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ABSTRACT 

Change Point Detection for Image, Graph and Network Data 

 

Given a set of time series data, the goal for change point detection is to locate, if any, those time points at 

which some characteristic of the data changes.  The need for change point detection arises in many 

contexts, including stock market prediction, weather forecast, and air pollution monitoring.  This thesis 

studies change point detection for three types of complex data:  time series of astronomical images, 

sequences of undirected graphs, and time-evolving dynamic networks.   From each of these three 

problems, the minimum description length principle is invoked to derive a model selection criterion, 

which is shown to yield statistically consistent estimates for the change points and other model 

parameters.  Practical, tailored algorithms are also developed to compute these estimates. 
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Chapter 1

Introduction

In the analysis of many real world complex data, a common task is to identify and study the

changes of states over time. The goal is to extract meaningful information about different

states, as well as to understand the transition processes between states.

Very often it is known as the change point detection problem. Methods for change point

detection can be divided into two categories: “online” methods that aim to detect change

points as soon as they occur, and “offline” methods that retrospectively detect changes after

all samples have been collected. This thesis focuses on the offline methods.

Many offline change point detection problems can be solved via a model selection ap-

proach. That is, an objective function is derived for choosing the number and locations of

the change points, as well as the best fitting model between each pair of successive change

points.

For the model selection approach, typically three major components are involved:

1. A model selection criterion to derive the objective function.

2. A practical algorithm for optimizing the objective function.

3. A theoretical analysis on the objective function.

Component 1: Model Selection. This thesis uses the minimum description length

(MDL) principle as the model selection criterion. Loosely speaking, MDL defines the best

model as the one that produces the shortest code length of the data. In general, to apply

the MDL principle, one needs to derive a code length formula for the task at hand. This
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formula, which is the objective function mentioned before, depends on, amongst others, the

model assumptions and the format of the data. An advantage of applying the MDL principle

is that, once the code length formula is constructed, no free hyper-parameter needs to be

chosen.

Component 2: Optimization. The computational complexity for minimizing the

MDL criterion changes for different tasks. As usually exact solutions are impractical for

complicated settings, fast and approximate solutions are adopted instead. This thesis studies

two types of optimization procedures for change point problems:

• One-stage procedures: simultaneously search for change points and best fitting models

between adjacent change points.

• Two-stage procedures: first search for change points and then find the best fitting

model for each time interval.

Component 3: Theoretical Analysis. This thesis studies the consistency properties

of the estimated change point as well as the fitted model parameters in each time interval.

In some cases, it is assumed that the number of samples (or number of time points) T goes

to infinity. This asymptotic setting can be interpreted as follows: an observation is viewed as

one realization of a continuous-time process on an equal-spaced grid of size 1/T , and T →∞

means that the size of the grid converges to 0 (Truong et al., 2020). Another case that this

thesis covers is that the number of observations at each time point goes to infinity, while the

number of time points T remains fixed.

The thesis focuses on three change point problems:

1. Change point detection and image segmentation for time series of astronomical images.

2. Change point detection and partitioning of a sequence of structured signals (graphs).

3. Change point detection and community detection of time-evolving dynamic networks.

These problems will be discussed in Chapters 2, 3 and 4, respectively.

2



1.1 Problem I: Time Series of Astronomical Images

In X-ray astronomy, the data are obtained as a list of photons, each with four attributes: the

2D spatial coordinates, the times they were recorded, and their energies (or wavelengths).

After binning the data, we obtain a 4D table of photon counts indexed by the 2D coordinates

(x, y), time index t and energy band w.

Our method assumes that at each time point, the corresponding multi-band image is

an unknown 3D piecewise constant function corrupted by Poisson noise. It also assumes

that all images between any two adjacent change points (in the time domain) share the

same unknown piecewise constant function. An MDL criterion is derived given the model

assumptions. It is shown that the consistency of the MDL-based results hold when the

number of time points T goes to infinity.

The optimization procedure is a typical two-stage process. Bottom-up search, a greedy

algorithm, is used to search for change points. The seeded region growing method and region

merging are used for the image segmentation task for the images in each time interval.

1.2 Problem II: Time Series of Graphs

Suppose what we observed is a time-evolving graph, with the number of nodes and the node

connectivity (i.e., edges) keep fixed over time. It is assumed that the measurements observed

at these nodes are Normally distributed and they share the same variance. The means of the

Normal distributions correspond to the true signals for each node. After making assumptions

on spatial and temporal smoothness for the true signals, MDL principle is derived for this

task. In terms of the theoretical property, it can be shown that the MDL-based solution is

consistent, when the numbers of observations in each node go to infinity.

Drawing the idea from generalized total variation denoising (Bleakley and Vert, 2011) and

graph-guided-fused-lasso (Chen et al., 2010; Kim et al., 2009), a sequence of candidate models

can be generated by solving a convex optimization problem. Smoothing proximal gradient

method (Chen et al., 2012) can be used for this problem when the objective function is not

smooth. After that, the best model based on MDL will be selected from these candidates.

Therefore, the optimization procedure belongs to the one-stage procedure we mentioned,

because it simultaneously detects change points and fits models.

3



1.3 Problem III: Time-evolving Dynamic Networks

In this part we study the change point and community detection for time-evolving dynamic

networks. A time-evolving dynamic networks is composed by a sequence of undirected un-

weighted networks which share the same nodes. It is assumed that all the networks follow the

stochastic block mode (SBM) and the networks within the same time interval have the same

community assignment and the link probabilities. After deriving MDL based on the model

assumptions, the consistency of the MDL-based result when the number of time points T

goes to infinity is proved.

The two-stage optimization procedure is composed of the bottom-up search, which is used

for searching change points, and the variational approximation method motivated by Daudin

et al. (2008), which estimates the community assignment as well as the link probabilities.
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Chapter 2

Change point detection and image

segmentation for time series of

astrophysical images

Many astrophysical phenomena are time-varying, in the sense that their intensity, energy

spectrum, and/or the spatial distribution of the emission suddenly change. This paper de-

velops a method for modeling a time series of images. Under the assumption that the arrival

times of the photons follow a Poisson process, the data are binned into 4D grids of voxels

(time, energy band, and x-y coordinates), and viewed as a time series of non-homogeneous

Poisson images. The method assumes that at each time point, the corresponding multi-band

image stack is an unknown 3D piecewise constant function including Poisson noise. It also

assumes that all image stacks between any two adjacent change points (in time domain)

share the same unknown piecewise constant function. The proposed method is designed to

estimate the number and the locations of all the change points (in time domain), as well as

all the unknown piecewise constant functions between any pairs of the change points. The

method applies the minimum description length (MDL) principle to perform this task. A

practical algorithm is also developed to solve the corresponding complicated optimization

problem. Simulation experiments and applications to real datasets show that the proposed

method enjoys very promising empirical properties. Applications to two real datasets, the

XMM observation of a flaring star and an emerging solar coronal loop, illustrate the usage

of the proposed method and the scientific insight gained from it.
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2.1 Introduction

Many phenomena in the high-energy universe are time-variable, from coronal flares on the

smallest stars to accretion events in the most massive black holes. Often, this variability

can just be seen “by-eye” but at other times, we need to use robust methods founded in

statistics to distinguish random noise from significant variability. Realizing where the change

has occurred is critical for subsequent scientific analyses, e.g., spectral fitting and light curve

modeling. Such analyses must focus on those intervals in data space which are properly tied

to the changes in the physical processes that generate the observed photons. Therefore, it

is of importance to identify sources as well as to locate their spatial boundaries. Our goal

is to detect change points in the time direction; that is, the times at which sudden changes

happened during the underlying astrophysical process.

Change point detection in time series is well studied, and several algorithms employing

different philosophies have been developed. For example, Aue and Horváth (2013) employed

hypothesis testing to study structural break detection, using both non-parametric approaches

like cumulative sum (CUSUM) and parametric methods like likelihood ratio statistic to deal

with different kinds of structural breaks. Another likelihood-based approach commonly

used to analyze astronomical time series is Bayesian Blocks (Scargle et al., 2013) which

finds change points by fitting piecewise constant models between change points. A good

example of the model driven approach is the Auto-PARM procedure developed by Davis

et al. (2006). By modeling the piecewise-stationary time series, the procedure is able to

simultaneously estimate the number of change points, their locations and the parametric

model for each piece. Here the minimum description length (MDL) principle by Rissanen

(1989b, 2007a) is applied in the model selection procedure. Davis and Yau (2013) proved the

strong consistency of the MDL-based change point detection procedure. Another example is

Automark by Wong et al. (2016), who developed an MDL-based methodology which detects

the changes in observed emission from astronomical sources in 2-D time-wavelength space.

Dey et al. (2010) loosely classified image segmentation techniques into two categories:

(i) image driven approaches and (ii) model driven approaches. Image driven segmentation

techniques are mainly based on the discrete pixel values of the image. For example, the

graph-based algorithm by Felzenszwalb and Huttenlocher (2004) treats pixels as vertices,
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and the weights of the edges are based on the similarity between the features of pixels. The

evidence for a boundary between two regions can be measured based on the graph. Such

methods work in many complicated cases as there is no underlying model for images. Model

driven approaches rely upon the information of the structure of the image. These methods

are based on the assumption that the pixels in the same region have similar characteristics.

The Blobworld framework by Carson et al. (1999) assumes that the features of pixels are

from a underlying multivariate Gaussian mixture model. Neighboring pixels whose features

are from the same Gaussian distribution are grouped into the same region.

Here we follow the model driven approach. In order to develop a change point detection

method for image time series data, we begin by specifying an underlying statistical model

for the images between any two consecutive change points. In doing so we also study the

statistical properties of the change point detection method. We assume the underlying

Poisson rate for each of the images follows a piecewise constant function. Therefore, the

region growing algorithm developed by Adams and Bischof (1994) for greyvalue images can

be naturally applied.

Given the previous successes of applying the MDL principle (Rissanen, 1989b, 2007a)

to other time series change point detection and image segmentation problems (e.g., Davis

et al., 2006; Lee, 2000; Wong et al., 2016), here we also use MDL to tackle our problem of

joint change point detection and image segmentation for time series of astronomical images.

Briefly, MDL defines the best model as the one that produces the best lossless compression

of the data. There are different versions of MDL, and the one we use is the so-called two-part

code; a gentle introduction can be found in Lee (2001). When comparing with other versions

of MDL such as normalized maximum likelihood, one advantage of the two-part version is

that it tends to be more computationally tractable for complex problems such as the one

this paper considers. It has also been shown to enjoy excellent theoretical and empirical

properties in other model selection tasks (e.g., Aue and Lee, 2011; Lee, 2000; Davis et al.,

2006; Davis and Yau, 2013) Based on MDL, we develop a practical algorithm that can be

applied to simultaneously estimate the number and locations of the change points, as well

as to perform image segmentation on each of the images.
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2.2 Methodology

Our method is applied to 4-D data cubes where 2-D spatial slices in several energy pass-

bands are stacked in time. Such data cubes are commonly available, though in high-energy

astrophysics, data are usually obtained in the form of a list of photons. The list contains

the two-dimensional spatial coordinates where the photons were recorded on the detector,

the times they were recorded, and their energies or wavelengths. To facilitate our analysis,

we bin these data into a 4-D rectangular grid of boxes. After the binning of the original

data, we obtain a 4D table of photon counts indexed by the two-dimensional coordinates

(x, y), time index t and energy band w. The dataset is thus a series of multi-band images

with counts of photons as the values of the pixels. Since the emission times of photons can

be considered a non-homogeneous Poisson process, and the grids do not overlap with each

other, the counts in each pixel are independent, and the image slices are also independent.

We first partition these images into a set of non-overlapping region segments using a

seeded region growing (SRG) method, and then merging adjacent segments to minimize

MDL (see Section 2.2.1). The counts in each segment are modeled as Poisson counts (see

Section 2.2.2; the implementation details of the algorithm are described in Section 2.2.3).

We minimize the MDL criterion across the images by iteratively removing change points

along the time axis and applying the SRG segmentation onto the images in each of the time

intervals. Key pixels that are influential in how the segmentations and change points are

determined are then identified through searching for changes in the fitted intensities (see

Section 2.2.4). Such regions are the focus of follow-up analyses.

We list the variables, parameters, and notations used here in Table 2.1.

2.2.1 Region Growing and Merging

As a first step in the analysis, a suitable segmentation method must be applied to the images

to delineate regions of interest (ROIs). For this, we use the seeded region growing (SRG)

method of Adams and Bischof (1994) to obtain a segmentation of the image. We choose

SRG over other image segmentation algorithms for its speed and reliability (Fan and Lee,

2015). Also, it can be straightforwardly incorporated to the Poisson setting.

At the beginning of SRG, we select a set of seeds, manually or automatically, from the
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Notation Definition

NI number of pixels in each 2-D spatial image

NT number of time bins

NW number of energy bands

∆Tt duration of the tth time bin

yi,t,w photon counts within the ith spatial pixel, the tth time interval and the wth energy range

λi,t,w Poisson rate for the ith spatial pixel, the tth time interval and the wth energy range

K number of change points

τk location of the kth change point

m(k) number of region segments for the kth interval between two consecutive change points

a
(k)
h the area (number of pixels) of the hth region segment of the kth interval between

two consecutive change points

b
(k)
h the “perimeter” (number of pixel edges between this and neighboring regions) of the hth region

of the kth interval

µ
(k)
h,w Poisson rate for the hth region segment and the wth energy range of the kth interval

µ̂
(k)
h,w fitted Poisson rate for the hth region segment and the wth energy range of the kth interval

Table 2.1: Major notations.

image. Each seed can be a single pixel or a set of connected pixels. A seed comprises an

initial region. Then each region starts to grow outward until the whole image is covered.

(See Section 2.2.3.2 offers some suggestions on the selection of initial seeds.)

At each step, the unlabelled pixels which are neighbors to at least one of the current

regions comprise the set of candidates for growing the region. One of these candidates is

selected to merge into the region, based on the Poisson likelihood that measures the similarity

between a candidate pixel and the corresponding region. We repeat this process until all the

pixels are labeled, thus producing an initial segmentation by SRG.

At the end of the SRG process, we are left with an oversegmentation, i.e., with the

image split into a larger than optimal number of segments. We then merge these segments

based on the largest reduction or smallest increase in the MDL criterion (see below). From

this sequence of segmentations, we select the one that gives the smallest value of the MDL

criterion as the final ROIs.

2.2.2 Modeling a Poisson Image Series

2.2.2.1 Input Data Type

We require that the data are binned into photon counts in an NI×NT×NW tensor {yi,t,w}, i =

1, ..., NI, t = 1, ..., NT, w = 1, ..., NW, where yi,t,w is the photon counts within the ith spatial
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rectangular region, the tth time interval [Tt−1, Tt) and the wth energy range [Ww−1,Ww).

After binning, the data can be viewed as a time series of images in different energy bands.

The values of each pixel are the photon counts in the different bands in the corresponding

spatial region.

Notice that compared with Automark (Wong et al., 2016), we incorporate 2-D spatial

information into the model, thus extending the analysis from two (wavelength/energy and

time) to four dimensions (wavelength/energy, time, and projected sky location). We also

relax the restriction that the bin sizes along any of the axes are held fixed. Thus, sharp

changes are more easily detected.

As the data in high-energy astrophysics are photon counts, we use a Poisson process to

model the data,

yi,t,w
i.i.d.∼ Poisson(λi,t,w∆Tt), (2.1)

where ∆Tt = (Tt − Tt−1).

Our goal is to infer model intensities λi,t,w from the observed counts data {yi,t,w}. We are

especially interested in detecting significant changes of λi,t,w over time. If there are changes,

we also want to estimate the number and locations of the change points.

To simplify the presentation, we first develop a time-homogeneous model, i.e., one where

there are no change points and λi,t,w is unchanging with t (Section 2.2.2.2). We will then

consider more complex cases, where change points are added to the model so that λi,t,w is

allowed to change over time (Section 2.2.2.3)

2.2.2.2 Piecewise Constant Model

First consider a temporally homogeneous Poisson model without any change points. Then

each image can be treated as an independent Poisson realization of the same, unknown, true

image.

We model the image as a 3-dimensional piecewise constant function. That is, the 2-

dimensional space of x-y coordinates is partitioned into m non-overlapping regions such that

all the pixels in a given region have the same Poisson intensity. Different energy bands share

the same spatial partitioning. Rigorously, the Poisson parameter λi,t,w can be written as a

summation of region-specific Poisson rates µh,w times the corresponding indicator functions
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of regions (I{i∈Rh} is 1 for pixel i in region Rh and 0 otherwise) in the following format:

λi,t,w =
m∑
h=1

µh,wI{i∈Rh}. (2.2)

Here i ∈ Rh means “the ith pixel in the hth region” and I is the indicator function. Rh is

the index set of the pixels within the hth region, with Rh ⊆ {1, ..., NI}. Also, µh,w is the

Poisson rate for the wth band of the hth region. The partition of the image is specified by

R = {Rh|h = 1, ...,m}.

2.2.2.3 Adding Change Points to the Model

Now we allow the underlying Poisson parameter λi,t,w to change over time t. We model λi,t,w

as a piecewise constant function of t.

Suppose these NT images can be partitioned into K + 1 homogeneous intervals by K

change points

τ = {τ0 = 0, τ1, τ2, ..., τK , τK+1 = NT}

For the tth image, suppose that it belongs to the kth time interval; i.e., t ∈ (τk−1, τk]. For each

given t, let λ be a two-dimensional piecewise constant function with m(k) constant regions.

Then λ can be represented by

λi,t,w =
K+1∑
k=1

I{t∈(τk−1,τk]}

m(k)∑
h=1

µ
(k)
h,wI{i∈R(k)

h }
, (2.3)

where m(k) is the number of regions within the kth interval. LetM = {m(k)|k = 1, 2, ..., K+

1}. The partition of the images within interval k is specified by R(k) = {R(k)
h |h = 1, ...,m(k)}.

And the overall partition isR = {R(k)|k = 1, 2, ..., K+1}. The Poisson rates µ
(k)
h,w is the value

for the wth band in the hth region of the kth interval. Let µ(k) = {µ(k)
h,w|h = 1, ...,m(k), w =

1, ..., NW}. And let µ = {µ(k)|k = 1, ..., K + 1}, and i ∈ R(k)
h means “the ith pixel is in the

hth region of the kth interval”.

2.2.2.4 Model Selection Using MDL

Given the observed images {yi,t,w}, we aim to obtain an estimate of λi,t,w. In other words,

we want an estimate of the image partitions and the Poisson rates of the regions for each

band. It is straightforward to estimate the Poisson intensities given the region partitioning,

but the partitioning is a much more complicated model selection problem.
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We will apply MDL to select the best fitting model. Loosely speaking, the idea behind

MDL for model selection is to first obtain a MDL criterion for each possible model, and then

define the best fitting model as the minimizer of this criterion. MDL defines the best model

as the one that produces the best compression of the data. The criterion can be treated as

the code length, or amount of hardware memory required to store the data.

First we present the MDL criterion for the homogeneous Poisson model, then follow it

by the MDL criterion for the general case (i.e., with change points).

Following similar arguments as in Lee (2000) (see their Appendix B), the MDL criterion

for segmenting NT homogeneous images is

MDL(m,R, µ̂) = m log(NI) +
log(3)

2

m∑
h=1

bh

+
NW

2

m∑
h=1

log(NTah)−
NW∑
w=1

NT∑
t=1

m∑
h=1

∑
i∈Rh

yi,t,w log(µ̂h,w),

(2.4)

where ah and bh are, respectively, the “area” (number of pixels) and “perimeter” (number

of pixel edges) of region Rh, and

µ̂h,w =
1∑NT

t=1 ∆Ttah

NT∑
t=1

∑
i∈Rh

yi,t,w (2.5)

is the maximum likelihood estimate of the Poisson rate in the corresponding region. Note

that the indices of µ̂ = {µ̂hw} run over the region segments h = 1..m and the passbands

w = 1..NW.

For the Poisson model with change points, once the number of change points K and the

locations τ = {τ1, ..., τK} are specified, for each k ∈ (1, 2, ..., K + 1), m(k) and R(k) can be

estimated independently. Using the previous argument, the MDL criterion for images within

the same homogeneous interval is

MDL(τk−1, τk,m
(k),R(k), µ̂(k))

= m(k) log(NI) +
log(3)

2

m(k)∑
h=1

b
(k)
h +

NW

2

m(k)∑
h=1

log((τk − τk−1)a
(k)
h )

−
NW∑
w=1

τk∑
t=τk−1+1

m(k)∑
h=1

∑
i∈R(k)

h

yi,t,w log(µ̂
(k)
h,w). (2.6)
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Then the overall MDL criterion for the model with change points is

MDLoverall(K, τ,M,R, µ̂)

= K log(NT) +
K+1∑
k=1

MDL(τk−1, τk,m
(k),R(k), µ̂(k)). (2.7)

To sum up, using the MDL principle, the best-fit model is defined as the minimizer of the

criterion (2.7). The next subsection presents a practical algorithm for carrying out this

minimization.

2.2.2.5 Statistical Consistency

An important step to demonstrating the efficacy of our method is to establish its statistical

consistency. That is, if it is shown that as the size of the data increases, the differences

between the estimated model parameters and the true values decrease to zero, then the

method can be said to be free of asymptotic bias, can be applied in the general case, and is

elevated above a heuristic. We prove in Section 2.6 that the MDL-based model selection to

choose the region partitioning, as well as the corresponding Poisson intensity parameters, is

indeed strongly statistically consistent under mild assumptions of maintaining the temporal

variability structure of λi,t,w.

2.2.3 Practical Minimization

2.2.3.1 An Iterative Algorithm

Given its complicated structure, global minimization of MDLoverall(K, τ,M,R, µ̂) (Equa-

tion 2.7) is virtually infeasible when the number of images NT and the number of pixels NI

are not small, because the time complexity of the exhaustive search is of order 2NTNI .

We iterate the following two steps to (approximately) minimize the MDL criterion (2.7).

1. Given a set of change points, apply the image segmentation method to all the images

belonging to the first homogeneous time interval and obtain the MDL best-fitting

image for this interval. Repeat this for all remaining intervals. Calculate the MDL

criterion (2.7).

2. Modify the set of change points by, for example, adding or removing one change point.

In terms of what modification should be made, we use the greedy strategy to select

the one that achieves the largest reduction of the overall MDL value in (2.7).
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Figure 2.1: Schematic illustration of the minimization algorithm

For Step 1 we begin with a large set of change points (i.e., an over-fitted model). In Step 2 we

remove one change point (i.e., merge two neighboring intervals) to maximize the reduction

of the MDL value. The procedure stops and declares the optimization is done if no further

MDL reduction can be achieved by removing change points. This is similar to backward

elimination for statistical model selection problems. See Figure 2.1 for a flowchart of the

whole procedure.

2.2.3.2 Practical Considerations

Here we list some practical issues that are crucial to the success of the above minimization

algorithm.

Initial seed allocation for SRG: The selection of the initial seeds in SRG plays an impor-

tant role in the performance of the algorithm. To obtain a good initial oversegmentation,

there must be at least one seed within each true region. Currently we use all the local max-
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ima as well as a subset of the square lattice as the initial seeds. Based on simulation results

(see Section 2.3.2), when the number of initial seeds is inadequate, the SRG will underfit

the images, which will in turn lead to an overfitting of the change points and will lead to

an increased false positive rate. On the other hand, it could be time-consuming when the

number of initial seeds is very large, especially for high resolution images. We developed an

algorithm that allocates initial seeds automatically based on locating local maxima. How-

ever, an optimal selection of initial seeds almost certainly requires expert intervention, as it

depends on the type of data that we work with. To reduce the chance of obtaining a poor

oversegmentation with SRG, in practice one could try using different sets of initial seeds and

select the oversegmentation that gives the smallest MDL value.

Counts per bin: The photon counts in the image pixels cannot be too small, otherwise

the algorithm could fail to produce meaningful output; see Section 2.3.2. In some sense,

small photon counts can be seen as low signal level, which means that the proposed method

requires a minimum level of signal to operate with. Therefore, care must be exercised when

deciding the size for the bin. As a rule of thumb, it should be enough to have around 100

counts for each pixel belonging to an astronomical object, while pixels from the background

can have very low or even zero count.

Initial change point selection: Although the stepwise greedy algorithm is capable of saving

a significant amount of computation time, it could still be time consuming if the initial set

of change points is too large, as it might need many iterations to reach a local minimum. It

is recommended to select the initial change points based on prior knowledge, if available, in

order to accelerate the algorithm.

Computation Time: In each iteration, the main time-consuming part is to apply the SRG.

When the total number of pixels and the number of seeds are large, during the process, the

number of candidates is large. Therefore, the comparison among all the candidates and the

following updating manner lead to most of the computation burden. As an example, we

found that it takes about 40 minutes for applying SRG and merging once on 64× 64 images

with about 200 seeds on a Linux machine with an octa-core 2.90 GHz Intel Xeon processor.
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2.2.4 Highlighting the Key Pixels

After the change points are located, it is necessary to locate the pixels or regions that

contribute to the estimation of the change points. The manner by which such key pixels

are identified depends on the scientific context. Below we present two methods that are

applicable to the real-world examples we discuss in Section 2.4

We focus here on images in a single passband, i.e., grey-valued images. For multi-band

images, one can first transform a multi-band image into a single-band image by, for example,

summing the pixel values in different bands, or by using only first principal component

image of the multi-band image. Alternatively, one can also apply the method to each band

individually, and merge the results from each band.

2.2.4.1 Based on Pixel Differences

The first method is to highlight key pixels based on the distribution of pixel differences before

and after change points. The rationale is that a pixel with different fitted values before and

after a change point is a strong indicator that it is a key pixel.

Suppose the fitted values for pixel i in time intervals k and (k+1) are λ̂
(k)
i and λ̂

(k+1)
i , re-

spectively. Given the Poisson nature of the data, we first apply a square-root transformation

to normalize the fitted values. Define the difference di for pixel i as

di =

√
λ̂

(k+1)
i −

√
λ̂

(k)
i . (2.8)

A pixel is labelled as a key pixel if its di is far away from the mean of all the differences. To

be specific, pixel i is labelled as a key pixel if∣∣∣∣di − µ̂σ̂

∣∣∣∣ > Φ−1

(
1− 1

2
p

)
, (2.9)

where µ̂ = 1
NI

∑NI

1 di and σ̂ = 1
Φ−1(3/4)

MAD. Here MAD = median(|di − d̃|) is the median

absolute deviation with d̃ = median(di), and is used to obtain a robust estimate (i.e., a

measure that minimizes the effect of outliers) of the standard deviation of the di’s (see e.g.,

Rousseeuw and Croux, 1993). Φ−1(·) is the quantile of the standard normal distribution,

and p is the pre-specified significance level1. Notice that by checking the sign of di − µ̂, we

1Φ−1 is related to the standard Normal error function, with exemplar values

Φ−1({0.75, 0.841, 0.977, 0.9986, 1 − 10−5

2 , 1 − 10−10

2 , 1 − 10−15

2 }) = {0.6745, 1, 2, 3, 4.417, 6.467, 8.014}.
We typically choose p = 1− 10−15

2 as our threshold.
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can deduce if pixel i has increased or decreased after this change point.

2.2.4.2 Based on Region Differences

Another method to locate key pixels is to compare pairs of regions. For any region in the

time interval k, there must exist at least one region in time interval (k + 1) such that these

two regions have overlapping pixels. We then test if the difference between the means of the

pixels from these two regions is significant or not.

As before, we apply the square-root transformation to the pixels within each of the

regions. Then we calculate the sample means µ̂1 and µ̂2 and sample variances σ̂2
1 and σ̂2

2

of these two groups of square-rooted values. Then we can for example test whether the

difference between µ̂1 and µ̂2 is large enough with∣∣∣∣∣ µ̂2 − µ̂1√
σ̂2

1 + σ̂2
2

∣∣∣∣∣ > Φ−1

(
1− 1

2
p

)
. (2.10)

See Section 2.4 for the applications of these two methods on some real data sets.

Lastly we note that the selection of p, the significance level, deserves a more careful

consideration. As in reality one may need to do comparisons for many change points and

energy bands, this becomes a multiple-testing problem where the number of tests is large.

Therefore, one should adjust the value of p in order to control false positives.

2.3 Simulations

Two groups of simulations were conducted to evaluate the empirical performance of the

proposed method. A specially designed λi,t,w was used for each of the experiments. For each

experiment, we tested 13 signal levels, defined as the average number of photon counts per

pixel. For each signal level, 100 datasets were generated according to (2.1), with ∆T = 1.

The number of spectral bands NW = 3 so w = 1, 2, 3 and the number of time points NT = 60.

2.3.1 Group 1: Single Pixel

The first group of experiments were designed to evaluate the ability of the proposed method

for detecting change points, under the condition that there are no spatial variations. To be

more specific, the size of the images is 1× 1; i.e., only one pixel. In other words, NI = 1 and

the i in λi,t,w is a dummy index. Three λi,t,w’s of increasing complexity were used:
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1. λi,t,w is constant; i.e., no change point (as depicted in Figure 2.2 (a)).

2. λi,t,w shows intensity changes but all three bands are identical at any given t (see

Figure 2.2 (b)).

3. λi,t,w shows spectral changes (see Figure 2.2 (c)).

The first λi,t,w was used to study the level of false positives, while the remaining two were

used to study false negatives.
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Figure 2.2: The Poisson rate functions λi,t,w used in the simulation experiments. (a): λi,t,w
used in the single pixel experiment without change point (Section 2.3.1.1). The x-axis
denotes the time points, while the y-axis shows the values of λi,t,w for different band w. (b):
the λi,t,w relative to the no-change case (top left), used in the single pixel simulation with
changing intensity (Section 2.3.1.2). (c): the λi,t,w for different passbands (marked in blue,
orange and green) relative to the no-change case (top left), used in the single pixel simulation
with changing intensity and spectra (Section 2.3.1.3). (d): the spatial structure used for the
second group of experiments. Size of the image is m = n = 8.
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2.3.1.1 No Change Point

As there is no change point in λi,t,w, this experiment is ideal for studying the relationship

between the false positive rate and the signal level; recall the latter is defined as the average

number of photon counts per pixel.

The results of this experiment (together with the next two experiments) are summarized

as the blue curves in Figure 2.3. The figure captures how well the simulation recovers the

location of the change points (top left), the number of change points (top right), the excess

number of change points (false positives; bottom left), and the deficit in change points (false

negatives; bottom right). The top left plot reports the fraction of simulated datasets for

which the set of the fitted change points τ̂ is identical to the set of true change points τ .

The top right plot presents the fraction of simulated datasets for which the fitted number of

change points K̂ equals to the true number of change points K. The bottom left plot shows

the average false positive rate, which is defined as the average number of falsely detected

change points per possible location. The bottom right plot presents the fraction of simulated

datasets for which τ̂ contains τ , i.e., τ ⊆ τ̂ . One can see that the false discovery rate seems

to be quite stable across different signal levels. Notice that the last curve is always 1 because

τ is empty for this experiment.

2.3.1.2 Varying Intensity

In this experiment we introduced variation in λi,t,w by multiplying (a) and (b) in Figure 2.2

together. The results are reported as the green curve in Figure 2.3. One can see that when

the signal level is small (log10(average signal level) < 1.0), increasing the signal level leads to

more false positives: this range of signals levels are too small to provide enough information

for the detection of the true change points.

When log10(average signal level) is between 1.0 and 2.0, the proposed method starts to

be able to detect the true change points as the signal level increases. Also, the false positive

rate begins to drop. One possible explanation is that for any two consecutive homogeneous

time intervals, the location of the change point might not be clear when the signal level is

relatively small.

As the signal level continues to increase, the proposed method becomes more successful in

detecting the true change point locations. For example, when the average number of counts
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Figure 2.3: Simulation results for Group 1 experiments (single pixel). For all four plots, the
x-axes denote the logarithm of the average counts of photons over all time points and all
bands. Top left: fraction of the fitted change points τ̂ that are identical to the true change
points τ . Top right: fraction of the fitted number of change point K̂ that equals to the true
number of change point K. Bottom left: false positive rate. Bottom right: fraction of fitted
change points contains true change points; i.e., τ ⊆ τ̂ . Note that the legend in the bottom
right plot holds for all four plots.

in each bin is greater than 100 (i.e., log10(average signal level) > 2.0), the signal is strong

enough so that all the true change points can be detected successfully. We note that there

are always some false positives due to the Poisson randomness, and it seems that the false

positive rate stabilizes as the signal level increases.

2.3.1.3 Varying Spectrum

Here we allow different bands w to change differently at the change points. The rate λi,t,w

was obtained by multiplying (a) and (c) in Figure 2.2 together. The results, which are about

the same as the previous experiment (varying intensity), are reported as the red curve in

Figure 2.3. When the signal level is small (log10(average signal level) < 1.0), the proposed

method fails to detect the true change points. When log10(average signal level) is between
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1.0 and 2.0, as the signal level increases, the false positive rate begins to decrease while

the true positive rate increases. When log10(average signal level) > 2.0, all the true change

points can be detected successfully, while the false positive rate stays at the same level as

signal level increases.

2.3.2 Group 2: Spatial Structure

Instead of having a constant spatial signal (i.e., single pixel), in this second group of exper-

iments a spatial varying structure is introduced to study the empirical performance of the

proposed method. As before, three Poisson rate functions λi,t,w are considered. The size of

the image is set to NI = 8 × 8. To illustrate the importance of initial seed placement, we

tested two allocation strategies: (i) we deliberately placed an inadequate number of initial

seeds and (ii) we used every pixel as an initial seed.

2.3.2.1 No Change Point

There was no change point in this experiment and the spatial variation of λi,t,w is given in

the bottom right plot of Figure 2.2. The results are reported as the blue curves in Figure 2.4.

One can see that if the number of initial seeds is inadequate, the false positive rate increases

as the signal level increases above log10(average signal level) > 2.5. However, this does

not happen when there are a large number of initial seeds; see the blue dotted curves in

Figure 2.4. In fact, for this and the following two experiments, our method did not detect

any false positive change points. This suggests that when the images are under-segmented,

the method tends to place more false change points to compensate for data variability not

explainable by image segmentation.

2.3.2.2 Varying Intensity

In this experiment λi,t,w was obtained by multiplying (b) and (d) of Figure 2.2 together, so

there are three change points over time. The results are similar to the no change point case,

and revsummarized as the green curves in Figure 2.4.

2.3.2.3 Varying Spectrum

In this last experiment the energy bands were allowed to be different, and λi,t,w was obtained

by multiplying (c) and (d) of Figure 2.2 together. The results, reported as the red curves in

Figure 2.4, are similar to the previous two experiments.
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Figure 2.4: Simulation results for Group 2 experiments (with spatial structure). For all four
plots, the x-axes denote the logarithm of average count of photons over all time points and
all bands. Solid curves denote the results when the number of initial seeds was inadequate,
while the dotted curves show the results when every pixel was assigned as a initial seed. Top
left: fraction of the fitted change points τ̂ that are identical to the true change points τ .
Top right: fraction of the fitted number of change points K̂ that equals to the true number
of change points K. Bottom left: false positive rates. Bottom right: fraction of fitted change
points contains the true change points; i.e., τ ⊆ τ̂ . The legend in the bottom right plot
holds for all these four plots.

2.3.3 Empirical Conclusions

The following empirical conclusions can be drawn from the above experimental results.

• The method works well in all cases when the signal level is sufficiently large. As a rule

of thumb, for binning of the original data, it would be ideal to have 100 counts or more

for each bin covering an astronomical source.

• It is important to place enough initial seeds when applying SRG; otherwise the false

positive rate will increase with the signal level. See the second paragraph of Sec-

tion 2.2.3.2 for some practical guidelines for initial seed selection.
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2.4 Applications to Real Data

To illustrate the usage in the astrophysics field, we apply the proposed method on two

real datasets, which are more complicated than those in the previous section. Specifically,

we select these datasets with some obvious time-evolving variations to demonstrate the

performance of our method.

2.4.1 XMM-Newton Observations of Proxima Centauri
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Figure 2.5: Light curves of Proxima Centauri in different bands. Each curve denotes the
number of photons within the corresponding band at a given time point index. Vertical black
lines denote the locations of the detected change points.

Proxima Centauri is the nearest star to the Sun and as such is well suited for studies

of coronal activity. Like our Sun, Proxima Centauri operates an internal dynamo, which

generates a stellar magnetic field. In the standard model for stellar dynamos, the magnetic

field lines wind up through differential rotation. When some of the magnetic field lines

reconnect, the energy is released in the stellar flare. Such flares typically show a sudden

rise in X-ray emission and a more gradual decay over several hours. In flares, flux and

temperature are correlated such that a higher X-ray flux corresponds to a higher temperature
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and thus a higher energy of the average detected photons (see Güdel, 2004, for a review of

X-ray emission in stellar coronae and further references).

Despite its proximity, Proxima Centauri and its corona are unresolved in X-ray observa-

tions; it is just the point-spread function (PSF) of the telescope that distributes the incoming

flux over many pixels on the detector.

2.4.1.1 Data

We use a dataset from XMM-Newton (Obs.ID 0049350101), where Proxima Centauri was

observed for 67 ks on 2001-08-12. Because of the high flux, the MOS cameras on XMM-

Newton are highly piled-up and we restrict our analysis to the data from the PN camera.

We obtained the data from the XMM-Newton science archive hosted by the European Space

Agency (ESA)2. The data we received was processed by ODS version 12.0.0. Our analysis

is based on the filtered PN event data from the automated reduction pipeline (PPS). Güdel

et al. (2002) presented a detailed analysis and interpretation of this dataset.

In our analysis, we only used a subset of photons with spatial coordinates within the

region [25500, 27500]× [26500, 28500], and it was binned as images of size 64× 64. We used

the temporal bins of width 1100.4 seconds to generate 60 images. We binned the data into

three energy bands, (200, 1000], (1000, 3000] and (3000, 10000] in eV.

2.4.1.2 Results

Figure 2.5 presents the light curves for different bands as well as the locations of the detected

change points. As there is only a single source of photons with negligible background signal

level, the detected change points coincide with the changes of the light curves. Many change

points are detected for the abrupt increase and then decrease in brightness for all the bands

at the time points between 42 and 50. The time interval between 15 and 36 is detected as

a homogeneous time interval, and the variation in light curves within this interval is viewed

as common Poisson variations. A few change points are detected for the time interval before

time point 15 and the interval after 50. A piecewise constant model is used to fit these

gradual changes in intensities.

The fitted images can be found in Figure 2.6. The source of most photons, a point source,

is modeled by different piecewise constant models at all these time intervals. The center of

2https://www.cosmos.esa.int/web/xmm-newton/xsa
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Figure 2.6: Results for Proxima Centauri. (a): the data image at time point 42 for the first
band (200, 1000] in eV. (b): the corresponding fitted value λi,t,w. (c): regions that show an
increase (blue) and decrease (red) in intensity prior to this time point. Compared with the
previous time interval, there was a significant increase in the source at this time point. (d):
as in panel c, but for the epoch after this time point. After this time point, the brightness
in the source decreased. Notices that these two bottom plots share the colorbar, where the
value 1 denotes increasing and −1 denotes decreasing intensities.

the point source and the wings of the PSF region nearby were fitted by models with shapes

like concentric circles.

To test our method for finding the regions of significant change, we also apply it here

because we know what the answer should be. For this dataset, as the observations for

different bands change simultaneously, we combine all the three bands to highlight the key

pixels. That is, we highlight the regions for each band and take the intersection of these

regions. Examples of the results based on the method in Section 2.2.4.2 can be found in

Figure 2.6. The method indeed picks out the point source. With significance level p = 10−2,

the abrupt increase in brightness of the source at time point 41 and 42, as well as the sudden

decrease at time point 43 can be detected successfully. By modifying the significance level,

different sensitivity can be achieved.
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2.4.2 Isolated Evolving Solar Coronal Loop

Images of the solar corona constitute a legitimate Big Data problem. Several observatories

have been collecting images in extreme ultra-violet (EUV) filters and in X-ray passbands for

several decades, and analyzing them to pick out interesting changes using automated routines

have been largely unsuccessful. Catalogs like the HEK (Heliophysics Events Knowledgebase

Hurlburt et al., 2012; Martens et al., 2012) can detect and mark features of particular vari-

eties, though these compilations remain beset by incompleteness (see, e.g., Aggarwal et al.,

2018; Hughes et al., 2019; Barnes et al., 2017). In this context, our method provides a way

to model solar features without limiting it to a particular feature set to identify and locate

regions in images where something interesting has transpired. As a proof of concept, we ap-

ply the method to a simple case of an isolated coronal loop filling with plasma, as observed

with the Solar Dynamics Observatory’s Atmospheric Imaging Assembly (SDO/AIA) filters

(Pesnell et al., 2012; Lemen et al., 2012). Considerable enhancements must still be made in

order to lower the computational cost before the method can be applied to full size images

at faster than observed cadence; however, we demonstrate here that a well-defined region of

interest can be selected without manual intervention for a dataset that consists of images in

several filters.

2.4.2.1 Data

In particular, here we consider AIA observations carried out on 2014-Dec-11 between 19:12

UT and 19:23 UT, and focus on a 64×64 pixel region located (+1′′,−271′′) from disk center,

in which a small, isolated, well-defined loop appeared at approximately 19:19 UT. This

region was selected solely as a test case to demonstrate our method; the appearance of

the loop is clear and unambiguous, with no other event occurring nearby to confuse the

issue; see Figure 2.7. We apply our method to these data, downloaded using the SDO AIA

Cutout Service,3 and demonstrate that the loop (and it alone) is detected and identified; see

Figures 2.8, 2.9 and 2.10. AIA data are available in 6 filter bands, centered at 211, 94, 335,

193, 131, 171 Å. Here, we have limited our analysis to 3 bands: 94, 335, and 131 Å in which

the isolated loop is easily discernible to the eye (a full analysis including all the filters does

not change the results). Each filter consists of a sequence of 54 images, and while they are

3https://www.lmsal.com/get_aia_data/
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not obtained simultaneously, the difference in time between the bands is ignorable on the

timescale over which the loop evolves.

2.4.2.2 Results

The fitted images for the 3-band case can be found in Figure 2.8. Notice that there is a

loop-shaped object that is of interest. Based on the fitted result, this object starts to appear

at time point c.36 and becomes brighter after that for the first band. In the second band,

this object appears at time point c.26 and stays bright throughout the duration considered.

However in the third band, the object becomes bright at time point c.36 and vanishes soon

after time point c.38. The proposed method is able to catch these changes in different bands

and to detect the corresponding change points.

After detecting these change points, we find the key pixels that contribute to the change

points using the methods in Section 2.2.4.1. This method is appropriate to highlight the

regions that change rapidly after the change point because different bands may not change

in the same direction for this dataset. Here we apply this method on a single band, 94, as

an example. We use p = 10−15. See Figure 2.9 for an illustration. We find that the method

could highlight the loop-shape object which starts to appear at time point c.36, and also

detect the region that becomes much brighter after time point c.38. We also compute the

light curves of the intensities in a region comprised of the set of pixels formed from the union

of all key pixels found at all change points in all the filters; see Figure 2.10. Notice that

the event of interest is fully incorporated within the key pixels, with no spillover into the

background, and the change points are post facto found to be reasonably located from a

temporal perspective in that they are located where a researcher seeking to manually place

them would do so. The first segment is characterized by steady emission in all three bands,

the second segment shows the isolated loop beginning to form, the third segment catches the

time when it reaches a peak, and the last segment tracks the slow decline in intensity.

2.5 Summary

We have developed an approach to model photon emissions by astronomical sources. Also,

we propose a practical algorithm to detect the change points as well as to segment the

astronomical images, based on the MDL principle for model selection. We test this method
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on a series of simulation experiments and apply it to two real astrophysical datasets. We are

able to recover the time-evolving variations.

Based on the results of simulation experiments, it is recommended that the average

number of photon counts within each bin should be from 100 to 1000 for pixels belonging to

an astrophysical object, so that the proposed method is able to find change points and limit

false positives.

For future work, it will be helpful to quantify the evidence of the existence of a change

point by deriving a test statistic based on Monte Carlo simulations or other methods. An-

other possible extension is to relax the piecewise constant assumption and allow piecewise

linear/quadratic modeling so that the method is able to capture more complicated and re-

alistic patterns.

2.6 Supplement: Statistical Consistency

Here we prove that the MDL scheme is statistically consistent (see Section 2.2.2.5), thereby

ensuring that the estimates of region segmentations and the Poisson intensities are reliable

measures of the data. In the following, we assume that the size of the time bins ∆Tt =

1,∀1 ≤ t ≤ NT, as NT increases to infinity. That is to say, first, we study that as these

underlying nonhomogeneous Poisson processes are extending at the same rate, the size of

the bins keeps fixed, which leads to increasing number of independent observations for any

given part of this Poisson process. And by keeping the size of the bins fixed, we get rid of the

case that the Poisson parameters keep varying as NT increases. Second, by setting ∆Tt = 1,

the Poisson parameter is numerically equal to the Poisson rate, which ease the arguments.

The proof can be extended if we relax this assumption.

Given the above assumption, the photon counts have the following Poisson model,

yi,t,w
i.i.d.∼ Poisson(λi,t,w). (2.11)

Given change points τ = (τ1, τ2, ..., τK), we set τ0 = 0 and τK+1 = NT, and let νk =

τk/NT, k = 0, 1, ...NT to be the normalized change points. The consistency results are based

on νk’s being fixed as NT increases.

The observed images within the same interval follow the same corresponding piecewise

constant model given change points τ . Let x
(k)
i,t−τk−1,w

= yi,t,w, τk−1 + 1 ≤ t ≤ τk, X
(k)
t−τk−1

=
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Yt = {yi,t,w|i = 1, ..., NI, w = 1, ..., NW}, τk−1 + 1 ≤ t ≤ τk, and X(k) = {X(k)
t |1 ≤ t ≤ Tk}

where Tk = τk − τk−1.

Let λi,t,w’s within the kth interval follow the same corresponding two-dimensional piece-

wise constant model with m(k) constant regions. The partition of the images within interval

k is specified by a region assignment function R(k)(.) : {1, ..., NI} → {1, ...,m(k)}. The Pois-

son parameters µ
(k)
h,w is the value for the wth band in the hth region of the kth interval. Let

µ(k) = {µ(k)
h,w|h = 1, ...,m(k), w = 1, ..., NW}. That is to say,

λi,t,w =
K+1∑
k=1

I{t∈(τk−1,τk]}µ
(k)

R(k)(i),w
. (2.12)

In all, for pixel i ∈ R(k)
h ,

x
(k)
i,t,w

i.i.d.∼ Poisson(µ
(k)
h,w). (2.13)

For each 1 ≤ t ≤ Tk, the log-likelihood function for regions assignment R(k) and Poisson

parameters µ(k) is

l̃k((R
(k), µ(k));X

(k)
t ) =

NW∑
w=1

m(k)∑
h=1

∑
i,s.t.R(k)(i)=h

[x
(k)
i,t,w log(µ

(k)
h,w)− µ(k)

h,w − log(x
(k)
i,t,w!)]. (2.14)

As some of the terms in the log-likelihood function have nothing to do with the parameters

to estimate, we remove these terms and write down the log-likelihood to be

lk((R
(k), µ(k));X

(k)
t ) =

NW∑
w=1

m(k)∑
h=1

∑
i,s.t.R(k)(i)=h

[x
(k)
i,t,w log(µ

(k)
h,w)− µ(k)

h,w]. (2.15)

Define ψk = (R(k), µ(k)) to be the parameter set for the kth interval, and M to be the

class of models ψk can take value from. Then the log-likelihood for the kth interval can be

written as

L
(k)
T (ψk;X

(k)) =

Tk∑
t=1

lk((R
(k), µ(k));X

(k)
t ). (2.16)

Let ν = (ν1, ..., νK) be the normalized change point location vector, and let ψ =

(ψ1, ..., ψK+1) be the parameter vector. Then vector (K,ν,ψ) can specify a model for this

sequence of images. The MDL is derived to be
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MDL(K,ν,ψ) = K log(NT) +
K+1∑
k=1

[m(k) log(NI) +
log(3)

2

m(k)∑
h=1

b
(k)
h

+
NW

2

m(k)∑
h=1

log(([Tνk]− [Tνk−1] + 1)a
(k)
h )]

−
K+1∑
k=1

L
(k)
T (ψk;X

(k)). (2.17)

Here the “area” (number of pixels) and “perimeter” (number of pixel edges) of region R
(k)
h

are denoted by a
(k)
h and b

(k)
h .

In order to make sure that the change points are identifiable, we assume that there exists

a εν > 0 such that min1≤k≤K+1 |νk − νk−1| > εν . Therefore, the number of change points is

bounded by K ≤ [1/εν ] + 1. And there exists a constraint AKεν of ν where

AKεν = {ν ∈ (0, 1)K |0 < ν1 < ... < νK < 1, νk − νk−1 > εν ,∀1 ≤ k ≤ K + 1}. (2.18)

Then the estimation of the model based on MDL is given by

(K̂T , ν̂T , ψ̂T ) = arg min
K≤[1/εν ]+1,ν∈AKεν ,ψ∈M

1

NT

MDL(K,ν,ψ). (2.19)

Here MDL(K,ν,ψ) is defined in (2.17), ν̂T = (ν̂1, ..., ν̂K̂) and ψ̂T = (ψ̂1, ..., ψ̂K̂+1), where

ψ̂k = (R̂(k), µ̂(k)). And µ̂(k) is defined as

µ̂(k) = arg max
µ(k)∈Θk(R̂(k))

L
(k)
T ((R̂(k), µ(k)); X̂(k)) (2.20)

with X̂(k) = {Yt|[T ν̂k−1] < t ≤ [T ν̂k]} denotes the estimated kth interval of the sequence of

images.

We further define the log-likelihood formed by a portion of the observations in the kth

interval by

L
(k)
T (ψk, νd, νu;X

(k)) =

[Tkνu]∑
t=[Tkνd]+1

lk((R
(k), µ(k));X

(k)
t ), (2.21)

where 0 ≤ νd < νu ≤ 1 and νu − νd > εν .
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We denote

sup
νd,νu

:= sup
0≤νd<νu≤1,νu−νd>εν

(2.22)

to simplify the notation.

In this setting, an extension need to be made such that νd and νu can be slightly outside

[0, 1]. It means that the kth estimated interval could cover a part of the observations that

belong to the (k− 1)th and (k+ 1)th true intervals. Based on the formula (3.4) in Davis and

Yau (2013), for a real-value function fT (νd, νu) on R2,

sup
νd,νu

fT (νd, νu)
a.s.−−→ 0 (2.23)

is used to denote

sup
−hT<νd<νu<1+rT ,νu−νd>εν

fT (νd, νu)
a.s.−−→ 0 (2.24)

for any pre-specified positive-valued sequences hT and rT , which cover to 0 as NT →∞.

The following assumptions on true Poisson parameters µ
o(k)
h,w , 1 ≤ h ≤ m(k), 1 ≤ w ≤

NW, 1 ≤ k ≤ (Ko + 1) are necessary.

Assumption 2.1.

0 < Cd := min
k,h,w

µ
o(k)
h,w ≤ Cu := max

k,h,w
µ
o(k)
h,w <∞. (2.25)

Assumption 2.2. For two true neighboring regions R
(k)
p and R

(k)
q at the kth interval,

δ1 := min
k,p,q,w

|µo(k)
p,w − µo(k)

q,w | > 0. (2.26)

Assumption 2.3. For any two neighboring intervals (k − 1) and k

δ2 := min
k

max
i,w
|µo(k)

R(k)(i),w
− µo(k−1)

R(k−1)(i),w
| > 0. (2.27)

Proposition 2.1 (v). For k = 1, ..., K+ 1 and any fixed R(k), there exists a ε > 0 such that,

sup
µ(k)∈Θk(R(k))

E|lk((R(k), µ(k));X
(k)
t )|v+ε <∞,

sup
µ(k)∈Θk(R(k))

E|l′k((R(k), µ(k));X
(k)
t )|v+ε <∞,

sup
µ(k)∈Θk(R(k))

E|l′′k((R(k), µ(k));X
(k)
t )| <∞.

(2.28)

31



This proposition holds for v = 1, 2, 4 due to the compactness of parameter space (As-

sumption 2.1) and bounded E[(x
(k)
i,t,w)v+ε].

Proposition 2.2. For k = 1, ..., K + 1 and any fixed R(k),

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L

(k)
T ((R(k), µ(k));X(k))− Lk((R(k), µ(k)))| a.s.−−→ 0,

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L
′(k)
T ((R(k), µ(k));X(k))− L′k((R(k), µ(k)))| a.s.−−→ 0,

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L
′′(k)
T ((R(k), µ(k));X(k))− L′′k((R(k), µ(k)))| a.s.−−→ 0,

(2.29)

where

Lk((R
(k), µ(k))) := E(lk((R

(k), µ(k));X
(k)
t )),

L′k((R
(k), µ(k))) := E(l′k((R

(k), µ(k));X
(k)
t )),

L′′k((R
(k), µ(k))) := E(l′′k((R

(k), µ(k));X
(k)
t )).

(2.30)

The estimated locations of change points are used to define the likelihood in practice.

Therefore, the two ends of the kth interval might contain observations from the (k − 1)th

and (k+ 1)th true intervals, though the estimated change points are close to the true change

points. It is necessary to control the effect at the two ends of the fitted interval.

Proposition 2.3 (w). For k = 1, ..., K + 1 and any fixed ψ and any sequence of integers

{g(NT)}NT≥1 that satisfies g(NT) > cNw
T for some c > 0 when NT is large enough, then

1

g(NT)

NT∑
t=NT−g(NT)+1

lk(ψ;X
(k)
t )

a.s.−−→ E(lk(ψ;X
(k)
t )),

1

g(NT)

NT∑
t=NT−g(NT)+1

l′k(ψ;X
(k)
t )

a.s.−−→ E(l′k(ψ;X
(k)
t )).

(2.31)

Based on Lemma 1 in Davis and Yau (2013), Proposition 2.3 holds when Proposition

2.1(2) holds and the Assumption 4* in Davis and Yau (2013) is satisfied. And Assumption

4* is satisfied because an independent process, like the current setting, must be mixing.

It is necessary to discuss the identifiability of models in M. First we define Rb an

oversegmentation compared with Rs if Rb(i) = Rb(j) leads to Rs(i) = Rs(j).
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Proposition 2.4. For the kth interval, the true model ψok ∈ M satisfies the condition

ψok = arg maxψ∈ME(lk(ψ;X
(k)
t )). Also, ψok is uniquely identifiable, which means that if there

exists a µ∗ such that lk((R
o, µo);X

(k)
t ) = lk((R

o, µ∗);X
(k)
t ) almost everywhere for X

(k)
t , then

µo = µ∗. And suppose there exists another model ψbk = (Rb, µb) such that lk(ψ
b
k;X

(k)
t ) =

lk(ψ
o
k;X

(k)
t ) almost everywhere, then Rb must be an oversegmentation compared with Ro.

And µb satisfies µb
Rb(i),w

= µoRo(i),w,∀i, w.

Proof. Suppose on the contrary there exist a model ψ∗ = (R∗, µ∗) that satisfies ψ∗ =

arg maxψ∈ME(lk(ψ;X
(k)
t ))), and ψ∗ is neither the true model nor an oversegmentation of

the true model. Then there exist two pixels i0 and j0, such that they are neighboring pixels,

Ro(k)(i0) 6= Ro(k)(j0) and R∗(i0) = R∗(j0). Therefore, by Assumption 2.2, we have

|µo(k)

Ro(k)(i0),w
− µo(k)

Ro(k)(j0),w
| ≥ δ1 > 0. (2.32)

Define

µ̄h,w(R) :=
1

ah(R)

∑
i,R(i)=h

µ
o(k)
Ro(i),w, (2.33)

where ah(R) denotes the number of pixels in region h given segmentation R. And in a special

case,

µ̄h,w(Ro(k)) = µ
o(k)
h,w . (2.34)

Then for all possible µ∗ ∈ Θk(R
∗), we have

E(lk((R
∗, µ∗);X

(k)
t )) = E(

NW∑
w=1

m∗∑
h=1

∑
i,s.t.R∗(i)=h

[x
(k)
i,t,w log(µ∗h,w)− µ∗h,w])

=

NW∑
w=1

m∗∑
h=1

∑
i,s.t.R∗(i)=h

[µ
o(k)

Ro(k)(i),w
log(µ∗h,w)− µ∗h,w]

=

NW∑
w=1

m∗∑
h=1

ah(R
∗)[µ̄h,w(R) log(µ∗h,w)− µ∗h,w]

≤
NW∑
w=1

m∗∑
h=1

ah(R
∗) max

µh,w
[µ̄h,w(R) log(µh,w)− µh,w]

=

NW∑
w=1

m∗∑
h=1

ah(R
∗)[µ̄h,w(R∗) log(µ̄h,w(R∗))− µ̄h,w(R∗)]

= E(lk((R
∗, µ̄(R∗));X

(k)
t )).

(2.35)
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Also, we have

E(lk((R
∗, µ̄(R∗));X

(k)
t )) =

NW∑
w=1

m∗∑
h=1

ah(R
∗) max

µh,w
[µ̄h,w(R∗) log(µh,w)− µh,w]

≤
NW∑
w=1

NI∑
i=1,i/∈{i0,j0}

max
λi,w

[µ
o(k)

Ro(k)(i),w
log(λi,w)− λi,w]

+

NW∑
w=1

[µ
o(k)

Ro(k)(i0),w
log(µ∗R∗(i0),w)− µ∗R∗(i0),w

+ µ
o(k)

Ro(k)(j0),w
log(µ∗R∗(j0),w)− µ∗R∗(j0),w]

<

NW∑
w=1

NI∑
i=1,i/∈{i0,j0}

max
λi,w

[µ
o(k)

Ro(k)(i),w
log(λi,w)− λi,w]

+

NW∑
w=1

max
λi0,w

[µ
o(k)

Ro(k)(i0),w
log(λi0,w)− λi0,w]

+

NW∑
w=1

max
λj0,w

[µ
o(k)

Ro(k)(j0),w
log(λj0,w)− λj0,w]

=

NW∑
w=1

NI∑
i=1

[µ
o(k)

Ro(k)(i),w
log(µ

o(k)

Ro(k)(i),w
)− µo(k)

Ro(k)(i),w
]

=

NW∑
w=1

mo(k)∑
h=1

a
o(k)
h [µ

o(k)

Ro(k)(i),w
log(µ

o(k)

Ro(k)(i),w
)− µo(k)

Ro(k)(i),w
]

=E(lk((R
o(k), µo(k));X

(k)
t )).

(2.36)

Here the strict inequities must hold because of (2.32)

Finally combining (2.35) and (2.36), we have

E(lk((R
∗, µ∗);X

(k)
t )) < E(lk((R

o(k), µo(k));X
(k)
t )), (2.37)

which is a contradiction. This finishes the proof.
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Lemma 2.1. For any fixed R(k),

sup
νd,νu

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L

(k)
T ((R(k), µ(k)), νd, νu;X

(k))− (νu − νd)Lk((R(k), µ(k)))|

a.s.−−→ 0,

sup
νd,νu

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L
′(k)
T ((R(k), µ(k)), νd, νu;X

(k))− (νu − νd)L′k((R(k), µ(k)))|

a.s.−−→ 0,

sup
νd,νu

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L
′′(k)
T ((R(k), µ(k)), νd, νu;X

(k))− (νu − νd)L′′k((R(k), µ(k)))|

a.s.−−→ 0.

(2.38)

See Proposition 1 and 2 in Davis and Yau (2013) for the proof.

Lemma 2.2. Suppose the true parameters for interval k is ψo(k) = (Ro(k), µo(k)). And suppose

a region segmentation R(k) is specified for estimation. Let

µ̂T = µ̂
(k)
T (νd, νu) := arg max

µ(k)∈Θk(R(k))
L

(k)
T ((R(k), µ(k)), νd, νu;Xk),

µ∗(k) := arg max
µ(k)∈Θk(R(k))

Lk((R
(k), µ(k))).

(2.39)

Then

sup
νd,νu

| 1

NT(νk − νk−1)
L

(k)
T ((R(k), µ̂T ), νd, νu;X

(k))− (νu − νd)Lk((R(k), µ∗(k)))| a.s.−−→ 0, (2.40)

where the supremum is defined in (2.23). And if R(k) = Ro(k), we further have

sup
νd,νu

|µ̂(k)
T (νd, νu)− µo(k)| a.s.−−→ 0. (2.41)

If R(k) is an oversegmentation than Ro(k), then we have

sup
νd,νu

|µ̂T,R(k)(i),w(νd, νu)− µo(k)

Ro(k)(i),w
| a.s.−−→ 0 ∀i, w. (2.42)
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Proof.

(νu − νd)(Lk((R(k), µ∗(k)))− Lk((R(k), µ̂T )))

≤ sup
νd,νu

|(νu − νd)Lk((R(k), µ∗(k)))− 1

NT(νk − νk−1)
L

(k)
T ((R(k), µ∗(k)), νd, νu;X

(k))

+
1

NT(νk − νk−1)
L

(k)
T ((R(k), µ̂T ), νd, νu;X

(k))− (νu − νd)Lk((R(k), µ̂T ))|

≤2 sup
νd,νu

sup
µ(k)∈Θk(R(k))

| 1

NT(νk − νk−1)
L

(k)
T ((R(k), µ̂T ), νd, νu;X

(k))− (νu − νd)Lk((R(k), µ(k)))|

a.s.−−→0.

(2.43)

The first inequity is obtained by the definition of maximum likelihood estimator, and the

last convergence comes from Lemma 2.1. As µ∗(k) maximizes Lk((R
(k), µ(k))) and νu−νd > 0,

we have

|Lk((R(k), µ∗(k)))− Lk((R(k), µ̂T ))| a.s.−−→ 0. (2.44)

Combining (2.43), (2.44) and Proposition 2.1(1), 2.40 holds. If R(k) = Ro(k), by Propo-

sition 2.4, Lk((R
(k), µ(k))) has a unique maximizer at µo(k), so (2.41) holds. If R(k) is an

oversegmentation compared with Ro(k), by Proposition 2.4, (2.42) holds.

Now we give a preliminary result of the convergence when the number of change points

is known.

Theorem 2.1. (Theorem 1 in Davis and Yau (2013)) Let {Yt|t = 1, ..., NT} be the observed

images specified by (Ko,νo,ψo). And suppose the number of change points Ko is known.

The change points and parameters are estimated by

(ν̂T , ψ̂T ) = arg min
λ∈Amελ ,ψ∈M

1

NT

MDL(Ko,ν,ψ). (2.45)

Then ν̂T
a.s.−−→ νo and for each interval, the estimated R̂(k) must be an oversegmentation

comparing to the true region segmentation.

We skip the proof of this theorem because it is quite similar to the proof of Theorem 1

in Davis and Yau (2013). Notice that we need to use Assumption 2.3 in the proof.

36



Corollary 2.1. (Corollary 1 in Davis and Yau (2013)) Under the conditions of Theorem

2.1, if the number of change- points is unknown and is estimated from the data , then

1. The number of change points cannot be underestimated. That is to say, K̂ ≥ Ko almost

surely when NT is large enough.

2. When K̂ > Ko, νo must be a subset of the limit of ν̂T for large enough NT.

3. In each fitted interval, the region segmentation must be equal to or be an oversegmen-

tation comparing with the corresponding true region segmentation.

See Corollary 1 in Davis and Yau (2013) for more details.

Theorem 2.2. (Theorem 2 in Davis and Yau (2013)) Let νo = (νo1 , ν
o
2 , ..., ν

o
mo) be the true

change points. And (K̂, ν̂T , ψ̂T ) is the MDL-based result. Then ∀k = 1, 2, ..., Ko, there exists

a ν̂tk ∈ ν̂T where 1 ≤ tk ≤ K̂ such that

|ν̂tk − νok| = o(N
− 1

2
T ) a.s. . (2.46)

See the proof of Theorem 2 in Davis and Yau (2013).

Lemma 2.3. Suppose the true region segmentation Ro(k) is specified for the kth interval,

then

µ̂
(k)
T (ν̂k−1, ν̂k)− µo(k) = O(

√
log log(NT)

NT

) a.s. . (2.47)

When the specific region segmentation R(k) is an oversegmentation compared with Ro(k),

then we have

µ̂
(k)

T,R(k)(i),w
(ν̂k−1, ν̂k)− µo(k)

Ro(k)(i),w
= O(

√
log log(NT)

NT

) a.s. ∀i, w. (2.48)

See Lemma 2 in Davis and Yau (2013) for more details.

Then we come to the main result.
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Theorem 2.3. Let {Yt|t = 1, ..., NT} be the observed images specified by (Ko,νo,ψo). The

estimator (K̂T , ν̂T , ψ̂T ) is defined by (2.19). Then we have

K̂T
a.s.−−→ Ko,

ν̂T
a.s.−−→ νo,

ψ̂T
a.s.−−→ ψo.

(2.49)

See Theorem 3 in Davis and Yau (2013) for more details.
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Figure 2.7: An isolated loop structure shown lighting up in 3 SDO/AIA passbands. Each row
corresponds to the intensities in AIA filter images, averaged over the time duration found
by our method, going from interval 1 (top) to interval 4 (bottom). The columns, going from
left to right, show the 94, 335, and 131 Å filter band images. The filter name, time duration,
and the image sequence indices are marked at the top of the image and the intensity scale
is marked at the bottom. The grid at the bottom of each image denotes the pixelation,
with each image having a size of 64×64 pixels. Notice that the isolated loop becomes bright
enough for detection in the 3rd interval.
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Figure 2.8: Intensities λi,t,w as fit to the data from Figure 2.7 in spatial segments. The images
are arranged in the same manner, and demonstrate that the loop structure is locatable and
identifiable. The number of region segments found are also marked.
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Figure 2.9: Demonstrating the isolation of key pixels of interest. Each set of three shows
the fitted intensity in one passband in the 3rd interval (left), followed by a bitmap of pixels
(middle) showing where intensity increases (blue) and decreases (red), followed by the fitted
intensity image in the same filter in the 4th time interval (right). The upper row shows the
transition in the 94 Å filter, and the lower row shows the transition in the 131 Å filter. Notice
that the loop continues to brighten at 94 Å, even as it starts to fade at 131 Å.
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Figure 2.10: Light curves of the key pixels where changes are found, for the three filters
used in the analysis: 94 Å (top), 335 Å (middle), and 131 Å (bottom). The average of the
observed intensities, weighted by the number of times each pixel is flagged as a key pixel, are
shown as dots, along with the similarly weighted sample standard deviation as vertical bars.
The shaded regions represent the envelope of the sample standard deviation seen outside the
flagged pixels. The vertical lines denote the change points found by our algorithm.

42



Chapter 3

Consistent Change Point Detection

and Node Clustering for Time Series

of Graphs

Suppose an undirected graph is observed over time. Its structure (i.e., nodes and edges)

remains the same but the measurements taken at the nodes may vary over time. This paper

proposes a method that simultaneously performs the following two tasks: (i) it detects change

points in the time domain, and (ii) for each time interval between any two consecutive de-

tected change points, it partitions the nodes into different clusters of similar measurements.

The method begins with recasting the problem into a model selection problem, and employs

the minimum description length principle to construct a selection criterion for which the

best fitting model is defined as its minimizer. A practical algorithm is developed to (ap-

proximately) locate this minimizer. It is shown that the model selection criterion leads to

statistically consistent estimates, while numerical experiments show that the method enjoys

promising empirical properties. To the best of the authors’ knowledge, the proposed method

is one of the first that performs simultaneous change point detection and node clustering for

time series of graphs.

3.1 Introduction

Consider the following situation. Suppose we would like to study criminal activities in a

certain region over time. We could first partition the region into different administrative
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districts, where each district is represented by a node in a graph. Two nodes are connected

if their corresponding districts share a common border. For each node weekly measurements

are taken over a time period. These measurements can be the weekly total numbers of

reported crime incidents in the district, or they can be the numbers of a certain crime

incidents such as burglary. With this set up, we can model the crime measurements as a

time-evolving graph, and see if the crime activities change over time, or if they are spatially

correlated in the sense that adjacent districts have similar patterns.

This problem can be formalized as follows. Suppose a time-evolving graph is observed

at time t = 1, . . . , T . The number of nodes and the node connectivity (i.e., edges) remain

unchanged over time, although the noisy measurements observed at the nodes may change.

We use p to denote the number of nodes, nt,i to denote the number of measurements observed

in the ith node at time t, and xt,i,j to denote the jth measurement (i.e., j = 1, . . . , nt,i) of the

ith node at time t, where i = 1, . . . , p and t = 1, . . . , T . The values of the nt,i’s are typically

small, and could even be zero for some t, i; i.e., no measurement. For all {t, i, j}, we model

the measurements xt,i,j as

xt,i,j
i.i.d.∼ N (βt,i, σ

2),

where βt,i is the true signal value for the ith node at time t, and σ2 is the noise variance.

The goal is to, given the data xt,i,j, estimate the signal βt,i. Of course, an unbiased estimator

for βt,i is
∑nt,i

j=1 xt,i,j/nt,i (if nt,i > 0), the sample average. However, this estimator is of high

variance if nt,i is small, which is quite common for many real data problems where it is

typical to have nt,i = 1 for some {t, i}. Thus, we impose two additional assumptions to the

problem so that improved estimates for βt,i can be obtained.

First we assume that the underlying signal is temporally smooth. Specifically, we assume

that there exists a sequence of M time points 1 < t1 < . . . < tM ≤ T , called change points,

such that all the signal βt,i’s are the same between any two consecutive change points. Write

βt = (βt,1, βt,2, ..., βt,p)
>, t0 = 1 and tM+1 = T + 1. This assumption implies that βs = βt if

tk ≤ s, t < tk+1 for all k = 0, . . . ,M .

In addition to temporal smoothness, we also assume the signal is “spatially” smooth, in

the sense that two nodes that are connected by an edge tend to have more similar values

of βt,i than nodes that are not. We formalize this idea by assuming that, at any time point

44



t, the nodes can be partitioned into different connected subgraphs in such a way that all

the nodes within the same cluster share the same signal value. In below we shall call these

subgraphs clusters. In other words, if at time t the ith and lth nodes are in the same cluster,

then βt,i = βt,l. Note that the clusters may change at the change points t1, . . . , tM .

It is straightforward to estimate the underlying signal βt,i’s if the change points and the

cluster structure are known; it will simply be the average of the relevant xt,i,j’s; see (3.17)

below. In this paper, however, we do not assume the change points nor the cluster structure

are known, and we will estimate them as well as the βt,i’s. We first recast this problem

as a model selection problem and invoke the minimum description length (MDL) principle

(Rissanen, 1989a, 2007b) to select a best fitting model as our final answer. As a model

selection criterion, MDL defines the best model as the model that compresses the data into

the shortest code length for storage. Among different versions of MDL, we shall use the so-

called “two-part” variant which has been shown to produce excellent results in other model

selection problems, such as image segmentation (Lee, 2000) and structural break detection

(Davis et al., 2006).

To the best of the authors’ knowledge, the current paper is one of the first that considers

the problem of simultaneous change point detection and node clustering for time series

of graphs, although various authors have considered other different but similar problems.

For example, Cheung et al. (2020) used the MDL principle for change point detection and

community detection in time series of networks. Notice that the focus of their work is to

model the edge behavior of the networks and no theoretical results are provided. Sharpnack

et al. (2013) derived a so-called Spectral Scan Statistic to test whether the signal over a

given graph is constant, or is piecewise constant over two subgraphs. Lastly, a commonly

studied problem is change point detection for time-varying Gaussian graphical models. A

popular approach is to impose different kinds of l1 type penalties to encourage sparsity and

smoothness across time so that the entries of the precision matrix are piecewise constant or

slow varying over time; e.g., see Kolar and Xing (2012); Gibberd and Nelson (2017); Hallac

et al. (2017) and Yang and Peng (2020).
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3.2 Methodology

To make the presentation more digestible, we begin with deriving in Section 3.2.1 the MDL

solution for the case when there is no change point; i.e., the homogeneous case. Then in

Section 3.2.2 we will extend to the general case that allows for change points.

3.2.1 Homogeneous Case

This subsection assumes the cluster structure stays the same across different times. That

is, there is no change point and βt,i = βi for all {t, i}. The task is to estimate the cluster

structure, which includes the number of clusters as well as the cluster membership for each

node; i.e., which cluster the node belongs to. Let d be the number of clusters (so 1 ≤ d ≤ p)

and write the cluster membership for the ith node as ci; i.e., the ith node belongs to the

cith cluster, where 1 ≤ ci ≤ d. Let c = {c1, c2, ..., cp} and P = {β1, β2, ..., βp}. For the

homogeneous case the goal is to estimate d, c and P .

As mentioned before, MDL defines the best fitting model as the one that enables the best

compression of the data, or in other words, the one that produces the shortest code length

of the data. This idea can be formalized as follows. If we write CL(z) as the code length of

z, then the code length CL(“data”) of the observed data can be decomposed into two parts,

a model F plus the corresponding residuals Ê :

CL(“data”) = CL(F) + CL(Ê |F), (3.1)

and the best model is the one that minimizes CL(“data”). Here F = {d, c,P} and note that

the dependence of Ê on F is stressed in the notation of the last term.

To minimize (3.1) we need computable expression for CL(“data”) and we begin by cal-

culating CL(F), which can be further decomposed into

CL(F) = CL(d) + CL(c) + CL(P). (3.2)

According to Rissanen (1989a), it takes approximately log2(I) bits to encode an integer I

with upper bound unknown, and approximately log2(Iu) bits with a known upper bound Iu.

To encode the number of clusters d with an upper bound p, the smaller one, log2(d) is used.

So

CL(d) = log2(d). (3.3)
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For c, it takes log2(d) bits to encode each ci. Then we have

CL(c) =

p∑
i=1

log2(d) = p log2(d). (3.4)

Next we calculate CL(P), and we need the maximum likelihood estimate (MLE) of the βi’s.

If the ith node belongs to the rth cluster (i.e., ci = r), the MLE of βi is

β̂i =

∑T
t=1

∑
q,cq=r

∑nt,q
j=1 xt,q,j∑T

t=1

∑
q,cq=r

nt,q
, (3.5)

which is simply the average of all the observations of all the nodes belonging to the rth

cluster at all time. By Rissanen (1989a), to encode an MLE, the code length is 1
2

log2N if

N observations are used for the estimation. For β̂i, this number is given by the denominator

of (3.5), and hence

CL(P) =
d∑
r=1

1

2
log2(

T∑
t=1

∑
i,ci=r

nt,i). (3.6)

Notice that although there are p of the β̂i’s, there are only d distinct values of them, as there

are only d ≤ p clusters around. Therefore the upper limit of the first summation in (3.6) is

d not p.

Now substitute (3.3), (3.4) and (3.6) into (3.2), and replace all the log2(.) with log(.),

(because all the terms have logarithm to the base 2) we have

CL(F) = (p+ 1) log2(d) +
d∑
r=1

1

2
log2(

T∑
t=1

∑
i,ci=r

nt,i). (3.7)

Lastly we calculate the last term CL(Ê |F) of (3.1), which, according to Rissanen (1989a),

is given by the negative log (base 2) of the likelihood of the fitted model. With the Gaus-

sianity assumption xt,i,j ∼ N (βi, σ
2) for all {t, i, j}, the negative log-likelihood (natural

logarithm) is

n

2
log(2π) +

n

2
log(σ2) +

1

2σ2

T∑
t=1

p∑
i=1

nt,i∑
j=1

(xt,i,j − βi)2, (3.8)

where n =
∑T

t=1

∑p
i=1 nt,i is the total number of observations. The MLE β̂i for βi is given

by (3.5), while the MLE for σ2 is

σ̂2 =
1

n

d∑
r=1

SSEr,
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where SSEr =
∑T

t=1

∑
i,ci=r

∑nt,i
j=1(xt,i,j − β̂i)2 is the sum of squared errors of the rth cluster.

Plugging these MLEs β̂i and σ̂2 into (3.8), we obtain the code length of the residuals Ê

CL(Ê |F) =
n

2
log(2π) +

n

2
log(

1

n

d∑
r=1

SSEr) +
n

2
, (3.9)

and from (3.1), (3.7) and (3.9), the overall code length is

CL(“data”) = CL(F) + CL(Ê |F)

=(p+ 1) log(d) +
d∑
r=1

1

2
log(

T∑
t=1

∑
i,ci=r

nt,i) +
n

2
log(2π) +

n

2
log(

1

n

d∑
r=1

SSEr) +
n

2
.

Ignoring constant terms we arrive at the following MDL criterion for the homogeneous case,

and the best fitting model is defined as its minimizer:

(p+ 1) log(d) +
d∑
r=1

1

2
log(

T∑
t=1

∑
i,ci=r

nt,i) +
n

2
log(

1

n

d∑
r=1

SSEr). (3.10)

3.2.2 Heterogeneous Case

This subsection considers the heterogeneous case where the cluster structure and the signal

values are allowed to change at change points. The number M and the locations T =

{t1, t2, ..., tM} of such change points are unknown and need to be estimated, and we will

continue to use MDL. With M change points, the time line is partitioned into M+1 intervals,

where the mth interval is [tm−1, tm) for m = 1, . . . ,M+1. We write the number of clusters in

the mth interval as d(m) and the cluster membership as c(m) = {c(m)
1 , c

(m)
2 , ..., c

(m)
p }; i.e., in the

mth interval the ith node belongs to the c
(m)
i th cluster. We write C = {c(1), c(2), ..., c(M+1)}

and P = {β1,β2, ...,βT}, and hence the model is F = {T , C,P}, which leads to the code

length decomposition:

CL(F) = CL(T ) + CL(C) + CL(P). (3.11)

To encode T , we first need to encode the number of the change points and then the actual

locations of the change points. As there are M change points, the code length is log(M + 1),

where the additional 1 is used to distinguish M = 0 and M = 1. The locations of change

points T can be encoded by using the length of the time intervals (tm − tm−1)’s. Therefore

combining the two we have

CL(T ) = log(M + 1) +
M∑
m=1

log(tm − tm−1). (3.12)
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Once T is encoded, it becomes the homogeneous case for each time interval. Using similar

arguments as before, we have

CL(C) =
M+1∑
m=1

(p+ 1) log(d(m)) (3.13)

and

CL(P) =
M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i). (3.14)

Combining (3.11) to (3.14), we have

CL(F) = log(M + 1) +
M∑
m=1

log(tm − tm−1) +
M+1∑
m=1

(p+ 1) log(d(m))

+
M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i).

(3.15)

Similarly, the code length of the residuals Ê is

CL(Ê |F) =
n

2
log(2π) +

n

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE(m)
r ) +

n

2
, (3.16)

where

SSE(m)
r =

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂t,i)2

with β̂t,i being the MLE of βt,i

β̂t,i =

∑tm−1
s=tm−1

∑
q,c

(m)
q =r

∑ns,q
j=1 xs,q,j∑tm−1

s=tm−1

∑
q,c

(m)
q =r

ns,q
. (3.17)

Now adding (3.15) and (3.16) together and omitting constant terms, the MDL criterion

for the heterogeneous case is

MDL(T , C) = log(M + 1) +
M∑
m=1

log(tm − tm−1) +
M+1∑
m=1

(p+ 1) log(d(m))

+
M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i) +
n

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE(m)
r ).

(3.18)

Note that in the notation of the above MDL criterion, P is dropped from its argument list.

It is because once T and C are specified, P can be uniquely estimated by (3.17). Note also

that when there is no change point, MDL(T , C) reduces to (3.10).
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To sum up, we propose to estimate the change points T and the cluster structures C (as

well as the signal P) as the minimizer of MDL(T , C):

{T̂ , Ĉ} = arg min
T ,C

1

n
MDL(T , C). (3.19)

3.2.3 Theoretical Properties

This subsection establishes the statistical consistency of the MDL solution {T̂ , Ĉ} defined

by (3.19). The proofs of the following results can be found in Section 3.7.1.

We need the following regularity conditions. First, for all N > 0, it is assumed that there

exist an N0 > 0 such that whenever n > N0,

nt,i > N for all 1 ≤ i ≤ p, 1 ≤ t ≤ T. (3.20)

This condition guarantees that the numbers of observations in all node nt,i’s go to infinity

when the total number of observations n goes to infinity. Second, it is assumed that

lim
n→∞

nt,i
n

= γt,i for all 1 ≤ i ≤ p, 1 ≤ t ≤ T, (3.21)

where the γt,i’s are some non-negative constants that sum to one. This condition ensures

that the numbers of observations nt,i’s for the nodes grow at the same linear rate.

We also assume the conditions that were listed in the beginning of Section 3.2 for the

change points and signal. We denote the true model as {T 0, C0}:

T 0 = (t01, t
0
2, ..., t

0
M0) and C0 = {c0(1), c0(2), ..., c0(M+1)},

where c0(m) = {c0(m)
1 , c

0(m)
2 , ..., c

0(m)
p }. We have the following lemma.

Lemma 3.1. Suppose the total number of clusters
∑M+1

m=1 d
(m) is known. Under the model

assumptions and Conditions (3.20) and (3.21), the MDL criterion (3.19) gives

T̂ → T 0 a.s. and Ĉ → C0 a.s.

Lemma 3.1 is based on the assumption that the total number of clusters is known, which

can be unrealistic for many real data problems. This assumption can be relaxed.

Theorem 3.1. Assume the conditions of Lemma 3.1 with the exception that the total number

of clusters
∑M+1

m=1 d
(m) is unknown. The MDL criterion (3.19) gives

T̂ → T 0 a.s. and Ĉ → C0 a.s.
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3.3 Practical Minimization of MDL(T , C)
Even for moderate sizes of p and T , direct minimization of (3.18) is by no means a trivial

task. This section develops a practical procedure to tackle this task. The idea is to first

construct a function that can be used to generate a set of good candidate models relatively

quick, and then select the final model from these candidate models as the one that gives the

smallest value of MDL(T , C). We shall call such a function a candidate model generating

function. The idea is similiar to, in the context of variable selection in linear models, first

apply lasso to quickly generate a set of candidate models on its solution path, and then use a

model selection criterion such as BIC to select the best model from these candidate models.

We need some notation to proceed. Let yt,i be the average of all the observations within

the ith node at time t; i.e., yt,i = x̄t,i = 1
nt,i

∑nt,i
j=1 xt,i,j, and write Yt = (yt,1, yt,2, ..., yt,p)

> for

t = 1, ..., T , and Y = (Y >1 ,Y >2 , . . . ,Y >T )>; hence Y is a vector of length p × T . Let n =

(n1,1, . . . , n1,p, n2,1, . . . n2,p, . . . , nT,1, . . . , nT,p)
> be the vector of the numbers of observations

for the nodes, and β = (β>1 ,β
>
2 , . . . ,β

>
T )> be the vector of the true signal, where βt =

(βt,1, βt,2, ..., βt,p)
> for t = 1, ..., T . Then the goal is to retrieve the underlying signal β from

its noisy version Y

yt,i = βt,i + et,i, et,i
i.i.d.∼ N (0,

σ2

nt,i
)

under the assumptions of temporal and spatial smoothness.

3.3.1 Construction of A Candidate Model Generating Function

The goal of a candidate model generating (CMG) function is to quickly generate a set of

good candidate models with small values of MDL(T , C). Thus for the current problem a

good CMG function should produce models that are both temporally and spatially smooth,

and yet maintain good data fidelity. One naturally way to construct such a function is

to combine three terms together: a penalty term that encourages temporal smoothness, a

second penalty term that encourages spatial smoothness, and lastly a loss term that measure

data fidelity.

We begin with the temporal smoothness assumption, which prefers signals close in time

to have similar values (except at the change points); i.e., βt+1 ≈ βt. This suggests the
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following penalty term

Ω1(β) = λ1

T−1∑
t=1

‖βt+1 − βt‖2, (3.22)

where λ1 is a tuning parameter and ‖.‖2 is the vector l2-norm. This is in similar spirit as the

penalty used in the fused lasso of Tibshirani et al. (2005) and the generalized total variation

denoising method of Bleakley and Vert (2011).

For the spatial smoothness assumption, we borrow the idea from graph-guided-fused-

lasso (Chen et al., 2010; Kim et al., 2009) to construct the penalty term. First, let E be the

set of all connected edges in the graph:

E = {(i, k) : the ith and kth nodes are connected, 1 ≤ i, k ≤ p}.

Recall that the node connectivitiy of our graph is assumed constant over time, so E does

not change over time. Next, define a matrix G in such way that if (i, k) ∈ E, then one row

of G is all zeros except the ith entry is 1 and the kth entry is −1. Note that G is of size

|E|×p, and is not unique as its rows can be permuted, but it will not affect the final results.

Here we suggest using the following penalty term for spatial smoothness:

Ω2(β) = λ2

T∑
t=1

‖Gβt‖1, (3.23)

where λ2 is a tuning parameter and ‖.‖1 is the vector l1-norm.

Lastly we need a data fidelity term and a natural candidate is the loss

l(β|Y ,n) =
T∑
t=1

p∑
i=1

nt,i
2

(yt,i − βt,i)2. (3.24)

Combining (3.22), (3.23) and (3.24), our CMG function is

f(β|Y ,n) = l(β|Y ,n) + Ω1(β) + Ω2(β)

= l(β|Y ,n) + Ω(β), (3.25)

where Ω(β) = Ω1(β) + Ω2(β). Thus, given a pair of (λ1, λ2), one can generate a good

candidate model by minimizing (3.25).
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3.3.2 Generating Candidate Models with the CMG Function

Although the penalty Ω(β) is not smooth, (3.25) can still be approximately minimized in

the following manner. First, using the smoothing proximal gradient method of Chen et al.

(2012), we obtain a smooth approximation of Ω(β) so that its gradient with respect to β

can be derived. Then we apply the fast iterative shrinkage-thresholding algorithm (FISTA)

of Beck and Teboulle (2009) to carry out the minimization. This procedure is summarized

in Algorithm 1, and technical details such as the smooth approximation of Ω(β) are deferred

to Section 3.7.2.

We note that the output from Algorithm 1 does not produce exactly the same value for

βt,i’s that belong to the same time interval and cluster. For example, suppose for a certain

node Algorithm 1 returns β̃ = (1.0, 1.1, 0.9, 2.3, 2.2, 2.3, 2.2) for t = 1, . . . 7, which signifies

there is a change point at t = 4. To circumvent this issue, we conduct a fast scanning

operation that will adjust the values to β̂ = (1.0, 1.0, 1.0, 2.25, 2.25, 2.25, 2.25). Details of

the scanning operation are given in Algorithms 2 and 3.

Thus, by performing the above steps, we can quickly obtain a good candidate model

{T̂ , Ĉ} for a given pair of (λ1, λ2). As an optional step, we can quickly generate more good

candidate models by perturbing {T̂ , Ĉ}, such as removing a change point in T̂ .

Lastly we comment on the choice of (λ1, λ2), for which in practice depends on the scale of

the observations. Specifically, a large T usually requires large values of λ1, while λ2 depends

on the number of edges |E| of the prespecified graph G.

3.3.3 Summary

The minimization for MDL(T , C) defined by (3.18) can be summarized by the following

steps:

1. Given (λ1, λ2), apply Algorithm 1 to minimize (3.25) to obtain β̃.

2. Apply Algorithms 2 and 3 to β̃ to obtain a good candidate model {T̂ , Ĉ}.

3. (Optional) Perturb T̂ to generate more {T̂ , Ĉ}’s.

4. Repeat Steps 1 to 3 with different values of (λ1, λ2) to obtain more {T̂ , Ĉ}’s.
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Algorithm 1: FISTA for minimizing (3.25)

Input: Y , n, C derived by (3.43), (3.44) and (3.45), β[0], Lipschitz constant L

derived by (3.49) or (3.50), D derived by (3.46), desired accuracy ε, λ1, λ2 ;

Initialize: µ = ε
2D

, θ0 = 1 ;

for k = 0, 1, 2,..., until β[k] converges do

Compute α∗[k] based on β[k] by (3.47) and (3.48) ;

∇h(w[k])← n(w[k] −X) +C>α∗[k] ;

β[k+1] ← w[k] − 1
L
∇h(w[k]) ;

θk+1 ← 2
k+3

;

w[k+1] ← β[k+1] + 1−θk
θk
θk+1(β[k+1] − β[k]) ;

end

β̃ = β[k+1];

Output: β̃

5. Calculate the MDL(T , C) values for all {T̂ , Ĉ}’s obtained from Step 4. Take the one

that gives the smallest value as the minimizer of MDL(T , C).

3.4 Simulation Experiments

3.4.1 Setting 1: Regular Grid

In this first experiment the graph structure was a square image of size 8× 8. That is, there

were p = 64 nodes arranged as a 8× 8 two-dimensional grid, and each node was connected

to its 4 neighboring nodes, except for those nodes at the edges and corners of the grid, where

they were connected to, respectively, 3 and 2 neighboring nodes. We set T = 100 and had

change points at t = 25, 50, 60 and 90. The nodes were partitioned into two groups and

for each time segment, all the nodes within the same group share the same true signal βt,i

value. The true signal values are reported in Table 3.1 and they are visually displayed in

Figure 3.1. All the nt,i’s were set to 1.

Gaussian noise with variance σ2 ∈ {0.12, 0.22, 0.32, 0.42} was added to the true signal to

generate the noisy observations xt,i,j, with 100 repetitions for each value of σ2. For each

noisy data set, 25 combined values of λ1 ∈ {0.5, 1, 2, 4, 8, 16} and λ2 ∈ {0.5, 1, 2, 4, 8, 16}
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segment interval cluster sizes values

1 [0, 25) 16, 48 2, 1

2 [25, 50) 16, 48 2.2, 1

3 [50, 60) 26, 38 2.1, 1

4 [60, 90) 26, 38 2.4, 1

5 [90, 100) 35, 29 2.4, 1

Table 3.1: True signal values used for Experimental Setting 1.

were used in Algorithm 1 to obtain the MDL solution.

Figure 3.2 presents the results of this numerical experiment. The histograms show the

locations of all the detected change points for the 100 repetitions. As expected, the larger

the noise variance, the more difficult to detect the change points. This phenomenon is more

obvious for those change points where the changes of the true signal values were small: t = 25

and 35. To be more specific, the only difference in the true signal before and after the change

point at t = 25 was the value for the top-left region. As the noise level increases, it becomes

more difficult to detect this change point. Similar phenomenon was observed for the change

point at t = 60.

Apart from reporting the histograms of the detected change points, we also evaluated

the quality of the signal estimates β̂t,i in terms of mean squared error (MSE):

MSE =
1∑T

t=1

∑p
i=1 nt,i

T∑
t=1

p∑
i=1

nt,i(β̂t,i − βt,i)2.

We report the MSE results in a similar fashion as Wang et al. (2016). First define the

negative signal-to-noise ratio (SnR) as

10 log10(
T∑
t=1

p∑
i=1

σ2

nt,i
/

T∑
t=1

p∑
i=1

(βt,i − β̄)2).

Thus, the negative SnR increases as the noise level increases. Next define the denoised

negative SnR as

10 log10(MSE/
1

Tp

T∑
t=1

p∑
i=1

(βt,i − β̄)2),

and hence the smaller the denoised negative SnR is, the better the estimates βt,i’s are. We

compared the results obtained from the proposed method with their corresponding saturated
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models: here a saturated model was the model with a separate parameter βt,i fitted for each

node. The results are also reported in Figure 3.2. As the noise level increases, the denoised

negative SnRs for both the MDL fitted model and the saturated model increase. Compared

with the saturated models, the denoised negative SnRs for the MDL fitted models are smaller,

even more so for those cases with high noise levels.

Figure 3.1: True (but unknown) signal values for Experimental Setting 1.

3.4.2 Setting 2: Graph based on California Counties

In this second experiment the graph structure was defined by the 58 counties in California.

Each county was a node, and two nodes were connected if the two corresponding counties

share a common border. So there were 58 nodes and 136 edges; see Figure 3.3. We partitioned

the nodes into 4 groups, and the number of time points was T = 60 with change points at

t = 10, 20, 35 and 45. For each time segment, all the nodes within the same group share

the same true signal βt,i value; see Table 3.2 and Figure 3.4. Note that these signal values

were selected so that the overall signal averages were the same for all the time intervals.

Consequently, any univariate change point detection method will fail when it is applied to

the (univariate) time series of combined signal values for all time points, as the important

graph structure information is ignored.
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(a) change points, σ2 = 0.01 (b) change points, σ2 = 0.04 (c) change points, σ2 = 0.09

(d) change points, σ2 = 0.16 (e) negative SnR

Figure 3.2: (a)-(d) Histograms of the detected change points under different noise levels. (f)
Denoised negative SnRs for different noise levels. Recall that a saturated model is a model
with a separate parameter fitted for each node.

segment interval cluster sizes values

1 [0, 10) 10, 17, 12, 19 1, 2, 3, 4

2 [10, 20) 10, 17, 12, 19 1, 3.12, 4, 2

3 [20, 35) 10, 17, 12, 19 2, 3.12, 3.17, 2

4 [35, 45) 10, 17, 12, 19 2, 4, 2, 1.95

5 [45, 50) 10, 17, 12, 19 3, 2.53, 3.17, 2

Table 3.2: True signal values used for Experimental Setting 2.

We tested the proposed method with 6 difference noise variance σ2 ∈ {12, 22, 32, 42, 62, 82}

and 36 combined values of λ1 ∈ {2, 4, 8, 16, 32, 64} and λ2 ∈ {0.5, 1, 2, 4, 8, 16}. As before,

the number of repetitions was 100. The histograms of the deteced change points are given

in Figure 3.5, as well as the denoised negative SnRs. Similar empirical conclusions can be

drawn as before: the larger the noise level, the more difficult to detect the change points.

3.5 Real Data Applications

3.5.1 Violent Crime in Cincinnati, OH

The data set in this subsection concerns with reported crime incidents in Cincinnati, OH. It

contains dates, times, locations and other information of the reported events. We considered
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Figure 3.3: The graph structure defined by the counties in California.

Figure 3.4: True (but unknown) signal values for Experimental Setting 2.

weekly crime rates from December 31, 2018 to December 29, 2019; i.e., T = 52.

Each crime event has a FBI Uniform Crime Reporting code that describes its type. As

similar to Taddy (2010), we used this code to classify each crime event into violent crime

or non-violent crime: a violent crime can be homicide, rape, aggravated assault or robbery,

while all the other types of crimes are non-violent.

The nodes were defined by ZIP Code Tabulation Areas in Cincinnati, and edges were

defined by geographically neighborhoods. There were 31 nodes and 77 edges in the graph;

see Figure 3.6(a). During the t-th week and at the i-th node, the number of observations

nt,i was the total number of reported crime events, while the j-th measurement xt,i,j was 1

if the j-th crime was violent, and 0 otherwise. Thus, the data was in fact binomial and we
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(a) change points, σ2 = 1 (b) change points, σ2 = 4 (c) change points, σ2 = 9

(d) change points, σ2 = 16 (e) change points, σ2 = 36 (f) change points, σ2 = 64

(g) negative SnR

Figure 3.5: (a)-(f) Histograms of the detected change points under different noise levels. (g)
Denoised negative SnRs for different noise levels.

modified the likelihood function in the MDL criterion (3.18) to reflect this.

(a) (b)

Figure 3.6: (a) The graph structure defined by the ZIP Code Tabulation Areas in Cincinnati,
OH. (b) Violent crime rate for each week from 2018-12-31 to 2019-12-29 in Cincinnati, OH.
Vertical lines denote detected change point locations .

Change points were detected at 2019-05-20, 2019-08-05, 2019-09-23 and 2019-09-30. The

weekly overall violent crime rates, together with these 4 change points, are displayed in Fig-
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ure 3.6(b). Ranson (2014) studied the relationships between temperature and different kinds

of crimes. The author concluded that, higher temperatures lead to statistically significant

increases in all types of crimes. However, the rate of increase is approximately constant for

violent crimes, while for non-violent crimes, the rate of increase starts to slow down around

50 °F. Therefore, the first detected change point (late May) signifies the beginning of sum-

mer and hence an increased rate for violent crime. The second detected change point (early

August) was close to the end of the peak travel season which may explain the drop of violent

crime rates. The last two change points together actually suggest that the week in between

was an outlier. In fact, that week included the last weekend before Halloween, and it is

known that violent crime rate (e.g., robbery and sexual assault) increases shortly before or

at Halloween.

3.5.2 Temperatures in Counties in California

The data set is the output of PRISM (parameter-elevation regressions on independent slopes

model), a combination of statistical and human-expert methods for climate mapping (Daly

et al., 1994). It contains different readings such as temperatures and precipitation. In this

study we considered mean annual temperatures from 1960 to 2019 in 58 counties in California.

We collected data at the grids of 0.2×0.2 degrees of longitude/latitude. 1 The graph structure

was defined by the 58 counties in California, in the same manner as in Section 3.4.2; see

Figure 3.3. The proposed method was applied and detected one change point at the year

2012. We plotted the average temperature of the whole California in Figure 3.7, together

with the detected change point. It seems that the mean annual temperatures after the change

points are higher than those before the change point, hence supporting a warming trend in

California (Anderson, 2016).

3.6 Concluding Remarks

This paper proposed a method for simultaneous change point detection and node clustering

for time-evolving graphs. The method is composed of two major components: (i) an MDL

criterion for which the best fitting model is defined as its minimizer, and (ii) a practical

algorithm for finding this minimizer. It is shown that the MDL criterion yields statistically

1Obtained from http://www.prism.oregonstate.edu/explorer/map.php
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Figure 3.7: Mean annual temperatures (°C) of California in 1960-2019. The vertical line
indicates the detected change point at 2012.

consistent estimates, while simulation results suggest that the method also enjoys highly

desirable empirical properties.

Future work includes extending the piecewise constant assumption to piecewise linear or

even quadratic fitting, for accomodating more signal trends. Another possible extension is to

relax the iid noise assumption. For example, different time intervals can have different noise

levels, or the noise can be temporally and/or spatially correlated. One could also allow for

outliers in the observations, or placing different weights on the nodes. It should be relatively

straightforward to derive a tailored MDL criterion for any of these extensions. The major

challenge is then, how to practically minimize the criterion.

3.7 Supplement: Technical Details

3.7.1 Proofs of Theoretical Results

Here we provide the proofs of the theoretical results presented in Section 3.2.3.

3.7.1.1 Proof of Lemma 3.1

Let B be a probability 1 set. For each ω ∈ B, suppose on the contrary T̂ 9 T 0 or Ĉ 9 C0.

As the numbers of time points and nodes are finite, the possible values for T and C are finite.

Therefore, there exists a subsequence {nk} such that T̂ → T ∗ and Ĉ → C∗ for some T ∗ and

C∗ as k increases.

It is convenient to define the set R∗(m, r) that collects all the time and node indices

belonging to the m-th interval and r-th cluster:

R∗(m, r) = {(t, i)|t∗m−1 + 1 ≤ t ≤ t∗m, c
∗(m)
i = r}. (3.26)
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Therefore if during the interval {t∗m−1 +1,≤ t∗m} the ith node belongs to the rth cluster (i.e.,

c
∗(m)
i = r), then its signal estimate β̂

∗(m)
i is given by the sample mean of all the observations

xt,i,j’s such that (t, i) ∈ R∗(m, r). We denote this sample mean as β̂(R∗(m, r)), and we have

β̂
∗(m)
i = β̂(R∗(m, r)) =

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

∑nt,i
j=1 xt,i,j∑t∗m−1

t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i
. (3.27)

To simplify notations, we replace nk by n. For large enough n,

1

n
MDL(T̂ , Ĉ) =

1

n
log(M + 1) +

1

n

M∑
m=1

log(t∗m − t∗m−1) +
1

n

M+1∑
m=1

(p+ 1) log(d(m))

+
1

n

M+1∑
m=1

d(m)∑
r=1

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i) +
1

n

n

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE∗(m)
r )

= cn +
1

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE∗(m)
r ). (3.28)

In the above cn is of order O(log(n)/n) and

SSE∗(m)
r =

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2. (3.29)

As (T ∗, C∗) 6= (T 0, C0), for each R∗(m, r), there are two possible cases, to be examined below.

Case 1

If R∗(m, r) ⊆ R0(s, l), that is to say, R∗(m, r) is totally within a true R0(s, l) =

{(t, i)|t0s−1 + 1 ≤ t ≤ t0s, c
0(s)
i = l}, then ∀(t, i) ∈ R∗(m, r) ⊆ R0(s, l), xt,i,j ∼ N (β

(l)
(s), σ

2) i.i.d.

(β
(l)
(s) denotes the common mean shared by all the nodes in R0(s, l)). Then from (3.27),

β̂
∗(m)
i = β̂(R∗(m, r))→ β

0(l)
(s) a.s.

by strong law of large number. Also, from (3.29)

1

n
SSE∗(m)

r =
1

n

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2 →

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

γt,iσ
2 a.s., (3.30)

where γt,i is defined in (3.20).

Case 2
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If R∗(m, r) ⊆ ∪(s,l)∈SR
0(s, l) and R∗(m, r) ∩ R0(s, l) 6= ∅,∀(s, l) ∈ S, which is that same

as saying R∗(m, r) has nontrivial intersection with more than one true R0(s, l), then

β̂
∗(m)
i = β̂(R∗(m, r)) =

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

∑nt,i
j=1 xt,i,j∑t∗m−1

t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i

=

∑
(s,l)∈S

∑min {t∗m,t∗s}−1
t=max {t∗m−1,t

∗
s−1}

∑
i,c∗i=r,c0i=l

∑nt,i
j=1 xt,i,j∑

(s,l)∈S
∑min {t∗m,t∗s}−1

t=max {t∗m−1,t
∗
s−1}

∑
i,c∗i=r,c0i=l

nt,i

→

∑
(s,l)∈S

∑min {t∗m,t∗s}−1
t=max {t∗m−1,t

∗
s−1}

∑
i,c∗i=r,c0i=l

γt,iβ
0(l)
(s)∑

(s,l)∈S
∑min {t∗m,t∗s}−1

t=max {t∗m−1,t
∗
s−1}

∑
i,c∗i=r,c0i=l

γt,i
a.s.

And

1

n
SSE∗(m)

r =
1

n

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2

=
1

n

∑
(s,l)∈S

min {t∗m,t∗s}−1∑
t=max {t∗m−1,t

∗
s−1}

∑
i,c∗i=r,c0i=l

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2

≥ 1

n

∑
(s,l)∈S

min {t∗m,t∗s}−1∑
t=max {t∗m−1,t

∗
s−1}

∑
i,c∗i=r,c0i=l

nt,i∑
j=1

(xt,i,j − β̂0(s)
(l) )2

→
∑

(s,l)∈S

min {t∗m,t∗s}−1∑
t=max {t∗m−1,t

∗
s−1}

∑
i,c∗i=r,c0i=l

nt,i∑
j=1

γt,iσ
2 a.s. (3.31)

Here the strict inequalities hold for at least one (m, r) because (T ∗, C∗) 6= (T 0, C0) and the

total number of clusters
∑M+1

m=1 d
(m) is known.

Therefore, combining (3.28), (3.30) and (3.31), for large enough n,

1

n
MDL(T̂ , Ĉ) = cn +

1

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE∗(m)
r )

> cn +
1

2
log(σ2)

=
1

n
MDL(T 0, C0)

≥ 1

n
MDL(T̂ , Ĉ),

which is a contradiction. This comes to the conclusion that (T̂ , Ĉ)→ (T 0, C0) a.s. when the

total number of clusters
∑M+1

m=1 d
(m) is known.
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3.7.1.2 Lemma 3.2 and Its Proof

Lemma 3.2. Assume the setting of Lemma 3.1 with the exception that the total number of

clusters
∑M+1

m=1 d
(m) is unknown. If the change points and the cluster structures are estimated

by (3.19), then

1. The number of change points cannot be underestimated; i.e., M̂ ≥M0 for large enough

n.

2. The true change points T 0 are a subset of the estimated T̂ ; i.e., the true change points

can be identified for large enough n.

3. For large enough n and each 1 ≤ m ≤ M̂ with its corresponding s such that ts−1 + 1 ≤

tm−1 + 1 < tm ≤ ts, there exists a true R0(s, l) such that

R̂(m, r) ⊆ R0(s, l)

for any of the fitted R̂(m, r). (Here R̂(m, r) and R0(s, l) are defined in the similar

manner as (3.26).) In other words, the cluster structure cannot be underestimated.

The proof of Lemma 3.2 follows the proof of Lemma 3.1. If Case 2 applies, there will be

a contradiction. This finishes the proof.

3.7.1.3 Lemma 3.3 and Its Proof

Lemma 3.3. For k independent Ûi ∼ N (µ, σ
2

ni
), let Û = 1

n

∑k
i=1 niÛi, where n =

∑k
i=1 ni.

We have
k∑
i=1

ni(Ûi − Û)2 ∼ σ2χ2
k−1.

Proof: Let Vi =
√
niÛi ∼ N (

√
niµ, σ

2) and V = (V1, ..., Vk)
>. Define a orthonormal

matrix A = (a1, ..., ak)
> with a>1 = (

√
n1√
n
, ...,

√
nk√
n

). Therefore, Û = 1√
n
a>1 V ∼ N (µ, σ

2

n
). By

the property of orthonormal matrices, E(a>i V ) = a>i (
√
n1, ...,

√
nk)
> = a>i

√
na1 = 0, for i =

2, ..., k. Hence W = AV ∼ N (µ(
√
n, 0, ..., 0)>, σ2Ik). By the definition of χ2 distribution,∑k

i=2 W
2
i ∼ σ2χ2

k−1 and
∑k

i=1 W
2
i = W>W = (AV )>AV = V >V =

∑k
i=1 V

2
i . Then,

k∑
i=1

ni(Ûi − Û)2 =
k∑
i=1

niÛ
2
i − nÛ2 =

k∑
i=1

V 2
i − (a>1 V )2 =

k∑
i=2

W 2
i ∼ σ2χ2

k−1,

which completes the proof.
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3.7.1.4 Lemma 3.4 and Its Proof

Lemma 3.4. For large enough n, if (T̂ , Ĉ) 6= (T 0, C0), then the difference ∆ between the

penalty terms in MDL(T̂ , Ĉ) and that in MDL(T 0, C0) is positive and of order O(log n).

Proof: Let B be a probability 1 set. For each ω ∈ B, suppose on the contrary T̂ 9 T 0

or Ĉ 9 C0. For large enough n, The penalty term of the MDL for the fitted model is

log(M∗ + 1) +
M∗∑
m=1

log(t∗m − t∗m−1) +
M∗+1∑
m=1

(p+ 1) log(d∗(m))

+
M∗+1∑
m=1

d∗(m)∑
r=1

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i),

(3.32)

and the penalty term of the MDL for the true model is

log(M0 + 1) +
M0∑
m=1

log(t0m − t0m−1) +
M0+1∑
m=1

(p+ 1) log(d0(m))

+
M0+1∑
m=1

d0(m)∑
r=1

1

2
log(

t0m−1∑
t=t0m−1

∑
i,c

0(m)
i =r

nt,i).

(3.33)

Define ∆ as the difference between (3.32) and (3.33).

As M0 ≤M∗ ≤ T , d0(m) ≤ p, ∀m and d∗(m) ≤ p, ∀m, the first part of ∆

[log(M∗ + 1) +
M∗∑
m=1

log(t∗m − t∗m−1) +
M∗+1∑
m=1

(p+ 1) log(d∗(m))]

−[log(M0 + 1) +
M0∑
m=1

log(t0m − t0m−1) +
M0+1∑
m=1

(p+ 1) log(d0(m))]

(3.34)

is finite.

By Lemma 3.2, for large enough n, for each of the fitted R̂(m, r) = R∗(m, r), there must

exist a true R0(s, l), such that R∗(m, r) ⊆ R0(s, l). Without loss of generality, we assume

that there exists a true set R0(s, l) = ∪(m,r)∈SR
∗(m, r), which means that this set is over

segmented. And for all the other true sets, we have R0(s′, l′) = R∗(m′, r′), that is to say, the

fitted model is the same as the true model in all the other sets.
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Therefore, the second part of ∆ can be written in the following format:

M∗+1∑
m=1

d∗(m)∑
r=1

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i)−
M0+1∑
m=1

d0(m)∑
r=1

1

2
log(

t0m−1∑
t=t0m−1

∑
i,c

0(m)
i =r

nt,i)

=
∑

(m,r)∈S

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i)−
1

2
log(

t0s−1∑
t=t0s−1

∑
i,c

0(s)
i =l

nt,i). (3.35)

Here we have ∑
(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i =

t0s−1∑
t=t0s−1

∑
i,c

0(s)
i =l

nt,i. (3.36)

As n is large enough, combining (3.36) with the assumption (3.21), it can be seen that the

second part of ∆ defined by (3.35) is positive and of order O(log(n)). As in ∆, the other

part (3.34) is finite, the second part dominates ∆, which finishes the proof.

3.7.1.5 Proof of Theorem 3.1

By Lemma 3.4, 1
n
∆ is positive and of order O(log(n)/n). The difference between the log-

likelihood terms in 1
n
MDL(T 0, C0)− 1

n
MDL(T̂ , Ĉ) is

1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r ).

By Lemma 3.2, this difference is positive. To prove the theorem, it is sufficient to show that

the difference is of order o(log(n)/n). We begin with calculating

1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r )

=
1

2
log(

∑M0+1
m=1

∑d0(m)

r=1 SSE(m)
r∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r

)

=
1

2
log(1 +

∑M0+1
m=1

∑d0(m)

r=1 SSE(m)
r −

∑M∗+1
m=1

∑d∗(m)

r=1 SSE∗(m)
r∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r

)

≤ 1

2

∑M0+1
m=1

∑d0(m)

r=1 SSE(m)
r −

∑M∗+1
m=1

∑d∗(m)

r=1 SSE∗(m)
r∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r

. (3.37)
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Without loss of generality, we use the same idea in the proof of Lemma 3.4. Let

SSE0
s,l =

t0s−1∑
t=t0s−1

∑
i,c0i=l

nt,i∑
j=1

(xt,i,j − β̂(R0(s, l)))2,

SSE∗m,r =

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r)))2,

where

β̂(R0(s, l)) =

∑t0s−1

t=t0s−1

∑
i,c0i=l

∑nt,i
j=1 xt,i,j∑t0s−1

t=t0s−1

∑
i,c0i=l

nt,i
,

β̂(R∗(m, r)) =

∑t∗m−1
t=t∗m−1

∑
i,c∗i=r

∑nt,i
j=1 xt,i,j∑t∗m−1

t=t∗m−1

∑
i,c∗i=r nt,i

.

(3.38)
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Then the numerator of (3.37),
∑M0+1

m=1

∑d0(m)

r=1 SSE(m)
r −

∑M∗+1
m=1

∑d∗(m)

r=1 SSE∗(m)
r , can be written

as

SSE0
s,l −

∑
(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(xt,i,j − β̂(R0(s, l)))2 −
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r)) + β̂(R∗(m, r))− β̂(R0(s, l)))2

−
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r)))2

+2
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r)))(β̂(R∗(m, r))− β̂(R0(s, l)))

+
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(β̂(R∗(m, r))− β̂(R0(s, l)))2

−
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

SSE∗m,r + 0

+
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(β̂(R∗(m, r))− β̂(R0(s, l)))2 −
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i∑
j=1

(β̂(R∗(m, r))− β̂(R0(s, l)))2

=
∑

(m,r)∈S

(

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i)(β̂(R∗(m, r))− β̂(R0(s, l)))2. (3.39)

By (3.38)

β̂(R∗(m, r)) ∼ N (β
0(s)
(l) ,

σ2∑t∗m−1
t=t∗m−1

∑
i,c∗i=r nt,i

) (3.40)
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are independent for different (m, r) ∈ S. Also

β̂(R0(s, l)) =

∑
(m,r)∈S(

∑t∗m−1
t=t∗m−1

∑
i,c∗i=r nt,i)β̂(R∗(m, r))∑

(m,r)∈S(
∑t∗m−1

t=t∗m−1

∑
i,c∗i=r nt,i)

. (3.41)

By (3.40), (3.41) and Lemma 3.3, we have

∑
(m,r)∈S

(

t∗m−1∑
t=t∗m−1

∑
i,c∗i=r

nt,i)(β̂(R∗(m, r))− β̂(R0(s, l)))2 ∼ σ2χ2
|S|−1.

As |S| ≤ Tp, we can conclude that (3.39) is of order O(1).

In addition, the denominator of (3.37),
∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r , satisfies

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r → σ2 a.s.

Furthermore, we can show that the numerator and the denominator of (3.37) are indepen-

dent. That is to say,

0 <
1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r ) = o(log(n)/n). (3.42)

Then for large enough n, combining Lemma 3.4 and (3.42), we have

1

n
MDL(T 0, C0)− 1

n
MDL(T̂ , Ĉ) =− 1

n
∆ +

1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )

− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r )

<0,

which is a contradiction. This finishes the proof.

3.7.2 Details of Smoothing Proximal Gradient Descent

This part provides details required for the minimization of (3.25).

3.7.2.1 An Alternative Expression for Ω1(·) in (3.22)

Let α(1) = (α>1 ,α
>
2 , ...,α

>
T−1)> and Q1 = {α(1)|‖αt‖2 ≤ 1, t = 1, ..., T − 1}. Notice that

for any vector v, ‖v‖2 = max
‖α‖2≤1

α>v, where α is a vector that has the same dimension as v.
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Then Ω1(β) can be written as

Ω1(β) = λ1

T−1∑
t=1

‖βt+1 − βt‖2

= λ

T−1∑
t=1

max
‖αt‖2≤1

α>t (βt+1 − βt)

= λ max
α(1)∈Q1

T−1∑
t=1

α>t (βt+1 − βt)

= max
α(1)∈Q1

α>(1)C1β,

where the matrix C1 ∈ R(T−1)p×Tp is defined as

C1 = λ1


−I I

−I I
. . . . . .

−I I

 (3.43)

with I = Ip being the p-dimensional identity matrix.

3.7.2.2 An Alternative Expression for Ω2(·) in (3.23)

Let α(2) ∈ RT |E| and Q2 = {α|‖α‖∞ ≤ 1}, and notice that ‖v‖1 = max
‖α‖∞≤1

α>v. Then the

penalty Ω2(β) can be written as

Ω2(β) = λ2

T∑
t=1

‖Gβt‖1 = ‖C2β‖1 = max
α(2)∈Q2

α>(2)C2β,

where

C2 = λ2


G

. . .

G

 . (3.44)

3.7.2.3 A Smooth Approximation of Ω(·) = Ω1(·) + Ω2(·)

Let

C = (C>1 ,C
>
2 )> (3.45)

and α = (α>(1),α
>
(2))
>. The penalty term Ω(β) can be written as

Ω(β) = max
α(1)∈Q1

α>(1)C1β + max
α(2)∈Q2

α>(2)C2β = max
α∈Q

α>Cβ,
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where Q = {α = (α>(1),α
>
(2))
>|α(1) ∈ Q1 and α(2) ∈ Q2}.

By Nesterov (2005), The smooth approximation of Ω(β) can be constructed as

gµ(β) = max
α∈Q

(α>Cβ − µd(α)),

where µ is a positive smoothness parameter and d(α) = 1
2
‖α‖2

2. Therefore, the original

penalty term Ω(β) can be viewed as g0(β).

Let D = max
α∈Q

d(α), then by Nesterov (2005),

g0(β)− µD ≤ gµ(β) ≤ g0(β),

which means that gµ(β) is an approximation of g0(β) with a maximum gap of µD. Chen

et al. (2012) suggested that µ = ε
2D

achieves the best convergence rate for the given desired

accuracy ε. For the current problem

D = max
α∈Q

d(α) = max
α(1)∈Q1

1

2
‖α(1)‖2

2 + max
α(2)∈Q2

1

2
‖α(2)‖2

2 =
1

2
(T − 1) +

1

2
T |E|. (3.46)

Also, by Theorem 1 in Chen et al. (2012), for µ > 0, gµ(β) is convex and continuously-

differentiable with respect to β. And the gradient is

∇gµ(β) = C>α∗,

where α∗ = arg max
α∈Q

α>Cβ − µd(α). And ∇gµ(β) is Lipschitz continuous with Lipschitz

constant Lµ = 1
µ
‖C‖2, where ‖.‖ is the matrix spectral norm. (‖C‖ ≡ max

‖v‖2≤1
‖Cv‖2).

As α∗ = ((α∗(1))
>, (α∗(2))

>)>, by Chen et al. (2012), we have

α∗(1) = (α∗(1),1, ...,α
∗
(1),(T−1))

>

α∗(1),t = S1(
λ1

µ
(βt+1 − βt)), t = 1, . . . , T − 1,

(3.47)

where S1 is the projection operator that projects a vector onto l2 unit ball:

S1(u) =

 u
‖u‖2 ‖u‖2 ≥ 1,

u ‖u‖2 < 1.

In addition,

α∗(2) = (α∗(2),1, ...,α
∗
(2),T )>

α∗(2),t = S2(
λ2

µ
Gβt), t = 1, . . . , T,

(3.48)
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where S2 is the projection operator defined as

S2(x) =


x x ∈ [−1, 1]

−1 x < −1

1 x > 1.

And for any vector u, the projection S2(u) is defined as applying S2 element-wise. So the

operator can be viewed as the projection operator that projects a vector onto l∞ unit ball.

3.7.2.4 Smoothing Proximal Gradient Descent

By replacing the penalty term Ω(β) with gµ(β), we obtain the following optimization problem

min
β

h(β) ≡ l(β|X,n) + gµ(β).

The gradient of h(β) is

∇h(β) = n(β −X) +C>α∗,

which is Lipschitz continuous with the Lipschitz constant

L = nmax + Lµ = nmax +
1

µ
‖C‖2, (3.49)

where nmax is the largest element of vector n.

3.7.2.5 Computation of the Lipschiz Constant

To use the smoothing proximal gradient descent algorithm, one needs to compute the Lipschiz

constant L (3.49). However, it is difficulty to calculate the spectral norm ‖C‖ when the

dimension of C is high. Therefore, following Chen et al. (2012), we replace it with an upper

bound. We begin by calculating

‖C‖2 =

∥∥∥∥∥∥
C1

C2

∥∥∥∥∥∥
2

= max
‖v‖2≤1

∥∥∥∥∥∥
C1v

C2v

∥∥∥∥∥∥
2

2

= max
‖v‖2≤1

‖C1v‖2
2 + ‖C2v‖2

2

≤ max
‖v‖2≤1

‖C1v‖2
2 + max

‖v‖2≤1
‖C2v‖2

2.

Let v =
(
v>1 v>2 . . . v>T

)>
where vt = (vt,1, vt,2, ..., vt,p)

>, t = 1, ..., T . Then for the
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first term max
‖v‖2≤1

‖C1v‖2
2,

‖C1v‖2
2 = λ2

1

T−1∑
t=1

‖vt+1 − vt‖2
2 = λ2

1

T−1∑
t=1

(‖vt+1‖2
2 − 2vt+1 · vt + ‖vt‖2

2)

≤ λ2
1

T−1∑
t=1

2(‖vt+1‖2
2 + ‖vt‖2

2)

≤ λ2
1

T∑
t=1

4‖vt‖2
2 = 4λ2

1‖v‖2
2.

Therefore, max
‖v‖2≤1

‖C1v‖2
2 ≤ 4λ2

1. For the second term max
‖v‖2≤1

‖C2v‖2
2,

‖C2v‖2
2 = λ2

2

T∑
t=1

‖Gvt‖2
2 ≤ λ2

2

T∑
t=1

d2
1‖vt‖2

2 = λ2
2d

2
1‖v‖2

2,

where d1 is the largest (non-negative) singular value of G, or d1 = ‖G‖. So max
‖v‖2≤1

‖C2v‖2
2 =

λ2
2d

2
1.

Finally we have

L = nmax +
1

µ
‖C‖2 ≤ nmax +

1

µ
(4λ2

1 + λ2
2‖G‖2). (3.50)

3.7.3 Processing Output from Algorithm 1

As mentioned in Section 3.3.2, the output from Algorithm 1 does not produce exactly the

same signal values βt,i’s for nodes belonging to the same time interval and cluster. To circum-

vent this issue, we apply Algorithm 2 to the output from Algorithm 1. Briefly, Algorithm 2

compares the fitted signal values (from Algorithm 1) between any two time points with a

pre-set threshold to determine if a change point exists, and if yes, sets all the relevant fitted

signal values to the same value. It employs Algorithm 3 recursively to compare connected

nodes, in a depth-first manner. Nodes with very similar fitted signal values are assigned to

the same cluster.
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Algorithm 2: To convert output from Algorithm 1 into a final fitted model

Input: fitted coefficients β̃, threshold ε, edges of the graph E, tolerance γ ;

Initialize: T̂ ← ∅, Ĉ ← ∅;

c1 ← γ
√
p(2ε)2;

for t = 1,..,T-1 do

if ‖β̃t+1 − β̃t‖ > c1 then

Add t to T̂ ;

end

end

for m = 1, ..., |T̂ |+ 1 do

tm ← mth element in T̂ , (t|T̂ |+1 ← T + 1);

tm−1 ← (m− 1)th element in T̂ , (t0 ← 1);

c2 ← γ
√

(tk − tk−1)(2ε)2;

l← (−1,−1, ...,−1) ∈ Rp;

c← 0;

for i = 1,...,p do

if li = −1 then

apply Algorithm 3 with i, β̃, c2,E, l, c, (tm−1, tm);

c← c+ 1;

end

end

Add l to Ĉ;
end

Output: fitted change points T̂ , set of fitted membership vectors Ĉ

74



Algorithm 3: Use a depth-first search strategy to compare connected nodes, and

nodes with similar fitted signal values to the coefficients are labelled the same.

Input: current index i, fitted coefficients β̃, threshold c2, edges of the graph E,

current membership vector l,, current label c, time interval (tm−1, tm);

li ← c;

β̃(tm−1,tm),i ← (β̃tm−1,i, β̃tm−1+1,i, ..., β̃tm−1,i)
>;

β̃(tm−1,tm),j ← (β̃tm−1,j, β̃tm−1+1,j, ..., β̃tm−1,j)
>;

for j=1,...,p do

if (i, j) ∈ E and li = −1 and ‖β̃(tm−1,tm),i − β̃(tm−1,tm),j‖ < c2 then

apply Algorithm 3 with j, β̃, c2,E, l, c, (tm−1, tm);

end

end

Output: updated membership vector l
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Chapter 4

Statistical Consistency for Change

Point Detection and Community

Estimation in Time-Evolving

Dynamic Networks

Suppose a time sequence of networks are observed. It is known that the probabilistic be-

haviors of the networks do not change over time, except at a few time points. These time

points are usually called change points, whose number and locations are unknown. This pa-

per proposes a method for automatically estimating such change points, and the community

structures of the networks. The proposed method invokes the minimum description length

principle to derive a model selection criterion, where the best estimates are defined as its

minimizer. It is shown that this selection criterion yields consistent estimates for the change

points as well as the community structures. For practical minimization of the selection

criterion, a bottom-up search algorithm that combines the EM-Algorithm with variational

approximation is developed. The promising empirical properties of the proposed method are

illustrated via a sequence of numerical experiments and applications to some real datasets.

To the best of the authors’ knowledge, this method is one of the earliest that provides

consistent estimates in the context of change point detection for time-evolving networks.
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4.1 Introduction

Modeling relational information among objects can often be successfully achieved through

a network representation, where nodes and edges of the network together form a succinct

summary of the relationships among the objects. Depending whether the relationship be-

tween any two objects is two-way or one-way, networks can be classified into undirected and

directed networks. Also, a network is a weighted network if there exists strength (or some

other attribute) for each connection, and unweighted otherwise. In this paper, we focus on

the undirected unweighted networks.

Various probabilistic models for networks have been proposed; a good survey is given by

Goldenberg et al. (2010). A well-studied model is the stochastic block model (SBM) (e.g.,

Bickel and Chen, 2009; Choi et al., 2012; Bickel et al., 2013). For most of these models, it is

assumed that what can be observed is a single network.

In many practical situations, what one observes is a collection of networks that share a

common set of nodes. This is referred as multi-graph, which can be further divided into two

sub-categories. One such common sub-category is the so-called multi-layer networks. Here,

the networks capture different types of relationships, such as the networks of connections

through email, messaging, and/or social media among a set of users. Another sub-category

is time-evolving dynamic networks; e.g., a sequence of time-stamped social networks of in-

teractions among people.

For community detection in multi-layer networks, Holland et al. (1983) extended the stan-

dard SBM to the multi-layer setting, and call the resulting model the multi-layer stochastic

block model (MLSBM). Han et al. (2015) proved the consistency of the maximum likelihood

estimates (MLEs) in this model when the number of layers grows. Later, Paul and Chen

(2016) proposed a modified model called the restricted multi-layer stochastic block model

(RMLSBM). In RMLSBM, contraints are imposed on the link probabilities, and the MLEs

for an RMLSBM become regularized estimates. Compared with Han et al. (2015), this regu-

larized approach improves the performance of MLEs when either the number of communities

grows fast or the network layers are sparse on average. In addition, Stanley et al. (2016) pro-

posed the strata multi-layer stochastic block model (sMLSBM). This model agglomerates

sets of layers into structurally similar groups called “strata”, and simultaneously clusters
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nodes into communities.

For time evolving dynamic networks, a common goal is change point detection; i.e., to

locate the time points at which community structures change. Several methods have been

proposed. The Multi-step method of Aynaud and Guillaume (2011) uses an agglomerative

hierarchical clustering approach for change point detection. At every iteration, the most

similar segments (i.e., time intervals) are merged together. The similarity between segments

is quantified by an average modularity, and the community assignments are estimated by

maximizing the average modularity with a modified Louvain algorithm. However, as the

output of this method is a hierarchical tree indicating where and when the merges occur, it

does not provide an estimate for the number of change points. Therefore, it is suitable only

if the number of change points is known or pre-specified.

The SCOUT method of Hulovatyy and Milenković (2016) is another method for detecting

change points and community assignments for time evolving dynamic networks. It works if

the number of time intervals is pre-specified by the user, and it is also capable of choosing

the number of change points automatically by invoking the Akaike Information Criterion

(AIC) or the Bayesian Information Criterion (BIC). To practically locate the change point

locations, three search strategies are combined: exhaustive search, top-down search, and

bottom-up search. Add three clustering methods are used for community detection: sum

graph, Average-Louvain, and consensus matrix.

More recently, Cheung et al. (2020) developed a method that explicitly recasts the net-

work change point detection problem into a statistical model selection problem, and uses

the minimum description length (MDL) principle (Rissanen, 1989a, 2007b) to construct a

selection criterion that automatically determines the number and locations of the change

points, as well as the number and structures of the communities. In practice, a top-down

search strategy is used to search for change points while a modified Louvain algorithm is

used to estimate the communities.

While these change point detection methods perform well in practice when their assump-

tions are satisfied by the data, their theoretical properties are largely unknown. The main

contribution of this paper is the development of a new method for simultaneous change point

detection and community estimation that is shown to possess desirable theoretical properties.

78



More specifically, this method produces statistically consistent estimates for the number and

locations of the change points, as well as the number and structures for the communities.

The proposed method also uses the MDL principle, but there are some major differences

when comparing to the method of Cheung et al. (2020): (i) it assumes a different model

so the resulting selection criterion is different, (ii) it uses a different algorithm to estimate

the communities, and (iii) it enjoys statistical consistency (while it is shown below that the

method of Cheung et al. (2020) is not consistent). To the best of our knowledge, this paper

is one of the earliest to provide a statistically consistent method for the current problem.

The rest of this paper is organized as follows. Section 4.2 formulates the precise problem

that this paper addresses and presents the model for the problem. Section 4.3 uses the MDL

principle to derive the a selection criterion for the problem and establishes its consistency

properties. Sections 4.4 develops a practical algorithm for optimizing the MDL selection

criterion. Simulation results are reported in Section 4.5 while the applications to several

real datasets are provided in Section 4.6. Lastly, remarks and discussions are offered in

Section 4.7 and technical details are delayed to Section 4.8.

4.2 Problem Statement and Modeling

This section defines the problem that this paper considers, and presents the statistical model

that we use. We first begin with the homogeneous case; i.e., when there is no change point.

4.2.1 Homogeneous Case

Consider a sequence of graphs that can be denoted by a sequence of binary adjacency matrices

{At|t = 1, . . . , T} of the same fixed N ×N size. Here At,ij = 1 means that node i and node

j are connected at time t, while At,ij = 0 means otherwise. It is assumed that the networks

are undirected so that At,ij = At,ji,∀i, j, t. It is also assumed that there is no self-loop

in the networks so At,ii = 0,∀i, t. The edges are formed following a Bernoulli distribution

independently, with probabilities depending on the nodes and the layer. That is,

At,ij ∼ Bernoulli(Ωt,ij) ∀i 6= j.

This subsection assumes that Ωt,ij does not change over time, and models it with a SBM.

That is, the nodes are partitioned into Q blocks (Q unknown) and the linkage probabilities
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are modeled as follows. Let c = {c1, c2, ..., cN} be the community assignment indicator

vector, with ci ∈ {1, 2, ..., Q}; i.e., ci = q means that node i is in block q. The probabilities

depend only on the community assignment:

Ωt,ij|(ci = q, cj = l) = πql. (4.1)

The total number of free parameters is Q(Q + 1)/2. The parameter set is denoted by

γ = {πql, 1 ≤ q ≤ l ≤ Q}. We use ψ = {c,γ} to denote the whole SBM.

4.2.2 Heterogeneous Case

This subsection considers the heterogeneous case where the community assignments and the

parameters are allowed to change at change points. Suppose these T networks can be parti-

tioned into M + 1 homogeneous intervals with M distinct change points T = {t1, t2, ..., tM}.

Set t0 = 0 and tM+1 = T . Given change points T , the observed networks within the

same interval follow the homogeneous model presented in the previous subsection. Let

B
(m)
t−tm−1

= At, tm−1 +1 ≤ t ≤ tm, and B(m) = {B(m)
t |1 ≤ t ≤ T (m)}, where T (m) = tm−tm−1,

then given the community assignment vector c(m) and parameters γ(m) for interval m,

B
(m)
t,ij |(c(m),γ(m)) ∼ Bernoulli(Ω

(m)
t,ij ) and Ω

(m)
t,ij |(c

(m)
i = q, c

(m)
j = l) = π

(m)
ql (4.2)

if 1 ≤ t ≤ T (m). Here c
(m)
i and c

(m)
j are community assignments of node i and node j at the

mth interval. Therefore, given the change points T , each interval is modeled by a community

assignment vector c(m) and parameters γ(m).

The precise problem that this paper addresses is to, given model (4.2), estimate T , c(m)

and γ(m) for all m.

Here we mention the model settings for other two change point detection methods with

which we are going to compare with. The model of SCOUT (Hulovatyy and Milenković,

2016) is actually the same as the proposed heterogeneous model. However, the model of the

method proposed by Cheung et al. (2020) allows the link probabilities to vary over time,

that is to say,

Ω
(m)
t,ij |(c

(m)
i = q, c

(m)
j = l) = π

(m)
t,ql .

It means that within the same interval, the model is actually MLSBM by Han et al. (2015).

Therefore, the proposed method and SCOUT define change points on which community
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assignments and/or link probabilities change, while Cheung et al. (2020) defines change

points as the time points on which community assignments change.

4.3 Model Selection using MDL

Once the change points and the community assignments are given, link probabilities can

be easily estimated. However, estimating the change points as well as the community as-

signments is not a trivial task. This section uses the minimum description length (MDL)

principle as the model selection criterion.

The MDL principal defines the “best” model as the one that achieves the best lossless

compression of the data. That is to say, based on the best model, the data can be stored in

the hardware memory with the shortest code length. Here we use the “two-part” version of

MDL, where the first part is the code length of encoding the model, and the second part is

the code length of encoding the residuals that can not be explained by the model.

We use CL(z) to denote the code length of z, then the code length CL(“data”) of the

observed data can be decomposed into two parts, a model F plus the corresponding residuals

Ê :

CL(“data”) = CL(F) + CL(Ê |F),

and the “best” model is the one that minimizes CL(“data”).

4.3.1 Homogeneous Case

Now we assume that there is no change point, that is to say, these T observed network follow

the proposed homogeneous model 4.1. In this case, F = {ψ}. So CL(F) can be written as

CL(F) = CL(ψ).

For a given class assignment c, let nq(c) = #{i|ci = q} be the number of nodes in class

q. Then the number of possible pairs in each block can be denoted as

Nql(c) =

 nqnl q 6= l,

nq(nq − 1)/2 q = l.
(4.3)

Notice the dependency on c is dropped when there is no ambiguity.
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The explicit form of the MDL in homogeneous case is

MDLhomo(ψ;A) =(N + 1) log(Q) +
∑
q≤l

1

2
log2(Nql(c)T )

−
T∑
t=1

∑
i<j

At,ij log(Ω̂t,ij) + (1−At,ij) log(1− Ω̂t,ij),

(4.4)

where Q = |c| denotes the number of communities, and Ω̂t,ij is the MLE given the community

assignment. The details of the derivation of the MDL can be found in Section 4.8.1.1

4.3.2 Heterogeneous Case

In this case, the number of change points M and the locations T = {t1, t2, ..., tM} of these

change points are unknown and need to be estimated based on MDL.

The overall MDL is

MDL(T ,ψ) = log(M + 1) +
M+1∑
m=1

log(tm − tm−1) +
M+1∑
m=1

MDLhomo(ψ
(m);B(m)). (4.5)

The details of the derivation can be found in Section 4.8.1.2. We propose to estimate (T ,ψ)

as the minimizer of (4.5).

4.3.3 Statistical Consistency

This subsection establishes the statistical consistency of the MDL based result {T̂ , ψ̂} defined

by (4.5) when T →∞. The proofs of the following results can be found in Section 4.8.2.

Let λm = tm/T,∀m = 0, 1, ...M + 1 be the normalized change points and let λ =

(λ1, ..., λM) be the normalized change point location vector. The asymptotic results are

based on λm’s being fixed when T increases. The main result is given below:

Theorem 4.1. Let {At|t = 1, ..., T} be the observed adjacency matrices specified by param-

eters (M o,λo,ψo). The estimator are defined by

(M̂T , λ̂T , ψ̂T ) = arg min
M,λ∈AMελ ,ψ∈M

1

T
MDL(M,λ,ψ)

Then we have

M̂T
a.s.−−→M o

λ̂T
a.s.−−→ λo

ψ̂T
a.s.−−→ ψo
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The details of the proof can be found in Section 4.8.2. Besides, the consistency of other

change point detection methods for time-evolving dynamic networks are briefly discussed in

Section 4.8.3.

4.4 Practical Minimization

This section develops a practical algorithm for minimizing (4.5). The algorithm consists

of two components: a bottom-up search procedure for identifying change points and a EM-

Algorithm paired with variational approximation to estimate model parameters between any

two adjacent change points. We first describe the EM-Algorithm.

4.4.1 EM-Algorithm with Variational Approximation

To obtain an algorithm of estimating parameters and community assignment, we follow the

framework by Daudin et al. (2008), and view our model as a mixture model with latent dis-

crete indicator variables Z. Suppose the number of communities Q is known, and Zi follows

a multinomial distribution Multi(1, (α1, α2, ..., αQ)). Let Zi,q’s be the indicator variables

that denote whether node i belongs to the qth community. Therefore, we have

Zi,q ∈ {0, 1} i = 1, ..., N, q = 1, ..., Q

Q∑
q=1

Zi,q = 1 i = 1, ..., N

The complete data log-likelihood can be derived as

l(A,Z) =l(Z) + l(A|Z)

=
∑
i

∑
q

Zi,q log(αq)

+
1

2

∑
i 6=j

∑
q,l

∑
t

Zi,qZj,l[At,ij log(Ωt,ij) + (1− At,ij) log(1− Ωt,ij)]

=
∑
i

∑
q

Zi,q log(αq)

+
1

2

∑
i 6=j

∑
q,l

∑
t

Zi,qZj,l[At,ij log(πql) + (1− At,ij) log(1− πql)]

The observed data log-likelihood l(A) can be calculated by summing l(A,Z) over all

possible values of Z. However, it is not tractable even for moderate N (Paul and Chen,
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2016). Therefore, EM algorithm will be used and unobserved Z will be treated as missing

values. The problem is that in EM algorithm, it is necessary to calculate P (Z|A), which is

also intractable in this case.

We follow the argument of Daudin et al. (2008) and apply the variational approximation

that aims to maximize a lower bound of l(A), which is denoted as

J(RA) = l(A)−KL(RA(.), P (.|A)).

Here the second term denotes the Kullback-Liebler (KL) divergence between the true con-

ditional distribution of P (Z|A) and its variational approximation RA(.). J(RA) is equal to

l(A) if and only if P (Z|A) = RA(Z).

As P (Z|A) is not tractable, we will look for its best approximation RA(.) from a certain

class of distributions. Specifically, we constrain that RA(.) has the form of the product of

multinomial distributions. That is to say,

RA(Z) =
∏
i

∏
q

τ
Zi,q
i,q .

For this RA(.), the objective function is

J(RA) =
∑
Z

RA(Z) log(P (A,Z))−
∑
Z

RA(Z) log(RA(Z))

=
∑
i

∑
q

τi,q log(αq) +
1

2

∑
i 6=j

∑
q,l

∑
t

τi,qτj,l[At,ij log(πql) + (1− At,ij) log(1− πql)]

−
∑
i

∑
q

τi,q log(τi,q)

(4.6)

In the E-step, given the model parameters α and π, we need to update the variational

parameter τ by maximizing J(RA), under the constraint that
∑

q τi,q = 1,∀i. It can be

derived that the following fixed point relation satisfies.

τ̂i,q ∝ αqexp(
∑
j 6=i

∑
l

∑
t

τ̂j,l[At,ij log(πql) + (1− At,ij) log(1− πql)]). i = 1, ..., N, q = 1, ..., Q

(4.7)

In the M-step, we need to maximize J(RA) with respect to the model parameters α and

π. α̂ has the following closed form solution.

α̂q =
1

N

N∑
i=1

τi,q. q = 1, ..., Q (4.8)
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And the close form for π̂ql’s are given by

π̂ql =

∑
i 6=j
∑

t τq,iτj,lAt,ij∑
i 6=j
∑

t τq,iτj,l
. q = 1, ..., Q, l = 1, ..., Q (4.9)

The algorithm based on the methodology is summarized in Algorithm 4. Notice that this

algorithm assumes that the number of communities is known. Therefore it is necessary to

apply this algorithm for different numbers of communities, and choose the one based on the

MDL principle (4.4) for the homogeneous case.

4.4.2 Search Strategy

We use backward elimination or bottom-up search to explore the space for possible change

points sets. We start with M change points. At each subsequent iteration, two exist-

ing adjacent time intervals are merged together in a locally optimal way (with respect to

MDL (4.5)), until there is only a single time interval left, in another word, no change point.

The homogeneous model for each time interval can be estimated by Algorithm 4. The over-

all computational time complexity for backward elimination is O(M). See Hulovatyy and

Milenković (2016) Supplementary 2 for more details.

4.5 Simulation Experiments

We evaluate the performance of the proposed method on simulated datasets. We compare

the proposed method with two other methods. One is by Cheung et al. (2020), and the

other one is the SCOUT algorithm (with BIC as the criterion) by Hulovatyy and Milenković

(2016). We choose these two methods for comparison because they outperform many other

methods, as reported in Hulovatyy and Milenković (2016) and Cheung et al. (2020). Like the

proposed method, these two methods are able to automatically select the number of change

points.

Apart from comparing the performance of change point detection, we also want to eval-

uate the result of community detection. Normalized mutual information (NMI) can be used

as a criterion to evaluate the result of clustering for one single network. NMI ranges from 0

to 1, where 1 means the fitted community assignment and the true assignment are perfectly

matched. Specifically, for true community assignment c and fitted community assignment
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ĉ, the NMI is defined as

NMI(ĉ, c) =
I(ĉ, c)

[H(ĉ) +H(c)]/2

We denote

Vq = {1 ≤ i ≤ N |ci = q}

to be the set of nodes that belong to community q. And

V̂l = {1 ≤ i ≤ N |ĉi = l}

to be the set of nodes that are estimated to be in community l. Then H(.) (entropy) and

I(.) (mutual information) are defined as

H(c) = −
∑
q

P (Vq) log(P (Vq))

= −
∑
q

|Vq|
N

log(
|Vq|
N

)

I(ĉ, c) =
∑
q

∑
l

P (Vq ∩ V̂l) log(
P (Vq ∩ V̂l)

P (Vq) ∩ P (V̂l)
)

=
∑
q

∑
l

|Vq ∩ V̂l|
N

log(
N |Vq ∩ V̂l|
|Vq||V̂l|

)

For a sequence of networks, two different metrics are developed based on NMI. The first

metric is defined as the overall average NMI of all the networks.

NMIavg =
1

T

∑
t

NMI(ĉt, ct)

where ct = c(m) when tm−1 + 1 ≤ t ≤ tm and ĉt = ĉ(k) when t̂k−1 + 1 ≤ t ≤ t̂k. However, if

a fitted interval contains two or more true intervals, the fitted community assignment is not

comparable with these true assignments. Therefore, we only consider the time points such

that the fitted interval is totally within a true interval.

T ∗ = {t ∈ [t̂k−1 + 1, t̂k],∀k|∃m, s.t.[t̂k−1 + 1, t̂k] ⊆ [tm−1 + 1, tm]}

And the adjusted average NMI is defined as

NMIadj =
1

|T ∗|
∑
t∈T ∗

NMI(ĉt, ct)
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4.5.1 Setting 1

The number of node is set to be N = 300. And T = 30 for this and the following settings.

For each time interval, the community assignment for each node is drawn from a multinomial

distribution with given community size ratio. The link probabilities tell the probabilities of

the existence of edges in each network within the interval, and the networks are independent.

Here PW denotes the probability for an edge within a community, and PB denotes that for

an edge between two communities. See Table 4.1 for more details.

Figure 4.1 show the histograms of the estimated change point locations for Settings 1, as

well as the numbers of fitted change points.

segment interval community size ratio link probabilities

1 [0, 5) 1/3, 1/3, 1/3 PW = 0.9, PB = 0.1

2 [5, 13) 1 PW = 0.7, PB = 0.2

3 [13, 16) 1/4, 1/4, 1/4, 1/4 PW = 0.85, PB = 0.15

4 [16, 22) 2/3, 1/3 PW = 0.84, PB = 0.2

5 [22, 28) 3/10, 2/10, 2/10, 2/10, 1/10 PW = 0.8, PB = 0.15

6 [28, 30) 4/10, 3/10, 3/10 PW = 0.9, PB = 0.1

Table 4.1: Specification for Setting 1.

4.5.2 Setting 2

In this setting, the number of node is N = 300. Here we allow that within a time interval,

the link probabilities can be different among networks. For all networks, PW and PB follow

Uniform distributions. See Table 4.2 for more details of the setting. See Figure 4.2 for

histograms about the fitted change points.
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Figure 4.1: (a)-(c) Histograms of the frequency of detected change points with setting 1 over
100 trails, with red dotted vertical lines representing true change points. (d)-(f) Histograms
of the frequency of the number of detected change points over 100 trails, with red dotted
vertical lines representing true number of change points.

segment interval community size ratio link probabilities

1 [0, 12) 1/3, 1/3, 1/3 PW ∼ U(0.7, 0.95), PB ∼ U(0.05, 0.3)

2 [12, 21) 2/3, 1/3 PW ∼ U(0.7, 0.95), PB ∼ U(0.05, 0.3)

3 [21, 22) 3/4, 1/4 PW ∼ U(0.7, 0.95), PB ∼ U(0.05, 0.3)

4 [22, 27) 4/10, 3/10, 3/10 PW ∼ U(0.7, 0.95), PB ∼ U(0.05, 0.3)

5 [27, 30) 3/10, 3/10, 2/10, 2/10 PW ∼ U(0.7, 0.95), PB ∼ U(0.05, 0.3)

Table 4.2: Specification for Setting 2.

4.5.3 Setting 3

In this setting, the number of node is N = 400. Compared with the previous setting, we

decrease the variation of link probabilities. See Table 4.3 for more details of the setting. See

Figure 4.3 for histograms about the fitted change points.
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Figure 4.2: (a)-(c) Histograms of the frequency of detected change points with setting 2 over
100 trails, with red dotted vertical lines representing true change points. (d)-(f) Histograms
of the frequency of the number of detected change points over 100 trails, with red dotted
vertical lines representing true number of change points.

segment interval community size ratio link probabilities

1 [0, 8) 1/3, 1/3, 1/3 PW ∼ U(0.35, 0.4), PB ∼ U(0.05, 0.1)

2 [8, 11) 3/4, 1/4 PW ∼ U(0.35, 0.4), PB ∼ U(0.05, 0.1)

3 [11, 16) 1/2, 1/2 PW ∼ U(0.35, 0.4), PB ∼ U(0.05, 0.1)

4 [16, 21) 3/4, 1/4 PW ∼ U(0.35, 0.4), PB ∼ U(0.05, 0.1)

5 [21, 30) 4/10, 3/10, 3/10 PW ∼ U(0.35, 0.4), PB ∼ U(0.05, 0.1)

Table 4.3: Specification for Setting 3.

4.5.4 Setting 4

We set the number of node to be N = 400. The link probabilities are modified such that the

separations between communities are less clear. See Table 4.4 for more details of the setting.

See Figure 4.4 for histograms about the fitted change points.
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Figure 4.3: (a)-(c) Histograms of the frequency of detected change points with setting 3 over
100 trails, with red dotted vertical lines representing true change points. (d)-(f) Histograms
of the frequency of the number of detected change points over 100 trails, with red dotted
vertical lines representing true number of change points.

segment interval community size ratio link probabilities

1 [0, 5) 1/3, 1/3, 1/3 PW = 0.7, PB = 0.6

2 [5, 9) 3/4, 1/4 PW = 0.2, PB = 0.1

3 [9, 16) 1/4, 1/4, 1/4, 1/4 PW = 0.5, PB = 0.3

4 [16, 22) 1/2, 1/2 PW = 0.2, PB = 0.1

5 [22, 25) 1/5, 1/5, 1/5, 1/5, 1/5 PW = 0.4, PB = 0.15

6 [25, 30) 1/2, 1/2 PW = 0.7, PB = 0.55

Table 4.4: Specification for Setting 4.

4.5.5 Setting 5

The number of node is N = 400. Compared with the previous setting, we add some variations

into the link probabilities. See Table 4.5 for more details of the setting. See Figure 4.5 for
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Figure 4.4: (a)-(c) Histograms of the frequency of detected change points with setting 4 over
100 trails, with red dotted vertical lines representing true change points. (d)-(f) Histograms
of the frequency of the number of detected change points over 100 trails, with red dotted
vertical lines representing true number of change points.

histograms about the fitted change points.

segment interval community size ratio link probabilities

1 [0, 6) 1/4, 1/4, 1/4, 1/4 PW ∼ U(0.2, 0.3), PB ∼ U(0.05, 0.1)

2 [6, 12) 1/2, 1/2 PW ∼ U(0.45, 0.55), PB ∼ U(0.25, 0.35)

3 [12, 18) 2/4, 1/4, 1/4 PW ∼ U(0.15, 0.25), PB ∼ U(0.05, 0.1)

4 [18, 24) 2/3, 1/3 PW ∼ U(0.4, 0.5), PB ∼ U(0.2, 0.3)

5 [24, 30) 1/4, 1/4, 1/4, 1/4 PW ∼ U(0.15, 0.25), PB ∼ U(0.05, 0.1)

Table 4.5: Specification for Setting 5.
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Figure 4.5: (a)-(c) Histograms of the frequency of detected change points with setting 5 over
100 trails, with red dotted vertical lines representing true change points. (d)-(f) Histograms
of the frequency of the number of detected change points over 100 trails, with red dotted
vertical lines representing true number of change points.

4.5.6 Setting 6

The number of node is N = 400. This time the link probabilities are deterministic functions

of time t. Specifically,

PW = 0.8expit(−1 + 5expit(0.1t− 2))

PB = 0.8expit(−2.5 + 5expit(0.1t− 2))

where

expit(x) =
ex

1 + ex
.

See Table 4.6 for more details of the setting. See Figure 4.6 for histograms about the

fitted change points.
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segment interval community size ratio

1 [0, 6) 1/4, 1/4, 1/4, 1/4

2 [6, 12) 1/2, 1/2

3 [12, 18) 2/4, 1/4, 1/4

4 [18, 24) 2/3, 1/3

5 [24, 30) 1/4, 1/4, 1/4, 1/4

Table 4.6: Specification for Setting 6.
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Figure 4.6: (a)-(c) Histograms of the frequency of detected change points with setting 8 over
100 trails, with red dotted vertical lines representing true change points. (d)-(f) Histograms
of the frequency of the number of detected change points over 100 trails, with red dotted
vertical lines representing true number of change points.

4.5.7 Summary

Notice that both the proposed method and the SCOUT algorithm assume that the link

probabilities keep the same for networks within the same interval, while the method proposed

by Cheung et al. (2020) allows the link probabilities to vary over time, which means within
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the same interval, the model is actually MLSBM by Han et al. (2015). Therefore, the

definitions of change point have some subtle differences.

One can find that our proposed method outperforms the rest two methods when the

simulated datasets are generated from the setting that the link probabilities keep the same

within an interval. (Setting 1, 4) When the variations of the link probabilities are limited

(Setting 3,5,6), the proposed method performs better than the SCOUT algorithm as it has

much less false positive (fake change points). Compared with Cheung et al. (2020), the

proposed method is able to detect all the true change points with acceptable false positive,

while the method by Cheung et al. (2020) tends to miss the true change points. While when

the variations of the link probabilities are quite large (Setting 2), the method by Cheung

et al. (2020) performs better than the rest methods because its assumptions are concordant

to the setting.

In terms of the performance of community detection, based on Table 4.7, one can find

that the performed method outperforms the rest two methods.

Settings average NMI adjusted average NMI

1 0.998 0.996 0.733 0.998 0.996 0.733

2 1.000 0.999 1.000 1.000 1.000 1.000

3 1.000 0.494 1.000 1.000 0.504 1.000

4 0.999 0.551 0.980 0.999 0.809 0.980

5 0.993 0.193 0.965 0.993 0.299 0.965

6 1.000 0.583 1.000 1.000 0.552 1.000

Table 4.7: The average NMI and adjusted average NMI for all the settings. The first column
denote the settings. The columns 2-4 show the average NMI for the proposed method, the
method by Cheung et al. (2020), and the SCOUT. The columns 5-7 present the adjusted
average NMI for the proposed method, the method by Cheung et al. (2020), and the SCOUT.

4.6 Applications

We compare the three methods on these real datasets. For some of the datasets, the ground

truths of the change points are available. In that case, we use precision, recall and F1 score

to evaluate the performances for different methods.
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4.6.1 Enron Email Network

This dataset contains email communication of about 150 employees of the Enron corporation

from May 1999 to June 2002. 1 The nodes correspond to employees, and there is an edge

between two nodes if one employee sent at least one email to another. After the data

cleaning process based on the strategy in Zhou et al. (2007), we apply the proposed method

on the monthly snapshots. The ground truth of change points can be found as a list of

company-related events in Peel and Clauset (2015).

Method Precision Recall F1 Score

Proposed Method 1 0.174 0.296

Cheung et al. (2020) 0 0 0

SCOUT 0 0 0

Table 4.8: Result for Enron.

The method by Cheung et al. (2020) and SCOUT fail to detect any change point, while

the proposed method is able to detect some true change points.

4.6.2 AMD Hope

This dataset contains information about time-location of 748 attendees of The Last HOPE

conference in 2008. 2 There is an edge between two attendees if they were at the same

location at that snapshot (every 15 minutes.) The ground truth of change points that

correspond to the talks and social events is available. 3

Method Precision Recall F1 Score

Proposed Method 0.191 0.971 0.319

Cheung et al. (2020) 0 0 0

SCOUT 0.3 0.088 0.136

Table 4.9: Result for AMD Hope.

1The cleaned version was obtained from https://data.world/brianray/enron-email-dataset, and
the original dataset can be downloaded from www.cs.cmu.edu/~enron/

2The information of the conference can be found in https://vii.hope.net/, and the dataset is available
on https://crawdad.org/hope/amd/20080807/

3The schedule of the conference can be found in https://vii.hope.net/Schedule-FullPage.pdf
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The method by Cheung et al. (2020) detects no change point. The number of change

points detected by SCOUT is much less than the true number, while the proposed method

has many false positive cases.

4.6.3 Reality Mining Network

This dataset contains information about proximity inferred from repeated Bluetooth scans

among university students and faculty during 2004-2005 academic year (Eagle et al., 2009).

4 Weekly snapshots are used for analysis. The ground truth change points can be found in

Peel and Clauset (2015) as a list of events from the academic calendar.

Method Precision Recall F1 Score

Proposed Method 0.417 0.333 0.370

Cheung et al. (2020) 0.333 0.067 0.111

SCOUT 0.667 0.133 0.222

Table 4.10: Result for Reality Mining.

The proposed method has lower precision than SCOUT, but it has the best recall. Based

on the F1 score, the proposed method performed best among all these three methods.

4.7 Conclusion

In this paper, we proposed a method for simultaneous change point detection and com-

munity assignment detection for time-evolving dynamic networks. We developed an MDL

criterion for model selection, and developed a practical algorithm for finding this minimizer.

It is shown that the MDL criterion yields statistically consistent estimates, and simulation

experiments suggest that the method also performs well in practice.

For the future work, one possible extension is to relax the constant assumption of link

probabilities. By allowing link probabilities to vary over time, the model will be able to

accommodate more kinds of linkage trends. The main challenge is to verify the statistical

properties of the relaxed model.

4The dataset was downloaded from http://realitycommons.media.mit.edu/realitymining4.html
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4.8 Supplement: Technical Details

4.8.1 Derivation of MDL

4.8.1.1 Homogeneous Case

When there is no change point, these T observed network follow the proposed homogeneous

model (4.1). In this case, F = {ψ}. So CL(F) can be written as

CL(F) = CL(ψ).

The parameter set ψ is composed of the community assignments, as well as the param-

eters that determine the link probabilities for each homogeneous time interval. That is to

say,

CL(ψ) = CL(c) + CL(γ|c).

According to Rissanen (1989a), it takes approximately log(I) bits to encode an integer I

with upper bound unknown, and approximately log(Iu) bits with a known upper bound Iu.

To partition the node set of size N into non-overlapping communities, we need

CL(c) = log2(Q) +N log2(Q),

where the first term encodes the number of communities and the second term encodes the

community assignment for each node. Here Q = |c| denotes the number of communities.

The code length of encoding a maximum likelihood estimate of a parameter computed

from n observation is shown to be 1
2

log2(n) (Rissanen, 1989a). In this case,

CL(γ|c) =
∑
q≤l

1

2
log2(Nql(c)T )

.

Now combining the previous parts, we have

CL(F) = (N + 1) log2(Q) +
∑
q≤l

1

2
log2(Nql(c)T )

Finally, we calculate the last term CL(Ê |F), which is given by the negative log (base 2)

of the likelihood of the fitted model (Rissanen, 1989a). With the assumption that given the

model F , At,ij follows a Bernoulli distribution,

CL(Ê |F) = −
T∑
t=1

∑
i<j

At,ij log2(Ω̂t,ij) + (1−At,ij) log2(1− Ω̂t,ij),
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where Ω̂t,ij is determined by equation (4.1) given F .

The overall code length is

CL(“data”) =CL(F) + CL(Ê |F)

=(N + 1) log2(Q) +
∑
q≤l

1

2
log2(Nql(c)T )

−
T∑
t=1

∑
i<j

At,ij log2(Ω̂t,ij) + (1−At,ij) log2(1− Ω̂t,ij)

Because all the terms have logarithm to the base 2, we can replace all of the log2’s with

log’s, which gives the MDL in homogeneous case (4.4).

4.8.1.2 Heterogeneous Case

To encode change points T , one need to first encode the number of the change points and

then the actual locations of them. To encode M , the number of change points, the code

length is log(M + 1), where the additional 1 is used to distinguish M = 0 and M = 1. The

locations of change points τ can be encoded by using the length of each of the time intervals.

Therefore combining these two parts we have

CL(T ) = log2(M + 1) +
M+1∑
m=1

log2(tm − tm−1).

Once T is encoded, for each time interval, it becomes the homogeneous case. Using

similar arguments as before, we can derive the overall MDL (4.5).

4.8.2 Statistical Consistency

For a given class assignment c, let

E
(m)
t,ql (c(m)) = {

∑
c
(m)
i =q,c

(m)
j =l

B
(m)
t,ij q 6= l∑

c
(m)
i =q,c

(m)
j =l

B
(m)
t,ij /2 q = l

(4.10)

be the number of observed edges in a block in the mth interval.

For each 1 ≤ t ≤ Tm, the log-likelihood function for community assignment vector c(m)

and parameters π(m) is
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lm((c(m),π(m));B
(m)
t ) =

∑
i<j

B
(m)
t,ij log(Ω

(m)

t,c
(m)
i c

(m)
j

) + (1−B(m)
t,ij ) log(1− Ω

(m)

t,c
(m)
i c

(m)
j

)

=
∑
p≤q

E
(m)
t,ql (c(m)) log(π

(m)
ql ) + (Nql(c

(m))− E(m)
t,ql (c(m))) log(1− π(m)

ql )

Notice that 1 ≤ p ≤ q ≤ |c(m)|, where |c(m)| denotes the number of communities in the mth

interval.

Define ψm = (c(m),π(m)) to be the parameter set for the mth interval, and M to be the

class of models ψm can take value from. Then the log-likelihood for the mth interval can be

written as

L
(m)
T (ψm;B(m)) =

Tm∑
t=1

lm((c(m),π(m));B
(m)
t )

Denote λ = (λ1, ..., λM) as the normalized change point location vector, and ψ =

(ψ1, ..., ψM+1) to be the parameter vector. Then vector (M,λ,ψ) can specify a model for

this sequence of networks. The MDL is derived to be

MDL(M,λ,ψ) = log(M + 1) +
M+1∑
m=1

log([Tλm]− [Tλm−1]) +
m+1∑
k=1

(N + 1) log(|c(m)|)

+
M+1∑
m=1

∑
p≤q

1

2
log(([Tλm]− [Tλm−1])Nql(c

(m)))−
M+1∑
m=1

L
(m)
T (ψm;B(m))

In order to make sure that the change points are identifiable, we assume that there exists

a ελ > 0 such that min1≤m≤M+1 |λm − λm−1| > ελ. Therefore, the number of change points

is bounded by M ≤Mu = [1/ελ] + 1. And there exists a constraint AMελ of λ where

AMελ = {λ ∈ (0, 1)M |0 < λ1 < ... < λM < 1, λm − λm−1 > ελ,∀1 ≤ m ≤M + 1}

Then the estimation of the model based on MDL is given by

(M̂T , λ̂T , ψ̂T ) = arg min
M≤Mu,λ∈AMελ ,ψ∈M

1

T
MDL(M,λ,ψ)

Here λ̂T = (λ̂1, ..., λ̂M̂) and ψ̂T = (ψ̂1, ..., ψ̂M̂+1), where ψ̂m = (ĉ(m), π̂
(m)
T ). And π̂

(m)
T is

defined as
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π̂
(m)
T = arg max

π(m)∈Θm(ĉ(m))
L

(m)
T ((ĉ(m),π(m)); B̂(m))

with B̂(m) = {At|[T λ̂m−1] ≤ t < [T λ̂m]} denotes the estimated mth interval of the sequence

of graphs, and Θm(ĉ(m)) is the parameter space of π(m) given ĉ(m).

We further define the log-likelihood formed by a portion of the mth interval by

L
(m)
T (ψm, λd, λu;B

(m)) =

[Tmλu]−1∑
t=[Tmλd]

lm((c(m),π(m));B
(m)
t )

where 0 ≤ λd < λu ≤ 1 and λu − λd > ελ.

We denote

sup
λd,λu

:= sup
0≤λd<λu≤1,λu−λd>ελ

to simplify the notation.

In this setting, an extension need to be made such that λd and λu can be slightly outside

[0, 1]. It means that the mth estimated interval could cover a part of the observations that

belong to the (m − 1)th and (m + 1)th true intervals. Based on the formula (3.4) in Davis

and Yau (2013), for a real-value function fT (λd, λu) on R2,

sup
λd,λu

fT (λd, λu)
a.s.−−→ 0 (4.11)

is used to denote

sup
−hT<λd<λu<1+rT ,λu−λd>ελ

fT (λd, λu)
a.s.−−→ 0

for any pre-specified positive-valued sequences hT and rT , which cover to 0 as T →∞.

The following assumptions on class link probabilities πo(m), 1 ≤ m ≤ (M + 1) make sure

the quality of the community estimation.

Assumption 4.1.

C0 := inf
m,q,l

(π
o(m)
ql , 1− πo(m)

ql ) > 0 (4.12)

Assumption 4.2. Let

σ(x) := x log(x) + (1− x) log(1− x) (4.13)

then

δ := inf
m,q,l

max
r
σ(πo(m)

qr ) + σ(π
o(m)
lr )− 2σ(

π
o(m)
qr + π

o(m)
lr

2
) > 0 (4.14)
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Based on the assumptions and the format of the log-likelihood function, the following

propositions can be derived.

Proposition 4.1 (v). For m = 1, ...,M + 1 and any fixed c(m), there exists a ε > 0 such

that,

sup
π(m)∈Θm(c(m))

E|lm((c(m),π(m));B
(m)
1 )|v+ε <∞

sup
π(m)∈Θm(c(m))

E|l′m((c(m),π(m));B
(m)
1 )|v+ε <∞

sup
π(m)∈Θm(c(m))

E|l′′m((c(m),π(m));B
(m)
1 )| <∞

(4.15)

This proposition holds for v = 1, 2, 4 due to the compactness of parameter space and

bounded E
(m)
t,pq (c(m)).

Proposition 4.2. For m = 1, ...,M + 1 and any fixed c(m),

sup
π(m)∈Θm(c(m))

| 1

T (λm − λm−1)
L

(m)
T ((c(m),π(m));B(m))− Lm((c(m),π(m)))| a.s.−−→ 0

sup
π(m)∈Θm(c(m))

| 1

T (λm − λm−1)
L
′(m)
T ((c(m),π(m));B(m))− L′m((c(m),π(m)))| a.s.−−→ 0

sup
π(m)∈Θm(c(m))

| 1

T (λm − λm−1)
L
′′(m)
T ((c(m),π(m));B(m))− L′′m((c(m),π(m)))| a.s.−−→ 0

(4.16)

where

Lm((c(m),π(m))) := E(lm((c(m),π(m));B
(m)
1 ))

L′m((c(m),π(m))) := E(l′m((c(m),π(m));B
(m)
1 ))

L′′m((c(m),π(m))) := E(l′′m((c(m),π(m));B
(m)
1 ))

(4.17)

The proof is trivial given the assumptions.

The estimated locations of change points are used to define the likelihood in practice.

Therefore, the two ends of the mth interval might contain observations from the (m− 1)th

and (m+1)th true intervals, though the estimated change points are close to the true change

points. It is necessary to control the effect at the two ends of the fitted interval.
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Proposition 4.3 (w). For m = 1, ...,M + 1 and any fixed ψ and any sequence of integers

{g(T )}T≥1 that satisfies g(T ) > cTw for some c > 0 when T is large enough, then

1

g(T )

T∑
t=T−g(T )+1

lm(ψ;B
(m)
t ))

a.s.−−→ E(lm(ψ;B
(m)
t )))

1

g(T )

T∑
t=T−g(T )+1

l′m(ψ;B
(m)
t ))

a.s.−−→ E(l′m(ψ;B
(m)
t )))

(4.18)

Based on the Lemma 1 in Davis and Yau (2013), Proposition 4.3 holds when Proposition

4.1(2) holds and the Assumption 4* in Davis and Yau (2013) is satisfied. And Assumption

4* is satisfied because an independent process, like the current setting, must be mixing.

It is necessary to discuss the identifiability of models in M. We can define cb a bigger

model than cs if cbi = cbj leads to csi = csj . Equivalently, there exists a function g : cbi → csi .

Proposition 4.4. For the mth interval, the true model ψom ∈ M satisfies the condition

ψom = arg maxψ∈ME(lm(ψ;B
(m)
t ))). Also, ψom is uniquely identifiable, which means that

if there exists a π∗ such that lm((co,πo);B
(m)
t ) = lm((co,π∗);B

(m)
t ) almost everywhere for

B
(m)
t , then πo = π∗. And suppose there exists another model ψbm = (cb,πb) such that

lm(ψbm;B
(m)
t ) = lm(ψom;B

(m)
t ) almost everywhere, then cb must be a bigger model than co,

i.e. there exists g : cbi → coi . And ψom and ψbm satisfies π
b(m)
ql = π

o(m)
g(q)g(l).

Proof: To lighten notations, we skip some (m)’s when there is no ambiguity in the proof.

Let the underlying true model be ψo = (co,πo). Define

π̄ql(c) :=
1

Nql(c)

∑
i 6=j,ci=q,cj=l

πocoi ,coj

For a special case, we have π̄(co) = πo.

Let π∗ be another link probability with c as the aommunity assignment. Then,

E(lm((c,π∗);B
(m)
t )) = E(

∑
i<j

B
(m)
t,ij log(π∗ci,cj) + (1−B(m)

t,ij ) log(1− π∗ci,cj))

=
∑
q≤l

∑
i 6=j,ci=q,cj=l

πocoi ,coj log(π∗ci,cj) +
∑

i 6=j,ci=q,cj=l

(1− πocoi ,coj ) log(1− π∗ci,cj)

=
∑
q≤l

Nql(c)[π̄ql(c) log(π∗ql) + (1− π̄ql(c)) log(1− π∗ql)]
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Similarly,

E(lm((c, π̄(c));B
(m)
t )) =

∑
q≤l

Nql(c)[π̄ql(c) log(π̄ql(c)) + (1− π̄ql(c)) log(1− π̄ql(c))]

Then

E(lm((c, π̄(c));B
(m)
t ))− E(lm((c,π∗);B

(m)
t )) =

∑
q≤l

Nql(c)[π̄ql(c) log(
π̄ql(c)

π∗ql
)

+ (1− π̄ql(c)) log(
1− π̄ql(c)

1− π∗ql
)]

=
∑
q≤l

Nql(c)DKL(π̄ql(c)||π∗ql)

≥0

(4.19)

Here DKL(π̄ql(c)||π∗ql) denotes the Kullback–Leibler divergence of a Bernoulli(π̄ql(c))

distribution from a Bernoulli(π∗ql) one.

And based on Lemma 1 in Han et al. (2015), the following result holds when a label

assignment c is not equal to co or it is not a bigger model than co.

E(lm((co, π̄(co));B
(m)
t ))− E(lm((c, π̄(c));B

(m)
t )) ≥ 1

2
δmin

q
nq(c

o) (4.20)

where nq(c
o) denotes the number of nodes in community q under label co. And

δ = min
q,l

max
r
σ(πoqr) + σ(πolr)− 2σ(

πoqr + πolr
2

) (4.21)

here

σ(x) := x log(x) + (1− x) log(1− x)

Finally, the following result can be derived

E(lm((co,πo);B
(m)
t ))− E(lm((c,π);B

(m)
t )) ≥ 1

2
δmin

q
nq(c

o) (4.22)

when the label assignment c is not a bigger model than co. This finishes the proof.
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Lemma 4.1. For any fixed c(m),

sup
λd,λu

sup
π(m)∈Θk(c(m))

| 1

T (λm − λm−1)
L

(m)
T ((c(m),π(m)), λd, λu;B

(m))

− (λu − λd)Lm((c(m),π(m)))| a.s.−−→ 0

sup
λd,λu

sup
π(m)∈Θk(c(m))

| 1

T (λm − λm−1)
L
′(m)
T ((c(m),π(m)), λd, λu;B

(m))

− (λu − λd)L′m((c(m),π(m)))| a.s.−−→ 0

sup
λd,λu

sup
π(m)∈Θk(c(m))

| 1

T (λm − λm−1)
L
′′(m)
T ((c(m),π(m)), λd, λu;B

(m))

− (λu − λd)L′′m((c(m),π(m)))| a.s.−−→ 0

(4.23)

See Proposition 1 and 2 in Davis and Yau (2013) for the proof.

Lemma 4.2. Suppose the true parameters for interval k is ψo(m) = (co(m),πo(m)). And

suppose a community assignment c(m) is specified for estimation. Let

π̂T = π̂
(m)
T (λd, λu) := arg max

π(m)∈Θk(c(m))
L

(m)
T ((c(m),π(m)), λd, λu;B

(m))

π∗(m) := arg max
π(m)∈Θk(c(m))

Lm((c(m),π(m)))

Then

sup
λd,λu

| 1

T (λm − λm−1)
L

(m)
T ((c(m), π̂T ), λd, λu;B

(m))−(λu−λd)Lm((c(m),π∗(m)))| a.s.−−→ 0 (4.24)

where the supremum is defined in (4.11). And if c(m) = co(m), we further have

sup
λd,λu

|π̂(m)
T (λd, λu)− πo(m)| a.s.−−→ 0 (4.25)

If c(m) is a bigger model than co(m), which means there exist a function g : c
(m)
i →

c
o(m)
i ,then we have

sup
λd,λu

|π̂(m)
T,ql(λd, λu)− π

o(m)
g(q)g(l)|

a.s.−−→ 0 ∀q, l (4.26)
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Proof:

(λu − λd)(Lm((c(m),π∗(m)))− Lm((c(m), π̂T )))

≤ sup
λd,λu

|(λu − λd)Lm((c(m),π∗(m)))− 1

T (λm − λm−1)
L

(m)
T ((c(m),π∗(m)), λd, λu;B

(m))

+
1

T (λm − λm−1)
L

(m)
T ((c(m), π̂T ), λd, λu;B

(m))− (λu − λd)Lm((c(m), π̂T ))|

≤2 sup
λd,λu

sup
π(m)∈Θk(c(m))

| 1

T (λm − λm−1)
L

(m)
T ((c(m), π̂T ), λd, λu;B

(m))

− (λu − λd)Lm((c(m),π(m)))|
a.s.−−→0

(4.27)

The first inequity is obtained by the definition of maximum likelihood estimator, and the

last convergence comes from the previous proposition. As π∗(m) maximizes Lm((c(m),π(m)))

and λu − λd > 0, we have

|Lm((c(m),π∗(m)))− Lm((c(m), π̂T ))| a.s.−−→ 0 (4.28)

Combining (4.27), (4.28) and Proposition 4.1(1), (4.24) holds. If c(m) = co(m), by Propo-

sition 4.4, Lm((c(m),π(m))) has a unique maximizer at πo(m), so (4.25) holds. If c(m) is a

bigger model than co(m), by Proposition 4.4, (4.26) holds. This finishes the proof.

Now we give a preliminary result of the convergence when the number of change points

is known.

Theorem 4.2. Let {At|t = 1, ..., T} be the observed adjacency matrices specified by param-

eters (M o,λo,ψo). And suppose the number of change points M o is known. The change

points and parameters are estimated by

(λ̂T , ψ̂T ) = arg min
λ∈AMελ ,ψ∈M

1

T
MDL(M o,λ,ψ)

Then λ̂T
a.s.−−→ λo and for each interval, the estimated ĉ(m) must be a bigger model than the

true community assignment.

The idea of the proof can be found in Theorem 1 in Davis and Yau (2013). One can

complete the proof by verifying the assumptions and propositions we mentioned.
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Corollary 4.1. Under the conditions of Theorem 4.2, if the number of change- points is

unknown and is estimated from the data , then

1. The number of change points cannot be underestimated. That is to say, M̂ ≥ M o

almost surely when T is large enough.

2. When M̂ > M o, λo must be a subset of the limit of λ̂T for large enough T .

3. In each fitted interval, the community assignment must be equal or be a bigger model

that the corresponding true community assignment.

Similarly, one just need to check the requirements for Corollary 1 in Davis and Yau (2013)

to finish the proof.

Theorem 4.3. Let λo = (λo1, λ
o
2, ..., λ

o
Mo) be the true change points. And (M̂, λ̂T , ψ̂T ) is the

MDL-based result. Then ∀m = 1, 2, ...,M o, there exists a λ̂tm ∈ λ̂T where 1 ≤ tm ≤ M̂ such

that

|λ̂tm − λom| = o(T−
1
2 ) a.s.

This theorem can be verified by checking the requirements in Theorem 2 in Davis and

Yau (2013).

Lemma 4.3. Suppose the true community assignment vector co(m) is specified for the mth

interval, then

π̂
(m)
T (λ̂m−1, λ̂m)− πo(m) = O(

√
log log(T )

T
) a.s.

When the specific community assignment c(m) is bigger than co(m), which means there exist

a function g : c
(m)
i → c

o(m)
i , then we have

π̂
(m)
T,ql(λ̂m−1, λ̂m)− πo(m)

g(q)g(l) = O(

√
log log(T )

T
) a.s.

One can follow the proof of Lemma 2 in Davis and Yau (2013) for the proof of Lemma 4.3

Finally we come to the main result. By following the proof of Theorem 3 in Davis and

Yau (2013), given Theorem 4.2, Theorem 4.3 and Lemma 4.3, the proof of Theorem 4.1 can

be derived.
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4.8.3 Discussion on consistency of other methods

The model setting of SCOUT (Hulovatyy and Milenković, 2016) is the same as the proposed

method. By similar arguments, one can show that SCOUT based on BIC is consistent. The

main idea is that the consistency depends on the order of the penalty term, instead of the

particular format. However, it is interesting to note that the proposed method gives superior

empirical performance, suggesting that in addition to the order of the penalty, the exact form

of the selection criterion plays an important role in practical performance.

However, the model setting of Cheung et al. (2020) is different as the link probabilities

can vary over time. Based on the results of Han et al. (2015), suppose the change points

are known, the community assignment based on MLE is consistent. However, as the penalty

term is of order O(T ), it grows too fast to ensure consistency. Therefore, the MDL based

estimates in Cheung et al. (2020) can not be consistent.
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Algorithm 4: Variational EM Algorithm

Input: smax, kmax, τ̂
(0), α̂(0), π̂(0);

Initialize: k = 0;

while k < kmax and convergence criterion on α and π are not met do

τ̂ (0) = τ̂ (k), s = 0 ;

while s < smax and convergence criterion on τ are not met do

for i = 1,2,..., N do

for q = 1,2,...,Q do

τ̂
(s+1)
i,q =

α̂
(k)
q exp(

∑
i 6=j
∑

l

∑
t τ̂

(s)
j,l [At,ij log(π̂

(k)
q,l ) + (1− At,ij) log(1− π̂(k)

q,l )]);

end

end

s = s+ 1;

end

for i=1,2,...,N do

denom =
∑Q

q=1 τ̂
(s)
i,q ;

for q=1,...,Q do

τ̂
(k+1)
i,q = τ̂

(s)
i,q /denom;

end

end

for q=1,...,Q do

α̂
(k+1)
q = 1

N

∑N
i=1 τ̂

(k+1)
i,q ;

for l=1,...,Q do

π̂
(k+1)
ql =

∑
i 6=j

∑
t τ̂

(k+1)
q,i τ̂

(k+1)
j,l At,ij∑

i6=j
∑
t τ̂

(k+1)
q,i τ̂

(k+1)
j,l

end

end

k = k + 1;

end

Output: τ̃ = τ̂ (k), α̃ = α̂(k), π̃ = π̂(k)
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Chapter 5

Concluding Remarks

In this thesis three different change point detection problems have been studied. They are

concerned with

• time series of astronomical images,

• sequences of structured signals, and

• time-evolving dynamic networks.

A unified approached has been adopted to solve these problems. First, for each of these

problems, a statistical change point model was put forward to model the data. Then the

minimum description length principle was applied to derive a consistent model selection

criterion for choosing the change points. Lastly, a practical algorithm was developed to solve

the minimization problem induce by the model selection criterion.

We believe that substantial contributions have been made to the field of change point

detection by this thesis.
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