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ABSTRACT:  Secondary exposure of predators to anticoagulant rodenticides, and in particular second generation anticoagulant 
rodenticides (SGARs), is a global phenomenon. The widespread and large-scale nature of this exposure has attracted considerable 
concern, although the consequences in terms of likelihood of poisoning of individuals and resultant impacts on populations are not 
well characterised. Secondary exposure of predators may as rise from once or more of: (i) eating contaminated commensal rodents 
subject to control (target species are typically rats and house mice); (ii) consumption of contaminated non-target small mammals 
(such as Peromyscus, Microtus, and Apodemus species) that encounter and feed on what are rodent-attractive baits; (iii) 
consumption of non-rodent vertebrate and invertebrate prey that may also incidentally encounter and eat baits. We hypothesised that 
predators feeding primarily on target species may be most at risk of exposure to SGARs while those predominantly taking non-
mammalian prey may be at least risk. We tested this hypothesis by comparing exposure, determined from the presence and 
magnitude of SGAR liver residues, in red kites, which feed extensively on rats; in barn owls, kestrels, and tawny owls that feed 
widely on non-target small mammals; and in sparrowhawks that feed predominantly on small birds. We found that the scale and 
magnitude of exposure was broadly consistent with our hypothesis, and that controlling for age in the analysis could be important as 
older birds can accumulate residues with age. However, exposure in kestrels was typically greater than that in barn owls and tawny 
owls, despite what is thought to be a general similarity among the species in their diets. We discuss the relative importance of 
trophic pathways relative to other factors that may drive secondary exposure in predators, and confirm that species that feed on rats 
or other target species may be at most risk of exposure and poisoning. 
 
KEY WORDS:  Accipiter nisus, exposure, Falco tinnunculus, kestrel, liver residue, Milvus milvus, nontarget risk, red kite, second-
generation anticoagulant rodenticide, secondary hazard, sparrowhawk, Strix aluco, tawny owl, Tyto alba  
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The use of anticoagulant rodenticides (ARs) to control 

rodent populations is designed to reduce the risk of 
disease transmission (to people and agricultural livestock) 
and limit what can be billions of dollars of damage to 
infrastructure, field, and stored crops and forestry 
(Battersby 2004, 2015; Lund 2015, Meyer and 
Kaukeinen 2015, Shore 2018). ARs have also been used 
extensively in conservation to eradicate introduced 
rodents from islands where their predation of eggs and 
chicks threatens seabird colonies (Howald et al. 2015). 
However, the extensive use of ARs, particularly second-
generation anticoagulant rodenticides (SGARs), has led 
to unintentional widespread primary exposure of non-
target vertebrate and invertebrate wildlife (Tosh et al. 
2012, Elliott et al. 2014, Geduhn et al. 2014, Shore and 
Coeurdassier 2018). This in turn has led to global 
secondary exposure of predators that feed on contami-
nated target and non-target species, as recently reviewed 
by López-Perea and Mateo (2018). Environmental risk 
assements indicate that SGARs pose a significant 
secondary poisoning risk and this has been borne out 
reports of poisonings (Rattner et al. 2014, Murray 2017, 
2018), although the ecological significance for most 

species remains unclear (but see Nogeire et al. 2015). It is 
clear, however, that there is extensive secondary expo-
sure across a very diverse range of mammalian and avian 
predators and scavengers (see review by López-Perea and 
Mateo 2018 and studies by Geduhn et al. 2015, 2016; 
Huang et al. 2016, Ruiz-Suárez et al. 2016, Salim et al. 
2016, Herring et al. 2017, Hindmarsh et al. 2017, Justice-
Allen and Loyd 2017, Thomas et al. 2017, Vyas 2017, 
Shore et al. 2017, Walker et al. 2017, Elmeros et al. 2018, 
Sainsbury et al. 2018). Given the many studies of 
secondary exposure that have been conducted, it might be 
expected that it should be possible to identify which 
trophic transfer pathways are most important for SGARs 
and which species may therefore be most at risk. Such 
knowledge and understanding would enhance the target-
ing of mitigation measures towards the potentially most 
vulnerable (in terms of exposure) species. However, 
direct comparison of different studies is hampered by the 
fact that such studies are typically not contemporaneous, 
have been conducted in different geographical areas, and 
have used analytical methodologies that differ in their 
sensitivity. Studies from the UK alone have shown that 
accumulation of residues by predators varies geograph-
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ically, because of differences in use (Shore et al. 2015), 
and can change over time (Sainsbury et al. 2018). 
Furthermore, most laboratories have adopted Liquid 
Chromatography Tandem Mass Spectrometry (LCMS 
MS) analysis at some stage over the last 15 years and this 
has reduced detection limits for SGAR residues in tissues 
by approximately an order of magnitude. Data from 
studies using older analytical techniques (such as High 
Performance Liquid Chromatography coupled with 
fluorescence detection; HPLC/FD) are not directly com-
parable with studies that have used LCMSMS unless 
common limits of quantification (LoQs) are adopted 
(Dowding et al. 2010).  

In the UK, long-term monitoring of liver SGAR 
residues has been conducted in the barn owl (Tyto alba) 
as part of the Predatory Bird Monitoring Scheme (PBMS; 
http://pbms.ceh.ac.uk/). We have used spatial and tem-
poral variation in liver concentrations to indicate change 
in exposure. The barn owl feeds predominantly on small 
mammals and the field vole (Microtus agrestis) is the 
preferred prey species, although extensive numbers of 
wood mice (Apodemus sylvaticus) and bank voles 
(Myodes glareolus) are also taken (Love et al. 2000). We 
have also conducted other studies on a variety of other 
raptors and owls over varying periods alongside the long-
term monitoring of barn owls. These additional studies 
provide an opportunity to compare the prevalence and 
magnitude of residues in various species with that in the 
barn owl, all comparisons using birds from the same time 
period and geographical area and analysed using the 
same techniques. The results from these comparisons 
would allow us to draw general inferences about the 
relative risk from exposure through different trophic 
pathways.  

The aim of the current study was to compare the liver 
SGAR concentrations in barn owls with those in the 
kestrel (Falco tinnunculus), tawny owl (Strix aluco), 
sparrowhawk (Accipiter nisus), and red kite (Milvus 
milvus). There is considerable dietary overlap between 
the barn owl, kestrel, and tawny owl, all three predomi-
nantly feeding on non-target voles and mice, and we 
hypothesised that exposure in the three species would be 
broadly similar. Sparrowhawks predominately take avian 
prey (Newton 1986). Although small birds can enter 
boxes and feed on bait and can also be exposed secondar-
ily through eating contaminated insects (Vyas 2017, 
Shore and Coeurdassier 2018), we hypothesised that this 
may be a less important transfer pathway than that in-
volving small mammals. Therefore, we hypothesised that 
residues would be less prevalent and/or lower in sparrow-
hawks than in barn owls. Red kites are scavengers and 
although this in itself may not necessarily predispose 
them to higher exposure to SGARs (Shore and 
Coeurdassier 2018), they eat rats, which are a main target 
for control using SGARs. Thus, we anticipated SGAR 
contamination in red kites would be significantly greater 
than in barn owls, and of the five species examined 
overall, kites would be at most risk from secondary 
poisoning.  

 
METHODS 

The data for each of the four comparative analyses 

were taken from the long-term monitoring of barn owls 
conducted by the PBMS (Walker et al. 2014, Shore et al. 
2017) and from shorter-term specific PBMS studies of 
residues in tawny owls (Walker et al. 2008b), kestrels 
(Walker et al. 2007), sparrowhawks (Walker et al. 2015) 
and red kites (Walker et al. 2016). In all cases, livers 
were taken from the carcasses of birds found dead by 
members of the public and had died from various causes, 
particularly starvation and collisions (Walker et al. 
2008a). The periods over which data included in the 
present analysis were collected were 1997-2005 for the 
kestrel vs barn owls analysis, 2003-2005 for tawny owl 
vs barn owl, and 2010-2013 for the comparison between 
sparrowhawk and barn owl and red kite and barn owl. 
The analytical methodology used to determine liver 
SGAR residues are given in the various papers and 
reports and involved analysis by HPLC-FD prior to 2006 
and LCMSMS subsequently. 

We only included data in our analysis for birds known 
to have died in England as the prevalence and magnitude 
of SGAR residues in barn owls varies between England, 
Scotland, and Wales, reflecting lower use in those 
countries (Shore et al. 2015). Data were also further 
restricted to birds of known age class; first-year birds 
were classed as individuals that hatched in the current or 
previous year to that in which they were found dead. Age 
class was taken into account for the analyses as liver 
SGAR residues can increase with age (e.g., Ruiz-Suárez 
et al. 2016).  

A common LoQ was used for all individual SGAR 
residues in each comparative study and was 25 ng/g wet 
weight (ww) for analyses conducted by HPLC-FD and 
2.3 ng/g ww for comparisons involving only LCMSMS 
analysis. Only data for summed (Σ) SGARS are pre-
sented in the current study here and were calculated by 
summing the concentrations of each individual SGAR 
detected; non-detected values were treated as zeros.  

Comparisons between species of prevalence of 
detected residues were conducted using Fisher’s exact 
tests; adult and first-year birds were treated as separate 
groups. Differences between species and age classes in 
the magnitude of detected residues (non-detected values 
not included) were by Kruskal-Wallis non-parametric 
ANOVA coupled with post-hoc Dunn’s multiple com-
parison tests; parametric tests were not used as the 
underlying assumptions of the tests were violated.  

 
RESULTS 

The proportion of barn owls with detected residues 
between 1997-2005 was between 30% and 40% (Figure 
1) reflecting that the analysis was by HPLC-FD with an 
associated high LoQ; measures in later studies indicate a 
prevalence of 80-100% (Figure 3, Figure 4) with most of 
the additional birds containing low residues that are 
undetectable by HPLC-FD (Walker et al. 2010). When 
we compared the prevalence of residues in barn owls 
with that in kestrels (also measured by HPLC-FD), that 
had also been measured using HPLC-FD, we found that 
the proportion of both adult and first-year birds that 
contained detectable residues of at least one SGAR was 
significantly higher in kestrels (Figure 1). In addition, 
there was an age difference in kestrels; the proportion of 
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Figure 1.  Prevalence and magnitude of liver SGAR 
residues in adult and 1st-year kestrels (K) and barn 
owls (BO) from England in the period 1997-2005 
(HPLC-FD detection method).  

Top graph: Numbers of birds with at least one 
detected liver SGAR residue (hatched part of bar) 
or no detected residue (clear part of bar); the % of 
the sample with at least one detectable liver SGAR 
residue is indicated above the bar.  

 Bottom graph: Median (and interquartile range) 
ΣSGAR concentration for detected residues. Values 
above the bars indicate the number of birds in the 
sample. In both graphs, significant differences 
between bars (see methods for details of statistical 
tests) are indicated as: * P < 0.05,  

 **P < 0.01, ***P < 0.001) 
 
 
birds with a detectable residue was higher in adults than 
first-years; this age difference was not apparent in barn 
owls (Figure 1). The magnitude of those residues that 
were detected was also higher in kestrels than barn owls 
by a factor of approximately two. This was true for both 
age classes but the difference was only statistically 
significant in first-year birds, perhaps reflecting the 
greater power of the analysis afforded by the large 
sample size of first-year barn owls.  

The comparison between barn owls and tawny owls 
was also based on residues measured by HPLC-FD. 
However, in contrast to the differences between kestrels 
and barn owls, we found no significant difference 
between tawny owls and barn owls in either the preva-
lence of detected residues or in residue magnitude 
(Figure 2). There were likewise no significant differences  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Prevalence and magnitude of liver SGAR 
residues in adult and 1st-year tawny owls (TO) and 
barn owls (BO) from England in the period 2003-
2005 (HPLC-FD detection method). 

Top graph: Numbers of birds with at least one 
detected liver SGAR residue (hatched part of bar) 
or no detected residue (clear part of bar); the % of 
the sample with at least one detectable liver SGAR 
residue is indicated above the bar.  

Bottom graph: Median (and interquartile range) 
ΣSGAR concentration for detected residues. Values 
above the bars indicate the number of birds in the 
sample. 

 
 
 
 
 
between age classes. When data for the two age classes 
were pooled, the prevalence of residues was found to be 
marginally higher in barn owls than tawny owls, although 
this difference just failed to make statistical significance 
(P = 0.08). 

Comparative data for liver ΣSGARs in sparrowhawk 
and barn owl were generated using LCMSMS. This was 
reflected by the overall detection rate of liver SGAR 
residues (Figure 3). In fact, all the adult birds of both 
species had at least one detectable liver SGAR residue. 
There was also no species difference for the proportion of 
first-year birds with residues but for both species, fewer 
first-years had a detectable residue compared with adults. 
The magnitude of the detected residues was approxi-
mately 2-fold greater in barn owls than sparrowhawks 
for both age classes, but    the difference was only statis- 
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Figure 3.  Prevalence and magnitude of liver SGAR 
residues in adult and 1st-year sparrowhawks (SPK) 
and barn owls (BO) from England in the period 
2010-2013 (LCMSMS detection method).  

Top graph: Numbers of birds with at least one 
detected liver SGAR residue (hatched part of bar) 
or no detected residue (clear part of bar); the % of 
the sample with at least one detectable liver SGAR 
residue is indicated above the bar.  

Bottom graph: Median (and interquartile range) 
ΣSGAR concentration for detected residues. Values 
above the bars indicate the number of birds in the 
sample. In both graphs, significant differences 
between bars (see methods for details of statistical 
tests) are indicated as: * P < 0.05, **P < 0.01). 

 
 
tically significant in adults (Figure 3). 

The data for the red kite vs barn owl comparison were 
also from the same period as that for the sparrow-
hawk/barn owl comparison. All except 1 out of 36 adults 
and 1 out of 9 first-year red kites had detectable liver 
SGAR residues, as compared with 100% of adult barn 
owls but 80% of first-year owls (Figure 4). The 
magnitude of detected residues was some 4-fold higher in 
red kites than barn owls, both for adults and first-years, 
but the difference was only statistically significant in 
adult birds. The lack of significance for what was a 
similar magnitude difference between first-year birds 
may have been due to the low number of first-year kites 
and resultant low power of the statistical analysis. 

 
 

 
Figure 4.  Median (and interquartile range) ΣSGAR 

concentration for detected liver SGAR residues in 
adult and 1st-year barn owls (BO) and red kites (RK) 
from England in the period 2010-2013 (LCMSMS 
detection method). Values above the bars indicate 
the number of birds in the sample. Significant 
differences between bars (see methods for details 
of statistical tests) are indicated as: * P < 0.05, **P < 
0.01).  

 
 
DISCUSSION 

Our use of the barn owl as a focal point for compari-
sons has allowed us to examine differences in exposure 
in species that utilise the same and different trophic 
pathways, although it is recognised that any differences 
in residue prevalence and magnitude may also partly be 
due to variation in liver binding capacity and accumula-
tion. Our first hypothesis, that species (barn owl, kestrel, 
tawny owl) utilising the same (small mammal prey) 
trophic pathway would have similar exposure to SGARs, 
was only partly supported. We found that exposure 
appeared broadly similar in tawny and barn owls, despite 
previously concluding it may be lower in tawny owls; 
this was based on an analysis that had not controlled for 
age class or within-UK provenance (Walker et al. 2008b). 
However, inter-year, within-country, and more local 
spatial differences may exist between the species. For 
example, tawny owls prey more on wood mice and bank 
voles compared with barn owls which often hunt field 
voles, and it is wood mice and bank voles that are 
typically more likely to encounter and eat bait than field 
voles (Brakes and Smith 2005). Indeed, tawny owls 
hunting mice and voles in woods used for rearing 
gamebirds may be at particular risk of exposure, as 
gamekeepers use ARs to control rats around rearing pens 
(McDonald and Harris 2000). However, barn owls also 
take high numbers of wood mice and bank voles in years 
and habitats with low field vole numbers (Love et al. 
2000) and may hunt closer to farms where non-target 
prey are more likely to encounter bait and feed on bait 
(Tosh et al. 2012, Geduhn et al. 2014). These conflicting 
exposure factors may  effectively cancel each other  out 
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with the result that liver SGAR residues are similar 
overall in the two owl species. However, our results give 
a clear indication of significantly greater exposure/ 
accumulation of SGARs in kestrels than in barn owls, 
and by inference, than in tawny owls. Both the proportion 
of birds exposed and the median magnitude of detected 
residues were higher in kestrels; this was evident in first-
year birds and maintained thereafter. It is uncertain 
whether the reasons for the species differences are 
ecological, physiological, or both. The relatively high 
median ΣSGAR concentrations in adult and first-year 
kestrels is a cause for concern as it is similar to those for 
red kites (Figures 2 and 4), which are known to be 
vulnerable to secondary poisoning. Unlike with kites, the 
PBMS has rarely found evidence of kestrels poisoned by 
SGARs, but populations have declined in the UK. The 
causes of this decline in numbers may be multiple, but 
probably include agricultural intensification (British Trust 
for Ornithology 2017a). The role of SGARs, if any, is 
under investigation.  

The results from the current analyses also indicate 
there are significant differences in exposure between 
species utilising different trophic pathways. Our expecta-
tion that exposure in sparrowhawks would be lower than 
in barn owls was only partly supported. The scale of 
exposure (proportion of individuals with detected resi-
dues) was equally high in sparrowhawks and barn owls 
but the rate of accumulation appeared lower in sparrow-
hawks, perhaps because the rate of encounter with 
contaminated prey is lower, although physiological dif-
ferences between the species again cannot be ruled out. 
Nevertheless, it is evident that exposure in raptors that 
feed on small birds is widespread and common (see also 
Hughes et al. 2013), suggesting that the avian trophic 
pathway is widely contaminated (Vyas 2017) and may be 
almost as an important transfer pathway as that of small 
mammal prey. 

Our analyses also indicate that red kites, which feed 
on target species (rats), do indeed have relatively high 
liver SGAR residues and almost all (first-year and adult) 
birds, particularly in England, are exposed to SGARs. 
This is consistent with the concept that feeding/ 
scavenging on target prey confers a high risk of exposure. 
High levels of exposure would normally be expected to 
increase the risk of poisoning. In 2015, necropsy and 
residue data for red kites that died were collated for the 
first time from across the various exposure monitoring 
and poisoning investigation laboratories in the UK. This 
yielded information for 26 red kites from England and 
Wales and 8 kites from Scotland (Walker et al. 2017). 
SGARs were judged a likely cause of death if there was 
necropsy evidence of haemorrhaging (unrelated to 
trauma) and liver SGAR residues were detected. SGARs 
were implicated in the deaths of 9 (35%) of the birds 
from England and Wales and 2 (25%) of the red kites 
from Scotland. Despite this apparent high poisoning 
pressure, red kite populations are still increasing in the 
UK following their reintroductions in several regions 
(British Trust for Ornithology 2017b).  

The scale of secondary exposure in birds of prey and 
other wildlife has led to the introduction of stewardship 
regime for SGARs in the UK (Buckle et al. 2017). A 

major aim of this regime is to reduce non-target primary 
and secondary exposure by improving best practice in 
usage, enhancing effective control of resistance 
populations, and reducing the extent of open area baiting. 
This has also involved relaxation of the regulations that 
limited the use (to indoors only) of the most acutely toxic 
compounds (brodifacoum, flocoumafen, and difethi-
alone). These compounds are now also available for use 
in and around buildings and are expected to be deployed 
against rat populations that are resistant to other SGARs. 
While the intention is that stewardship will reduce 
primary exposure of non-target small mammals and the 
predators that feed on them, it is less clear to what extent 
it will reduce any risk to predators that feed on target 
prey, given those targets may be more likely in future to 
be contaminated by the most acutely toxic SGARs. The 
future exposure of red kites and other species that feed on 
commensal rodents, such as the polecat (Shore 2003, 
Sainsbury 2018), needs to be monitored as it may change 
in terms of which SGARs animals are exposed to and the 
magnitude of that exposure.  
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