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ABSTRACT

The finite element method is used as the basis of a computer
program for analysis of stiffened plates. Triangular and quadrilateral
plate elements and beam elements may be used for idealization of the
stiffened plates. The plate elements may have isotropic or orthotropic
material properties. The stiffeners are assumed to be symmetric about
the midplane of the plate. This assumption uncouples the plane stress
and the plate bending problems. If the inplane stresses are not known
in advance, the plane stress problem can be solved as a first step. The
next step may be to solve the plate bending problem. The effect of the
membrane stresses on the plate bending behavior is taken care of in this
case by adding the geometric stiffness matrix to the elastic stiffness
matrix. Alternatively the stability problem may be solved, finding the
critical buék]ing eigenvalue and the corresponding mode shape. A
listing of the FORTRAN IV computer program is given in the report, and
a few examples of bending and buckling of stiffened plates are presented,

The program has been developed and tested on the CDC 6400 computer,
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I. INTRODUCTION

The analysis of stiffened plates subjected to inplane and
lateral Toads plays an important role in the design of ship structures,

A commonly used approach in the past has been based on the grillage
idealization where the stiffened plate is represented by a system of
intersecting beams [1]. For plate fields having many stiffeners,
orthotropic plate theory usually has been applied [2, 3]. Within the
last 15 years the more general finite element technique has been
developed for analysis of plates and shells of arbitrary geometry

[4, 5, 6]. One of the most important advantages of the finite element
technique 1s that an assembly of different structural elements such as
plates and beams can be dealt with in a single coordinated analysis.

The finite element program described in this report can include
quadrilateral and triangular plate elements, and also beam type elements,
However, eccentricity of the stiffeners is not included because a
different idealization for the stiffeners would have to be used to
account for that effect. The simplified idealization used here makes

1t possible to uncouple the membrane analysis from the bending analysis,
The effect of membrane forces on the plate bending behavior can, however,
be taken into account by adding the geometric stiffﬁess_terms to the
bending stiffness of plates and stiffeners.

If the effect of stretching of the midplane of the plate as a
result of lateral displacement were to be included, an iterative analysis
procedure would have to be used, This would correspond to a second
order theory of plates, and is not included in the present version of
the program. An extension of the present program to include this

effect would be possible with a moderate effort. The 1inearized theory



presented here is expected to give satisfactory accuracy for displacements
less than half the plate thickness. This means that a large number of
problems of practical importance can be solved by means of the computer

program described.



IT. METHOD OF ANALYSIS

1. Discretization

The stiffened plate is idealized as an assemblage of flat
plate elements symmetric about the mid-plane of the plate. For a plate
with eccentric stiffening, the fact that the plate will act as a flange
for the stiffeners can be taken into account only in an approximate way.
To carry out such an analysis, an effective width of plate flange must
be used when computing the moment of inertia of the stiffeners. In the
membrane analysis the stiffeners are idealized as bar elements taking
axial forces. In the bending analysis the stiffeners are idealized as
beam elements. For plates with many stiffeners with equal spacing, the
stiffened plate field may be idealized as an orthotropic plate. The
quadrilateral and triangular elements used in this program permit

orthotropic material properties to be represented.

2. Coordinate System and Sign Conventions

The plate is referred to a global right handed cartesian
system x-y-z, with x-y 1in the undeformed midsurface, Positive sign
conventions for displacements and rotations of the midsurface joints
are indicated in Fig. 1,

Concentrated transverse forces P and concentrated moments
CX, Cy follow the sign convention of transverse displacements w and

rotations 0,5 0 respectively, A lateral distributed load q (x, y)

y?
1s also positive in the direction of a positive displacement w (upwards),
For the internal moments the sign convention is indicated in Fig, 2.

Note that this implies that a positive normal moment produces
compression in the upper surface of the plate (deforms the plate into

convex downward curvature).



A z,w,P

FIG. 2 SIGN CONVENTION FOR x-y MOMENTS



3. Finite Elements Used

The finite elements used in the two major steps of the

analysis will be described briefly in this section:

i) Plane Stress Analysis

The elements used for this paft of the analysis all have two
degrees of freedom for each nodal point, u- and v- displacements,
The set of elements includes: Bar element (BAR) with 2 nodal points,
Constant Strain Triangular element (CST) with 3 nodal points and
Quadrilateral Plane Stress element with 4 external nodal points (QUPS-10).
The latter element also has one internal point. This is eliminated by
static condensation, so the final element stiffness matrix is a 8 x 8
matrix. Derivation of the stiffness matrices is described in [6] for
the quadrilateral and triangular elements and in [8] for the bar element.
Note that the element stiffness matrices are formed directly in the global
coordinate system so that no transformations from local to global
coordinates are required. Fig. 3 shows the membrane elements used, The
derivation of the stiffness matrix for the BAR and the CST elements is
performed analytically, while for the QUPS-10 element a numerical
integration is carried out using a 4th order Gaussian integration

formula (16 interior integration points).

i1) Plate Bending Analysis
The elements used for plate bending all have three degrees of
freedom for each nodal point, w transverse displacement (normal to the
midplane of the plate) and By and ey rotations about the x- and y-
axes. The beam element used accounts for shear as well as flexural
deflection [8]. The basic assumption in the program is that stiffeners

are symmetric about the midplane of the plate, A stiffener which is



FIG.3 PLANE STRESS ELEMENTS
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not symmetric about the midplane should have an effective width of
plating included when the moment of inertia is computed [9]. If a more
refined finite element representation had been used, this approximation
would not have been necessary, but it then would have been hecessary to
solve a 3-dimensional problem including both bending and plane stress
stiffnesses in the same analysis.

The triangular plate bending element LCCT-9 is derived in [5].
This element is fully compatible and has a Tinearly varying slope along
the external sides. A triangular element with a parabolic slope
variation and 12 degrees of freedom (LCCT-12) is derived in the same
reference. The quadrilateral plate bending element Q-19 is assembled of
four triangular elements which have parabolic and linear slope variations
along the interior and external sides, respectively (see Fig, 4). The
seven internal degrees of freedom are eliminated from these elements by
static condensation. The final quadrilateral plate bending element has
12 external degrees of freedom and a 12 x 12 element stiffness matrix.

This element {is described in detail in [7].

4. Geometric Stiffness

If a plate field is subjected to a system of combined inplane
and lateral loads, the linear theory is no Tonger valid and there exists
a coupling between the membrane and the plate bending actions, This
problem is covered by the second order theory of plates, the Von Karman
theory. If one neglects the influence of lateral displacements on the
membrane strains, however, one is still able to solve the membrane and
plate bending problems separately. The effect of membrane stress

resultants Nx’ Ny and NX on the plate bending problem, can be dealt

Yy
with by adding the "geometric stiffness" or "initial stress" matrix to



FIG. 4 PLATE BENDING ELEMENTS



elastic plate bending stiffness matrix. Lateral displacements and
moments are still linear with respect to lateral loads, but nonlinear
with respect to inplane loads. This corresponds to the beam-column
theory of beams. |

The work of the inplane stress resultants due to the mid-plane

rotations w X and w y is given by the following expression:

o

Ve = 2 i [, (o )7+ Ny(w,y)z LA (1)

Fig. 5 gives a geometrical illustration of the work done by the Nx

stress resultant. In matrix form Eq., 1 can be written as:

For a plate bending element the displacement w is defined,
by interpolation functions < ¢w >, 1in terms of the nodal point

displacements {r}, as follows:

wo= <o >{r} (3)

Differentiating the expansion for w with respect to x and y yields:

Wy = % ¢w,x > {r}

1t

< ¢ > {r}

w
24 Wy

and substituting these into the expression for UG leads to:



ax 8

8= (Vi*w-1)dx = (w Jax/2

0 Ugy = Ny (w, YA /2

FIG.5 ILLUSTRATION OF THE WORK DONE

BY N, STRESS RESULTANT DUE
TO w,, ROTATION

10



11
U, = + 7 [k ) (5)
G 2 G

where [}Gj]is the element geometric stiffness and is expressed by:

NX N ¢ -

T T Xy M, x
k.- f ol 1o Y ! (6)
EG] [W,XI W,J N N

¢
A Xy y w’y

The total potential energy of the element can be written as
Moo= U+ U - (7)

where U = %-{r}T [kc] {r} and We = {r}T {R}; [kC] and {R}

representing the elastic stiffness matrix and nodal load vector of the
element, respectively. Taking the variation of the potential energy
with respect to the nodal displacements, and setting the result equal to

zero, &m = 0, leads to:

[k, - kg1 {r} = {R} (8)

As can be seen, for each plate bending element, the geometric stiffness
matrix EG 1s directly added to the elastic stiffness matrix Kc to
obtain the total stiffness matrix, The elastic and geometric stiffness
matrices K. and Kg ©f the complete structure are then obtained by
assembling those of the individual elements. The equilibrium equation

of the structure then can be written as:

[k, - K] (7 = (® (9)
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where {r} and {R} are nodal point displacement and load vectors of
the complete structure, respectively,

A special case applies when no lateral loads are present, i.e.,
{R} = {0}. Equation (9) now becomes the equation defining the stability
of the plate. If all the inplane stress resultants are increased by a
factor A, the plate becomes unstable, and the corresponding values of

the inplane forces represent the buckling load:

Nog = AN
Nyc =N (10)
xyc - A ny
The problem of finding this buckling load factor ) 1is a standard
eigenvalue problem:
[K.1 {r} = A [KG] {r} (11)

Note that in Eq. (11) compression is taken to be positive, to give a
positive eigenvalue,

It should be noted that the interpolation functions < ¢W >
employed in deriving the geometric stiffness do not have to be
identical to those wused for calculation of the elastic stiffness
matrix. Clough and Felippa (7) have compared three different
assumptions for < S > in the derivation of the geometric stiffness

for plate bending. The simpTest is the Tinear assumption:

NP IR IR S Tq > (12)
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where ; are the triangular coordinates of the element, as described
in Appendix A, Secondly, a single cubic expansion < ¢w3 > and finally
the compatible cubic expansion < ¢wc > used in the derivation of the
elastic stiffness matrix in this study, were examined. Their conclusion
was that the single cubic expansion < ¢w3 > gave results almost
identical to those obtained by the compatible cubic expansion and better
than the linear expansion. The single cubic expansion is much simpler
and therefore must be preferred for general analyses, In Appendix A the
derivation of gG for a triangular element using this expansion has
been described in detail. For the derivation of geometric stiffness
matrices for rectangular elements, the reader is referred to Gallagher

and Gellatly [10] and Kapur and Hartz [15].

5. Arrangement of the Computer Program

The basic flowchart for the computer program is presented in
Fig. 6. The subroutine SETUP inputs control parameters, geometric data,
and material properties for the problem to be solved. For a quadrilateral
plate field the quadrilateral elements may be generated in the computer
program by specifying corner point coordinates and the number of
elements to be used in each direction. Additional elements may be read
in from cards. The option to read in all the nodal points and element
data also exists, and the plate field may then have an arbitrary geometry,
Depending on the parameter ND1, a plane stress analysis may be performed
or the inplane stress state may be read in from cards. If a plate
bending or buckling ana]ysiskis required, the next step will be to
evaluate the plate bending elastic stiffness Kc and also the geometric
stiffness KG of the elements. If a plate bending analysis is required,

the 19 x 19 stiffness matrix k = ke - kg 1s computed for each element
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( starT )
b

NUML=0

INPUT OF CONTROL PARAMETERS
AND GEOMETRIC DATA

PLANE STRESS ANALYSIS

COMPUTATION OF PLATE
BENDING AND GEOMETRIC
STIFFNESSES

PLATE BENDING ANALYSIS

BUCKLING ANALYSIS

NUML= NUML +| ptmee—ee

<
>0 Ao1-NUMD-=0

N

FIG.6 FLOW CHART FOR COMPUTER PROGRAM
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and- the 7 internal degrees of freedom are condensed, The resulting

12 x 12 stiffness matrix is written on tape. If a buckling analysis

is to be performed, the full (19 x 19) element stiffnesses k. and ke
for each element are written on tape for later use in the inverse
iteration eigenvalue solution procedure.

The structure's stiffness matrix K is assembled by the direct
stiffness method. Only the upper half band of the matrix is stored. The
stiffness matrix is kept in thelcore memory. This réstricts the
capacity of the program to b x m < 18000 for the 64K core memory on
the CDC 6400, where b = half bandwidth of the stiffness matrix of the
structure and m 1is the total number of degrees of freedom. For a
bending problem this corresponds to NUMNP - (ND + 1) < 2000 where NUMNP
is the total number of nodal points and ND is the maximum difference in
nodal point numbers for a single element. The equilibrium equation may

be written as:

==l
il
|
=
—
—
w
~—

where

(14)

A Gaussian decomposition is performed on EZ for the solution of Eq. 13

as follows:

K = LDL'

—

(15)

in which L 1is a Tower triangular matrix., This is then used to solve
Eq. 13 for the nodal displacements f; Any specified number of load

vectors may be included in R
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If the buckling stability of the system is to be evaluated, the
eigenvalue problem obtained when R = 0 must be solved; in this case the

equation is written:

[KC] {ur = A [KG] {u} . (16)

Generally only the lowest eigenvalue is of interest, and it may be found

conveniently by inverse interation. The efficiency of the process is im-
proved in the present program by introducing a shift y; i.e., the
eigenvalue is represented by the sum of the shift and a reduced eigen-

value, §:

A= u+ 6, (17)
Eq. 16 then becomes:

[Ke - W K] {u} = 8 [K.] {ul, (16a)

and the basic interation algorithm may be written

[k - k2w s kI = gDy, (1sa)
where:
. . i+1
{V}(1+]) =8 {U}(1+]) = {U}(:+]) (18b)
YUmax

The initial assumed mode shape {v}(o) is found by computing
the static displacements for a load condition which is read in. This
displaced shape should include both symmetric and anti-symmetric components
because the program may fail to determine a symmetric mode shape in case a
completely anti-symmetric {v}(o) is supplied, or vice-versa. If no

estimate for A is available, the initial shift may be taken to be zero.
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II11 - INPUT DATA INFORMATION

For any problem to be solved by the program, a group of
punched cards will be required as follows:
1. START Card (A6)
The word "start" should be punched in columns 1 - 5,
2. Identification card (13 A 6)

Alphanumeric information to be printed as a heading for
the output should be punched in colums 1 - 78,

3. Control Cards
The following two cards will be required:
Card A - (514,F10.3)

Colums 1 -4 NUMEL Number of elements to be read
(<450) in (generated elements excluded).

($,]
]

8 NUMNP Number of nodal points to be
(<180) read in (generated nodal points
excluded),

9 - 12 NUMBC Number of nodal points with
(<70) boundary conditions to be
read in (generated boundary
conditions excluded),

13 - 16 NMAT  Number of different materials
(<20) (materials of beam and plate
element are considered to be

different in any problem).

17 - 20 NUMPB Number of points defining
(50) the boundary of the region

where displacements and
moments are to be plotted

(mode shape in buckling
analysis),




21 - 30 RT

Card B - (4L2, 312) A
2 M

Columns 1 -
3-4 T2
5-6 T3
7-8 T4
9 - 10 NDI

18

Plate thickness for the
quadrilateral field to be
generated. (See "Element
data cards").

Punch T if all quadrilateral
elements are identical and have
the same inplane stresses;
otherwise punch F.

Punch T if standard output
without any intermediate data
is needed; otherwise punch F,

Punch T if all element and
nodal point data is read in
from cards; punch F if part

of this data is to be generated
(in the form of a quadrilateral
mesh) .

Punch T if displacements and
moments are to be plotted (mode
shape in buckling analysis);
punch F is no plot is needed.
Parameter which determines how
inplane stress distribution

"should be obtained:

=2 Read in each nodal point

°

value for Ty Uy"rxy

-1 Read in for each corner
of the quadrilateral field
the value of Gy cya'rxy,
(This option must only be
used when T3 = F).

=0 No inplane stress is

present.,
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>1 Number of loading conditions
for plane stress analysis

11 - 12 ND2 Parameter which determines type
of lateral loading:

<0 No lateral load is present
and a plane stress analysis
only is to be performed

= 0 Buckling analysis is
to be performed.

>0 Number of loading
conditions for plate
bending analysis.

13 - 14 ND3

L]
—

if all quadrilateral
elements are identical
(regardless of inplane
stress distribution),
=0 otherwise.

4. Material Data Cards (I3, I2, 6 E 10.3)

For isotropic plate elements two constants, elastic
modulus E and Poisson's ratiov are read in. For orthotropic
plate elements six constants, D]]’ Dzzg 0339 012, D]3, and
D, defining the 3 x 3 matrix in g = De are read in. For
beam elements, in addition to the elastic modulus E, the
Poisson ratiOS\g and-w.(used to define transverse and
torsional shear moduli, Gs= E and GT = E

2(1 +v$) 2(1 MT)
are read in.

For each material property one card (total of NMAT
cards) is required:
Columns 1 -3 Material number (*)

4 -5 Type of material constants:

0 for isotropic plate elements.

1 for orthotropic plate elements.
2 for beam elements.

(¥#) TFor plate elements generated in the quadrilateral mesh this number
should be set equal to 1,
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6 - 15 E or D11

16 - 20 v, Dz2 orvs

21 - 30 vyor 033

31 - 40 D]2

41 - 50 013

51 - 60 023
Boundary points defining plotting region (20 14)

For plotting purposes a set of boundary points defining a plate
contour must be punched in cyclic order (20 points per card).

If no plot is needed Teave a blank card.

Mesh generation cards

Two cards are required if a quadrilateral mesh is to be generated,
i.e., Ty = F:

Card A - (215, 4(5X, 5I1))

Columns 1 - 5 NADIV Number of elements inz direction.

6 - 10 NBDIV Number of elements in n direction.
16 - 20 ICB Boundary conditions for side 1 (for u,
vV, W displacements and ex9 ey rotations

respectively, 0 = free, 1 = fixed)

26 - 30 Similarly for side 2
36 - 40 Similarly for side 3
46 - 50 Similarly for side 4

@ 3

"
of
F

®
I
@ 2

Numbering of corner points and sides

of the generated quadrilateral mesh.
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Card B - (8F 10.3)

Columns 1 - 10 XB (1 X - coordinate of corner 1.

(
11 - 20 XB (2) x - coordinate of corner 2.
21 - 30 XB (

31 - 40 XB

—

4) x - coordinate of corner 4.

41 - 50 YB (1

)
)

3) x - coordinate of corner 3.
)
) - coordinate of corner 1.
)

Yy
51 - 60 VYB (2) y - coordinate of corner 2.
Yy

61 - 70 YB (3) - coordinate of corner 3.

71 - 80 YB (4) y - coordinate of corner 4.

One should select the longer sides of the quadrilateral
field as 1 - 2 and 3 - 4 in order to reduce the bandwidth
of the stiffness matrix and also to obtain better plots.

Element Data Cards (614,6X,4F10.3)

If all the elements are generated, i.e., NUMEL = 0, no
card is required.

Nodal points should be ordered counter-clockwise aroung
the. plate element. ATl elements of the structure are
numbered in natural sequence. Generated elements are
numbered first and numbering of the additional elements,
if any, follows that of the generated ones. Each element
card should have the following information:

Columns 1 4 Element number

5 - 8 Nodal point I

9 - 12 Nodal point J

13 - 16 Nodal point K (repeat J for beam element)

17 - 20 Nodal point L (repeat J for beam
element, I for triangular element)

21 - 24 Material number

31 - 40 Plate thickness or cross-sectional
area of the beam element (plate
thickness will be set equal to
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reference thickness if this space

is left blank)
41 - 50 Moment of inertia of the beam element.
51 - 60 Torsional inertia of the beam element.

61 - 70 Shear area of the beam element. (If
shear deflection is neglected this
space should be left blank.)

In general one card for each additional element is required;
however, if some element cards are omitted the program
automatically generates the omitted information by incrementing
I, J, K and L by one for each element. Material identification
is set equal to that on the card previously read; so are

all sectional properties of the element.

Nodal point cards (14, 2F10.3)

If all the nodal points are generated, i.e., NUMNP = 0,
no card is required.

Columns 1 - 4 Nodal point number
5 - 14 x - coordiante
15 - 24 y - coordinate

Nodal points must be numbered and read in natural sequence.
Numbering of additional nodal points, if any, should follow
that of the generated ones. If some nodal point cards

are omitted, the corresponding points are generated at
equal intervals along a straight line between defined

nodal points.

Boundary condition cards (214, 2X, 5I1, 5X, 6F10.3)

If all the boundary conditions are generated, i.e., NUMBC =0,
no card is required.

One card is required for each additional point at
which boundary conditions are prescribed.

Columms 1 - 4 Boundary point number.
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5 - 8 Nodal point number of the boundary
point.

11 - 15 Boundary conditions for u, v, w
displacements and By ey rotations,
respectively (0 = free, 1 = fixed).

21 - 30 Prescribed constraint angle for the
boundary point (measured counter-
clockwise from the x - axis).

31 - 40 Given u displacement.

41 - 50 Given v displacement.

51 - 60 Given w displacement.

61 - 70 Given 6, rotation.

71 - 80 Given ey rotation.
10. Input of inplane stresses

If ND1 > 0 no card is required, otherwise two groups
of cards are required for reading the inplane stresses of the
plate elements and the axial stresses of the beam elements:
Group A - Inplane stresses of the plate elements:

Depending on the value of ND1, one of the following two

sets of cards is required:
Al: (NDY = -2), (14, 3F10.3)

Inplane stress distribution is read in for each nodal
point. One card for each nodal point is required:

Columns 1 -4 Nodal point number.

5

14 Oy stress at the nodal point.

24 oy stress at the nodal point.

15

25 - 34 1 Ky stress at the nodal point.

A2:(ND1 = -1), (4F10.3)

Inplane stress ~ is read in for each corner point of the
quadrilateral field. Three cards are required.
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24

Columns 1 =10 Oy stress at the corner point 1 of

the quadrilateral field.

11 - 20 Ty stress at the corner point 2

of the quadrilateral field.

21 - 30 oy stress at the corner point 3 of

the quadrilateral field.

31 - 40 Oy stress at the corner point 4 of

the quadrilateral field,
The same is repeated for cy andt XY°
Group B - Axial stresses in the beam elements:
The following cards are required:
B1: (I14)

Colums 1 - 4  Number of beam elements with axial
stress. (If none, leave a blank
card)

B2: (14, F16.7)
Columns 1 - 4 Beam element number.
5 - 20 Axial stress in the element.
Plane stress analysis

If ND1 < 0 no card is required; otherwise, the following
cards should be punched:

A - Identification card (A., 14)
Columns 1 -6 The word LOADIN.

7 - 10 Number of nodal point which have
- concentrated loads.

B - Inplane nodal point loads (14, 2F8.3)
One card is required for each nodal point which has

a nodal point load.
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Columns 1 - 4 Nodal point number.
5 - 12 Load in the x - direction.
13 - 20 Load in the y - direction.
No load can be specified at any nodal point which is
fixed against inplane displacements.
Plate bending analysis

If ND2 <0 no card is required, otherwise the following
cards should be punched:

A - Identification card (A6, 214)
Columns 1 -6 The word LOADPB.
7-10 Number of nodal points which

are loaded with nodal point
forces or moments.

11 - 14 (NLD) Parameter defining type of the

distributed load:

=0, if no distributed load is
present.

= 1, if the intensity of the
distributed load for each
corner of the quadrilateral
field is to be read in.
(This option can be only used
when the quadrilateral
mesh is generated.)

= 3, if the intensity of the
distributed Toad for each
nodal point is to be
read in.

B - Nodal point Loads (14, 6x, 3F10.3)
One card is required for each nodal point which is loaded

with transverse force or moment.
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Columns 1 - 4 Nodal point number.
11 - 20 Load in the z - direction.
21 - 30 Moment in the direction of 6, rotation.
31 - 80 Moment in the direction of ey rotation.
C - Corner point values of the distributed Joad (410.3)
No card is required if NLD # 1, otherwise one card
should be punched:

Columns 1

10 Intensity of the distributed load at
the corner 1.

11 - 20 Same for corner 2,
21 - 30 Same for corner 3.
31 - 40 Same for corner 4.
D - Nodal point values of the distributed load (8F10.3)

No card is required if NLD ¢ 3. Otherwise, values of the
distributed load at the nodal points should be punched in
sequence of nodal point numbering. Eight values should be
punched on each card.

Plate buckling analysis
No card is required if ND2 # 0. Otherwise two cards
should be punched:

A - Control Card (14, F10.3)

Columns 1 - 4  Number of loads which are applied to
the structure to excite the initial
mode shapes.

5 - 14 Initial shift used in inverse iteration
(estimate for the buckling eigenvalue).
If no estimate is available, set
this number equal to zero.

B - Nodal point loads (I4, F10.3)

For each nodal point with transverse load (to excite
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the initial mode shape) one card is required. Moments
are not allowed.

Columms 1 - 4 Nodal point number,
5 - 14 Transverse load.
Note that the excited mode shape should include both
symmetric and anti-symmetric components.
STOP card (A6)

If the job is to be terminated the word STOP should be
punched in columns 1 - 5. Otherwise, a new problem can be
initiated by punching a START card.

27
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IV, Numerical Examples

Summary of Cases Considered

Several simple numerical examples were solved first in order to
test the different parts of the computer program and to compare the
results with exact solutions or solutions obtained by other methods.
A number of more complex problems were then solved to demonstrate the
capabilities of the computer program.

A comparison was made between the triangular and quadrilateral
plate bending elements for an isotropic plate under uniformly
distributed load. The loading was presented in two different ways,
as equivalent point loads and as consistent nodal point forces and
moments. A convergence test for the orthotropic plate bending
element, as the number of finite elements increased, was carried
out. The solution was compared with a series solution given in
[3]. The buckling of a simply supported plate and also the bending
of a plate under combined inplane and lateral loads were examined,
in‘order to test the geometric stiffness matrix.

Next, the slightly more complicated problem of stability of a
longitundinally stiffened plate field was solved. This example
corresponds to the buckling of the deck of a ship between transverse
girders. Depending on the stiffness of the stiffeners relative to
that of the plate, one may find two different modes of buckling:

i) Tlocal plate buckling, ii) buckling of plate and stiffeners
together. The bending of a stiffened plate field corresponding to a

transversely framed ship, was studied and the additional stresses

and displacements due to the presence of inplane loads were demonstrated:

Buckling of an orthogonally stiffened plate field was examined.
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Results of different idealizations were compared. Finally the buckling
of a stiffened girder web was dealt. with. For this problem, the

full capabilities of the computer program were used. The piane

stress problem was first solved to compute the geometric stiffness
matrix; then the eigenvalue problem was solved to find the buckling load.

Each of these cases is discussed briefly in the following sections,

1. Comparison between elements.

A quarter of a square plate, i) simply supported, ii) clamped
along the boundary is analyzed. The plate is idea]izéd by a finite
element mesh of, a) 9 quadrilateral elements, b) 18 triangular elements,
c) 36 triangular elements. The results found by the finite element
analysis are compared with exact results in Table 1. The uniformly
distributed Toad has been represented in two different ways: i) by
equivalent nodal point forces, 11) by consistent nodal point forces
and moments as derived by Zienkiewicz inl6l, page 98,

From these extremely simple examples some interesting information
can be found. For a uniformly distributed load the consistent nodal
point moments from adjacent elements will cancel everywhere except
along a boundary which is free to rotate. Consequently for the
clamped plate there is no difference between nodal point forces
and consistent loading,

For the same number of nodal points, the quadrilateral elements
give more accurate results than the triangular elements, To
idealize a complex geometry (for example cutouts in a plate) and
to obtain a refined mesh in a subregion, the triangular elements
may be quite useful--but their use should be kept to a minimum

for maximum accuracy.
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Table 1. - Results for an Isotropic Plate Loaded by a Uniformly Distributed Load.

. . Bending Twisting
Boundary Representation | Deflection Moment Moment
Finite Condition of Load at Center at Center at Corner
Element
. . C = Clamped|C = Consistent .
Idealization SS = Simply = Point Load px °106 % error B .105 %serrory v .105 %error
Supported :
—— a/2 —=
c p 1230 -2.4 12210 -4.3
T_ C 1230 -2, 2190 -5.2
S ss P 3838 | -5.5 14502 | -6,0 | 2846 | -12.3
111 C 4006 | -1.4 [4622 | -3.5{ 3096 | - 4.6
. C ¢ 1190 | -5.6 |2350 1.7
o
SS C 3967 2.3 |4594 4.1 | 3299 1.6
C C 1210 =4,0 2230 =3.5
SS C 4005 -1.4 4728 -1.3 | 3092 - 4.8
Analytical ¢ 1260 2310
Solution ,
SS 4062 4789 3246
_ 3
t/a = 1/12, v = 0.3, D=—E—t——-2—-
12(1- v°)
W=0a"q a4/D (Deflection at center of plate)
= Q. 2
Mbc =B -qa (MXx and Myy at center of plate)
.~ . 2
Mtc =y qa (Mxy at corner of plate)
t = plate thickness
q = fintensity of the uniform lateral load
E = modulus of elasticity
v = Possion's ratio
a = plate side
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The deflections are generally more accurate than the bendihg
moments. The reason for this is that the bending moments are derived
from the curvature which is the second derivative of the displacements.
If may also be noted that the simply supported boundary condition
gives better results than the clamped boundary. This is also.well
known from the series solution, ahd is due to the fact tﬁat the
clamped case is not so well approximated by simple polynomials and

trigonometric functions,

2. Convergence of the Orthotropic Plate Element

The orthotropic plate element differs from the isotropic only

in the moment curvature relationship:

{M} = [D J{X}
For an isotropic plate
E t3 1 v 0
DI =
i 12 (1= [v 1 0
o O ] =V
2
For a general orthotropic plate six constants are required to define
= -~
the symmetric[Dlmatrix:
D D D
1 4 5
—DS 06 D3 y

For an orthotropic plate with elastic axes coinciding with the coordi-

nate axes the matrix is somewhat simpler (D5 = Dg =0, Dy = D5

b, =D, D3 = ny). The fini¢e element solutions for orthotropic

2y
plates with data as given in Fig. 7 and Table 2, were compared

with series solutions presented by Mansour [3]. Note that in this

table: H = D4 = 2Dx .

y As will be seen in Table 2 and also in
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Table 2 - Results for a Simply Supported Orthotropic Plate Loaded by a
Uniformly Distributed Load,

C = gd[?g_ = H Solution Mesh|Deflection at|Bending Moment Bending Moment
b* D vD D = [Method |[Size Center M. at Center M. at Center

X"y XX Yy
5 % 5 % 4 %
a. 107 |differ-(8.107| differ-|y.107| differ-
ence ence ence
Finite {2x2 [1179 |-1.9 1820 | -8.2 1128 | -2.1
2 0.5 Element |4x4 (1197 [-0.42 (1930 | -2.0 1147 | -0.3
Series 1202 | 0 1969 0 1151 0

IxT | 952 (-6.1 2700 | 55.0 | 882 | -8.5
Finite [2x2 | 992 |-2.1 1620 | -6.9 943 | -2.3
2 1 Element |4x4 |1008 |-0.45 (1707 | -1.9 960 | -0.47
6x6 (1011 |-0.20 |1725 | -0.85 963 | -0.20

Series 1013 | O 1741 0 965 0

W = a.g b4/Dy (Deflection at center of plate)

_ 2
M. = B.aqb /DX/Dy (Mxxat center of plate)

2

M = . qb M at center of plate
e Y - Qq (yy plate)
q = intensity of the uniform lateral load
a = plate length
b = plate width

Dx’ Qy and H are defined on page 3]

Note: The indicated finite element meshes correspond to a quarter of the
plate.
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Q SERIES SOLUTION (3)
Q)
000
FINITE ELEMENT SOLUTION
w,=a qb®/ D,
y &
a/2
C
S.S. bs2
S.S. > X
00090 " L ' —_—
| 2 4 6

FINITE ELEMENT MESH SIZE

FIG. 7 CONVERGENCE OF FINITE ELEMENT SOLUTION
FOR A SIMPLY SUPPORTED ORTHOTROPIC PLATE




Fig. 7, excellent agreement was found between results by the two
different methods. As mentioned proviously, the finite elements
used in the program are compatible. For the plate bending elements
this means that deflections and slopes are continuous between two
adjacent elements. These elements will give a uniform convergence
of displacement tewards the exact solution as the mesh is refined,
always on the stiffer side. This is clearly demonstrated in Fig. 7.
One important point should be mentioned about the comparison between
the finite element and series solutions. While the plate selected
for the purpose of comparison is of extremely simple geometrical
shape, plates of completely arbitrary shape, for example cutouts,
can be idealized by finite elements and the distribution of
displacements and stresses over the entire field can be found.

The series analysis cannot be applied for such general cases.

3. Test of Geometwic Stiffness

The geometric stiffness matrix with a cubic expansion for w
as derived in Appendix A has been tested extensively and found
to give satisfactory results. Here two extremely simple examples
will be given to demonstrate the use of the geometric stiffness.

A simplyisupported plate shown in Fig. 8 is subjected to an inplane
Toad o, = 5000 1b/in?.

The buckling problem as given by Eq. (11) is to determine the
ratio A by which the inplane load can be increased before the plate
becomes unstable. The buckling stress is then given by:

Tep = A O

The ana1ytic‘expression for the buckling stress is:

34
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2
a
12(1 - )
Inserting numerical values, a = 12 in., t = ,12 in. and E = 3 x 1071b/in2,
in this expression yeilds:

- .2
Oep = 10,840 1b/in

A quarter of the plate was divided into a 3 x 3 mesh of quadrilateral
finite elements and the program was used to solve the buckling
problem. The following result was found:

A= 2.199

O, = 2.199 X 5000 = 10995 1b/in?
This corresponds to an error of 1.5%. Since the stiffness is over-
estimated by the finite element method, the computed result for the
buckling load is higher than the exact one. Alternatively, the
problem of a plate under combined inplane and lateral load can be
solved. This problem is frequently encountered in ship structures,
for example in bottom plating. |

Even for this extremely simple problem no analytic closed form

solution exists. A first order approximation can be made using

the so-called magnification factor m, to estimate values of displace-

ment w and moment M in some special cases:

m=1/(1 - G/OCP)
W= wom
M= Mom

where W, and Mo are deflection and moment found when no inplane

loads are present.
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a=12"
0‘3 onX
t=I2IN
S E=3-107PSI
v=03
%

X

FIG. 8 SIMPLY SUPPORTED PLATE UNDER
UNIFORM INPLANE LOAD o

ay

a=100"
O'x 'ngop o-y :O o.x

o @

< (_STIFFENER .l o é;g'.?olypm

o o| & v=0.3

2 2

| ] ] ) >
6,=0,0y =0 X

FIG.9 SIMPLY SUPPORTED PLATE WITH
LONGITUDINAL STIFFENERS
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As an example, the simply supported square plate of the previous
example with the same inplane loading was examined. The plate
was assumed to be subjected to uniform lateral pressure of intensity
q=1 lb/in2 and the deflection and the bending moment at center

of the plate were calculated:

_ 5000 ) _
m= ]/(] = m)- 1.856

W_=0.00406 -+ (q a%/D) - m = 0.0330 in

C

M. = -0.04789 . q a® * m = -12.80 1b.in/in

Using the same mesh as in the previous example, the finite element
method gives the following results:

§;= 0.0310 in
ﬁ; = =12.33 1b.in/in

This is considered to represent excellent agreement.

4. Buckling of a Plate with Longitudinal Stiffeners

The plate with Tongitudinal stiffeners shown in Fig. 9 corresponds
to the deck of a longituninally stiffened ship. Depending on the
relative stiffness of the stiffeners with respect to the stiffness
of the plate one obtains primary buckling of the plate and the stiff-
eners or local buék]ing of the plate between the stiffeners. Both
these cases will be considered by chooéing two different stiffener
types:

2

a) Ast =1 i4n%, 1
2

b) ASt = 1.4 in

4

8.33 in Primary buckiing

st

. 1., = 22.87 in®  Local plate buckling

st

where ASt and Ist@are cross-sectional area and moment of inertia
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of the stiffeners, respectively. Two different meshes were used
for both these cases, Mesh 1 is a 4 x 6 mesh for the whole field,
while Mesh 2 is a 4 x 12 mesh for one quarter of the plate field.
Since one does not generally know, a‘priori, the buckled shape,
a crude mesh including the whele fiéld is required for the first
analysis.. Later a more accurate solution can be found by a finer
mesh taking advantage of symmetry,

For case a, Reference 12 gives the following result from
an approximate solution: Oep = 11.70 ‘Ib/in2° The solutions by the
finite element program are:

o

. 2
er 11.64 1b/in (Mesh 1)

Q|

11.58 1b/in? (Mesh 2)

cr
For case b, one may find an exact solution if the stiffeners

are given no torsional rigidity. The buckled shape will have node
lines along the stiffeners, so the problem is reduced to the buckling
of an unstiffened plate.

The analytical solution of the problem gives:

- . 2
Ocp = 17.53 1b/in

The finite element results are
18.98 1b/in’ (Mesh 1)
17.91 1b/in? (Mesh 2)

GCV‘

Qaf
"

cr
Aétual]y, the exact solution for this problem has three halfwaves
in the longitudinal direction, while the finite element grogram
gives two. This difference is probably due to the fact that the
initial shape was closer to the two half-wave solution than to the

other one. The analytical solution corresponding to two halfwaves
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is Oep = 17.82 1b/1‘n2 so the two solution are quite close, In
Fig. 10 and Fig. 11, the plots of thé buckled shape for cases a
and b, as printed by the computer program,'are shown.

For the practical use of the finite element program in solving
buckling problems two points should be emphasized.
1. An initial static load must be given. The corresponding displace-
ments should not be symmetric or antisymmetric. The reason for this
is that if the initial vector in the inverse iteration corresponds
to a symmetric buckled shape, but the real buckled shape is anti-
symmetric, the computer algorithm will not converge. In the example 4,
the initial shape was symmetric and anti-symmetric for cases a and b,
respectively.
2. To improve the speed of convergence an initial shift u lower
than the expected eigenvalue A can be read in. Under no circumstances
may a shift Kigher than the lowest eigenvalue be given. In that
case the computer algorithm may comverge to a different buckled
shape which does not correspond to the correct solution. As explained
earlier a shift p speeds up the convergence, but to be on the safe
side, u = 0, should be used where no safe estimate of the bucklsng

Toad is available.

5. Transversely Stiffened Plate Under Combined Inplane and Lateral Loads.

This example corresponds to the bottom plating of a transversely
framed ship and demonstrates the effect on the plate bending behavior
of the inplane stresses. As shown in Fig. 12, a plate with an
infinite number of transverse stiffeners is assumed to be subjected
to combined inplane and lateral loads. The plate-stiffener combination

is assumed to be clamped along its longitudinal edges. Two different
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idealizations were made to obtain the finite elemént solution of this
problem: |
1. The stiffeners were assumed to be rigid,'i,e,, an individual
plate panel was assumed to be clamped along its boundary.
If a plate strip, perpendicular to the stiffeners, is considered
at the.middle of the plate, the deflection Q at t&s center ’
and the bending momént Mx at its center and ends can be
approximately calculated by the beam-column theory [13].
Thus, in this case, the finite element results can be directly
compared with those of the analytical solution.
2. The effect of flexible stiffeners supporting the plate
panels was included.
Both analytical and finite element results are presented in
Table 3. As can be seen the moments are not very much affected by
assuming the stiffeners to be rigid. The agreement between analytical
and finite element results is again very satisfactory. The computer
plots of deflections and moments in one quarter of a plate panel
is shown in Figs. 13, 14, 15 and 16. These plots correspond to

the case when the stiffeners are assumed to be flexible.

6. Buckling of an Orthogonally Stiffened Plate Field

This example demonstrates how the actual physical problem can be
jdealized in different ways when using the finite element method
of analysis. Three different representations of the plate field
ghown in Fig. 17 were tried: |
a) The stiffened plate was idealized as an orthotropic plate.
The stiffnass of the stiffeners was uniformly distributed

in both directions.
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for Transversely Stiffened Plate

(1) (2)
Plate Under | Magnification Plate Under | Finite Element Results
Lateral factor Combined Transverse | Transverse
Load Only m Loads (1)x(2)| Stiff. Rigid Stiff. Flex.
at point B| 0.0311 1.413 0.0439 0.0436 0.0500
W&Xat point B| -646 1.488 =962 -975 -976
N&xat point Al +1294 1.270 1642 1627 1613

Note:

Table 4 - Numerical Results

Units are 1b and 1b. in.

for Orthogonally Stiffened Plate

Idealization | Mesh for Buckling Difference
Complete Stress % to lowest
Field (psi)
a 9 x6 34,94 11.0
20 x 12 34.21 8.5
b 9 x6 32.60 3.4
c 9 x6 32,23 2.2
18 x 12 31.59 0.2
18 x 18 31.53 0
Orthotropic 33.60 6.6
Plate Theory
Solution
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b) The stiffness of the‘longitudihél stiffenérs was ﬁniform1y
distributed, while the transverse suppofting girders were
represented ‘as discrete beams.

c) Both longitudinal and transverse stiffeners were’represented
as discrete beams. |

In all these cases the effective width of plating was included

when computing the moment of inertia of the stiffeners. The numerical
results are presented in Table 4 and a plot of the buckled shape for
case a is shown in Fig. 18, ‘

Obviously the last idealization is closest to the real structure,

but it can be seen that idealization b does not give more than 1.2
difference in the buckling load whereas the idealization a, the
orthotropic plate theory solution, overestimates the buckling load
by 8.8% (when using 9 x 6 mesh),

As a further check on the finite element results, the buckling

load for case a, as obtained by the program, can be compared with

that given by the analytical solutions:

T mb, 2 a2
o.,. = 5 [D, (=5 + D (5)°]
cr b2 (t + ta) X ‘a y ‘mb
EI (q+1) 3
D = 5 + E t 5
X 12 (1 - v9)
) EIb(pH)+ E 43
- a 2
Y 12 (1 - v9)
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4
b
al (q+1)

(The calculated value of m should be rounded to an integer number.)

where
Fa = area of longitudinal stiffeners
Ia ¢ moment of inertia of longitudinal stiffeners

Ib = moment of inertia of transverse stiffeners

q = number of longitudinal stiffeners

p = number of transverse stiffeners

a = length of the plate field

b = width of the plate field

t = plate thickness

m = number of halfwaves in the longitudinal direction

The buckling load of the stiffened plate field for case a, evaluated
by above formuli, will be:

0., = 33600 1b/in’

which is only 1.8% lower than the corresponding finite element
solution using the finest mesh. Torsional stiffness was neglected

in both finite element and analytical solutions.

7. Buckling of the Stiffened Girder Web

This final example makes use of the complete computer program.
The girder which is shown in Fig. 19 corresponds to a transverse
girder at the bottom of a tanker. The left side of the girder is
clamped whereas the right side is supported by a flexible longitudinal

girder. The load is supplied by the reactions of the Tongitudinal
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bottom stiffeners. For this problem, unlike all the previous examples,
there is no simple way of finding the inplane stress distribution.
Therefore, the plane stress problem was solved by the finite element
program as a first stép. Then the gaometric stiffness matrix of

the structure was computed and finally the buckling problem was

solved. The plot of the buckled shape, as printed by the eomputer

program is shown in Fig. 20. As expected, the compression zone

in the upper part of the web near the clamped edge buckles. The

corresponding eigenvalue was found to be A = 2.47. This means that

with the assumed loading pattern, the Toads can be increased by a
factor of 2.47 before instability occurs. For this example no

analytical solution is available.
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APPENDIX A

Geometric Stiffness Matrix for the Triangular Plate Bending Element Based
on Cubic Interpolation Functions

In the derivation of this geometric stiffness matrix a cubic
expansion is used for the transverse displacement w. The same cubic
expansion is used by Zienkiewicz [6] in the derivation of a noncompatible
triangular plate bending element. The displacement w is expressed in

terms of the 9 corner degrees of freedom:

w =X ¢(3) > {r} (A-])
where
('2 ™
W) gy (3-2¢4) + 25,2,z
2
GX] E] (b3C2 = b2C3) + (b3 - b2) C]C2C3/2
6 2 (agz, - a,zs) + (a; = a,) £42,0,/2
y1 1 372 2°3 3 2 17273
) .
Wy Ty (3-21,) + 20,0,
_ L T _ 2 _ _
{r} ‘< eX2 5 < ¢(3) > - < EZ (b]€3 b3§]) + (b] b3) C]§2€3/2 ?(A.Z)
2
eyz CZ (a]§3 - a3C]) + (a] = 33) Q]C2C3/2
| 2 (3- 21, + 20t
W3 3 t3 15253
2
6X3 C3 (bzg] = b]Cz) + (bz - b]) C]§2C3/2
2
| ©y3) 3 (8587 = a15p) + (a5 - 2y) £yzpzy/2
.J
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and ¢, are triangular coordinates as defined in Fig. A.2. By using
these coordinates, the integration over the trfangle can be carried out
very simply. a; and b, are defined in Fig. A.1.

| Differentiating < ¢(3) > with respect to x and y yields
the interpolation functions < ¢x > and < ¢y > required to find the
geometric stiffness matrix:

_ T!T " My _?f;
[kgd = | [o, 2] dA (A.3)
XUYTOIN N o
A Xy oy y

Direct integration of (A.3) would, however, lead to extremely
complicated expressions. An interpolation on the derivatives Wsy
and w,y which have a quadratic variation over the element, makes the
derivation simpler. Six nodal point values, {W,X} , {w, }, three at

y
the corners and three at the midpoints of sides, are used.

Way = <05y > {w, (A.4)
Wey = < ®(2) > {W,y} (A.5)
w, .} = [U] {r} (A.6)
{W,y} [Vl {r} (A.7)
where e N
gy (227 - 1)
t, (28, - 1)
<oy T =y (25 - 1) P (A.8)
4z, T,
4z, g
4ty 2 )
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The rows in U and V are found by substituting nodal point values of
L1 Zo and C3 for each of the six nodal points into < @X > and
< ?y >. The advantages of this extra step is that the matrices [U] and

[V] can be kept outside the integration over the area.

Thus
) 0 N N 1o 0
[kl = (61" f (2) T ] x ) dA [6] (A.10)
0 ?(2) N 1lo o
A 4 Uxy Uy (2)
(9x9)  (9x12) (12x2) (2x2) (2x12) (12x9)
or
[kl = [61' [M] [6] (A.11)
where
(6l = [ %-] - (A.12)
ol N o, 8. N o M. M
M] = J (2) "x @) @) Txy @) g o] M2 (A.13)
T T
AL Ny %2) %2) Ny 2y Ma1 Map

The inplane forces are assumed to have a linear variation over

the triangle:

N, = t<zg> {éx} (A.14)
where

R

C] Gx]

T
<> = 3 - -

2 G = o ) (A.15)

C3 5
L %3
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and t is the plate thickness.
o, are the nodal point values of the o, stress. In the

same way, Ny and ny are linear functions of Gyi and Txyi’
respectively.
Substituting (A.14) into (A.13) yields the following expression

for the integrals:

[M]]] = f <®(2)>T <g> {ax} (@(2)) dA = OX] [Q]] + OXZ [Qz] + GX3 [Q3] (A-]G)

A
(6x6) (6x1) (1x3)(3x1)(1x6) (6x6) (6x6) (6x6)
T -
[M]2] = £ <®(2)> <g> {Txy} (®(2)) dA = Txy] [Q]] + TxyZ [Q2] + Txy3 [Q3] (A.17)
_ T
[Myq1 = [My,] (A.18)
T -
My = i @(p)> <€ {oy} <¢,> dA = Gy] [Q1 + Oyz [Q,1 + 0y3 [Q,] (A.19)
where
_ T
[Q;1 = t f Ly <@(p)> <@()> dA (A.20)
A
.
[QZJ = t J Zo <®(2)> <®(2)> dA (A.21)
A
_ T
[g] = t f 53 <@(5)> <@(p)> dA (A.22)
A

Carring out the integration in A.20 yields:



64

30 -4 -4 f 12 -4 12
-4 6 1 g -8 -4 -12

I
o1 - b [l i s
- 12 -8 -12+ 9% 32 48
-4 -4 -4 § 32 32 32
12 -12 -8 E 48 32 96

.

The integration has been carried out by using the tables of area
integrals presented by Felippa [14]. [Q2] and [Q3] are obtained from
[Q]] by cyclic permutation of terms in the 3 x 3 submatrices of [Q]].

The geometric stiffness metrix [kG] can now be computed if the inplane
stress distribution defined by {BX}, {By} and'{axy}, the corner point
coordinates Xis Yio =1, 3, and plate thickness t are given.

It is quite interesting to note that the derivation of the
geometric stiffness matrix using a cubic expansion for w, is almost
exactly parallel to the derivation of the stiffness matrix for the
quadratically varying strain triangular element (QST) with Tinearly

varying thickness, which has been derived by Felippa [14].



Security Classification

DOCUMENT CONTROL DATA - R & D. N 2 |

(Security classilication of title, body of abstract and indexing annotation niust be entered when the overall report is classilied)

3 RIGINAT
140 GINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION

Department of Civil Engineering, Division of Structural Unclassified
Engineering and Structural Mechanics, University of ST
California, Berkeley _—

3. REPORT TITLE

A COMPUTER PROGRAM FOR ANALYSIS OF STIFFENED PLATES UNDER COMBINED INPLANE
AND LATERAL LOADS '

4; DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report

5. AU THORI(S) (First name, middle initial, last name)

Dag Kavlie and Ray W. Clough

6 REPORT DATE 78, TOTAL NO. OF PAGES 7b. NO. OF REFS

“March 1971 64

Ba. CONTRACT OR GRANT NO. %9a. ORIGINATOR'S REPORT NUMBERI(S)

N 00014-67-A-0114-0020

UCSESM 71-4
b, PROJECT NO. S
SF 013 0301
C.
9b. 31;rerEe;Rm?t§p°RT NO(S) (Any other numbers that may be assigned

d. T

e

vatement ,

HAS  BmEN APPROVED FOR PUBLIC RELEASE AND SALE, ITS

UNLIMITED,

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

- Naval Ship Research and Development
Center, Department of the Navy
Washington, D.C. 20007

13. ABSTRACT

The finite element method is used as the basis of a computer program
for analysis of stiffened plates. Triangular and quadrilateral plate elements
and beam elements may be used for idealization of the stiffened plates. The plate
elements may have isotropic or orthotropic material properties. The stiffeners are
assumed to be symmetric about the midplane of the plate. This assumption uncouples
the plane stress and the plate bending problems. If the inplane stresses are not
known in advance, the plane stress problem can be solved as a first step. The next
step may be to solve the plate bending problem. The effect of the membrane stresses
on the plate bending behavior is taken care of in this case by adding the geometric
stiffness matrix to the elastic stiffness matrix. Alternatively the stability
problem may be solved, finding the critical buckling eigenvalue and the corresponding
mode shape. A listing of the FORTRAN IV computer program is given in the report,
and a few examples of bending and buckling of stiffened plates are presented.
The program has been developed and tested on the CDC 6400 computer.

D 1473 (PacE T | o | 7

S/N 0101-807-6801 Security Classification






