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OPEN

ORIGINAL ARTICLE

Tuning fresh: radiation through rewiring of central
metabolism in streamlined bacteria

Alexander Eiler1, Rhiannon Mondav1, Lucas Sinclair1, Leyden Fernandez-Vidal1,
Douglas G Scofield2, Patrick Schwientek3, Manuel Martinez-Garcia4,10, David Torrents5,6,
Katherine D McMahon7,8, Siv GE Andersson9, Ramunas Stepanauskas4, Tanja Woyke3 and
Stefan Bertilsson1

1Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University,
Uppsala, Sweden; 2Department of Ecology and Genetics, Evolutionary Biology and Uppsala Multidisciplinary
Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden; 3Department of Energy,
Joint Genome Institute, Walnut Creek, CA, USA; 4Bigelow Laboratory for Ocean Sciences, East Boothbay, ME,
USA; 5IRB-BSC Program in Computational Biology, Barcelona Supercomputing Centre, Barcelona, Spain;
6Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; 7Department of Civil and
Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; 8Department of
Bacteriology, University of Wisconsin-Madison, Madison, WI, USA and 9Department of Cellular and
Molecular Biology, Molecular Evolution and Science for Life Laboratory, Uppsala University, Uppsala,
Sweden

Most free-living planktonic cells are streamlined and in spite of their limitations in functional
flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we
compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to
marine and freshwater habitats. Our results suggest that the successful leap from marine
to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and
a rewiring of the central metabolism. Examples for these are C1 and methylated compounds
degradation pathways, the Entner–Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon
fixation being absent from the freshwater genomes. Evolutionary reconstructions further suggest
that the metabolic modules making up these important freshwater metabolic traits were already
present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had
already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives,
suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate
rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular
weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and
transporters toward locally available organic substrates is linked to the formation of subgroups
within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an
adaptive phenotype.
The ISME Journal (2016) 10, 1902–1914; doi:10.1038/ismej.2015.260; published online 19 January 2016

Introduction

Recent genome sequencing suggest that bacteria and
archaea with streamlined genomes are often numeri-
cally dominant in nature, with marine and fresh-
water bacteria as prominent examples (Hahn et al.,
2012; Garcia et al., 2013; Swan et al., 2013; Eiler
et al., 2014; Giovannoni et al., 2005a, b). Streamlined

genomes are characterized by small size (o1.5Mb),
low guanine cytosine (GC) content (o40%) and short
intergenic regions framing a restricted set of genes
(Giovannoni et al., 2014). The few and typically
short intergenic regions, combined with a reduction
in complexity of regulatory circuits, has posed the
question about the capability of such streamlined
cells and their populations to respond and adapt to
environmental cues. Such genome minimalism has
also been linked to unusual nutritional require-
ments, including auxotrophy for some vitamins and
essential amino acids (Giovannoni et al., 2005b;
Tripp et al., 2008, 2009; Schwalbach et al., 2010;
Carini et al., 2013, 2014). Other apparent features
are scarcity or absence of gene duplications,
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extrachromosomal elements and remnants of genes
and phages (Giovannoni et al., 2014). The proposed
selective drive for this minimalism is efficient use of
limiting resources (for example, C, N, P) in nutrient-
poor systems (Giovannoni et al., 2014), which can
cause genome reduction when combined with large
effective population sizes (Lynch, 2007).

These features, particularly the reduced genetic
repertoire of individual cells, raises the question of
how such organisms can maintain sufficient meta-
bolic flexibility to radiate or possibly cross biome
boundaries. A potential explanation is provided by
recent genomic analyses of Prochlorococcus where
bacterial populations with streamlined genomes
were shown to contain considerable sequence varia-
tion in shared genes and to harbor a high level of
heterogeneity in gene content (Kashtan et al., 2014).
A combination of point mutations and homologous
recombination were suggested to be responsible for
most of the allelic diversity, whereas homologous
and non-homologous recombination were impli-
cated in the loss and gain of genes. The resulting
combined diversity of streamlined genomes in these
large populations thus could provide the means to
cross biome boundaries, such as moving from oceans
to freshwaters, with dramatic differences in solutes,
salinity and resources, thereby forming a strong
ecological and evolutionary barrier.

Similar to larger organisms, there is little overlap
in the taxonomic composition of marine and fresh-
water microbial assemblages (Suzuki and DeLong,
2002; Logares et al., 2009; Newton et al., 2011).
Nevertheless, phylogenetic analyses have uncovered
some surprisingly close relatives among marine and
freshwater microbiota (Logares et al., 2009; Newton
et al., 2011). Both marine and freshwater bacterio-
plankton communities are frequently dominated by
alphaproteobacteria of the SAR11 lineage (Morris
et al., 2002; Rusch et al., 2007; Eiler et al., 2009;
Newton et al., 2011; Salcher et al., 2011; Heinrich
et al., 2013). Members of the marine SAR11 clades
are characterized as slow growing oligotrophs
(Giovannoni et al., 2014), and they are believed to
have a central role in the global cycling of both
carbon, sulfur and associated elements (Malmstrom
et al., 2004). Among their adaptations to oligotrophic
marine environments are proteorhodopsin-mediated
phototrophic potential (Giovannoni et al., 2005a),
reliance on externally supplied reduced sulfur
(Tripp et al., 2008), auxotrophy for essential amino
acids (Tripp et al., 2009) and lineage-defined meta-
bolic restrictions for a wide range of labile low
molecular weight organic metabolites, including C1
compounds (Schwalbach et al., 2010; Sun et al.,
2011; Carini et al., 2013). Freshwater SAR11 are
phylogenetically distinct from their marine relatives
and group into the uncultivated clade named ‘LD12’
(Zwart et al., 1998). LD12 is recognized as a
globally distributed freshwater group (Newton
et al., 2011) that can make up 20–40% of the total
bacterioplankton in lakes (Salcher et al., 2011;

Heinrich et al., 2013), and isotope tracer experiments
have verified that they can grow heterotrophically
(Salcher et al., 2011).

Here we compared the metabolic potential of 10
sequenced single amplified LD12 genomes obtained
from freshwater lakes (Zaremba-Niedzwiedzka et al.,
2013) with 18 marine SAR11 genomes, 4 single
amplified genomes and 14 from isolates and originat-
ing from different coastal and oceanic habitats
(Giovannoni et al., 2005b; Tripp et al., 2009; Grote
et al., 2012; Viklund et al., 2013). Previous compar-
isons of these genomes have revealed lower recombi-
nation frequencies in the freshwater LD12 genomes
(Zaremba-Niedzwiedzka et al., 2013) but not detailed
the metabolic changes associated with the transition
frommarine to freshwater environments. Our analyses
reveal a reduction of metabolic diversity and lower
pathway redundancy in freshwater LD12 compared
with marine SAR11, combined with a rewiring of the
central metabolism. We propose that the process
leading up to the marine–freshwater transition in
SAR11 wasmore likely facilitated by recombination in
the large and diverse populations of the marine
ancestors than by gene family expansion or horizontal
acquisition of metabolic modules from non-SAR11
lineages. Thus our results unveil an unknown chapter
in the evolutionary history of these ubiquitous and
successful bacterial groups in aquatic environments.

Methods

Genome data sets
The draft assemblies of the single amplified genomes
(SAGs) and genome-sequenced SAR11 isolates were
obtained from intergrated microbial genome (IMG)/
ER (Markowitz et al., 2012). Protein sequences for
the recently described pathway of dimethylsulfoni-
propionate (DMSP) demethylation were retrieved for
Ruegeria pomeroyi and HTCC1062 as identified
by Reisch et al. (2011). These were used as queries
in BLASTP searches against the 18 marine and
10 freshwater SAR11 genomes.

Genome completeness
Genome size and completeness were estimated using
a conserved single-copy gene (CSCG) set of SAR11
isolates (Markowitz et al., 2012). The set consists of
357 CSCGs that were found to occur only once in the
genomes by analysis of an abundance matrix based
on hits to the protein family (Pfam) database (Punta
et al., 2012). Hidden Markov models of the identified
Pfams were used to search all single amplified
genome assemblies by means of the HMMER3
software (Eddy, 2011). Resulting best hits above the
trusted cutoff (TC field as provided in the HMM files
from Pfam) were counted, and the completeness was
estimated as the ratio of found CSCG to total CSCGs
in the set. The estimated complete genome size was
then calculated by dividing the estimated genome
coverage by the total assembly size.
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Phylogenetic reconstructions
Orthologous genes were identified by running a
BLASTP similarity search using the set of all marine
and freshwater genes as the query and the database.
Subsequently, we applied the Markov cluster algo-
rithm (Enright et al., 2002) to the pairwise matrix of
bit scores. Out of the 3598, we selected the clusters
that had at least one gene pertaining to each of the
seven families (‘Ia.1’, ‘II’, ‘Ia.2’, ‘V’, ‘IIIa’, ‘Ic’, ‘IIIb/
LD12’) and no more than 30 genes in them, leaving
us with 518 clusters. Genes were then aligned with
muscle (Edgar, 2004), masked with gblocks
(Castresana, 2000) and trees were built with RaxML
(Stamatakis, 2006) using the ‘PROTGAMMAJTT’
model with an automatically determined number of
quick bootstraps, thus resulting in one tree per
cluster. At this point, we removed one cluster as it
contained only gaps.

For the master ribosomal protein tree, we extracted
50 ribosomal proteins and subsequently selected
only those that had at least one representative in
each SAR11 subgroup (N=40). After alignment of
randomly selected representatives from each SAR11
subgroup, we concatenated the alignments to
form the so-called ‘master ribosomal alignment’.
A RAxML tree was constructed using the ‘PROT-
GAMMAJTT’ model with an automatically deter-
mined number of quick bootstraps. The code
produced for this analysis is available under an
MIT license at http://github.com/limno/ld12.

Closest hits and gene family expansions
The first hit for every freshwater gene is obviously
itself (though some genes have no other hits).
Searching for the first hit that is not from any of
the freshwater genomes, we extracted its taxonomy.
If this top-hit-non-fresh is a marine SAR11 genome,
we resolve it to one of the six marine clades; if
outside, we resolve it to broad taxonomic groups.
Duplication events (gene family expansions) were
defined by two hits associated with the same fresh-
water genome and ranked prior to the first non-
freshwater SAR11 hit.

Results
General features and SAR11 phylogeny
The freshwater and marine SAR11 genomes were
extracted from public databases (Table 1). The
genomes are in varying stages of completion, with
some corresponding to a single circular chromosome
whereas others are incomplete and consist of 50–150
contigs. The completeness of the genomes amplified
from single cells was estimated to 24–86% using a
conserved single-copy gene set of SAR11 genomes
(Markowitz et al., 2012), with estimated genome size
of the freshwater genomes ranging from 1.1 to 1.4Mb
compared with marine genomes ranging from 1.1 to
1.6Mb. In addition to these small differences, the

sampling sizes for subgroups II and IIIa are too small
to determine with certainty whether differences in
genome size are associated with subgroups and
habitats. Unifying features are low GC (29–30%), a
shared amino-acid usage and high percentage of
predicted coding nucleotides (Table 1).

Phylogenetic analysis of the selected genomes
using concatenated alignment of 40 ribosomal
proteins revealed 7 clades (Figure 1), consistent with
previous analyses (Grote et al., 2012; Viklund et al.,
2013; Zaremba-Niedzwiedzka et al., 2013; Thrash
et al., 2014). In this study, we have not included any
other alphaproteobacterial species, which prevents a
discussion about the position of subgroup V, repre-
sented by genome HIMB59, in the alphaproteobac-
terial tree. The disagreement about its phylogenetic
placement was discussed in quite some detail in a
previous publication (Viklund et al., 2013), but this
does not have any implications for our conclusions.
Suffice it to conclude that HIMB59 is used as an
outgroup to the other SAR11 genomes examined
here. By using HIMB59 as an outgroup, we inferred
phylogenetic trees from 518 orthologous protein
clusters that had at least one representative in each
of the 7 subclades. Out of these, only a minor
proportion (N=88) of the protein trees are strictly
coherent with regards to collapsing the 7 main clades
(that is, all genes from a given branch are mono-
phyletic). For a third of these (N=33), the branching
patterns agree with the ribosomal protein tree, and
the branching pattern between the freshwater LD12
(SAR11 clade IIIb) and clade IIIa is observed in 388
out of the 518 trees, albeit with different statistical
significance (representing 75% of all trees as
indicated in Figure 1).

Comparing this with the number of cases where
the bootstrap support was 480% at this particular
branch, freshwater LD12 branched closest with IIIb
in 109 trees, whereas in 9 trees LD12 was closest
with another SAR11 subgroup. These nine trees were
inferred from individual protein alignments
involved in amino-acid biosynthesis and conversion
(Figures 2a–c), chemoorganotrophic energy acquisi-
tion (Figures 2d–f), carboxylic acid membrane trans-
port (Figures 2g and h) and DNA methylation
(Figure 2i). This proportion of non-matching tree
topology, either 9% or 25% depending on bootstrap
cutoffs (Figure 1; see a report detailing the mis-
matches and the Robinson–Foulds metric in
Supplementary Table S1), implies alternative evolu-
tionary histories of various gene families in SAR11.

Two trees are largely consistent with the ribosomal
protein tree with the exception of the branching
orders of subgroups II and III (Figures 2b and d).
Another three trees have more serious inconsisten-
cies, such that subgroups Ia and Ic are not sister
clades and that the two members of subgroup IIIa do
not cluster (Figures 2a, c, e, g and i). The most
dramatic inconsistency is observed for the tree
inferred from the tripartite ATP-independent peri-
plasmic transporters (TRAP transporters) (Figures 2h

Genetic structure of global populations controls selection efficacy
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and i). In these trees, all members of subgroup LD12
and two genomes of subgroup Ia are separated from
all other genomes by long branches. This could be
indicative of paralogous gene families or increased
evolutionary rates for this gene in LD12. This is
potentially interesting as TRAP transporters may be
involved in the metabolite flux into the tricarboxylic
acid (TCA) cycle through the import of malate
(Adnan et al., 2015).

Apart from the incongruence of protein trees, patterns
in gene synteny (Supplementary Figure S1) and
functional annotations (Supplementary Figure S2)
suggest that the analyzed SAR11s group into six
(plus outgroup V) distinct clades, basically confirm-
ing shared gene phylogenies (Grote et al., 2012;
Viklund et al., 2013; Zaremba-Niedzwiedzka et al.,
2013; Thrash et al., 2014). The distinction in gene
sets between marine and freshwater genomes was
shown by permutational multivariate analysis of
variance (Po0.001) for four annotation subsystems
(pfam, tigrfam, COG, KO) and also by dendrograms
based on bit scores retrieved from pairwise blastn

searches (Supplementary Figure S3). In addition,
each of these subgroups is preferentially retrieved in
a distinct habitat, indicating that they correspond
to ecological coherent units (Rusch et al., 2007;
Andersson et al., 2009; Carlsson et al., 2009;
Newton et al., 2011; Heinrich et al., 2013; Thrash
et al., 2014).

Energy and carbon metabolism
We identified genes encoding a complete TCA cycle
(Figure 3) and a proteorhodopsin when combining
the 10 partial freshwater SAR11 genomes. This led
us to hypothesize that, analogously to their marine
siblings, freshwater SAR11 are heterotrophs capable
of supplementing heterotrophic growth on organic
carbon with light-mediated ATP production
(Martinez-Garcia et al., 2012) when carbon starvation
limits respiration (Steindler et al., 2011). Still, there
are conspicuous and consistent variations in gene
content related to aerobic chemoorganoheterotrophy
as already highlighted by previous metabolic recon-
struction restricted to marine SAR11 (Tripp et al.,
2008, 2009; Schwalbach et al., 2010; Sun et al., 2011;
Grote et al., 2012; Carini et al., 2013, 2014). Here we
expand on these previous observations by showing
that freshwater genomes encode all genes of the
Embden–Meyerhof–Parnas (EMP) pathway, whereas
most marine SAR11 representatives encode all genes
of the Entner–Doudoroff (ED) pathway (Figure 3).

Another striking difference is the absence of
the glyoxylate shunt (isocitrate lyase (aceA), malate
synthase (malG)) and anapleurotic enzymes (phos-
phoenol pyruvate carboxylase (ppc); see Figure 3) in
subgroups IIIa and IIIb, pointing to major differences
in carbon and energy-acquisition strategies for these
SAR11 clades. The glyoxylate shunt bypasses
two steps in the TCA cycle where carbon dioxide is
released concomitant with a production of ATP and
NADH but instead enable economic use of carbon
atoms at the expense of energy acquisition.
It essentially allows microorganisms to use simple
carbon compounds as a carbon source when com-
plex nutrients such as glucose are not available.
In the absence of available carbohydrates, the
glyoxylate cycle would, for example, enable synth-
esis of carbohydrates needed for cell-wall assembly
from lipids via acetate supplemented with inorganic
carbon fixed via anapleurotic reactions (Moran and
Miller, 2007).

There is evidence that marine SAR11 can oxidize
several small organic carbon compounds that are
potentially very abundant in marine systems, in
order to satisfy cellular energy demands (Tripp et al.,
2009; Schwalbach et al., 2010; Sun et al., 2011).
Several genes and pathways involved in the oxida-
tion of C1 and methylated compounds to CO2,
previously identified in marine SAR11 genomes
(Sun et al., 2011), appear to be missing in the
freshwater single amplified genomes (see
Supplementary Material for details). At the same

Figure 1 Evolutionary relationships between marine and fresh-
water SAR11 genomes. Unrooted maximum likelihood phyloge-
netic tree of concatenated ribosomal protein sequences from
single-cell genomes and isolate genomes of the SAR11 clade. In
addition to bootstrap values as inferred by maximum likelihood,
the second (large and bold) number at the branching points show
proportion of protein trees with corresponding branching pattern.
These proportions were generated by using the Robinson–Foulds
metric summarizing 518 orthologous protein trees that had at least
one representative in each of the seven subclades (for details, see
Supplementary Table S1). Freshwater SAR11 (subgroup IIIb/
LD12) are indicated in red, whereas marine SAR11 subgroups in
other colors.
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Figure 2 Nine protein trees with evolutionary inconsistency when compared with the ribosomal tree. (a–i) Unrooted phylogenetic trees
of orthologous protein clusters with alternative tree topologies (that is, sister clade to IIIb/LD12 is not IIIa) when compared with the
ribosomal tree (Figure 1).
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Figure 3 Central carbon metabolism and other relevant metabolic pathways identified in SAR11 genomes. Glycogenesis, TCA cycle and
glyoxylate shunt are shown in the center of the plot with adjunction pathways to either side such as the pentose phosphate and ED
pathway. The color of the arrows indicates genes encoded in at least one genome of each SAR11 subgroup (see legend for details).
The presence and absence of genes was determined within the IMG system based on automated and manual annotations. Detailed results
are in Supplementary Tables S6–S9.
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time, the ability to use other common low molecular
weight carbon substrates are maintained throughout
the entire SAR11 lineage, one example being
glycolate oxidase (glcDEF) which enable metabolic
use of the abundant exudate glycolate, which is
released in large amounts by nutrient-limited phyto-
plankton as an energy overflow mechanism
(Bertilsson and Jones, 2003).

While inspecting the completeness of vitamin
biosynthesis pathways among the freshwater gen-
omes, we found no major differences when compar-
ing our results with marine genomes (for details on
the presence of vitamin biosynthesis homologs, see
Supplementary Material). Confirming previous find-
ings (Tripp et al., 2008), we could not identify any
sulfite reductase in marine SAR11 genomes nor
could this gene be detected in any of the freshwater
representatives, implying that freshwater SAR11 also
rely on external supply of reduced sulfur similar to
their marine siblings. This auxotrophy for reduced
sulfur seems to be a common feature in abundant
freshwater bacteria as revealed by genome recon-
structions (Garcia et al., 2015). To access reduced
sulfur, marine SAR11 are capable of demethylating
the abundant marine molecule DMSP. However,
homologs of the DMSP pathway genes could not
be identified in the 10 freshwater (LD12) or clade IIIa
genomes. In addition, we could not identify any
homologs to adenylylsulfate reductase, sulfate
permease and sulfate exporter in the freshwater
single amplified genomes, making sulfur-containing
amino acids the most likely reduced sulfur source.

Osmolytes, such as DMSP, glycine betaine,
proline, mannitol, taurine and spermidine, are
produced in high amounts by phytoplankton and
other marine microplankton, which use these com-
pounds to maintain their intracellular osmotic
balance. These organic compounds can build up
intracellular concentrations as high as 100–530mM

in some phytoplankton species (Keller et al., 1999;
Sunda et al., 2007). Analyses of marine SAR11
genomes (Giovannoni et al., 2005b) have revealed
numerous ABC transporters for organic osmolytes
that are common in the marine environment (see
Supplementary Material for detail on transporters).
An ability to use glycine betaine and sulfur-
containing osmolytes may also release organisms
from an inability to synthesize certain amino acids
and reduced (organic) sulfur compounds de novo
(Giovannoni et al., 2014). Although glycine and
serine biosynthesis is enabled by 3-phosphoglycerate
dehydrogenase (serA) in freshwater SAR11 (for
more detail on amino-acid biosynthesis, see
Supplementary Material), organosulfur acquisition
seems to be restricted to amino acids, such as
methionine and cysteine. This is not surprising
considering that osmolyte diversity is restricted to
non-sulfur compounds such as sucrose and trehalose
in freshwater phytoplankton (Batterton and van
Baalen, 1971; Joset et al., 1996; Page-Sharp et al.,
1999). Still, no known hydrolases to use sucrose and

trehalose could be identified in any of the inspected
freshwater SAR11 genomes. As indicated by the
presence of TRAP system, a feature shared with
subgroup IIIa, freshwater SAR11 most likely use
low-molecular-weight carboxylic acids.

Interestingly, two TRAP system-related ortholo-
gous gene clusters showed phylogenetic patterns
highly divergent from the ribosomal protein trees
(Figures 2g and h), suggesting that this transporter
system has been widely exchanged within the
SAR11 clade.

The marine and freshwater SAR11 pangenome
In addition to phylogenies (see Figures 1 and 2), we
explored gene content variations among the SAR11
genomes. Orthologous protein clusters were formed
by Markov cluster algorithm (Enright et al., 2002)
from pairwise BLASTP searches using 23 545 pre-
dicted SAR11 proteins. Of the 3589 total orthologous
clusters identified in the 28 SAR11 genomes, 1467
were present in at least one freshwater SAG, and 368
of these were exclusive to freshwater genomes. Most
of the 8332 predicted genes from the freshwater
SAGs were most closely related to marine subgroup
IIIa (Figure 4a). Out of the 368 orthologous clusters
(including 720 genes) exclusive to freshwater
SAR11, 59 clusters (including 86 genes) had no
hit against bacterial and archaeal subject sequences
in refseq. Altogether, 94 of the freshwater-exclusive
genes (26%) were most closely matching alphapro-
teobacteria, whereas only 7 (2%) were most closely
related to genes from marine SAR11 (Figure 4b).
Although around a sixth of the predicted genes from
the freshwater SAGs were most closely related to
non-marine SAR11, it cannot be concluded that
these genes were acquired horizontally from outside
the SAR11 clade. The reason is that the origin and
flux of these genes are uncertain when considering
that protein diversity was highly undersampled in
both the marine and freshwater branch of SAR11,
highlighted by the rarefaction analysis (Figure 4c).
The large diversity in protein families is further
imposed by 6273 protein families in the marine and
2320 in the freshwater SAR11 pangenome as
estimated by non-parametric diversity approxima-
tions (Chao, 1987).

BLASTP searches were also used to infer gene
family expansions unique to the freshwater SAR11
population by applying the following criteria: two
hits associated with the same genome were ranked
prior to the first non-freshwater SAR11 protein.
This identified at most four orthologous clusters
per freshwater genome, thus likely originating from
recent duplication events as they were also adjacent
to each other in the genome. These orthologous
clusters were exclusively annotated as hypotheticals
or cell communication systems (for details, see
Supplementary Table S5) and are likely located in
hypervariable regions. Such hypervariable regions
are apparent in a composite freshwater SAR11
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genome and seem to host genes for the biosynthesis
of lipopolysaccharides (Zaremba-Niedzwiedzka
et al., 2013). The comparative features of these 28
genomes point to the existence of large gene
frequency variations in SAR11 populations.

Discussion

As shown previously (Zaremba-Niedzwiedzka et al.,
2013), phylogenetic reconstructions strongly suggest
that the freshwater SAR11 clade originates from a
population of marine ancestors with streamlined
genomes considering the branching pattern leading
to LD12. However, we cannot preclude with cer-
tainty that IIIa resembles a marine ancestor of LD12
or that IIIa originated from a freshwater ancestor.
Nevertheless, we favor the former scenario as a
freshwater origin would require two independent
transitions, whereas one is sufficient for a marine
SAR11 ancestor. In addition, the larger estimated
marine gene set when compared with the freshwater
equivalents would have required an acquisition

of genes independent from the freshwater SAR11.
The likelihood for such a vast gene acquisitions is
challenged by large population sizes that provide
low probabilities of new genes arising and being
fixed in streamlined genomes. Likewise, a common
streamlined ancestor is implied by freshwater and
marine SAR11 clades sharing many typical features
of streamlined cells, such as the small cell size
(Giovannoni et al., 2005b; Salcher et al., 2011),
auxotrophy, small genome size and low GC content.
With no known exceptions, this argues against
non-streamlined ancestoral populations at the main
branching points.

Besides the shared reductionism, both marine
and freshwater SAR11 are predicted to host a typical
electron transport chain, a complete TCA cycle
and a proteorhodopsin system for phototrophic
energy acquisition (Giovannoni et al., 2005a;
Martinez-Garcia et al., 2012). Still, there are con-
spicuous variations in gene content related to aerobic
chemoorganoheterotrophy between marine and
freshwater SAR11, emphasizing functional adapta-
tions beyond osmoregulation as a necessity

Figure 4 Closest blast hits against refseq and rarefaction curves of orthologous SAR11 protein clusters. (a) Bar charts revealing top hits
from BLASTP against all available genomes in refseq. Hits are classified based on their taxonomic affiliation with higher taxonomic levels
removed from lower taxonomic levels (that is, SAR11 hits are removed from the alphaproteobacterial bin, with alphaproteobacterial hits
removed from the proteobacterial bin and so on). Black bars indicate hits of genes specific to freshwaters as inferred by orthologous
clustering. (b) Detailed representation of freshwater-specific orthologous protein clusters and their closest hits classified on their
taxonomic affiliation with higher taxonomic levels removed from lower taxonomic levels. (c) Results from a rarefaction analysis of
orthologous protein clusters after normalization to account for the partial single-cell genomes.
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to overcome the marine–freshwater boundaries.
This is in agreement with recent findings from
shotgun metagenomic analyses, where quantitative
differences related to respiratory and glycolytic
pathways were observed in the gene pools of marine
and freshwater communities (Oh et al., 2011; Dupont
et al., 2014; Eiler et al., 2014). In particular, the
changes in glycolysis combined with the apparent
loss of the glyxoylate shunt and the capacity
to oxidize a broad array of C1 compounds point
to differentiation in heterotrophic substrate use
between marine and freshwater SAR11, with the
marine representatives more extensively relying on
phytoplankton-derived osmolytes, such as proline,
betaine glycine and DMSP. Instead, freshwater
SAR11 feature a complete EMP, enabling efficient
energy acquisition from C6 and C5 sugars combined
with the TRAP system to use low-molecular-weight
carboxylic acids known to be produced in abun-
dance by photochemical degradation of humic
substances in freshwaters (Bertilsson and Tranvik,
2000). Such tuning toward locally available organic
substrates is likely linked to observed differences in
abundance patterns in relation to environmental
conditions in the respective biomes (Eiler et al.,
2009; Salcher et al., 2011) and the formation of
ecotypes within the SAR11 clade (Carlsson et al.,
2009; Vergin et al., 2013).

The reliance on either EMP or ED can be predicted
to change the energy status and the redox balance of
the cell. The ED pathway (Entner and Doudoroff,
1952; Conway, 1992) has a net yield of 1 ATP,
1 NADH and 1 NADPH for each glucose molecule,
whereas the EMP has a net yield of 2 ATP and
2 NADH for each processed glucose molecule.
Besides the distinct yields of ATP and NAD(P)H,
the EMP and ED pathways result in a range of
different metabolic intermediates for each molecule
of sugar consumed (Neidhardt et al., 1990). It is
remarkable that, while some bacterial genomes
possess complete and coexisting EMP and ED path-
ways (suggested for HIMB59), others have one or the
other, and there are also SAR11 genomes that only
seem to host incomplete pathways (Grote et al.,
2012). A flux of genes involved in central metabo-
lism is further implied by the incongruence in tree
topology of the glyceraldehyde 3-phosphate dehy-
drogenase (Figure 2d), the enzyme that catalyzes the
sixth step of glycolysis, a phosphorylation reaction
coupled to oxidation.

In addition to the metabolic distinction between
marine and freshwater SAR11, our analyses revealed
that the gene pool of marine and freshwater
SAR11 are highly diverse and undersampled. The
notion that marine SAR11 populations appear to
have rather diverse genomes was previously
observed in marine metagenomes (Wilhelm et al.,
2007) and was also shown for Prochlorococcus as
another abundant and widespread marine bacterium
with small genomes (Kashtan et al., 2014). Overall,
we show that SAR11 subgroups share a core set of

genes comprising approximately half of the ortholo-
gous genes in each genome, independent of whether
orthologous genes are defined based on annotations
or clustering using sequence similarity. As expected,
the core genes encode functions defining the SAR11
clade as an organo-heterotrophic group with varying
potential for photo-autotrophy, whereas the flexible
genome provides functions that confer selective
advantages under very different conditions. This
modular structure of genes that confer the ability to
take up and metabolize specific organic molecules
imply metabolic flexibility and an adaptive tuning
to resources.

This functional tuning within SAR11 is facilitated
by high rates of recombination (Vergin et al., 2007)
among even distantly related marine groups fostering
a global SAR11 population where multiple ecotypes
with high genetic linkages coexist. A dynamic gene
pool in SAR11 is implied by gene content variations,
alternative tree topologies of the orthologous clusters
shared among all SAR11 subgroups and, as shown
previously, by high ratios of homologous recombina-
tion to mutation rate in marine SAR11 (Vergin et al.,
2007). Even if extremely high recombination has
been suggested for marine SAR11 (Vergin et al.,
2007; Zaremba-Niedzwiedzka et al., 2013), we argue
that the exchange of genetic material seems to be
mainly restricted to members within the SAR11
clade, as suggested by a common SAR11 ancestor for
the orthologous genes that were present in all marine
and freshwater SAR11 genomes. As the marine
gene pool is undersampled, we argue that one
cannot make any inferences on horizontally acquired
genes from outside the SAR11 clade to facilitate the
marine–freshwater transition. A likely scenario is
that, as SAR11 gradually became adapted to life at
low salinities, recombination events with divergent
SAR11 in the former marine environment became
less likely and eventually mutations overwhelmed
recombination, as indicated previously (Zaremba-
Niedzwiedzka et al., 2013).

Resulting gene content differences that affect
biosynthesis and transport functions are not
restricted to specific regions but are instead
embedded in different genomic contexts, as implied
by the large-scale synteny variations in the SAR11
genomes. Besides these ecotype-defining and broad-
scale genomic variations, hypervariable regions
containing genes for the biosynthesis of lipopolysac-
charides were previously identified in both marine
and freshwater SAR11 clades (Grote et al., 2012;
Zaremba-Niedzwiedzka et al., 2013). This fits the
previously proposed concept of low frequency genes
being implicated in evolutionary responses to local
and variable biotic interactions, such as competition
and phage predation (Cordero and Polz, 2014).

Adaptive selection that can lead to niche partition-
ing and the formation of novel ecotypes in bacterial
populations is assumed to depend on a wide array of
traits, including large population size (Levin and
Bergstrom, 2000), a dynamic gene pool facilitated
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by genetic exchange (Cohan, 2001; Popa et al., 2011)
and gene family expansion by duplications
(Alm et al., 2006; Serres et al., 2009), the small size
of recombined fragments (Zawadzki and Cohan,
1995) and simplicity and modularity of metabolic
features (Doyle et al., 2007; Lawrence, 1999). In the
long run, these mechanisms can allow lineages to
take major leaps into novel environments or even
new biomes, even when populations are made up of
individuals with streamlined genomes. For stream-
lined bacteria in particular, we argue that reshuffling
of metabolic modules related to energy and carbon
metabolism seem to facilitate such adaptive radia-
tion, as shown in the case of metabolic tuning during
the marine–freshwater transition. Following such
expansion, we imply from our and previous genome
reconstructions (Zaremba-Niedzwiedzka et al., 2013)
that gene exchange barriers arise, which fix only a
small fraction of the original pangenome in the novel
biome. As such, freshwater SAR11 seem to be less
prone to adaptive radiation, at least if we assume that
the genetic structure of global populations controls
selection efficacy and ability to adapt in free-living
streamlined bacteria.
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