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Abstract 

People often prefer simpler explanations because they have 
higher prior probability. However, simpler explanations are 
not always normatively superior because they often do not 
fit the data as well as complex explanations. How do 
people negotiate this trade-off between prior probability 
(favoring simplicity) and goodness-of-fit (favoring 
complexity)? Here, we argue that people use opponent 
heuristics—relying on simplicity as a cue to prior 
probability but complexity as a cue to goodness-of-fit 
(Study 1). We also examine factors that lead one or the 
other heuristic to predominate in a given context. Study 2 
finds that people have a stronger simplicity preference in 
deterministic rather than stochastic contexts, while Study 3 
finds that people have a stronger simplicity preference for 
physical rather than social causal systems. Together, we 
argue that these cues and contextual moderators act as 
powerful constraints that help to specify otherwise ill-
defined hypothesis comparison problems. 

Keywords: Causal reasoning; explanation; probabilistic 
reasoning; heuristics; judgment under uncertainty. 

 

Introduction 
The principle of parsimony has a long and venerable 
pedigree. It has been discussed since at least Aristotle, 
who wrote in his Physics that “nature operates in the 
shortest way possible,” and it has since become one of the 
core tools in our argumentative arsenal as scientists. Of 
course, this principle was given its most famous 
formulation given by William of Occam, who advised 
against “multiplying entities beyond necessity.” 

Simplicity is not only a core notion in science and 
philosophy, but may well be an organizing principle of 
cognition (Chater & Vitányi, 2003). People prefer simpler 
causal explanations (Lombrozo, 2007), category 
assignments (Pothos & Chater, 2002), and perceptual 
organizations (van der Helm & Leeuwenberg, 1996), and 
more easily learn simple concepts (Feldman, 2000). 

This principle is not arbitrary. Other things equal, 
simpler explanations are more likely to be true because 
they have higher prior probability. Consistent with this 
analysis, Lombrozo (2007) found that people use 
simplicity as a heuristic for estimating prior probabilities. 
In her experiments, participants performing simulated 
medical diagnoses would not accept a complex 
explanation over a simple one unless the prior 
probabilities favored the complex explanation by a factor 
of 4. Further, participants who had a simplicity bias had 
distorted memories of the disease base rates, recalling the 
simpler explanations as having had higher prior 

probabilities than they in fact did. Thus, people’s 
preference for simple explanations, though sometimes 
stronger than normatively warranted, appears to track the 
probabilistic logic favoring simpler explanations. 

Yet, simplicity has its limits because a simple and a 
complex explanation do not always fit the data equally 
well. There is generally a U-shaped curve in how simple 
an explanation ought to be. Too complex, and the 
explanation has a lower prior probability and overfits the 
data; too simple, and it does not account for the nuance of 
the phenomenon (Forster & Sober, 1994). How, if at all, 
does cognition perform this trade-off? 

We propose that people use opponent heuristics to 
compare a simpler versus a more complex explanation. 
This view incorporates Lombrozo’s (2007) insight that 
people use simplicity to estimate prior probability—the 
P(Hi) terms in Bayesian hypothesis comparison—but 
couples it with the idea that people also use complexity to 
estimate likelihoods—the P(E|Hi) terms that measure the 
goodness-of-fit of the evidence to the data. 

For example, if a patient is sneezing and has a stomach 
ache, the patient could have a cold. This explanation is 
simple, but fits the data imperfectly. If we took a random 
sample of the population, a reasonably large fraction 
would have a cold at any given time—so this explanation 
has high prior probability. But among those people who 
have a cold, how many of them would both be sneezing 
and have a stomach ache? The facts here are complex, 
and this simple explanation does not fit very well. 

In contrast, the patient could have both allergies and a 
stomach virus. This explanation is more complex, but fits 
the data neatly. In a random sample of the population, a 
fairly small number would have both allergies and a 
stomach virus. Yet, many of those who do have both 
diseases would likely be suffering from both sneezing and 
a stomach ache. Even though the prior probability of this 
complex explanation is low, it fits the data very well. 

In this case, simplicity seems to be associated with our 
estimate of prior probability and complexity seems to be 
associated with our estimate of likelihood. Of course, this 
explanation was engineered to produce these intuitions by 
relying on specific beliefs we have about these diseases. 
The opponent heuristic account proposes that people also 
use simplicity and complexity as cues in cases where they 
cannot estimate probabilities directly from background 
knowledge. Study 1 tests this possibility. 

Initial evidence for this idea comes from studies of 
intuitive curve-fitting—a superficially distinct but deeply 
related problem to causal explanation. For any set of 
scatterplot data, many different trend curves can be drawn 
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to explain the data, but statistical theory can tell us which 
curve has the best predictive power, fitting as much of the 
underlying signal as possible while fitting little of the 
noise. Yet, people tend to choose curves that are more 
complex than they normatively should be, rather than 
curves that are too simple (Johnson, Jin, & Keil, 2014), as 
one would expect if people only have a simplicity 
heuristic but no complexity heuristic. Indeed, these curve-
fitting studies uncovered direct evidence of a complexity 
bias, because participants judged the more complex to be 
literally closer fits to the data, even when the actual fit 
was held constant. This finding is also consistent with 
naturalistic studies of everyday verbal explanations drawn 
from an Internet corpus, for which the best explanations 
actually tend to be fairly complex (Zemla et al., 2017).   

Why is this pair of heuristics useful? Simplicity is just 
the absence of complexity. How, then, can a pair of 
heuristics accomplish any more than a single heuristic, 
when these two heuristics rely on the same cue? While it 
may seem more parsimonious to assume that people 
merely use one cue in a U-shaped manner, it is difficult to 
specify, for any given problem, where the bend in this U 
should be. Contextual factors (along with background 
knowledge) must work to calibrate the strength of these 
two heuristics, in order to produce a unique solution in 
any given case. Although there is no reason to think that a 
context-sensitive dual heuristic solution will give an 
optimal answer, there is reason to think that it may bring 
the reasoned closer to the right part of the hypothesis 
space, compared to either heuristic working alone or to 
any cookie-cutter U-shaped response to simplicity that is 
not calibrated to the explanatory problem. The current 
studies look at two possible contextual factors that might 
modulate the strength of the two heuristics. 

First, we consider the determinism of the causal system. 
In previous studies of simplicity (Lombrozo, 2007), 
explanations have been produced for deterministic causal 
systems. In such systems, it is rational to prefer simple 
explanations. If disease A always causes symptoms X and 
Y, while disease B always causes symptom X and disease 
C always causes symptom Y, the issue of likelihoods or 
goodness-of-fit simply does not come up: Disease A 
perfectly explains the evidence, and so do Diseases B and 
C together. The only issue is which explanation has the 
higher prior probability, and the simplicity heuristic tells 
us that, absent any other information, the answer is 
Disease A. Therefore, there is no reason to invoke a 
complexity heuristic to countervail against the 
presumption of a simple explanation. 

In contrast, when the causal system is stochastic, the 
likelihoods become a more crucial part of the 
computation. If disease A sometimes causes X and 
sometimes causes Y, while disease B sometimes causes X 
and disease C sometimes causes Y, it is difficult to 
evaluate whether the evidence (symptoms X and Y) are 
made likelier by disease A or by diseases B and C 
combined: It depends on the nature of “sometimes.” Yet, 

in the real world, it is the exception rather than the rule to 
have precise quantitative information about these 
likelihoods in stochastic systems. If people rely on a 
complexity heuristic in such cases, they would judge the 
likelihood of the evidence to be higher for an individual 
with two diseases than for an individual with one disease. 
Study 2 tests whether stochastic contexts therefore lead to 
a weaker simplicity preference. 

Second, we consider the content domain of a causal 
system. People seem to have different beliefs about the 
causal textures of different domains. Whereas people tend 
to identify physical events as having relatively few 
causes, social events are often thought to have many 
causes (Strickland, Silver, & Keil, 2016). This suggests 
that people may calibrate their prior expectations to more 
complex explanations in the social domain, compared to 
the physical domain. Furthermore, people may even 
deploy different causal concepts across domains 
(Lombrozo, 2010). Whereas causal claims about physical 
systems appear to be evaluated in terms of transference 
and contact, social causal claims appear to be evaluated 
counterfactually. This too may reinforce the intuition that 
physical events typically result from highly specified 
causal factors, whereas social events result from more 
complex configurations of counterfactual conditions. 
Since such complex conditions can seldom be known, 
social systems are often highly unpredictable. 

As a consequence of these domain-specific beliefs, 
people may rely on simplicity as a cue to prior probability 
to a differing degree across domains. Whereas simplicity 
is likely to be a potent heuristic for evaluating 
explanations of physical causation, it may be a weaker 
cue for evaluating explanations of social causation, if 
people have a meta-theory that assigns higher prior 
probabilities to complex social causal explanations, as 
compared to physical causal explanations. In addition, if 
social causal systems are seen as more stochastic, this 
would increase the importance of the complexity heuristic 
for evaluating explanations of social causation, as 
compared to physical causation. With a weaker simplicity 
heuristic and stronger complexity heuristic, people may 
have a less pronounced bias toward simple explanations 
in the social domain. Study 3 tests this idea. 

Study 1 
To a Bayesian, the key quantities required to compare 

two hypotheses are the relative prior probabilities of the 
hypotheses (the prior odds), and the relative fit of each 
explanation to the data (the likelihood ratio). Study 1 tests 
whether people use simplicity to estimate these quantities. 

Study 1A seeks converging evidence for Lombrozo’s 
(2007) claim that people assign higher prior probabilities 
to simple hypotheses. Study 1B tests whether this 
heuristic favoring simple explanations might be opposed 
by a heuristic that assigns higher likelihoods to more 
complex explanations: Do people believe that complex 
explanations are better fits to the data? 
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Method 
Participants in all studies were recruited from Amazon 
Mechanical Turk. Each study included a series of check 
questions at the end, and participants were excluded from 
analysis if they answered more than 33% incorrectly. 

Participants (N = 80, 9 excluded) were randomly 
assigned to Study 1A (making judgments about priors 
probabilities) or to Study 1B (making judgments about 
likelihoods). In both studies, participants completed four 
items about diseases, similar to the following problem: 

 

There is a population of elves that lives at Gelfert’s Glacier. 
Sometimes the elves have medical problems such as feverish 
muffets or wrinkled ears. 
 

A Yewlie infection can cause feverish muffets. 
A Yewlie infection can cause wrinkled ears. 
Hepz’s disease can cause feverish muffets. 
Aeona’s syndrome can cause wrinkled ears. 
 

Nothing else is known to cause an elf’s muffets to be feverish of 
the development of wrinkled ears.   

On the same screen, participants completed a series of 
10 true/false questions to ensure comprehension. 

Participants in Study 1A were then asked to judge the 
relative prior probabilities (“Imagine that we randomly 
select an elf from Gelfert’s Glacier. Which of the 
following types of elves do you think we are more likely 
to have selected?”) on a 10-point scale, with one end 
corresponding to the simple explanation (“An elf who has 
a Yewlie infection only”) and one end to the complex 
explanation (“An elf who has both Hepz’s disease and 
Aeona’s syndrome”). Participants in Study 1B were asked 
to judge the likelihoods (“Imagine an elf who has a 
Yewlie infection only, and another elf who has both 
Hepz’s disease and Aeona’s syndrome. Which elf do you 
think is more likely to develop both feverish muffets and 
wrinkled ears?”) on the same scale. 

Results and Discussion 
Data for all studies were recoded so that negative 
numbers correspond to the simple explanation and 
positive numbers to the complex explanation.  

Participants in Study 1A used a simplicity heuristic, 
indicating that a randomly selected elf was more likely to 
have one disease than two diseases [M = –2.19, SD = 
1.78; t(33) = 7.19, p < .001, d = 1.23]. This is consistent 
with Lombrozo’s (2007) studies, where overwhelming 
prior odds were required before participants would favor a 
complex over a simple explanation in deterministic cases. 

However, the story was different for judgments of 
likelihoods or goodness-of-fit. Here, participants favored 
the complex explanation [M = 1.41, SD = 2.35; t(36) = 
3.65, p = .001, d = 0.60]. This complexity bias in 
estimating likelihoods was substantial in magnitude (d = 
0.60), though smaller than the simplicity bias in 
estimating priors (d = 1.23), at least for these stimuli.  

These results shows that people do not blindly prefer 
simple explanations, but instead calibrate their 

preferences according to the question asked. Even though 
the problem did not include any probability information, 
participants used simplicity and complexity to estimate 
different probabilistic quantities in opposing ways.  

Study 2 
In any causal system where there is uncertainty about 
which explanation is correct, the prior probabilities of 
each explanation must be less than 1, since otherwise 
there is no reason to observe any data (as it will fail to 
move the posteriors). However, the likelihoods differ 
across deterministic and stochastic systems. In 
deterministic systems, the evidence is always produced 
with probability 1 by its causes, whereas in stochastic 
systems, these likelihoods are less than 1. 

If explanatory heuristics exist in part because degrees of 
uncertainty are difficult to estimate and to use in 
computations, then a simplicity heuristic will always be a 
useful tool for estimating priors, since they are always 
uncertain. However, a complexity heuristic is only useful 
in stochastic systems, where the likelihoods are uncertain. 
Thus, both heuristics should be at work in stochastic 
systems (a simplicity heuristic pushing toward simpler 
explanations and a complexity heuristic pushing toward 
more complex explanations), whereas only the simplicity 
heuristic applies in deterministic systems (pushing toward 
simpler explanations, without an opposing force pushing 
toward more complex explanations). This leads to the 
prediction that people should especially favor simple 
explanations for deterministic systems. 

Method 
Participants (N = 80, 14 excluded) completed four items 
corresponding to the cover stories used in Study 1. For 
one of these items—in the 100% condition—the causal 
system was described as deterministic, in that the diseases 
always led to their symptoms (100% likelihood): 

 
 

Tritchet’s syndrome always (100% of the time) causes both 
sore minttels and purple spots. 
 

Morad’s disaease always (100% of the time) causes sore 
minttels, but the disease never (0% of the time) causes purple 
spots. 
 

When an alien has a Humel infection, that alien will always 
(100% of the time) develop purple spots, but the infection will 
never (0% of the time) cause sore minttels. 
 

The other three items corresponded to the 90%, 80%, 
and 70% conditions, which differed only in the causal 
system being described as stochastic: 

 

Tritchet’s syndrome often ([80/65/50]% of the time) causes 
both sore minttels and purple spots. 
 

Morad’s disaease often (([90/80/70]% of the time) causes sore 
minttels, but the disease never (0% of the time) causes purple 
spots. 
 

When an alien has a Humel infection, that alien will often 
(([90/80/70]% of the time) develop purple spots, but the 
infection will never (0% of the time) cause sore minttels. 
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After reading this information, participants were asked 
about their favored explanation (“Which do you think is 
the most satisfying explanation for Treda’s symptoms?”) 
on a scale from 0 (Tritchet’s syndrome only) to 10 (both 
Morad’s disease and a Humel infection). The conditions 
were balanced across the cover stories using a Latin 
square, and items were completed in a random order. 

Results and Discussion 
Participants strongly preferred the simple explanation [M 
= –3.81, SD = 1.95; t(65) = 15.84, p < .001, d = –1.95] 
given deterministic (100%) likelihoods. This replicates 
Lombrozo’s (2007) finding that people strongly favor 
simple explanations in deterministic causal systems.  

The key question is whether this preference would 
differ in the stochastic conditions, where a complexity 
heuristic would be more likely at play for understanding 
the likelihoods. To keep the likelihood ratio objectively 
identical across conditions, the likelihood for the simple 
explanation must equal the product of the likelihoods for 
the components of the complex explanation (i.e., 90% ´ 
90% » 80%, 80% ´ 80% » 65%, and 70% ´ 70% » 50%). 
This calculation assumes that people believe diseases to 
cause their symptoms independently—an assumption that 
Lombrozo (2007) validated for her very similar stimuli. 

As predicted by the opponent heuristic account, the 
simplicity bias was weaker in each of the three stochastic 
conditions, although participants still had a robust 
simplicity preference in each of them [M = –3.00, SD = 
2.68,  t(65) = 9.09, p < .001, d = 1.12 for the 90% 
condition; M  = –2.50, SD  = 2.58, t(65) = 7.86, p < .001, 
d = 0.97 for the 80% condition; M = –2.48, SD = 2.45, 
t(65) = 8.24, p < .001, d = 1.01 for the 70% condition]. 
The simplicity bias in the stochastic conditions, while 
large (d from 0.97 to 1.12), was smaller compared to the 
deterministic condition (d = 1.95; ps > .012), as predicted. 

However, this design is subject to concerns about 
demand characteristics and difficulties with probabilities 
that are unrelated to the proposed mechanisms. In 
particular, the deterministic condition set all likelihoods to 
100%, whereas the stochastic condition had to set 
different likelihoods for the simple explanation and for 
each component of the complex explanation. Could 
people have relied on a strategy such as comparing these 
numerical likelihoods (100% vs. 100% and 90% vs. 80% 
for complex vs. simple), favoring the complex 
explanation in the stochastic conditions merely because it 
was superficially associated with higher numbers? 

If this were the case, people should be increasingly less 
biased toward the simple explanation as the difference 
between the simple and complex likelihoods increased. 
This difference increases not only between the 
deterministic and stochastic conditions, but also across 
the stochastic conditions (90% vs. 80%, 80% vs. 65%, 
and 70% vs. 50%). Thus, on this deflationary account 
there should be large gaps not only between the 
deterministic and stochastic conditions, but also among 

the stochastic conditions. In contrast, the opponent 
heuristic account predicts a qualitative shift between the 
deterministic condition and the stochastic conditions that 
introduce uncertainty into the likelihoods. 

The data are more consistent with the latter prediction, 
as suggested by the similar effect sizes of the simplicity 
bias across the three stochastic conditions. There is a 
significant difference between the 100% and 90% 
conditions, where we shift from deterministic to 
stochastic [t(65) =  2.61, p = .011, d = 0.32]. However, the 
difference between the 90% and 80% conditions reaches 
only marginal significance [t(65) = 1.88, p = .064, d = 
0.23] and the difference between the 80% and 70% 
conditions is nowhere near significant [t(65) = 0.04, p = 
.97, d = 0.01]. The deflationary account would predict 
equally large differences across these sets of conditions. 

Thus, determinism may play a role in striking the 
balance between the simplicity and complexity heuristics. 
These results also resolve a puzzle about Lombrozo’s 
(2007) findings. Given that people are reasonably well-
calibrated in evaluating explanations in the real world, it 
is surprising to see such a striking simplicity bias as one 
finds in her studies, with prior odds of 4-to-1 required to 
override a simplicity preference when the evidence is 
perfectly consistent with either hypothesis. Study 2 found 
that in more ecologically realistic conditions, where the 
evidence is not perfectly predicted by any explanation, 
people are more likely to hedge their bets. People may 
thus make more accurate explanatory inferences in 
realistic, stochastic environments. 

Study 3 
A second contextual factor that may influence preferences 
of simple and complex explanations is a system’s content 
domain. People believe that physical events have fewer 
causes than social events (Strickland, Silver, & Keil, 
2016) and use causal concepts relying on physical 
transference for physical systems but complex 
counterfactual conditions for social systems (Lombrozo, 
2010). Thus, Study 3 tests the possibility that people 
would use these expectations to calibrate their 
explanatory inferences, favoring simpler explanations in 
physical causal systems compared to social systems. 

Method 
Participants (N = 479, 89 excluded) read 12 items across 
four content domains (physics, biology, artifact, and 
social), which were deterministic for half of participants 
and stochastic for the other half. These items had the 
same format as the items used in Study 2, but the content 
was replaced with various items in physical (ultraviolet 
waves, subatomic particles), biological (disease, 
agriculture, dieting), artifact (robots, clocks, toys), and 
social (team dynamics, child behavior, and romantic 
attraction) causal systems. Participants then made 
explanatory judgments on the same scale as Study 2. 
Items were completed in a random order. 
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 Deterministic Stochastic 

Physical –2.76 (2.10) –2.15 (2.40) 
Biological –2.59 (2.19) –2.15 (2.28) 
Artifact –2.32 (2.41) –1.81 (2.53) 
Social –1.81 (2.71) –1.22 (2.59) 

Table 1: Means (SDs) in Study 3. 

Results and Discussion 
Table 1 shows the effects of both moderators (negative 
scores reflecting an overall simplicity preference). First, 
as in Study 2, participants favored the simple explanations 
more strongly for deterministic than for stochastic 
systems [t(388) = 2.52, p = .012, d = 0.26]. Thus, the shift 
seen in Study 2 was not unique to unfamiliar stimuli, or 
specific to reasoning about diseases. Rather, it is a general 
pattern used across many content domains. 

Second, the ordering of the means across domains was 
consistent with predictions. Critically, participants had a 
much stronger simplicity preference in the physical than 
in the social domain [t(389) = 8.62, p < .001, d = 0.38]. 
The biological and artifact domains fell in between, with 
the strongest preference for the physical, followed by the 
biological, artifact, then social domains. (Keil, Lockhart, 
& Schlegel, 2010 find similar patterns in a different task.) 

Together, the results of Studies 2 and 3 help to resolve 
the puzzle of how people could rely on a single cue—an 
explanation’s simplicity—to do two logically independent 
jobs: estimating the prior and likelihood of an 
explanation. If contextual moderators can influence the 
weighting of the simplicity and complexity heuristics, 
then a reasoner could reach different conclusions about 
simplicity and complexity in different contexts, in ways 
which are broadly adaptive. 

However, there are lingering puzzles about what 
determines the strength and even direction of simplicity 
and complexity preferences. For example, one might have 
expected inferences to more strongly favor the simple 
explanations than they did here, given the strong 
simplicity preferences found for the artificial items in 
Study 2. The more moderate inferences here may have 
occurred because the items were seen as more reflective 
of the real world—where true determinism is rare—
leading participants to hedge their bets. Alternatively, 
participants here could be recruiting background 
knowledge, relying more on memory rather than 
reasoning. In that case, the strong simplicity preferences 
found for artificial items in Studies 1 and 2 may better 
reflect the underlying reasoning processes. 

General Discussion 
We set out to understand how people use simplicity to 
constrain their evaluation of explanations, making 
tractable an otherwise ill-defined computational problem. 
Usually, simplicity is a good cue for an explanation’s 

prior probability (intuitively, simple causes require fewer 
stars to align in order to occur) while complexity is a 
good cue for an explanation’s likelihood or fit to the 
evidence (since complex causes have more opportunities 
to cause each aspect of the evidence). Study 1 found 
direct evidence for both of these opponent heuristics, 
directly asking about participants’ priors and likelihoods. 

However, our explanatory strategies must be definite 
enough to provide both a unique answer for a given 
explanatory problem, but also flexible enough to provide 
different answers to different problems. The opponent 
heuristics strategy solves this dilemma by modulating the 
inference depending on context. Study 2 showed that 
people shift toward complex explanations in stochastic 
contexts (because such contexts render a complexity 
heuristic more computationally relevant), and Study 3 
showed that people favor simple explanations to varying 
degrees across domains, in ways that track people’s 
general expectations about the causal textures of these 
domains: People believe that physical systems are more 
linear, whereas social systems are more subject to 
branching, and people correspondingly favor simple 
explanations to a greater degree for physical systems. 

Explanatory Logic. We view these opponent heuristics 
as one part of a broader explanatory logic—a set of 
heuristics and strategies that people use for evaluating 
explanatory hypotheses across a variety of processes in 
light of our cognitive and informational limitations 
(Johnson, 2017). Here, we focused on causal explanation 
and previous work has found similar effects in visual 
curve-fitting (Johnson, Jin, & Keil, 2014), both tasks 
requiring people to evaluate competing hypotheses 
(causes, trend lines) for available data (effects, data 
points). However, many other processes also take this 
form, including categorization (which category best 
explains the features?), theory-of-mind (which mental 
state best explains the behaviors?), language (which 
meaning best explains the utterance?), and memory 
(which past events best explain the details I recall?). 

In ongoing work, we have been looking at simplicity 
heuristics in some of these other processes. For example, 
people can belong to several categories simultaneously—
you can be a feminist bank teller, a Jewish woman, or a 
gay cognitive scientist. When explaining particular traits, 
people tend to favor social categorizations that invoke 
fewer categories simultaneously, but this bias is weaker 
when the categories are more loosely (i.e., stochastically) 
associated with the relevant features (Johnson, Kim, & 
Keil, 2016). Similarly, people favor mental-state 
explanations that invoke relatively fewer goals to explain 
a particular behavior, but this simplicity preference is 
weaker when the goals are more stochastically associated 
with the behaviors (Johnson, 2017). Thus, opponent 
simplicity heuristics appear to pervade cognition. 

The Adaptive Value of Opponent Heuristics. Our 
empirical argument for opponent heuristics has required 
us to engineer situations where people make errors. 
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Nonetheless, we maintain that under more ecologically 
realistic conditions, these heuristics often serve us well 
and help to make explanatory reasoning possible. 

If you have a well-specified prior distribution and 
likelihood function, then you can do no better than 
normative Bayesian inference. Our participants fell short 
of this standard, making inferences that were 
unreasonably biased toward simple explanations and 
influenced by normatively irrelevant factors. 

Yet, in the real world, we often lack access to 
substantial information about probability distributions. 
We often are confronted with novel situations in which 
we cannot calculate but must simply guess, based on what 
little we can glean from the immediate problem and what 
minimal cues we can bring to bear from our previous 
experience. It may be true that people seldom encounter 
cases where they must diagnose an elf, deciding among 
unfamiliar diseases on the basis of make-believe 
symptoms, but it is true in real-world medical decision-
making that we are often faced with highly limited 
information. Doctors have built up a corpus of statistical 
knowledge about some familiar diseases, and medical 
scientists may have some evidence to bring to bear on less 
familiar ones. Yet, no one has joint probability 
information about all combinations of diseases and 
symptoms. We must rely on iffy assumptions and fallible 
heuristics to make any real progress, even in a highly 
constrained problem domain such as medical diagnosis. 

In other cases, probabilities may be even less evident. 
When making geopolitical forecasts, assessing the reasons 
for a friend’s odd decision, or debating philosophical 
conundrums, there may be little relevant prior 
information, and it may be impossible to model the 
probabilities with any degree of confidence. This is 
known as radical uncertainty or Knightian uncertainty 
(Knight, 1921), and some thinkers argue that many 
sources of uncertainty are not quantifiable using 
probabilities (e.g., Levi, 1974; Mises, 2008/1949). In 
cases of Knightian uncertainty, the best we can do is to 
adopt rules that work reasonably well most of the time, 
much as David Hume has argued that our inductive habits 
are justified by habit rather than logic (Hume, 
1977/1748). The use of simplicity and other explanatory 
heuristics appears to be one such adaptive habit.  

This is not to claim that our explanatory habits are 
untethered to the world. On the contrary, simplicity is 
usually an excellent principle to use because there are 
often multiple explanations, varying in complexity, which 
fit the data equally well. In such cases, the priors 
generally do favor simple explanations, so a simplicity 
heuristic is reasonable. But when the explanations vary in 
likelihood, simplicity will lead us astray, as complex 
explanations are often better fits to the data. Opponent 
heuristics allow us to harness both of these general facts 
to our advantage, while avoiding computations that may 
be intractable and, in Knightian cases, even impossible. 
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