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ABSTRACT 

Feynman-graph rules are formulated for the strong-

interaction components of the topological expansion--

defined as those graphs all of whose vertices ~re zero-

entropy Connected parts. These rules imply a "topological 

asymptotic freedom" and admit a corresponding perturbative 

evaluation where the zeroth order exhibits topological 

supersymmetry. 
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1. INTRODUCTION 

123 A topological basis for strong interactions has been constructed<' , 

and recognized as likely encompassing electroweak interactions. 4 ,5,6 

Rules associating amplitudes with electroweak-boson-lepton topologies 

are similar to those of Lagrangian field theory inasmuch as these 

topologies do not admit duality transformations (contractions); the 

elementary vertex functions are correspondingly structureless. In 

contrast the duality aspect of strong-interaction topoiogy requires 

unorthodox Feynman rules--with structured.vertices--and this paper' 

presents a detailed proposal. Our rules turnout to embody a 

qualitative feature that we call "topological asymptotic freedom" 

(TAF) because of its similarity to the asymptotic freedom of QCD. 

TAF makes it possible to approach hadron dynamics perturbatively 

once zero-entropy connected parts are known. Even though the (nonlinear) 

zero-entropy problem cannot itself be treated perturbatively, ,plausible 

general assumptions about zero-entropy amplitudes allow immediate 

qualitative inferences concerning physical hadrons. 

We shail state our dualized rules through the shorthand of 

"thickened" Feynman graphs where each elementary-hadron momentum line 

is accompanied by 2, 3 or 4 quark lines. This shorthand exhibits 

"color" while concealing the topological meaning of quark isospin 

and generation. For strong interactions the latter deficiency is 

unimportant; flavor may be represented as an index on each quark 

line. The chiral degree of freedom, together with spin, we handle in 

a standard manner through a 4-valued Dirac spinor index at the end 

of each quark line. Our prescription should be understandable to 

readers familiar with Lagrangian Feynman rules, even if they a~e 

unacquainted with topological particle theory. 
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II. THICKENED FEYNMAN GRAPHS WITH "COLORED" I QUARK LINES 

It is shown in Ref. (1) that the full 

interaction topology--which involves a pair 

can be transferred to a thickened momentum 

lines. This idea--a slight generalization 

Rosner scheme7,8_-we now recapitulate. 

content of strong-

I 
of intersecting surfaces--

. I· 
graph with associated quark 

. I 
of the original Harari-

By a thickened momentum .graph we mean a Feynman graph with 

I 
uniformly (cyclically) ordered vertices such as in the Q-vertex 

example·of Fig. 1. Such a graph is implicitlyembeddedl in an oriented 

* 2-dimensional bounded surface, a notion important whe~ we add quark 

lines. 

Quark lines running parallel to momentum lines distingUiSh 

different types of elementary hadron. With the convention that graph 

o I 
vertices are always oriented "clockwise", the three categories of 

elementary hadron are shown in Fig. 2, where the relatJve locations 

. I 
of the different quark lines can be interpreted ·as a "color" label. 

(Attaching the "color"label is no more than a convenieJce.) A quark 

line by itself on one side of the momentum line carrieJ color #1; our 

I convention is that color #1 flows in agreement with surface orientation. 

Quarks that appear in "diquark" pairs are colored 112 ald #3, #2 being 

adjacent to the momentum line; colors #2 and #3 flow oil opposition to I . 
surface orientation. Figure 3 presents an example of the Fig. 1 

momentum graph embellished with quark lines. Notice hire the color 

* In the example of Fig. 1 the surface is a torus minus a disk. l 

• .~ 
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permutations or "switches" along intermediate elementary-baryon lines, 

but notice also that "color" is conserved. Any of 5 "color switches" 

can occur along an internal baryon line and any of 3 "color switches" 

along an internal baryonium line; all switches conserve color. Switches 

always occur between vertices, and there is no more than one color switch 

between any pair of adjacent vertices. l Trivial vertices must, however, 

be included--as we discuss later. 

Each quark line is to be understood as carrying a definite 2-

valued isospin and a definite 4-valued generation index, so these 

quantities are even more obviously conserved than is "color". A 

given quark line may change color but maintainsisospin and generation 

(i.e., flavor). In the following section we describe how Dirac 

indices attach to quark lines. 

Every external color permutation is to be included in the 

topological expansion, with all possible switches along internal momentum 

lines. Thus, in "color" space an external baryon "wave function" 

is totally. symmetric and normalized to 6, while ari external baryonium 

wave function analogously is normalized to 4. 9 We shall develop a. 

formalism that performs economically the sum over internal color 

switches. The external and internal summation suppresses the "color" 

degree of freedom for physical hadrons, but ~raph counting depends on 

"color", so dynamical calculations must attend to this "inaccessible" 

attribute of ~lementary baryons and baryoniums. There happen, for 

example, to.be no closed quark.loops in Fig. 3, even though there are 

2 momentum loops, so the "weight" of this topology is 1. We show by 

contrast in Fig. 4 a single momentum loop where there may be 0, 1, or 2 

~ . c 
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closed quark loops. Reference (10) has explained that the ''weights'' 

• 2 
of these topologies are, respec,tively, I, 32 and (32) , the number 

32 being the total number of different quarks: 2 spins x 2 

" * chiralities x 2 isospins x 4 generations.. "Color" does not contribute 

to quark multiplicity in this counting, but color switching affects 

the number of closed quark loops. 

* 
The formalism of Sec. III with closed quark loops and spin sums 

leads naturally to traces of products of Dirac matrices, where 

the. factor 4 = 2 spins x 2 chiralities is automatic. Only the 

flavor factor of 8 need be added. 

III. CHIRALITY AND SPIN 

We now come to an aspect of topological theory that may be 

puzzling to those conversant with Lagrangian field theory. One source 

of puzzlement is that each elementary hadron has only one momentum 

line but more tha~'one spin-l/2 "quark" line, even though momentum 

and spin are tied together by the Poincare group. Feynman rules for 

spin-momentum propagation nevertheless have the same general structure 

as"for the familiar case of a lepton--where there is ~ "quark" line 

for each·momentum line. A second source of puzzlement is the need to 

recognize the Dirac propagator of each "quark" as composed of two. 

separate pieces, with different chiral properties. For physical hadrons 

these two pieces are always added but, as with "color", the quark's 

inaccessible chiral degree of freedom cannot be ignored in topological 

dynamics. 

The 4-component Dirac space for each quark separates in the Weyl 

basis into "ortho" and "para" 2-'Component subspaces. Each quark 

belongs to an elementary hadron and when a hadron line from one vertex 

is "plugged" into a hadron line from another vertex the associated 

quark lines also are plugged. In the rest system of the hadron, on 

mass shell, the quark plug in the ortho-para-decomposed Dirac space has 

the form of a 2 x 2 matrix 

( 
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ortho para 

c J para 

ortho 

which becomes in general the Feynman-propagator matrix 

1 +:r..:..E. 
mO 

in view of the fact that (Weyl basis) 

_( 0 cr.P) 
y.p -

'a.p '0, 

(IlL 1) 

(IIL2) 

where cr = (l,a), a (1, -iJ) in the notation of Stapp.ll Here p is 

the energy-momentum of the elementary hadron to which the quark 

belongs--understood in the Feynman sense as directed in agreement 

with the quark-line direction. Remember that topological quarks do not 

individually carry momentum. However, any quark plug is part of' a 

hadron plug. 'The real positive nonzero parameter mO in Formula 

(IILI) is the unique mass shared by all elementary hadrons. 

., -P'i 
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Each quark line carries its own 4-component Dirac space which 

we label with an index i. (The index i may be thought of as carrying 

flavor.) Thus the chiral-spin plug matrix for an elementary meson, 

with momentum directed as in Fig. S, is 

(1 + X)me~on (1 + Yi·
P 

mO 
(l-~ 

mO ) 

, 2 
acting in a Dirac-product space of 4 dimensions. 

The reason we have written 1 + X in Formula (111.3) is to 

isolate thezero~entropy part of the meson plug matrix. Formula 

(111.2) shows that the y·p/mOpart of the quark~plug matrix only 

contributes when the quark undergoes an or tho-para transition. 

(IIL3) 

, 3U 
Now a zero-entropy quark line is purely ortho (0) or purely para (1), , 

so when the meson-plug matrix (111.3) is seen as a sum of 4 matrices, 
, , ' 

one is the zero-entropy unit matrix while the other three are nonzero-

entropy--corresponding respectively to or tho-para transition for ,quark 

i, for quark j or for both i and j. These fotir terms are representable 

through crosses on quark iines, as in ,Fig. 6'.' 'Such a cross-an O-p 

"switchi'-'-associates with a, matrix y. p/mO. 

The baryon-plug or, baryonium,~plug matrix involves a product of 

3 or 4 matrices like (IlL 1) • It is, convenient to add a "color" plug­

matrix and thus to define for baryon and baryonium plugs, 

(1 + X)baryon - . (1 + Yi· l)(l + y •• l)(1 + Yk· l)(1+ 11
1
'... lIS) 

mO" J mOmO 
(IIL4) 

(1 + X) :; (1 - y .• l)(l - Y .l)(l +y .l) 
baryonium l., mO : j mO " , k mO 

(1+yR.·...E..)(1+1I6 + ••• 1I ) 
mO 8 (IlL5) 

(~ ,C 
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corresponding to the quark labels of Fig. 7. In Formula (III. 4) the 

symbols 1t1 •• '1[5 designate the 5 possible "color" switches of the 

baryon's 3 quarks (3 odd permutations and 2 even). The elementary­

baryon plug matrix thus acts in a space of 43 x 6 dimensions. Similarly 

in Formula (III. 5) 1T
6

, 1T
7

, 1TS represent the 3 possible "quark color" 

switches within baryonium; the elementary-baryonium plug. matrix acts in 

a space of 44 x 4 dimensions. In Ref. (12) Stapp shows from unitarity 

arguments that the zero-entropy part of any elementary-hadron plug matrix 

is the unit matrix,. so normalizing factors are not to be added to the 

forms (III. 3), (III. 4) and (III. 5). 

Stapp's S-matrix analysis12 has justified the foregoing plug­

matrices when p2= m~--"on shell". We assume that these matrices may be 

used off-shell in Feynman formulas. A word should now be added about the 

external spin-chirality wave functionsat.tached to the ends of the Eeynman 

graph when computing an S-matrix element. 

We use for each quark the standard u or v component spinor.ln the 

Weyl (or tho-para) basis 

u(p, s) 

v(p, s) 

(
Ioop/ma n(s») 

loop/ma n(s) 

" 
(loop/mo n(s») 

~/(}op/ma n(s) 

(III. 6) 

(III.7) 

where n is a 2-component Pauli spin vector, with s denoting the spin. 

* The normalization 

* Previous papers--e.g. Ref. (9)--have introduced the factor 2 by a 

different but equivalent prescription. 

10 

~(p, s) u (p, s) 2 

;(p, s) v (p, s) - 2 

/ 
C:../ Ii: 

(IlLS) 

reflects the fact that or tho and' para zero-entropy quark lines are 

always added together in building the S matrix. That is, as emphasized 

by Ref. (9),' the ortho-para degree of freedom brings a factor 2 for 

each quark line. Comparing Formulas (111.2), (111.6) and (111.7) 

we see that, as usual, u (p) is the eigenvector of yop/ma 

eigenvalue + ~2/m~ while v(p) belongs to the eigenvalue 

with 

1'22 
- ,rp~/mO' 

The overall phase of anS-matrix element will be given by a 

Feynman-like rule that includes the prescription of consistently 

- * - . inserting - Vi while ui ' ui and Vi appear with + signs. We now 

relate this rule to the quark-plug matrix (111.1). Intermediate 

Feynman lines arise from elementary-hadron plugs where the accompanying 

quark plug is of one of the two types shown in Fig. S. According to 

the usual Feynman prescription, in case (a) we have a factor ua(p, s) 

~S(p, s) while in case (b) we have a factor - va(-p, s);I-p, s), where 

a and S label the 4 components of the Dirac space. Summing over 

spin we find from both (a) and (b) the result (111.1). Thus, as with 

usual Feynman rules, intermediate quark lines can be treated by a 

uniform prescription. 

* This rule is equivalent in Q.E.D. to specifying,the .opposite 

electric charges of particle and antiparticle. 
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Stappl2 has emphasized that, as in Feynman's original rules, 

a closed quark loop leads to a factor (-1), but the definition of a 

closed loop is obscured by the distinction between momentum ,lines and 

quark lines. Stapp finds the correct counting of closed-loop (-1) 

factors to be achieved by eliminating all color switches from the 

embellished graph 13 and then counting closed quark loops. Thus, for 

example, for each of the 3 graphs of Fig. 4 there are two closed-loop 

* factors of (-1) 

* 
The notion of "quark loop" vs. "diquark loop"may be helpful here. 

One may say that dlquark loops have factors (+1) while quark loops 

have factors (-l)--regardless of switching. 

\ 

~" ~!'. 
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IV. ZERO ENTROPY 

Zero-entropy graphs contain no switches and are all contractible 

to single-vertex (planar) trees. l Corrections to zero entropy include 

'ortho-para or color switches on internal lines as well as closed loops 

that may be noncontractible because of nonplanarity. Thus Fig. 1, 

, * even without any quark switches, is' not zero entropy. 

. . 14 10 
Zero entropy is charac,terized by "topological supersymmetry,' 

as illustrated by Fig. 9 which depicts the 3-particle vertices. In 

each case the M funct'ion is the saine function of momentum variables, 

MO( 2 ,2 ;,2) 
3 P , P , P , (IV. 1) 

but a suppressed unit matrix acts in spin-chirality-"color" spaces of 

different dimensionality. Consider, for example, the purely-mesonic 

Fig. 9(a). Here there are 3 quark lines, all "colored" til, each 

carrying a pair of 4-valued Dirac indices. The value of the S-matrix 

element belonging to Fig. 9(a) is obtained by multiplying M~, which 

depends only on momentum, with the Dirac factors 

[-Vk(p", sk}vk(P', sk)J[Uj(P', sj)vj(p, Sj)J[ui(p, si)ui(P", si)] 

(IV.2) 

Corresponding S-matrix factors associate with the other vertices of 

* 
Without any quark switches Fig. 1 could be contracted to a single 

vertex with 2 "naked" tadpoles. As discussed in Ref. (15) such a 

nonplanar vertex is "implicitly weak" and does not contribute to our 

definition of "strong interaction". 

.~':' r 
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Fig. 9; here "color" must,be cons~dered.9 In a sense these factors are 

"kinematical"; zero-entropy dynamics resides in the supersymmetric M 

functions whose dependence on spin and chirality, as well as on "color", 

is trivial. 

Zero-entropy dynamical equations, whether on shell or off shell, 

ascribe to each closed momentum loop a uniform weightlO 

f 
2 

(-32) -32 (IV.3) 

because there may invariably attach either a diquark loop or a quark 

loop. As explained in Ref. (10),' it is possible to renormalize ~ 

functions by the rule 

N-2 
~R= f -2- ~ (IV.4) 

so as to achieve dynamical equations for ~RcorresPOnding to loop­

weight 1. One then deals with a planar spinless, colorless, flavorless 

dynamics; all quark lines may be ignored. 

For the special case N =' 3 depicted in Fig. 9, it is convenient to 

* define a dimensionless parameter go by 

1 0 2 2 2 
go = mO M3 (mO' mO' mO)· 

Correspondingly 

* 
The general dimensional rule is 

.N 4-N 
dim Mr' = (energy) 

(IV.S) 

2 
gOR 

2 
f go 

14 

.{' (j 

(IV.6) 

10 16 2 2 . It has been argued ' that gOR/16rr has order of magn1tude'unity, 

which means in view of (IV.3) that go is small--similar in order of 

magnitude to e. This fact is important to our definition of "strong 

interactions"lS and can be exploited in a perturbative strategy to 

'evaluate the Feynman expansion. Deduction of zero-entropy M functions, 

however, cannot be approached perturbatively. We are faced here with 

nonlinear bootstrap dynamics. 

As discussed in Ref. (1) it is necessary to associate a zero-

entropy 2-line connected part 

MO(p2) 
Z '" 

J 
M~R(pZ) 

with a trivial vertex. What is the connection between M~(p2) and the 

familiar notion of a "mass operator" l:o(pZ)? Comparison of the 

discontinuity formula satisfied by M~(p2) with that satisfied by 

l:o(pZ) leads to the association* 

M~(PZ) Z 
l:O(p ). (IV. 7) 

l:0(p2) is a real analytic function with branch points at pZ 

2 

Z (Zm
O

)' , 

(3m
O

) •••• 

2 Z 2 fa) 1m l:O(x) (IV.8) 

* 

Z 
l:O(p ) 

(p - mO) dx Z' 
-- J 'Z 2 

rr 4mZ (x-p )(x-m
O

) o 

Recall that positive scattering amplitudes correspond to negative 

mass shifts. 
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with 1m ~0(p2) <0* given by sums of absolute-value.squares of 

zero-entropy vertex functions, integrated over the mass shell as 

schematically indicated in Fig. 10. We further anticipate that the 

analytic dependence of any zero-entropy vertex function on the p2 

carried by anyone of its attached lines will include all t 0 

poles except the 

(IV.B) with Fig. 

elementary particle pole at p2 = m~. Formula 

2 11 then implies this same property for ~O(p ). 

Consistency considerations, to be discussed elsewhere, have led 

us further to assume through (IV.B) that 

. 2) 
~O(mO o 

and 

[ d 2 ----z ~O (p ) 1 
dp 2 

P 
2 

mo 
O. (IV.9) 

The possibility of continuing zero-entropy functions ~ off mass shell 

and of defining a zero-entropy mass operator is essential to the 

Feynman rules that will be developed in the following section. 

In connection with off-shell continuation it is difficult to 

avoid thinking of zero entropy in a ~3 Lagrangian spirit as being 

defined by the (renormalized) parameters mO and gOR.Although some 

concepts from such a model--such as Fig. lO--appear relevant, we 

poi~t out three major points of departure: 15 (1) Only planar 

graphs contribute to the building of zero entropy. (2) There is no 

reason to suppose meaning for a perturbative expansion· in powers of 

* See previous footnote. 

~~ , .... ( 
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gOR. (3) Although the value of mO simply sets the mass scale, the 

* value of gOR is preseumed to be determined by duality. 

* Think, for example, of a·planar Bethe-Salpeter equation based on 

cubic vertices of strength gOR; gOR must have that value which 

makes the mass of the lowest bound state equal to mO. 

~~'"' { 
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V. STRONG FEYNMAN VERTICES AS ZERO-ENTROPY CONNECTED PARTS 

The contraction rules of Ref. (1) imply that most internal 

elementary-hadron lines in Feynman graphs carry a switch. Following 

Ref. (15) let us describe a line without either or tho-para or 

"color" switch as "naked". Internal naked- hadron lines almost all 

disappear through contraction; in fact, by the terminology of Ref.(lS) 

there are no naked internal hadron lines in a purely-strong-interaction 

topology. If any naked internal hadron survives after all contractions 

h<;ivebeen made, then one (or both) of its vertices is "weak"--either 

"explicitly" or "implicitly". 

A vertex touching only "clothed" (internal) hadron lines--

carrying a switch--and single ends of naked hadron lines (no naked 

tadpoles) is a zero-entropy connected part and is defined in Ref. (15) 

to be a "strong" vertex. External hadron lines are always naked, but 

the only internal naked lines that survive contraction are "tadpoles"--

with both ends at the same vertex--or lines impinging on a vertex that 

receives an electroweak bOson. The latter vertices are "explicitly 

weak" and the former are "implicitly weak", as explained in Ref. (15). 

Neither is a zero-entropy connected part. 

It follows that ~ strong~interaction component of the topological 

expansion is built from zero-entropy vertices, naked external hadron 

line~'-and clothed internal hadron lines. In the following section we 

show how a "clothed" propagator is calculated from the zero-entropy 

mass matrix in conjunction with the plug factors of Sec. III. Thus, 

assUming the zero entropy problem has been solved to provide the 

vertices, a complete prescription for calculating any purely hadronic 

interaction will have been furnished. 

16 
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VI. THE ELEMENTARY-HADRON PROPAGATOR WITH SWITCHES AND TRIVIAL VERTICES 

The adjective "clothed" is potentially misleading; we are talking 

about a propagator with switches and trivial vertices but no closed loops. 

The topological expansion includes an indefinitely-large number of 

switches, but one can in closed form sum over all numbers of switches 

and of trivial vertices. Because all strong-interaction components of 

the topological expansion are built by connected sum of zero-entropy 

single-vertex components, it follows that exactly one switch intervenes 

between any pair of adjacent strong-interaction vertices. The sum over 

all numbers of switches between two nontrivial vertices is indicated 

in Fig. 11., Each switch corresponds to a factor 

iX 
-2--2-
P - mO 

2 
and each trivial vertex to a factor - i ~O(p ). 

series is denoted by i Dx(p), then 

DX(p) 
1 

2 2 
P - mO ( 2) 
-- - ~O P 

X 

(VI.l) 

If the sum-of the 

Ol1.2) 

It is essential that the unit part of the plug matrix has been 

omitted; each plug must contribute complexity to the topology. The 

operator X has been constructed as the sum over all plugs where some 

mismatch--either in color or in chirality or in both--has occured. 

The required-Feynman rules have now been given. If all zero-

entropy connected parts ~ are known, including M~, any strong-interaction 
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component of the topological expansion is computable. It may be 

remarked that the on-shell value of M~(p2) and its first derivative 

vanish; an approximation at the zero-entropy level never requires 

the 2-line connected part. But to calculate corrections to zero 

entropy the trivial vertex is essential. A related remark is that 

the external lines of our Feynmangraphs are always naked and vertices 

receiving external lines are always nontrivial. 

~, ~: 
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VII. TOPOLOGICAL ASYMPTOTIC FREEDOM (TAF) 

Our Feynman rules attribute all breaking of super symmetry to 

the switching matrix X and thus to the propagator Dx; strong vertices 

are supersymmetric. We now argue that even Dx(p) is asymptotically 

supersymmetric--in the limit p + 00. 

The formulas (111.3), ~IL4) and (111.5) for X may be written 

shorthand as 

X = Nrl' - 1 (VII. 1) 

here P is the -"color-singlet" projection operator (p2 P) in an 

N-dimensional quark-permutation space, and r acts only on spin-

chirality. For mesons N I, for baryons N 6 and for baryoniums 

N 4. Each P has one eigenvalue 1 and N - 1 eigenvalues O. It 

is then possible to rewrite Formula (VI.2) as 

P 
D 2 2 x 

p - m 0 k 
-X- - 0 

P 
2 2 

p - mO k 
--- - 0 -,p 

X 
where 

P 
Nr - 1. X 

+ 

+ 

----L= P 
2 2 

P - mO k 
---X- - 0 

1 - P 
22,<" 

-(p - mOl - "'0 

We may regroup the terms of (VII.2) to write 

'" 
( 

(VII.2) 

(VII.3.} 
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D = DO + Dl 
x x x (VII .4) 

where 

DO " 
1 

x 2 2 
-(p - mO) -: 1:0 

eVILS) 

Dl = p { 1 1 } x 2 2 2 2 • 
p - mO 

- 1:0 
-(p ,.. mO) - 1:0 

p 

(VII.6) 

X 

It is apparent that DO is supersymmetric while Dl is not. But let 
x 'x 

1 
us examine Dx as p ~ m. 

From Formula (IV.8) and the condition that Im 1:0{x) is negative 

2 2 ' 
definite, we know that 1:0{p ) behaves roughly linearly as p ~ 

234 
Because r - p , rb - p, rb i - P , the first term , meson aryon aryon um 

'<' 2-1 within the bracket of (VII.6) then asymptotically approaches [- ~O{p )] • 

What about the second term? 

It is reasonable from experience both with dtspersion relations 

* and with Feynman itegrals to expect 

2- 2 2 1: (p ) > p R.n p 
0, '" 

p2 ~ m {VII. 7) 

If we so assume, then the second term of the bracket (VII.6) also 

2 -1 
approaches [~ 1:0{p)] and the two terms asymptotically cancel, 

yielding 

* 

D (p) 
x 

_ DO(p2). 
x 

p~" 

(VII .8) 

We expect nontrivial zero-entropy vertex functions to decrease strongly 
2 

as p ~ m. 

';~). li 
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There is striking similarity here to the QeD feature of large- p2 

gluon decoupling--the feature that has been called "asymptotic freedom". 

The parallel becomes even more compelling if we remember that the 

complete (not shorthand) topology associates "col~r" and chirality 

* switching with lines on'a "classical surface" that have been calleq 

3 "top?logical gluons" --for reasons recognized before development 

of the Feynman rules described here. 

2 1 " 
Even if p is not extremely large the term Dx appears to be 

sufficiently small so as to be treated as a perturbation. In this 

connection we note that the projection operator P brings a factor 

lIN which depresses Dl for baryons and baryoniums. There is no x 
2 such depression for mesons but closed loops of maximum weight (32 ) 

cannot contain meson lines. We therefore expect supersymmetrical 

features to survive in the properties of physical hadrons. Detailed 

study is needed to identify those physical quantities with the best 

chance for exhibiting approximate supersymmetry.** 

* The classical surface houses the thickened Feynman graph but is not 

identical thereto because the classical surface contains junction 

lines where sheets join in threes. The Feynman graph resides on a 

single sheet. 

** The results of Ref. (9) encourage early attention to dimensionless 

coupling constants. 
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I 
Smallness of Dx does not mean that zero-entropy is a good 

approximation. In particular the supersymmetric (gound state) 

I hadron mass mO--which emerges from the zeroth 

expansion--is not expected to be close to mO. 

order of the DI 
x 

I 
The ratio mOlmO 

is an interesting characteristic of the'theory, but note that our 

Feynman rules are g~ven in terms of mO. Mass renormalization has 

not been attempted here. although future development in such a 

direction may be anticipated. 

~, 
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VIII. SUMMARY 

We have presented complete Feynman rules for strong-interaction 

components of the topological expansion in terms of zero-entropy 

connected parts. The new feature is Formula (,VI.2) for the elementary-

hadron propagator Dx(p) with "color" and chirality switching. together 

with the auxiliary formulas (111.3). (111.4) and (iII.S) for the 

switching matrix X. These formulas have been integrated with a pre-

viously-developed thickened Feynman graph--that carries quark lines as 

well as momentum lines--and with phase and normalization rules given 

by Stapp. 

It appears that. for certain physical questions. color and chirality 

switching may be treated perturbatively through a power series in DI x 

as defined by Formula (VII.6). The zeroth-order terms of such an 

expansion exhibit full topological supersymmetry even though they do 

not correspond to zero entropy. 

We identify the idea that p + ~ produces simplicity by the term 

"topological asymptotic freedom" (TAF). Crudely speaking. a very 

large number of switches restores the supersymmetry characteristic of 

zero entropy (where there are no· switches). On the reverse side of 

the coin it .is noteworthy that Xmeson{p) + 0 as Ii + 0, suggesting 

that·forsome questions involving low-momentum mesons it may be 

profitable to treat switching as "weak"rather than "strong" • 

. We comment in closing that one anticipates large supersymmetry' 

breaking from infrared electroweak;"boso~ contribtitions--topological 

theory's analogue of the Higgs mechanism. Techniques for handling 

zero-mass scalar and vector internal lines in Feynman graphs remain 

"~ .. ~ 
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to be developed, and at this point we do not know which physical 

questions can be approached without having solved the infrared 

problem. We suppose nevertheless that application of common sense 

will allow certain interesting issues to be dealt with through the. 

machinery here described. The old idea--that for certain purposes 

electroweak interactions are negligible--cannot be completely wrong: 

.,. c 
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