, and again it may be fractional.

We represent insertions as nodes labelled with an insertion sequence. Each insertion node

has a single incoming edge from a backbone node, and a single outgoing edge to the next

153

backbone node in the backbone sequence. Each insertion is labeled with a weight equal

to the sum of probabilities of events that insert the given insertion sequence between the

corresponding bases in s. The resulting POA is a restricted form of a weighted, directed

acyclic graph (Fig. 4.6(A) shows an example).

Figure 4.6: A) An example POA, assuming approximately 30x read coverage. The
backbone is shown in red. Each non-source/sink node has a vector of weights, one for
each possible base. Deletion edges are shown in teal, they also each have a weight. Finally
insertion nodes are shown in brown, each also has a weight. (B) A pruned POA, removing
deletions and insertions that have less than a threshold weight and highlighting plausible
bases in bold. There are six plausible nucleotide sequences represented by paths through
the POA and selections of plausible base labels: G;AT;A;T;A;C:A, G;AT;A;T;A;C:G,
G;A;T;A;C:A, G;A;T;A;C:G, G;A;C:A, G;A;C:G. To avoid the combinatorial explosion
of such enumeration we identify subgraphs (C) and locally enumerate the possible subse-
quences in these regions independently (dotted rectangles identify subgraphs selected).
In each subgraph there is a source and sink node that does not overlap any proposed
edit.

Frequently either an insertion or deletion can be made between different successive bases

154

in s resulting in the same edited sequence. To ensure that such equivalent events are not

represented multiple times in the POA, and to ensure we sum their weights correctly, we

‘left shift’ indels to their maximum extent. When shifting an indel results in multiple

equivalent deletion edges or insertions we remove the duplicate elements, updating the

weight of the residual element to include the sum of the weights of the removed elements.

For example, the insertion of ‘AT’ in Fig. 4.6 is shifted left to its maximal extent, and

could include the merger of an equivalent ‘AT’ insertion starting two backbone nodes to

the right.

Local Haplotype Proposal

After constructing the POA we use it to sample alternative assemblies. We first prune

the POA to mark indels and base substitutions with weight below a threshold, which

are generally the result of sequencing errors (Fig. 4.6(B)). Currently this threshold

(polish.candidateVariantWeight=0.18, established empirically) is normalized as a

fraction of the estimated coverage at the site, which is calculated in a running window

around each node in the backbone of 100 bases. Consequently if fewer than 18% of the

reads are expected to include the change then the edit is pruned from consideration.

To further avoid a combinatorial explosion we sample alternative assemblies locally. We

identify subgraphs of s containing indels and substitutions to s then in each subgraph,

defined by a start and end backbone vertex, we enumerate all possible paths between the

start and end vertex and all plausible base substitutions from the backbone sequence. The

155

rationale for heuristically doing this locally is that two subgraphs separated by one or more

anchor backbone sites with no plausible edits are conditionally independent of each other

given the corresponding interstitial anchoring substring of s and the substrings of the reads

aligning to it. Currently, any backbone site more than polish.columnAnchorTrim=5

nodes (equivalent to bases) in the backbone from a node overlapping a plausible edit

(either substitution or indel) is considered an anchor. This heuristic allows for some

exploration of alignment uncertainty around a potential edit. Given the set of anchors

computation proceeds by identifying successive pairs of anchors separated by subgraphs

containing the potential edits, with the two anchors considered the source and sink

vertex.

A Simple Bayesian Model for Run-length Decoding

0 2 4 6 8 10

Observed Distribution (X)

Model
P(X|y) for y=1 to y=8

p(y=1|X) = 0.0000

p(y=7|X) = 0.0000

p(y=2|X) = 0.0000

p(y=3|X) = 0.0000

p(y=5|X) = 0.9685

p(y=6|X) = 0.0001

p(y=4|X) = 0.0314

p(y=8|X) = 0.0000

Calculate
log likelihood

for each y

Normalized likelihood

0 2 4 6 8 10

Run length (bp)

Run length (bp)

P
ro

b
a
b

ili
ty

Fr
e
q

u
e
n
cy

Figure 4.7: Visual representation of run length inference. This diagram shows
how a consensus run length is inferred for a set of aligned lengths (X) that pertain to
a single position. The lengths are factored and then iterated over, and log likelihood
is calculated for every possible true length up to a predefined limit. Note that in this
example, the most frequent observation (4bp) is not the most likely true length (5bp)
given the model.

156

Run-length encoding allows for separate modelling of length and nucleotide error profiles.

In particular, length predictions are notoriously error prone in nanopore basecalling.

Since homopolymers produce continuous signals, and DNA translocates at a variable

rate through the pore, the basecaller often fails to infer the true number of bases given

a single sample. For this reason, a Bayesian model is used for error correction in the

length domain, given a distribution of repeated samples at a locus.

To model the error profile, a suitable reference sequence is selected as the truth set. Reads

and reference are run-length encoded and aligned by their nucleotides. The alignment is

used to generate a mapping of observed lengths to their true length (y,x) where y = true

and x = observed for each position in the alignment. Observations from alignment are

tracked using a matrix of predefined size (ymax = 50,xmax = 50) in which each coordinate

contains the corresponding count for (y,x). Finally the matrix is normalized along one

axis to generate a probability distribution of P (X|yj) for j in [1,ymax]. This process is

performed for each of the 4 bases.

With enough observations, the model can be used to find the most probable true run

length given a vector of observed lengths X. This is done using a simple log likelihood

calculation over the observations xi for all possible true lengths yj in Y , assuming

the length observations to be independent and identically distributed. The length yj

corresponding to the greatest likelihood P (X|yj ,Base) is chosen as the consensus length

for each alignment position (Fig. 4.7).

157

Training

To generate a model, we ran MarginPolish with reads from a specific basecaller ver-

sion aligned to a reference (GRCh38) and specified the –outputRepeatCounts flag.

This option produces a TSV for each chunk describing all the observed repeat counts

aligned to each backbone node in the POA. These files are consumed by a script in

the https://github.com/rlorigro/runlength_analysis repository, which generates

a RLE consensus sequence, aligns to the reference, and performs the described process

to produce the model.

The allParams.np.human.guppy-ff-235.json model used for most of the analysis

was generated from HG00733 reads basecalled with Guppy Flipflop v2.3.5 aligned

to GRCh38, with chromosomes 1, 2, 3, 4, 5, 6, and 12 selected. The model

allParams.np.human.guppy-ff-233.json was generated from Guppy Flipflop v2.3.3

data and chromosomes 1-10 were used. This model was also used for the CHM13

analysis, as the run-length error profile is very similar between v2.3.3 and v2.3.1 (v2.3.5

has a drastically different error profile, as is shown below in Fig. 4.10).

Parallelization and Computational Considerations

To parallelize MarginPolish we break the assembly up into chunks of size

polish.chunkSize=1000 bases, with an overlap of polish.chunkBoundary=50

bases. We then run the MarginPolish algorithm on each chunk independently and

158

in parallel, stitching together the resulting chunks after finding an optimal pairwise

alignment (using the default hmm described earlier) of the overlaps that we use to

remove the duplication. We can further parallelize the algorithm across machines or

processes using a provided Toil script CITE:PMID: 28398314.

Memory usage scales with thread count, read depth, and chunk size. For this reason,

we downsample reads in a chunk to polish.maxDepth=50× coverage by counting total

nucleotides in the chunk Nc and discarding reads with likelihood 1− (chunkSize+2∗

chunkBoundary)∗maxDepth/Nc. With these parameters, we find that 2GB of memory

per thread is sufficient to run MarginPolish on genome-scale assemblies. Across 13

whole-genome runs, we averaged roughly 350 CPU hours per gigabase of assembled

sequence.

HELEN: Homopolymer Encoded Long-read Error-corrector

for Nanopore

HELEN is a deep neural network based haploid consensus sequence polisher. HELEN

employs a multi-task recurrent neural network (RNN) [131] that takes the weights of the

partial order alignment (POA) graph of MarginPolish to predict a base and a run-length

for each genomic position. MarginPolish constructs the POA graph by performing

multiple possible alignments of a single read that makes the weights associative to

the correct underlying base and a run-length. The RNN employed in HELEN takes

159

advantage of the transitive relationship of the genomic sequence and associative coupling

of the POA weights to the correct base and run-length to produce a consensus sequence

with higher accuracy.

The error-correction with HELEN is done in three steps. First, we generate tensor-like

images of genomic segments with MarginPolish that encodes POA graph weights for each

genomic position. Then we use a trained RNN model to produce predicted bases and

run-lengths for each of the generated images. Finally, we stitch the chunked sequences

to get a contiguous polished sequence.

Image Generation

MarginPolish produces an image-like summary of the final POA state for use by HELEN.

At a high level, the image summarizes the weighted alignment likelihoods of all reads

divided into nucleotide, orientation, and run-length.

160

(i)
Assembly sequence: GGAAAAAAAACATTTTAAAA
True sequence: GGAAAAAAAA - - TTTTAAAA

Assembly sequence in run-length: G A A C A T A
2 5 3 1 1 4 4

Truth sequence in run-length: G A A - - T A
2 5 3 0 0 4 4

(ii)
Assembly sequence: ATGAAA - - CTTG
True sequence: ATGAAAGGCTTG

Assembly sequence in run-length: A T G A C T G
1 1 1 3 1 2 1

Truth sequence in run-length: A T G A G C T G
1 1 1 3 2 1 2 1

a.

b.

(i)

(ii)

Figure 4.8: MarginPolish Images A graphical representation of images from two
labeled regions selected to demonstrate: the encoding of a single POA node into two
run-length blocks (i), a true deletion (i), and a true insert (ii). The y-axis shows truth
labels for nucleotides and run-lengths, the x-axis describes features in the images, and
colors show associated weights.

The positions of the POA nodes are recorded using three coordinates: the position in the

backbone sequence of the POA, the position in the insert sequences between backbone

nodes, and the index of the run-length block. All backbone positions have an insert

coordinate of 0. Each backbone and insert coordinate includes one or more run-length

coordinate.

161

When encoding a run-length, we divide all read observations into blocks from 0 to

10 inclusive (this length is configurable). For cases where no observations exceed the

maximum run-length, a single run-length image can describe the POA node. When an

observed run-length exceeds the length of the block, the run-length is encoded as that

block’s maximum (10), and the remaining run-length is encoded in successive blocks.

For a run-length that terminates in a block, its weight is contributed to the run-length 0

column in all successive blocks. This means that the records for all run-length blocks

of a given backbone and insert position have the same total weight. As an example,

consider three read positions aligned to a node with run-lengths of 8, 10, and 12. These

require two run-length blocks to describe: the first block includes one 8 and two 10s,

and the second includes two 0s and one 2.

The information described at each position (backbone, insert, and run-length) is encoded

in 92 features: each nucleotide {A, C, T, G} and run-length {0, 1, .., 10}, plus a gap

weight (for deletions in read alignments). The weights for each of these 45 observations

are separated into forward and reverse strand for a total of 90 features. The weights for

each of these features are normalized over the total weight for the record and accompanied

by an additional data point describing the total weight of the record. This normalization

column for the record is an approximation of the read depth aligned to that node. Insert

nodes are annotated with a binary feature (for a final total of 92); weights for an insert

node’s alignments are normalized over total weight at the backbone node it is rooted at

(not the weight of the insert node itself) and gap alignment weights are not applied to

162

them.

Labeling nodes for training requires a truth sequence aligned to the assembly reference.

This provides a genome-scale location for the true sequence and allows the its length to

help in the resolution of segmental duplications or repetitive regions. When a region of

the assembly is analyzed with MarginPolish, the truth sequences aligned to that region

are extracted. If there is not a single truth sequence which approximately matches

the length of the consensus for this region, we treat it as an uncertain region and no

training images are produced. Having identified a suitable truth sequence, it is aligned

to the final consensus sequence in non-run-length space with Smith-Waterman. Both

sequences and the alignment are then run-length encoded, and true labels are matched

with locations in the images. All data between the first and last matched nodes are

used in the final training images (leading and trailing inserts or deletes are discarded).

For our training, we aligned the truth sequences with minimap2 using the asm20 preset

and filtered the alignments to include only primary and supplementary alignments (no

secondary alignments).

Fig. 4.8 shows a graphical representation of the images. On the y-axis we display true

nucleotide labels (with the dash representing no alignment / gap) and true run-length.

On the x-axis the features used as input to HELEN are displayed: first the normalization

column (the total weight at the backbone position), second the insert column (the

binary feature encoding whether the image is for a backbone or insert node), forty-eight

columns describing the weights associated with read observations (stratified by nucleotide,

163

run-length, strand), and two columns describing weights for gaps in read alignments

(stratified by strand). In this example, we have reduced the maximum run-length per

block from 10 to 5 for demonstrative purposes.

We selected these two images to highlight three features of the model: the way multiple

run-length blocks are used to encode observations for a single node, and the relevant

features around a true gap and a true insert that enable HELEN to correct these errors.

To illustrate multiple run length blocks, we highlight two locations on on image (i). The

first are the nodes labeled (A,5) and (A,3). This is the labeling for a true (A,8) sequence

separated into two blocks. See that the bulk of the weight is on the (A,5) features on

the first block, with most of that distributed across the (A,1-3) features on the second.

Second, observe the nodes on (i) labeled (T,4) and (T,0). Here we show the true labeling

of a (T,4) sequence where there are some read observations extending into a second

run-length block.

To show a features of a true gap, note on (i) the non-insert nodes labeled (-,0). We know

that MarginPolish predicted a single cytosine nucleotide (as it is a backbone node and

the (C,1) nodes have the bulk of the weight. Here, HELEN is able to use the low overall

weight (the lighter region in the normalization column) at this location as evidence of

fewer supporting read alignments and can correct the call.

The position labeled (G,2) on (ii) details a true insertion. It is not detected by Margin-

Polish (as all insert nodes are not included in the final consensus sequence). Read

164

support is present for the insert, less than the backbone nodes in this image but more

than the other insert nodes. HELEN can identify this sequence and correct it.

Finally, we note that the length of the run length blocks results in streaks at multiples

of this length (10) for long homopolymers. The root of this effect lies in the basecaller

producing similar prediction distributions for these cases (ie, the run length predictions

made by the basecaller for a true run length of 25 are similar to the run length predictions

made for a true run length of 35, see Fig. 4.4b Guppy 2.3.3). This gives the model little

information to differentiate upon, and the issue is exacerbated by the low occurrence of

long run lengths in the training data. Because the model divides run length observations

into chunks of size 10, it tends to call the first chunks correctly (having length 10) but

has very low signal for the last chunk and most often predicts 0.

165

Bidirectional gated
recurrent unit

Linear
layer

Input sequence

window 1 window 2

Bidirectional gated
recurrent unit

Linear
layer

Bidirectional gated
recurrent unit

Linear
layer

Bidirectional gated
recurrent unit

Linear
layer

sliding window

Hidden state

En
co

d
er

D
ec

o
d

er

Base
predictions

Run-length
predictions

Base
predictions

Run-length
predictions

Multi-task learning with hard parameter sharing

Hidden state

Figure 4.9: The sequence-to-sequence model implemented in Helen.

The model

We use a sequence transduction model for consensus polishing. The model structure

consists of two single-layer gated recurrent neural units (GRU) for encoding and decod-

ing on top of two linear transformation layers. The two linear transformation layers

independently predict a base and a run-length for each position in the input sequence.

166

Each unit of the GRU can be described using the four functions it calculates:

rt = Sigmoid(Wirxt +Whrh(t−1))

ut = Sigmoid(Wiuxt +Whuh(t−1))

nt = tanh(Winxt + rt ∗ (Whnh(t−1)))

ht = (1−ut)∗nt +ut ∗h(t−1)

(4.1)

For each genomic position t, we calculate the current state ht from the new state nt and

the update value ut applied to the output state of previous genomic position h(t−1). The

update function ut decides how much past information to propagate to the next genomic

position. It multiplies the input xt with the weight vector Wiu and multiplies the hidden

state of the previous genomic position h(t−1). The weight vectors decide how much from

the previous state to propagate to the next state. The reset function rt decides how much

information to dissolve from the previous state. Using a different weight vector, the rt

function decides how much information to dissolve from the past. The new memory state

nt is calculated by multiplying the input xt with the weight vector Win and applying

a Hadamard multiplication ∗ between the reset function value and a weighted state of

the previous hidden state h(t−1). The new state captures the associative relationship

between the input weights and true prediction. In this setup, we can see that rt and

ut can decide to hold memory from distant locations while nt captures the associative

nature of the weights to the prediction, helping the model to decide how to propagate

167

genomic information in the sequence. The output of each genomic position ht can be

then fed to the next genomic position as a reference to the previously decoded genomic

position. The final two layers apply linear transformation functions:

Bt = ht ∗W T

Rt = ht ∗W T

(4.2)

The two linear transformation functions independently calculate a base prediction Bt

and a run-length prediction Rt from the hidden state output of that genomic position ht.

The model operates in hard parameter sharing mode where the model learns to perform

two tasks in equation 4.2 using the same set of underlying parameters from equation

4.1. The ability of the model to reduce the error rate of the assemblies from multiple

samples with multiple assemblers shows the generalizability and robustness we achieve

with this method.

Sliding window mechanism

One of the challenges of this setup is the sequence length. From the functions of recurrent

units in equation 4.1, we see that each state is updated based on the previous state and

associated weight. Due to the noisy nature of the data, if the sequence length is too

long, the back-propagation becomes difficult over noisy regions. On the other hand, a

small sequence length would make the program very slow. We balance the run-time and

accuracy by using a sliding window approach.

168

During the sliding-window, we chunk the sequence of thousand bases to multiple overlap-

ping windows of length 100. Starting from the leftmost window, we perform prediction

on sequence pileups of the window and transmit the hidden state of the current window

to the next window and slide the window by 50 bases to the right. For each window,

we collect all the predicted values and add it to a global sequence inference counter

that can keep track of predicted probabilities of base and run-length at each position.

Lastly, we aggregate the probabilities from the global inference counter to generate a

sequence. This setup allows us to utilize the minibatch feature of the popular neural

network libraries allowing inference on a batch of inputs instead of performing inference

one at a time.

Training the model

HELEN is trained with a gradient descent method. We use Adaptive Moment Estimation

(Adam) method to compute gradients for each of the parameters in the model based on

a target loss function. Adam uses both decaying squared gradients and the decaying

average of gradients, making it suitable to use with recurrent neural networks[131].

Adam performs gradient optimization by adapting the parameters to set in a way that

minimizes the value of the loss function.

We perform optimization through back-propagation per window of the input sequence.

From equation 4.2, we see that we get two vectors B = [B1,B2,B3...Bn] and R =

[R1,R2,R3...Rn] containing base and run-length predictions for each window of size n.

169

From the labeled data we get two more such vectors TB = [TB1,TB2,TB3, ...TBn] and

TR = [TR1,TR2,TR3, ...TRn] containing the true base and true rle values of each position

in the window. From these loss function the loss L is calculated:

LB(B,TB) = −B[TB]+ log
(∑

j exp(B[j])
)

LR(R,TR) = weight[TR]
(
−R[TR]+ log

(∑
j exp(R[j])

))

L = LB +LR

(4.3)

In equation 4.3, LB calculates the base prediction loss and LR calculates the rle prediction

loss. The rle class distribution is heavily biased toward lower run-length values, so, we

apply class-wise weights depending on the observation of per class to make the learning

process balanced between classes. The optimizer then updates the parameters or weights

W of the model from equation 4.1 and equation 4.2 in a way that minimizes the value

of the loss function. We can see that the loss function is a summation of the two

independent loss functions but the underlying weights from the recurrent neural network

belongs to the same set of elements in the model. In this setting, the model optimizes to

learn both task simultaneously by updating the same set of weights.

Sequence stitching

To parallelize the polishing pipeline, MarginPolish chunks the genome into smaller

segments while generating images. Each image segment encodes a thousand nucleotide

bases, and two adjacent chunks have 50 nucleotide bases overlap between them. During

170

the inference step, we save all run-length and base predictions of the images, including

their start and end genomic positions.

For stitching, we load all the image predictions and sort them based on the genomic

start position of the image chunk and stitch them in parallel processes. For example, if

there are n predictions from n images of a contig and we have t available threads, we

divide n prediction chunks into t buckets each containing approximately n/t predicted

sequences. Then we start t processes in parallel where each process stitches all the

sequences assigned to it and returns a longer sequence. For stitching two adjacent

sequences, we take the overlapping sequences between the two sequence and perform a

pairwise Smith-Waterman alignment. From the alignment, we pick an anchor position

where both sequences agree the most and create one sequence. After all the processes

finish stitching the buckets, we get t longer sequences generated by each process. Finally,

we iteratively stitch the t sequences using the same process and get one contiguous

sequence for the contig.

Generating trained models

In supplementary tables B.20, B.23 and B.22 we report several models for HELEN. The

models are trained on different sets of data with varying Guppy base-caller versions. We

discuss three trained models r941_flip235_v001.pkl, r941_flip233_v001.pkl, and

r941_flip231_v001.pkl to use with HELEN for different versions of the ONT Guppy

base-callers. Due to the difference in the error profile of different versions of the Guppy

171

base-caller, we trained three different models.

Table 4.3: Description of trained models for HELEN.

Model Name Base caller version Training sample Training region Testing region

r941_flip235_v001.pkl Guppy 2.3.5 HG002 Chr1-19, Chr21-22 Chr20

r941_flip233_v001.pkl Guppy 2.3.3 HG002 Chr1-19, Chr21-22 Chr20

r941_flip231_v001.pkl Guppy 2.3.1 CHM13 Chr1-6 Chr20

The r941_flip235_v001.pkl is trained on HG002 base called with Guppy 2.3.5. The

model is trained on the high confidence regions of all autosomes and tested on Chr20.

The training script trained the model for 80 hours on 10 epochs, which generated 10

trained models. We picked the model that has the best performance on Chr20 as the

final model.

172

1 5 10 15 20 25 30 35 40 45
Predicted length

1

5

10

15

20

25

30

35

40

45

Tr
ue

 le
ng

th

Guppy 2.3.3

1 5 10 15 20 25 30 35 40 45
Predicted length

1

5

10

15

20

25

30

35

40

45

Guppy 2.3.5

0.0

0.2

0.4

0.6

0.8

Probability of prediction

Figure 4.10: Run-length confusion in different versions of Guppy base caller

The CHM13 data from T2T consortium [206] were base called with Guppy 2.3.1. The

error profile of Guppy 2.3.1 is significantly different than Guppy 2.3.5. Figure 4.10 shows

the difference in underlying error profile of HG00733 sample for two different versions

of Guppy. We trained r941_flip233_v001.pkl Model on HG002 Guppy 2.3.3 data.

Although the error profile of Guppy 2.3.1 and Guppy 2.3.3 are similar, the reported

base qualities are different. So, we trained another model r941_flip231_v001.pkl on

Chr1-6 of CHM13 to see further improvement in the consensus quality of CHM13.

Implementation notes

We have implemented HELEN using python and C++ programming language. We

use PyTorch [159] deep neural network library for the model implementation. We also

use the Striped-Smith Waterman algorithm implementation to use during stitching

and Pybind11 [91] as a bridge between C++ and python methods. The image data is

173

saved using HDF5 file format. The implementation is publicly available via GitHub

(https://github.com/kishwarshafin/helen).

174

Part V

Validation and polishing of the

first complete human genome.

175

Chapter 5

Validation and polishing strategies for

telomere-to-telomere genome assemblies

Preamble

This chapter contains the text from a pre-print titled "Chasing perfection: validation and

polishing strategies for telomere-to-telomere genome assemblies"[128]. The manuscript

details a pipeline we used to validate and polish the first telomere-to-telomere assembly

of a human genome as a part of the T2T consortium led by Adam M Phillippy and

Karen Miga. I am a co-first author of this manuscript with Ann McCartney and Michael

Alonge, and Arang Rhie led the work. My contribution to this manuscript is the small

variant derivation and telomere polishing with PEPPER.

176

I believe this is a significant contribution to the field of genomics that shows how

platform-specific biases can affect even the most accurate assembly we can produce and

how to correct them. I thank the T2T consortium, Arang Rhie, Ann McCartney, and

Michael Alonge, for allowing me to be a part of the polishing team and share this work

as a part of my dissertation. I would also like to thank Andrey V Bzikadze, Giulio

Formenti, Arkarachai Fungtammasan, Kerstin Howe, Chirag Jain, Sergey Koren, Glennis

A Logsdon, Karen H Miga, Alla Mikheenko, Benedict Paten, Alaina Shumate, Daniela

C Soto, Ivan Sovic, Jonathan MD Wood, Justin M Zook who are co-authors of this

manuscript.

Introduction

Genome assembly is a foundational practice of quantitative biological research with

increasing utility. By representing the genomic sequence of a sample of interest, genome

assemblies enable researchers to annotate important features, quantify functional data,

and discover/genotype genetic variants in a population[147, 212, 67, 45, 83, 1]. Modern

draft eukaryotic genome assembly graphs are typically built from a subset of four Whole

Genome Shotgun (WGS) sequencing data types: Illumina short reads[208, 134], Oxford

Nanopore Technologies (ONT) long reads[118], PacBio Continuous Long Reads (CLR),

and PacBio High-Fidelity (HiFi) long reads[223, 118], all of which have been extensively

described[223, 118, 208, 134]. However, we note that even the high-accuracy technologies

produce sequencing data with some noise caused by platform-specific technical biases

177

that require careful validation and polishing[9, 77, 25, 223, 147].

Current genome assembly software attempts to reconstruct an individual or mosaic

haplotype sequence from a subset of the above WGS data types. Some assemblers

do not attempt to correct sequencing errors[109], while others attempt to remove

errors at various stages of the assembly process[94, 150, 27, 230, 195]. Regardless,

technology-specific sequencing errors usually lead to distinct assembly errors[25, 219].

Additionally, suboptimal assembly of specific loci often causes small and large errors

in draft assemblies[184, 176]. Here, we define “polishing” as the process of removing

these errors from draft genome assemblies. Most polishing tools use an approach that is

similar to sequence-based genetic variant discovery. Specifically, reads from the same

individual are aligned to a draft assembly, and putative “variant”-like sequence edits are

identified[176, 231]. For diploid genomes, heterozygous “alternate” alleles are interpreted

as genuine heterozygous variants, while homozygous alternate alleles are interpreted as

assembly errors to be corrected. Some polishing tools, such as Quiver/Arrow, Nanopolish,

Medaka, DeepVariant, and PEPPER leverage specialized models and prior knowledge

to correct errors caused by technology-specific bias[158, 122, 167, 191, 156]. Others,

such as Racon[209], use generic methods to correct assembly errors with a subset of

sequencing technologies[209, 229, 61]. These generic tools can utilize multiple data types

to synergistically overcome technology-specific assembly errors.

The Telomere-to-Telomere (T2T) consortium recently convened an international work-

shop to assemble the first-ever complete sequence of a human genome. Because heterozy-

178

gosity can complicate assembly algorithms, the consortium chose to assemble the highly

homozygous genome of a complete hydatidiform mole cell line (CHM13hTERT; abbr.

CHM13). Primarily using HiFi reads and supplemented with ONT reads, the consortium

built a highly accurate and complete draft assembly (CHM13v0.9) that resolved all

repeats with the exception of the rDNAs[147]. CHM13v0.9 contained about 1 error in

every 10.5 Mb (Q70.22), and while this was highly accurate by traditional standards, we,

as part of the consortium, sought to correct all lingering errors and omissions, including

those within repeats, in this first truly complete assembly of a human genome.

Alignment-based validation and polishing commonly underperform within genomic

repeats where alignments are ambiguous and inaccurate. For example, this challenge

was identified while validating the first complete centromere and satellite repeats of

the Chromosome X, requiring a customized conservative marker-assisted alignment[4].

To address this challenge, specialized repeat-aware alignment methods were recently

developed, such as Winnowmap2[86, 84] and TandemMapper[137]. However, to the best

of our knowledge, no studies have utilized such methods to reliably validate and polish

an entire genome assembly, including the most notoriously repetitive regions.

Here, we describe techniques developed to carefully evaluate the accuracy and com-

pleteness of a complete human genome assembly using multiple complementary WGS

data types. Our evaluation of the initial draft CHM13 assembly discovered a number

of assembly errors, therefore we created a custom polishing pipeline that was robust to

genomic repeats and technology-specific biases. By applying this polishing pipeline to

179

CHM13v0.9, we made 1,457 corrections, replacing a total of 12,234,603 bp of sequence

with 10,152,653 bp of sequence, ultimately leading to the landmark CHM13v1.1 assembly

representing the first complete human genome ever assembled. Our edits increased the

estimated quality value to Q73.94 while mitigating haplotype switches. Further, we

extended the truncated p-arm of chromosome 18 to encompass the complete telomere,

and polished all telomeres with a new specialized PEPPER-DeepVariant model. Our

careful evaluation of CHM13v1.1 confirmed that polishing did not overcorrect repeats

(including rDNAs) nor did it cause false-positive edits causing invalid coding sequence

reading frames. Additionally, we identified a comprehensive list of putatively heterozy-

gous loci in the CHM13 cell line, as well as sporadic loci where read alignments still

indicated exceptionally low coverage. Finally, we uncovered common mistakes made by

standard automated polishing pipelines and provide best practices for other genome

assembly projects.

Results

Initial evaluation of CHM13v0.9

The T2T Consortium has collected a comprehensive and diverse set of publicly available

WGS sequencing and genomic map data (Illumina PCR-free, PacBio HiFi, PacBio CLR,

ONT, and Bionano optical maps) for the nearly-completely homozygous CHM13 cell line

(https://github.com/nanopore-wgs-consortium/CHM13). As part of the consortium, we

drew upon these sequencing data to generate a custom pipeline (Figure 5.1) to evaluate,

180

identify and correct lingering errors in CHM13v0.9.

Figure 5.1: An overview of the evaluation and polishing strategy developed to achieve
a complete , polished, human genome. a. The evaluation strategies applied to assess
consensus genome assembly accuracy both before (CHM13v0.9) and after (CHM13v1.0
and CHM13v1.1). b. The “do no harm” polishing strategy developed and implemented
to generate CHM13v1.0 and CHM13v1.1 after the initial evaluation of the CHM13v0.9
consensus assembly.

We first derived k-mer-based quality estimations (k = 21bp) of CHM13v0.9 using

Merqury[177] using both Illumina and HiFi reads. The k-mer size was chosen to limit

the collision rate to 0.5% given the estimated genome size of 3.05 Gbp of CHM13[57].

While estimating the Illumina reads QV, we found 15,723 k-mers present in the assembly

and not the reads (erroneous k-mers), leading to an estimated base quality of Q66.09.

Using HiFi reads, we found 6,881 error k-mers (Q69.68) (Figure 5.2). To test how

181

technical sequencing bias may have influenced this QV estimation, we examined the

k-mer multiplicity and sequence content of assembly k-mers absent from one technology

but present in the other. Here, our results indicated that k-mers missing from Illumina

reads were present with expected frequency in HiFi and were enriched for G/C bases.

Conversely, k-mers missing in HiFi were present with higher frequency in Illumina reads

with A/T base enrichment (Figure 5.2b). However, we identified no particular enrichment

pattern in the number of GA or CTs within the k-mers, possibly due to the short k-mer

size chosen (Supplementary Figure C.1a). Most of the k-mers absent from HiFi reads

were located in patches derived from a previous ONT-based assembly (CHM13v0.7),

which were included to overcome regions of HiFi coverage dropout[147] (Supplementary

figure C.1b-c). These findings highlighted that platform-specific sequencing biases were

underestimating the QV when measured from a single sequencing platform. To overcome

this, we created a hybrid k-mer database that combined these platforms to be used

for QV estimation (Supplementary figure C.1d). Unlike the default QV estimation

in Merqury, we removed low frequency k-mers to avoid overestimated QVs caused by

excessive noise accumulated from both platforms. We estimated base level accuracy

as Q70.22 with 6,073 missing k-mers (Supplementary table C.1). We note that this

estimate does not account for the rarer case of k-mers present in the reads but misplaced

or falsely duplicated in the assembly.

182

Figure 5.2: Sequencing biases in PacBio HiFi and Illumina reads. a. Venn Diagram
of the distinct “error” k-mers found only in the assembly and not in the HiFi reads
(blue) or Illumina reads (green). Except the 1,085 k-mers that did not exist in either
HiFi or Illumina reads, error k-mers were found in the other sequencing platform with
expected frequency, matching the average sequencing coverage (lower panels). b. Missing
k-mers from a with its GC contents, colored by the frequency observed. Low frequency
erroneous k-mers did not have a clear GC bias. K-mers found only in HiFi had a higher
GC percentage, while higher frequency k-mers tend to have more AT rich sequences
in Illumina. c. Homopolymer length distribution observed in the assembly and in
HiFi reads (upper) or Illumina reads (lower) aligned to that position. The longer the
homopolymer length became in the consensus, the length became variable in HiFi reads
especially in the GC homopolymers. Majority of the Illumina reads were continuously
concordant with the consensus.

Despite the high accuracy of CHM13v0.9 (Q70.22), we expected to find consensus se-

quence errors related to the systematic presence of homopolymer- or repeat-specific issues

in HiFi reads[118, 102]. To detect these, we generated self-alignments by aligning CHM13

reads to CHM13v0.9 for each WGS sequencing technology. Though each data type

required technology-specific alignment methods, we highlight our use of Winnowmap2

that enabled robust alignment of long-reads to both repetitive and non-repetitive regions

183

of CHM13v0.9[86, 84]. To understand the homopolymer length differences between the

assembly and the reads, we derived a confusion matrix from Illumina read alignments

showing discordant representation of long homopolymers between the Illumina reads and

the assembly (Figure 5.2c). Altogether, the QV and homopolymer analysis suggested

that CHM13v0.9 required polishing to maximize accuracy of a complete human genome.

Identification and correction of assembly errors

To address assembly flaws identified during evaluation, we aimed to establish a customized

polishing pipeline that would avoid false positive polishing edits (especially in repeats)

and maintain local haplotype consistency (Figure 5.1b) (Supplementary Figure C.2). We

identified and corrected small errors (<=50bp) using several small variant calling tools

from self-alignments of Illumina, HiFi, and ONT reads to CHM13v0.9. To call both

single-nucleotide polymorphisms (SNPs) and small insertions and deletions (INDELs),

we applied a hybrid mode of DeepVariant[167] that exploited both HiFi and Illumina

read alignments[154]. Simultaneously, we used PEPPER-DeepVariant[191] to generate

additional SNP calls with ONT reads as it can yield high-quality SNP variants in difficult

regions of the genome[154] (Supplementary Figure C.3). We rigorously filtered all calls

using Genotype Quality (GQ < 30 for the hybrid calls and GQ < 25 for ONT SNP calls)

and Variant Allele Frequency (VAF < 0.5) to exclude any low-frequency false-positive

calls (Supplementary Figure C.2). We chose VAF < 0.5 to avoid including heterozygous

variants and the GQ threshold was chosen based on the previously reported calibration

184

plot of DeepVariant that shows that calls that have quality above 25 or 30 are highly

unlikely to result in false positives[191, 167]. We then filtered all of the suggested

alternate corrections with Merfin[58], a tool concurrently developed by members of the

T2T consortium, to avoid introducing error k-mers (Figure 5.1b, Figure 5.3c). Finally,

we ignored variants near the distal or proximal rDNA junctions on the short arms of

the acrocentric chromosomes to avoid homogenizing the alleles from the un-assembled

rDNAs. After merging all variant calls, we identified 993 small variants (<=50bp) that

represented potential assembly errors and heterozygous sites. From these 993 assembly

edits, about two-thirds were homopolymer corrections (512) or low-complexity micro-

satellite repeats composed of 2 distinct bases in homopolymer-compressed space (hereby

noted as “2-mer”) consistent with prior observations of HiFi sequence errors or bias[150].

Across all 617 loci, we evaluated the edit distribution using both Illumina and HiFi

reads and found that the majority of Illumina reads supported the longer homopolymer

or 2-mer repeat lengths compared to HiFi reads, thereby uncovering systemic biases in

both homopolymer and 2-mer length in HiFi reads[150] that caused the propagation of

these errors into the consensus assembly sequence (Figure 5.3d).

185

Figure 5.3: Errors corrected after polishing. a. Three SV-like errors corrected. b.
Bionano optical maps indicating the missing telomeric sequence on Chr. 18 p-arm (left)
with a higher than average mapping coverage. This excessive coverage were removed
after adding the missing telomeric sequence (right) and most of the bionano molecules
end at the end of the sequence. c. Variant allele frequency (VAF) of each variant called
by DeepVariant hybrid (HiFi + Illumina) mode, before and after polishing. Most of
the high frequency variants (errors) are removed after polishing, which were called as
‘Homozygous’ variants. d. Total number of reads in each observed length difference (bp)
between the assembly and the aligned reads at each edit positions. Positive numbers
indicate more bases are found in the reads, while negative number indicates less numbers
in the reads. Both homopolymer and micro-satellite (dimers in homopolymer compressed
space) length difference became 0 after polishing.

186

We used Parliament2[228] and Sniffles[188] to identify medium-sized (>50bp) assembly

errors and heterozygous structural variants (SVs). Parliament2 runs 6 structural variant

callers[228] using short-read data, while the Sniffles detects structural variants using

one of the long-read technologies (HiFi, ONT, and CLR). To improve specificity, we

only considered Parliament2 calls supported by at least two SV callers and Sniffles calls

supported by at least two long-read technologies. Similar to small variant detection,

we excluded SVs called in the partial rDNA arrays and the HSat3 satellite repeat on

chromosome 9. This pipeline identified a relatively small number of SV calls (66, see

Supplementary Figure C.2) that we were able to manually curate via genome browsing. In

total, we corrected three medium-sized assembly errors (replacing 1,998 bp of CHM13v0.9

sequence with 151 bp of new sequence) and we identified 44 heterozygous SVs (Figure 5.3a

and Supplementary Figure C.4). We also identified a missing telomere sequence on the

p-arm of chromosome 18 — a potential result of the string graph simplification process

and confirmed through Bionano mapping (Figure 5.1b, Figure 5.3b). To correct this

omission, we used the CHM13v0.9 graph to identify a set of HiFi reads expected to cover

this locus[147] and found ONT reads that mapped to the corresponding subtelomere and

contained telomeric repeats. We used the ONT reads to derive a consensus chromosome

18 extension that was subsequently polished with the associated HiFi reads. After

patching this telomere extension, we used Bionano alignments to confirm the accuracy

of this locus (Figure 5.3b). Altogether, the small and medium-sized variant calls along

with the chromosome 18 telomere patch were combined into two distinct VCF files: a

polishing edits file (homozygous ALT variants and the telomere patch) and a file for

187

heterozygous variants (all other variants). We created the polished CHM13v1.0 assembly

by incorporating these edits into the CHM13v0.9 with bcftools[114].

We ensured polishing accuracy by extensive manual validation through visual inspection

of the repeat-aware alignments, error k-mers, marker k-mers, and marker-assisted align-

ments. Here, we define “marker” k-mers as k-mers that occur only once in the assembly

and in the expected single-copy coverage range of the read k-mer database and are highly

likely to represent unique regions of the assembly (Supplementary Figure C.5)[136]. To

generate marker-assisted alignments, we filtered Winnowmap2[86] alignments to exclude

any alignments that did not span marker k-mers (https://github.com/arangrhie/T2T-

Polish/tree/master/marker_assisted). Our findings supported that most genomic loci

contained a deep coverage of marker k-mers to facilitate marker-assisted alignment,

except for a few highly repetitive regions (11.3 Mb in total) that lacked markers (termed

“marker deserts”) (Figure 5.1a and Supplementary Figure C.5). In parallel, we used

TandemMapper[137] to detect structural errors in all centromeric regions, including iden-

tified marker deserts. TandemMapper[137] used locally unique markers for the detection

of marker order and orientation discrepancies between the assembly and associated long

reads. We manually validated all large polishing edits and heterozygous SVs, and many

small loci were validated ad hoc.

188

Validation of CHM13v1.0

Given the high completeness and accuracy standards of the T2T consortium, and knowing

that polishing may introduce additional errors[58], we took extra precautions to validate

polishing edits and to ensure that edits did not degrade the quality of CHM13v0.9. First,

we repeated self-alignment variant calling methods on CHM13v1.0, confirming that all

edits made were correct (Figure 5.3a). Through Bionano optical map alignments, we

validated the structural accuracy of the chromosome 18 telomere patch and confirmed that

all 46 telomeres were represented in CHM13v1.0 (Figure 5.3b). Notably, our polishing

led to a marked improvement in the distribution of GQ and VAF of small variant calls

(Figure 5.3c and Supplementary Figure C.6a). Our approach also increased the base level

consensus accuracy from Q70.22 in CHM13v0.9 to Q72.62 in CHM13v1.0. Further, we

found that error k-mers were uniformly distributed along each chromosome, suggesting

that remaining errors were not clustered within certain genomic regions (Supplementary

Figure C.6b-c). Upon re-evaluation of the homopolymers and 2-mers, we noted most

of the biases we found in CHM13v0.9 from HiFi reads had been accurately removed,

achieving an improved concordance with Illumina reads (Figure 5.3d). Polishing did not

induce invalid open reading frames (ORFs) in CHM13v0.9 transcripts with valid ORFs,

and polishing corrected 16 invalid CHM13v0.9 ORFs (Supplementary Table C.2).

189

Figure 5.4: Examples of the largest CHM13 regions with a copy number in the reference
that differs from GRCh38 and most individuals. a. One of the two largest examples of
rare collapses in CHM13, where one copy of a common 72 kb tandem duplication is absent
in CHM13. b. The largest rare duplication in CHM13, a 142 kb tandem duplication
of sequence in GRCh38 that is rare in the population. CHM13 and HG002 PacBio
HiFi coverage tracks are displayed for both references, GRCh38 (top) and CHM13v1.0
(bottom), to demonstrate that CHM13 reads support the CHM13 copy-number but
HG002 reads are consistent with the GRCh38 copy-number. Read-depth copy-number
estimates in CHM13 are shown at the bottom for ‘k-merized’ versions of GRCh38 and
CHM13v1.0 references, CHM13 Illumina reads, and Illumina reads from a diverse subset
(n=34) of SGDP individuals.

Overall, we made a total of 112 polishing edits (impacting 267 bp) in centromeric

regions[4], with 15 (35 bp) of these edits occurring specifically in centromeric alpha-

satellite higher-order repeat arrays. We made 134 edits (4,975 bp) in non-satellite

segmental duplications[213]. Moreover, the polishing edits were neither enriched nor

depleted in satellite repeats and segmental duplications (p=0.85, permutation test),

suggesting that non-masked repeats were not over- or under-corrected compared to the

190

rest of the genome (Supplementary Figure C.7). Finally, through extensive manual

inspection, we confirmed the reliability of the alignments for the three SV associated edits

incorporated into CHM13v1.0 (Supplementary Figure C.8), and these efforts uncovered

some heterozygous loci in the centromeres. These regions are under active investigation

by the T2T consortium to both ensure their structure and understand their evolution[4].

As an additional validation, we investigated potential rare or false collapses as well as

rare or false duplications in CHM13v1.0. Here, based on k-mer estimates from both

GRCh38 and CHM13v1.0 and from Illumina reads for 268 Simon’s Genome Diversity

Project (SGDP) samples, we identified regions in CHM13v1.0 with a lower or higher

copy number than both GRCh38 and 99% of the SGDP samples[212]. We found six

regions of rare collapses in CHM13v1.0 that were not in GRCh38 (covering 205 kb,

four from one single segmental duplication family). Both our HiFi read depth and

Illumina k-mer-based copy number estimates suggest these six regions are likely rare

copy number variants in CHM13 (e.g.,CHM13v1.0 has only a single copy of the 72 kb

tandem duplication in GRCh38, Figure 5.4a). Additionally, we found that CHM13v1.0

had 33x fewer false or rare collapses than GRCh38 (~185 loci covering 6.84 Mbp)[1].

We identified five regions (160 kb) with rare duplications in CHM13v1.0. This included

a single 142 kb region that appeared to be a true, rare tandem duplication based on

HiFi read depth and Illumina k-mer-based copy number estimates (Figure 5.4b). Two of

the smaller regions appeared to be true, rare tandem duplications, and two other small

regions were identified during polishing as heterozygous or mosaic deletions, revealing

191

potential tandem duplications arising during cell line division or immortalization. In

summary, we found 7.5x fewer rare or falsely duplicated bases in CHM13v1.0 relative

to the 12 likely falsely-duplicated regions affecting 1.2 Mb and 74 genes in GRCh38[1],

including the medically relevant genes: CBS, CRYAA, and KCNE1[217].

Toward a completely polished sequence of a human genome

While evaluating CHM13v1.0, the T2T consortium successfully completed the construc-

tion of the rDNA models and their surrounding sequences on the p-arms of the five

acrocentric chromosomes[147]. In parallel, we determined that all telomeric sequences

remained unpolished. Specifically, in canonical [TTAGGG]n repeats, we found both

HiFi read coverage dropouts and ONT strand bias impeded high quality variant calling

(Supplementary Figure C.9). For ONT, we observed only negative strands on the p-arm

and only positive on the q-arm across all telomeric repeats at chromosomal ends; we

suspect the ONT ultra-long transposon-based library preparation prevents reads from

starting at chromosome ends, causing reads to only read into the telomere[136, 89].

We tailored our PEPPER-based polishing approach and performed targeted telomere

polishing to remove these errors remaining in telomeric sequences. Finally, automated

polishing (described below), indicated that the FAM156B gene was heterozygous in

CHM13v0.9 and CHM13v1.0 represented the rare minor allele (encoding a premature

stop codon) at this locus. We replaced this minor allele with the other CHM13 allele

encoding a full-length protein sequence. Overall, we made 454 telomere edits, producing

192

longer stretches of maximum perfect matches to the canonical k-mer at each position

across these telomeres compared to CHM13v1.0 (Supplementary Figure C.10). Combined

with the parallel completion of the five rDNA arrays, our final round of polishing led to

an improved QV of Q73.94 for CHM13v1.1.

Again, to ensure updates did not compromise the high accuracy of the assembly and

to identify any remaining issues, we carried out an additional round of SV detection

and manual curation using HiFi and ONT with an updated Winnowmap2 alignment

(Supplementary Figure C.11), classifying seven loci as remaining issues in CHM13v1.1

(Supplementary Table C.3). We excluded CLR because the lower base accuracy compared

to HiFi and ONT and shorter read length compared to ONT were adding no information.

Bionano was also excluded as the molecules were lacking coverage in centromeric regions

(Supplementary Figure C.12) and did not detect any structural issues beyond the missing

telomere and a few heterozygous structural variants already identified by HiFi and ONT.

Two loci located in the rDNA sequences appear to be a potential discrepancy between the

model consensus sequence and actual reads or an artifact of mapping or sequencing bias.

Lower consensus quality is indicated at two other loci, one detected with read alignments

that were both low in coverage and identity, and one of which contained error k-mers

detected by the hybrid dataset. One locus consisted of multiple insertions (<1kb) with

breakpoints detected in low-complexity sequences associated with heterozygous variants

and indicated a possible collapsed repeat (Supplementary Figure C.13) and an additional

two loci joined and created an artificial chimeric haplotype (Supplementary Figure C.14).

193

Additionally, we found 218 low coverage loci using HiFi (Supplementary Table C.4), with

81.2% associated with GA-rich (78.0%) regions. The remaining 41 loci had signatures of

lower consensus quality and alignment identity, and 30 had error k-mers detected from

the hybrid k-mer dataset. In contrast, we detected one low-coverage locus using ONT

that overlapped the GA-rich model rDNA sequence. We associated most remaining loci,

totalling only 544.8 kb or <0.02% of assembled sequence, with lower consensus quality

in regions lacking unique markers. Overall, we found 394 heterozygous regions, including

regions with clusters of heterozygous variants (https://github.com/mrvollger/nucfreq),

totalling 317 sites (~1.1 Mb).

We manually curated, both the breakpoints and alternate sequences associated with

47 heterozygous SVs, including sites previously inspected (CHM13v1.0) for SV-like

error detection. We then investigated HiFi read alignment clippings and confirmed

an association with clipping to both true heterozygous variant and spurious low fre-

quency alignments. Additionally, we detected a further heterozygous inversion that went

previously undetected.

A comparison to automated assembly polishing

To demonstrate the efficacy of the customized DeepVariant-based approach, we compared

our semi-automated polishing approach used to create CHM13v1.0 (Q72.62) to a popular

state-of-the-art automated polishing tool, Racon[209, 213]. We iteratively polished

CHM13v0.9 (three rounds) using Racon with PacBio HiFi alignments. While the QV

194

https://github.com/mrvollger/nucfreq

improved from Q70.22 to Q70.48 after the first round of Racon polishing, it degraded

with the subsequent second (Q70.26) and third (Q70.15) rounds, ultimately diminishing

assembly accuracy as a result of overcorrection. We also found that Racon incorpo-

rated 7,268 alternate alleles from heterozygous variants identified by DeepVariant, thus

potentially causing undesirable haplotype-switching in originally haplotype-consistent

blocks. To examine how Racon polished large, highly similar repetitive elements, we

counted the number of corrections in non-overlapping 1 Mb windows of the CHM13v0.9

assembly and measured local polishing rates. Unlike CHM13v1.0, Racon polishing

showed a clear right-tail in the distribution of polishing rates, indicating the presence of

polishing “hotspots”, defined here as loci with >60 corrections/Mb (Figure 5.5a). The

proximal and distal junctions of the rDNA units (masked from CHM13v1.0 polishing)

were prevalent among these loci, a finding that reinforced the importance of masking

known collapsed but resolved loci to avoid overcorrection. We also found non-rDNA loci

that were preferentially polished by Racon, including satellite repeats such as the highly

repetitive HSat3 region in chromosome 9. Finally, CHM13v1.0 made two corrections,

recovering two protein-coding transcript’s open reading frames (ORFs), but Racon did

not make these corrections (Supplementary Table C.2). While CHM13v1.0 did not induce

invalid ORFs in any transcripts, Racon made 10 corrections that caused invalid ORFs in

22 transcripts (from nine genes) (Figure 5.5b). Most of these corrections occurred at

homopolymer repeats, consistent with our previous findings that homopolymer bias in

HiFi reads could lead to false expansion or contraction of homopolymers during polishing.

195

Figure 5.5: Errors made by automated polishing. a, Distribution of the number of
polishing edits made in non-overlapping 1 Mb windows of the CHM13v0.9 assembly. b,
Two Racon polishing edits causing false frameshift errors in the FAM156B gene. Light
blue indicates UTR and dark blue indicates the single coding sequence exon. Highlighted
sequence indicates GC-rich homopolymers.

To overcome these relative shortcomings of Racon polishing, we tested polishing the

CHM13v0.9 assembly with three iterative rounds of Racon followed by filtering with

Merfin (Racon+Merfin). After each round of polishing, Merfin removed proposed Racon

edits that incorporated false assembly k-mers. As expected, the Racon+Merfin assembly

QV monotonically increased from Q70.22 to Q77.34, Q77.99 and Q78.12. However,

196

Racon+Merfin still incorporated 2,274 alternate alleles from heterozygous variants and

polishing hotspots were still evident, suggesting that some repeats were overcorrected

(Figure 5.5a). These overcorrections are not reflected in the QV measurements as k-mers

from true heterozygous variants are considered ‘valid’ sequences. Merfin mitigated the

10 ORF-invalidating Racon corrections, however, Merfin also failed to correct the two

reading frame corrections made in CHM13v1.0 but not Racon (Supplementary Table

C.2). Overall, when considering only automated polishing, we suggest that Racon and

Merfin can be used together as a highly effective strategy for building reference assemblies

with minimum false positive corrections. However, we would like to emphasize that

a custom polishing pipeline with manual interventions is still required for preserving

haplotype consistency and avoiding repeat overcorrection.

Discussion

The CHM13v0.9 human genome assembly represented a landmark achievement for the

genomics community by representing previously unresolved repeats in a locally haplotype

consistent assembly. Though it was imperative to validate and correct this draft assembly,

successful polishing faced three major obstacles. First, while repeats are challenging to

polish in any draft assembly, the CHM13v0.9 assembly represented hundreds of megabases

of exceptionally large and complex repeats genome-wide, which could potentially induce

false positive (overcorrection) or false negative polishing corrections. Secondly, though the

CHM13 genome is mostly homozygous, we identified non-negligible levels of interspersed

197

heterozygous variation. Therefore, it was essential to distinguish between heterozygous

variants and polishing edits in order to maintain the original haplotype consistency.

Finally, our evaluation of CHM13v0.9 discovered how homopolymer and coverage bias

in HiFi reads caused assembly errors genome-wide. This analysis also revealed that

standard methods for measuring QV can be influenced by technology-specific biases.

These obstacles necessitated a custom and contextualised polishing and evaluation

model that capitalised on the wealth of available data to exploit the advantages of each

sequencing platform. It also required the use of specialized aligners, hard masking, and

manual intervention to avoid false polishing corrections within repeats. This polishing

approach called for just 1,457 corrections including: p-arm of chromosome 18; 454

telomere corrections; 1 large deletion; 2 large insertions; 993 SNPs; 113 small insertions

and 880 small deletions. Although the final CHM13v1.1 is highly accurate (Q73.9), we

identified 225 loci that were recalcitrant to validation, and we have documented these loci

along with 394 heterozygous loci (317 merged loci) (https://github.com/marbl/CHM13-

issues/).

The high accuracy of CHM13v1.1 showcases the effectiveness of our informed selection

and implementation of appropriate repeat-aware aligners[137, 86], k-mer evaluation and

filtration tools, and highly accurate and sensitive variant callers[191, 58] whilst also

highlighting the utility of capitalising on the synergistic nature of multiple sequenc-

ing technology platforms. The minimal number of corrections implemented by our

approach and uniform coverage (99.86%) exemplifies the high accuracy of the initial

198

graph construction, with sequencing biases being associated with the remaining coverage

fluctuations (223 regions were regions of HiFi dropouts, 77.5% found in GA/TC-rich,

and AT-rich satellite sequences such as HSat2/3 and HSat1, were associated with in

HiFi coverage increases and ONT coverage depletion, respectively)[147].

In many respects, the T2T CHM13 genome assembly initiative is not representative of

typical assembly projects. The success of the CHM13v1.0 assembly was enabled by the low

level of heterozygosity of the CHM13 genome, advancements in sequencing technologies,

a combination of sequencing technologies (HiFi, ONT, Illumina), customised assembly

algorithms, and a large dedicated team of scientists, yielding results currently not possible

with limited resources and automated algorithms[150, 27]. However, despite the unique

and semi-automated nature of our polishing and evaluation endeavor, recent trends in

DNA sequencing and genome assembly algorithms suggest that CHM13v1.1 is just a

preview of an imminent wave of high-quality T2T reference genomes in other species[143,

116, 43]. It is therefore critical that the lessons outlined here be incorporated into the

next generation of automated bioinformatics tools[86, 137, 209, 58]. For immediate

projects, combining data types, using phased reads with repeat-ware alignments, and

carefully filtering polishing edits can improve automated polishing accuracy.

199

Part VI

Fastest clinical diagnosis of a

human genome

200

Chapter 6

Ultra-rapid whole genome nanopore

sequencing in a critical care setting

Preamble

This chapter contains the text from the manuscript "Ultrarapid Nanopore Genome

Sequencing in a Critical Care Setting"[75] published in New England Journal of Medicine.

Professor Euan Ashley led this work at Stanford Medicine in collaboration with the

UCSC genomics institute, Google, and NVIDIA. I worked with John E Gorzynski, the

lead author of the clinical paper, and Sneha D Goenka, the lead author of the technical

article of this project, to derive a pipeline using highly multiplexed nanopore sequencing

and variant calling to diagnose critically ill patients. I share the first authorship of the

technical manuscript with Sneha D Goenka and John E Gorzynski.

201

In this work, we developed a nanopore sequencing pipeline that can report pathogenic

variants in under 8 hours. We used a high-throughput promethION device for sequencing

to run 48 flowcells simultaneously. We paired the sequencing device with a bioinformatics

pipeline based on cloud computing. The bioinformatics pipeline consists of basecalling

with Guppy, alignment with Minimap2, PEPPER-Margin-DeepVariant for small variant

calling, sniffles for structural variant calling, and a variation filtration scheme that

surfaces potentially deleterious variants. Finally, we inspect the variants and report back

to the primary care physician. We applied this pipeline on 13 patients and successfully

diagnosed 6 of them. All diagnoses were validated using a secondary method, and

all undiagnosed patients had gone through secondary testing, which also reported no

positive findings.

I consider this study a significant milestone in the maturation of Oxford Nanopore. I

am humbled to be a part of a study that impacts human life directly. I am thankful for

the opportunity and the fantastic experience I had throughout this work.

Introduction

Rapid genetic diagnosis can guide clinical management, reduce cost, and improve

prognosis in critically ill patients.[54, 12, 20, 170] Up to 33% of hospitalized children are

reported to have an associated genetic disease. The investigations into these diagnoses are

associated with 40% longer hospital stays than patients with non genetic disease.[129, 72]

202

However, the standard of care for return of results from whole genome sequencing is

weeks to months.[65]

Several clinical genomics programs have recently responded to the need for faster whole

genome genetic diagnosis. These tests range in turnaround time from three to seven

days for either a preliminary or full clinical report.[65, 66] The fastest published genome

diagnosis was made in 14 hours and 33 minutes, five hours faster than the previous

record which had held for more than two years of 19 hours and 10 minutes.[31, 155]

Most clinical sequencing is carried out using “sequencing by synthesis” where short

DNA molecules are extended while affixed to a glass slide (Illumina, Inc, San Diego,

California).[40, 41, 227, 201] In contrast, nanopore sequencing (Oxford Nanopore Tech-

nology, ONT, Oxford, UK) translates changes in electrical conductance to nucleic acid

sequence as DNA or RNA molecules transit through a small “nanopore” protein.[179]

DNA molecules up to millions of bases in length can be sequenced using this ap-

proach. Advantages of sequencing longer molecules include phasing[192, 40, 205] and

improved characterization of large genetic variants especially in complex areas of the

genome.[133, 127] Historically, barriers to more widespread adoption of long read se-

quencing in clinical medicine have included cost and per-base error rate, each of which

has declined in the last five years.[139, 37]

We sought to take advantage of the improved accuracy and decreased cost of nanopore

sequencing to rapidly generate DNA sequence in hundreds of thousands of nanopores

203

across 48 flow cells. We coupled this high sequencing throughput with an accelerated

computational pipeline to achieve clinical-grade whole genome sequencing analysis on

critical care timescales.

Results

Patient recruitment

Between December 2020 and May 2021, we enrolled a total of 12 patients (five female

and seven male, ranging from three months to 57 years, Table 6.1.).

Patient Variants Calls/Prioritization

ID Age Sex Ethnicity SNVS/INDELS Prioritized 4+ Prioritized SV

1 2 years M White 4,419,773 39 22

2 13 years M White 4,442,280 28 20

3 6 months F Hispanic 4,478,350 35 17

4 5 years M
Pacific

Islander
4,467,180 30 18

5 3 months M Hispanic 4,592,381 53 11

6 4 months F White 4,500,293 27 37

7 8 months F
Pacific

Islander
4,482,314 37 25

8 6 months F Asian 4,503,667 29 20

9 3 months F Hispanic 4,619,267 28 35

10 2 weeks M White 4,364,225 16 17

11 57 years M White 4,315,548 22 16

12 15 years M Black 4,770,449 20 22

Table 6.1: Patient demographics and variant call statistics. The prioritization scheme
places variants on a scale of 4–12. SV—structural variant; SNV—single nucleotide
variant;indel—insertion or deletion.

204

Primary phase

We continuously improved the pipeline during the initial phase of the program (Figure

6.1, patients 1-7). We began by using a library preparation method that included a

barcoding step. Later, we omitted barcoding without impact on variant calling[200].

205

Figure 6.1: (a) The ultra-rapid whole genome sequencing pipeline. The schema depicts
all processes from sample collection to a diagnosis. Vertically stacked processes are
run in parallel. (b) The performance of the pipeline on twelve patients in two phases.
Run-time of individual components are shown by corresponding color from panel (a).
The fastest runtime was 7:18 hours (Patient 11) with a positive diagnosis.

206

This reduced the library preparation time by 37 minutes while increasing input DNA

recovery substantially: the mean DNA loading mass per flow cell increased from 155 ng

(78 ng—243 ng) to 333 ng (208 ng—345 ng) (Supplementary Figure D.1)). Loading more

library per flow cell improved mean pore occupancy from 64% to 82% (Supplementary

Figure D.2)).

For patient one, we ran base calling and alignment in a linear fashion which required 7:21

hours of compute time. Starting from patient two, we introduced a pipeline that achieved

near real-time base calling and alignment, reducing the runtime beyond sequencing time

by 13-fold to a mean of 34 minutes (Figure 6.1).

Secondary phase

For the secondary phase (Figure 6.1, patients 8–12), we introduced two further com-

pute optimizations. The GPU-accelerated version of DeepVariant (NVIDIA Clara

Parabricks[151]) reduced the overall variant calling time by 30%. In addition, a local

realignment step was introduced to the Deepvariant pipeline which improved variant

calling accuracy[200]. We also introduced a new set of flow cells because of pore degra-

dation over the enforced month long winter break precipitated by the COVID pandemic.

Together, these changes resulted in a sustained and reproducible increase in the speed

and accuracy of the pipeline.

207

Speed and accuracy

After optimization, the median time taken by each step was shortened (Figure 6.1) such

that sample preparation took 2:30 hours (2:24–2:36 hours), sequencing took 2:18 hours

(1:48–2.:42 hours), compute took 4:12 hours (3:30–4:48 hours) and curation 1:18 hours

(0:24–1:42 hours), reducing the median turnaround time to 8 hours.

Our fastest recorded total runtime was 7:18 hours (patient 11). The shortest time for

each element across the cohort was: DNA extraction—43 minutes (patient 9); DNA

fragmentation—10 minutes (patient 10); library preparation—1:25 hours (patient 12);

sequencing—1:50 hours (patient 8); overhead base calling and alignment time—21

minutes (patient 11); variant calling—50 minutes (patient 7); and curation—23 minutes

(patient 11). Adding these component minimums suggests a theoretical limit for needle

to diagnosis with this pipeline of 5:42 hours.

Sequencing, base calling and alignment

We sequenced to a minimum of 170 Gb per genome (173–236 Gb). The average read

N50 for these data was 25 kb (20–33 kb, (Supplementary Figure D.4)). We discarded

sequence reads that had a quality score of less than seven (assigned "fail" by Guppy).

This filtered out 9.8% (4.7–14.1%) of the sequence data. We documented a median

alignment identity of 94% (Supplementary Figure D.3)).

208

Variant Calling and Curation

Across 12 patients, the pipeline surfaced a median of 4,490,490 small variants (single

nucleotide variants and small indels). There was a median of 22 structural variants

prioritized across 12 cases (Table 6.1.). The mean heterozygous to homozygous and

transitions to transversion ratio ratios were 1.5 and 2.0 respectively (Supplementary

Figure D.5, Supplementary Figure D.6)))

209

Figure 6.2: (. Variants are filtered and prioritized through a custom decision tree
designed to surface the most likely pathogenic variants. Major filtration steps are
depicted in dark blue (numbers represent average number of variants across all samples).
Locations of prioritization scoring within the decision tree, as well as possible points
assigned for variants meeting each criterion, are listed in light blue; points applied for
each reported pathogenic/likely pathogenic variant are listed in adjacent green columns.
The final prioritization score of each variant is shown in the dark green table.

Variants from the integrated call file were passed to the filtration tree. An average of 43

(3–93) variants were prioritized in target genes and 309 (167–543) variants outside of

210

target genes. Variants were scored based on several independent factors (Figure 6.2).

An average of 219 (111–366) variants received a total score of least one point, with an

average of only 14 (7-28) variants receiving a total score of at least five points. All

pathogenic or likely pathogenic variants identified in this study scored five or more points.

The overall filtration scheme is illustrated in Figure 6.2, with each scoring juncture

showing the points available, as well as points scored for each of the five pathogenic

variants identified in this study. Of the 22 (11–37) structural variants identified, 16

impacted coding regions.

Diagnosis

We found a likely pathogenic or pathogenic variant in five patients (42%, Table 6.2).

These findings were reviewed immediately by study physicians including the care team

and a consensus was reached as to whether this variant represented the primary cause of

the patient’s presentation. All five cases were then rapidly confirmed with an orthogonal

technology in a CLIA-CAP laboratory setting. Following those results, clinical action

was taken as a result of the findings (Table 6.2). Each finding was judged by a consensus

of the treating clinical team to have resulted in actionable findings.

211

Patient Disease Associated Variant

ID Age Sex Presentation Gene Location Details ACMG
Classification

Conf
Testing Diagnosis

Clinical
Management

Impacted

1 2y M
Cardiac Arrest,

Ventricular
Fibrillation

RYR2 c.11621 C>T
p.T3874I

Missense,
de novo Pathogenic MGP

Catecholaminergic
Polymorphic
Ventricular
Tachycardia

Sympathectomy,
family screening

2 13y M
Dilated

Cardiomyopathy,
NSVT

TNNT2 c.487_489dup
p.E163dup

INDEL
(STR
dup),

de novo

Pathogenic MGP,
Sanger

Dilated
Cardiomyopathy

Heart Transplant
(irreversible cause),

family screening

8 6m F

Very frequent
seizures

in clusters after
6-month

vaccinations

PCDH19 c.2728G>T
p.E910*

Predicted
truncating,

de novo

Likely
pathogenic Sanger PCDH19-related

epilepsy

Selection of
anti-seizure
medications,

access to
ongoing clinical trials,
counseling regarding

prognosis and
family planning

9 3m F

Infantile onset
multifocal
epilepsy

with
myoclonic
seizures,

status epilepticus

CSNK2B c.73-1G>A
Splice

Variant,
de novo

Likely
pathogenic

MGP,
Sanger

CSNK2B-related
disorder/

Poirier-Bienvenu
neurodevelopmental

syndrome

Counseling regarding
prognosis and

family planning,
avoided further

extensive work-up

11 57y M

Left ventricular
asymmetrical
hypertrophy
LV/EF 40%

TNNT2 c. 341C>T
p.A104V

Missense,
Unknown

inheritance

Likely
pathogenic Sanger Hypertrophic

Cardiomyopathy

Cardiac biopsy avoided,
heart transplant

(irreversible cause),
family screening

Table 6.2: Patient description and genetic findings. MGP–Multiple Gene Panel, INDEL–
insertion or deletion, NSVT–non sustained ventricular tachycardia, STR–short tandem
repeat, LV–left ventricular, EF–ejection fraction, VUS–variant of unknown significance

One case serves as an illustrative example. A 13 year old male previously in good

health presented to his primary care provider with a dry cough at night when lying flat,

decreased appetite, intermittent chest pain, and fatigue. Thoracic radiographs showed

cardiomegaly leading to echocardiography, which revealed a dilated left ventricle with an

ejection fraction of 29%. The patient was hospitalized with worsening heart failure and

evidence of poor end organ perfusion and shortly thereafter cannulated for veno-arterial

extra-corporeal membrane oxygenation (ECMO). The differential diagnosis focused on

myocarditis vs genetic cardiomyopathy. Differentiating these became critical to decisions

about surgical mechanical support and heart transplant listing--because a significant

percentage of acute myocarditis patients recover without the need for advanced therapies,

212

whereas genetic causes in this setting are typically associated with progressive disease.

While cardiac biopsy can reveal lymphocytic invasion, it is an invasive procedure with

limited negative predictive value because of the patchy nature of the infiltration. We

enrolled the patient in our study, and within 11:30 hours of the samples arrival in the

lab, we identified a heterozygous duplication within a short tandem repeat element in

troponin T (TNNT2), an integral component of the cardiac sarcomere and a gene known

to be associated with dilated cardiomyopathy. CLIA-based Sanger sequencing confirmed

the presence of this variant and parental testing later revealed it to be de novo, confirming

this variant as likely pathogenic. While a preliminary result from cardiac biopsy was

available nine hours after the biopsy was performed (showing myocyte hypertrophy and

patchy interstitial fibrosis with no signs of lymphocytic infiltration), the final pathology

report including further staining, immunohistochemistry, and electron microscopy was

not returned until ten days later. Thus, our pipeline identified the pathogenic variant

less than twelve hours after blood draw, and confirmatory CLIA-based Sanger testing

was available prior to the discussion of transplant listing. In contrast, a clinical panel

sent to a commercial laboratory did not return results, with the TNNT2 variant, until

after the transplant listing decision, emphasizing the impact of rapid turnaround testing.

The patient received a heart transplant 21 days after listing.

213

Discussion

Genetic disease is disproportionately responsible for extended critical care hospitalization,

especially in younger patients. Here, we describe a nanopore-based clinical whole genome

sequencing pipeline that can return actionable genetic diagnoses in under eight hours.

Standard time to return of results for whole genome sequencing is 8–12 weeks with rapid

protocols returning finalized results in seven days[65] or preliminary results in three

days.[66] The fastest genome diagnosis to date from the start of sample preparation to

final diagnosis was completed in 14:33 hours.[155] To achieve a 50% drop in the fastest

time reported to a genetic diagnosis (7:18 hours) with an average time of 7:58 hours,

we optimized every component of the sequencing and analysis workflow for speed and

accuracy. This increase in speed did not come at a cost of diagnostic rate (42%) or

actionability (all diagnoses were judged actionable by the clinical study and bedside care

team). Indeed, long read sequencing at this depth harbors theoretical advantages for

the diagnosis of those presenting acutely with severe genetic disease.

Nanopore sequencing lends itself to parallelization. Here, we demonstrate that nanopore

flow cells can be deployed in an interval manner to sequence multiple genomes to high

depth. While 48 flow cells can generate in one hour data equal in size to that typically

generated for a short read clinical genome (40x coverage, S1 flow cell, 150 bp reads, 100

gigabases) in around 16 hours[70, 31] prior modeling of nanopore data[192] led us to

aim for 50-60x coverage (minimum 170 gigabases, with an N50 of 20-25kb) since that

214

had been shown to equal short read consensus accuracy. Converting base calling and

alignment to real time at this scale has not previously been achieved. The cloud solution

involved optimization of transfer, storage, and input-output of data to the dynamically

tasked central or graphical processing units. In fact, because of the parallel nature of

this solution, it would be possible not only to meet the theoretical limit of just over five

hours for one genome, but by overlapping processes to fully complete sequencing and

analysis of three genomes within a total time of nine hours.

Many groups have demonstrated the potential of exome or genome sequencing to solve

undiagnosed disease in outpatient settings.[201, 227, 226, 105] Others have demonstrated

the time and cost savings of rapid diagnosis in neonatal or pediatric critical care

settings.[20, 31, 54, 170, 171, 203] Cost savings are predicated on shortening the significant

expense of even short stays in a critical care setting (often over $10,000 per day). Securing

a confident genetic diagnosis within one to two days was shown to lead to improved

prognosis and dramatically reduced costs in a neonatal population.[54] Here, we accepted

patients of all ages and surfaced results within the time scale of a single nursing shift. Our

patients were broadly similar to those previously reported in rapid genome sequencing

studies: most patients harbored primary neurological or cardiovascular presenting signs.

Such presentations are associated with genetic diagnostic rates of 30-50% and high levels

of actionability. These data represent some of the earliest evidence that rapid turnaround

genome sequencing can offer similar benefits to adults as has been clearly shown for

neonates.

215

In addition to speed, long read sequencing harbors advantages for the diagnosis of critical

illness of genetic etiology including the ability to simultaneously assess DNA sequence

and methylation state. We previously demonstrated the benefit of long read sequencing

in the diagnosis of a 2.2kb structural variant undetected with short read approaches.[133]

While algorithms can be tuned to diagnose structural variation and genomic repeats

from short read (150bp) sequencing data,[22, 42] long read sequencing with median read

lengths upwards of 15 kb offers advantages for the characterization of genome variations

spanning distances up to tens of thousands of base pairs.

In summary, we develop, test, refine, and implement a novel approach to ultra-rapid

clinical whole genome sequencing diagnostics across adult and pediatric critical care

environments. We show that for comparable cost to existing approaches, our method

can achieve turnaround times from needle to diagnosis of less than eight hours, returning

actionable, cost-saving diagnostic information within the course of a single hospital shift.

Methods

Patient recruitment

Enrollment was open to any critical care patient at Stanford hospitals (Stanford Health

Care and Lucile Packard Children’s Hospital) with a clinical presentation consistent

with a genetic disease. Priority was given to patients where a rapidly identified genetic

diagnosis would be clinically impactful for the patient or the patient’s family. We acquired

216

consent from adults directly and for minors, from parents or guardians according to

Stanford IRB protocol 58559.

Sample collection and preparation

We collected an average of 2ml of whole blood. The preparation of a sequencing library for

distribution over 48 flow cells requires a substantial yield of high quality, high molecular

weight genomic DNA. We optimized DNA extraction and library preparation for yield,

quality, and speed using a modified Puregene (Qiagen, Hilden, Germany) genomic DNA

extraction protocol, from the limited volume of blood. DNA was fragmented using

g-TUBE (Covaris, Massachusetts, USA) and sequencing libraries were prepared with

an SQK-LSK109 (Oxford Nanopore, Oxford, UK) protocol modified such that eight

libraries were sufficient to load 48 PromethION flow cells. For barcoded samples, an

additional EXP-NBD104 kit was used for barcoding. A detailed description of these

methods can be found at DOI 10.17504.

While one PromethION flow cell can generate 200 gigabases (Gb) of data in 2-3 days

of sequencing, our goal was to complete sequencing as quickly as possible. To this end,

we distributed a DNA library from a single patient equally over 48 PromethION flow

cells (Oxford Nanopore, Oxford, UK) and sequenced until we achieved a target range of

greater than 170 Gb of data. After method optimization, we were able to generate as

much as 200 Gb of data in as little as 1 hour 50 minutes. We dramatically reduced the

sequencing cost-per-sample by washing the flow cells after sequencing and reusing the

217

flow cells for multiple samples.

Base Calling and Alignment

Sequencing from 48 flow cells can yield more than 100 Gb per hour. While the Prome-

thION tower is capable of locally base calling and aligning the data generated during

sequencing, it cannot keep up with such a high rate of data generation. This increases

the overhead compute time — base calling and alignment runtime beyond completion of

sequencing — to almost 18 hours (220 Gb output).[200] To mitigate this, we implemented

an approach that scaled multiple PromethION-tower like compute instances in a cloud

computing environment (Google Cloud Platform) to achieve near real-time base calling

and alignment of sequencing data. Going from a local to a cloud-based pipeline, we

developed a framework where terabytes of data were transferred to the cloud storage

in real-time during sequencing and distributed across the instances so as to minimize

the tail latency. Specifically, as soon as sequencing begins, a script starts to periodically

upload raw signal output files from the local tower to the cloud storage. Simultaneously,

multiple compute instances fetch batches of signal files designated to the particular

instance from the cloud storage to perform base calling (Guppy v4.2.2) and alignment

(Minimap2 v2.17-r974[111]) concurrently. The reads were aligned to the GRCh37 human

genome reference genome.

218

Variant Calling

After alignment, we used a haplotype-aware long-read optimized variant caller (PEPPER-

Margin-DeepVariant[192]) to identify single nucleotide variants (SNVs) and small in-

sertions and deletions (indels). The pipeline included the structural variant caller

Sniffles.[189] The pipeline is parallelized over multiple compute instances, each pro-

cessing a specific set of contigs in order to rapidly generate an integrated variant call

file.

Annotation

Small variants in homopolymer regions were annotated for use in the prioritization

scheme. Structural variants were annotated with the frequency of similar variants in

public and in-house SV catalogs derived from both short-read and long-read sequencing

studies. Rare SVs that overlapped coding sequences were ranked based on the impacted

gene and non-coding rare SVs were placed in a second tier of variants for curation.

Variant filtering and prioritization

Patient-specific gene target lists were developed for each case, in collaboration with

ordering clinicians. While variant prioritization was not limited to the gene list, it ensured

that genes highest on the clinical differential were examined rigorously. Alissa Interpret

software (Agilent, Palo Alto, CA) was used to filter and prioritize likely deleterious

variants, using a custom classification tree. Analysis was limited to variants that had

219

gnomAD minor allele frequency<0.5% (in all non-bottleneck subpopulations) and that

were in genes either associated with disease in the Online Mendelian Inheritance in Man

catalog (“OMIM morbid”) or included on the target list. Variants not on the target

gene list were further limited to those either within protein coding exons (including

+/-2 intronic bases), or those with high confidence annotations in both the Human Gene

Mutation Database (HGMD) and ClinVar.

Variants were then prioritized for review based on: (i) annotation in ClinVar and/or

HGMD, (ii) inclusion on the target gene list, (iii) patient zygosity consistent with

OMIM-annotated inheritance for associated disease, and (iv) predicted deleteriousness

(e.g., truncating or missense variants in a gene highly intolerant of missense variation)

(Figure 6.2). The prioritization scheme allowed rapid review and interpretation of likely

actionable variants by setting a threshold of 4 or higher for review, and elevating the

highest scoring variants for focused interpretation.

Variant curation and molecular board review

Variant interpretation was performed by one genetic counselor (MEG), one genomic

scientist (DGF) and one American Board of Medical Genetics and Genomics board

certified molecular geneticist (ES). This team worked in parallel, dynamically dividing

and discussing variants as needed, and reviewed variants in order from the highest score

(max=12) to the lowest (min=4).

220

If a likely pathogenic, pathogenic, or otherwise suspicious variant was reported, it was

reviewed in detail on a conference call by the clinical genetics and care team. If a

consensus was reached that a pathogenic or likely pathogenic variant consistent with the

patient’s phenotype was found, clinical confirmatory testing was completed either via

single-site Sanger sequencing in Stanford’s CLIA-CAP Clinical Genomics lab, and/or

via clinical panel sequencing at an external CLIA/CAP laboratory.

221

Part VII

Discussion

222

Chapter 7

Discussion

Genomic studies enabled by next-generation short-read sequencing technology can

identify small variants in mappable regions of the region [232]. Many studies that

use a incomplete linear reference or short-reads, skip repetitive regions as they are

either missing from the reference or short reads cannot resolve them [30]. The reference

materials built using short-read sequencing limit our scientific understanding to only the

mappable regions of the genome [30, 153, 221, 135, 120].

Long-read sequencing technology emerged to solve these issues [194, 193, 153]. We have

seen the telomere-to-telomere (T2T) consortium generate the first complete human

genome and unraveling the biology of centromere and telomere for the first time using

long reads [135, 148]. The Human Pangenome Reference Consortium aims to create

genome assemblies across populations to improve variation inference across the human

223

population [78]. However, much of the improvements with long-reads are hampered by

scalability issues and error-rate of the platform.

Oxford Nanopore sequencing platform offers a portable and affordable solution to genome

sequencing but suffers from a unique error mode [174, 119]. The presented dissertation

demonstrates the ability to use deep learning to improve the genome inference quality

of nanopore sequencing. In chapter 3, I presented a haplotype-aware variant calling

pipeline for nanopore that outperforms short-reads in single-nucleotide variants at whole

genome-scale. In chapter 4, I presented a de novo assembly pipeline that can scale to a

population scale. In the final two chapters, chapter 5 and 6, I presented the applications

of the methods we developed to validate the first complete human genome assembly and

applying nanopore sequencing in a clinical setup.

Nanopore sequencing has shown some significant improvements over the last few years

[119, 174, 225]. The quality of reads for DNA sequencing has improved from 60% in

2014 to 98.4% in 2022 [174, 190]. As a result, we have seen improvements in genome

inference quality [193, 190, 153]. We have also seen advances in nanopore chemistry

that translate into downstream high-quality genome inference [190]. With many more

nanopore sequencing applications like direct RNA sequencing [211], protein sequencing

[16], and targeted sequencing [164], the genomics community will significantly benefit

from the maturation of this platform.

One of the major issues with nanopore genome inference is small INDEL accuracy

224

[194, 193]. The highest INDEL F1-score observed with nanopore is 0.88 with R10.4

Q20 data, whereas Illumina and PacBio HiFi routinely report a 0.995 INDEL F1-score

[166, 221]. The non-randomness of INDEL-like errors in repeat regions makes it difficult

to identify small INDEL variants correctly [174, 193]. In many cases, the errors are

indistinguishable from true variants. Even though nanopore provides high SV calling

accuracy [38], methylation accuracy [196, 68] and generates contiguous genome assemblies

[119, 194], the small INDEL issue is currently the one we need to address. I believe

providing the deep learning models with the information of the source of these errors,

the nanopore signal, would improve inference. However, encoding nanopore signals in

the inference process come with several roadblocks.

Encoding the nanopore signal information to the deep learning models needs improvement

on many fronts. First, deep learning-based nanopore basecallers are proprietary, so it is

not possible to customize output information quickly integrated like likelihood of each

sate. A secondary option is to align the signal information back to the read sequences

to derive a set of signal features. Methods like Nanopolish [196], SignalAlign [173] did

this routinely. However, these methods often encounter the issue of long running time.

The nanopore devices output signals in HDF format that requires a significant amount

of storage and HDF format does not support parallelization. Not having the ability to

parallelize and the required storage limits the usage of nanopore signals in downstream

applications. Some recent work in nanopore signal storage has shown improvements but

requires further improvement to have this integrated for routine method development[62].

225

Nanopore sequencing is entering a very exciting time. With a vibrant community that

supports the development of this sequencing platform, it is unlikely that we will not see

breakthroughs in the coming years. With the human pangenome effort, we will have some

new challenges in mapping nanopore reads to pangenome graphs and identifying variants

correctly [78]. The telomere-to-telomere consortium published the first complete human

genome [148]. Routine large-scale studies of genomic variation in the most challenging

regions[2] in the T2T genome will depend on how much improvement we will see in the

sequencing platforms that can generate long reads, including nanopore.

It has been a humbling experience to participate in some groundbreaking work that

nanopore has enabled. I firmly believe the community will move this forward. Long-read

genome sequencing has been invaluable to improving the scientific understanding of our

genomes. I hope it will soon show the path to making the genomic analysis as routine

as regular blood testing.

226

Part VIII

Appendices

227

Appendix A

Appendix A: Supplementary information

for haplotype-aware variant calling with

PEPPER-Margin-DeepVariant

228

Preamble

Supplementary Figures

Supplementary Figure A.1: Precision-Recall plot of HG003 for nanopore-based variant
callers.

229

HOM HET HOM-ALT
0

1

2

3

4

5

6

7

8

Va
lu

e

1e7
80025079

2263958 1457159

10% allele frequency

HOM HET HOM-ALT
0.0

0.5

1.0

1.5

2.0

1e6

190013

2228358

1456603

PEPPER

Candidate finding performance of PEPPER

Sensitivity
SNP: 0.9985
INDEL: 0.7675

Sensitivity
SNP: 0.9981
INDEL: 0.7015

Supplementary Figure A.2: HG003 ONT 90x candidate finding performance comparison
between 10% heuristic based approach and PEPPER.

Supplementary Figure A.3: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from nanopore data phased by Margin

230

Supplementary Figure A.4: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from nanopore data phased by WhatsHap

Supplementary Figure A.5: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from PacBio HiFi data phased by Margin

231

Supplementary Figure A.6: Full Natural Switch plot for chr1 of an admixture of HG005
and HG02723’s maternal haplotypes from PacBio HiFi data phased by WhatsHap

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Genomic positions

REF
AF

CF

GF

TF

AR

CR

GR

TR

*F

*R

Fe
at

ur
e

de
sc

rip
tio

n

Supplementary Figure A.7: PEPPER-SNP image generation scheme.

232

Supplementary Figure A.8: PEPPER-SNP inference scheme.

233

Supplementary Figure A.9: PEPPER-HP haplotype specific image generation scheme.
Each row describes an encoded feature and each column describes a reference position.
The top summary is derived from reads with haplotag 1 (HP-1) and the bottom is
derived from reads with haplotag 2 (HP-2).

Supplementary Figure A.10: PEPPER-HP haplotype-specific inference scheme.

234

Supplementary Results
Sample

Name
Type Method

True

positives

False

negatives

False

positives
Recall Precision F1-score

HG003

SNP

P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969

Medaka 3293174 22716 26549 0.9931 0.9920 0.9926

Clair 3266489 61006 31220 0.9817 0.9905 0.9861

Longshot 3224643 102852 45780 0.9691 0.9860 0.9775

INDEL

P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257

Medaka 313033 189639 69434 0.6227 0.8226 0.7089

Clair 205364 299137 58367 0.4071 0.7812 0.5352

HG004

SNP

P-M-DV 3338882 7728 7474 0.9977 0.9978 0.9977

Medaka 3286457 20743 23309 0.9937 0.9930 0.9933

Clair 3285625 60985 32021 0.9818 0.9903 0.9860

Longshot 3243183 103427 45387 0.9691 0.9862 0.9776

INDEL

P-M-DV 300258 210261 32429 0.5881 0.9046 0.7128

Medaka 306050 198390 88346 0.6067 0.7807 0.6828

Clair 203825 306694 61454 0.3993 0.7708 0.5260

Supplementary Table A.1: Oxford nanopore variant calling performance comparison
between Medaka, Clair, Longshot and PEPPER-Margin-DeepVariant (P-M-DV) on
HG003 and HG004 with 90× coverage.

Confidence

Total

Region

Size

Paternal

Concordance

Maternal

Concordance
Concordance

Checked

Records

Indeterminate

Consistency

Mendelian

Violations

GIAB High 2.504 Gb
2899287
2902160

(99.9%)

2906561
2909420

(99.9%)

2257125
2262783

(99.75%)

3588024
4791528

(74.88%)

1323587
3588024

(36.89%)

7312
3588024

(0.20%)

GIAB Low 0.315 Gb
544760
554736

(98.20%)

536611
548668

(97.80%)

394059
412533

(95.52%)

775185
1052572

(73.65%)

356121
775185

(45.94%)

25005
775185

(3.23%)

Supplementary Table A.3: Mendelian consistency for HG005, HG006, HG007 trio in and
out of GIAB high confidence regions v4.2.1 using rtg mendelian on GRCh38. “Checked
records” denotes output from the tool with description “Records were variant in at least
1 family member and checked for Mendelian constraints”, “Indeterminate Consistency”
denotes output from the tool with description “Records had indeterminate consistency
status due to incomplete calls”, and “Mendelian Violoations” denotes output from the
tool with description “Records contained a violation of Mendelian constraints”. GIAB
Low was generated by excluding GIAB’s high confidence BED from GRCh38 as well as
centromeric regions.

235

Sample
Ref.

GRC

GIAB

version

Variant

Type
Method

True

pos.

False

neg.

False

pos.
Recall Precision F1-score

HG005

h37 v3.3.2

SNP

P-M-DV 3036676 5947 11807 0.9980 0.9961 0.9971

Medaka 3026174 16361 21414 0.9946 0.9930 0.9938

Clair 2982163 60460 68238 0.9801 0.9776 0.9789

Longshot 2980529 62094 57698 0.9796 0.9810 0.9803

INDEL

P-M-DV 258720 131438 30008 0.6631 0.8981 0.7629

Medaka 264300 125852 66019 0.6774 0.8043 0.7354

Clair 175540 214617 54654 0.4499 0.7650 0.5666

h38
v4.2.1

(draft)

SNP

P-M-DV 3269767 7563 9624 0.9977 0.9971 0.9974

Medaka 3256035 21207 26871 0.9935 0.9918 0.9927

Clair 3210942 66388 73550 0.9797 0.9776 0.9787

Longshot 3189831 87499 64687 0.9733 0.9801 0.9767

INDEL

P-M-DV 278726 138235 30957 0.6685 0.9019 0.7678

Medaka 284407 132546 68363 0.6821 0.8100 0.7406

Clair 187276 229685 56443 0.4491 0.7706 0.5675

Supplementary Table A.2: Oxford nanopore variant calling performance comparison
between Medaka, Clair, Longshot and PEPPER-Margin-DeepVariant (P-M-DV) on
HG005 sample between two reference (GRCh37 and GRCh38) and GIAB truth set
(v3.3.2 and v4.2.1).

Sample Haplotype-aware pipeline
Runtime

hh:mm:ss

Cost

USD($)

INDEL

F1-Score

SNP

F1-Score

HG003

DeepVariant-Whatshap-DeepVariant 15:11:52 $36.24 0.9942 0.9990

DeepVariant-Margin-DeepVariant 08:03:43 $36.71 0.9945 0.9991

PEPPER-Margin-DeepVariant 05:55:28 $26.99 0.9944 0.9990

HG004

DeepVariant-Whatshap-DeepVariant 15:47:29 $37.35 0.9940 0.9992

DeepVariant-Margin-DeepVariant 08:26:36 $38.45 0.9942 0.9992

PEPPER-Margin-DeepVariant 05:58:57 $27.26 0.9941 0.9992

Supplementary Table A.10: PacBio HiFi variant calling performance and runtime
comparison between three haplotype-aware pipelines on 35× coverage HG003 and HG004
samples. For PEPPER, Margin and DeepVariant we used $4.56/h n1-standard-96 and
for WhatsHap we used $0.09/h n1-standard-2 instance types on google cloud platform.
The F1-scores are derived by comparing the variant calls against GIAB v4.2.1 benchmark
variants for HG003 and HG004.

236

Sample Method CPUs Memory GPUs
Instance

cost/h

Total

runtime

Total

cost

HG001

50x

ONT

Longshot 16vCPUs 104 GB - $0.95 51:25:31 $48.84

Clair 96vCPUs 360 GB - $4.56 02:30:05 $11.40

Medaka
16vCPUs 104 GB

1x NVIDIA

Tesla P100
$2.41 40:21:11 $97.24

16vCPUs 104 GB - $0.95 95:14:01 $90.47

PEPPER

Margin

DeepVariant

96vCPUs 360 GB - $4.56 12:59:19 $59.28

96vCPUs 360 GB
4x NVIDIA

Tesla P100
$10.4 6:41:56 $70

HG001

75x

ONT

Longshot 32vCPUs 208 GB - $1.89 73:56:43 $139.73

Clair 96vCPUs 360 GB - $4.56 03:05:46 $14.13

Medaka
32vCPUs 206GB

2x NVIDIA

Tesla P100
$4.81 46:58:11 $225.87

32vCPUs 206GB - $1.50 116:41:04 $175.025

PEPPER

Margin

DeepVariant

96vCPUs 360 GB - $4.56 14:44:40 $68.4

96vCPUs 360 GB
4x NVIDIA

Tesla P100
$10.4 9:05:01 $94.4

Supplementary Table A.11: Run-time and cost analysis of Oxford nanopore-based variant
calling pipelines on 50x and 75x HG001 data. We used various n1-series instance types
available on Google Cloud Platform (GCP). The we calculated the cost using the GCP
cost calculator (https://cloud.google.com/products/calculator). Logs of all the
runs are publicly available (See supplementary Notes).

237

Sample Pipeline

SNP

calling

runtime

Phasing runtime

Variant

calling

runtime

Total

runtime
Cost

HG003

35x

PacBio

HiFi

DeepVariant

Whatshap

DeepVariant

03:48:45

(n1-std-96)

07:32:35

(n1-std-2)

03:50:32

(n1-std-96)
15:11:52 $36.24

DeepVariant

Margin

DeepVariant

03:48:45

(n1-std-96)

00:24:51

(n1-std-96)

03:50:07

(n1-std-96)
08:03:43 $36.71

PEPPER

Margin

DeepVariant

1:28:49

(n1-std-96)

00:23:25

(n1-std-96)

4:03:14

(n1-std-96)
05:55:28 $26.99

HG004

35x

PacBio

HiFi

DeepVariant

Whatshap

DeepVariant

04:03:58

(n1-std-96)

07:44:56

(n1-std-2)

03:58:35

(n1-std-96)
15:47:29 $37.35

DeepVariant

Margin

DeepVariant

04:03:58

(n1-std-96)

00:26:09

(n1-std-96)

03:56:29

(n1-std-96)
08:26:36 $38.45

PEPPER

Margin

DeepVariant

1:25:03

(n1-std-96)

0:23:41

(n1-std-96)

4:10:13

(n1-std-96)
05:58:57 $27.26

Supplementary Table A.13: PacBio HiFi variant calling run-time comparison between
three haplotype-aware pipelines on 35× coverage HG003 and HG004 samples. We
used $4.56/h n1-standard-96 (n1-std-96) and $0.09/h n1-standard-2 (n1-std-2)
instance types on google cloud platform for this analysis.

Sample Coverage Method
True

positives

False

negatives

False

positives
Recall Precision F1-score

HG003 26.5x
P-M-DV 3278007 20943 50763 0.9937 0.9847 0.9892

Longshot 3220875 53788 107929 0.9836 0.9676 0.9755

HG004 10.9x P-M-DV 2862862 208230 484946 0.9322 0.8551 0.8920

Supplementary Table A.14: SNP Variant accuracy statistics for HG003 and HG004
against GIAB v4.2.1 on GRCh38 using PacBio CLR data

238

Region Sample Type
Total

truth
Platform F1-score Recall Precision

True

pos.

False

neg.

False

pos.

Not in

all

tandem

repeats

and

hom.

(86%

genome

fraction)

HG003

SNP 3161145

Illumina 0.9962 0.9939 0.9985 3141934 19209 4642

ONT 0.9981 0.9980 0.9982 3154668 6477 5534

CCS 0.9992 0.9989 0.9996 3157593 3550 1396

INDEL 184877

Illumina 0.9962 0.9937 0.9987 183717 1159 237

ONT 0.9704 0.9516 0.9900 175933 8944 1784

CCS 0.9991 0.9989 0.9994 184667 212 105

HG004

SNP 3180117

Illumina 0.9961 0.9936 0.9986 3159831 20286 4291

ONT 0.9990 0.9989 0.9991 3176662 3455 2774

CCS 0.9993 0.9990 0.9997 3176818 3299 1068

INDEL 186340

Illumina 0.9961 0.9935 0.9988 185125 1215 226

ONT 0.9684 0.9479 0.9898 176633 9707 1825

CCS 0.9992 0.9988 0.9995 186120 224 92

In all

tandem

repeats

and

hom.

(4%

genome

fraction)

HG003

SNP 166352

Illumina 0.9986 0.9982 0.9990 166054 299 166

ONT 0.9748 0.9760 0.9736 162364 3988 4425

CCS 0.9976 0.9978 0.9974 165994 358 445

INDEL 320072

Illumina 0.9957 0.9944 0.9969 318271 1800 1039

ONT 0.5401 0.4002 0.8305 128093 191979 27622

CCS 0.9918 0.9915 0.9922 317355 2719 2663

HG004

SNP 166493

Illumina 0.9986 0.9983 0.9989 166209 284 185

ONT 0.9731 0.9743 0.9720 162220 4273 4700

CCS 0.9977 0.9979 0.9974 166147 346 440

INDEL 324622

Illumina 0.9956 0.9942 0.9969 322730 1892 1059

ONT 0.5193 0.3820 0.8108 123993 200629 30601

CCS 0.9914 0.9908 0.9920 321655 2971 2774

Supplementary Table A.19: Performance comparson of Illumina, PacBio HiFi and Oxford
nanopore data in repeat and non-repeat regions.

239

Data Tool Data Tool
Assessed

Pairs
Switches

Switch

Rate
Hamming

Hamming

Rate

ONT 25x
Margin ONT 25x Margin 1901418 16639 0.00875 162341 0.0854

WhatsHap ONT 25x WhatsHap 1917571 17696 0.00923 177660 0.0926

ONT 50x
Margin ONT 50x Margin 1895721 16252 0.00857 195897 0.1033

WhatsHap ONT 50x WhatsHap 1926257 17513 0.00909 161079 0.0836

ONT 75x
Margin ONT 75x Margin 1759253 14356 0.00816 174052 0.0989

WhatsHap ONT 75x WhatsHap 1927665 17462 0.00906 179655 0.0932

HiFi 35x
Margin HiFi 35x Margin 1908770 17077 0.00895 24187 0.0127

WhatsHap HiFi 35x WhatsHap 1914368 17801 0.00930 28973 0.0151

Supplementary Table A.21: Comparison of Margin and WhatsHap phasesets of HG001
sample with Oxford Nanopore (ONT) and PacBio HiFi data. Comparison is performed
with whatshap compare command.

Data Tool
Average

Accuracy

Average

Reads

per 1kb

Average

Tagged

Reads

per 1kb

ONT 55x Chr1
Margin 96.26 56.9 56.9

WhatsHap 95.71 56.9 56.9

CCS 35x Chr1
Margin 98.00 35.5 35.5

WhatsHap 97.99 35.5 35.5

Supplementary Table A.22: Haplotagging results comparing Margin and WhatsHap on
an Admixed sample with an approximately equal amount of reads from the maternal
haplotypes of HG005 and HG02723. Accuracy is determined for each kilobase bucket
by comparing the number of direct-matched reads Rd (truth H1 to tagged H1 or truth
H2 to tagged H2) and cross-matched reads Rc (truth H1 to tagged H2 or truth H2 to
tagged H1) and calculating max(Rc,Rd)/(Rc +Rd), then averaging this value across all
buckets in the HG003 high confidence regions.

240

Sample
Variant

Type

Variant

caller

True

positives

False

negatives

False

positives
Recall Precision F1-score

HG003

SNP
P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969

P-WH-DV 3316452 11043 11716 0.9967 0.9965 0.9966

INDEL
P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257

P-WH-DV 301732 202769 29507 0.5981 0.9128 0.7227

HG004

SNP
P-M-DV 3338882 7728 7474 0.9977 0.9978 0.9977

P-WH-DV 3338354 8256 10522 0.9975 0.9969 0.9972

INDEL
P-M-DV 300258 210261 32429 0.5881 0.9046 0.7128

P-WH-DV 298389 212130 32383 0.5845 0.9041 0.7100

Supplementary Table A.23: Oxford Nanopore variant calling perfomance comparison be-
tween PEPPER-Margin-DeepVariant (P-M-DV) and PEPPER-WhatsHap-DeepVariant
(P-WH-DV) only.

241

Data Tool Module
Max

Threads

Max

Memory

Runtime

(min)
Instance Type

Instance

Cost

($/hr)

Cost ($)

ONT 25x

Margin

Haplotag 64 20 21 n1-highcpu-64 2.267 0.79

Phase VCF 64 15 15 n1-highcpu-64 2.267 0.56

Total – – 36 n1-highcpu-64 2.267 1.36

WhatsHap

Phase 2 3 347 n1-standard-2 0.095 0.54

Haplotag 2 3 247 n1-standard-2 0.095 0.39

Total – – 941 n1-standard-2 0.095 1.48

ONT 50x

Margin

Haplotag 64 28 54 n1-highcpu-64 2.267 2.04

Phase VCF 64 18 30 n1-highcpu-64 2.267 1.13

Total – – 84 n1-highcpu-64 2.267 3.17

WhatsHap

Phase 2 3 446 n1-standard-2 0.095 0.7

Haplotag 2 3 444 n1-standard-2 0.095 0.7

Total – – 1336 n1-standard-2 0.095 2.11

ONT 75x

Margin

Haplotag 64 35 80 n1-highcpu-64 2.267 3.02

Phase VCF 64 22 43 n1-highcpu-64 2.267 1.62

Total – – 123 n1-highcpu-64 2.267 4.64

WhatsHap

Phase 2 3 522 n1-standard-2 0.095 0.82

Haplotag 2 3 644 n1-standard-2 0.095 1.01

Total – – 1688 n1-standard-2 0.095 2.67

HiFi 35x

Margin

Haplotag 64 19 19 n1-highcpu-64 2.267 0.71

Phase VCF 64 18 14 n1-highcpu-64 2.267 0.52

Total – – 33 n1-highcpu-64 2.267 1.24

WhatsHap

Phase 2 3 277 n1-standard-2 0.095 0.43

Haplotag 2 3 210 n1-standard-2 0.095 0.33

Total – – 764 n1-standard-2 0.095 1.2

Supplementary Table A.24: Margin/WhatsHap Runtimes. Total runtimes are sum of
Haplotag and Phase VCF runtimes for Margin, and sum of 2x Phase and 1x Haplotag
for WhatsHap, as whatshap haplotag requires a phased VCF.

242

Type Data Gene Type Subset Recall Precision F1 Score

SNP

Nanopore

all regions all regions 0.998169 0.996314 0.997241

all genes all genes 0.998097 0.996481 0.997289

protein coding

all cds 0.998641 0.997887 0.998263

all exons 0.998158 0.997675 0.997916

all genes 0.99799 0.996751 0.99737

PacBio HiFi

all regions all regions 0.999391 0.998062 0.998726

all genes all genes 0.999384 0.998197 0.99879

protein coding

all cds 0.999446 0.998994 0.99922

all exons 0.999502 0.999117 0.99931

all genes 0.999382 0.998441 0.998912

INDEL

Nanopore

all regions all regions 0.60077 0.878512 0.713567

all genes all genes 0.595042 0.877943 0.709325

protein coding

all cds 0.799544 0.926893 0.858522

all exons 0.632435 0.896594 0.741696

all genes 0.584914 0.876731 0.701692

PacBio HiFi

all regions all regions 0.948736 0.92602 0.937241

all genes all genes 0.947847 0.922887 0.935201

protein coding

all cds 0.984055 0.909278 0.94519

all exons 0.955149 0.927624 0.941186

all genes 0.946128 0.918991 0.932362

Supplementary Table A.25: Accuracy stats for ONT and CCS calls made on GRCh37
with HG001 data in high confidence regions against GIAB v3.3.2 stratified by all gene
and protein coding gene, further stratified by whole gene, exon, CDS as annotated by
GENCODE v35lift37. CDS regions are coding sequences, and include start and stop
codons for this analysis.

243

Gene Region Subset Subset Size

Subset

High

Confidence

Size

High

Confidence

Ratio

High

Confidence

Whole

Genome

Ratio

Genome – 2951332653 2579466415 0.874001 0.874001

All Genes – 1982798080 1591767788 0.802789 0.539339

Protein Coding Coding Sequence 114906140 31986772 0.278373 0.010838

Protein Coding Exon 283314507 92457254 0.326341 0.031327

Protein Coding Gene Regions 1367165648 1201166019 0.878581 0.406991

Supplementary Table A.26: Size of GENCODE Gene Regions

244

Phasing

Coverage

Switch

Errors

Present

SNP,

INDEL

Errors

Gene

Region
Count

25

Quartile

Gene

Size

Median

Gene

Size

75

Quartile

Gene

Size

wholly

no error

no error

gene 1738 1438 3332 8005

exon 3121 2845 10303 34848

cds 3481 3163 11478 39123

error

gene 1764 15676 35729 80335

exon 381 7533 27218 67507

cds 21 3161 5190 31102

error

no error

gene 15 1685 4868 15383

exon 33 8703 19682 86981

cds 37 8703 20549 72326

error

gene 23 18072 63546 107182

exon 5 7680 47627 63546

cds 1 7680 7680 7680

partially
no error

no error

gene 6 4760 10482 36920

exon 29 25339 102612 147661

cds 37 25339 102612 161893

error

gene 31 44745 110698 223634

exon 8 54807 99792 318869

cds 0 – – –

error all all 0 – – –

not –

no error

gene 125 1769 3060 8819

exon 201 2352 8744 29504

cds 214 2478 9365 29958

error

gene 91 19316 33429 69811

exon 15 10690 23836 35712

cds 2 44794 53073 61351

Supplementary Table A.27: Gencode protein coding genes with coding sequence (CDS,
start_codon, and stop_codon) 80% spanned by high confidence stratified by how phased
it is by Margin, whether there were switch errors, whether there were SNP or INDEL
errors, and gene region for HG001 with 75x Nanopore data on GRCh37. Three gene
length quartiles are presented for the groupings.

245

Phasing

Coverage

Switch

Errors

Present

SNP,

INDEL

Errors

Gene

Region
Count

25

Quartile

Gene

Size

Median

Gene

Size

75

Quartile

Gene

Size

wholly

no error

no error

gene 2086 2184 5907 17294

exon 2446 2586 8471 27219

cds 2474 2615 8536 27351

error

gene 390 23230 51309 102861

exon 30 7098 15068 65957

cds 2 60929 108132 155335

error

no error

gene 18 1690 6798 11879

exon 23 2321 8703 23001

cds 24 2567 9247 19731

error

gene 6 13297 23861 43535

exon 1 12242 12242 12242

cds 0 – – –

partially

no error

no error

gene 190 13338 34319 67099

exon 354 28087 68206 146543

cds 360 28289 68510 145331

error

gene 170 76695 137702 255101

exon 6 55573 75267 104898

cds 0 – – –

error

no error

gene 2 20915 21281 21647

exon 5 22014 109387 127176

cds 5 22014 109387 127176

error

gene 3 118281 127176 138247

exon 0 – – –

cds 0 – – –

not no error

no error

gene 741 2565 8419 23809

exon 917 3533 13187 43784

cds 928 3639 13351 43785

error

gene 187 30101 75166 156763

exon 11 10504 29953 68614

cds 0 – – –

Supplementary Table A.28: Gencode protein coding genes with coding sequence (CDS,
start_codon, and stop_codon) 80% spanned by high confidence stratified by how phased
it is by Margin, whether there were switch errors, whether there were SNP or INDEL
errors, and gene region for HG001 with 35x PacBio HiFi data on GRCh37. Three gene
length quartiles are presented for the groupings.

246

Sample Assembler Polisher
Estimated QV

YAK (k=31)

CHM13

chrX

Flye - 32.85

Shasta

- 34.601

P-M-DV

(ONT)
36.91

P-M-DV

(PacBio HiFi)
42.765

Hifiasm - 53.039

Supplementary Table A.30: Haploid assembly polishing results of PEPPER-Margin-
DeepVariant (P-M-DV) pipeline on CHM13-chrX. We report estimated quality value
(QV) using YAK assembly assessment tool.

Genome Test SV set Truth SV set Hom. SV recall Het. SV recall Precision

HG002

Shasta

GIAB curated

94.4% 46.7% 80.1%

PEPPER-Margin-DV 94.9% 49.0% 81.1%

hifiasm 97.8% 97.0% 93.0%

Shasta
hifiasm

95.2% 48.7% 83.2%

PEPPER-Margin-DV 96.0% 50.9% 84.7%

HG005
Shasta

hifiasm
93.7% 49.6% 82.3%

PEPPER-Margin-DV 95.2% 51.7% 84.0%

HG00733
Shasta

hifiasm
95.1% 47.7% 80.1%

PEPPER-Margin-DV 95.9% 49.7% 81.7%

HG02733
Shasta

hifiasm
94.6% 48.7% 80.7%

PEPPER-Margin-DV 95.8% 51.3% 82.4%

Supplementary Table A.31: Evaluation of the accuracy and completeness of SV recon-
struction of Shasta and PEPPER-Margin-DeepVariant assemblies. Recall and precision
were computed using the SVbenchmark tool inside the Tier1 high-confidence regions
defined in the HG002 curated set of SVs. Since the set of curated SVs was only available
for the HG002 genome, for the remaining genomes SVs recovered from the hifiasm
assemblies were used as reference.

247

HG003

coverage
Method

True

positives

False

negatives

False

positives
Recall Precision

F1-score

(INDEL)

10x

P-M-DV 169072 335430 248485 0.3351 0.4074 0.3677

Medaka 147181 351183 2222020 0.2953 0.0631 0.1039

Clair 78015 426486 31587 0.1546 0.7133 0.2542

20x

P-M-DV 239619 264882 96644 0.4750 0.7164 0.5712

Medaka 229787 268549 182403 0.4611 0.5628 0.5069

Clair 142647 361854 40955 0.2827 0.7785 0.4148

30x

P-M-DV 265318 239183 64214 0.5259 0.8083 0.6372

Medaka 264877 233132 119190 0.5319 0.6949 0.6025

Clair 167998 336503 44982 0.3330 0.7905 0.4686

40x

P-M-DV 278902 225599 51381 0.5528 0.8472 0.6691

Medaka 284431 217108 103944 0.5671 0.7373 0.6411

Clair 180964 323537 48517 0.3587 0.7905 0.4935

50x

P-M-DV 288480 216021 43169 0.5718 0.8723 0.6908

Medaka 297390 206752 91135 0.5899 0.7702 0.6681

Clair 189538 314963 51278 0.3757 0.7891 0.5090

60x

P-M-DV 294414 210087 38056 0.5836 0.8878 0.7042

Medaka 301161 198584 82479 0.6026 0.7896 0.6835

Clair 195079 309422 53275 0.3867 0.7877 0.5187

70x

P-M-DV 298553 205948 34079 0.5918 0.8997 0.7139

Medaka 306842 194792 76519 0.6117 0.8048 0.6951

Clair 199070 305431 55055 0.3946 0.7856 0.5253

80x

P-M-DV 301312 203189 31269 0.5972 0.9079 0.7205

Medaka 309376 191507 72591 0.6177 0.8142 0.7024

Clair 202551 301950 56606 0.4015 0.7840 0.5310

90x

P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257

Medaka 313033 189639 69434 0.6227 0.8226 0.7089

Clair 205364 299137 58367 0.4071 0.7812 0.5352

Supplementary Table A.4: Comparison on INDEL performance between Medaka, Clair
and PEPPER-Margin-DeepVariant (P-M-DV) variant callers at different coverages of
HG003 sample.

248

HG003

coverage
Method

True

positives

False

negatives

False

positives
Recall Precision

F1-score

(SNP)

10x

P-M-DV 3015493 312002 2510007 0.9062 0.5458 0.6813

Medaka 2998322 288605 8528164 0.9122 0.2602 0.4049

Clair 2067633 1259862 585625 0.6214 0.7793 0.6914

20x

P-M-DV 3286124 41371 475385 0.9876 0.8736 0.9271

Medaka 3228058 59716 369037 0.9818 0.8974 0.9377

Clair 3026716 300779 229952 0.9096 0.9294 0.9194

30x

P-M-DV 3308068 19427 60871 0.9942 0.9819 0.9880

Medaka 3248842 34884 59816 0.9894 0.9819 0.9856

Clair 3194577 132918 121085 0.9601 0.9635 0.9618

40x

P-M-DV 3312504 14991 20633 0.9955 0.9938 0.9947

Medaka 3279473 29155 39141 0.9912 0.9882 0.9897

Clair 3237789 89706 80265 0.9730 0.9758 0.9744

50x

P-M-DV 3314808 12687 13806 0.9962 0.9959 0.9960

Medaka 3298374 26404 33504 0.9921 0.9899 0.9910

Clair 3254017 73478 58229 0.9779 0.9824 0.9802

60x

P-M-DV 3315655 11840 12062 0.9964 0.9964 0.9964

Medaka 3271294 24807 30926 0.9925 0.9906 0.9916

Clair 3260364 67131 46813 0.9798 0.9858 0.9828

70x

P-M-DV 3316257 11238 11217 0.9966 0.9966 0.9966

Medaka 3283443 24010 28991 0.9927 0.9913 0.9920

Clair 3263513 63982 39636 0.9808 0.9880 0.9844

80x

P-M-DV 3316750 10745 10219 0.9968 0.9969 0.9969

Medaka 3280595 23263 27321 0.9930 0.9917 0.9924

Clair 3265361 62134 34616 0.9813 0.9895 0.9854

90x

P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969

Medaka 3293174 22716 26549 0.9931 0.9920 0.9926

Clair 3266489 61006 31220 0.9817 0.9905 0.9861

Supplementary Table A.5: Comparison on SNP performance between Medaka, Clair
and PEPPER-Margin-DeepVariant (P-M-DV) variant callers at different coverages of
HG003 sample.

249

File Read N50 Gb Coverage

HG001 21443 309.88 93.91

HG002 50317 160.39 48.6

HG003 44550 277.38 84.05

HG004 47996 284.32 86.16

HG005 49297 182.53 55.31

HG006 50019 163.87 49.66

HG007 50423 132.75 40.23

Supplementary Table A.6: Sample-wise nanopore read coverage for seven Genome-In-A-
Bottle (GIAB) samples.

Sample Name Reference Version
Regions covered

by benchmark (bp)

HG001 GRCh37 v3.3.2 2437907771

HG002 GRCh38 v4.2.1 2542242843

HG003 GRCh38 v4.2.1 2528531102

HG004 GRCh38 v4.2.1 2524487531

HG005 GRCh37 v3.3.2 2376855757

HG006 GRCh37 v3.3.2 2393652163

HG007 GRCh37 v3.3.2 2394471248

Supplementary Table A.7: Details of Genome-In-A-Bottle truth set used for each genome.

250

Sample Type
Total

truth

True

positives

False

negatives

False

positives
Recall Precision F1-score

HG001
SNP 3209309 3203740 5569 11466 0.9983 0.9964 0.9973

INDEL 481841 292565 189276 37718 0.6072 0.8883 0.7213

HG003
SNP 3327495 3317032 10463 9958 0.9969 0.9970 0.9969

INDEL 504501 303643 200858 29400 0.6019 0.9136 0.7257

HG004
SNP 3346610 3338882 7728 7474 0.9977 0.9978 0.9977

INDEL 510519 300258 210261 32429 0.5881 0.9046 0.7128

HG005
SNP 3042623 3036676 5947 11807 0.9980 0.9961 0.9971

INDEL 390158 258720 131438 30008 0.6631 0.8981 0.7629

HG006
SNP 3053660 3047013 6647 13802 0.9978 0.9955 0.9967

INDEL 394727 242909 151818 30518 0.6154 0.8901 0.7277

HG007
SNP 3069407 3060423 8984 18351 0.9971 0.9940 0.9956

INDEL 397103 236816 160287 34295 0.5964 0.8753 0.7094

Supplementary Table A.8: PEPPER-Margin-DeepVariant performance on six GIAB
samples with Oxford nanopore data.

Sample Variant Type Method
True

positives

False

negatives

False

positives
Recall Precision F1-score

HG003

SNP

P-M-DV 3317032 10463 9958 0.9969 0.9970 0.9969

Medaka 3293174 22716 26549 0.9931 0.9920 0.9926

PEPPER-HP 3311863 15632 27711 0.9953 0.9917 0.9935

INDEL

P-M-DV 303643 200858 29400 0.6019 0.9136 0.7257

Medaka 313033 189639 69434 0.6227 0.8226 0.7089

PEPPER-HP 310722 193779 151334 0.6159 0.6784 0.6456

HG004

SNP

P-M-DV 3338882 7728 7474 0.9977 0.9978 0.9977

Medaka 3286457 20743 23309 0.9937 0.9930 0.9933

PEPPER-HP 3333967 12643 25961 0.9962 0.9923 0.9942

INDEL

P-M-DV 300258 210261 32429 0.5881 0.9046 0.7128

Medaka 306050 198390 88346 0.6067 0.7807 0.6828

PEPPER-HP 307935 202584 190089 0.6032 0.6247 0.6137

Supplementary Table A.9: Oxford nanopore variant calling performance comparison
between PEPPER-HP (tuned for balanced precision and recall), Medaka and PEPPER-
Margin-DeepVariant on HG003 and HG004 with 90× coverage.

251

Sample name Pipeline Type
True

positives

False

negatives

False

positives
Recall Precision F1-score

HG003

35x

DeepVariant
INDEL 499277 5224 4901 0.9896 0.9907 0.9902

SNP 3323609 3886 2883 0.9988 0.9991 0.9990

DV-WH-DV
INDEL 501509 2992 2935 0.9941 0.9944 0.9942

SNP 3323655 3840 2734 0.9988 0.9992 0.9990

DV-M-DV
INDEL 501567 2934 2746 0.9942 0.9948 0.9945

SNP 3323586 3909 1841 0.9988 0.9994 0.9991

P-M-DV
INDEL 501539 2962 2816 0.9941 0.9946 0.9944

SNP 3323607 3888 2501 0.9988 0.9992 0.9990

HG004

35x

DeepVariant
INDEL 504939 5580 5217 0.9891 0.9902 0.9896

SNP 3343142 3468 2274 0.9990 0.9993 0.9991

DV-WH-DV
INDEL 507288 3231 2966 0.9937 0.9944 0.9940

SNP 3343074 3536 1771 0.9989 0.9995 0.9992

DV-M-DV
INDEL 507351 3168 2846 0.9938 0.9946 0.9942

SNP 3342966 3644 1491 0.9989 0.9996 0.9992

P-M-DV
INDEL 507313 3206 2903 0.9937 0.9945 0.9941

SNP 3342928 3682 1721 0.9989 0.9995 0.9992

Supplementary Table A.12: PacBio HiFi variant calling perfomance comparison between
PEPPER-Margin-DeepVariant (P-M-DV), DeepVariant-WhatsHap-DeepVariant (DV-
WH-DV), DeepVariant-Margin-DV (DV-M-DV), DeepVariant only.

252

Sample
Variant

type

Sequencing

technology

True

positives

False

negatives

False

positives
Recall Precision F1-score

HG003

SNP

Nanopore 3317032 10463 9958 0.9969 0.9970 0.9969

Illumina 3307988 19508 4808 0.9941 0.9985 0.9963

PacBio HiFi 3323607 3888 2501 0.9988 0.9992 0.9990

INDEL

Nanopore 303643 200858 29400 0.6019 0.9136 0.7257

Illumina 501546 2955 1276 0.9941 0.9976 0.9959

PacBio HiFi 501539 2962 2816 0.9941 0.9946 0.9944

HG004

SNP

Nanopore 3338882 7728 7474 0.9977 0.9978 0.9977

Illumina 3326040 20570 4476 0.9939 0.9987 0.9962

PacBio HiFi 3342928 3682 1721 0.9989 0.9995 0.9992

INDEL

Nanopore 300258 210261 32429 0.5881 0.9046 0.7128

Illumina 507418 3101 1284 0.9939 0.9976 0.9958

PacBio HiFi 507313 3206 2903 0.9937 0.9945 0.9941

Supplementary Table A.15: Variant calling performance comparison in all benchmark
regions between Oxford Nanopore Technology (ONT), Illumina NovaSeq (Illumina)
and PacBio HiFi sequencing technology. Illumina variant calls are generated with
DeepVariant v1.1 and ONT and PacBio HiFi variant calls are generated with PEPPER-
Margin-DeepVariant.

253

Region Sample Platform
Total

truth

True

positives

False

negatives

False

positives
Recall Precision F1-score

MHC

(SNP)

HG003

ONT 19543 19437 106 56 0.9946 0.9971 0.9958

Illumina 19544 19336 208 31 0.9894 0.9984 0.9939

PacBio 19543 19391 152 39 0.9922 0.9980 0.9951

HG004

ONT 19271 19181 90 42 0.9953 0.9978 0.9966

Illumina 19271 18998 273 31 0.9858 0.9984 0.9921

PacBio 19271 19112 159 12 0.9917 0.9994 0.9955

Seg.

Dup.

(SNP)

HG003

ONT 121960 119838 2122 2288 0.9826 0.9813 0.9819

Illumina 121960 112293 9667 2905 0.9207 0.9748 0.9470

PacBio 121960 119003 2957 818 0.9758 0.9932 0.9844

HG004

ONT 122191 120107 2084 1693 0.9829 0.9861 0.9845

Illumina 122191 112296 9895 2710 0.9190 0.9764 0.9469

PacBio 122191 119713 2478 672 0.9797 0.9944 0.9870

Low

map.

(SNP)

HG003

ONT 192520 190380 2140 2152 0.9889 0.9888 0.9889

Illumina 192520 174763 17757 3627 0.9078 0.9797 0.9423

PacBio 192520 189453 3067 888 0.9841 0.9953 0.9897

HG004

ONT 192653 190671 1982 1634 0.9897 0.9915 0.9906

Illumina 192653 174196 18457 3510 0.9042 0.9803 0.9407

PacBio 192653 190118 2535 653 0.9868 0.9966 0.9917

250bp+

non-

unique

(SNP)

HG003

ONT 13608 12594 1014 592 0.9255 0.9552 0.9401

Illumina 13608 7420 6188 1377 0.5453 0.8436 0.6624

PacBio 13608 11613 1995 380 0.8534 0.9684 0.9072

HG004

ONT 13492 12615 877 413 0.9350 0.9683 0.9514

Illumina 13492 7235 6257 1323 0.5362 0.8455 0.6563

PacBio 13492 11847 1645 284 0.8781 0.9766 0.9247

Supplementary Table A.16: SNP performance in difficult-to-map regions with Illumina,
PacBio HiFi and Oxford nanopore data.

254

Region Sample Platform
Total

truth

True

positives

False

negatives

False

positives
Recall Precision F1-score

H.poly.

(7bp-

11bp)

HG003

ONT 70736 68620 2116 2464 0.9701 0.9654 0.9677

Illumina 70737 70632 105 60 0.9985 0.9992 0.9988

PacBio 70736 70645 91 93 0.9987 0.9987 0.9987

HG004

ONT 71141 68912 2229 2665 0.9687 0.9628 0.9657

Illumina 71141 71045 96 39 0.9987 0.9995 0.9991

PacBio 71142 71032 110 127 0.9985 0.9982 0.9983

H.Poly.

11bp+

HG003

ONT 12187 10708 1479 1359 0.8786 0.8879 0.8832

Illumina 12188 12176 12 16 0.9990 0.9987 0.9989

PacBio 12187 12005 182 203 0.9851 0.9841 0.9846

HG004

ONT 12494 10751 1743 1441 0.8605 0.8823 0.8713

Illumina 12494 12478 16 38 0.9987 0.9971 0.9979

PacBio 12494 12332 162 182 0.9870 0.9861 0.9866

Di-Mer

repeat

(11bp-

50bp)

HG003

ONT 18817 18322 495 668 0.9737 0.9654 0.9695

Illumina 18817 18778 39 34 0.9979 0.9982 0.9981

PacBio 18817 18763 54 120 0.9971 0.9939 0.9955

HG004

ONT 18925 18417 508 676 0.9732 0.9652 0.9692

Illumina 18925 18880 45 41 0.9976 0.9979 0.9978

PacBio 18925 18873 52 109 0.9973 0.9945 0.9959

Tri-Mer

repeat

(15bp-

50bp)

HG003

ONT 4179 4129 50 89 0.9880 0.9791 0.9835

Illumina 4179 4172 7 3 0.9983 0.9993 0.9988

PacBio 4179 4153 26 22 0.9938 0.9948 0.9943

HG004

ONT 4213 4175 38 92 0.9910 0.9785 0.9847

Illumina 4213 4210 3 2 0.9993 0.9995 0.9994

PacBio 4213 4196 17 18 0.9960 0.9958 0.9959

Supplementary Table A.17: SNP performance in low-complexity regions with Illumina,
PacBio HiFi and Oxford nanopore data.

255

Region Sample Type
Total

truth
Platform F1-score Recall Precision

True

positives

False

neg.

False

pos.

Not in all

difficult

regions

(76%

genome

fraction)

HG003

SNP 2717833

Illumina 0.9997 0.9997 0.9997 2717119 713 796

ONT 0.9988 0.9986 0.9989 2714093 3740 2857

CCS 0.9999 0.9999 0.9998 2717567 265 416

INDEL 155063

Illumina 0.9996 0.9995 0.9997 154988 74 54

ONT 0.9719 0.9535 0.9910 147852 7211 1343

CCS 0.9997 0.9997 0.9997 155023 42 39

HG004

SNP 2732800

Illumina 0.9998 0.9997 0.9998 2732050 750 600

ONT 0.9996 0.9996 0.9997 2731662 1138 903

CCS 0.9999 0.9998 0.9999 2732330 470 322

INDEL 156444

Illumina 0.9997 0.9996 0.9998 156385 59 31

ONT 0.9700 0.9503 0.9905 148676 7768 1429

CCS 0.9997 0.9996 0.9998 156388 59 38

Supplementary Table A.18: Performance in not all difficult regions (easy regions) with
Illumina, PacBio HiFi and Oxford nanopore data.

Data Tool
Phased

Variants

Unphased

Variants
Blocks

Median

Variants

per

Block

Average

Variants

per

Block

Median

BP per

Block

Average

BP per

Block

Block N50

ONT 25x
Margin 2293009 1008276 2536 347 904 503808 1056597 2067806

WhatsHap 2452395 849215 2297 395 1068 523694 1177941 2372651

ONT 50x
Margin 2275697 875317 1376 613 1654 853602 1993709 4211518

WhatsHap 2391670 759715 1172 822 2041 1049089 2355537 4900234

ONT 75x
Margin 2091713 1023259 1167 496 1792 769148 2372510 6126250

WhatsHap 2393421 722297 812 955 2948 1167915 3430964 8266083

HiFi 35x
Margin 2327420 1035855 14069 15 165 48362 154095 242226

WhatsHap 2412900 954503 14061 14 172 48362 155745 252972

Supplementary Table A.20: Details of Margin and WhatsHap phasing output on HG001
sample with Oxford Nanopore (ONT) and PacBio HiFi data. Results are generated with
whatshap stats command.

256

Sample Assembler Polisher
Assembly

haplotype
NG50

Estimated QV

YAK (k=31)

Switch

error rate

Hamming

error

HG005

Flye - Haploid 37254637 31.08 0.146333 0.319502

Shasta

- Haploid 39831103 32 0.16431 0.293283

P-M-DV

(ONT)

HP-1 39820763 35.06 0.058178 0.207221

HP-2 39820481 35.06 0.059199 0.218271

P-M-DV

(PacBio HiFi)

HP-1 39808277 43.54 0.028165 0.26687

HP-2 39809097 43.5 0.028253 0.264903

Trio-

hifiasm
-

mat 51324672 51.81 0.007056 0.009601

pat 50669010 51.72 0.003106 0.004542

HG00733

Flye - Haploid 36602095 31.93 0.226708 0.455478

Shasta

- Haploid 42512208 32.7 0.263731 0.4387

P-M-DV

(ONT)

HP-1 42497702 35.83 0.09903 0.319373

HP-2 42498275 35.84 0.098502 0.320807

P-M-DV

(PacBio HiFi)

HP-1 42475072 43.83 0.050551 0.401146

HP-2 42476106 43.85 0.049385 0.406129

Trio-

hifiasm
-

mat 32479553 53.6 0.0102 0.012044

pat 35318917 53.35 0.010144 0.010069

HG02723

Flye - Haploid 39652856 31.88 0.24692 0.454764

Shasta

- Haploid 49185987 32.52 0.28754 0.424615

P-M-DV

(ONT)

HP-1 49165039 35.8 0.104264 0.248018

HP-2 49164831 35.79 0.103455 0.238674

P-M-DV

(PacBio HiFi)

HP-1 49146102 43.46 0.046367 0.365246

HP-2 49143792 43.38 0.046215 0.363784

Trio-

hifiasm
-

mat 19737990 56.27 0.005794 0.007677

pat 22214675 55.94 0.006683 0.009111

Supplementary Table A.29: Diploid assembly polishing results of PEPPER-Margin-
DeepVariant (P-M-DV) pipeline on HG005, HG00733 and HG02723 samples. We report
estimated quality value (QV), switch error rate and hamming error using YAK assembly
assessment tool.

257

Appendix B

Appendix B: Supplementary information

for efficient de novo assembly of eleven

human genomes in nine days

258

259

Preamble

Supplementary Results
Supplementary Table B.1: Read N50s stratified by sample and flowcell for 11 samples.

Sample Flowcell No. Flowcell N50 Sample N50

GM24143

1 48891

467572 47044

3 44335

GM24149

1 46054

433062 44245

3 39618

GM24385

1 50349

487052 49319

3 46448

HG00733

1 29862

295842 30473

3 28417

HG01109

1 48795

458942 44218

3 44670

HG01243

1 45467

435672 44681

3 40554

HG02055

1 44320

454572 47148

3 44902

HG02080

1 38519

393192 40123

3 39315

HG02723

1 50509

497232 47842

3 50817

HG03098

1 41463

406292 42308

3 38115

HG03492

1 32149

301682 30063

3 28292

Average - 41889 42101

260

Supplementary Table B.2: Throughput stratified by sample and flowcell (three for each
sample) in gigabases (Gb) for 11 samples.

Sample Flowcell No. Flowcell (Gb) Sample (Gb) Coverage

GM24143

1 87

280 84.722 97

3 95

GM24149

1 82

273 82.62 107

3 84

GM24385

1 26

157 47.432 71

3 59

HG00733

1 62

242 73.452 90

3 89

HG01109

1 71

219 66.482 79

3 70

HG01243

1 71

187 56.682 73

3 43

HG02055

1 71

202 61.332 67

3 65

HG02080

1 71

172 52.212 42

3 59

HG02723

1 81

227 68.72 69

3 78

HG03098

1 79

177 53.632 40

3 58

HG03492

1 61

158 47.742 45

3 51

Average - 69 208 63.18

261

Supplementary Table B.3: Mean, median, and modal values for read alignment identities
of 11 samples, aligned to GRCh38. Metrics were generated per read. Total gigabases of
read data for each sample are detailed in Supplementary Table B.2

Sample Mean Median Mode

GM24143 0.87188 0.89651 0.920

GM24149 0.87665 0.90511 0.930

GM24385 0.88276 0.91143 0.935

HG00733 0.87165 0.89682 0.925

HG01109 0.87033 0.89845 0.930

HG01243 0.88525 0.91435 0.935

HG02055 0.87215 0.90572 0.930

HG02080 0.88188 0.91259 0.935

HG02723 0.84914 0.87565 0.920

HG03098 0.85522 0.88156 0.915

All samples: 0.87251 0.90068 0.930

Supplementary Table B.4: Summary read statistics derived from human saliva sequencing.
Reads Bases Mean Length Median Length Read N50

594,753 10,961,203,887 18,430 15,580 27,778

262

Supplementary Table B.5: QUAST assembly metrics of three samples on four assemblers.
Sample Metric Shasta Wtdbg2 Flye Canu

HG00733

contigs 2,150 5,086 1,852 778

Total length 2,783,599,890 2,792,376,827 2,816,034,584 2,900,719,051

N50 24,429,871 18,763,119 28,763,002 44,759,083

NG50 21,088,309 15,338,021 25,227,330 40,627,903

disagreements 814 3,985 6,555 4,570

Genome fraction (%) 94.982 92.938 95.763 96.404

mismatches per 100 kbp 156.21 248.78 506.12 231.24

indels per 100 kbp 453.97 664.90 1,480.91 677.26

Total aligned length 2,775,307,347 2,742,343,142 2,769,440,009 2,858,769,830

NA50 16,052,981 9,106,500 18,577,806 21,157,324

NGA50 12,765,264 7,787,949 16,267,214 19,945,150

HG002

contigs 1,847 5,310 1,627 767

Total length 2,801,200,983 2,793,889,694 2,819,241,152 2,901,099,163

N50 23,346,484 15,380,722 31,253,170 33,064,788

NG50 20,205,529 13,750,884 25,917,293 32,340,595

disagreements 901 3,572 5,881 3,882

Genome fraction (%) 95.622 93.136 96.228 96.959

mismatches per 100 kbp 167.75 261.72 549.10 231.39

indels per 100 kbp 520.33 796.71 1,650.63 792.45

Total aligned length 2,792,458,737 2,743,401,414 2,768,347,339 2,863,787,213

NA50 16,068,951 8,564,600 18,803,788 21,330,391

NGA50 14,189,972 7,361,363 16,079,132 18,175,258

CHM13

contigs 1,236 6,428 1,269 558

Total length 2,809,087,051 2,836,802,421 2,857,931,691 2,919,690,848

N50 46,037,322 15,522,332 36,829,446 80,507,947

NG50 41,091,906 14,039,241 35,319,460 79,504,166

disagreements 1,051 4,202 5,452 4,768

Genome fraction (%) 95.307 93.124 96.022 96.553

mismatches per 100 kbp 155.15 256.17 443.85 226.04

indels per 100 kbp 358.45 535.46 1,023.79 484.46

Total aligned length 2,798,043,587 2,780,449,715 2,807,157,420 2,864,418,837

NA50 23,475,255 6,786,237 18,991,999 25,611,947

NGA50 18,990,051 5,892,796 17,032,972 23,819,455

263

Supplementary Table B.6: QUAST disagreement count for four assemblers on different
regions of the genome for four samples. We report disagreements that happen in all
chromosomes of GRCh38, then incrementally exclude centromeric regions, segmental
duplication regions (Seg Dups), and all other regions enriched for SVs (chrY, acrocentric
chromosome arms, and QH-regions)

Sample Assembler

Disagreements
in

GRCh38
autosomes

and
chrX, chrY

Disagreements
outside

centromeres

Disagreements
outside

centromeres
and

seg dups

Disagreements
outside

centromeres,
seg dups,

chrY,
acrocentric chr arms,

and QH-regions

HG002

Shasta 901 755 284 121

Flye 5881 1226 513 117

Canu 3882 2347 689 216

Wtdbg2 3572 1213 484 148

HG00733

Shasta 814 662 256 110

Flye 6555 1261 604 134

Canu 4570 2791 755 224

Wtdbg2 3985 1166 474 135

CHM13

Shasta 1051 795 333 129

Flye 5452 1228 448 107

Canu 4768 2764 864 164

Wtdbg2 4202 1519 592 249

264

Supplementary Table B.7: Disagreement count in the intersection of the assemblies for
each sample (see Online Methods). Total Disagreements describes all disagreements
found in 100bp windows before taking the intersection; note that these counts are very
close to those reported by QUAST. Consensus Disagreements describes disagreements in
the intersection of the four assemblies. Genome fraction describes total coverage over
GRCh38 for the consensus sequence.

Sample Assembler Total
Disagreements

Consensus
Disagreements

Genome
Fraction

HG002

Shasta 863 179 87.16%

Flye 5823 178 87.16%

Canu 3779 328 87.16%

Wtdbg2 3509 215 87.16%

HG00733

Shasta 792 161 87.43%

Flye 6546 178 87.43%

Canu 4524 383 87.43%

Wtdbg2 3975 205 87.43%

CHM13

Shasta 1033 242 87.53%

Flye 5446 217 87.53%

Canu 4682 712 87.53%

Wtdbg2 4190 404 87.53%

Supplementary Table B.8: Disagreement count and fraction of genome covered on
chromosome X for four assemblers on CHM13 assemblies with no polishing, compared to
the chromosome X assembly from the Telomere-to-Telomere Consortium. These numbers
were obtained via running QUAST.

Assembler Disagreements Genome Fraction

Shasta 5 97.73%

Wtdbg2 87 94.17%

Flye 18 98.41%

Canu 9 98.16%

265

Supplementary Table B.9: BAC analysis on selected dataset. BACs were selected (31 of
CHM13 and 16 of HG00733) for falling within unique regions of the genome, specifically
>10 Kb away from the closest segmental duplication. Closed refers to the number of
BACs for which 99.5% of their length aligns to a single locus in the assembly. Attempted
refers to the number of BACs which have an alignment for >5 Kb of sequence with
>90% identity to only one contig (BACs which have such alignments to multiple contigs
are excluded). Identity metrics are for closed BACs.

Sample Assembler
BAC counts Median Quality Mean Quality

Total Attempted Closed
Closed

of
attempted %

Identity
% QV Identity

% QV

CHM13

Canu 31 31 30 96.77 99.40 22.18 99.34 21.84

Flye 31 31 31 100.00 97.58 16.17 97.65 16.28

Shasta 31 31 31 100.00 99.55 23.51 99.51 23.07

Wtdbg2 31 29 28 96.55 99.46 22.71 99.39 22.15

HG00733

Canu 16 16 15 93.75 98.74 18.98 98.61 18.56

Flye 16 16 16 100 97.99 16.97 98.01 17.02

Shasta 16 16 16 100 98.84 19.38 98.79 19.20

Wtdbg2 16 16 16 100 98.81 19.26 98.79 19.20

Supplementary Table B.10: BAC analysis on full dataset, 341 on CHM13 and 179 on
HG00733. Closed refers to the number of BACs for which 99.5% of their length aligns
to a single locus. Attempted refers to the number of BACs which have an alignment
for >5Kb of sequence with >90% identity to only one contig (BACs which have such
alignments to multiple contigs are excluded). Identity metrics are for closed BACs.

Sample Assembler
BAC counts Median Quality Mean Quality

Total Attempted Closed
Closed

of
attempted %

Identity
% QV Identity

% QV

CHM13

Canu 341 309 287 92.88 99.22 21.07 98.93 19.7

Flye 341 227 202 88.98 97.54 16.09 97.51 16.03

Shasta 341 94 92 97.87 99.47 22.74 99.37 21.99

Wtdbg2 341 70 62 88.57 99.36 21.96 99.28 21.43

HG00733

Canu 179 137 124 90.51 98.73 18.95 98.43 18.05

Flye 179 98 80 81.63 98.09 17.18 97.76 16.49

Shasta 179 42 40 95.23 98.76 19.08 98.13 17.30

Wtdbg2 179 52 46 88.46 98.70 18.87 98.02 17.04

266

Supplementary Table B.11: BAC analysis intersection of attemted BACs by all four
assemblers, 65 on CHM13 and 27 on HG00733. Closed refers to the number of BACs for
which 99.5% of their length aligns to a single locus. Attempted refers to the number of
BACs which have an alignment for >5Kb of sequence with >90% identity to only one
contig (BACs which have such alignments to multiple contigs are excluded). Identity
metrics are for closed BACs.

Sample Assembler
Polisher

BAC counts Median Quality Mean Quality

Total Attempted Closed
Closed

of
attempted %

Identity
% QV Identity

% QV

CHM13

Canu 65 65 64 98.50 99.29 21.53 99.21 21.01

Flye 65 65 65 100.00 97.57 16.16 97.61 16.22

Shasta 65 65 65 100.00 99.50 23.03 99.41 22.33

Wtdbg2 65 65 59 90.80 99.39 22.17 99.29 21.49

HG00733

Canu 27 27 26 96.30 98.66 18.76 98.54 18.37

Flye 27 27 27 100.00 98.07 17.14 98.08 17.16

Shasta 27 27 27 100.00 98.80 19.23 98.30 17.71

Wtdbg2 27 27 26 96.30 98.75 19.01 98.53 18.32

Supplementary Table B.12: Base-level accuracies on four different assemblers for three
samples. Analysis is performed with whole-genome truth sequences.

Sample Assembler
Percentage Errors

Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta 0.975% 0.061% 0.849% 0.065%

Wtdbg2 1.181% 0.080% 1.073% 0.029%

Canu 1.400% 0.065% 1.316% 0.020%

Flye 1.636% 0.068% 0.450% 1.118%

HG00733
Guppy 2.3.5

Shasta 1.062% 0.083% 0.887% 0.093%

Wtdbg2 1.217% 0.108% 1.059% 0.051%

Canu 1.328% 0.074% 1.224% 0.031%

Flye 1.854% 0.089% 0.445% 1.320%

CHM13
Guppy 2.3.1

Shasta 0.540% 0.039% 0.430% 0.072%

Wtdbg2 0.689% 0.068% 0.583% 0.038%

Canu 0.705% 0.038% 0.643% 0.024%

Flye 2.213% 0.051% 0.448% 1.715%

267

Supplementary Table B.13: Base-level accuracies on four different assemblers for three
samples in the regions of intersection of the assemblies. Analysis is performed only on
regions where all assemblers have an assembled sequence.

Sample Assembler
Percentage Errors

Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta 0.943% 0.056% 0.823% 0.064%

Wtdbg2 1.145% 0.077% 1.041% 0.028%

Canu 1.319% 0.050% 1.253% 0.016%

Flye 1.554% 0.063% 0.432% 1.059%

HG00733
Guppy 2.3.5

Shasta 1.021% 0.064% 0.875% 0.083%

Wtdbg2 1.162% 0.088% 1.034% 0.041%

Canu 1.307% 0.065% 1.213% 0.030%

Flye 1.847% 0.068% 0.431% 1.348%

CHM13
Guppy 2.3.1

Shasta 0.513% 0.016% 0.406% 0.048%

Wtdbg2 0.660% 0.054% 0.575% 0.030%

Canu 0.692% 0.027% 0.645% 0.021%

Flye 2.198% 0.036% 0.460% 1.702%

268

Supplementary Table B.14: Runtime and cost of three assembly workflows on Amazon
Web Services (AWS) platform.

Method Sample Minutes Threads
Used

Peak
Memory

AWS Instance
Type

AWS Instance
Cost

WTDBG2

HG00733 2971 63 365 r5a.16xlarge $3.62

GM24385 1752 63 293 r5a.16xlarge $3.62

CHM13 1655 63 312 r5a.16xlarge $3.62

WTDBG2

(wtpoa-cns)

HG00733 248 31 12 r5a.16xlarge $3.62

GM24385 274 24 12 r5a.16xlarge $3.62

CHM13 257 31 12 r5a.16xlarge $3.62

Flye

HG00733 3421 123 1013 x1.32xlarge $13.34

GM24385 3749 64 727 x1.16xlarge $6.67

CHM13 4084 126 911 x1.32xlarge $13.34

Shasta

HG00733 298 128 966 x1.32xlarge $13.34

HG01109 355 128 - x1.32xlarge $13.34

HG01243 296 128 - x1.32xlarge $13.34

HG02055 309 128 - x1.32xlarge $13.34

HG02080 276 128 - x1.32xlarge $13.34

HG02723 373 128 - x1.32xlarge $13.34

HG03098 238 128 - x1.32xlarge $13.34

HG03492 200 128 - x1.32xlarge $13.34

GM24385 240 128 692 x1.32xlarge $13.34

GM24149 427 128 - x1.32xlarge $13.34

GM24143 451 128 - x1.32xlarge $13.34

CHM13 317 128 - x1.32xlarge $13.34

269

Supplementary Table B.15: Runtime breakdown for each step of the Shasta assembler.

Sample Input MinHash Alignments
Marker
graph

creation

Transitive
reduction Assemble Output Other Total

HG00733 30 9 93 73 17 15 2 55 298

HG01109 29 10 136 89 16 17 2 53 355

HG01243 23 7 104 73 16 15 2 51 296

HG02055 25 9 113 73 15 15 2 53 309

HG02080 22 7 95 67 15 14 2 49 276

HG02723 29 9 146 89 19 16 2 59 373

HG03098 23 8 73 53 14 14 2 47 238

HG03492 19 7 57 44 11 14 2 40 200

GM24385 20 7 92 49 12 13 2 41 240

GM24149 34 11 149 124 21 18 2 64 427

GM24143 35 11 168 120 24 18 2 69 451

CHM13 21 6 173 67 12 13 2 46 345

Average 26 8 117 77 16 15 2 52 317

Percent
of total 8% 3% 37% 24% 5% 5% 1% 17% 100%

Supplementary Table B.16: Structural variants extracted from HG002 assembly graph
compared to GIAB SV set in high-confidence regions.

Metric
HG002

TP FP FN Precision Recall F1

Total 2961 1580 1202 0.6521 0.7117 0.6806

Inserts 2152 1203 810 0.6414 0.7117 0.7289

Deletes 809 377 392 0.6821 0.6681 0.6750

270

deletion
insertion

100 1000 10000 100000

0

500

1000

1500

0

500

1000

1500

variant size (bp)

nu
m

be
r

of
 s

tr
uc

tu
ra

l v
ar

ia
nt

s

GIAB HG002 Shasta assembly

a)

deletion
insertion

0 200 400 600

0

500

1000

1500

2000

0

500

1000

1500

2000

variant size (bp)

nu
m

be
r

of
 s

tr
uc

tu
ra

l v
ar

ia
nt

s

b)

deletion
insertion

2000 4000 6000 8000 10000

0

30

60

90

0

30

60

90

variant size (bp)

nu
m

be
r

of
 s

tr
uc

tu
ra

l v
ar

ia
nt

s

c)

Supplementary Figure B.1: Size distribution of structural variants (>50 bp) extracted
from the Shasta assembly graph for HG002 and the structural variants in the Genome
In A Bottle (GIAB) catalog for the same sample. a) Full size distribution for deletions
(top) and insertion (bottom), in log-scale. b) and c) zoom in the two peaks caused by
Alu (300 bp) and L1 (6 Kbp) insertion polymorphisms.

271

Supplementary Table B.17: CHM13 MHC unpolished Shasta assembly as compared to
the nearest matching haplotype in hg38 (GL000251.2)

Assembler Best Contig Disagreements Largest Aligned Mismatch Rate Indel Rate

Shasta 62 6 2,788,362 0.00296 0.00399

Canu tig00589784 5 2,792,139 0.00331 0.00607

Flye contig_115 6 2,787,570 0.00543 0.01106

wtdbg2 ctg25 32 1,819,753 0.00553 0.00576

Supplementary Table B.18: QUAST results for the HG00733 trio-binned maternal reads,
using all four assemblers.

Metric
HG00733-Mother

Shasta Wtdbg2 Flye (initial) Canu

contigs 1,934 4,028 1,634 877

Total length 2,754,225,214 2,690,619,717 2,791,893,188 2,829,920,708

N50 9,071,623 14,125,235 25,658,831 19,451,828

NG50 7,702,138 10,217,387 23,775,989 16,507,795

disagreements 705 3,661 6,082 2,161

Genome fraction (%) 90.824 87.373 92.121 92.298

Duplication ratio 0.993 0.996 0.982 0.999

mismatches per 100 kbp 194.15 287.89 549.61 232.72

indels per 100 kbp 576.55 859.83 1585.30 724.67

Total aligned length 2,748,135,723 2,650,821,801 2,751,532,754 2,798,797,021

NA50 7,805,090 7,615,651 15,615,208 11,947,316

NGA50 6,339,949 5,584,544 12,833,996 10,085,023

Supplementary Table B.19: HG00733 Maternal trio binned MHC unpolished Shasta
assembly as compared to the nearest matching haplotype in hg38 (GL000255.1)

Assembler Best Contig Disagreements Largest Aligned Mismatch Rate Indel Rate

Shasta 226 0 4,289,729 0.00206 0.00538

Canu tig00002130 0 4,289,729 0.00182 0.00676

Flye contig_295 0 4,289,729 0.00579 0.01759

wtdbg2 ctg36 23 1,418,939 0.00592 0.00905

272

Supplementary Figure B.2: Dotplot of unpolished CHM13 MHC assembly vs hg38
chr6:28000000-34000000 for the each of the 4 assemblers tested. (a) Shasta (b) Canu
(c) Flye (no native polish) (d) wtdbg2. Blue dots represent unique alignments and
orange dots represent repetitive alignments.

273

Supplementary Figure B.3: Dotplot of unpolished HG00733 diploid MHC assembly vs
hg38 chr6:28000000-34000000 for the each of the 4 assemblers tested. (a) Shasta (b)
Canu (c) Flye (no native polish) (d) wtdbg2. Blue dots represent unique alignments
and orange dots represent repetitive alignments.

274

Supplementary Figure B.4: Dotplot of unpolished HG00733 maternal haploid MHC
assembly vs hg38 chr6:28000000-34000000 for the each of the 4 assemblers tested. (a)
Shasta (b) Canu (c) Flye (no native polish) (d) wtdbg2. Blue dots represent unique
alignments and orange dots represent repetitive alignments.

275

Supplementary Table B.20: Base-level accuracies comparing Racon & Medaka and
MarginPolish & HELEN pipelines on Shasta assemblies for three samples. Analysis is
performed with whole-genome truth sequences.

Sample
Polisher Percentage Errors

Method Model Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta Unpolished 0.975% 0.061% 0.849% 0.065%

Racon 4x 0.665% 0.054% 0.579% 0.032%

Medaka r941_flip235 0.393% 0.051% 0.303% 0.039%

MarginPolish guppy_ff235 0.372% 0.043% 0.248% 0.081%

HELEN rl941_flip235 0.279% 0.038% 0.171% 0.070%

HG00733
Guppy 2.3.5

Shasta Unpolished 1.062% 0.083% 0.887% 0.093%

Racon 4x 0.715% 0.080% 0.570% 0.066%

Medaka r941_flip235 0.455% 0.075% 0.311% 0.069%

MarginPolish guppy_ff235 0.460% 0.063% 0.278% 0.118%

HELEN rl941_flip235 0.388% 0.066% 0.202% 0.120%

CHM13
Guppy 2.3.1

Shasta Unpolished 0.540% 0.039% 0.430% 0.072%

Racon 4x 0.367% 0.037% 0.199% 0.131%

Medaka r941_flip213 0.329% 0.033% 0.037% 0.259%

MarginPolish guppy_ff233 0.281% 0.027% 0.071% 0.184%

HELEN rl941_flip233 0.206% 0.027% 0.062% 0.117%

Supplementary Table B.21: QUAST results for the Shasta assemblies for all samples,
post polishing with MarginPolish-HELEN.

Sample #
contigs Total length N50 NG50 # mis-

assemblies

Genome
fraction

(%)

#
mismatches

per
100 kbp

indels
per

100 kbp

Total aligned
length NA50 NGA50

GM24143 2,042 2,802,437,249 23,531,777 19,936,924 970 95.025 128.63 142.77 2,794,379,803 16,323,510 13,840,294

GM24149 2,368 2,816,566,939 20,798,256 17,752,973 990 95.416 130.54 134.60 2,806,847,428 13,174,778 12,128,076

GM24385 1,685 2,819,474,365 23,520,830 20,346,145 960 95.609 127.44 152.17 2,810,951,083 16,200,287 14,315,298

HG00733 1,962 2,800,357,697 24,600,414 21,701,762 877 94.976 126.23 137.92 2,792,792,711 16,156,822 12,971,070

HG01109 2,111 2,820,988,852 21,532,001 18,279,481 1,033 95.564 136.51 140.59 2,811,696,923 13,162,850 12,012,786

HG01243 1,936 2,819,065,027 22,753,128 20,884,160 920 95.521 137.50 143.02 2,810,262,570 16,040,951 14,115,348

HG02055 1,903 2,819,836,390 17,485,643 16,302,857 971 95.592 142.23 162.43 2,810,300,557 13,840,319 12,123,357

HG02080 1,814 2,803,471,776 18,701,305 15,584,440 920 95.045 128.16 134.35 2,794,749,368 12,401,739 11,561,569

HG02723 1,813 2,805,268,038 25,163,327 20,265,678 1,110 95.062 143.30 147.09 2,796,332,696 15,390,923 13,175,818

HG03098 1,790 2,811,295,217 22,571,315 19,620,076 986 95.395 144.36 170.40 2,802,844,336 14,045,283 12,089,849

HG03492 1,811 2,811,690,127 24,629,163 22,891,947 854 95.364 126.61 147.22 2,804,103,412 16,317,390 12,930,516

CHM13 1,186 2,819,245,173 46,206,794 41,255,275 1,107 95.281 136.58 140.38 2,808,536,514 23,540,225 19,532,176

276

Supplementary Table B.22: Base-level accuracies comparing Racon & Medaka
and MarginPolish & HELEN pipelines against CHM13 Chromosome-X. The truth
Chromosome-X sequence used reflects the most accurate haploid truth sequence available.

Sample
Polisher Percentage Errors

Method Model Balanced Identity Deletion Insertion

CHM-13
Chromosome-X

Shasta Unpolished 0.469% 0.014% 0.404% 0.051%

Racon 4x 0.313% 0.017% 0.192% 0.104%

Medaka r941_flip213 0.110% 0.012% 0.035% 0.063%

MarginPolish guppy_ff233 0.215% 0.008% 0.055% 0.153%

HELEN
rl941_flip233 0.143% 0.007% 0.041% 0.095%

rl941_flip231 0.064% 0.006% 0.036% 0.022%

277

Supplementary Table B.23: Base-level accuracies improvements with MarginPolish and
HELEN pipeline on four different assemblers for two samples. Analysis is performed
with whole-genome truth sequences.

Sample
Polisher Percentage Errors

Method Model Balanced Identity Deletion Insertion

HG00733
Guppy 2.3.5

Shasta Unpolished 1.062% 0.083% 0.887% 0.093%

MarginPolish guppy_ff235 0.460% 0.063% 0.278% 0.118%

HELEN rl941_flip235 0.388% 0.066% 0.202% 0.120%

Wtdbg2 Unpolished 1.217% 0.108% 1.059% 0.051%

MarginPolish guppy_ff235 0.538% 0.083% 0.333% 0.122%

HELEN rl941_flip235 0.473% 0.089% 0.257% 0.127%

Canu Unpolished 1.328% 0.074% 1.224% 0.031%

MarginPolish guppy_ff235 0.438% 0.050% 0.290% 0.098%

HELEN rl941_flip235 0.355% 0.050% 0.206% 0.099%

Flye Unpolished 1.854% 0.089% 0.445% 1.320%

MarginPolish guppy_ff235 0.425% 0.062% 0.257% 0.106%

HELEN rl941_flip235 0.356% 0.064% 0.183% 0.109%

CHM13
Guppy 2.3.1

Shasta Unpolished 0.540% 0.039% 0.430% 0.072%

MarginPolish guppy_ff233 0.281% 0.027% 0.071% 0.184%

HELEN rl941_flip233 0.206% 0.027% 0.062% 0.117%

Wtdbg2 Unpolished 0.689% 0.068% 0.583% 0.038%

MarginPolish guppy_ff233 0.361% 0.049% 0.112% 0.201%

HELEN rl941_flip233 0.296% 0.053% 0.115% 0.129%

Canu Unpolished 0.705% 0.038% 0.643% 0.024%

MarginPolish guppy_ff233 0.255% 0.013% 0.075% 0.168%

HELEN rl941_flip233 0.173% 0.012% 0.058% 0.103%

Flye Unpolished 2.213% 0.051% 0.448% 1.715%

MarginPolish guppy_ff233 0.256% 0.022% 0.058% 0.176%

HELEN rl941_flip233 0.185% 0.024% 0.052% 0.109%

278

Supplementary Table B.24: Single-chromosome error rates after polishing with short
reads. 10X Chromium reads for sample CHM13 were used to polish via Pilon polishing
software. The top half of the table shows the results of three rounds of Pilon, starting
from the CHM13 Shasta chrX assembly that had been polished with MarginPolish and
HELEN. The bottom half shows the results of three rounds of Pilon, starting from the
raw Shasta assembly.

Sample Assembly
Percentage Errors Q Scores

Balanced Identity Deletion Insertion Balanced Identity Deletion Insertion

CHM13
ChrX

Shasta (polished) 0.064% 0.006% 0.036% 0.022% 31.92 42.40 34.42 36.51

Pilon 1x 0.025% 0.004% 0.012% 0.008% 36.06 43.75 39.16 40.75

Pilon 2x 0.023% 0.004% 0.012% 0.007% 36.29 43.51 39.32 41.34

CHM13
ChrX

Shasta (raw) 0.468% 0.014% 0.404% 0.051% 23.29 38.57 23.94 32.95

Pilon 1x 0.449% 0.011% 0.395% 0.043% 23.48 39.78 24.03 33.68

Pilon 2x 0.425% 0.011% 0.373% 0.041% 23.71 39.49 24.29 33.84

279

Supplementary Table B.25: Runtime and cost of two polishing workflows on Amazon
Web Services (AWS) platform.

Method Sample Minutes Threads
Used

Peak
Memory

Instance
Type

Instance
Cost

Racon (4x)

HG00733 3099 62 574 r5a.24xlarge $5.42

GM24385 2342 62 501 r5a.24xlarge $5.42

CHM13 3700 62 281 r5a.24xlarge $5.42

Medaka
mini_align

HG00733 611 62 101 c5.18xlarge $3.06

GM24385 489 62 115 c5.18xlarge $3.06

CHM13 810 60 143 c5.18xlarge $3.06

Medaka
call_consensus

HG00733 8611 62 164 c5n.18xlarge $3.89

GM24385 3355 62 150 c5n.18xlarge $3.89

CHM13 2532 62 149 c5n.18xlarge $3.89

MarginPolish

HG00733 680 90 66 m5.metal $4.61

HG01109 912 70 57 c5.18xlarge $3.06

HG01243 835 70 65 c5.18xlarge $3.06

HG02055 733 70 77 c5.18xlarge $3.06

HG02080 793 70 64 c5.18xlarge $3.06

HG02723 1000 64 60 c5.18xlarge $3.06

HG03098 852 70 78 c5.18xlarge $3.06

HG03492 777 70 80 c5.18xlarge $3.06

GM24385 842 70 66 c5.18xlarge $3.06

GM24149 1037 64 103 c5.18xlarge $3.06

GM24143 1051 64 84 c5.18xlarge $3.06

CHM13 739 70 65 c5.18xlarge $3.06

HELEN
consensus

HG00733 216 8 GPUs - p2.8xlarge $7.20

HG01109 204 8 GPUs - p2.8xlarge $7.20

HG01243 233 8 GPUs - p2.8xlarge $7.20

HG02080 212 8 GPUs - p2.8xlarge $7.20

HG03098 216 8 GPUs - p2.8xlarge $7.20

GM24385 208 8 GPUs - p2.8xlarge $7.20

GM24143 226 8 GPUs - p2.8xlarge $7.20

HELEN
stitch

HG00733 59 32 - p2.8xlarge $7.20

HG01109 50 32 - p2.8xlarge $7.20

HG01243 49 32 - p2.8xlarge $7.20

HG02080 54 32 - p2.8xlarge $7.20

HG03098 65 32 - p2.8xlarge $7.20

GM24385 68 32 - p2.8xlarge $7.20

GM24143 62 32 - p2.8xlarge $7.20
280

Supplementary Table B.26: Runtime and cost of two polishing workflows run on a 29
Mb contig from the HG00733 Shasta assembly. MarginPolish uses an improved stitch
method not used in original runs and Racon was run once instead of four times as was
done in the full runs. All runs were configured to use 32 CPUs, except for the GPU runs
which were performed with 16 CPUs and 1 GPU (Tesla P100).

Application Runtimes Avg Runtime

MarginPolish

16.6

16.4616.47

16.31

HELEN consensus

(CPU)

97.46

95.8695.55

94.56

HELEN consensus

(GPU)

1.63

1.671.72

1.65

HELEN stitch

0.76

0.780.78

0.80

Racon 1x

52.00

52.0452.15

51.98

mini_align

3.01

3.003.00

2.98

Medaka

(CPU)

17.26

17.0116.78

16.98

Medaka consensus

(GPU)

10.55

10.6210.73

10.57

Medaka stitch

(GPU)

0.68

0.680.68

0.68

281

Supplementary Figure B.5: Log frequency of each run length as found in the GRCh38
reference for all bases A,C,G,T up to 100bp. Run lengths greater than 15 account for
approximately 0.012% of all homopolymer runs in GRCh38.

282

Supplementary Table B.27: Transcript-level analysis with Comparative Annotation
Toolkit (CAT) of MarginPolish & HELEN and Racon & Medaka on three samples from
Shasta assemblies.

Metric
HG002 HG00733 CHM13

HELEN MEDAKA HELEN MEDAKA HELEN MEDAKA

Transcripts Found
Total 83093 83105 83002 82928 82833 82807

Percent 99.536 99.551 99.427 99.339 99.225 99.194

Full mRNA Coverage
Total 25721 20367 28612 26573 40132 38081

Percent 30.811 24.397 34.274 31.832 48.074 45.617

Full CDS Coverage
Total 41396 36248 45104 43956 53089 52297

Percent 49.588 43.421 54.030 52.655 63.595 62.646

Transcripts With
Frameshift

Total 35339 40783 31333 32647 23261 24441

Percent 42.332 48.854 37.534 39.108 27.864 29.278

Transcripts With
Original Introns

Total 76880 76883 76618 76463 76807 76803

Percent 92.094 92.098 91.780 91.594 92.006 92.002

Transcripts With
Full CDS Coverage

Total 41396 36248 45104 43956 53089 52297

Percent 49.588 43.421 54.030 52.655 63.595 62.646

Transcripts With
Full CDS Coverage
And No Frameshifts

Total 41245 36158 44982 43860 52966 52160

Percent 49.407 43.313 53.884 52.540 63.448 62.482

Transcripts With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 41021 35952 44692 43546 52616 51807

Percent 49.139 43.067 53.536 52.163 63.028 62.059

283

Supplementary Table B.28: Gene-level analysis with Comparative Annotation Toolkit
(CAT) of MarginPolish & HELEN and Racon & Medaka on three samples from Shasta
assemblies.

Metric
HG002 HG00733 CHM13

HELEN MEDAKA HELEN MEDAKA HELEN MEDAKA

Genes Found
Total 19536 19531 19537 19511 19505 19490

Percent 99.268 99.243 99.273 99.141 99.111 99.035

Genes With
Frameshift

Total 10933 12165 9941 10081 7300 7564

Percent 55.554 61.814 50.513 51.225 37.093 38.435

Genes With
Original Introns

Total 18212 18198 18151 18113 18217 18202

Percent 92.541 92.47 92.231 92.038 92.566 92.49

Genes With
Full CDS Coverage

Total 11070 10066 11812 11756 13648 13534

Percent 56.25 51.148 60.02 59.736 69.35 68.77

Genes With
Full CDS Coverage
And No Frameshifts

Total 12454 11570 13127 13081 14625 14562

Percent 63.283 58.791 66.702 66.468 74.314 73.994

Genes With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 12422 11539 13098 13042 14603 14531

Percent 63.12 58.633 66.555 66.27 74.202 73.836

Missing Genes
Total 144 149 143 169 175 190

Percent 0.732 0.757 0.727 0.859 0.889 0.965

284

Supplementary Table B.29: Transcript-level analysis with Comparative Annotation
Toolkit (CAT) of four HG00733 assemblies polished with MarginPolish and HELEN.

Metric
HG00733

Flye
HELEN

Canu
HELEN

Wtdbg2
HELEN

Shasta
HELEN

Transcripts Found
Total 83267 83334 81484 82974

Percent 99.745 99.825 97.609 99.394

Full mRNA Coverage
Total 33078 28488 28889 30378

Percent 39.624 34.126 34.606 36.390

Full CDS Coverage
Total 41396 44877 45321 46965

Percent 59.754 53.758 54.290 56.259

Transcripts With
Frameshift

Total 27293 32230 29525 29657

Percent 32.694 38.608 35.368 35.526

Transcripts With
Original Introns

Total 77412 77583 74683 76613

Percent 92.731 92.936 89.462 91.774

Transcripts with
Full CDS Coverage

Total 49883 44877 45321 46965

Percent 59.754 53.758 54.290 56.259

Transcripts with
Full CDS Coverage
And No Frameshifts

Total 49766 44737 45217 46802

Percent 59.614 53.590 54.165 56.064

Transcripts with
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 49459 44412 44924 46505

Percent 59.247 53.201 53.814 55.708

285

Supplementary Table B.30: Gene-level analysis with Comparative Annotation Toolkit
(CAT) of four HG00733 assemblies polished with MarginPolish and HELEN

Metric
HG00733

Flye
HELEN

Canu
HELEN

Wtdbg2
HELEN

Shasta
HELEN

Genes Found
Total 19563 19629 19174 19528

Percent 99.405 99.741 97.429 99.228

Genes With
Frameshift

Total 8698 10160 9323 9464

Percent 44.197 51.626 47.373 48.089

Genes With
Original Introns

Total 18345 18460 17709 18154

Percent 93.216 93.801 89.985 92.246

Genes With
Full CDS Coverage

Total 12966 11889 11817 12207

Percent 65.884 60.412 60.046 62.027

Genes With
Full CDS Coverage
And No Frameshifts

Total 14145 13221 13047 13419

Percent 71.875 67.18 66.296 68.186

Genes With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 14124 13193 13017 13396

Percent 71.768 67.038 66.143 68.069

Missing Genes
Total 117 51 506 152

Percent 0.595 0.259 2.571 0.772

286

Supplementary Table B.31: BUSCO results of three samples using two polishing workflows
on Shasta assemblies.

Sample Metric
Shasta

MarginPolish
HELEN

Shasta
Racon (4x)

Medaka

HG00733

Complete BUSCOs (C) 87.20% 87.10%

Complete and single-copy BUSCOs (S) 84.20% 83.80%

Complete and duplicated BUSCOs (D) 3.00% 3.30%

Fragmented BUSCOs (F) 4.60% 5.30%

Missing BUSCOs (M) 8.20% 7.60%

HG002

Complete BUSCOs (C) 89.40% 88.80%

Complete and single-copy BUSCOs (S) 84.80% 85.80%

Complete and duplicated BUSCOs (D) 4.60% 3.00%

Fragmented BUSCOs (F) 3.60% 4.30%

Missing BUSCOs (M) 7.00% 6.90%

CHM13

Complete BUSCOs (C) 86.50% 86.80%

Complete and single-copy BUSCOs (S) 82.50% 82.80%

Complete and duplicated BUSCOs (D) 4.00% 4.00%

Fragmented BUSCOs (F) 5.90% 5.30%

Missing BUSCOs (M) 7.60% 7.90%

Supplementary Table B.32: BUSCO results for four assemblers on HG00733, post
polishing with MarginPolish and HELEN.

Metric
HG00733

Flye Canu Wtdbg2 Shasta

Complete BUSCOs (C) 87.50% 89.80% 85.80% 87.20%

Complete and single-copy BUSCOs (S) 84.50% 86.80% 82.20% 84.20%

Complete and duplicated BUSCOs (D) 3.00% 3.00% 3.60% 3.00%

Fragmented BUSCOs (F) 5.30% 3.00% 6.30% 4.60%

Missing BUSCOs (M) 7.20% 7.20% 7.90% 8.20%

287

Supplementary Table B.33: CHM13 QUAST results for Shasta, MarginPolish, HELEN
and PacBio HiFi assembly. Stratified disagreement counts were added after manual
determination.

Metric
CHM13

Nanopore
Shasta

MarginPolish, HELEN

PacBio-HiFi
Canu
Racon

contigs 1622 5206

Total length 2819245173 3031026325

N50 46206794 29522819

NG50 41255275 29092230

disagreements 1107 8666

disagreements outside Centromeres 801 2999

disagreements outside centromeres and Seg Dups 314 893

Genome fraction (%) 95.281 97.030

mismatches per 100 kbp 136.58 274.84

indels per 100 kbp 140.38 32.99

Total aligned length 2808536514 2954558720

NA50 23540225 20440378

NGA50 19532176 20029136

Supplementary Table B.34: Disagreement count in the intersection of the assemblies
between the PacBio-HiFi and the Shasta assembly of CHM13. Total Disagreements is
all disagreements found in 100bp before windows before taking the intersection, note it
is very close to that reported by QUAST. Consensus disagreements: Disagreements in
the intersection of the four assemblies.

Sample Assembler Total
disagreements

Consensus
disagreements

CHM13
PacBio-HiFi 8469 594

Shasta 1073 380

Supplementary Table B.35: CHM13 Chromosome-X error rate analysis with Pomoxis
for Shasta, MarginPolish, HELEN, and PacBio HiFi assembly.

Sample Sequencing
Platform

Method Percentage errors

Assembler Polisher Balanced Identity Deletion Insertion

CHM13
Chr-X

PacBio HiFi Canu Racon 0.008% 0.001% 0.004% 0.003%

Nanopore Shasta MarginPolish &
HELEN 0.064% 0.006% 0.036% 0.022%

288

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative coverage

0

20

40

60

80

100

120

140

Co
nt

ig
/s

ca
ffo

ld
 si

ze
 (M

bp
)

NGx
Shasta Nanopore
Canu CCS

Supplementary Figure B.6: Contig NGx for CHM13 Shasta-HELEN nanopore assembly
vs Canu CCS (HiFi) assembly

289

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative coverage

0

20

40

60

80

100

120

140

Co
nt

ig
/s

ca
ffo

ld
 si

ze
 (M

b)

NGAx
Canu CCS
Shasta Nanopore

Supplementary Figure B.7: Contig NGAx for CHM13 Shasta-HELEN nanopore assembly
vs Canu CCS (HiFi) assembly

290

7/3/2019 Dot: Interactive dot plot for genome-genome alignments

https://dnanexus.github.io/dot/ 1/2

Click	and	drag	to	zoom	in,	double-click	to	zoom	out.

UCSC	reference	database: hg38

UCSC	(hg38):	chr1:0-248956422	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr1:0-248956422)
UCSC	(hg38):	chr2:0-242193529	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr2:0-242193529)
UCSC	(hg38):	chr3:0-198295559	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr3:0-198295559)
UCSC	(hg38):	chr4:0-190214555	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr4:0-190214555)
UCSC	(hg38):	chr5:0-181538259	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr5:0-181538259)

reference

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r10

ch
r11

ch
r12

ch
r13

ch
r14

ch
r15

ch
r16

ch
r17

ch
r18

ch
r19

ch
r20

ch
r21

ch
r22

.
ch
rX

ch
rY ..

ScXN5Rm_2705;HRSCAF=3202

...............

ScXN5Rm_412;HRSCAF=470

.............

ScXN5Rm_2270;HRSCAF=2633

......

ScXN5Rm_671;HRSCAF=797

........

ScXN5Rm_1742;HRSCAF=2049

..
ScXN5Rm_2649;HRSCAF=3120

..............

ScXN5Rm_2758;HRSCAF=3274

.......

ScXN5Rm_2422;HRSCAF=2849

..

ScXN5Rm_2597;HRSCAF=3055

......

ScXN5Rm_2293;HRSCAF=2669

..

ScXN5Rm_2697;HRSCAF=3193

ScXN5Rm_185;HRSCAF=208
.......

ScXN5Rm_2698;HRSCAF=3194
.........

ScXN5Rm_2307;HRSCAF=2685

...

ScXN5Rm_591;HRSCAF=703

...

ScXN5Rm_514;HRSCAF=610

...

ScXN5Rm_2298;HRSCAF=2675

..

ScXN5Rm_2680;HRSCAF=3165

..........
ScXN5Rm_272;HRSCAF=306

.............
ScXN5Rm_2756;HRSCAF=3272

ScXN5Rm_1705;HRSCAF=2009
........

ScXN5Rm_3335;HRSCAF=4000
............

ScXN5Rm_1504;HRSCAF=1784

ScXN5Rm_2830;HRSCAF=3372
.ScXN5Rm_238;HRSCAF=265......

ScXN5Rm_2304;HRSCAF=2681................
..ScXN5Rm_474;HRSCAF=550..........

ScXN5Rm_697;HRSCAF=828...
..

ScXN5Rm_665;HRSCAF=791

....................

Supplementary Figure B.8: Dotplot for the scaffolded HG002 assembly, aligned with
GRCh38. Blue dots represent unique alignments and orange dots represent repetitive
alignments.

Supplementary Table B.36: QUAST results for all 11 Shasta assemblies scaffolded with
HiRise, post polishing with MarginPolish-HELEN

Sample #
contigs Total length N50 NG50 # mis-

assemblies

scaffold
gap

extensive
mis-

assembies

Genome
fraction

(%)

#
mismatches

per
100 kbp

indels
per

100 kbp

Total aligned
length NA50 NGA50

GM24143 1,184 2,802,523,049 129,960,437 128,216,303 1,466 4 95.027 128.28 142.79 2,792,775,664 20,657,530 16,966,477

GM24149 1,323 2,816,683,224 129,643,816 128,275,807 1,530 11 95.417 130.24 134.58 2,804,735,382 18,446,390 15,435,923

GM24385 1,019 2,819,527,260 118,169,209 102,591,941 1,335 6 95.606 127.19 152.25 2,809,570,528 22,369,161 16,601,924

HG00733 1,056 2,800,455,909 129,857,865 118,785,172 1,337 8 94.974 126.16 138.09 2,791,610,554 22,141,375 17,570,210

HG01109 1,156 2,821,098,626 130,282,751 130,166,418 1,529 5 95.559 136.73 140.63 2,809,413,640 19,932,703 17,228,023

HG01243 1,006 2,819,162,443 128,571,344 118,762,399 1,381 7 95.517 137.47 143.03 2,808,041,766 22,146,722 17,559,055

HG02055 977 2,819,933,140 130,184,428 128,180,737 1,387 8 95.587 141.91 162.46 2,809,195,864 21,057,279 18,446,049

HG02080 934 2,803,570,658 129,931,575 128,451,196 1,470 9 95.041 127.98 134.36 2,793,854,132 20,418,609 16,379,851

HG02723 982 2,805,356,030 130,365,062 128,975,828 1,499 9 95.06 143.45 147.13 2,794,747,200 20,232,566 17,865,825

HG03098 926 2,811,385,538 130,040,472 128,535,908 1,439 4 95.391 144.36 170.40 2,801,774,564 22,165,948 17,439,948

HG03492 901 2,811,782,250 130,277,907 100,251,163 1,381 7 95.362 126.54 147.23 2,803,106,787 20,001,587 16,836,756

291

Appendix C

Appendix C: Supplementary information

for validation and polishing of the first

complete human genome

292

293

Preamble

Supplementary Results

Supplementary Figure C.1: Sequencing biases observed in missing kmers. a, missing
k-mers with its GA composition. b-d, v0.9 assembly and k-mer copy number spectrum
from HiFi, Illumina, and hybrid k-mer sets (left) and per-chromosome missing (likely
error) k-mer counts from the HiFi derived consensus or patches (right). Most missing
k-mers in HiFi overlapped sequences from patched regions. No missing k-mer was found
on Chromosomes indicated with red arrows.

294

Supplementary Figure C.2: Error detection and polishing pipeline. A detailed overview
of the polishing pipeline along with the number of errors identified and polished at each
step. Additionally, data type and polishing tools utilized are highlighted. Illumina,
100X PCR-free library Illumina reads; HiFi, 35x PacBio HiFi reads; ONT, 120x Oxford
Nanopore reads.

295

Supplementary Figure C.3: SNV-like error filtering. ONT PEPPER-DeepVariant SNP
call were more reliable with both higher precision and recall over Medaka.

296

Supplementary Figure C.4: Number of SV-like errors called from long-read platforms.

297

Supplementary Figure C.5: Globally unique single-copy kmers used for marker assisted
alignment. a. Range of k-mer counts defined as ‘single-copy’ markers from Illumina reads
and in the assembly. The cutoffs were chosen to minimize inclusion of low-frequency
erroneous kmers and 2-copy k-mers. b. Number of markers in every 10 kb window. c.
Cumulative number of bases covered by the number of markers in each 10 kb window.

298

Supplementary Figure C.6: Post-polishing evaluation. a. Left, genotype quality and
number of reads supporting the reference and alternate alleles from the combined Illumina-
hifi hybrid and ONT homozygous variant calls, with AF > 0.5. Right, balanced insertion
(red) and deletion (blue) length distribution from the Illumina-HiFi hybrid DeepVariant
heterozygous calls in v1.0. b. Number of errors detected in each chromosome, before
and after polishing.

299

Supplementary Figure C.7: Polishing inside and outside of repeats. The distribution of
v0.9 polishing rates within and without repeats.

300

Supplementary Figure C.8: Three SV-like errors corrected. HiFi and ONT marker
assisted alignments, post correction of the 3 large SV-like edits visualized with IGV.
HiFi coverage track is shown in data range up to 60, ONT up to 150. Clipped reads are
flagged for >100bp. INDELs smaller than 10bp are not shown. Reads are colored by
strands; positive in red and negative in blue.

301

Supplementary Figure C.9: An illustration of chr 2 telomere sequence reads from HiFi,
ONT and CLR platform.

302

Supplementary Figure C.10: Distribution of maximum perfect match to the canonical
k-mer observed at each position in the telomere before (CHM13 v1.0) and after (CHM13
v1.1) polishing the telomeres.

Supplementary Figure C.11: Mapping biases found and corrected. On simulated HiFi
reads, we found excessive clippings in highly identical satellite repeats in Minimap and
Winnowmap by the time of evaluation. We have addressed this issue in Winnowmap
2.01+. Clipped (%) indicates the percentage of reads clipped in every 1024 bp window,
shown in 0 40% range with a midline of 10%.

303

Supplementary Figure C.12: HiFi, CLR, ONT read coverage, alignment identity, and
read length from Winnowmap2 v2.01 alignments and Bionano DLE-1 molecule coverage
from Bionano Solve. Upper panel shows a zoomed in region of Chromosome 9, while the
upper panel shows the whole-genome alignment view. HiFi, CLR, ONT, and Bionano
coverage are shown up to 70x, 70x, 200x, and 250x, respectively. Median read identity
in every 1024 bp is shown in 80-100% range. Median read length in every 1024 bp is
shown in 0-100kb range. Read identity was the worst in CLR, and between HiFi and
ONT. Bionano molecules were lacking coverage in most of the centromeric repeats.

304

Supplementary Figure C.13: Collapsed simple tandem repeat. The collapse in the
Intronic sequences of gene FAM227A was undetected, due to the variable insertion
breakpoints and insertion length in the HiFi and ONT alignments. The panels above
the alignments show marker density and percent microsatellites (GA / AT / TC / GC)
in each 64 bp window, which indicates this region is highly repetitive with GA enriched
sequences, which later alternates with AT enriched sequences.

305

Supplementary Figure C.14: Chimeric junction of two haplotypes. In the shown above
regions, both HiFi and ONT reads indicate that the consensus has a chimeric junction
of the two haplotypes.

306

PacBio HiFi Illumina Hybrid

QV

V0.9 69.68 66.09 70.22

V1.0 69.88 67.28 72.62

V1.1 69.80 67.86 73.94

K-mers found only in assembly (Error k-mers)

V0.9 6,881 15,723 6,073

V1.0 6,581 11,961 3,496

V1.1 6,724 10,497 2,591

K-mers found in both assembly and reads

V0.9 3,045,438,411 3,045,438,411 3,045,438,411

V1.0 3,045,440,942 3,045,440,942 3,045,440,942

Supplementary Table C.1: K-mer based consensus quality evaluation. From each
sequencing dataset and assembly versions, 21-mers were collected and compared with
Merqury.

307

Query Assembly True Negatives False Positives True Positives False Negatives

CHM13v1.0 69123 0 16 611

Racon 69101 22 19 608

Racon+Merfin 69123 0 14 613

Supplementary Table C.2: Correcting invalid ORFs via polishing. This considers the
classification of GRCh38 transcripts with valid ORFs. True/False Positives/Negatives
for each query assembly were assessed as follows: If a transcript has a valid ORF in the
CHM13v0.9 assembly and it remains valid in the query assembly, it is a "True Negative".
If a transcript has a valid ORF in the CHM13v0.9 assembly but it has an invalid ORF
in the query assembly, it is a "False Positive". If a transcript has an invalid ORF in
the CHM13v0.9 assembly and it remains invalid in the query assembly, it is a "False
Negative", and if a transcript has an invalid ORF in the CHM13v0.9 assembly but it
has a valid ORF in the query assembly, it is a "True Positive". Only transcripts that
mapped to all assemblies were considered.

CHM13 v1.0 CHM13 v1.1

Chr. Start End Chr. Start End Reason

11 54243938 54285164 11 54258631 54260218 Low consensus quality

16 36735111 36775613 16 36753902 36757498 Low consensus quality

n/a 15 3642490 3643193 GA sequencing bias in model rDNA sequence

n/a 15 3732691 3732910 GA sequencing bias in model rDNA sequence

22 39136546 39145169 22 39107778 39116401 Collapsed low complexity sequence

19 28509243 28519604 19 28509246 28519607 Chimeric consensus of two haplotypes

19 28527178 28538917 19 28527181 28538920 Chimeric consensus of two haplotypes

Supplementary Table C.3: Remaining issues identified from both PacBio HiFi and ONT

308

Cause of low coverage Num. of regions (%)

Likely low consensus qual. 11 5.0%

Low consensus qual. 30 13.8%

AT biases 7 3.2%

GA or TC biases 170 78.0%

Supplementary Table C.4: Low coverage regions detected only from HiFi alignments.
Regions with <7x Winnowmap primary read alignments were collected and categorized
given the mapping quality, alignment identity, and sequence context (% microsatellites
within 10 kb).

309

Appendix D

Appendix A: Supplementary information

for ultra-rapid whole genome nanopore

sequencing in a critical care setting

310

Preamble

Supplementary Figures

Supplementary Figure D.1: Ligating barcodes reduces the final yield of the sequencing
library. The mean DNA loading mass per flow cell of barcoded libraries (red) was 155
ng (78 ng—243 ng) compared to non-barcoded libraries (blue) 333 ng (208 ng—345 ng).
This difference was observed in phase one (white background), and it was decided to
continue with the non-barcoding protocol in phase 2 (gray background).

311

Supplementary Figure D.2: Eliminating barcoding results in higher pore occupancy.
Barcoded libraries (red) have an average pore occupancy of 64% compared to non-
barcoded libraries (Blue) of 82%. This difference was observed in phase one (white
background), and it was decided to continue with the non-barcoding protocol in phase 2
(gray background). This increased pore occupancy is suspected to be a direct result of
the increased yield of library in the non-barcoded samples

Supplementary Figure D.3: Alignment identities against GRCh37. Median of 0.944 is
shown by the dashed line and the mean of 0.931 is shown by the dotted line.

312

Supplementary Figure D.4: NGx plot: Total aligned sequence (Gb) for the samples as a
function of the read length.

313

Supplementary Figure D.5: Heterozygous/Homozygous ratio. Diamonds are colored
based on the patient’s ethnicity. The dashed line indicates a mean of 1.5

314

Supplementary Figure D.6: Transition/Transversion ratio for the SNP calls across all
the patient samples. The dashed line indicates a mean of 2.0

315

Bibliography

[1] S Aganezov. A complete human reference genome improves variant calling for
population and clinical genomics. bioRxiv (to appear), 2021.

[2] Sergey Aganezov, Stephanie M Yan, Daniela C Soto, Melanie Kirsche, Samantha
Zarate, Pavel Avdeyev, Dylan J Taylor, Kishwar Shafin, Alaina Shumate, Chunlin
Xiao, et al. A complete reference genome improves analysis of human genetic
variation. bioRxiv, 2021.

[3] Can Alkan, Bradley P Coe, and Evan E Eichler. Genome structural variation
discovery and genotyping. Nature Reviews Genetics, 12(5):363, 2011.

[4] N Altemose. Genetic and epigenetic maps of endogenous human centromeres.
bioRxiv (to appear), 2021.

[5] Nicolas Altemose, Glennis A Logsdon, Andrey V Bzikadze, Pragya Sidhwani,
Sasha A Langley, Gina V Caldas, Savannah J Hoyt, Lev Uralsky, Fedor D Ryabov,
Colin J Shew, et al. Complete genomic and epigenetic maps of human centromeres.
bioRxiv, 2021.

[6] Peter A Audano, Arvis Sulovari, Tina A Graves-Lindsay, Stuart Cantsilieris,
Melanie Sorensen, AnneMarie E Welch, Max L Dougherty, Bradley J Nelson,
Ankeeta Shah, Susan K Dutcher, et al. Characterizing the major structural variant
alleles of the human genome. Cell, 176(3):663–675, 2019.

[7] Gunjan Baid, Daniel E Cook, Kishwar Shafin, Taedong Yun, Felipe Llinares-
Lopez, Quentin Berthet, Aaron M Wenger, William J Rowell, Maria Nattestad,
Howard Yang, et al. Deepconsensus: Gap-aware sequence transformers for sequence
correction. bioRxiv, 2021.

[8] Gunjan Baid, Maria Nattestad, Alexey Kolesnikov, Sidharth Goel, Howard Yang,

316

Pi-Chuan Chang, and Andrew Carroll. An extensive sequence dataset of gold-
standard samples for benchmarking and development. bioRxiv, 2020.

[9] N Baran, A Lapidot, and H Manor. Formation of DNA triplexes accounts for
arrests of DNA synthesis at d(TC)n and d(GA)n tracts, 1991.

[10] Jon-Matthew Belton, Rachel Patton McCord, Johan Harmen Gibcus, Natalia
Naumova, Ye Zhan, and Job Dekker. Hi–c: a comprehensive technique to capture
the conformation of genomes. Methods, 58(3):268–276, 2012.

[11] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M
Landolin, and Adam M Phillippy. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nature biotechnology, 33(6):623, 2015.

[12] Blue Shield of California and News Center. Blue shield of california becomes first
health plan in u.s. to cover cost of rapid whole genome sequencing for critically ill
children. https://news.blueshieldca.com/2020/03/09/RADY-genomics. Accessed:
2021-5-29.

[13] Daniel M Bornman, Mark E Hester, Jared M Schuetter, Manjula D Kasoji, Angela
Minard-Smith, Curt A Barden, Scott C Nelson, Gene D Godbold, Christine H
Baker, Boyu Yang, et al. Short-read, high-throughput sequencing technology for
str genotyping. BioTechniques. Rapid dispatches, 2012:1, 2012.

[14] Keith R Bradnam, Joseph N Fass, Anton Alexandrov, Paul Baranay, Michael
Bechner, Inanç Birol, Sébastien Boisvert, Jarrod A Chapman, Guillaume Chapuis,
Rayan Chikhi, et al. Assemblathon 2: evaluating de novo methods of genome
assembly in three vertebrate species. GigaScience, 2(1):10, 2013.

[15] D. Y. Brandt, V. R. Aguiar, B. D. Bitarello, K. Nunes, J. Goudet, and D. Meyer.
Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in
the 1000 Genomes Project Phase I Data. G3 (Bethesda), 5(5):931–941, Mar 2015.

[16] Henry Brinkerhoff, Albert SW Kang, Jingqian Liu, Aleksei Aksimentiev, and Cees
Dekker. Multiple rereads of single proteins at single–amino acid resolution using
nanopores. Science, 374(6574):1509–1513, 2021.

[17] Andrei Z Broder. On the resemblance and containment of documents. In Proceed-
ings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171),
pages 21–29. IEEE, 1997.

[18] Patrick O Brown and David Botstein. Exploring the new world of the genome
with dna microarrays. Nature genetics, 21(1):33–37, 1999.

317

https://news.blueshieldca.com/2020/03/09/RADY-genomics

[19] Sharon R Browning and Brian L Browning. Haplotype phasing: existing methods
and new developments. Nature Reviews Genetics, 12(10):703–714, 2011.

[20] Jillian G Buchan, Shana White, Ruchi Joshi, and Euan A Ashley. Rapid genome
sequencing in the critically ill. Clin. Chem., 65(6):723–726, June 2019.

[21] Yue Cao, Thomas Andrew Geddes, Jean Yee Hwa Yang, and Pengyi Yang. En-
semble deep learning in bioinformatics. Nature Machine Intelligence, 2(9):500–508,
2020.

[22] Mark J P Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David
Porubsky, Tobias Rausch, Eugene J Gardner, Oscar L Rodriguez, Li Guo, Ryan L
Collins, and Others. Multi-platform discovery of haplotype-resolved structural
variation in human genomes. Nat. Commun., 10(1):1–16, 2019.

[23] Mark JP Chaisson, John Huddleston, Megan Y Dennis, Peter H Sudmant, Maika
Malig, Fereydoun Hormozdiari, Francesca Antonacci, Urvashi Surti, Richard
Sandstrom, Matthew Boitano, et al. Resolving the complexity of the human
genome using single-molecule sequencing. Nature, 517(7536):608–611, 2015.

[24] Mark JP Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David
Porubsky, Tobias Rausch, Eugene J Gardner, Oscar L Rodriguez, Li Guo, Ryan L
Collins, et al. Multi-platform discovery of haplotype-resolved structural variation
in human genomes. Nature communications, 10, 2019.

[25] Yen-Chun Chen, Tsunglin Liu, Chun-Hui Yu, Tzen-Yuh Chiang, and Chi-Chuan
Hwang. Effects of GC bias in next-generation-sequencing data on de novo genome
assembly. PLoS One, 8(4):e62856, April 2013.

[26] Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li.
Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm.
Nature Methods, pages 1–6, 2021.

[27] Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li.
Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm.
Nat. Methods, February 2021.

[28] Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James
Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E
Eichler, et al. Nonhybrid, finished microbial genome assemblies from long-read
smrt sequencing data. Nature methods, 10(6):563, 2013.

[29] Chen-Shan Chin, Paul Peluso, Fritz J Sedlazeck, Maria Nattestad, Gregory T

318

Concepcion, Alicia Clum, Christopher Dunn, Ronan O’Malley, Rosa Figueroa-
Balderas, Abraham Morales-Cruz, et al. Phased diploid genome assembly with
single-molecule real-time sequencing. Nature methods, 13(12):1050, 2016.

[30] Chen-Shan Chin, Justin Wagner, Qiandong Zeng, Erik Garrison, Shilpa Garg,
Arkarachai Fungtammasan, Mikko Rautiainen, Sergey Aganezov, Melanie Kirsche,
Samantha Zarate, et al. A diploid assembly-based benchmark for variants in the
major histocompatibility complex. Nature communications, 11(1):1–9, 2020.

[31] Michelle M Clark, Amber Hildreth, Sergey Batalov, Yan Ding, Shimul Chowdhury,
Kelly Watkins, Katarzyna Ellsworth, Brandon Camp, Cyrielle I Kint, Calum
Yacoubian, Lauge Farnaes, Matthew N Bainbridge, Curtis Beebe, Joshua J A
Braun, Margaret Bray, Jeanne Carroll, Julie A Cakici, Sara A Caylor, Christina
Clarke, Mitchell P Creed, Jennifer Friedman, Alison Frith, Richard Gain, Mary
Gaughran, Shauna George, Sheldon Gilmer, Joseph Gleeson, Jeremy Gore, Haiying
Grunenwald, Raymond L Hovey, Marie L Janes, Kejia Lin, Paul D McDonagh, Kyle
McBride, Patrick Mulrooney, Shareef Nahas, Daeheon Oh, Albert Oriol, Laura
Puckett, Zia Rady, Martin G Reese, Julie Ryu, Lisa Salz, Erica Sanford, Lawrence
Stewart, Nathaly Sweeney, Mari Tokita, Luca Van Der Kraan, Sarah White,
Kristen Wigby, Brett Williams, Terence Wong, Meredith S Wright, Catherine
Yamada, Peter Schols, John Reynders, Kevin Hall, David Dimmock, Narayanan
Veeraraghavan, Thomas Defay, and Stephen F Kingsmore. Diagnosis of genetic
diseases in seriously ill children by rapid whole-genome sequencing and automated
phenotyping and interpretation. Sci. Transl. Med., 11(489), April 2019.

[32] John G Cleary, Ross Braithwaite, Kurt Gaastra, Brian S Hilbush, Stuart Inglis,
Sean A Irvine, Alan Jackson, Richard Littin, Sahar Nohzadeh-Malakshah, Mehul
Rathod, et al. Joint variant and de novo mutation identification on pedigrees from
high-throughput sequencing data. Journal of Computational Biology, 21(6):405–
419, 2014.

[33] 1000 Genomes Project Consortium et al. A map of human genome variation from
population scale sequencing. Nature, 467(7319):1061, 2010.

[34] 1000 Genomes Project Consortium et al. An integrated map of genetic variation
from 1,092 human genomes. Nature, 491(7422):56, 2012.

[35] 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature, 526(7571):68, 2015.

[36] Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and Jared T
Simpson. Nanocall: an open source basecaller for oxford nanopore sequencing data.
Bioinformatics, 33(1):49–55, 2017.

319

[37] Wouter De Coster, Matthias H Weissensteiner, and Fritz J Sedlazeck. Towards
population-scale long-read sequencing. Nat. Rev. Genet., May 2021.

[38] Wouter De Coster, Matthias H Weissensteiner, and Fritz J Sedlazeck. Towards
population-scale long-read sequencing. Nature Reviews Genetics, pages 1–16, 2021.

[39] David Deamer, Mark Akeson, and Daniel Branton. Three decades of nanopore
sequencing. Nature biotechnology, 34(5):518–524, 2016.

[40] Frederick E Dewey, Rong Chen, Sergio P Cordero, Kelly E Ormond, Colleen
Caleshu, Konrad J Karczewski, Michelle Whirl-Carrillo, Matthew T Wheeler,
Joel T Dudley, Jake K Byrnes, Omar E Cornejo, Joshua W Knowles, Mark Woon,
Katrin Sangkuhl, Li Gong, Caroline F Thorn, Joan M Hebert, Emidio Capriotti,
Sean P David, Aleksandra Pavlovic, Anne West, Joseph V Thakuria, Madeleine P
Ball, Alexander W Zaranek, Heidi L Rehm, George M Church, John S West,
Carlos D Bustamante, Michael Snyder, Russ B Altman, Teri E Klein, Atul J Butte,
and Euan A Ashley. Phased whole-genome genetic risk in a family quartet using a
major allele reference sequence. PLoS Genet., 7(9):e1002280, September 2011.

[41] Frederick E Dewey, Megan E Grove, Cuiping Pan, Benjamin A Goldstein,
Jonathan A Bernstein, Hassan Chaib, Jason D Merker, Rachel L Goldfeder,
Gregory M Enns, Sean P David, Neda Pakdaman, Kelly E Ormond, Colleen
Caleshu, Kerry Kingham, Teri E Klein, Michelle Whirl-Carrillo, Kenneth Sakamoto,
Matthew T Wheeler, Atul J Butte, James M Ford, Linda Boxer, John P A Ioan-
nidis, Alan C Yeung, Russ B Altman, Themistocles L Assimes, Michael Snyder,
Euan A Ashley, and Thomas Quertermous. Clinical interpretation and implications
of whole-genome sequencing. JAMA, 311(10):1035–1045, March 2014.

[42] Egor Dolzhenko, Mark F Bennett, Phillip A Richmond, Brett Trost, Sai Chen,
Joke J F A van Vugt, Charlotte Nguyen, Giuseppe Narzisi, Vladimir G Gainullin,
Andrew M Gross, Bryan R Lajoie, Ryan J Taft, Wyeth W Wasserman, Stephen W
Scherer, Jan H Veldink, David R Bentley, Ryan K C Yuen, Melanie Bahlo, and
Michael A Eberle. ExpansionHunter denovo: a computational method for locating
known and novel repeat expansions in short-read sequencing data. Genome Biol.,
21(1):102, April 2020.

[43] Huilong Du, Ying Yu, Yanfei Ma, Qiang Gao, Yinghao Cao, Zhuo Chen, Bin Ma,
Ming Qi, Yan Li, Xianfeng Zhao, Jing Wang, Kunfan Liu, Peng Qin, Xin Yang,
Lihuang Zhu, Shigui Li, and Chengzhi Liang. Sequencing and de novo assembly of
a near complete indica rice genome. Nat. Commun., 8:15324, May 2017.

[44] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological

320

sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge
university press, 1998.

[45] Peter Ebert, Peter A Audano, Qihui Zhu, Bernardo Rodriguez-Martin, David
Porubsky, Marc Jan Bonder, Arvis Sulovari, Jana Ebler, Weichen Zhou, Rebecca
Serra Mari, Feyza Yilmaz, Xuefang Zhao, Pinghsun Hsieh, Joyce Lee, Sushant
Kumar, Jiadong Lin, Tobias Rausch, Yu Chen, Jingwen Ren, Martin Santamarina,
Wolfram Höps, Hufsah Ashraf, Nelson T Chuang, Xiaofei Yang, Katherine M
Munson, Alexandra P Lewis, Susan Fairley, Luke J Tallon, Wayne E Clarke,
Anna O Basile, Marta Byrska-Bishop, André Corvelo, Uday S Evani, Tsung-Yu Lu,
Mark J P Chaisson, Junjie Chen, Chong Li, Harrison Brand, Aaron M Wenger,
Maryam Ghareghani, William T Harvey, Benjamin Raeder, Patrick Hasenfeld,
Allison A Regier, Haley J Abel, Ira M Hall, Paul Flicek, Oliver Stegle, Mark B
Gerstein, Jose M C Tubio, Zepeng Mu, Yang I Li, Xinghua Shi, Alex R Hastie,
Kai Ye, Zechen Chong, Ashley D Sanders, Michael C Zody, Michael E Talkowski,
Ryan E Mills, Scott E Devine, Charles Lee, Jan O Korbel, Tobias Marschall,
and Evan E Eichler. Haplotype-resolved diverse human genomes and integrated
analysis of structural variation. Science, 372(6537), April 2021.

[46] Jana Ebler, Marina Haukness, Trevor Pesout, Tobias Marschall, and Benedict
Paten. Haplotype-aware diplotyping from noisy long reads. Genome biology,
20(1):116, 2019.

[47] Peter Edge, Vineet Bafna, and Vikas Bansal. Hapcut2: robust and accurate haplo-
type assembly for diverse sequencing technologies. Genome research, 27(5):801–812,
2017.

[48] Peter Edge and Vikas Bansal. Longshot enables accurate variant calling in diploid
genomes from single-molecule long read sequencing. Nature communications,
10(1):1–10, 2019.

[49] Evan E Eichler, Royden A Clark, and Xinwei She. An assessment of the sequence
gaps: unfinished business in a finished human genome. Nature Reviews Genetics,
5(5):345, 2004.

[50] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul
Peluso, David Rank, Primo Baybayan, Brad Bettman, et al. Real-time dna
sequencing from single polymerase molecules. Science, 323(5910):133–138, 2009.

[51] Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learning:
new computational modelling techniques for genomics. Nature Reviews Genetics,
20(7):389–403, 2019.

321

[52] Philipp Euskirchen, Franck Bielle, Karim Labreche, Wigard P Kloosterman, Shai
Rosenberg, Mailys Daniau, Charlotte Schmitt, Julien Masliah-Planchon, Franck
Bourdeaut, Caroline Dehais, et al. Same-day genomic and epigenomic diagnosis
of brain tumors using real-time nanopore sequencing. Acta neuropathologica,
134(5):691–703, 2017.

[53] Ester Falconer and Peter M Lansdorp. Strand-seq: a unifying tool for studies of
chromosome segregation. In Seminars in cell & developmental biology, volume 24,
pages 643–652. Elsevier, 2013.

[54] Lauge Farnaes, Amber Hildreth, Nathaly M Sweeney, Michelle M Clark, Shimul
Chowdhury, Shareef Nahas, Julie A Cakici, Wendy Benson, Robert H Kaplan,
Richard Kronick, and Others. Rapid whole-genome sequencing decreases infant
morbidity and cost of hospitalization. NPJ genomic medicine, 3(1):1–8, 2018.

[55] Ian T. Fiddes, Joel Armstrong, Mark Diekhans, Stefanie Nachtweide, Zev N.
Kronenberg, Jason G. Underwood, David Gordon, Dent Earl, Thomas Keane, and
Evan E. et al. Eichler. Comparative annotation toolkit (cat)—simultaneous clade
and personal genome annotation. Genome Research, 28(7):1029–1038, 2018.

[56] Ian T Fiddes, Gerrald A Lodewijk, Meghan Mooring, Colleen M Bosworth, Adam D
Ewing, Gary L Mantalas, Adam M Novak, Anouk van den Bout, Alex Bishara,
Jimi L Rosenkrantz, et al. Human-specific notch2nl genes affect notch signaling
and cortical neurogenesis. Cell, 173(6):1356–1369, 2018.

[57] Yuriy Fofanov, Yi Luo, Charles Katili, Jim Wang, Yuri Belosludtsev, Thomas
Powdrill, Chetan Belapurkar, Viacheslav Fofanov, Tong-Bin Li, Sergey Chumakov,
and B Montgomery Pettitt. How independent are the appearances of n-mers in
different genomes? Bioinformatics, 20(15):2421–2428, October 2004.

[58] G Formenti, A Rhie, B P Walenz, F Thibaud-Nissen, S Koren, E Myers, E D
Jarvis, and A M Phillippy. Merfin: improved variant filtering and polishing via
k-mer validation. bioRxiv (to appear), 2021.

[59] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jun-
greis, Jane Loveland, Jonathan M Mudge, Cristina Sisu, James Wright, Joel
Armstrong, et al. Gencode reference annotation for the human and mouse genomes.
Nucleic acids research, 47(D1):D766–D773, 2018.

[60] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jun-
greis, Jane Loveland, Jonathan M Mudge, Cristina Sisu, James Wright, Joel
Armstrong, et al. Gencode reference annotation for the human and mouse genomes.
Nucleic acids research, 47(D1):D766–D773, 2019.

322

[61] Shuhua Fu, Anqi Wang, and Kin Fai Au. A comparative evaluation of hybrid error
correction methods for error-prone long reads. Genome Biol., 20(1):26, February
2019.

[62] Hasindu Gamaarachchi, Hiruna Samarakoon, Sasha P Jenner, James M Ferguson,
Timothy G Amos, Jillian M Hammond, Hassaan Saadat, Martin A Smith, Sri
Parameswaran, and Ira W Deveson. Fast nanopore sequencing data analysis with
slow5. Nature biotechnology, pages 1–4, 2022.

[63] Shilpa Garg, Mikko Rautiainen, Adam M Novak, Erik Garrison, Richard Durbin,
and Tobias Marschall. A graph-based approach to diploid genome assembly.
Bioinformatics, 34(13):i105–i114, 2018.

[64] Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv:1207.3907, 2012.

[65] Baylor Genetics. Whole genome sequencing test. https://www.baylorgenetics.com/
whole-genome-sequencing/, November 2019. Accessed: 2021-5-23.

[66] Rady Genomics. Services offered. https://radygenomics.org/
clinical-genome-services/offerings/, March 2021. Accessed: 2021-5-23.

[67] Ariel Gershman, Michael E G Sauria, Paul W Hook, Savannah J Hoyt, Roham
Razaghi, Sergey Koren, Nicolas Altemose, Gina V Caldas, Mitchell R Vollger,
Glennis A Logsdon, Arang Rhie, Evan E Eichler, Michael C Schatz, Rachel J
O’Neill, Adam M Phillippy, Karen H Miga, and Winston Timp. Epigenetic patterns
in a complete human genome. bioRxiv, page 2021.05.26.443420, May 2021.

[68] Ariel Gershman, Michael EG Sauria, Paul W Hook, Savannah J Hoyt, Roham
Razaghi, Sergey Koren, Nicolas Altemose, Gina V Caldas, Mitchell R Vollger,
Glennis A Logsdon, et al. Epigenetic patterns in a complete human genome.
bioRxiv, 2021.

[69] Gustavo Glusman, Hannah C Cox, and Jared C Roach. Whole-genome haplotyping
approaches and genomic medicine. Genome medicine, 6(9):1–16, 2014.

[70] Rachel L Goldfeder and Euan A Ashley. A precision metric for clinical genome
sequencing. bioRxiv, page 051490, January 2016.

[71] Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle
Gaasenbeek, Jill P Mesirov, Hilary Coller, Mignon L Loh, James R Downing,
Mark A Caligiuri, et al. Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring. science, 286(5439):531–537, 1999.

323

https://www.baylorgenetics.com/whole-genome-sequencing/
https://www.baylorgenetics.com/whole-genome-sequencing/
https://radygenomics.org/clinical-genome-services/offerings/
https://radygenomics.org/clinical-genome-services/offerings/

[72] Nina Gonzaludo, John W Belmont, Vladimir G Gainullin, and Ryan J Taft.
Estimating the burden and economic impact of pediatric genetic disease. Genet.
Med., 21(8):1781–1789, August 2019.

[73] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[74] David Gordon, John Huddleston, Mark JP Chaisson, Christopher M Hill, Zev N
Kronenberg, Katherine M Munson, Maika Malig, Archana Raja, Ian Fiddes,
LaDeana W Hillier, et al. Long-read sequence assembly of the gorilla genome.
Science, 352(6281), 2016.

[75] John E Gorzynski, Sneha D Goenka, Kishwar Shafin, Tanner D Jensen, Dianna G
Fisk, Megan E Grove, Elizabeth Spiteri, Trevor Pesout, Jean Monlong, Gunjan
Baid, et al. Ultrarapid nanopore genome sequencing in a critical care setting. The
New England journal of medicine, 2022.

[76] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
Connectionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks. In Proceedings of the 23rd international conference on
Machine learning, pages 369–376, 2006.

[77] Wilfried M Guiblet, Marzia A Cremona, Monika Cechova, Robert S Harris,
Iva Kejnovská, Eduard Kejnovsky, Kristin Eckert, Francesca Chiaromonte, and
Kateryna D Makova. Long-read sequencing technology indicates genome-wide
effects of non-b DNA on polymerization speed and error rate. Genome Res.,
28(12):1767–1778, December 2018.

[78] Andrew P Han. Human pangenome reference consortium releases data from 30
genomes. genomeweb.com, March 2021. [Online. Retrieved June 14, 2021.].

[79] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski,
B. L. Aken, D. Barrell, A. Zadissa, and S. et al. Searle. Gencode: The reference
human genome annotation for the encode project. Genome Research, 22(9):1760–
1774, 2012.

[80] David Heller and Martin Vingron. Svim-asm: Structural variant detection from
haploid and diploid genome assemblies. bioRxiv, 2020.

[81] Philip Hieter and Mark Boguski. Functional genomics: it’s all how you read it.
Science, 278(5338):601–602, 1997.

[82] John Huddleston, Mark JP Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra

324

Hoekzema, David Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N
Kronenberg, Laura Vives, et al. Discovery and genotyping of structural variation
from long-read haploid genome sequence data. Genome research, 27(5):677–685,
2017.

[83] Matthew B Hufford, Arun S Seetharam, Margaret R Woodhouse, Kapeel M
Chougule, Shujun Ou, Jianing Liu, William A Ricci, Tingting Guo, Andrew
Olson, Yinjie Qiu, Rafael Della Coletta, Silas Tittes, Asher I Hudson, Alexandre P
Marand, Sharon Wei, Zhenyuan Lu, Bo Wang, Marcela K Tello-Ruiz, Rebecca D
Piri, Na Wang, Dong Won Kim, Yibing Zeng, Christine H O’Connor, Xianran Li,
Amanda M Gilbert, Erin Baggs, Ksenia V Krasileva, John L Portwood, Ethalinda
K S Cannon, Carson M Andorf, Nancy Manchanda, Samantha J Snodgrass, David E
Hufnagel, Qiuhan Jiang, Sarah Pedersen, Michael L Syring, David A Kudrna,
Victor Llaca, Kevin Fengler, Robert J Schmitz, Jeffrey Ross-Ibarra, Jianming
Yu, Jonathan I Gent, Candice N Hirsch, Doreen Ware, and R Kelly Dawe. De
novo assembly, annotation, and comparative analysis of 26 diverse maize genomes.
bioRxiv, page 2021.01.14.426684, January 2021.

[84] C Jain, A Rhie, N Hansen, S Koren, and A M Phillippy. A long read mapping
method for highly repetitive reference sequences. bioRxiv, 2020.

[85] Chirag Jain, Arang Rhie, Nancy Hansen, Sergey Koren, and Adam M Phillippy. A
long read mapping method for highly repetitive reference sequences. bioRxiv, 2020.

[86] Chirag Jain, Arang Rhie, Haowen Zhang, Claudia Chu, Brian P Walenz, Sergey
Koren, and Adam M Phillippy. Weighted minimizer sampling improves long read
mapping. Bioinformatics, 36(Suppl_1):i111–i118, July 2020.

[87] Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten, and
Mark Akeson. Improved data analysis for the minion nanopore sequencer. Nature
methods, 12(4):351, 2015.

[88] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A
Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al.
Nanopore sequencing and assembly of a human genome with ultra-long reads.
Nature biotechnology, 36(4):338, 2018.

[89] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A
Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, Sunir
Malla, Hannah Marriott, Tom Nieto, Justin O’Grady, Hugh E Olsen, Brent S
Pedersen, Arang Rhie, Hollian Richardson, Aaron R Quinlan, Terrance P Snutch,
Louise Tee, Benedict Paten, Adam M Phillippy, Jared T Simpson, Nicholas J

325

Loman, and Matthew Loose. Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nat. Biotechnol., 36(4):338–345, April 2018.

[90] Miten Jain, Hugh E Olsen, Daniel J Turner, David Stoddart, Kira V Bulazel,
Benedict Paten, David Haussler, Huntington F Willard, Mark Akeson, and Karen H
Miga. Linear assembly of a human centromere on the y chromosome. Nature
biotechnology, 36(4):321, 2018.

[91] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11—seamless
operability between c++ 11 and python, 2016.

[92] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. Assembly of
long, error-prone reads using repeat graphs. Nature biotechnology, 37(5):540–546,
2019.

[93] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. Assembly of
long, error-prone reads using repeat graphs. Nature biotechnology, 37(5):540, 2019.

[94] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. Assembly of
long, error-prone reads using repeat graphs. Nat. Biotechnol., 37(5):540–546, May
2019.

[95] Sergey Koren, Arang Rhie, Brian P Walenz, Alexander T Dilthey, Derek M
Bickhart, Sarah B Kingan, Stefan Hiendleder, John L Williams, Timothy PL
Smith, and Adam M Phillippy. De novo assembly of haplotype-resolved genomes
with trio binning. Nature biotechnology, 36(12):1174, 2018.

[96] Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, Nicholas H
Bergman, and Adam M Phillippy. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome research, 27(5):722–
736, 2017.

[97] Shunichi Kosugi, Yukihide Momozawa, Xiaoxi Liu, Chikashi Terao, Michiaki Kubo,
and Yoichiro Kamatani. Comprehensive evaluation of structural variation detection
algorithms for whole genome sequencing. Genome biology, 20(1):117, 2019.

[98] Zev N Kronenberg, Ian T Fiddes, David Gordon, Shwetha Murali, Stuart
Cantsilieris, Olivia S Meyerson, Jason G Underwood, Bradley J Nelson, Mark JP
Chaisson, Max L Dougherty, et al. High-resolution comparative analysis of great
ape genomes. Science, 360(6393), 2018.

[99] Peter Krusche, Len Trigg, Paul C Boutros, Christopher E Mason, M Francisco,
Benjamin L Moore, Mar Gonzalez-Porta, Michael A Eberle, Zivana Tezak, Samir

326

Lababidi, et al. Best practices for benchmarking germline small-variant calls in
human genomes. Nature biotechnology, 37(5):555–560, 2019.

[100] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway,
Corina Antonescu, and Steven L Salzberg. Versatile and open software for com-
paring large genomes. Genome biology, 5(2):R12, 2004.

[101] Avantika Lal, Michael Brown, Rahul Mohan, Joyjit Daw, James Drake, and Johnny
Israeli. Improving long-read consensus sequencing accuracy with deep learning.
bioRxiv, 2021.

[102] Dandan Lang, Shilai Zhang, Pingping Ren, Fan Liang, Zongyi Sun, Guanliang
Meng, Yuntao Tan, Xiaokang Li, Qihua Lai, Lingling Han, Depeng Wang, Fengyi
Hu, Wen Wang, and Shanlin Liu. Comparison of the two up-to-date sequencing
technologies for genome assembly: HiFi reads of pacific biosciences sequel II system
and ultralong reads of oxford nanopore, 2020.

[103] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[104] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence
alignment using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[105] Hane Lee, Joshua L Deignan, Naghmeh Dorrani, Samuel P Strom, Sibel Kantarci,
Fabiola Quintero-Rivera, Kingshuk Das, Traci Toy, Bret Harry, Michael Yourshaw,
Michelle Fox, Brent L Fogel, Julian A Martinez-Agosto, Derek A Wong, Vivian Y
Chang, Perry B Shieh, Christina G S Palmer, Katrina M Dipple, Wayne W
Grody, Eric Vilain, and Stanley F Nelson. Clinical exome sequencing for genetic
identification of rare mendelian disorders. JAMA, 312(18):1880–1887, November
2014.

[106] Hayan Lee, James Gurtowski, Shinjae Yoo, Maria Nattestad, Shoshana Marcus,
Sara Goodwin, W Richard McCombie, and Michael Schatz. Third-generation
sequencing and the future of genomics. BioRxiv, page 048603, 2016.

[107] Samuel Levy, Granger Sutton, Pauline C Ng, Lars Feuk, Aaron L Halpern, Brian P
Walenz, Nelson Axelrod, Jiaqi Huang, Ewen F Kirkness, Gennady Denisov, et al.
The diploid genome sequence of an individual human. PLoS biology, 5(10):e254,
2007.

[108] Harris A Lewin, Gene E Robinson, W John Kress, William J Baker, Jonathan
Coddington, Keith A Crandall, Richard Durbin, Scott V Edwards, Félix Forest,
M Thomas P Gilbert, et al. Earth biogenome project: Sequencing life for the

327

future of life. Proceedings of the National Academy of Sciences, 115(17):4325–4333,
2018.

[109] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics, 32(14):2103–2110, July 2016.

[110] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, 2018.

[111] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, September 2018.

[112] Heng Li, Jonathan M Bloom, Yossi Farjoun, Mark Fleharty, Laura Gauthier,
Benjamin Neale, and Daniel MacArthur. A synthetic-diploid benchmark for
accurate variant-calling evaluation. Nature methods, 15(8):595–597, 2018.

[113] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The sequence alignment/map
format and samtools. Bioinformatics, 25(16):2078–2079, 2009.

[114] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project
Data Processing Subgroup. The sequence Alignment/Map format and SAMtools.
Bioinformatics, 25(16):2078–2079, August 2009.

[115] Wentian Li and Jan Freudenberg. Mappability and read length. Frontiers in
genetics, 5:381, 2014.

[116] Jianing Liu, Arun S Seetharam, Kapeel Chougule, Shujun Ou, Kyle W Swentowsky,
Jonathan I Gent, Victor Llaca, Margaret R Woodhouse, Nancy Manchanda,
Gernot G Presting, David A Kudrna, Magdy Alabady, Candice N Hirsch, Kevin A
Fengler, Doreen Ware, Todd P Michael, Matthew B Hufford, and R Kelly Dawe.
Gapless assembly of maize chromosomes using long-read technologies. Genome
Biol., 21(1):121, May 2020.

[117] Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-Le Xiao, and Kai Wang.
Detection of dna base modifications by deep recurrent neural network on oxford
nanopore sequencing data. Nature communications, 10(1):1–11, 2019.

[118] Glennis A Logsdon, Mitchell R Vollger, and Evan E Eichler. Long-read human
genome sequencing and its applications. Nat. Rev. Genet., 21(10):597–614, October
2020.

328

[119] Glennis A Logsdon, Mitchell R Vollger, and Evan E Eichler. Long-read human
genome sequencing and its applications. Nature Reviews Genetics, 21(10):597–614,
2020.

[120] Glennis A Logsdon, Mitchell R Vollger, PingHsun Hsieh, Yafei Mao, Mikhail A
Liskovykh, Sergey Koren, Sergey Nurk, Ludovica Mercuri, Philip C Dishuck,
Arang Rhie, et al. The structure, function, and evolution of a complete human
chromosome 8. bioRxiv, 2020.

[121] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nature methods,
12(8):733, 2015.

[122] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nat. Methods,
12(8):733–735, August 2015.

[123] Oxford Nanopore Technologies Ltd. Medaka,
https://github.com/nanoporetech/medaka.

[124] Oxford Nanopore Technologies Ltd. Pomoxis,
https://github.com/nanoporetech/pomoxis.

[125] Ruibang Luo, Chak-Lim Wong, Yat-Sing Wong, Chi-Ian Tang, Chi-Man Liu,
Chi-Ming Leung, and Tak-Wah Lam. Exploring the limit of using a deep neural
network on pileup data for germline variant calling. Nature Machine Intelligence,
2(4):220–227, 2020.

[126] Zhanshan Sam Ma, Lianwei Li, Chengxi Ye, Minsheng Peng, and Ya-Ping Zhang.
Hybrid assembly of ultra-long nanopore reads augmented with 10x-genomics
contigs: Demonstrated with a human genome. Genomics, 2018.

[127] Medhat Mahmoud, Nastassia Gobet, Diana Ivette Cruz-Dávalos, Ninon Mounier,
Christophe Dessimoz, and Fritz J Sedlazeck. Structural variant calling: the long
and the short of it. Genome Biol., 20(1):246, November 2019.

[128] Ann M Mc Cartney, Kishwar Shafin, Michael Alonge, Andrey V Bzikadze, Giulio
Formenti, Arkarachai Fungtammasan, Kerstin Howe, Chirag Jain, Sergey Koren,
Glennis A Logsdon, et al. Chasing perfection: validation and polishing strategies
for telomere-to-telomere genome assemblies. biorxiv, 2021.

[129] Shawn E McCandless, Jeanne W Brunger, and Suzanne B Cassidy. The burden

329

of genetic disease on inpatient care in a children’s hospital. Am. J. Hum. Genet.,
74(1):121–127, January 2004.

[130] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian
Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel,
Mark Daly, et al. The genome analysis toolkit: a mapreduce framework for
analyzing next-generation dna sequencing data. Genome research, 20(9):1297–
1303, 2010.

[131] Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and
applications. CRC press, 1999.

[132] Larry R Medsker and LC Jain. Recurrent neural networks. Design and Applications,
5:64–67, 2001.

[133] Jason D Merker, Aaron M Wenger, Tam Sneddon, Megan Grove, Zachary Zappala,
Laure Fresard, Daryl Waggott, Sowmi Utiramerur, Yanli Hou, Kevin S Smith,
Stephen B Montgomery, Matthew Wheeler, Jillian G Buchan, Christine C Lambert,
Kevin S Eng, Luke Hickey, Jonas Korlach, James Ford, and Euan A Ashley. Long-
read genome sequencing identifies causal structural variation in a mendelian disease.
Genet. Med., 20(1):159–163, January 2018.

[134] Michael L Metzker. Sequencing technologies - the next generation. Nat. Rev.
Genet., 11(1):31–46, January 2010.

[135] Karen H Miga, Sergey Koren, Arang Rhie, Mitchell R Vollger, Ariel Gershman,
Andrey Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, Glennis A
Logsdon, et al. Telomere-to-telomere assembly of a complete human x chromosome.
Nature, 585(7823):79–84, 2020.

[136] Karen H Miga, Sergey Koren, Arang Rhie, Mitchell R Vollger, Ariel Gershman, An-
drey Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, Glennis A Logsdon,
Valerie A Schneider, Tamara Potapova, Jonathan Wood, William Chow, Joel Arm-
strong, Jeanne Fredrickson, Evgenia Pak, Kristof Tigyi, Milinn Kremitzki, Christo-
pher Markovic, Valerie Maduro, Amalia Dutra, Gerard G Bouffard, Alexander M
Chang, Nancy F Hansen, Amy B Wilfert, Françoise Thibaud-Nissen, Anthony D
Schmitt, Jon-Matthew Belton, Siddarth Selvaraj, Megan Y Dennis, Daniela C Soto,
Ruta Sahasrabudhe, Gulhan Kaya, Josh Quick, Nicholas J Loman, Nadine Holmes,
Matthew Loose, Urvashi Surti, Rosa Ana Risques, Tina A Graves Lindsay, Robert
Fulton, Ira Hall, Benedict Paten, Kerstin Howe, Winston Timp, Alice Young,
James C Mullikin, Pavel A Pevzner, Jennifer L Gerton, Beth A Sullivan, Evan E
Eichler, and Adam M Phillippy. Telomere-to-telomere assembly of a complete
human X chromosome. Nature, 585(7823):79–84, September 2020.

330

[137] Alla Mikheenko, Andrey V Bzikadze, Alexey Gurevich, Karen H Miga, and Pavel A
Pevzner. TandemTools: mapping long reads and assessing/improving assembly
quality in extra-long tandem repeats. Bioinformatics, 36(Suppl_1):i75–i83, July
2020.

[138] Alla Mikheenko, Andrey Prjibelski, Vladislav Saveliev, Dmitry Antipov, and Alexey
Gurevich. Versatile genome assembly evaluation with quast-lg. Bioinformatics,
34(13):i142–i150, 2018.

[139] Danny E Miller, Arvis Sulovari, Tianyun Wang, Hailey Loucks, Kendra Hoekzema,
Katherine M Munson, Alexandra P Lewis, Edith P Almanza Fuerte, Catherine R
Paschal, Jenny Thies, James T Bennett, Ian Glass, Katrina M Dipple, Karynne
Patterson, Emily S Bonkowski, Zoe Nelson, Audrey Squire, Megan Sikes, Erika
Beckman, Robin L Bennett, Dawn Earl, Winston Lee, Rando Allikmets, Seth J
Perlman, Penny Chow, Anne V Hing, Margaret P Adam, Angela Sun, Christina
Lam, Irene Chang, University of Washington Center for Mendelian Genomics, Tim
Cherry, Jessica X Chong, Michael J Bamshad, Deborah A Nickerson, Heather C
Mefford, Dan Doherty, and Evan E Eichler. Targeted long-read sequencing resolves
complex structural variants and identifies missing disease-causing variants. bioRxiv,
page 2020.11.03.365395, November 2020.

[140] Jason R Miller, Arthur L Delcher, Sergey Koren, Eli Venter, Brian P Walenz,
Anushka Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger
Sutton. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics,
24(24):2818–2824, 2008.

[141] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinformatics.
Briefings in bioinformatics, 18(5):851–869, 2017.

[142] Eugene W Myers. Toward simplifying and accurately formulating fragment assem-
bly. Journal of Computational Biology, 2(2):275–290, 1995.

[143] M Naish, M Alonge, P Wlodzimierz, A J Tock, and others. The genetic and
epigenetic landscape of the arabidopsis centromeres. bioRxiv, 2021.

[144] Maria Nattestad and Calvin Bao. GitHub - dnanexus/dot: Dot: An interactive
dot plot viewer for comparative genomics.

[145] Whitney K Newey. Adaptive estimation of regression models via moment restric-
tions. Journal of Econometrics, 38(3):301–339, 1988.

[146] Peng Ni, Neng Huang, Zhi Zhang, De-Peng Wang, Fan Liang, Yu Miao, Chuan-Le
Xiao, Feng Luo, and Jianxin Wang. Deepsignal: detecting dna methylation state

331

from nanopore sequencing reads using deep-learning. Bioinformatics, 35(22):4586–
4595, 2019.

[147] Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze,
Alla Mikheenko, Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gersh-
man, Sergey Aganezov, Savannah J Hoyt, Mark Diekhans, Glennis A Logsdon,
Michael Alonge, Stylianos E Antonarakis, Matthew Borchers, Gerard G Bouffard,
Shelise Y Brooks, Gina V Caldas, Haoyu Cheng, Chen-Shan Chin, William Chow,
Leonardo G de Lima, Philip C Dishuck, Richard Durbin, Tatiana Dvorkina, Ian T
Fiddes, Giulio Formenti, Robert S Fulton, Arkarachai Fungtammasan, Erik Gar-
rison, Patrick G S Grady, Tina A Graves-Lindsay, Ira M Hall, Nancy F Hansen,
Gabrielle A Hartley, Marina Haukness, Kerstin Howe, Michael W Hunkapiller, Chi-
rag Jain, Miten Jain, Erich D Jarvis, Peter Kerpedjiev, Melanie Kirsche, Mikhail
Kolmogorov, Jonas Korlach, Milinn Kremitzki, Heng Li, Valerie V Maduro, Tobias
Marschall, Ann M McCartney, Jennifer McDaniel, Danny E Miller, James C Mul-
likin, Eugene W Myers, Nathan D Olson, Benedict Paten, Paul Peluso, Pavel A
Pevzner, David Porubsky, Tamara Potapova, Evgeny I Rogaev, Jeffrey A Rosen-
feld, Steven L Salzberg, Valerie A Schneider, Fritz J Sedlazeck, Kishwar Shafin,
Colin J Shew, Alaina Shumate, Yumi Sims, Arian F A Smit, Daniela C Soto, Ivan
Sović, Jessica M Storer, Aaron Streets, Beth A Sullivan, Françoise Thibaud-Nissen,
James Torrance, Justin Wagner, Brian P Walenz, Aaron Wenger, Jonathan M D
Wood, Chunlin Xiao, Stephanie M Yan, Alice C Young, Samantha Zarate, Urvashi
Surti, Rajiv C McCoy, Megan Y Dennis, Ivan A Alexandrov, Jennifer L Gerton,
Rachel J O’Neill, Winston Timp, Justin M Zook, Michael C Schatz, Evan E Eichler,
Karen H Miga, and Adam M Phillippy. The complete sequence of a human genome.
bioRxiv, page 2021.05.26.445798, May 2021.

[148] Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze,
Alla Mikheenko, Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman,
et al. The complete sequence of a human genome. bioRxiv, 2021.

[149] Sergey Nurk, Brian P Walenz, Arang Rhie, Mitchell R Vollger, Glennis A Logsdon,
Robert Grothe, Karen H Miga, Evan E Eichler, Adam M Phillippy, and Sergey
Koren. Hicanu: accurate assembly of segmental duplications, satellites, and allelic
variants from high-fidelity long reads. Genome research, 30(9):1291–1305, 2020.

[150] Sergey Nurk, Brian P Walenz, Arang Rhie, Mitchell R Vollger, Glennis A Logsdon,
Robert Grothe, Karen H Miga, Evan E Eichler, Adam M Phillippy, and Sergey
Koren. HiCanu: accurate assembly of segmental duplications, satellites, and allelic
variants from high-fidelity long reads. Genome Res., 30(9):1291–1305, September
2020.

[151] NVIDIA. NVIDIA clara parabricks. https://www.nvidia.com/en-us/clara/

332

https://www.nvidia.com/en-us/clara/genomics/
https://www.nvidia.com/en-us/clara/genomics/

genomics/. Accessed: 2021-5-25.

[152] Genome 10K Community of Scientists. Genome 10k: a proposal to obtain whole-
genome sequence for 10 000 vertebrate species. Journal of Heredity, 100(6):659–674,
2009.

[153] Nathan D Olson, Justin Wagner, Jennifer McDaniel, Sarah H Stephens, Samuel T
Westreich, Anish G Prasanna, Elaine Johanson, Emily Boja, Ezekiel J Maier, Omar
Serang, et al. precisionfda truth challenge v2: Calling variants from short-and
long-reads in difficult-to-map regions. bioRxiv, 2020.

[154] Nathan D Olson, Justin Wagner, Jennifer McDaniel, Sarah H Stephens, Samuel T
Westreich, Anish G Prasanna, Elaine Johanson, Emily Boja, Ezekiel J Maier,
Omar Serang, David Jáspez, José M Lorenzo-Salazar, Adrián Muñoz-Barrera,
Luis A Rubio-Rodríguez, Carlos Flores, Konstantinos Kyriakidis, Andigoni Malousi,
Kishwar Shafin, Trevor Pesout, Miten Jain, Benedict Paten, Pi-Chuan Chang,
Alexey Kolesnikov, Maria Nattestad, Gunjan Baid, Sidharth Goel, Howard Yang,
Andrew Carroll, Robert Eveleigh, Mathieu Bourgey, Guillaume Bourque, Gen
Li, M A ChouXian, Linqi Tang, D U YuanPing, Shaowei Zhang, Jordi Morata,
Raúl Tonda, Genís Parra, Jean-Rémi Trotta, Christian Brueffer, Sinem Demirkaya-
Budak, Duygu Kabakci-Zorlu, Deniz Turgut, Özem Kalay, Gungor Budak, Kübra
Narcı, Elif Arslan, Richard Brown, Ivan J Johnson, Alexey Dolgoborodov, Vladimir
Semenyuk, Amit Jain, H Serhat Tetikol, Varun Jain, Mike Ruehle, Bryan Lajoie,
Cooper Roddey, Severine Catreux, Rami Mehio, Mian Umair Ahsan, Qian Liu, Kai
Wang, Sayed Mohammad Ebrahim Sahraeian, Li Tai Fang, Marghoob Mohiyuddin,
Calvin Hung, Chirag Jain, Hanying Feng, Zhipan Li, Luoqi Chen, Fritz J Sedlazeck,
and Justin M Zook. precisionFDA truth challenge v2: Calling variants from
short- and long-reads in difficult-to-map regions. bioRxiv, page 2020.11.13.380741,
February 2021.

[155] Mallory J Owen, Anna-Kaisa Niemi, David P Dimmock, Mark Speziale, Mark
Nespeca, Kevin K Chau, Luca Van Der Kraan, Meredith S Wright, Christian
Hansen, Narayanan Veeraraghavan, Yan Ding, Jerica Lenberg, Shimul Chowdhury,
Charlotte A Hobbs, Sergey Batalov, Zhanyang Zhu, Shareef A Nahas, Sheldon
Gilmer, Gail Knight, Sebastien Lefebvre, John Reynders, Thomas Defay, Jacqueline
Weir, Vicki S Thomson, Louise Fraser, Bryan R Lajoie, Tim K McPhail, Shyamal S
Mehtalia, Chris M Kunard, Kevin P Hall, and Stephen F Kingsmore. Rapid
Sequencing-Based diagnosis of thiamine metabolism dysfunction syndrome. N.
Engl. J. Med., 384(22):2159–2161, June 2021.

[156] Oxford Nanopore Technologies. https://github.com/nanoporetech/medaka. https:
//github.com/nanoporetech/medaka. Accessed: 2021-2-5.

333

https://www.nvidia.com/en-us/clara/genomics/
https://www.nvidia.com/en-us/clara/genomics/
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka

[157] pacbio. Data release: Highest-quality, most contiguous individual human genome
assembly to date.

[158] PacBio. GenomicConsensus.

[159] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[160] B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler. Cactus:
Algorithms for genome multiple sequence alignment. Genome Research, 21(9):1512–
1528, 2011.

[161] Benedict Paten, Javier Herrero, Kathryn Beal, and Ewan Birney. Sequence
progressive alignment, a framework for practical large-scale probabilistic consistency
alignment. Bioinformatics, 25(3):295–301, 2008.

[162] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison. Genome
graphs and the evolution of genome inference. Genome research, 27(5):665–676,
2017.

[163] Murray Patterson, Tobias Marschall, Nadia Pisanti, Leo Van Iersel, Leen Stougie,
Gunnar W Klau, and Alexander Schönhuth. Whatshap: weighted haplotype
assembly for future-generation sequencing reads. Journal of Computational Biology,
22(6):498–509, 2015.

[164] Alexander Payne, Nadine Holmes, Thomas Clarke, Rory Munro, Bisrat J Debebe,
and Matthew Loose. Readfish enables targeted nanopore sequencing of gigabase-
sized genomes. Nature biotechnology, 39(4):442–450, 2021.

[165] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian path
approach to DNA fragment assembly. Proceedings of the National Academy of
Sciences, 98(17):9748–9753, 2001.

[166] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas
Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T
Afshar, et al. A universal snp and small-indel variant caller using deep neural
networks. Nature biotechnology, 36(10):983, 2018.

[167] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas
Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T
Afshar, Sam S Gross, Lizzie Dorfman, Cory Y McLean, and Mark A DePristo.

334

A universal SNP and small-indel variant caller using deep neural networks. Nat.
Biotechnol., 36(10):983–987, November 2018.

[168] David Porubsky, Peter Ebert, Peter A Audano, Mitchell R Vollger, William T
Harvey, Pierre Marijon, Jana Ebler, Katherine M Munson, Melanie Sorensen, Arvis
Sulovari, et al. Fully phased human genome assembly without parental data using
single-cell strand sequencing and long reads. Nature biotechnology, 39(3):302–308,
2021.

[169] Ploy N Pratanwanich, Fei Yao, Ying Chen, Casslynn WQ Koh, Yuk Kei Wan,
Christopher Hendra, Polly Poon, Yeek Teck Goh, Phoebe ML Yap, Jing Yuan
Chooi, et al. Identification of differential rna modifications from nanopore direct
rna sequencing with xpore. Nature Biotechnology, 39(11):1394–1402, 2021.

[170] James R Priest, Scott R Ceresnak, Frederick E Dewey, Lindsey E Malloy-Walton,
Kyla Dunn, Megan E Grove, Marco V Perez, Katsuhide Maeda, Anne M Dubin,
and Euan A Ashley. Molecular diagnosis of long QT syndrome at 10 days of life by
rapid whole genome sequencing. Heart Rhythm, 11(10):1707–1713, October 2014.

[171] James Rush Priest, Charles Gawad, Kristopher M Kahlig, Joseph K Yu, Thomas
O’Hara, Patrick M Boyle, Sridharan Rajamani, Michael J Clark, Sarah T K
Garcia, Scott Ceresnak, Jason Harris, Sean Boyle, Frederick E Dewey, Lindsey
Malloy-Walton, Kyla Dunn, Megan Grove, Marco V Perez, Norma F Neff, Richard
Chen, Katsuhide Maeda, Anne Dubin, Luiz Belardinelli, John West, Christian
Antolik, Daniela Macaya, Thomas Quertermous, Natalia A Trayanova, Stephen R
Quake, and Euan A Ashley. Early somatic mosaicism is a rare cause of long-QT
syndrome. Proc. Natl. Acad. Sci. U. S. A., 113(41):11555–11560, October 2016.

[172] Nicholas H Putnam, Brendan L O’Connell, Jonathan C Stites, Brandon J Rice,
Marco Blanchette, Robert Calef, Christopher J Troll, Andrew Fields, Paul D
Hartley, Charles W Sugnet, et al. Chromosome-scale shotgun assembly using an
in vitro method for long-range linkage. Genome research, 26(3):342–350, 2016.

[173] Arthur C Rand, Miten Jain, Jordan M Eizenga, Audrey Musselman-Brown, Hugh E
Olsen, Mark Akeson, and Benedict Paten. Mapping dna methylation with high-
throughput nanopore sequencing. Nature methods, 14(4):411–413, 2017.

[174] Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. From squiggle
to basepair: computational approaches for improving nanopore sequencing read
accuracy. Genome biology, 19(1):90, 2018.

[175] Mikko Rautiainen and Tobias Marschall. Mbg: Minimizer-based sparse de bruijn
graph construction. Bioinformatics, 37(16):2476–2478, 2021.

335

[176] Arang Rhie, Shane A McCarthy, Olivier Fedrigo, Joana Damas, Giulio Formenti,
Sergey Koren, Marcela Uliano-Silva, William Chow, Arkarachai Fungtammasan,
Gregory L Gedman, Lindsey J Cantin, Francoise Thibaud-Nissen, Leanne Haggerty,
Chul Lee, Byung June Ko, Juwan Kim, Iliana Bista, Michelle Smith, Bettina Haase,
Jacquelyn Mountcastle, Sylke Winkler, Sadye Paez, Jason Howard, Sonja C Vernes,
Tanya M Lama, Frank Grutzner, Wesley C Warren, Christopher Balakrishnan,
Dave Burt, Julia M George, Mathew Biegler, David Iorns, Andrew Digby, Daryl
Eason, Taylor Edwards, Mark Wilkinson, George Turner, Axel Meyer, Andreas F
Kautt, Paolo Franchini, H William Detrich, Hannes Svardal, Maximilian Wagner,
Gavin J P Naylor, Martin Pippel, Milan Malinsky, Mark Mooney, Maria Sim-
birsky, Brett T Hannigan, Trevor Pesout, Marlys Houck, Ann Misuraca, Sarah B
Kingan, Richard Hall, Zev Kronenberg, Jonas Korlach, Ivan Sović, Christopher
Dunn, Zemin Ning, Alex Hastie, Joyce Lee, Siddarth Selvaraj, Richard E Green,
Nicholas H Putnam, Jay Ghurye, Erik Garrison, Ying Sims, Joanna Collins, Sarah
Pelan, James Torrance, Alan Tracey, Jonathan Wood, Dengfeng Guan, Sarah E
London, David F Clayton, Claudio V Mello, Samantha R Friedrich, Peter V
Lovell, Ekaterina Osipova, Farooq O Al-Ajli, Simona Secomandi, Heebal Kim,
Constantina Theofanopoulou, Yang Zhou, Robert S Harris, Kateryna D Makova,
Paul Medvedev, Jinna Hoffman, Patrick Masterson, Karen Clark, Fergal Martin,
Kevin Howe, Paul Flicek, Brian P Walenz, Woori Kwak, Hiram Clawson, Mark
Diekhans, Luis Nassar, Benedict Paten, Robert H S Kraus, Harris Lewin, Andrew J
Crawford, M Thomas P Gilbert, Guojie Zhang, Byrappa Venkatesh, Robert W
Murphy, Klaus-Peter Koepfli, Beth Shapiro, Warren E Johnson, Federica Di Palma,
Tomas Margues-Bonet, Emma C Teeling, Tandy Warnow, Jennifer Marshall Graves,
Oliver A Ryder, David Hausler, Stephen J O’Brien, Kerstin Howe, Eugene W
Myers, Richard Durbin, Adam M Phillippy, and Erich D Jarvis. Towards complete
and error-free genome assemblies of all vertebrate species. Cold Spring Harbor
Laboratory, page 2020.05.22.110833, May 2020.

[177] Arang Rhie, Brian P Walenz, Sergey Koren, and Adam M Phillippy. Merqury:
reference-free quality, completeness, and phasing assessment for genome assemblies.
Genome Biol., 21(1):245, September 2020.

[178] Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications. Genomics,
proteomics & bioinformatics, 13(5):278–289, 2015.

[179] Joseph W F Robertson, Madhav L Ghimire, and Joseph E Reiner. Nanopore sensing:
A physical-chemical approach. Biochim. Biophys. Acta Biomembr., 1863(9):183644,
May 2021.

[180] Oscar L Rodriguez, William S Gibson, Tom Parks, Matthew Emery, James Powell,
Maya Strahl, Gintaras Deikus, Kathryn Auckland, Evan E Eichler, Wayne A
Marasco, et al. A novel framework for characterizing genomic haplotype diversity

336

in the human immunoglobulin heavy chain locus. Frontiers in immunology, 11,
2020.

[181] Jue Ruan. SmartDenovo, https://github.com/ruanjue/smartdenovo.

[182] Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. BioRxiv,
page 530972, 2019.

[183] Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. Nature
methods, 17(2):155–158, 2020.

[184] Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,
Sergey Koren, Todd J Treangen, Michael C Schatz, Arthur L Delcher, Michael
Roberts, Guillaume Marçais, Mihai Pop, and James A Yorke. GAGE: A critical
evaluation of genome assemblies and assembly algorithms. Genome Res., 22(3):557–
567, March 2012.

[185] Frederick Sanger, Steven Nicklen, and Alan R Coulson. DNA sequencing with
chain-terminating inhibitors. Proceedings of the national academy of sciences,
74(12):5463–5467, 1977.

[186] Fritz J Sedlazeck, Zachary Lemmon, Sebastian Soyk, William J Salerno, Zachary
Lippman, and Michael C Schatz. Svcollector: Optimized sample selection for
validating and long-read resequencing of structural variants. BioRxiv, page 342386,
2018.

[187] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad,
Arndt von Haeseler, and Michael C Schatz. Accurate detection of complex structural
variations using single-molecule sequencing. Nat Methods, 15(6):461–468, 2018.

[188] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad,
Arndt von Haeseler, and Michael C Schatz. Accurate detection of complex structural
variations using single-molecule sequencing. Nat. Methods, 15(6):461–468, June
2018.

[189] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad,
Arndt von Haeseler, and Michael C Schatz. Accurate detection of complex structural
variations using single-molecule sequencing. Nat. Methods, 15(6):461–468, April
2018.

[190] Mantas Sereika, Rasmus Hansen Kirkegaard, Søren Michael Karst, Thomas Yssing
Michaelsen, Emil Aarre Sørensen, Rasmus Dam Wollenberg, and Mads Albertsen.
Oxford nanopore r10. 4 long-read sequencing enables near-perfect bacterial genomes

337

from pure cultures and metagenomes without short-read or reference polishing.
bioRxiv, 2021.

[191] Kishwar Shafin, Trevor Pesout, Pi-Chuan Chang, Maria Nattestad, Alexey
Kolesnikov, Sidharth Goel, Gunjan Baid, Jordan M Eizenga, Karen H Miga,
Paolo Carnevali, Miten Jain, Andrew Carroll, and Benedict Paten. Haplotype-
aware variant calling enables high accuracy in nanopore long-reads using deep
neural networks. bioRxiv, page 2021.03.04.433952, March 2021.

[192] Kishwar Shafin, Trevor Pesout, Pi-Chuan Chang, Maria Nattestad, Alexey
Kolesnikov, Sidharth Goel, Gunjan Baid, Jordan M Eizenga, Karen H Miga,
Paolo Carnevali, Miten Jain, Andrew Carroll, and Benedict Paten. Haplotype-
aware variant calling enables high accuracy in nanopore long-reads using deep
neural networks. bioRxiv, page 2021.03.04.433952, March 2021.

[193] Kishwar Shafin, Trevor Pesout, Pi-Chuan Chang, Maria Nattestad, Alexey
Kolesnikov, Sidharth Goel, Gunjan Baid, Mikhail Kolmogorov, Jordan M Eizenga,
Karen H Miga, et al. Haplotype-aware variant calling with pepper-margin-
deepvariant enables high accuracy in nanopore long-reads. Nature methods,
18(11):1322–1332, 2021.

[194] Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E
Olsen, Colleen Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey
Koren, et al. Nanopore sequencing and the shasta toolkit enable efficient de novo
assembly of eleven human genomes. Nature Biotechnology, pages 1–10, 2020.

[195] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven J M
Jones, and Inanç Birol. ABySS: a parallel assembler for short read sequence data.
Genome Res., 19(6):1117–1123, June 2009.

[196] Jared T Simpson, Rachael E Workman, PC Zuzarte, Matei David, LJ Dursi, and
Winston Timp. Detecting dna cytosine methylation using nanopore sequencing.
Nature methods, 14(4):407–410, 2017.

[197] Felipe A. Simão, Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Krivent-
seva, and Evgeny M. Zdobnov. Busco: assessing genome assembly and annotation
completeness with single-copy orthologs. Bioinformatics, 31(19):3210–3212, 2015.

[198] Jouni Sirén, Jean Monlong, Xian Chang, Adam M Novak, Jordan M Eizenga,
Charles Markello, Jonas A Sibbesen, Glenn Hickey, Pi-Chuan Chang, Andrew
Carroll, et al. Pangenomics enables genotyping of known structural variants in
5202 diverse genomes. Science, 374(6574):abg8871, 2021.

338

[199] Lloyd M Smith, Jane Z Sanders, Robert J Kaiser, Peter Hughes, Chris Dodd,
Charles R Connell, Cheryl Heiner, Stephen BH Kent, and Leroy E Hood. Fluores-
cence detection in automated DNA sequence analysis. Nature, 321(6071):674–679,
1986.

[200] Sneha D. Goenka*, John E. Gorzynski*, Kishwar Shafin*, Dianna G. Fisk, Trevor
Pesout , Jean Monlong , Tanner D. Jensen , Pi-Chuan Chang, Gunjan Baid,
Jonathan A Bernstein, Jeffrey Christle , Karen P. Dalton, Daniel R. Garalde,
Megan E. Grove, Joseph Guillory, Alexey Kolesnikov, Maria Nattestad, Maura
R.Z. Ruzhnikov, Mehrzad Samadi, Ankit Sethia, Elizabeth Spiteri, Chris Wright,
Katherine Xiong, Tong Zhu, Miten Jain, Fritz J. Sedlazeck, Andrew Carroll,
Benedict Paten, Euan A. Ashley. Technical development of rapid whole genome
nanopore sequencing and variant identification pipeline. Unpublished, 2021.

[201] Kimberly Splinter, David R Adams, Carlos A Bacino, Hugo J Bellen, Jonathan A
Bernstein, Alys M Cheatle-Jarvela, Christine M Eng, Cecilia Esteves, William A
Gahl, Rizwan Hamid, Howard J Jacob, Bijal Kikani, David M Koeller, Isaac S
Kohane, Brendan H Lee, Joseph Loscalzo, Xi Luo, Alexa T McCray, Thomas O
Metz, John J Mulvihill, Stanley F Nelson, Christina G S Palmer, John A Phillips,
3rd, Leslie Pick, John H Postlethwait, Chloe Reuter, Vandana Shashi, David A
Sweetser, Cynthia J Tifft, Nicole M Walley, Michael F Wangler, Monte Westerfield,
Matthew T Wheeler, Anastasia L Wise, Elizabeth A Worthey, Shinya Yamamoto,
Euan A Ashley, and Undiagnosed Diseases Network. Effect of genetic diagnosis on
patients with previously undiagnosed disease. N. Engl. J. Med., 379(22):2131–2139,
November 2018.

[202] Peter H Sudmant, Swapan Mallick, Bradley J Nelson, Fereydoun Hormozdiari,
Niklas Krumm, John Huddleston, Bradley P Coe, Carl Baker, Susanne Nordenfelt,
Michael Bamshad, et al. Global diversity, population stratification, and selection
of human copy-number variation. Science, 349(6253):aab3761, 2015.

[203] Nathaly M Sweeney, Shareef A Nahas, Sh Chowdhury, Sergey Batalov, Michelle
Clark, Sara Caylor, Julie Cakici, John J Nigro, Yan Ding, Narayanan Veeraragha-
van, and Others. Rapid whole genome sequencing impacts care and resource
utilization in infants with congenital heart disease. NPJ genomic medicine, 6(1):1–
10, 2021.

[204] Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J Topol, and Nicholas J Schork.
The importance of phase information for human genomics. Nature Reviews Genetics,
12(3):215–223, 2011.

[205] Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J Topol, and Nicholas J Schork.

339

The importance of phase information for human genomics. Nat. Rev. Genet.,
12(3):215–223, March 2011.

[206] Telomere to-telomere consortium. Ultra-long reads for chm13 genome assembly,
https://github.com/nanopore-wgs-consortium/chm13.

[207] T. R. Turner, J. D. Hayhurst, D. R. Hayward, W. P. Bultitude, D. J. Barker,
J. Robinson, J. A. Madrigal, N. P. Mayor, and S. G. E. Marsh. Single molecule real-
time DNA sequencing of HLA genes at ultra-high resolution from 126 International
HLA and Immunogenetics Workshop cell lines. HLA, 91(2):88–101, 02 2018.

[208] Erwin L van Dijk, Hélène Auger, Yan Jaszczyszyn, and Claude Thermes. Ten
years of next-generation sequencing technology. Trends Genet., 30(9):418–426,
September 2014.

[209] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate de
novo genome assembly from long uncorrected reads. Genome Res., 27(5):737–746,
May 2017.

[210] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate
de novo genome assembly from long uncorrected reads. Genome research, 27(5):737–
746, 2017.

[211] Jenny Mai Vo, Logan Mulroney, Jen Quick-Cleveland, Miten Jain, Mark Ake-
son, and Manuel Ares. Synthesis of modified nucleotide polymers by the poly
(u) polymerase cid1: application to direct rna sequencing on nanopores. RNA,
27(12):1497–1511, 2021.

[212] M R Vollger, X Guitart, P C Dishuck, L Mercuri, and others. Segmental duplica-
tions and their variation in a complete human genome. bioRxiv, 2021.

[213] Mitchell R Vollger, Xavi Guitart, Philip C Dishuck, Ludovica Mercuri, William T
Harvey, Ariel Gershman, Mark Diekhans, Arvis Sulovari, Katherine M Munson,
Alexandra M Lewis, Kendra Hoekzema, David Porubsky, Ruiyang Li, Sergey Nurk,
Sergey Koren, Karen H Miga, Adam M Phillippy, Winston Timp, Mario Ventura,
and Evan E Eichler. Segmental duplications and their variation in a complete
human genome. bioRxiv, page 2021.05.26.445678, May 2021.

[214] Mitchell R Vollger, Glennis A Logsdon, Peter A Audano, Arvis Sulovari, David
Porubsky, Paul Peluso, Gregory T Concepcion, Katherine M Munson, Carl Baker,
Ashley D Sanders, et al. Improved assembly and variant detection of a haploid
human genome using single-molecule, high-fidelity long reads. BioRxiv, page
635037, 2019.

340

[215] Mitchell R. Vollger, Glennis A. Logsdon, Peter A. Audano, Arvis Sulovari, David
Porubsky, Paul Peluso, Gregory T. Concepcion, Katherine M. Munson, Carl
Baker, Ashley D. Sanders, Diana C.J. Spierings, Peter M. Lansdorp, Michael W.
Hunkapiller, and Evan E. Eichler. Improved assembly and variant detection of a
haploid human genome using single-molecule, high-fidelity long reads. bioRxiv,
2019.

[216] Justin Wagner, Nathan D Olson, Lindsay Harris, Ziad Khan, Jesse Farek, Medhat
Mahmoud, Ana Stankovic, Vladimir Kovacevic, Aaron M Wenger, William J
Rowell, et al. Benchmarking challenging small variants with linked and long reads.
BioRxiv, 2020.

[217] Justin Wagner, Nathan D Olson, Lindsay Harris, Jennifer McDaniel, Haoyu Cheng,
Arkarachai Fungtammasan, Yih-Chii Hwang, Richa Gupta, Aaron M Wenger,
William J Rowell, Ziad M Khan, Jesse Farek, Yiming Zhu, Aishwarya Pisupati, Med-
hat Mahmoud, Chunlin Xiao, Byunggil Yoo, Sayed Mohammad Ebrahim Sahraeian,
Danny E Miller, David Jáspez, José M Lorenzo-Salazar, Adrián Muñoz-Barrera,
Luis A Rubio-Rodríguez, Carlos Flores, Giuseppe Narzisi, Uday Shanker Evani,
Wayne E Clarke, Joyce Lee, Christopher E Mason, Stephen E Lincoln, Karen H
Miga, Mark T W Ebbert, Alaina Shumate, Heng Li, Chen-Shan Chin, Justin M
Zook, and Fritz J Sedlazeck. Towards a comprehensive variation benchmark for
challenging Medically-Relevant autosomal genes. bioRxiv, page 2021.06.07.444885,
June 2021.

[218] Bruce J. Walker, Thomas Abeel, Terrance Shea, Margaret Priest, Amr Abouelliel,
Sharadha Sakthikumar, Christina A. Cuomo, Qiandong Zeng, Jennifer Wortman,
and Sarah K. et al. Young. Pilon: An integrated tool for comprehensive microbial
variant detection and genome assembly improvement. PLoS ONE, 9(11):e112963,
2014.

[219] Mick Watson. Mind the gaps – ignoring errors in long read assemblies critically
affects protein prediction.

[220] Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M Church, and David B Jaffe.
Direct determination of diploid genome sequences. Genome research, 27(5):757–767,
2017.

[221] Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J
Hall, Gregory T Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey
Kolesnikov, Nathan D Olson, et al. Accurate circular consensus long-read se-
quencing improves variant detection and assembly of a human genome. Nature
biotechnology, 37(10):1155–1162, 2019.

341

[222] Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall,
Gregory T Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov,
Nathan D Olson, et al. Highly-accurate long-read sequencing improves variant
detection and assembly of a human genome. bioRxiv, page 519025, 2019.

[223] Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall,
Gregory T Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov,
Nathan D Olson, Armin Töpfer, Michael Alonge, Medhat Mahmoud, Yufeng Qian,
Chen-Shan Chin, Adam M Phillippy, Michael C Schatz, Gene Myers, Mark A
DePristo, Jue Ruan, Tobias Marschall, Fritz J Sedlazeck, Justin M Zook, Heng
Li, Sergey Koren, Andrew Carroll, David R Rank, and Michael W Hunkapiller.
Accurate circular consensus long-read sequencing improves variant detection and
assembly of a human genome. Nat. Biotechnol., 37(10):1155–1162, October 2019.

[224] Ryan R Wick, Louise M Judd, and Kathryn E Holt. Comparison of oxford nanopore
basecalling tools. January. https://doi. org, 10, 2018.

[225] Ryan R Wick, Louise M Judd, and Kathryn E Holt. Performance of neural network
basecalling tools for oxford nanopore sequencing. Genome biology, 20(1):1–10,
2019.

[226] Yaping Yang, Donna M Muzny, Jeffrey G Reid, Matthew N Bainbridge, Alecia
Willis, Patricia A Ward, Alicia Braxton, Joke Beuten, Fan Xia, Zhiyv Niu, Matthew
Hardison, Richard Person, Mir Reza Bekheirnia, Magalie S Leduc, Amelia Kirby,
Peter Pham, Jennifer Scull, Min Wang, Yan Ding, Sharon E Plon, James R
Lupski, Arthur L Beaudet, Richard A Gibbs, and Christine M Eng. Clinical
whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med.,
369(16):1502–1511, October 2013.

[227] Yaping Yang, Donna M Muzny, Fan Xia, Zhiyv Niu, Richard Person, Yan Ding,
Patricia Ward, Alicia Braxton, Min Wang, Christian Buhay, Narayanan Veeraragha-
van, Alicia Hawes, Theodore Chiang, Magalie Leduc, Joke Beuten, Jing Zhang,
Weimin He, Jennifer Scull, Alecia Willis, Megan Landsverk, William J Craigen,
Mir Reza Bekheirnia, Asbjorg Stray-Pedersen, Pengfei Liu, Shu Wen, Wendy
Alcaraz, Hong Cui, Magdalena Walkiewicz, Jeffrey Reid, Matthew Bainbridge,
Ankita Patel, Eric Boerwinkle, Arthur L Beaudet, James R Lupski, Sharon E
Plon, Richard A Gibbs, and Christine M Eng. Molecular findings among patients
referred for clinical whole-exome sequencing. JAMA, 312(18):1870–1879, November
2014.

[228] Samantha Zarate, Andrew Carroll, Medhat Mahmoud, Olga Krasheninina, Goo
Jun, William J Salerno, Michael C Schatz, Eric Boerwinkle, Richard A Gibbs,

342

and Fritz J Sedlazeck. Parliament2: Accurate structural variant calling at scale.
Gigascience, 9(12), December 2020.

[229] Haowen Zhang, Chirag Jain, and Srinivas Aluru. A comprehensive evaluation of
long read error correction methods. BMC Genomics, 21(Suppl 6):889, December
2020.

[230] Aleksey V Zimin, Daniela Puiu, Ming-Cheng Luo, Tingting Zhu, Sergey Koren,
Guillaume Marçais, James A Yorke, Jan Dvořák, and Steven L Salzberg. Hybrid
assembly of the large and highly repetitive genome of aegilops tauschii, a progenitor
of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res., 27(5):787–
792, May 2017.

[231] Aleksey V Zimin and Steven L Salzberg. The genome polishing tool POLCA
makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol.,
16(6):e1007981, June 2020.

[232] Justin M Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend
Sidow, Ziming Weng, Yuling Liu, Christopher E Mason, Noah Alexander, et al.
Extensive sequencing of seven human genomes to characterize benchmark reference
materials. Scientific data, 3:160025, 2016.

[233] Justin M Zook, Nancy F Hansen, Nathan D Olson, Lesley Chapman, James C
Mullikin, Chunlin Xiao, Stephen Sherry, Sergey Koren, Adam M Phillippy, Paul C
Boutros, et al. A robust benchmark for detection of germline large deletions and
insertions. Nature biotechnology, pages 1–9, 2020.

[234] Justin M Zook, Nancy F Hansen, Nathan D Olson, Lesley M Chapman, James C
Mullikin, Chunlin Xiao, Stephen Sherry, Sergey Koren, Adam M Phillippy, Paul C
Boutros, et al. A robust benchmark for germline structural variant detection.
BioRxiv, page 664623, 2019.

[235] Justin M. Zook, Nancy F. Hansen, Nathan D. Olson, Lesley M. Chapman, James C.
Mullikin, Chunlin Xiao, Stephen Sherry, Sergey Koren, Adam M. Phillippy, Paul C.
Boutros, Sayed Mohammad E. Sahraeian, Vincent Huang, Alexandre Rouette,
Noah Alexander, Christopher E. Mason, Iman Hajirasouliha, Camir Ricketts, Joyce
Lee, Rick Tearle, Ian T. Fiddes, Alvaro Martinez Barrio, Jeremiah Wala, Andrew
Carroll, Noushin Ghaffari, Oscar L. Rodriguez, Ali Bashir, Shaun Jackman, John J
Farrell, Aaron M Wenger, Can Alkan, Arda Soylev, Michael C. Schatz, Shilpa
Garg, George Church, Tobias Marschall, Ken Chen, Xian Fan, Adam C. English,
Jeffrey A. Rosenfeld, Weichen Zhou, Ryan E. Mills, Jay M. Sage, Jennifer R.
Davis, Michael D. Kaiser, John S. Oliver, Anthony P. Catalano, Mark JP Chaisson,

343

Noah Spies, Fritz J. Sedlazeck, and Marc Salit. A robust benchmark for germline
structural variant detection. bioRxiv, 2019.

[236] Justin M Zook, Jennifer McDaniel, Nathan D Olson, Justin Wagner, Hemang
Parikh, Haynes Heaton, Sean A Irvine, Len Trigg, Rebecca Truty, Cory Y McLean,
et al. An open resource for accurately benchmarking small variant and reference
calls. Nature biotechnology, 37(5):561, 2019.

344

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	I Introduction
	Introduction

	II Background
	Background
	DNA sequencing technology
	Sanger sequencing
	Next-generation sequencing technology
	Third-generation sequencing technology

	Genome inference
	De novo assembly
	Variant calling

	Deep learning for genome inference
	Applications of deep neural network in nanopore sequencing

	III Haplotype-aware variant calling
	PEPPER-Margin-DeepVariant: Haplotype-aware variant calling pipeline for long reads.
	Preamble
	Introduction
	Results
	Haplotype-aware variant calling
	Nanopore variant calling performance
	Nanopore, Illumina and PacBio HiFi variant calling performance comparison
	Phaseset and Haplotagging Accuracy
	Gene Analysis
	Diploid polishing of de novo assemblies
	Diploid de novo assembly polishing performance

	Discussion
	Methods
	Analysis methods and data pre-processing
	Mendelian Analysis
	Method description
	PEPPER
	Margin
	Local Phasing Correctness
	DeepVariant
	Adapting DeepVariant to Oxford Nanopore reads
	Assembly polishing with PEPPER-Margin-DeepVariant

	IV Efficient de novo assembly of eleven human genomes in nine days
	Nanopore sequencing and Shasta toolkit enables de novo assembly of eleven human genomes in nine days.
	Preamble
	Introduction
	Results
	Nanopore sequencing eleven human genomes in nine days
	Shasta: assembling a human genome from nanopore reads in under 6 hours
	Contiguously assembling MHC haplotypes
	Deep neural network based polishing achieves greater than QV30 long-read only haploid polishing accuracy
	Long-read assemblies contain nearly all human coding genes
	Comparing to a PacBio HiFi Assembly
	Assembling, polishing and scaffolding 11 human genomes at near chromosome scale

	Discussion
	Code Availability
	Online Methods
	Sample selection
	Cell culture
	DNA extraction and size-selection
	Nanopore sequencing
	Analysis methods

	MarginPolish
	Training

	HELEN: Homopolymer Encoded Long-read Error-corrector for Nanopore
	Image Generation
	The model
	Sliding window mechanism
	Training the model
	Sequence stitching
	Generating trained models
	Implementation notes

	V Validation and polishing of the first complete human genome.
	Validation and polishing strategies for telomere-to-telomere genome assemblies
	Preamble
	Introduction
	Results
	Initial evaluation of CHM13v0.9
	Identification and correction of assembly errors
	Validation of CHM13v1.0
	Toward a completely polished sequence of a human genome
	A comparison to automated assembly polishing

	Discussion

	VI Fastest clinical diagnosis of a human genome
	Ultra-rapid whole genome nanopore sequencing in a critical care setting
	Preamble
	Introduction
	Results
	Patient recruitment
	Primary phase
	Secondary phase
	Speed and accuracy
	Sequencing, base calling and alignment
	Variant Calling and Curation
	Diagnosis

	Discussion
	Methods
	Patient recruitment
	Sample collection and preparation
	Base Calling and Alignment
	Variant Calling
	Annotation
	Variant filtering and prioritization
	Variant curation and molecular board review

	VII Discussion
	Discussion

	VIII Appendices
	Appendix A: Supplementary information for haplotype-aware variant calling with PEPPER-Margin-DeepVariant
	Preamble
	Supplementary Figures
	Supplementary Results

	Appendix B: Supplementary information for efficient de novo assembly of eleven human genomes in nine days
	Preamble
	Supplementary Results

	Appendix C: Supplementary information for validation and polishing of the first complete human genome
	Preamble
	Supplementary Results

	Appendix A: Supplementary information for ultra-rapid whole genome nanopore sequencing in a critical care setting
	Preamble
	Supplementary Figures

	Bibliography

