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ABSTRACT
Background: Systemic inflammation persists in chronic HIV infection and is associated with 
increased rates of non-AIDS events such as cardiovascular and liver disease. Increased gut perme-
ability and systemic exposure to microbial products are key drivers of this inflammation. Se-
rum-derived bovine immunoglobulin/protein isolate (SBI) supports gut healing in other condi-
tions such as inflammatory bowel disease.

Methods: In this randomized, double-blind study, participants receiving suppressive antiretro-
viral therapy (ART) with chronic diarrhea received placebo or SBI at 2.5 g BID or 5 g BID for 
4 weeks, followed by a 20-week placebo-free extension phase with SBI at either 2.5 or 5 g BID. 
Intestinal fatty acid binding protein (I-FABP), zonulin, flagellin, lipopolysaccharide (LPS) and 
LPS-binding protein, and inflammatory markers were measured by ELISA or multiplex assays. 
Non-parametric tests were used for analysis.

Results: One hundred three participants completed the study. By week 24 SBI significantly de-
creased circulating levels of I-FABP (-0.35 ng/μL, P=0.002) and zonulin (-4.90 ng/μL, P=0.003), 
suggesting improvement in gut damage, and interleukin-6 (IL-6) (-0.40 pg/μL, P=0.002), reflect-
ing improvement in systemic inflammation. In participants with the lowest quartile of CD4+ 
T-cell counts at baseline (189-418 cells/μL), CD4+ T-cell counts increased significantly (26 cells/
μL; P=0.002).

Conclusions: Oral SBI may decrease inflammation and warrants further exploration as a poten-
tial strategy to improve gut integrity and decrease systemic inflammation among persons receiv-
ing prolonged suppressive ART.

Keywords: HIV infection; CD4 T cell; Serum bovine immunoglobulin protein; Interleukin; In-
flammation; Intestine; I-FABP

Clinical Trial Registry Number (Clinicaltrials.gov Identifier): NCT01828593

INTRODUCTION
Human immunodeficiency virus (HIV) infection is characterized by profound depletion of CD4+ 
T cells systemically and in the gastrointestinal (GI) tract, compromised mucosal barrier function, 
translocation of microbial products, and chronic inflammation [1]. Suppressive antiretroviral 
therapy (ART) decreases but does not normalize inflammatory biomarkers [2, 3]. Consequently, 
diseases associated with increased inflammation are more common in people with HIV, including 
cardiovascular events, non-AIDS malignancies, liver disease, and others [4]. 

A key contributor to this chronic inflammation is increased translocation of microbial products 
across a permeable gut barrier from the intestinal lumen to the lamina propria and systemic cir-
culation [1, 2]. These microbial products activate innate immune cells to produce pro-inflamma-
tory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-a 
(TNF-α) [1]. Indeed, circulating markers of intestinal permeability (intestinal fatty acid binding 
protein [I-FABP] and zonulin) and IL-6 have been consistently predictive of non-AIDS events 
and mortality in people receiving suppressive ART [2, 5]. Thus, an intervention that decreases 
intestinal permeability and systemic inflammation, and its drivers, could decrease the excess mor-
bidity and mortality associated with well-treated HIV infection.
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Gut inflammatory markers are decreased in animal models of colitis after oral administration 
of plasma protein preparations with high levels of immunoglobulins [6, 7]. Serum-derived bo-
vine immunoglobulin/protein isolate (SBI) is an oral powder containing high concentrations 
of immunoglobulin that is not absorbed. It is the primary ingredient in a medical food that has 
been used successfully to manage patients with diarrhea-predominant irritable bowel syndrome 
(IBS-D) and inflammatory bowel disease [8-10]. SBI is enriched for immunoglobulins, comprised 
of >50% IgG, 1% IgA, and 5% IgM, which bind lipopolysaccharide (LPS) or endotoxin and other 
conserved microbial antigens [11-13], in addition to amino acids, albumin, and transferrin[14]. 
In a previous study involving 8 patients with HIV-associated diarrhea, we found improvements in 
GI symptoms, lymphocyte populations in gut-associated lymphoid tissue (GALT), and markers 
of intestinal repair following 8 weeks of SBI therapy [15]. In a follow up study, we found improve-
ments in stool frequency and several other GI symptoms but with a greater than expected placebo 
effect [16]. Here, we aim to report the impact of oral SBI on biomarkers of intestinal integrity and 
systemic inflammation in virologically suppressed persons with HIV with gastrointestinal symp-
toms.

METHODS
Study Population
Adult men or non-pregnant women with HIV and virologic suppression for at least 12 months 
were eligible if they had enteropathy; this was defined as 3 or more loose stools per day for at 
least 3 months. Participants were not eligible to participate if they had (1) a positive stool test 
for pathogenic bacteria, ova, or parasites during the 14-day screening period, (2) changes in 
antiretroviral medications during the 3-month period prior to screening, or (3) a condition that 
required chronic therapy that might alter the gut flora or the use of an antibiotic within 2 weeks 
prior to screening. Institutional Review Boards at each site reviewed and approved the protocol 
[Clinical Trial Registry Number Identifier (Clinicaltrials.gov): NCT01828593], and all partici-
pants provided written informed consent.

Design
This prospective, multicenter, randomized, blinded study included a partial cross-over design 
comprising 2 study phases: a double-blind placebo (PBO)-controlled phase and a placebo-free 
blinded extension phase. Participants were randomized at study entry to (1) placebo BID for 4 
weeks followed by either twice daily LD-SBI (low dose-SBI, 2.5 g) for 20 weeks (n=21) or HD-
SBI (High dose-SBI, 5 g) for 20 weeks (n=14); (2) Twice daily LD-SBI for 24 weeks (n=34); or (3) 
Twice daily HD-SBI for 24 weeks (n=33; Supplementary Figure 1). Participants received placebo 
(2.5 g dextrose) or SBI dissolved in 120 μL of water and remained blinded to their treatment as-
signment–whether they had received the placebo lead-in or low dose versus high dose assignment 
for the duration of the study. Thirteen of 103 randomized participants did not complete the study 
as previously described [16]. All study participants had blood samples obtained at baseline and 
weeks 4, 8, and 24 to evaluate PBMCs and biomarkers of bacterial translocation, inflammation, 
enterocyte damage, coagulation, and pro-inflammatory cytokines.
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Parent Clinical Trial Outcomes
The primary efficacy endpoint of the parent clinical trial was the change in number of bowel 
movements (BM) per day from baseline to week 4, as previously reported [16]. Predetermined 
exploratory endpoints included changes in peripheral CD4+ and CD8+ T-cell counts, plasma 
markers of intestinal damage, microbial translocation, inflammation, and coagulation at week 4 
and last observation. Peripheral CD4+ and CD8+ T-cell counts were measured by flow cytometry 
using standardized methods (North Coast Clinical Laboratory, Inc., Sandusky, OH).

Measurement of Cytokines and Biomarkers for Microbial Rranslocation and Intestinal Permeability 
The level of LPS was assayed in duplicate using a Lonza LAL QCL-1000 kit (Lonza, Walkersville, 
MD) according to the manufacturer’s protocol. LPS, LPS-binding protein (LBP), and Bactericidal/
Permeability Increasing Protein (BPI) were measured in plasma samples using enzyme-linked 
immunosorbent assay (ELISA)-based assays according to the manufacturer’s protocol (MyBio-
Source, Inc., San Diego, CA), and flagellin was measured by ELISA in serum (USCN Life Science 
Inc., Missouri City, TX).

Levels of pro-inflammatory cytokines (IL-1β, TNF-α), Th1 (interferon-γ [IFN-γ] and IL-12p70), 
Th2 (IL-4), and regulatory cytokines (IL-10), chemokines (IL-8), and monocyte chemoattractant 
protein-1 (MCP-1 or CCL2), and biomarkers of collagen regulation (hyaluronic acid (HA), trans-
forming growth factor-β (TGF-β) 1, 2, and 3, matrix metalloproteinases (MMP)-1, MMP-9, tissue 
inhibitor of metalloproteinases (TIMP-1, and TIMP-2) were all measured in plasma with mul-
tiplex ELISA-based assays (MesoScale Discovery; assay kit for HA from Corgenix, Broomfield, 
CO). Serum levels of IL-6 and soluble CD14 (sCD14) were measured with Magnetic Luminex® 
Kits (R&D Systems, Minneapolis, MN). 

Serum intestinal fatty acid binding protein (I-FABP) is an intestinal isoform of a ubiquitous intra-
cellular protein that is known to be elevated in diseases of chronic intestinal inflammation such as 
celiac disease as well as in people with HIV and chronic diarrhea. I-FABP was measured using an 
ELISA–based assay (R&D Systems, Minneapolis, MN). Serum zonulin levels were measured using 
a competitive ELISA method (Immundiagnostik AG, Bensheim, Germany).

Statistical Methods
The analysis used change from baseline measures to the end of week 4 of the PBO-controlled 
phase of the study and change from baseline to last observation carried forward (LOCF) in the 
20-week PBO-free phase of the study from all available double-blind data without imputation of 
missing data. LOCF data encompasses participants who received SBI for 24 weeks (LD-SBI and 
HD-SBI) or 20 weeks (PBO crossover at Week 4). A 2-sided significance test using α of 0.05 was 
used to declare statistical significance and flag results for further inquiry. Changes from baseline 
data were analyzed using Wilcoxon signed-rank tests of the paired samples. As these analyses 
were exploratory, no corrections for multiplicity were implemented, and all significant results are 
considered hypothesis generating [17]. All statistical analyses were performed with SAS software 
version 9.3 (SAS Institute Inc, Cary, NC). 
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RESULTS
Study Population
Characteristics of the participants at study entry have been described previously and are summa-
rized in Table 1 [16]. The median age was 50 years, with 69% male, 61% African-American and 
37% White participants. Median time since HIV diagnosis was 18.2 years, with a median duration 
of ART of 8.33 years and duration of HIV-associated diarrhea of 3.5 years. Overall, median HIV-1 
RNA level was undetectable (defined as 19 copies/μL) across all arms, and CD4+ T-cell count was 
637 cells/mm3, with no difference between arms (PBO–median 523 cells/μL [Q1 397, Q3 921], 
LD-SBI–813 cells/μL [469, 939] and HD-SBI–672 cells/μL [478, 776]). The distribution at baseline 
in the top 3 CD4+ T-cell quartiles (> 418 cells/μL) was near or in the normal range for people 
taking chronic suppressive ART.

Table 1. Baseline Characteristics for Randomized Treatment Groups

n (%) or median (Q1-Q3)
Characteristic Placebo SBI 2.5 g SBI 5.0 g Total
Study Subjects a 36 34 33 103

Sex
Male 28 (78) 21 (62) 22 (67) 71 (69)
Female 8 (22) 13 (38) 11 (33) 32 (31)

Race
African American 21 (58) 20 (59) 22 (67) 63 (61)
White 14 (39) 14 (41) 10 (30) 38 (37)
Asian 1 (3) 0 (0) 1 (3) 2 (2)

Age (years) 50 (34–66) 49 (34–70) 48 (32–65) 50 (32–70)
Time since HIV diagnosis (years) 16.7 (1.8–27.5) 16.4 (6.3–29.5) 19.2 (4.8–28.5) 18.2 (1.8–29.5)
Peripheral CD4+ T-cell count (cells/μL) b 523 (194–1224) 813 (189–1611) 672 (202–1754) 637 (189–1754)

Plasma Viral Load (copies/μL) c 19 (19–64) 19 (19–119) 19 (19–168) 19 (19–168)
Time on ART (years) 7.46 (1.0–23.07) 9.05 (1.0–23.67) 9.89 (1.0–23.73) 8.33 (1.0–23.73)
Time with HIV-associated Diarrhea 
(years), median (Q1-Q3)

2.2 (0.2–23.7) 4.7 (0.2–29.5) 5.5 (0.1–23.5) 3.5 (0.1–29.5)

a  Analysis population = all randomized participants receiving at least 1 dose of investigational product 
during placebo-controlled phase. 
b  Quartile ranges were as follows:  Q1 :≤418; Q2: > 418 to ≤ 630; Q3: > 630 to ≤ 893; Q4: > 893 
c  Limit of detection for plasma viral load was 20 copies/μL 
Abbreviations: SBI, Serum-derived bovine immunoglobulin/protein isolate; ART, antiretroviral therapy
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Figure 1. Effects of serum bovine immunoglobulin/protein isolate (SBI) on biomarkers of intestinal per-
meability (A-B; intestinal fatty acid binding protein [I-FABP], zonulin), (C) inflammation (IL-6) and (D) 
CD4+ T cell counts among all participants.

Evaluation of Biomarkers of Enterocyte Function, Microbial Translocation, and Inflammation
To explore whether SBI administration would improve gut barrier function, we measured cir-
culating I-FABP levels, reflecting enterocyte turnover [18], and zonulin levels, reflecting tight 
junction integrity [19]. Median levels of both I-FABP, -0.35 ng/μL (-1.46, +0.31; P = 0.002), and 
zonulin, -4.90 ng/μl (-18.43, +4.51; P = 0.003), decreased in the combined SBI groups (LD-SBI 
and HD-SBI, n=100) (Table 2; Figures 1A and B); changes within treatment groups at week 4 
were not significant (Supplementary Table 1). I-FABP and zonulin levels decreased in both SBI 
dose groups, with a trending dose effect (Table 3). Circulating markers of microbial translocation, 
however, including LPS, LBP, 16S rDNA, flagellin, and sCD14 (Tables 2 and 3 and not shown) did 
not change significantly with SBI therapy. As lower CD4+ T-cell counts are associated with more 
gut damage and microbial translocation [2], we evaluated the lowest baseline CD4+ T-cell quar-
tile (189-418 cells/μL; n=25) separately. I-FABP, zonulin, and flagellin changes decreased without 
statistical significance in this group, although the small sample size might have limited the power 
to detect a change (Table 4; Figure 2A-B).
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Figure 2. Effects of serum bovine immunoglobulin/protein isolate (SBI) on biomarkers of intestinal per-
meability (A-B; intestinal fatty acid binding protein [I-FABP], zonulin), (C) inflammation (IL-6) and (D) 
CD4+ T-cell counts among participants with the lowest quartile of CD4+ T-cell counts.
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Table 2. Within-Group comparison for Combined SBI Groupsa

Variable
Treat-
ment 

Groupb

n Median (Q1-Q3)
P-valued

Baseline LOCFc Delta

CD4 (cells/uL) SBI 101 630 (460–893) 100
602.50 (458.50–

851)
99 -14 (-119–80) 0.177

CD4/CD8 SBI 101 0.71 (0.47–1.17) 100 0.72 (0.49–1.17) 99 0 (-0.07–0.07) 0.997

I-FABP (ng/μL) SBI 101 1.84 (1.03–2.69) 100 1.46 (0.79–2.19) 99 -0.35 (-1.46–0.31) 0.002

Zonulin (ng/
μL)

SBI 101
34.45 (22.87–

44.74)
100

27.09 (18.04–
38.79)

99
-4.90 (-18.43–

4.51)
0.003

Flagellin (ng/
μL)

SBI 101 4.76 (2.97–7.23) 100 4.62 (2.52–7.20) 99 -0.18 (-2.66–1.76) 0.360

sCD14 (ng/μL) SBI 101 1.96 (1.62–2.23) 100 1.89 (1.56–2.16) 99 -0.03 (-0.28–0.24) 0.375

IL-6 (pg/μL) SBI 101 1.66 (0.96–2.60) 100 1.29 (0.62–2.13) 99 -0.40 (-1.25–0.35) 0.002

a  Analysis population = Participants receiving SBI for 24 weeks and participants crossing-over from PBO 
to SBI after week 4 
b  Combined SBI treatment groups 
c  Last observation carried forward, to 24 weeks for SBI-treated group and to 20 weeks  for PBO-SBI cross-
over group  
d Wilcoxon Signed-Rank test

Abbreviations: SBI, Serum-derived bovine immunoglobulin/protein isolate; LOCF, Last observed carried 
forward; I-FABP, intestinal fatty acid binding protein; sCD14, soluble CD14

Because IL-6 is a marker of inflammation that correlates with clinical outcomes [5], we measured 
the impact of SBI therapy on IL-6 levels. The median serum IL-6 level among all participants 
decreased significantly from baseline to last observation carried forward by -0.40 pg/μL (-1.25, 
+0.35; P = 0.002, n=100) (Table 2; Figure 1C), with no obvious dose effect (Table 3). Notably, 83% 
of people in the lowest baseline CD4+ quartile had decreases in serum IL-6 levels, with a median 
change among all participants in this quartile of -0.57 pg/μL (-1.26, -0.10; P = 0.001, n=24; Table 
4; Figure 2C). 
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Table 3. Within-Group comparison for SBI Groupsa

Variable
Treatment 

Group
n    Median (Q1-Q3)

P-valuec

Baseline LOCFb Delta

CD4 (cells/uL)
SBI 2.5 g  54  803 (469–958)  55  638 (466–915)  54 -38 (-158–67) 0.018

SBI 5.0 g  47  543 (757–417)  45  567 (413–800)  45 16 (-67–83) 0.539

CD4/CD8
SBI 2.5 g  54 0.76 (0.46–1.42)  55 0.81 (0.47–1.35)  54 0 (-0.06–0.08) 0.772

SBI 5.0 g  47 0.66 (1–0.48)  45 0.65 (0.51–0.98)  45 0.01 (-0.07–0.06) 0.760

I-FABP (ng/μL)
SBI 2.5 g  54 1.95 (0.99–3.11)  55 1.40 (0.79–2.24)  54 -0.23 (-1.48–0.24) 0.023

SBI 5.0 g  47 1.81 (1.10–2.66)  45 1.56 (1–2.10)  45 -0.45 (-1.17–0.36) 0.043

Zonulin (ng/
μL)

SBI 2.5 g  54 34.61 (19.43–
42.24)

 55 29.25 (20.59–
38.24)

 54 -4.16 (-17.07–
6.85)

0.117

SBI 5.0 g
 47 34.27 (24.16–

49.35)
 45 26.42 (17.33–

40.95)
 45 -6.18 (-21.44–

3.03)
0.009

Flagellin (ng/
μL)

SBI 2.5 g  54 4.34 (2.55–7.16)  55 4.22 (1.83–6.61)  54 -0.22 (-2.61–1.55) 0.307

SBI 5.0 g  47 5.14 (3.15–8.02)  45 5.36 (3.42–7.87)  45 -0.07 (-2.66–1.76) 0.792

sCD14 (ng/μL)
SBI 2.5 g  54 2.02 (1.70–2.27)  55 1.99 (1.69–2.20)  54 -0.08 (-0.29–0.26) 0.433

SBI 5.0 g  47 1.87 (1.41–2.20)  45 1.79 (1.43–2.05)  45 0 (-0.28–0.21) 0.675

IL-6 (pg/μL)
SBI 2.5 g  54 1.72 (1.20–2.71)  55 1.27 (0.65–2.07)  54 -0.53 (-1.27–0.25) 0.012

SBI 5.0 g  47 1.37 (0.91–2.46)  45 1.31 (0.60–2.18)  45 -0.38 (-1.13–0.40) 0.072

a Analysis population = Patients receiving SBI for 24 weeks and patients crossing-over from PBO to SBI 
after week 4 
b Last observation carried forward, to 24 weeks for SBI-treated group and to 20 weeks for PBO-
SBI cross-over group 
c Wilcoxon Signed-Rank test 

Abbreviations: SBI, Serum-derived bovine immunoglobulin/protein isolate; LOCF, Last observed carried 
forward; I-FABP, intestinal fatty acid binding protein; sCD14, soluble CD14
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Table 4. Within-Group Comparison for Combined SBI Groupsa in the first CD4+ T-cell 
Quartileb.

Variable Treatment
n    Median (Q1-Q3)

P-valued

Baseline LOCFc Delta

CD4 (cells/uL) SBI 25 308 (251–367) 24 385.50 (298–445) 24 25.50 (-0.50–125) 0.002

CD4/CD8 SBI 25 0.38 (0.24–0.53) 24 0.33 (0.27–0.57) 24 0.01 (-0.06–0.06) 0.848

I-FABP (ng/μL) SBI 25 1.81 (0.99–2.40) 24 1.46 (0.90–2.15) 24 -0.35 (-0.78–0.30) 0.244

Zonulin (ng/μL) SBI 25
35.42 (31.35–

48.07)
24

34.08 (26.74–
38.79)

24
-1.93 (-15.89–

4.63)
0.274

Flagellin (ng/
μL)

SBI 25 5.04 (2.53–7.17) 24 4.78 (3.04–5.86) 24 -0.57 (-2.06–0.94) 0.122

sCD14 (ng/μL) SBI 25 1.78 (1.40–2) 24 1.69 (1.40–1.94) 24 0.01 (-0.30–0.25) 0.825

IL-6 (pg/μL) SBI 25 1.51 (0.65–2.74) 24 0.77 (0.06–1.73) 24
-0.57 (-1.26–-

0.16)
0.001

a Analysis population = Participants receiving SBI for 24 weeks and participants crossing-over from PBO 
to SBI after week 4 
b Analysis subpopulation = participants in first CD4+T-cell quartile ranges were as follows: Q1: 
≤418 (cell/ uL) at baseline. Q2-Q4 are: > 418 to ≤ 630, > 630 to ≤ 893, and > 893, respectively 
c Last observation carried forward, to 24 weeks for SBI-treated group and to 20 weeks  for PBO-
SBI cross-over group 
d Wilcoxon Signed-Rank test.

Abbreviations: SBI, Serum-derived bovine immunoglobulin/protein isolate; LOCF, Last observed carried 
forward; I-FABP, intestinal fatty acid binding protein; sCD14, soluble CD14

Peripheral CD4+ T-cell Measurements
Among the combined SBI groups, peripheral CD4+ T-cell counts did not change (Table 2 and 
Figure 1D). Peripheral CD4+ T-cell counts decreased in participants who received LD-SBI from 
803 to 638 cells/μL (-38 cells/μL [-158, +67], P = 0.018; n=54), but not in those receiving HD-SBI 
(+16 cells/μL [-67, +83], P = 0.539; n=45) between baseline and last observation carried forward 
(Table 3). Changes in CD8+ T cells correlated with changes in CD4+ T cells (r=0.74, P < 0.0001; 
data not shown). Consequently, no significant changes were observed in CD4/CD8 T-cell ratios 
from baseline to week 24 for any of the treatment groups (Table 3).
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We examined changes in CD4+ T-cell counts in the lowest quartile of CD4+ T-cell counts because 
people who have failed to normalize CD4+ T-cell counts may have the greatest potential to expe-
rience an immunologic benefit from attenuating systemic inflammation. Among participants in 
the lowest baseline CD4+ T-cell quartile (189-418 cells/μL; n=25), peripheral CD4+ T-cell counts 
for the combined SBI groups (LD-SBI+HD-SBI) increased from baseline (308 cells/μL) to last 
observation carried forward (386 cells/μL) after 20-24 weeks of SBI, with a median change of 25.5 
cells/μL (-0.5, +125; P = 0.002) (Table 4; Figure 2D); 75% of participants had an increase in CD4+ 
T-cell counts. This increase was paralleled by an increase in CD8+ T-cell counts of 109 cells/μL 
(+8, +280; P = 0.004; data not shown), from 806 to 964 cells/μL, with 79% of participants having 
an increase in CD8+ T-cell counts. The CD4/CD8 ratio, however, did not change significantly 
from baseline (0.38) to last observation (0.33), with a median change of 0.01 (-0.06, +0.06; P = 
0.85; Table 4). Thus, CD4+ and CD8+ T-cell counts increased significantly during SBI treatment 
in participants with the lowest CD4+ T-cell counts.

Next, we evaluated associations between changes in biomarker levels (I-FABP, zonulin, IL-6, 
sCD14) and immunologic and clinical parameters from baseline to last observed measurement 
using Spearman correlations. Changes in flagellin (r= -0.40, P < 0.0001), zonulin (r= -0.62, P < 
0.0001), I-FABP (r= -0.65, P < 0.0001), and IL-6 (r= -0.56, P < 0.0001) correlated with baseline 
levels of each respective biomarker, and changes in serum I-FABP levels were associated inverse-
ly with changes in CD4/CD8 ratios among all participants (r= -0.307, P = 0.003; n=100) (Figure 
3). Changes among biomarkers of gut damage did not correlate with changes in biomarkers of 
inflammation. Participants who had decreases in sCD14 levels tended to be younger (r=0.21, P 
= 0.04) and to have decreases in the frequency of loose stool (P = 0.06). We saw no associations 
between changes in other biomarkers or CD4+ T-cell count and age or frequency of stools. For 
the lowest CD4+ T-cell quartile group, decreases in IL-6 levels were associated with decreases in 
sCD14 levels (r=0.535, P = 0.008; n=24). In addition, for the lowest CD4+ T-cell quartile group, 
lower IL-6 levels at week 24 were associated with higher CD4/CD8 ratios (r= -0.516, P = 0.012). 
Thus, I-FABP, zonulin, and IL-6 levels decreased with SBI, and decreases in markers of intestinal 
permeability and inflammation correlated with increases in CD4/CD8 ratios.
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Figure 3. Association of changes in I-FABP with changes in CD4/CD8 T-cell ratios.

DISCUSSION
We previously showed that SBI is safe and well-tolerated in people with HIV receiving ART and 
with chronic diarrhea [16]. People treated with SBI had decreased diarrhea and other GI symp-
toms but without significant differences from the placebo group. Here, we explored the effects 
of SBI on biomarkers of gut damage, microbial translocation, and inflammation, and on CD4+ 
T-cell recovery, as predefined exploratory endpoints. We found that SBI treatment was associated 
with 1) decreases in I-FABP and zonulin levels, 2) decreases in IL-6 levels, particularly among 
those with the lowest baseline CD4+ T-cell counts, and 3) increases in CD4+ and CD8+ T-cell 
counts among participants with the lowest baseline CD4+ T-cell counts. Together, these findings 
suggest that SBI warrants further exploration as a potential intervention to improve gut integrity 
and decrease inflammation.

SBI likely works by multiple mechanisms. SBI may bind luminal microbial antigens, preventing 
their translocation into the lamina propria via steric exclusion and preventing their ability to 
activate macrophages and dendritic cells [13, 14]. Indeed, SBI can bind bacterial, viral, and fungal 
microbe-associated molecular patterns. The ensuing lack of antigenic stimulation may explain 
why SBI has been shown to decrease leukocyte recruitment into the lamina propria [20]. Much 
like with intravenous immunoglobulin, binding of the Fc portion of IgG in SBI to Fc receptors on 
target T cells may enhance its anti-inflammatory effect [14]. SBI has also been shown to increase 
the abundance of Proteobacteria Burkholderiales, Firmicutes Catonella, and other bacteria in the 
small intestine [21] that may be associated with improvement in gut health [22]. A similar in-
tervention, purified protein concentrate from plasma, has been shown to increase tight junction 
formation in weaning piglets and in a rat model of intestinal colitis [14]. Amino acids in SBI such 
as glutamine may further facilitate epithelial healing [14]. Whether growth factors are present in 
SBI that could stimulate T-cell proliferation, accounting for the increase in CD4+ T cells, war-
rants future determination. Thus, use of bioactive proteins as found in SBI may improve intestinal 
epithelial barrier function through immunomodulation, alteration of gut bacteria, and increasing 
tight junction formation [23]. 
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Zonulin opens tight junctions reversibly in response to small intestinal exposure to enteric bac-
teria such as E. coli [24]. The small intestine has a low bacterial burden (up to 104 colony forming 
units [CFU]/μL) in healthy people, predominantly Gram-positive aerobic bacteria proximally and 
facultative anaerobes distally, whereas the colon contains 1012 CFU/μL of strict anaerobes [25]. 
Small intestinal colonization by colonic flora upregulates zonulin and consequently increases in-
testinal permeability [25]. Lower zonulin levels have been associated with more bacterial diversi-
ty, suggesting the composition of the small intestinal bacteria impacts zonulin levels [26]. Zonulin 
levels are higher in Crohn’s disease [27] and experimental cholera [28], and other intestinal dis-
eases, indicating that in most circumstances, high zonulin levels reflect intestinal disease. Unex-
pectedly, in a previous study of people with HIV, higher zonulin levels were associated with lower 
mortality risk in a population with low current and nadir CD4+ T-cell counts (median nadir 30 
cells/mm3) [2]. The high zonulin levels in survivors in this study may reflect the preservation 
of cells capable of producing zonulin and therefore better gut health rather than increased tight 
junction damage. In contrast, our population had higher CD4+ T-cell counts and normal nutrient 
absorption; therefore, the decrease in zonulin levels we observed may reflect a decrease in stim-
ulation, such as dysbiosis and bacterial overgrowth, rather than a decrease in the cells capable of 
producing the protein. The decrease in I-FABP levels, which has been associated with decreased 
mortality,[2] reflects decreased enterocyte turnover, consistent with our hypothesis and previous 
findings [15]. Levels of I-FABP increase from acute to chronic HIV infection and, in contrast to 
many biomarkers predictive of poor outcomes, increase further with ART [29]. The simultaneous 
decrease in I-FABP and zonulin suggests that SBI decreases enterocyte turnover. Whether this 
reflects an improvement in gut health is unclear, but the simultaneous decrease in IL-6 indicates it 
may be beneficial. 

Contrary to our hypothesis, no direct marker of microbial translocation, including LPS, flagel-
lin, and 16S rDNA, was affected by SBI treatment. Plasma markers of microbial translocation 
decrease with long-term ART [3], so it is possible that our study was not sufficiently powered to 
detect further reductions in these markers. As improved gut health would need to precede chang-
es in microbial translocation, this study may have been too short to detect decreases in these 
circulating markers. Moreover, several factors are known to interfere with LPS measurement [1], 
leading to the suggestion that indicators of the host response to LPS may be more accurate and 
relevant than measurement of LPS itself. The lack of effect on sCD14 levels, one such indicator, 
suggests that prevention of microbial translocation may not be the primary mechanism by which 
SBI can decrease inflammation.

The decrease in IL-6 levels observed in HIV participants following 24 weeks of oral SBI, accompa-
nied by decreases in I-FABP and zonulin but not microbial translocation markers, suggests that 1) 
the upstream mediator of gut damage also upregulates IL-6 production, 2) increased IL-6 produc-
tion may disrupt the gut barrier, or 3) increased gut barrier dysfunction stimulates IL-6 produc-
tion. Whether these findings are due to alterations in the gut microbiome that facilitate epithelial 
healing and decrease inflammation, immunomodulatory proteins in SBI, or decreased transloca-
tion of microbial products not detected in the plasma is unknown. Some studies have suggested 
immune activation and inflammation improve during clinical studies due to increased partic-
ipant adherence [30-32]. Excellent self-reported adherence including at entry and persistently 
undetectable HIV-1 RNA levels suggest that improved adherence is unlikely to contribute to the 
decreased inflammation observed here, although we did not measure HIV-1 RNA by single-copy 
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assay. Assuming that the decrease in IL-6 is due to SBI and given that higher IL-6 levels are asso-
ciated with increased atherosclerosis and cardiovascular disease [33, 34], AIDS events [35], non-
AIDS events [36], and mortality [2, 34, 37], an intervention that decreases its levels could have a 
profound impact on clinical outcomes in HIV infection. We demonstrated a 38% decrease in IL-6 
levels in participants in the first quartile; IL-6 levels were about 40% higher in participants who 
died compared to controls in the SMART study [38] and about 40% higher in immune non-re-
sponders compared to immune responders [39], suggesting the difference observed here may be 
clinically relevant. Further investigations into the mechanism of action may highlight ways to 
improve SBI’s efficacy and potentially ways to synergize with other interventions.

The increase in CD4+ T cells in participants with the lowest quartile of CD4+ T cells at baseline 
is unlikely to reflect increased adherence as noted above [31]. One possibility is that this increase 
is due to decreased immune activation by SBI. Immune activation has been associated with poor 
CD4+ T-cell recovery [2], and immunosuppression with prednisolone in the absence of ART can 
improve CD4+ T-cell counts [40]. SBI may decrease apoptosis of activated CD4+ T cells [41] or 
downregulate adhesion molecules on the surface of CD4+ T cells [41], allowing egress of CD4+ 
T cells from tissues into the circulation [42]. Alternatively, immunoglobulins or other factors in 
SBI may increase de novo thymic output of CD4+ cells or expansion of CD4+ T-cell populations 
[43]. The parallel findings in CD8+ T cells suggest that the mechanism is not CD4+ T-cell spe-
cific, and it is not likely to be mediated by changes in residual HIV replication. These findings, 
however, could reflect regression to the mean, and the changes observed may not be due to any 
effect of SBI. Evaluating SBI in a longer, randomized, placebo-controlled trial in immunologic 
non-responders is essential for determining whether it has any effect on CD4+ T-cell recovery. 

Other agents have been tested to improve gut integrity and decrease microbial translocation and 
inflammation in chronic HIV infection. Most agents targeting gut health had little if any effect, 
including sevelamer carbonate [44], rifaximin [45], mesalamine [46], and prebiotics and probi-
otics [47]. Immunomodulatory agents such as atorvastatin [48] have also been disappointing. 
Notably, hydroxychloroquine decreased IL-6 and LPS levels in immunologic non-responders 
[49], corticosteroids decreased IL-6 in viremic participants receiving ART [50] and sCD14 in 
untreated participants [40], and rosuvastatin, in contrast to atorvastatin, decreased sCD14 levels 
[51]. Recently, canakinumab, an IL-1b antibody, was shown to decrease IL-6 levels in a pilot study 
of people receiving suppressive ART [52]. However, these drugs operate systemically with pleio-
tropic effects and are not without the potential for serious adverse events. Gut-targeted treatment 
with oral SBI might be a safer means to decrease inflammation.

This study had several limitations. First, there was no placebo arm for the entire duration of the 
study. Thus, it is possible that the changes observed at 24 weeks could be due to continued ART 
alone, although previous literature suggests stability of these biomarkers given the duration of 
ART [3, 45, 46], and this population had a median duration of ART of >8 years. Second, the in-
creases in peripheral CD4+ T-cell counts were observed during post hoc analysis and may reflect 
regression to the mean. Therefore, these results need to be interpreted cautiously. Third, study 
participants had a wide range of duration of virologic suppression (1-23 years), which could have 
influenced the changes observed [41]. Fourth, participants spanned a wide age range (32 to 70 
years); older individuals have more immune activation [53] and are at higher risk for persistently 
reduced CD4+ T-cell counts during ART [54]. Lastly, numerous correlations were assessed and 
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no adjustments were performed, which has been supported for exploratory analyses [17], but it is 
possible the positive findings could reflect noise rather than true biological associations.

In conclusion, our results demonstrate that oral administration of SBI improved markers of gut 
barrier function and systemic inflammation. A longer, randomized, placebo-controlled trial 
of SBI in people with HIV and immunologic failure is needed to assess the clinical impact and 
mechanisms of action of SBI.
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SUPPLEMENTARY MATERIAL
Supplementary Table 1. Within-Group Comparisons for Randomized Treatment Groupsa 
at Week 4

Variable
Treatment 

Group
n    Median (Q1-Q3)

P-valueb

Baseline Week 4 Delta
CD4 (cells/uL) Placebo 35 523 (397–921) 35 635 (330–858) 34 -12.50 (-133–58) 0.396

SBI 2.5 g 34 813 (469–939) 33 730 (483–1073) 33 0 (-96–119) 0.752

SBI 5.0 g 33 672 (478–776) 31 597 (423–723) 31 -42 (-115–58) 0.109

CD4/CD8 Placebo 35 0.69 (0.46–1.22) 35 0.76 (0.50–1.17) 34 0 (-0.06–0.07) 0.667

SBI 2.5 g 34 0.76 (0.42–1.22) 33 0.80 (0.47–1.29) 33 0 (-0.05–0.04) 0.992

SBI 5.0 g 33 0.68 (0.53–1) 31 0.73 (0.48–0.89) 31 0 (-0.06–0.07) 0.880

I-FABP (ng/mL) Placebo 35 1.94 (1.10–3.32) 35 1.74 (1.12–3.13) 34 0 (-0.76–0.68) 0.910

SBI 2.5 g 34 1.69 (0.99–2.69) 31 1.54 (1.03–2.12) 31 -0.11 (-0.75–0.55) 0.592

SBI 5.0 g 33 1.81 (1.12–2.66) 31 2.07 (1.19–2.68) 31 0.30 (-1.08–1.07) 0.674

Zonulin (ng/
mL)

Placebo 35
34.76 (28.39–

44.63)
35

36.28 (24.48–
51.49)

34
-3.06 (-11.14–

10.91)
0.913

SBI 2.5 g 34
33.65 (18.89–

41.77)
31

34.84 (25.23–
46.11)

31 3.28 (-13.42–14.13) 0.954

SBI 5.0 g 33
36.07 (22.87–

49.35)
31

26.54 (20.37–
45.94)

31 -5.90 (-14.69–9.21) 0.335

Flagellin (ng/
mL)

Placebo 35 5.01 (3.87–8.63) 33 4.79 (2.28–7.95) 32 -0.09 (-2.42–2.49) >0.999

SBI 2.5 g 34 4.06 (2.21–5.98) 31 5.15 (2.62–7.20) 31 0 (-1.42–2.74) 0.533

SBI 5.0 g 33 4.93 (2.97–7.42) 29 4.91 (2.56–7.24) 29 -0.11 (-2.37–0.76) 0.360

sCD14 (ng/mL) Placebo 35 1.84 (1.59–2.04) 35 1.88 (1.52–2.24) 34 -0.03 (-0.19–0.22) 0.848

SBI 2.5 g 34 2.12 (1.70–2.28) 31 1.95 (1.65–2.30) 31 -0.13 (-0.38–0.26) 0.340

SBI 5.0 g 33 1.89 (1.48–2.23) 31 1.81 (1.49–2.22) 31 0.02 (-0.22–0.26) 0.554

IL-6 (pg/mL) Placebo 35 1.29 (0.91–2.82) 35 1.25 (0.86–1.83) 34 -0.23 (-1.69–0.47) 0.045

SBI 2.5 g 34 1.79 (1.31–2.71) 31 1.37 (0.82–1.83) 31 -0.46 (-1.09–0.49) 0.194

SBI 5.0 g 33 1.45 (0.91–2.36) 31 1.20 (0.32–2.30) 31 -0.25 (-0.53–0.70) 0.776

a  Analysis population = Participants randomized to LD-SBI, HD-SBI or PBO at initiation of study 
b  Wilcoxon Signed-Rank test  
Abbreviations: SBI, Serum-derived bovine immunoglobulin/protein isolate; I-FABP, intestinal fatty acid 
binding protein; sCD14, soluble CD14
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Supplementary Figure 1. Study design and schedule of outcome procedures.

FOOTNOTES
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