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Abstract

Studies investigating neural information processing often implicitly ask both, which process-

ing strategy out of several alternatives is used and how this strategy is implemented in neu-

ral dynamics. A prime example are studies on predictive coding. These often ask whether

confirmed predictions about inputs or prediction errors between internal predictions and

inputs are passed on in a hierarchical neural system—while at the same time looking for the

neural correlates of coding for errors and predictions. If we do not know exactly what a neu-

ral system predicts at any given moment, this results in a circular analysis—as has been crit-

icized correctly. To circumvent such circular analysis, we propose to express information

processing strategies (such as predictive coding) by local information-theoretic quantities,

such that they can be estimated directly from neural data. We demonstrate our approach by

investigating two opposing accounts of predictive coding-like processing strategies, where

we quantify the building blocks of predictive coding, namely predictability of inputs and trans-

fer of information, by local active information storage and local transfer entropy. We define

testable hypotheses on the relationship of both quantities, allowing us to identify which of

the assumed strategies was used. We demonstrate our approach on spiking data collected

from the retinogeniculate synapse of the cat (N = 16). Applying our local information dynam-

ics framework, we are able to show that the synapse codes for predictable rather than sur-

prising input. To support our findings, we estimate quantities applied in the partial

information decomposition framework, which allow to differentiate whether the transferred

information is primarily bottom-up sensory input or information transferred conditionally on

the current state of the synapse. Supporting our local information-theoretic results, we find

that the synapse preferentially transfers bottom-up information.
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Author summary

Many neuroscience studies investigate how neural systems, e.g., neural circuits or cortical

areas, process information. Popular theories propose that such systems operate by con-

stantly predicting future sensory inputs from internal models built from previous inputs.

Here, opposing accounts exist on how these predictions and actual inputs are reconciled

to improve future predictions. One popular theory proposes that neural systems make use

of prediction errors to update the internal model, while other theories propose that pre-

dominantly correctly predicted information is used. Testing which of these two strategies

is actually employed by neural systems is conceptually difficult because it requires to

define beforehand when a prediction error should occur and by what changes in the data

such an occurrence should be indicated. This knowledge is typically not available, making

it difficult to test both strategies against each other. Instead, we propose to use informa-

tion-theoretic quantities to make central information processing concepts such as predic-

tions and prediction errors measurable from data, which in turn allows to formulate

testable hypotheses on information processing carried out by neural systems. We demon-

strate our approach on data recorded at retinal synapses of the cat and successfully

describe which of the two processing strategies is used.

Introduction

Predictive coding as a theory arguably dominates today’s scientific discourse on how the cortex

works [1–3]. Importantly, it is positioned as a theory of general cortical function—yet, empiri-

cal tests so far are limited to situations with an explicitly predictive experimental context, sim-

ply to allow for a meaningful analysis. In other words, to find and understand the

neurophysiological correlates of predictions and errors, experiments posit a priori, when and

what is being predicted in which brain region. There are three problems with this approach:

first, knowing what is being predicted when and where in the brain seems to require already a

fair understanding of how the brain, or the cortex, works—which may not generally be avail-

able yet. Second, trying to acquire some of the necessary knowledge post-hoc, runs the real

risk of involuntarily producing a circular analysis or argument, or a “just-so story” (as it is

called e.g. in section 4.1 of [4]). Third, restricting empirical tests of a general theory to experi-

mental contexts that are explicitly designed with predictions in mind, in a strict sense, prohib-

its conclusions about the applicability of that theory in other contexts. One might

provocatively frame this third problems as: “Is the cortex doing predictive coding when we

don’t test it?” Last but not least, the latter restriction to dedicated experimental designs

excludes testing (and possibly refuting) the theory by drawing on the vast majority of empirical

neurophysiological data, i.e., all data that were obtained with a focus on descriptions of cortical

function(s) other than predictive coding, which seems like a waste of available empirical

evidence.

In this paper, we introduce an information-theoretic framework for testing predictive cod-

ing theories by translating the concepts of predictability, predictions, and prediction errors

(surprise) into information-theoretic quantities measurable from data. Based on these infor-

mation-theoretic formulations, we describe how to test by pure information-theoretical means

whether a neural processing element (neuron, or a small circuit) takes part in a predictive cod-

ing-like computation. Our novel method is in principle applicable without knowledge of the

intentions of the experimenter, given some weak constraints on the data themselves. Our

method rests on the simple idea that a neural processing element that codes for prediction
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errors should exhibit high information transfer at moments when its input is surprising (i.e.

fundamentally unpredictable), and vice versa [5]. On the other hand, a processing element

coding for the predictable information in its inputs should exhibit high information transfer at

times when this predictable information is high.

In the following we formalize this idea in the mathematical context of local information

dynamics [6] and partial information decomposition [7].

Methods

Ethics statement

All surgical and experimental procedures were performed with the approval of the Animal

Care and Use Committee at the University of California, Davis. For details see [8].

Local information dynamics

As local information dynamics [6] is a relatively recent subfield of information theory, such

that the inspection of local information quantities is not yet widely applied, we (re-)introduce

these concepts with some detail. In this exposition we try to balance a concise and intuitive

presentation of the material with mathematical rigor, necessarily sacrificing some of the latter.

For a more detailed introduction see [5, 6].

Local mutual information

For the purpose of this study it is best to understand the mutual information, I(X: Y), between

two random variables by stating that if one variable X has information about another variable,

Y, then X and Y can not be statistically independent. This point of view will help to understand

why each individual term, log pðx;yÞ
pðxÞpðyÞ, that contributes to the summation in the mutual informa-

tion:

IðX : YÞ ¼
X

x;y2AX;Y

pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ

; ð1Þ

can be soundly interpreted on its own. By x 2 AX and y 2 AY , we denote individual realiza-

tions of random variables X and Y, and we write p(x) as a shorthand for the probability p(X =

x). We start our explanation with the definition of statistical independence of X and Y as:

pðx; yÞ ¼ pðxÞpðyÞ 8x; y 2 AX;Y ; ð2Þ

meaning that the equation p(x, y) = p(x)p(y) must hold for all pairs of realizations (x, y). If the

above equation is violated for any pair (x, y) then this pair contributes to a deviation from

independence. As per our initial statement on the relation of independence and information,

this pair then also contributes to the information that X holds about Y, and vice versa.

To measure how much independence is violated locally by the pair (x, y), we can take the

ratio of both sides of Eq 2. Now, independence, or the absence of mutual information, is equiv-

alent to:

pðx; yÞ
pðxÞpðyÞ

¼ 1 8x; y 2 AX;Y : ð3Þ

A deviation of this ratio from 1 for any pair (x, y) indicates a deviation from independence,

i.e., the presence of information in the realization of one variable about the realization of the

other. Obviously one would like a measure of this information itself to be zero in the absence
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of information, i.e., at independence. This can be achieved by taking the logarithm of Eq 3:

log
pðx; yÞ
pðxÞpðyÞ

¼ 0 8x; y 2 AX;Y : ð4Þ

Inspecting Eq 4 and comparing to the definition of the mutual information in Eq 1, we now

see that the mutual information is nothing but the weighted average of the individual devia-

tions from independence, measured on a logarithmic scale. More importantly the above deri-

vation of the mutual information demonstrates that each individual term has a well defined

and interpretable meaning. These individual terms define the local mutual information in a

pair of realizations, i(x, y):

iðx : yÞ ¼ log
pðx; yÞ
pðxÞpðyÞ

¼ log
pðxjyÞ
pðxÞ

: ð5Þ

Analogously, the local conditional mutual information between two variables in the context of

a third is given by:

iðx : yjzÞ ¼ log
pðx; yjzÞ

pðxjzÞpðyjzÞ
¼ log

pðxjy; zÞ
pðxjzÞ

: ð6Þ

We note that the local interpretation introduced here is closely related to the way Fano orig-

inally derived the mutual information [9]. In addition, we note that the local mutual informa-

tion and the local conditional mutual information can be negative—in contrast to the

(average) mutual information which is always positive or zero. We will explain this fact in

detail, and make use of it, further below.

Local active information storage as locally predictable information

Using the local mutual information defined above, we can quantify how much of the informa-

tion contained in a process (e.g., a neural signal) at the present moment t is predictable from

its past. We assume that such a process denotes an ordered collection of random variables, X =

{Xt}, with realizations xt 2 AXt
. We then quantify how predictable a single realization, xt, is

from its past in the following way:

lAISðxt : x� Þ � iðxt : x� Þ

¼ log
pðxtjx� Þ
pðxtÞ

;
ð7Þ

where lAIS is shorthand for the local active information storage [10], and x− is a realization of

the (possibly infinite) past of the process up to time t (Fig 1A).

As already mentioned above the local mutual information forming the local active informa-

tion storage need not be positive, i.e.:

lAISðxt : x� Þ < 0 , pðxtjx� Þ < pðxtÞ: ð8Þ

This means that a negative lAIS indicates that the xt that actually happened was less expected

to happen, given the information in the past of the process, x−, than it was expected to happen

without this information about the past. Put differently, the past x− mispredicted the actual

value of xt by allocating the probability mass originally contained in p(xt) to other values in the

conditional distribution. Since we assume that all probabilities, including the conditional

probabilities above, are computed properly, this is a necessary misprediction, not one that

could have been avoided. In other words, negative lAIS indicates unpredictable behavior of the
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process at time t. If we think of the overall process X as the input to a neuron then negative

lAIS at time t means that the neuron must mispredict at t, based on the past of its inputs.

After defining predictability formally via lAIS, we next define how to measure whether

the neuron is transferring mispredicted information onwards (as in coding for prediction

errors) or whether it does not transfer information at those moments when the input is mis-

predicted (as in coding for the predictable input information only). A measurement of how

much information is transferred by a neuron at each moment in time is given by the local

transfer entropy [15].

Measuring transmitted information as local transfer entropy from inputs

to output

The information flowing from input process(es) (e.g., inputs to a neuron), X, to an output pro-

cess, Y, (e.g., output of a neuron) at any moment in time, t, is given by the local transfer

entropy [15] (Fig 1A):

lTEðx� ! ytÞ � iðyt : x� jy� Þ

¼ log
pðytjx� ;y� Þ
pðytjy� Þ

;
ð9Þ

which quantifies the information transferred from the inputs’ past state, x−, about the present

state in Y, yt, in the context of Y’s immediate past state, y−. Again, the lTE can be negative; in

this case the negativity indicates that there is information in the output that is unexpected,

given the past input from X,

lTEðx� ! ytÞ < 0 , pðytjx� ;y� Þ < pðytjy� Þ; ð10Þ

i.e., negative lTE indicates that the yt that actually happened was less expected to happen, given

both the information in its own immediate past y− and the past of the process x− than without

the information in x−. In other words, the past x− mispredicted the actual value of yt given the

information obtained from yt. Similar to lAIS, this misprediction quantifies behavior of the

process Y at time t that is unpredictable from the sources’ past, in the context of the target’s

own past.

Using lAIS we can now quantify locally how predictable the current state of a single process

is from its own past. Secondly, using lTE we can quantify locally, how much information is

transferred from one process to a another. It should be mentioned already that the informa-

tion-theoretic measures do not tell us something entirely removed from other descriptions of

neural activity. Yet, their use allows for a rigorous, quantitative interpretation of biophysical

observations in terms of neural information processing (see the Discussion section).

Next, we detail how relating both measures enables us to address the important issue of pre-

dictive coding.

Local storage-transfer correlations (LSTCs) as an indicator for predictive

processing

Using both lAIS on the input to a neuron and the lTE between its input and its output, we can

now assess whether a neuron performs a predictive-coding like computation [5, 16] (Fig 1B

and 1C). More specifically:

• If a neuron codes for the predictable parts of its input it should have a highly positive local

information transfer lTE from input to output at moments t when the predictability of the
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input as measured by lAIS is high. That is, the correlation between lTE and lAIS should be

positive.

• If, in contrast, a neuron codes for the unpredictable parts of its input, then local information

transfer lTE should be highly positive at moments t when the predictability of the input as

measured by lAIS is very low or even negative. That is, the correlation between lTE and lAIS
should be negative.

The first variant of predictive coding theory has been proposed, for example, in adaptive

resonance theory (ART) [17, 18] or the biased competition model [19, 20]. These theories

assume that the signaling of bottom-up sensory evidence in the cortical hierarchy is facilitated

for sensory input that matches top-down predictions by the current predictive model (Fig 1C).

Fig 1. Overview of analysis approach. A Information-theoretic measures of predictability and information transfer:

active information storage (AIS) quantifies the predictability of a processes’ current state xt from its immediate past x−,

transfer entropy (TE) quantifies the information transfer from a source process X to a target process Y by quantifying the

predictability of the target’s current state, yt from the sources’ past, x−, in the context of the target’s immediate past, y−. B

Local storage-transfer correlations (LSTC) relating local AIS (lAIS) as a measures of predictability and local TE (lTE) as a

measure of information transfer: if a neuron codes for predictable input a positive correlation is expected, if the neuron

codes for unpredictable input, a negative correlation is expected (adapted from [5]). C Realizations of predictive coding

in the cortex (adapted from [11]): bottom-up sensory input (dotted arrows) is compared to predictions propagated in

top-down direction from a hierarchically higher cortical level (solid arrows) that represent the current prior about the

input (white bars). Error coding assumes that bottom-up information represents predictions errors while reliability

coding assumes that bottom-up information represents enhanced input. See main text for details. D Physiology of the

retinogeniculate synapse and recording sites [12, 13]: Recordings were collected from in- and outputs to the synapse

between retinal ganglion cells (RGC) and layer A principal cells (PC) in the lateral geniculate nucleus (LGN). We

estimated local active information storage (lAIS, blue arrow) within the synapse input, and local transfer entropy (lTE,

red arrow) between in- and output of the synapse. Schematic representations of known connections of PC and RGC are

shown in grey (round markers indicate synapses): excitatory cells in layer 6 of primary visual cortex (V1) form feedback

connections with LGN PC and also project to LGN inhibitory interneurons (int) and perigeniculate nucleus (PGN).

Interneurons provide inhibitory input to LGN PC: intrageniculate interneurones (int) mediate feed-forward inhibition

from RGC cells, while PGN cells provide recurrent inhibition [12, 14]; PGN interneurons further form reciprocal,

inhibitory connections amongst each other (dashed line).

https://doi.org/10.1371/journal.pcbi.1011567.g001
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The second variant of theories has been proposed, for example, in [21–23], where it is sug-

gested that bottom-up signals represent prediction errors, i.e., sensory input that is not pre-

dicted by the current internal model (Fig 1C). Here, top-down signals represent predictions

made at a higher cortical area about the next lower area in order to “explain away” sensory

input at the lower area [21–23]. The bottom-up error-signal then represents the part of the

top-down prediction not explained away and thus signals the mismatch between prediction

and input [24]. Both variants have been shown to be functionally equivalent such that an

implementation of predictive coding can be achieved by both [25]. It is an ongoing debate

which of the two proposed strategies neural systems use (see also [26–28], and the Discussion

section).

Note that we here do not measure the predictions made by higher cortical areas directly,

but use the lAIS of the input to the synapse to measure the predictability of the LGN’s input.

We discuss the validity of this choice in detail in the Discussion (Section Quantifying the self-
predictability of neural signals as a proxy for predictions). There, we also explain how the frame-

work can be extended to accommodate additional neural signals that could reflect internal pre-

dictions explicitly made in higher cortical areas.

We want to highlight that the assessment of predictive coding using the above described

local storage-transfer correlation (LSTC, Fig 1B) requires only minimal knowledge on the

experiment that provided the data, namely, it is sufficient to know how to properly assess the

probability distributions involved in the estimation of lAIS and lTE. The approach is thus

applicable to data from a vast range of experiments, including those not specifically designed

with predictive coding in mind. Most importantly, this approach does not require knowledge

on what the brain or a neuron should predict.

Partial information decomposition as a measure of state-dependent and

-independent information transfer

Before we go on to describe how to estimate LSTC from data, we want to introduce the frame-

work of partial information decomposition (PID) [7, 29–32] as a tool to investigate informa-

tion transfer in neural processing in more detail. PID is a recent extension to classical

information theory and has been widely applied in neuroscience (e.g., [5, 33–35]). PID allows

to decompose information transfer measured by transfer entropy (TE) into contributions that

are reflective of the calculation of a “generalized prediction error” versus contributions that

indicate a relaying of predictable information. Such a decomposition can not be obtained

using classical information-theoretic terms such as the (conditional) mutual information [7],

hence, applying PID allows us to obtain additional evidence on whether transferred informa-

tion serves the propagation of prediction errors or predictable sensory input that can not be

obtained from mutual-information-based measures alone.

PID describes how two or more source variables provide information about a target vari-

able, where each source may provide unique information (information that is only available

from this particular source), redundant information (information that is available redundantly

from two or more sources), and synergistic information (information that is only available

when considering two or more input variables together) [7]. Note that in this study, we apply a

non-localized measure of PID [36] (discussed in detail below), and therefore refer to averaged

quantities only (for first proposals of localized PID measures see [31, 37]).

To illustrate how PID can be used to decompose TE [29], we first take a closer look at the

calculation of the TE as the conditional mutual information I(Yt: X−|Y−). Here, conditioning

on the target’s past state, Y−, influences the information the inputs’ past state, X−, provides

about Yt in one of the following manners,
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• in the context of Y−, X− may provide less information about Yt such that I(Yt: X−|Y−)< I(Yt:

X−);

• in the context of Y−, X− may provide more information about Yt such that I(Yt: X−|Y−)>

I(Yt: X−);

• there may be no change in the information provided by X− about Yt, such that I(Yt: X−|Y−) =

I(Yt: X−), i.e., Y’s past is independent of X− and Yt, and knowing Y’s past does not influence

the information we obtain from X− about Yt.

These changes in information contribution may be decomposed and quantified using PID

terms [29]: The first case may be interpreted as scenarios in which information about Yt is

redundantly present in both past states, X− and Y−, such that by conditioning on Y− this

redundant information is “removed” from the information X− provides about Yt. The second

case describes scenarios in which both past states provide synergistic information about Yt,

which is “added” to the information X− provides uniquely about Yt. Note that both redundant

and synergistic information contribution can be simultaneously present in the interaction of

two variables with respect to a third. The third case can be loosely thought of as the informa-

tion X− entering Yt being both, independent of Y− and being encoded into Yt independently of

Y−—thus, it reflects a unique information transfer from X− to Yt. In sum, when calculating TE,

i) we remove redundant information in X− and Y− about Yt, ii) we measure synergistic infor-

mation jointly present in X− and Y− about Yt [29], and iii) we measure the information pro-

vided uniquely by X− about Yt.

State-dependent transfer entropy as generalized prediction error

PID allows us to decompose information transfer from a cell’s inputs, X− to its output Yt, condi-

tional on the target’s past, Y−, into different contributions: We can quantify the information

uniquely provided by X− about Yt, independently of Y−, also termed state-independent TE [29],

and we can quantify the information provided by X− about Yt synergistically with Y−, i.e., depen-

dent on the state of Y−, also termed state-dependent TE [29]. One may think about the latter case

as the target’s past state “decoding” the information transferred from the source to the target.

The computation of state-dependent TE, i.e. the synergistic part of the TE, is of particular

relevance here, as the synergy reflects the computation of a “generalized prediction error”

from the past state of the target cell (the prediction) and the past state of the input (the sensory

evidence) and the error’s transfer by the target neuron. This can best be seen by considering

that the computation of a binary error (e.g., in a spiking neuron) is analog to the XOR opera-

tion and that this operation leads to synergistic information: here, knowing only one input is

not sufficient to know what the output of the system should be—this is only possible if both

inputs are considered at once (see also the Discussion section).

Partial information decomposition measures and estimation

The PID framework as introduced in [7] extends classical information theory to allow for the

decomposition described in the last section and proposes an initial measure of the redundant

information, from which all other PID terms can be calculated. However, more recent work has

criticized this proposal for yielding unintuitive results in some cases. At the time of writing, find-

ing an appropriate PID measure is still an active area of research and a series of alternative mea-

sures has been proposed [30–32, 36, 38, 39]. We here use a measure by Bertschinger et al. that is

based on the unique information [36]. For a detailed discussion of PID, see for example [30].

An implementation for estimating Bertschinger et al.’s measure [36] has been proposed in

[40, 41] and is available as part of the IDTxl toolbox [42].
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Estimation of information-theoretic quantities from data

Typically, in experimental neuroscience the probability distributions underlying observed

data, which are necessary to calculate the quantities introduced above, are unknown and have

to be estimated from data. We will therefore introduce the estimation of local information-the-

oretic quantities and PID terms from data in this section.

The most straightforward approach to estimating (conditional) mutual information from

discrete data (Eqs 7 and 9) is by replacing probability mass functions by the relative frequen-

cies of symbols observed in the data [43]. These so-called “plug-in estimators” are well-known

to exhibit negative bias for finite data, for which analytic bias-correction procedures exist [44,

45]. These bias-correction approaches, formulated for non-local variants of mutual informa-

tion, may be adapted for the use with localized measures to obtain locally bias-corrected esti-

mators of lAIS and lTE (see supporting information S1 Text). Furthermore, statistical testing

against estimates from surrogate data may be applied to handle estimator bias [46, 47] by treat-

ing the estimate as a test statistic compared against a Null-distribution generated from esti-

mates from surrogate data.

Before applying estimators, past states of the time series involved have to be defined. In the-

ory, both AIS and TE quantify the information contained in the semi-infinite past of a time

series up to, but excluding, time point t. In practice, few observed systems actually retain infor-

mation for an infinitely long time, such that most information is contained within the immedi-

ate past of the present system state, Xt [48, 49]. Hence, we can define an “embedding” of the

time series, XS, i.e., a collection of past variables up to a maximum lag, selected such that the

embedding is maximally informative about Xt. In mathematical terms, we define the embed-

ding, XS, such that the Markov property

pðXtjX
SÞ � pðXtjXt� 1; . . . ;X0Þ; ð11Þ

is fulfilled for all Xt. In other words, Xt becomes conditionally independent of all variables

prior to XS.

Several approaches for defining such an embedding exist. We here propose the use of a non-
uniform embedding [50, 51], that selects variables from a set of past candidate variables, C,

such that XS becomes maximally informative about Xt. A suitable algorithm that handles the

computational complexity of selecting this set of variables is a greedy forward-selection strat-

egy that maximizes the information contained in the variable set with respect to Xt using the

conditional mutual information as selection criterion,

C∗ ¼ arg max
C

IðXt : CjXS
i Þ 8C 2 Ci; ð12Þ

where XS
i is the set of variables already selected in the ith step of the algorithm and C are candi-

date variables from the set of candidates Ci. The candidate set is defined as a collection of past

variables up to time point t, C = {Xt−l, Xt−l−1, . . ., Xt−k}, where l k denote a maximum and mini-

mum lag with respect to t. Surrogate testing is used to evaluate whether the selected variable,

C* provides additional information about Xt by testing whether IðXt : C∗jXS
i Þ is statistically sig-

nificant. If so, C* is included into the embedding and removed from the set of candidates,

Ciþ1  CinC∗; ð13Þ

XS
iþ1
 XS

i [ C∗: ð14Þ

For a detailed account of the estimation procedure including a hierarchical statistical testing
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scheme that handles the family-wise error rate of the repeated testing during the iterative can-

didate selection, see [52] and the implementation in [42].

The greedy strategy for constructing past states can be directly applied to find a non-uni-

form embedding of the past of a process X, such that we can estimate lAIS as

lAISðxt : x� Þ ¼ iðxt : xSÞ: ð15Þ

For the construction of past states for lTE estimation, we first optimize the target embed-

ding, yS (which amounts to quantifying the active information storage in the target) [53],

before optimizing the source’s embedding in the context of the target embedding,

C∗ ¼ arg max
C

IðYt : CjfYS;XS
i gÞ 8C 2 Ci; ð16Þ

where sets Ci and XS
i are updated according to Eq 14. We can then estimate lTE as

lTEðx� ! ytÞ ¼ iðyt : xSjySÞ: ð17Þ

By first optimizing the target’s past state, we make sure that we account for all information

Y’s past provides about the current state Yt, before quantifying additional or novel information

X provides about Y. This means that only information actually transferred between X and Y is

taken into consideration when estimating lTE.

We used a software implementation of the proposed approach provided by the IDTxl

Python toolbox [42], which internally makes use of plug-in estimators implemented as part of

the JIDT toolbox [54]. For bias-correction, we used a Bayesian counting procedure imple-

mented in the pyEntropy toolbox [55]. For estimation of PID measures, we used the measure

by Bertschinger et al. [36] and an estimator by Makkeh et al. [40, 41], which is also part of the

IDTxl toolbox. All analysis code has been made publicly available at https://github.com/

pwollstadt/retinogeniculate_synapse/ [56].

Empirical data set

We demonstrate the application of the proposed local information dynamics framework on

spike train recordings from the retinogeniculate synapse of the cat. Spike trains were recorded

from 17 retinal ganglion cells (RGCs) and monosynaptically coupled principal cells in the lat-

eral geniculate nucleus (LGN) [8]. We estimated lAIS in the input to the synapse, i.e., the RGC

spike train, and lTE between the input and the output of the synapse, i.e., from the RGC to the

LGN spike train (Fig 1D). We calculated LSTC to test whether information was preferentially

transferred whenever the input signal was predictable or when it was non-predictable. To sup-

port our analyses, we additionally used PID to decompose the information transferred into

contributions reflecting the transfer of sensory input versus contributions reflecting the trans-

fer of prediction errors.

A detailed description of surgical procedures, task, and data recordings can be found in [8].

Surgery. For electrode placement at the RGC and LGN (Fig 1D), adult cats of both sexes

were initially anesthetized with ketamine (10 mg/kg, i.m.). For electrophysiological recordings,

animals were placed in a stereotaxic apparatus and mechanically ventilated. Electrocardiogram

(ECG), electroencephalogram (EEG), and expired CO2 were continuously monitored, while

anesthesia was maintained with thiopental sodium (2 mg � kg−1 � h−1, i.v.). Thiopental adminis-

tration was increased if physiological monitoring indicated a decrease in the level of anesthesia.

Once electrodes were positioned and minimum eye movement was ensured, the animal

was paralyzed using vecuronium bromide (2 mg � kg−1 � h−1, i.v.). The pupils were dilated with

1% atropine sulfate and the nictitating membranes were retracted with 10% phenylephrine.
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Flurbiprofen sodium (1.5 mg/h) was administered to ensure pupillary dilation. The eyes were

fitted with contact lenses and focused on a monitor located 1 m in front of the animal.

Visual task. Visual stimuli were created with a VSG 2/5 visual stimulus generator (Cam-

bridge Research Systems) and presented on a gamma-calibrated Sony monitor with mean lumi-

nance of 35 cd/m2. Receptive fields were mapped using a binary white-noise stimulus that

consisted of a 16 × 16 grid of squares [57]. Each square flickered independently between black

and white according to an m-sequence [57, 58]. The monitor ran at a frame rate of 140 Hz.

Approximately 4 to 16 squares of the stimulus overlapped the receptive field center of each

neuron.

Electrophysiological recordings. Simultaneous single-unit recordings were conducted at

the RGC and the contralateral layer A LGN cells. To maximize the chances that both cells were

monosynaptically connected, a seven-channel multielectrode array (Thomas Recording) was

placed in the LGN; through stimulation with a spot of light, the retinal area with the highest

evoked response was identified. Cell responses were analyzed using an audio monitor.

Neural responses were amplified, filtered, and recorded with a Power 1401 data acquisition

interface and the Spike 2 software package (Cambridge Electronic Design). The spikes of indi-

vidual neurons were isolated using template matching, parametric clustering, and the presence

of a refractory period in the auto-correlogram.

Recordings from 17 cell pairs entered further analysis. Recordings had an average length of

788.4 s (± 441.6 s SD, see supporting information S1 Table).

To assert connectivity between recorded cells, the cross-correlogram between both record-

ings was visually inspected for abrupt, short-latency peaks using a bin-size of 0.1 ms (see [8],

Fig 1). The occurrence of such a peak was seen as evidence for a monosynaptic connection

between RGC and LGN cell [59–61]. For peaks a baseline mean was calculated from bins 30

ms to 50 ms on either side of the peak bin. The peak bin and all neighboring bins with

counts >3 SD were considered to contain retinal spikes triggering an LGN spike. The percent-

age of these spikes was termed the efficacy of the RGC [60–62]. Furthermore, an RGC’s contri-
bution was defined as the percentage of LGN spikes that were triggered by a spike in the

corresponding RGC. Contribution may be interpreted as the “strength of connection” between

two cells in a pair [8]. We called an RGC spike relayed if it was followed by a LGN spike after

its reconstructed information transfer delay, u (see next section).

For further analyses recorded spike trains were binned into 1 ms segments.

Estimation of lAIS and lTE from empirical data. We optimized nonuniform past-state

embeddings for each cell pair recording using the greedy algorithm implemented in [42]. For

lAIS estimation, we set the maximum lag, j, defining candidate variables for the embedding to

30 ms; for lTE estimation, we set the maximum lag in the source, k, to 40 ms and the maximum

lag in the target, l, to 30 ms. These lags assume that only spikes with an inter-spike interval

(ISI) of 30 ms and less are relevant for triggering a LGN spike [59, 60, 63–66], where especially

ISIs<10 ms are effective in driving LGN responses.

For optimizing the lTE target past, we additionally accounted for a information-transfer

delay, u, between RGC and LGN of up to 10 ms, which is in line with the cross-correlation

observed between spiking in RGC and LGN [8]. We reconstructed u from the optimized

embedding by identifying the lag of the past source variable that had the highest information

contribution to the target’s current state, quantified by the conditional mutual information I
(xu: yt|xS\xt−u)

û ¼ arg max
u

Iðyt : xt� ujfy
S;xS n xt� ugÞ 8xt� u 2 Xs: ð18Þ
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LSTCs calculation for empirical data. To investigate whether the retinogeniculate syn-

apse preferentially transferred predictable or unpredictable information, we correlated sam-

ple-wise estimates of lAIS and lTE by calculating the Pearson correlation coefficient between

both measures. Note that we may also calculate measures that capture relationships of higher

order, e.g., the mutual information. However, since our goal was to infer whether the sign of

the correlation was positive or negative, we calculated the linear correlation. Tests for statistical

significance were performed using a permutation test with 1000 permutations.

Results

Optimization of estimation parameters

For estimation of local information-theoretic measures, we first optimized past states for lAIS
and lTE estimation individually for each cell pair. Over all cell pairs, the mean lag of variables

identified for the lAIS embedding was 7.63 ms (SD: 1.82 ms), and for lTE embedding was 2.75

ms (SD: 1.24 ms) for the source and 6.06 ms (SD: 1.53 ms) for the target embedding. The

reconstructed delay, u, between the RGC and LGN cell was on average 2.81 ms (SD: 1.05 ms),

while individual delays matched maxima in the cross-correlogram between RGC and LGN

recordings. (Supporting information S1 Table provides descriptive statistics of data entering

the analysis, and supporting information S2 Table lists all estimated parameters).

LSTC

Based on the optimized past states, we estimated lAIS and lTE for all cell pairs and found sig-

nificant storage and transfer in all pairs except for pair 5, which was excluded from all further

analyses. For remaining cell pairs, we calculated the LSTC and found a significant, positive

correlation coefficient for 14 of the remaining 16 pairs, indicating that local information trans-

fer was higher at samples with higher local information storage (coefficients ranged from

0.0056 to 0.2675, see supporting information S3 Table for all correlation coefficients). With

respect to predictive coding strategies, the positive LSTC indicates a higher transfer of infor-

mation whenever an input sample was more predictable from its past, and less transfer when it

was unpredictable. To demonstrate that also negative LSTCs are in principle possible, we show

analyses for a simple toy example as supporting information S2 Text.

We further found that correlations were stronger in cell pairs with a high RGC contribution
(Fig 2, c(LSTC, contribution) = 0.6879, p = 0.0030**). In a cell pair, the RGC’s contribution is

defined as the percentage of spikes in the LGN cell that were triggered by a previous spike in

the RGC and may be interpreted as the pair’s “strength of connection” [8]. Hence, the effect of

predictable information being relayed across the retinogeniculate synapse was more pro-

nounced in synapses that were more strongly connected. Estimates of the contribution of each

cell pair were taken from [8].

State-dependent and state-independent information transfer

Additional to LSTCs, we estimated unique information in the RGC past, Iunq(Yt: XS), and syn-

ergistic information in the RGC and LGN pasts, Isyn(Yt; XS, YS), about the spiking behavior of

the LGN principal cell [36, 40] (Fig 3). In 11 out of 16 cell pairs with significant information

transfer, the unique information provided by the RGC’s past state, XS, dominated the informa-

tion transfer from RGC to LGN. Hence, information transfer was governed by information

transfer independent of the state of the LGN’s past state. Again, this supports the notion of

information transferred mainly in a bottom-up fashion, i.e., transfer independent of the target
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cell’s state. There was no correlation between the magnitude of the unique or synergistic infor-

mation and the LSTC.

Information dynamics of relayed and non-relayed RGC spikes

The remaining results relate the estimated lAIS and lTE to spiking statistics of the raw spike

trains. We performed these analyses to demonstrate that our results are plausible given the bio-

physiological mechanisms underlying the activity at the retinogeniculate synapse.

First, we investigated whether relayed RGC spikes differed in their local information

dynamics from non-relayed spikes. An RGC spike was considered a relayed spike if it was fol-

lowed by an LGN spike with the reconstructed information transfer delay, u, while all other

RGC spikes were considered non-relayed. For all analyzed pairs, only a fraction of spikes was

relayed. Fig 4 shows two-dimensional histograms of lAIS and lTE values for four representative

Fig 2. Correlation between contribution and local storage-transfer correlations (LSTC) for all spike pairs. LSTC

was stronger for cell pairs with higher contribution (percentage of LGN spikes triggered by an RGC spike), i.e.,

synapses that were more strongly connected.

https://doi.org/10.1371/journal.pcbi.1011567.g002

Fig 3. State-dependent and -independent information transfer from RGC to LGN cell. State-dependent and

-independent information transfer from RGC to LGN cell, measured by the synergistic information, Isyn(Yt; XS, YS)

(dark gray), and unique information, Iunq(Yt; XS) (light gray). In 11 out of 16 pairs, more than half of the transferred

information was independent of the LGN cell’s past state.

https://doi.org/10.1371/journal.pcbi.1011567.g003
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cell pairs. Histograms are shown for all spikes, as well as only for relayed and non-relayed

spikes, respectively.

On average, relayed RGC spikes were accompanied by higher lAIS and lTE compared to

non-relayed spikes (Figs 4 and 5). Results indicate that, first, relayed spikes were in general

more predictable from the RGC’s cells immediate past spiking behavior. Second, relayed spikes

were accompanied by higher local information transfer, while non-relayed spikes were accom-

panied by negative local information transfer. Negative lTE here means that for some cell

pairs, in the absence of an LGN spike, the RGC’s state (spike) was misinformative about the

next state of the LGN (no spike). In other words, observing a prior RGC spike lowered the

probability of observing no spike in the LGN.

Relayed spikes were characterized by both higher lAIS and lTE values. We were able to clas-

sify whether a spike was relayed from its lAIS value above chance, using a k-nearest neighbor

classifier with k = 5 (classification accuracy was also higher than the baseline model, see sup-

porting information S4 Table). However, note that lAIS may be seen as a different representa-

tion of spiking statistics of the RGC, i.e., the number of spikes and ISI in a given time window

Fig 4. Local storage-transfer correlations (LSTC) for exemplary cell pairs. Histograms of LSTC for representative

cell pairs with highest (pairs 10 and 11) and lowest (pairs 12 and 15) contribution, respectively. The first column shows

histograms for all spikes, the second column for relayed spikes, and the third column for non-relayed spikes. An RGC

spike was considered relayed to the LGN if it was followed by an LGN spike with the delay reconstructed during lTE
estimation. Rows show individual cell pairs. Relayed spikes showed positive lTE and generally positive lAIS, while non-

relayed spikes led to zero or negative lTE and lower lAIS.

https://doi.org/10.1371/journal.pcbi.1011567.g004
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(as can be seen, for example, when considering spike-triggered averages of lAIS and RGC

spike counts in Fig 5). As a result, whether a spike was relayed could be equally well predicted

from the spike count of all spikes up to 30 ms prior to an RGC spike, or the RGC spike’s prior

ISI (see supporting information S4 Table). We therefore want to highlight that the estimation

of lAIS provides no additional, mechanistic explanation on when a spike is relayed at the reti-

nogeniculate synapse—it rather provides a computational interpretation of the mechanisms

already known (see also the Discussion section).

Information dynamics of inter-spike intervals

Last, we investigated the local information dynamics of RGC and LGN spikes as a function of

the preceding ISI, as ISIs have been reported to have an effect on whether an RGC spike drives

Fig 5. Information dynamics of relayed versus non-relayed RGC spikes. An RGC spike was considered relayed to the LGN if it was followed by

an LGN spike with the delay reconstructed during lTE estimation. Relayed spikes were accompanied by higher lAIS than non-relayed spikes. Also,

relayed spikes led to high lTE in comparison to non-relayed spikes. A–C Spike-triggered average (STA) for lAIS values (A all RGC spikes, B relayed

spikes, and C non-relayed spikes); D Mean lAIS for relayed and non-relayed RGC spikes, for each cell pair. lAIS was higher for relayed (dark blue)

than for non-relayed (light blue) RGC spikes (p< 0.001*** for a permutation test with 1000 permutations). E–G STA for lTE values (E all RGC

spikes, F relayed spikes, and G non-relayed spikes); H Mean lTE values for relayed and non-relayed RGC spikes, for each cell pair. lTE was higher

for relayed (dark red) then for non-relayed (light red) RGC spikes (p< 0.001*** for a permutation test with 1000 permutations). I–K STA of RGC

spike trains (I all RGC spikes, J relayed spikes, and K non-relayed spikes). Relayed RGS spikes were more often preceded by a spike than non-

relayed spikes. L–N STA of LGN spike trains, aligned with corresponding RGC spike train with respect to the reconstructed delay (L all RGC spikes,

M relayed spikes, and N non-relayed spikes). As expected, relayed RGC spikes were always followed by an LGN spike, while this was not generally

the case for all spikes.

https://doi.org/10.1371/journal.pcbi.1011567.g005
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a response in the corresponding LGN cell [59, 60, 63–66]. We calculated ISIs by subtracting

the spiking times of all consecutive spikes in the RGC spike train (Fig 6A).

Average lAIS was positive for RGC spikes with a preceding ISI of 2 ms to 7 ms, with a maxi-

mum at 3 ms. The lAIS was negative for all other investigated ISIs (Fig 6B). Hence, the most

frequent ISIs lead to higher predictability of the spike. When differentiating between relayed

and non-relayed RGC spikes, lAIS was positive for ISI of 1 ms to 6 ms for relayed spikes while

the range of positive lAIS values for non-relayed spikes was 2 ms to 7 ms. Overall, relayed and

non-relayed spikes did not differ in lAIS as a function of ISI (Fig 6D). lTE was positive over the

whole range of investigated ISIs (Fig 6C). However, when differentiating between relayed and

non-relayed spikes, lTE was negative on average for all ISIs for non-relayed spikes with a mini-

mum at 2 ms (Fig 6E).

We further investigated RGC spike tuples, because whether RGC spikes are relayed is

mostly influenced by the most recent previous spike while events further in the past have only

Fig 6. Information dynamics of inter-spike intervals (ISI). Predictability of the RGC spike train, measured by lAIS,

was highest for spikes with the most frequent preceding ISI. Information transfer across the synapse, measured by lTE,

was also highest for RGC spikes with the most frequent preceding ISI. While predictability was high for relayed and

non-relayed RGC spikes, information transfer was only high for relayed spikes. A Distribution of ISI pooled over all

cell pairs (maximum at 2 ms). B Distribution of ISI for relayed RGC spikes, pooled over all cell pairs (maximum at 2

ms). C Mean lAIS at RGC spike as a function of the preceding ISI (maximum at ISI = 3 ms, dashed vertical line, shaded

area indicates ±1SD); D Mean lTE at RGC spike by preceding ISI (maximum at ISI = 2 ms, grey vertical line, shaded

area indicates ±1SD); E Mean lAIS at relayed (dotted line) and non-relayed (dashed line) RGC spikes as functions of

the preceding ISI (maxima at ISI = 3 ms for relayed spikes, dotted vertical line, and at ISI = 3 ms for non-relayed

spikes, dashed vertical line, shaded area indicates ±1SD); F Mean lTE at relayed (dotted line) and non-relayed (dashed

line) RGC spikes as functions of the preceding ISI (maxima at ISI = 2 ms for relayed spikes, dotted vertical line, and at

ISI = 38 ms for non-relayed spikes, dashed vertical line, shaded area indicates ±1SD).

https://doi.org/10.1371/journal.pcbi.1011567.g006
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minor influence [60]. Tuples are defined as two spikes with an ISI below a given threshold and

a “silence time” preceding the first spike to ensure a comparable level of prior activity [60]. We

here used a silence time and maximum ISI of 20 ms, which covers the maximum history length

used in the estimation of lAIS and lTE (supporting information S2 Table), such that spikes

with a prior ISI >20 ms did not influence lAIS and lTE estimates.

We computed spike triggered averages (STA) of lAIS and lTE values for spike tuples (two

consecutive spikes with an ISI <20 ms, Fig 7). On average, the first spike in a tuple was associ-

ated with negative lAIS, indicating that the spike’s immediate past, i.e., the silence time, was

misinformative about the spike. For an ISI of 3 ms to 7 ms, the second spike was associated

with increased lAIS, relative to the average lAIS in the silence time, indicating high predictabil-

ity from the immediate past. On average, lTE values were slightly increased for the first and

second spike in a tuple, with higher values for the second spike. In sum, the predictability of an

RGC spike strongly dependent on prior spiking activity, with higher predictability if the ISI

was between 3 ms and 8 ms.

Fig 7. Spike-triggered averages (STAs) for spike tuples. STAs for spike tuples with a silence time of 20 ms and inter-

spike interval (ISI) up to 20 ms (aligned on first spike in a tuple). Left column shows lAIS values averaged over cell

pairs for ISI of 1 ms to 10 ms, right column shows averaged lTE values (shaded areas indicate ±1SD). The lTE values

are shifted by the individual delay between RGC and LGN cell for each pair such that a spike at index t = 0 indicates a

transferred spike with a delay corresponding to the reconstructed information transfer delay. The predictability of the

second RGC spike in a tuple, measured by the lAIS, was high for ISI from 3 ms to 7 ms, while first spikes in a tuple

were unpredictable as indicated by no or negative lAIS. Information transfer measured by lTE was high for all RGC

spikes with highest values for the second spike in a tuple.

https://doi.org/10.1371/journal.pcbi.1011567.g007
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Discussion

We introduced an information-theoretic framework for testing predictive coding strategies in

neural data. The framework expresses predictive coding concepts, namely predictability, pre-

dictions, and prediction errors, in terms of information-theoretic quantities, which can be

immediately estimated from data. Hence, the framework does not rely on markers of predic-

tive coding that have to be defined a priori, but on properties of the data itself. As a result, the

framework enables the investigation of neural processing strategies in any data set, indepen-

dently of the experimental task under which the data were collected. We applied the frame-

work to spike recordings from the retinogeniculate synapse of the cat and identified the

preferred coding strategy of the synapse, namely, the transfer of predictable over unpredictable

input.

Evidence for coding for predictable input found at the retinogeniculate

synapse

We applied the proposed local information dynamics framework to investigate which of two

alternative predictive coding strategies were used at the retinogeniculate synapse. In particular,

we tested, whether the synapse coded for unpredictable or surprising input and transferred

prediction errors (e.g., [21–24]), versus the synapse coded for predictable input and transferred

sensory input matching top-down information (e.g., [17, 18] or [19, 20]). Currently, it is an

area of active research which of the two proposed strategies neural systems use. Both strategies

have been shown to be equivalent on a functional level (they use the principle of predictive cod-

ing to realize perception and action in the cortex), while they differ on an algorithmic level
[67], and as a consequence in their implementation. Spratling and colleagues showed that both

strategies are equivalent in their ability to realize predictive-coding-like information process-

ing in artificial neural networks [25]. This was supported by Kveraga et al. [26], who suggest

that different realizations of predictive coding theory could be easily accommodated by a

computational model of top-down and bottom-up information processing presented in [27]

(see also [28] for a further comparison of theories on top-down activity).

Here, our framework presents a novel way to test which processing strategies are used by

neural systems. Applying the proposed framework, we found that the retinogeniculate synapse

preferentially coded for predictable input. In 15 of 17 investigated cells, local predictability of

the input correlated positively with local information transfer between input and output indi-

cating the preferential transfer of predictable input. Also, we found that RGC spikes were

more efficient in driving an LGN response if they were highly predictable from their immedi-

ate past. Lastly, using PID [7, 36], we showed that predominantly unique information in the

RGC was transferred in most of the investigated cell pairs, which indicates that primarily sen-

sory evidence rather than evidence of prediction errors was transferred across the synapse (dis-

cussed in detail in Section Quantifying prediction errors in neural signals).

Local information dynamics as a semantics-free approach to investigating

neural computation

Avoiding circular arguments in the investigation of predictive coding theory. We pro-

pose a framework that is applicable to data collected also from experiments not specifically tai-

lored to investigate predictive coding. One key motivation for such a framework was to avoid

the use of circular arguments where the researcher’s assumptions on what inputs the brain

should predict are used to design stimuli and paradigms, that are then used in neurophysiolog-

ical experiments to test whether and how the brain predicts these inputs (compare, for
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example, previous studies investigating the facilitation of predicted input over the propagation

of prediction errors [19, 68–70]). As a result, the experimenter’s interpretation of neural activ-

ity becomes dependent on the a priori defined theory motivating the experimental setup and

the expected manifestation of a prediction error in the data (see also [4, 71–73]). This motiva-

tion is based, not least, on the difficulties we experienced ourselves when designing and per-

forming predictive coding experiments, and interpreting the data (e.g. in [74]). However, we

do not want to suggest that all experiments necessarily suffer from these difficulties. Rather, we

fully acknowledge that in some cases the necessary knowledge to carefully design non-circular

predictive coding experiments will be available. However, we are concerned that this is not the

case in general.

The problem of “interpreting” neural activity in terms of predictions or prediction errors

becomes even more severe if arbitrary processing elements in the cortex are investigated in iso-

lation, e.g., single cells, whose computations, as well as input and output are far removed from

any human-understandable function (i.e. we have to treat it as “intrinsic computation” in the

sense of [75]). Here, an approach is required that analyzes signals not from an “experimenter-

as-receiver”, but a “cortex-as-receiver” or “neuron-as-receiver” point of view [76]. The former

view assumes that neural signals at arbitrary processing stages carry human-understandable

information—which may express a misleading view on information processing in the brain in

general—, while the latter view considers the question of how other processing units in the cor-

tex view available information.

Here, local information dynamics allow the investigation of computations performed by

arbitrary processing units as they allow to immediately express information processing con-

cepts without relying on the interpretation of the recorded data in terms of the experimental

task performed. Instead, the concepts expressed become measurable properties of the data and

allow to formulate testable hypotheses about competing processing strategies. In sum, the pre-

sented approach allows for a straightforward testing information-processing strategies in arbi-

trary neural systems, and opens up the possibility of testing predictive coding theories on data

from a myriad of neurophysiological experiments not initially designed with predictive coding

in mind. In the following we will discuss the formulation of predictive coding concepts in

terms of information-theoretic quantities in more detail.

Quantifying the self-predictability of neural signals as a proxy for predictions. We

quantified the self-predictability of the input signal to the synapse in order to quantify what

portion of the signal was predictable from its own immediate past. We used this predictability

as a proxy for measuring and quantifying an actual prediction of the synapse’s input from all

available inputs (e.g., through feedback connections from the cortex to the LGN principal cell,

etc.).

As the (local) AIS is a relatively novel concept in the analysis of neural information process-

ing, a few words on its interpretation and validity in a biological context are necessary.

We would like to start by helping the reader to understand how this analysis is unaware of

what part of the external world is being encoded in the neural spike train—and why this

approach is nevertheless useful. As our approach only considers neural signals, and not the

state of the outside world that caused them, concerns may arise for example about losing the

distinction between task-relevant information encoded in spikes and task-irrelevant “noise

spikes”, and also about losing information on the relevance of the inputs for the organism as a

whole. However, this information is also not available directly to the neurons under study—it

only becomes available to these neurons if it is provided via additional neural signalling—

which we can indeed take into account in our approach. In other words, our approach can in

principle consider information about signal versus noise, relevance, and other aspects of out-

side-world information, as long as this information is actually made available to the neurons
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under study by signalling from other neurons. (In the present experiment most additional

influences, e.g. from cortical feedback, will possibly be negligible due to the anesthetized state

of the animal, and the random nature of the stimulus.) This generality of our approach may be

potentially overlooked as our proof-of-principle analysis focused on a single (dominant) input

spike train. However, additional neural sources N of information useful for the prediction of a

neural signal S, such as feedback from higher cortical areas, can be easily incorporated into the

definition of the predictable information in S via considering the joint mutual information,

defining the predictable information as pAIS:

pAIS ¼ iðSþ : S� ;N � Þ; ð19Þ

reflecting the predictable information in S+ provided by both, the past of the additional neural

information sources N, N−, and the past state of S, S−, jointly. A specific application of pAIS is

discussed in Section Potential influences of anesthesia on cortical feedback and predictive cod-
ing, below.

With respect to interpreting the predictability implied in our approach, it is also important

to consider which potential sources of predictability exist and in what respect the origin of

predictability matters. In the neural spike train itself, there are in general two possible sources

of predictability: first, predictability arising from temporal statistical dependencies in the input

to the organism, and second, internally generated temporal dependencies arising somewhere

along the pathway to the receiving neuron of interest. Does one of these matter more than the

other? To answer this question it makes sense to take the point of view of this neuron receiving

the spike train. This neuron, throughout its existence has received nothing but the incoming

spikes, and has no access to any “ground-truth” about the outside world, and temporal regular-

ities in this outside world. So from a neural information processing perspective, the above dis-

tinction must vanish. Thus, for the analysis framework presented here, it does in principle not

matter whether the stimulus input to the retina was predictable or not; all that matters is

whether the incoming spike train from the retina was predictable at the level of the LGN. So

from a neuron-centric perspective an analysis without the stimulus properties seems to us to

reflect the circumstances a neuron finds itself in.

Nevertheless, we acknowledge that the proof-of-principle analysis presented here is an

extreme case of application: The random stimuli lack all predictability, except for the short

life-time of a video-frame. Thus, any predictability in the spike time series is internally gener-

ated in the retina. As a consequence, one may ask whether our analysis—although technically

sound—is truly relevant, and whether the example analyzed here supports a more general

applicability. For two reasons we think this is indeed the case—first, AIS must certainly further

rise in all processing stages close to a predictable stimulus—compared to the unpredictable

one used here, thus increasing the signal-to-noise ratio relevant for its estimation; second for a

neuron receiving a spike train, it will essentially be difficult to distinguish internal from exter-

nal sources of predictability in that spike train—at least without resorting to information from

other (neural) channels.

A last important point is that using the AIS as a proxy for the predictability of an input sig-

nal introduces two more approximations: The first approximation is that AIS as a mutual

information is used in place of an actual predictive model for the RGC inputs embodied in the

organism. This mutual information is an upper bound on the mutual information between

any model prediction based on the RGC inputs and the actual future samples of a time series.

This holds under the further assumption that we choose the input’s past state for the estima-

tion of AIS such that we indeed capture all relevant statistical regularities. In theory, the AIS is

defined as the mutual information between a processes’ present state and its semi-infinite past
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[10]. Hence, in practice one has to find a suitable, finite embedding that covers only the rele-
vant past [10, 49, 50]. Such an embedding is found through the approach used here, where we

optimized a non-uniform embedding that covered a time horizon of 30 ms, which was identi-

fied in previous work as the time horizon over which spikes affect future spiking behavior of

the RGC [59, 60, 63–66].

The second approximation introduced in our analyses relates to the practical estimation of

the lAIS from spike trains. With limited data, this can lead to biased results, either by overesti-

mation for the case of severely limited data availability or by underestimation if the analyzed

history length is artificially shortened to curb “curse of dimensionality” problems in the esti-

mation (see also [77]). Given the large amount of data available here we do not consider this

limitation to apply.

Quantifying prediction errors in neural signals. We can use predictability not only as a

proxy for the prediction of an input signal, but also as a proxy for inevitable prediction errors: If

the input’s predictability is low for certain events, and thereby its lAIS,—according to our first

assumption above—any reasonable model predicting the synapse’s next state from this input

must generate a prediction error—simply by virtue of reflecting the underlying probabilities.

As a second approach to quantifying prediction errors, we proposed to calculate the syner-

gistic portion of the information transfer between the synapse’s in- and output, using the

recently proposed PID framework. In particular, we propose that high synergistic information

between the RGC’s past state and the LGN cell’s past state about the LGN cell’s next state

reflects transmission of a prediction error. This is because if the target cell’s next state reflects a

prediction error, both inputs must be known to compute the output as they contribute to the

computation of that next state: the past state of the input cell, providing the sensory evidence,

and the past state of the target cell, providing the prediction. The error would then be com-

puted from comparing the two inputs, leading to a response if there was a mismatch between

the two states. Technically, for single spiking events, perfectly determining the occurrence of a

prediction error is equivalent to a binary XOR operation, which leads to purely synergistic

information between the two inputs and the output, according to PID theory (see e.g. [78] on

the exact definition of synergy). While it is also well known that single neurons can only

approximate a binary XOR, this would still lead to considerable synergistic information. Con-

versely, if the information transfer across the synapse served the propagation of predictable

information, we would expect low synergistic information and some unique information in

the input about the output (in a process similar to a binary AND operation). The latter sce-

nario is in line with our empirical findings, indicating that the input to the synapse provided

unique information about the next state of the target cell (observing a spike in one source

increases the probability of observing a spike in the output).

Quantifying information transfer between neural signals. We estimated information

transfer across the synapse using TE, which serves as a natural measure of information transfer

serving predictive coding, because it quantifies the transfer of novel information from input to

output of the receiving cell. As discussed in the previous section, the measured transfer consid-

ers both information uniquely provided by the synapse’s input, and information transferred

due to synergistic effects between the input’s and the target cell’s past states.

Next, we will review how our information-theoretic results relate to possible biophysical

implementations of the computations performed.

Linking information-theoretic results to biophysiology

Biophysiological mechanisms underlying LSTCs. We found that information transfer

was highest for highly predictable RGC spikes and that these input spikes were typically
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preceded by another input spike with a short advance. Our findings are in line with previous

studies showing that RGC spikes with a preceding spike were more effective in driving an

LGN response than single spikes [8, 60, 64, 66, 79], and that this efficacy was even higher for

ISI<10 ms [60, 64–66, 79–81].

It has been hypothesized that double spikes are important to enable temporal summation at

the post-synaptic membrane: Carandini and colleagues [82] presented a model of the retino-

geniculate synapse in which information transfer was governed by temporal summation of

pre-synaptic excitatory postsynaptic potentials (EPSP). Here, EPSPs remained approximately

constant or even increased for smaller ISI. Hence, the dominant biophysical mechanism

enabling information transfer at the synapse seemed to be post-synaptical summation rather

than a change in pre-synaptic conditions due to enhanced spike-rates. This fits with the LGN’s

limited ability to integrate spikes over large time windows, where the typical time constant for

X- and Y-cells in the LGN is measured to be 15 ms to 22 ms [83]. The cells’ true ability to per-

form temporal summation may be even lower because the time constant may not be a suitable

measure of the ability for temporal integration under real-world conditions [84]. Temporal

summation as a mechanism is further supported by the fact that LGN principal cells receive

input from just a small number of RGCs of which one is typically the main driver [65, 85].

Also, single RGC cells are able to drive the target LGN principal cell [60, 63, 64, 66, 80], such

that population coding is an unlikely mechanism for the information transfer at the retinogen-

iculate synapse. Last—as was noted by Rowe and colleagues—contribution rises strongly

under “structured” visual stimulation [64].

In sum, temporal summation over incoming spiking activity on short time-scales is a likely

mechanism for driving information transfer from RGC to LGN principal cells. Our findings

are compatible with this mechanism, as information transfer was highest for the second RGC

spike in tuples with short ISI. This second spike also was highly predictable from past activity,

explaining the observed LSTCs based on the above biophysical mechanism. Furthermore, we

found predominantly unique information transfer from RGC to LGN, which is in line with the

fact that almost all LGN spikes are triggered by an RGC spike [8, 80].

We conclude that our proposed framework yields results that have a plausible mechanistic

explanation on the biophysiological level—yet, the framework adds an explanatory layer to the

mere biophysiological description by casting information contained in the synapse’s spiking

statistics into a quantitative and human-interpretable form. Indeed, our finding of a preferen-

tial transfer of predictable input sheds an interesting light on the findings in [8]: predictable

input to the LGN cells (spike tuples) is produced when an RGC cell is stimulated by its pre-

ferred input. Thus, the signals relayed by LGN cells are strongly representational in nature,

rather than differential.

Potential influences of anesthesia on cortical feedback and predictive coding. In our

analysis, we used recordings from animals under anesthesia, which may affect our results due

to the well-known change in information transfer under anesthesia, predominantly in top-

down direction [86–91]. Under anesthesia top-down information transfer from V1 to the

LGN is very likely reduced. V1 affects LGN function via direct and indirect connections (e.g.

[12, 14, 92]), whose functional role may vary between facilitation and suppression of LGN

spiking [92, 93]. As a result, the algorithm embodied by the retinogeniculate synapse may

change if the cortex is active during recordings.

However, investigating information processing at the retinogeniculate synapse while V1 is

active would allow us to integrate recordings from V1 as second input to the LGN into our

analysis. This approach is an alternative to quantifying prediction errors by measuring infor-

mation storage in the RGC input alone, circumventing the limitations discussed above. As laid

out above in Eq 19 our framework is easily extendable to include additional sources. For our
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test case such additional sources of information could for example come from area V1. If V1

signals were available these could be included by defining the predictable information that the

RGC and V1 jointly provide about the RGC input spike train to the LGN as:

pAIS ¼ iðRGCþ : RGC� ;V1� Þ: ð20Þ

Similarly, the PID-based analysis of predictive coding strategies can be adapted: if the syn-

apse coded for prediction errors, we would expect information transfer only in case of a mis-

match between top-down input from V1 and bottom-up input from the RGC. Hence, the

LGN should spike whenever it received a spike exclusively in the top-down signal or in the bot-

tom-up signal. This is measured by the synergistic information, Isyn(LGN+: RGC−, V1−). If the

synapse coded for predictable input, we would expect information transfer in case of matching

inputs, i.e., the LGN should spike whenever it received a spike in both input signals. This is

measured by the shared information, Ishd(LGN+: RGC−, V1−).

Considerations on cortico-cortical predictive coding and on scaling the

current approach to neural populations

We remark that the results from the subcortical visual system presented here should not be

seen as a refutation of predictive coding theories that propose the signaling of errors as a gen-

eral information processing principle in the neocortex [21–23].

The analysis presented here relied on the fact that we were able to record the relevant inputs

and outputs of a single neuron in a subcortical system. When transferring our analysis frame-

work to cortico-cortical predictive coding, we face two difficulties: first, it will become next to

impossible to cover all relevant inputs to a neuron with sufficient spatio-temporal resolution

(although some in-vivo single-cell optical techniques hold some promise here); second, scaling

the estimation of the resulting high-dimensional probability distributions will certainly pose

an extreme challenge. At present, the best way forward here seems to rely on summary signals

such as local field potentials (LFP) or optical techniques with a coarser resolution. We would

then no longer be in a position to analyze the information transferred through a single neuron,

and instead would have to resort to analyzing a triplet of cortical patches: one hierarchically

lower patch that provides the inputs on which to quantify the lAIS, a second patch at an inter-

mediate stage in the hierarchy that serves as a receiver, and the information transfer from this

second patch to a third one even higher up in the processing hierarchy that provides a measure

of information transferred in the outputs of the intermediate, second patch. This idea is pre-

sented in more detail in [5].

Despite these difficulties, the analysis of cortico-cortical predictive coding using the pro-

posed information-theoretic framework seems highly promising, as very explicit predictions

on the type of predictive coding, the location of error-computing units in upper cortical layers,

and the corresponding LFP-frequency signatures of error signal have been made [94, 95].

Thus, we expect these hypotheses to be directly testable using frequency-resolved measures of

information transfer [96, 97].

Conclusion

Tests of predictive coding theories are at risk of being influenced by implicit assumptions of

researchers about what a brain should predict. To circumvent this, careful experimental

designs are necessary but may not always be possible due to a lack of the required prior knowl-

edge about brain function. Also, such tests cannot refute or confirm predictive coding theories

based on data from other experiments not designed with predictive coding in mind—although

such tests need to be performed for a theory that claims a rather broad applicability to brain

PLOS COMPUTATIONAL BIOLOGY Minimizing the effect of researchers’ assumptions in predictive coding studies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011567 November 17, 2023 23 / 29

https://doi.org/10.1371/journal.pcbi.1011567


function. For these reasons, an analysis framework that is independent of experimental design

and the experimenter’s assumptions would be highly beneficial. Here we present such a frame-

work based on the correlation between the information-theoretic equivalents of predictability

and prediction errors. In a proof-of-principle analysis of the re-encoding of retinal ganglion

cell inputs in the lateral geniculate nucleus principal cells we demonstrate coding for predict-

able information in an anesthetized animal.
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96. Pinzuti E, Wollstadt P, Gutknecht A, Tüscher O, Wibral M. Measuring spectrally-resolved information

transfer. PLoS Computational Biology. 2020; 16(12):e1008526. https://doi.org/10.1371/journal.pcbi.

1008526 PMID: 33370259
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