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Abstract 

In their current functional form, ACT-R’s retrieval equations 
do not account for the left side of the RT-distance relation, that 
is, that as memory activation decreases, so does response time 
for retrieval failures. To accommodate this effect, I propose 
that the memory system uses the familiarity of the encoded 
object to gauge how much effort it should devote to retrieval. I 
quantify the degree of familiarity through the match score, 
which is the output of a global matching process. Familiarity, 
in turn, directly determines what the retrieval threshold should 
be. Adding a familiarity process orthogonal to recollection is 
in line with neuroimaging results, which uncover parallel 
familiarity and retrieval processes. The developments in this 
paper extend ACT-R’s memory theory into a dual process 
theory. 

Keywords: ACT-R, declarative memory, familiarity, retrieval 
threshold 

Introduction 

Perhaps uniquely among current theories of memory, ACT-

R’s memory theory (Anderson & Schooler, 1991; Schooler 

& Anderson, 1997) assumes a recall process, but no 

familiarity process. Despite being a single-process theory, it 

has successfully accounted for both responses and response 

times (RTs) of not only various recall processes (e.g., 

Anderson, Fincham, & Douglas, 1999; Anderson & Rader, 

1999), but also of various recognition processes (e.g., 

Anderson, Bothell, Lebiere, & Matessa, 1998; Schneider & 

Anderson, 2012). Yet, at least one aspect of recall that ACT-

R does not currently account for is the shape of the RT curve 

of “No” responses. Here I put forth a proposal of extending 

this memory theory such that it can also accommodate the RT 

distribution of recall failures. This proposal is consistent with 

recent neural evidence of separate familiarity and recall 

processes (e.g., Borst and Anderson, 2015). Specifically, I 

suggest that (1) familiarity in ACT-R is modeled with a 

global-matching process and (2) the retrieval threshold is 

strategically varied as a function of familiarity.  

The Memory Theory behind ACT-R 

ACT-R makes the distinction between representations, which 

inhabit the symbolic level, and the equations governing them, 

which lie at the subsymbolic level. At the symbolic level, 

ACT-R represents items in declarative memory as chunks, 

which are a collection of one or more slot-value pairs. Facts, 

such as “Otters hold hands” and “Cherry coke tastes like 

                                                           
1 Typically set to d = 0.5. 

cyanide”, and experiences such as “I rappelled off a bridge 

on Sunday” are all stored as chunks in declarative memory. 

At the subsymbolic level, several equations determine 

whether chunks are likely to be retrieved or not and how long 

that will take. These equations take into account the prior 

history of encounter of the episodes or facts encoded in 

chunks as well as their relevance to the current context, and 

bind those together into a single quantity – a chunk’s 

activation. Each chunk i has an activation, Ai, associated with 

it that quantifies its strength. Activation is a dynamic quantity 

that models the logarithm of the odds (i.e., the log-odds) that 

a chunk is needed at this point in time in this context to 

achieve the goal the agent strives for. Activation is composed 

of base-level activation, Bi, the spreading activation, SAi, and 

noise, ε: 

𝐴𝑖 = 𝐵𝑖 + 𝑆𝐴𝑖 + 𝜀   (1) 

The base-level activation is a function of the chunk’s 

history: 

𝐵𝑖 = ln ∑ 𝑡𝑘
−𝑑𝑛𝑖

𝑘=1 ,   (2) 

where the decay parameter, d1, specifies the rate of forgetting 

over time, which is modeled with a power function. The 

power function was chosen, because the likelihood of 

encountering items in the real world also decays as a power 

function as time passes and the memory system is 

hypothesized to have adapted to this regularity (Anderson & 

Schooler, 1991). The parameter n is the number of encounters 

with the information that chunk i represents, and tk is the time 

since the kth encounter.  

Spreading activation SAi assesses a chunk’s relevance to 

the current context, where the current context consists of all 

chunks currently in the focus of attention (i.e., all chunks 

currently in the buffers of the various modules that ACT-R 

consists of). SAi assumes that chunks in declarative memory 

related to or previously encountered with chunks in buffers 

are more likely to be needed than those that are not. The 

amount of spreading activation to chunk i in declarative 

memory is a function of the associations between that chunk 

and the currently attended to chunks j: 

𝑆𝐴𝑖 = ∑ 𝑊𝑗𝑆𝑗𝑖𝑗 ,   (3) 

where the associative strength, Sji, between chunks i and j is 

weighted by the source activation, Wj, of chunk j in a buffer. 

The associative strengths, Sji, between chunks is 

approximated by 

𝑆𝑗𝑖 = 𝑆 − ln(𝑓𝑎𝑛𝑗),  (4) 

where S denotes the maximum associative strength and fanj 

is the number of chunks associated with a chunk j. The more 
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chunks are associated with a chunk in memory, the lower the 

associative strength between it and each of its associates 

becomes. Equation (4) is approximation of the Bayesian 

memory analysis that ACT-R is based on (Anderson & 

Milson, 1989) which assumes that each association of chunk 

j is equally likely to be needed. This approximation usually 

accounts sufficiently well for experimental regularities, but 

in some cases the full Bayesian equation needs to be 

summoned (see Anderson & Reder, 1999).  

Equations 2-4 determine the activation components 

summed in Equation 1, which then determines probability of 

retrieval and retrieval failure as well as retrieval time. 

Specifically, whenever Ai is above the retrieval threshold τ, 

the chunk can be retrieved, while if it is below that threshold, 

the chunk is not sufficiently active to be retrieved, resulting 

in a probability of retrieval pi as a function of threshold: 

   𝑝𝑖 =
1

1+𝑒
−

𝜇𝐴𝑖
−𝜏

𝑠

 ,   (5) 

where 𝜇𝐴𝑖
= 𝐵𝑖 + 𝑆𝐴𝑖 is the mean of the activation 

distribution. Retrieval time is also exponentially related to 

activation: 

   𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝐹𝑒−𝐴𝑖 .  (6) 

The latency factor F scales the resulting quantity into units of 

seconds. If the activation is below the retrieval threshold, the 

resulting retrieval failure time is constant: 

𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝐹𝑒−𝜏.  (7) 

ACT-R and Familiarity 

Recognition tasks in ACT-R have typically been modeled 

with the same retrieval process that recollection is modelled 

with, but with different parameters (see Anderson, Bothell, 

Lebiere, & Matessa, 1998), whereby no fluency or familiarity 

processes are mentioned. Yet, familiarity processes are 

explicitly mentioned in at least one (decision) model 

constructed in ACT-R, the fluency heuristic (Schooler & 

Hertwig, 2005).  

The Fluency Heuristic 

The fluency heuristic is a memory-based decision strategy 

that infers which of two alternatives scores higher on a 

criterion by choosing the alternative that is more fluent (i.e., 

more familiar). The fluency heuristic does not require a 

separate familiarity processes running in parallel to retrieval 

to model fluency. Instead, in its original definition, the 

fluency heuristic operationalizes fluency as the time it takes 

an object to be retrieved (Schooler & Hertwig, 2005). Later, 

this heuristic was redefined to rely on the newly developed 

ACT-R module for prospective time interval estimation 

(Taatgen, van Rijn, & Anderson, 2007), thus comparing the 

subjectively perceived retrieval times of the two alternatives 

and choosing the one that is subjectively faster to retrieve (see 

Dimov, Marewski, & Schooler, 2017; Fechner et al., 2016; 

Marewski & Schooler, 2011). Still, even in its updated 

version, the fluency heuristic does not assume a separate 

familiarity process, but continues to rely on a recall process 

paired with a process for estimating the time recall takes.  

Neural Evidence of Familiarity 

While, for the most part, the memory and decision tasks 

modeled with ACT-R did not necessitate two separate 

mnemonic processes, recently several neuroimaging studies 

examining the time course of associative recognition have 

provided evidence in favor of two processes operating in 

parallel: a familiarity process and a recollection process. 

Specifically, due to fMRI not providing the temporal 

resolution necessary to observe sub-second retrieval 

processes, both EEG (Borst and Anderson, 2015) and MEG 

(Borst, Ghuman and Anderson, 2016) were used to record 

brain signatures during this retrieval task. The brain 

signatures during associative recognition indicate the 

existence of a familiarity process commencing in parallel 

with a recollection process and finishing typically before, but 

not substantially before the recollection process.  How can 

we model this familiarity process with ACT-R?  

A Global-Matching Process in ACT-R to Model 

Fluency 

My first proposal is that familiarity in ACT-R is related to 

blending (Lebiere, 1998). Blending is a process in ACT-R’s 

declarative memory that produces a weighted average of a 

quantity over all chunks in memory that hold a value of that 

quantity, whereby the contribution of each chunk is weighted 

by its activation. The output of blending is a chunk holding 

the weighted average value.  This mechanism has been used 

to model mistakes that children make when engaging in 

arithmetic (Lebiere, 1999), choices in dynamic decision 

making tasks (e.g., Gonzalez & Dutt, 2011; Gonzalez, Lerch, 

& Lebiere, 2003) and belief updating in repeated games 

(Spiliopoulos, 2013) among others.  

At the subsymbolic level, the blended chunk is described 

with a match score M, which is the analogue of activation for 

the blended chunk. Just as the blended value, the match score 

is a function of the activations of the set of all chunks 

included in the blending process (called the match set MS): 

𝑀 = ln ∑ 𝑒𝐴𝑖
𝑖∈𝑀𝑆 .        (8) 

At first sight unintuitive, Equation 8 becomes clearer once 

we consider that activation is on a logarithmic scale (see 

Equation 2) and that all observables (Equations 5-7) are 

related to the exponent of activation. Summing the exponents 

of all relevant chunks’ activation and then taking the 

logarithm renders the resulting match score equivalent to the 

activation resulting from the cumulative experience of all 

blended chunks. For example, if we consider only base level 

activation, the resulting match score would be: 

𝑀 = ln ∑ 𝑒𝐴𝑖
𝑖∈𝑀𝑆 =  

     = ln ∑ 𝑒ln ∑ 𝑡𝑘
−𝑑𝑛𝑖

𝑘=1𝑖∈𝑀𝑆 = (9) 

     = ln ∑ ∑ 𝑡𝑘
−𝑑𝑛𝑖

𝑘=1𝑖∈𝑀𝑆  , 

which is the activation a chunk would have had it had the 

prior history of all blended chunks.  
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While activation is interpreted as the log-odds of a chunk 

being needed, the match score is the log-odds of any chunk 

in declarative memory being needed. The specific 

relationship that I propose is that the familiarity of an input is 

quantified by the match score produced by the blending 

process, that is, familiarity serves as a coarse gauge if any of 

the input is relevant to the task at hand. 

The RT-distance Relation and ACT-R 

In a recognition task, responses are classified as Hits and 

False Alarms (whenever the response is “yes”) and Misses 

and Correct Rejections (whenever the response is “no”). 

Whether responses are correct or not, there is a well-

established relation between the time that those responses 

take (RT) and how frequently the item was presented in the 

experiment or encountered in life: the RT-distance relation 

(Koppell, 1977). This relation states that response time is fast 

whenever items were presented very frequently or very 

rarely, resulting in a memory trace with a very high or very 

low strength. However, whenever the memory strength is in 

the middle ground, close to the retrieval threshold, responses 

take more time. In other word, RT decreases as the memory 

strength of an item lies further away (either to the left or to 

the right) from the retrieval threshold (see Figure 1 for an 

idealization). Consequently, both Hits and False Alarms 

become faster the higher memory strength is of retrieved 

items. Moreover, both Misses and Correct Rejections speed 

up the lower memory strength of the items that fail to be 

retrieved.  

 

 
Figure 1: RT-distance relation in recall. A memory item 

with a medium strength provides ambiguous information 

about whether it has been encountered in the past or not and, 

consequently, requires a longer time to be retrieved. Memory 

items with either very high or very low strength are both 

responded to quickly. 

 

In its current form, ACT-R’s memory theory accounts for 

half of the RT-distance relation: that related to successful 

retrievals (Hits and False Alarms). Yet, following from 

Equation 7, when an item of memory fails to be retrieved 

(Misses and Correct Rejections), ACT-R predicts a constant 

RT (see Figure 2), which contradicts the empirically found 

RT-distance relation.  

                                                           
2 The code used to generate Figures 2, 3 and 4 can be found in the 

Appendix. 

 

 
Figure 2: Relation between chunk activation and response 

time according to ACT-R. The grey line indicates the location 

of the threshold. Above the threshold, successful retrievals 

get progressively faster as one moves away from the 

threshold. Below the threshold, retrieval failures take a 

constant time irrespective of their distance from the 

threshold.  

Fluency Determines Threshold 

My second proposal aims to modify ACT-R’s memory to 

account for the RT-distance relation using the fluency 

process earlier introduced. Specifically, I propose that the 

retrieval threshold τ is not constant, but that it is a function 

(i.e., the negative) of an item’s familiarity (which I proposed 

to model with the match score): 

𝜏 =  −𝑀.  (10) 

Since M is the log odds that any chunk in memory is needed, 

-M is the log odds of no chunk being needed: 

−𝑀 =  − log (
𝑛𝑒𝑒𝑑 

¬𝑛𝑒𝑒𝑑 
) = log (

¬𝑛𝑒𝑒𝑑 

𝑛𝑒𝑒𝑑 
)  (11) 

In plain language, my proposal can be interpreted as the 

memory system dynamically adjusting the amount of effort it 

is willing to invest into a retrieval (as described by the 

retrieval threshold) as a function of how likely it is that no 

chunk in memory is ever needed, which is estimated via the 

fluency signal. If the global fluency signal is weak, that is, if 

the odds that any chunk in memory is needed at this moment 

is low, then the system will invest less resources into a 

retrieval attempt and abort it earlier. On the other hand, if the 

fluency signal is strong, the memory system will be ready to 

invest a lot of time into retrieval as it is more certain that it 

will retrieve a relevant chunk, even though in practice it will 

invest very little time as a successful retrieval will soon 

arrive.  

Resulting RT-distance relation 

When chunks are very distinct or, in the extreme case, 

when all chunks spread 0 activation to each other, the 

predominating factor in the match score is the activation of 

the chunk being probed as only this chunk will be included in 

the match set MS. In this case, the resulting RT-distance 

relation is almost entirely symmetric (see Figure 3)2. 
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Figure 3: Relation between chunk activation and response 

time according to our modification of the retrieval threshold 

in ACT-R. I assume that the only chunk in the match set is 

the chunk being probed.  

 

On the other hand, when other chunks are similar to the 

probed chunk and, thus, included in the match set, they 

increase the likelihood that any chunk in declarative memory 

will be needed. Consequently, the activation of the chunk 

representing the item being probed crosses the retrieval 

threshold at a lower value and, moreover, RT on retrieval 

failures decreases less and less steeply (see Figure 4)3.  

 

 
Figure 4: Relation between chunk activation and response 

time according to our modification of the retrieval threshold 

in ACT-R. The different curves correspond to various 

contribution to the match score of chunks that represent other 

items than the item being probed. As the similarity to the 

probed chunk increased, RT of retrieval failures increases. 

Discussion and Conclusion 

I proposed that familiarity in ACT-R is modeled with the 

match score from blending. This extends ACT-R’s memory 

theory to a dual-process theory of memory. Moreover, I 

hypothesize that the memory system relies on the familiarity 

signal to assess the amount of effort it should invest in 

retrieval before aborting it. This allows ACT-R to account for 

the RT-distance relation. Finally, the prediction that retrieval 

failures will take longer when the probed chunk is confusable 

with other chunks in memory also follows from this new 

formulation. The modification interprets the blending module 

                                                           
3 I have relied on a single parameter to quantify the total amount 

of spreading activation that comes from chunks not corresponding 

to the presented item. See the Appendix for model code.  

as a global-matching component of ACT-R’s memory and 

puts it in the tradition of many a memory models in 

psychology, which include TODAM (Murdock, 1982), 

MINERVA 2 (Hintzman, 1984) and SAM (Gillund & 

Shiffrin, 1984; Raaijmakers & Shiffrin, 1980; for an 

overview of global-matching models, see Humphreys, Pike, 

Bain, & Tehan, 1989). I will proceed by briefly comparing 

the proposed extension of ACT-R to two related theories of 

memory and discuss the potential issues with the current 

proposal. 

Comparison to Source of Activation Confusion 

A theory that shares its lineage with ACT-R’s is Source of 

Activation Confusion (SAC, Diana, Reder, Arndt, & Park, 

2006). This theory has been used to model a wide variety of 

memory phenomena in various tasks, among which cued 

recall (Reder, Park, & Kieffaber, 2007), perceptual match 

effects (Diana, Peterson, & Reder, 2004) and feeling of 

knowing (Schunn, Reder, Nhouyvanisvong, Richards, & 

Stroffolino, 1997). 

SAC is not based on the rational analysis of memory, yet 

many of the processes that it assumes are the same as those 

of ACT-R. First, it assumes that events and objects are 

encoded as chunks. Second, those chunks’ activations are 

also separated into a base-level and spreading-activation 

components. Third, base-level activation decays with time as 

a power law, while spreading activation is a function of co-

occurrence frequencies. Yet, there are at least two points of 

departure between ACT-R and SAC. First, SAC assumes that 

spreading activation slowly decays with time once the chunk 

that spreads activation is removed from the focus of attention, 

while in ACT-R this happens instantaneously. Second, in 

SAC a working memory of a limited capacity is populated 

with all chunks above a certain level of activation.4  

Unlike ACT-R, SAC is a dual-process theory: it includes 

both a familiarity and a recall process. The familiarity (or 

feeling-of-knowing) process stems from retrieval of the 

concept node, which is the internal representation of the 

probed item. Activation then spreads to associated nodes, 

which leads to cued recall. Thus, unlike the current proposal 

of extending ACT-R’s memory theory, in SAC familiarity 

does not result from a global-matching process, but from a 

retrieval of a single chunk.  

Note, however, that adding a global-matching process that 

determines the retrieval threshold can also benefit SAC. First, 

just like ACT-R, SAC does not model the RT-distance 

relation related to retrieval failures, because it assumes a 

constant threshold. By adding a threshold that is inversely 

related to the global-matching signal, SAC should also be 

able to accommodate this relation. Second, SAC assumes that 

the familiarity (those related with retrieval of the concept 

node) and recollection processes (those related to retrieval of 

episode nodes) rely on different thresholds, whereby the 

4 Note that ACT-R’s notion of working memory is more 

complicated in that it includes the buffers of all of its modules and 

potentially the content of the imaginal module, which stores task-

relevant information.   
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concept threshold is typically higher than the episode 

threshold. I posit that Equation 10 would accommodate that 

a higher threshold for the concept than for the episode node. 

Specifically, during retrieval, activation spreads from the 

concept and the context into the episode node. If the 

activation of the episode is high enough, it will be retrieved. 

In this case the high activation of the episode node would also 

imply a high overall match score and, consequently, a low 

retrieval threshold. On the other hand, if the episode node 

cannot be retrieved and, instead, the concept node is relied 

upon, this would imply that the episode node has a lower 

activation. Consequently, the overall match score will be 

lower, implying a higher retrieval threshold.  

Comparison to Retrieving Effectively from 

Memory 

Retrieving effectively from memory (REM; Shiffrin & 

Steyvers, 1997) is a memory model that stems from the 

tradition of SAM. REM is a global matching model – it 

assumes that the recall probe is matched to all memory traces 

in parallel. Similar to ACT-R’s memory theory, which is 

based on rational analysis, REM assumes that the memory 

system is optimally weighing signal and noise, and 

computing the likelihood that the probe has been encountered 

before in order to respond whether a presented item is 

recognized or not.  

REM has been extended to also model various cued recall 

(e.g., Diller, Nobel, & Shiffrin, 2001) and free recall (e.g., 

Lehman & Malmberg, 2013) phenomena. To this end, REM 

was complemented with a trace recovery process, which is 

executed if the global matching process indicates a likely past 

experience with the probe. The current extension of ACT-R 

to include familiarity as a global matching process is similar 

to REM in that (1) it is a dual process model, (2) familiarity 

is a global matching process, (3) recollection is the recovery 

of a single memory trace, (4) whether effort is invested in 

recollection is strategically determined by the familiarity 

signal.  

In addition to these similarities, there are several core 

differences between the two models. First, ACT-R assumes 

that base-level activation decays with time, while in REM 

and its extensions memory decay is generally absent. Second, 

ACT-R assumes that memory traces monotonically increase 

in activation with the number of encounters of the objects or 

events that they represent, while in REM a new trace can be 

created to store the encoded event/object or an already 

existing trace can be updated to store a more complete 

representation of the object. After a certain number of 

presentations, the object is perfectly encoded and no further 

updates of the memory trace(s) takes place. Which of those 

approaches provides a better description of memory 

phenomena is subject to further investigations.  

Limitations of the Current Proposal 

ACT-R’s theory of memory assumes that our memory 

system makes a guess about which items of memory are most 

likely to be needed, what the cost and benefits of retrieval will 

be, and optimally combines those. The current analysis does 

not take into consideration costs and benefits. Yet, this might 

be problematic as the blending process is much more 

computationally intensive than the retrieval process itself: the 

activations of all chunks are computed and inserted into 

Equation 8 and, moreover, the blended value needs to be 

computed. Perhaps one way to alleviate these considerations 

would be to separate the computation of the match score from 

the computation of the blended value. This way the 

familiarity process would only require the computation of the 

match score, which sums chunks activation – values that need 

to be computed for retrieval in any case. Moreover, this 

would make the proposed familiarity process as complex as 

that of any other global matching theory. 

To conclude, the current analysis is limited to only memory 

processes. Yet, neural data indicate that recollection, in 

addition to having a different neural signature than 

familiarity, also includes an additional decision phase (Borst, 

Ghuman, & Anderson, 2016). My analysis does not speak to 

the nature of these decision processes. Future work should 

focus on better understanding them. 
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Appendix 

Here I include the R code used to generate Figures 2, 3, and 

4. The two parameters that I specify are (1) the latency factor 

F and (2) the perceptual-motor time tpm. The precise values 

of these parameters (0.35 s and 0.8 s) were chosen to be 

realistic. Yet, their values do not change the functional form, 

which is what we are ultimately interested in.  

To generate Figure 2, I used the standard ACT-R equation 

(Equations 6 and 7), which assumes a constant RT below the 

threshold τ (here τ is set to 0) and an activation-dependent RT 

above threshold: 

 
F = 0.35; 

t_pm = 0.8; 

RTACTR <- function(A){  

  tau <- 0 

  if (A < tau){ 

    return(F + t_pm) 

  } else { 

    return(F*exp(-A)+t_pm) 

  } 

} 

 

To generate the data for Figures 3 and 4, I the modified 

equation that I propose: 

 
RTACTR_new <- function(A,A_rest){ 

  M <- log(exp(A)+exp(A_rest)) 

  tau <- -M 

  if (A < tau){ 

    return(F*exp(-tau)+t_pm) 

  } else { 

    return(F*exp(-A)+t_pm) 

  } 

} 

 

where Arest is the contribution to the match score of all non-

target items. To generate Figure 3, I assumed that Arest=0, 

while I used values of -10, -2, -1.2, and 0.8 to generate the 

plot in Figure 4.  
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