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Abstract

Generalizability methods are increasingly used to make inferences about the effect of interventions 

in target populations using a study sample. Most existing methods to generalize effects from 

sample to population rely on the assumption that subgroup-specific effects generalize directly. 

However, researchers may be concerned that in fact subgroup-specific effects differ between 

sample and population. In this brief report, we explore the generalizability of subgroup effects. 

First, we derive the bias in the sample average treatment effect estimator as an estimate of the 

population average treatment effect when subgroup effects in the sample do not directly 

generalize. Next, we present a Monte Carlo simulation to explore bias due to unmeasured 

heterogeneity of subgroup effects across sample and population. Finally, we examine the potential 

for bias in an illustrative data example. Understanding the generalizability of subgroup effects may 

lead to increased use of these methods for making externally valid inferences of treatment effects 

using a study sample.
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Introduction

Generalizability methods are increasingly used to make population inferences of treatment 

effects using a study sample.1–3 These methods account for differences in distributions of 

treatment effect modifiers (e.g., sex) in the study sample and target population using 

weighting or outcoming modeling approaches4 under the assumption that effects within 

subgroups defined by those treatment effect modifiers (e.g., men) transport from the study 

sample to the target population. However, researchers may be concerned that the subgroup 

effects themselves may differ between sample and population. For example, men in the 

study sample may differ from the men in the target population by another covariate (e.g., 

smoking status) that modifies the treatment effect among men, and may or may not be 

observed. Concerns about the potential for subgroup effects to vary between the sample and 

population may arise, but to our knowledge there has been no formal investigation of how 

large these differences must be to cause substantial bias in population average treatment 

effect estimates. In this brief report, we provide the formula for bias and use simulations and 

a data example to illustrate the impact of unmeasured treatment effect heterogeneity within 

subgroups on inferences about population average treatment effect (ATE) estimates using a 

study sample.

Cole and Stuart5 derived the bias in the sample ATE estimator as an estimate of the 

population ATE when sample selection (S = 1 for individuals in the sample; S = 0 for those 

in the target population) depends on a single binary covariate Z and there is heterogeneity in 

the effect of treatment A due to Z when the outcome follows a simple linear model: E(Yi) = 

b0 + baAi + bazAiZi as

baz
P Z = 1
P S = 1 P S = 1 ∣ Z = 1 − P S = 1

If this model is correct, accounting for the sample selection dependency with Z using inverse 

probability of selection weighting or direct standardization provides an unbiased estimate of 

the population ATE.

Now, suppose the true outcome model includes additional covariates and interaction terms: 

E(Yi) = b0 + baAi + bzZi + buUi + bazAiZi + bauAiUi + bzuZiUi + bazuAiZiUi where U is a 

single binary covariate that is unmeasured in the study sample, and there is heterogeneity in 

the treatment effect across Z and U and within subgroups of Z due to U.

Borrowing notation from Cole and Stuart, two estimands are defined as follows: PATE = 

E(Y1) – E(Y0), the mean difference in potential outcomes in the population, and 

SATE = E Y 1 ∣ S = 1 − E Y 0 ∣ S = 1  , the mean difference in outcomes in the study 

sample.

When sample selection depends on Z and U, one can derive the bias in the SATE estimator 

as an estimate of the PATE as:
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baz
P Z = 1
P S = 1 P S = 1 ∣ Z = 1 − P S = 1 + bau

P U = 1
P S = 1 P S = 1 ∣ U = 1 − P S = 1 +

bazu
P Z = 1, U = 1

P S = 1 P S = 1 ∣ Z = 1, U = 1 − P S = 1

Thus, if effects within subgroups of Z are homogenous (i.e., bazu = 0), then bias also 

depends positively on the heterogeneity of treatment effects across groups defined by U, the 

prevalence of the heterogeneity characteristic U, the proportion of the target population not 

sampled, and the extent to which sample selection depends on U. If subgroup effects are not 

constant (i.e., bazu ≠ 0), then bias also depends positively on the subgroup effect 

heterogeneity, the prevalence of Z and U, the proportion of the target population not 

sampled, and the extent to which sample selection depends on Z and U. The derivation of 

the bias for a simple linear outcome model is given in the eAppendix. Expressions for the 

bias will differ for a log–link model or non-additive effects.

Monte Carlo Simulation

To explore the generalizability of subgroup effects for finite sample sizes, we adapted the 

data generating mechanism from Lesko et al.2 and generated large target populations where 

Z and U were two independent Bernoulli random variables with expectations 0.15 and 0.20, 

A was a Bernoulli random variable with expectation 0.5 and independent of Z, U, and 

potential outcomes Y(1) and Y(0). Potential outcomes were generated as Bernoulli random 

variables where P(Yi) = 0.1073 + 0.05Ai + 0.2Zi + 0.2Ui + 0ZiUi + bazAiZi + bauAiUi for 

125 scenarios that combined baz, bau, and bazu ranging from −0.15 to 0.15 by increments of 

0.1 including 0. A main effect for ZU can be added to the potential outcome model but adds 

additional complication without introducing bias in treatment effect estimates because it 

changes P(Y) by the same amount for those with A=1 and A=0. For each scenario, we drew 

a study sample of n = 2000 individuals from the target population, where sample selection 

depended on strata defined by Z and U: (Z=0, U=0) = 320, (Z=1, U=0) = 480, (Z=0, U=1) = 

480, (Z=1, U=1) = 720.

We used an outcome modeling approach (also known as “G-computation”6) to estimate the 

population ATE, using generalized linear models to model the outcome in the study sample, 

then used the model coefficients to predict outcomes under treatment and control in the 

target population. For each of the 125 scenarios, we first modeled the outcome “correctly” in 

the study sample using a saturated model with A, Z, U, and all two- and three-way 

interactions. Next, we misspecified the outcome model to omit U, AU, and AZU, reflecting 

a scenario where U is unknown (e.g., an unobserved factor that differs between males in the 

sample and population). For each of the 125 scenarios, we ran 5000 simulations and 

calculated absolute bias and mean squared error (MSE) of the misspecified model relative to 

the correctly specified model. This analysis using synthetic data did not require ethical 

review.
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Simulation results

Results for bias and MSE were similar across values of baz because Z, the measured 

treatment effect modifier, was always included in the outcome modeling approach for all 

scenarios. Thus, we present results from the 25 scenarios when baz = 0.15 in the Figure. For 

a given value of bau or baz, varying three-way interaction effect sizes for bazu did not add 

appreciably to bias in the population ATE estimate. For example, when there was no 

treatment effect heterogeneity independently by U (i.e., bau = 0), even large three-way 

interactions did not increase bias appreciably (i.e., moving across the x-axis). In contrast, for 

a given value of bazu, large two-way interactions between treatment and an unmeasured 

covariate (bau) resulted in large increases in bias of the population ATE estimate (i.e., 

moving up and down the y-axis). Results for MSE showed a similar pattern indicating that 

variance is not a major component of MSE in this setting.

Applied example

We explored the generalizability of subgroup effects using data from the PREMIER Study, 

which randomized 810 adults at risk for hypertension to simultaneous lifestyle changes.7 For 

this illustrative example, we combined participants in the two lifestyle intervention programs 

as the treatment group. The main outcome was the difference in systolic blood pressure 

(SBP) between 6 months and baseline. The International Population Study on 

Macronutrients and Blood Pressure (INTERMAP) study was used to represent the target 

population.8 INTERMAP is a cross-sectional epidemiologic study of men and women ages 

40–59 years in the US, UK, China, and Japan. For this illustrative example, we restricted to 

participants in the US who met the eligibility criteria of PREMIER to represent individuals 

who would receive the lifestyle intervention programs. The final sample size was 478. This 

secondary analysis of the PREMIER and INTERMAP studies was approved by the Duke 

University Medical Center Institutional Review Board (Pro00101084).

Across the trial and target population, we consider race (Black/Other), smoker (yes/no), and 

systolic blood pressure (SBP) at baseline as common covariates. The distributions of these 

covariates are shown in Table 1. Compared to the target population, more participants in the 

trial were Black and non-smokers. There was evidence that race and smoking status 

modified the treatment effect independently and jointly. For this illustrative example, we 

assume that race is unmeasured in the target population, thus omitting the variable from the 

g-computation models.

The results of g-computation models to estimate population mean differences in SBP for the 

effect of lifestyle intervention in INTERMAP are presented in Table 2. A model that 

included treatment, race, smoking, and all two- and three-way interactions resulted in an 

estimate of the population ATE = −4.2 (95% CI: −6.0, −2.5). In contrast, a model that 

included only treatment, smoking, and their two-way interaction resulted in an estimate of 

the population ATE = −4.0 (95% CI: −5.7, −2.2). A model that included treatment, race, 

smoking, and two-way interactions but excluded a three-way interaction (i.e., assuming 

homogeneity of subgroup effects) resulted in an estimate of the PATE =−4.1 (95% CI: −5.9, 
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−2.4), which did not differ substantially from the estimate when we adjust for heterogeneity 

of subgroup effects.

Discussion

In this brief report, we explored the issue of generalizability of subgroup effects. Though all-

important effect modifiers should be measured in the study sample and target population, the 

implications of unmeasured heterogeneity of main effects is substantially larger than 

unmeasured heterogeneity of subgroup effects. Although we did not find an appreciable 

increase in bias due to the omission of a three-way interaction relative to the omission of a 

two-way interaction in the g-computation model, future work could explore flexible 

approaches such as machine learning methods to account for all possible interactions 

between measured variables, as well as consider sensitivity analyses if subgroup effects vary 

substantially by a covariate that is not measured in the target population. We hope that by 

examining the generalizability of subgroup effects in relation to main effects, 

epidemiologists will increasingly use these important methods for making population 

inferences using a study sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. 
Absolute value of bias and mean squared error (MSE) of the population average treatment 

effect estimates across simulation scenarios when baz = 0.15.
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Table 1.

Select baseline characteristics of participants in the PREMIER Study and the INTERMAP Study in the United 

States.

Trial Population

PREMIER (N=810) INTERMAP (N=478) SMD
a

95% CI

Black (N (%)) 279 (34.4) 116 (24.3) 0.22 (0.11, 0.34)

Smoke (N (%)) 39 (4.8) 83 (17.4) −0.41 (−0.52, −0.30)

Black × Smoke (N (%)) 0.49 (0.37, 0.60)

 1. Black & smoker 17 (2.1) 29 (6.1)

 2. Other race & smoker 22 (2.7) 54 (11.3)

 3. Black & non-smoker 262 (32.3) 87 (18.2)

 4. Other race & non-smoker 509 (62.8) 308 (64.4)

Systolic blood pressure at baseline (mmHg, Mean (SD)) 134.89 (9.57) 134.57 (9.94) 0.03 (−0.08, 0.15)

a
Standardized mean difference, SMD. Imbalance defined as SMD absolute value > 0.20. CI=confidence interval.
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Table 2.

Estimates of the population average treatment effect of a lifestyle intervention on systolic blood pressure (SBP 

in mmHg) at 6 months among INTERMAP participants in the United States.

Target population

Outcome model specification Mean difference in SBP (mmHg) 95% CI

Naïve SATE

 Average treatment effect in the trial −4.2 −5.7, −2.8

Assuming race as unmeasured
a

 A × smoking −4.0 −5.7, −2.2

 A × smoking + A × race −4.1 −5.9, −2.4

 A × smoking + A × race + A × race × smoking −4.2 −6.0, −2.5

a
All models include SBP at baseline as a covariate; A denotes treatment. CI=confidence interval, SATE=sample average treatment effect, 

SBP=systolic blood pressure.
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