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I. INTRODUCTION

| The nonlinear one-dimensional theory of
arterial flow, presented by Lambert [1;2], has attrac-
ted conSiderable attention by researchers’[3~27]. The
theory is concise and, due to the inclusion of nonlinear
effects, is capable of more falthfully representlng many
phenomena in the major arter1es than prev1ous theorles
[3,17,22-25]. The method of characterlstlcs has been
employed in conJunctlon with the theory to generate
numer1ca1 solutions to simulated arterlal flow problems
[1,2,4,5,7-12,14,16,17,23,24] and wave front analysis
has heen used to derive exact relations governlng thek
growth and decay of wave fronts [8,18-20]. -In addltlon
asymptotic solutions have been'developed to exhibit the
first and second-order predictione of the theory for
pulsatile flow problems [15,18]. Results of these
studies have indicated that qualitative features of the
evolution of the natural pulse, whioh’arefanomolous
within the scope of the classical linear blood-flow
theories, can be accounted for within the nonlinear
theory [15,17,18,23,24]. Accordingly, much insight
into the physics of arterial flow can be gained from
the theory. |

Since Lambert's initial work, attempts have

been'made to attain a deeper understanding of the
basic theory. In this regard the work of Barnard

et al, [7] isjnoteWorthy. They endeavored to derive




rationéily a one-dimensional theory based upon the
Naviér-Stokes equations for incompressible, axisym-
metric flow employing approximations for pulsatile

flow bésed on physiological data. In their derivation
they included effects due to a curved flow profile
satisfying a no-slip boundary conditibn. The fesulting
theory;vbeing mOre'refined, helps’to idéntify the |
apprbkimatibns inherent in Lambert's ﬁhéory,

A further generalization, of,thSidErable
physiological significance, is the inclusion of an
outflow term in the equation of mass conservation to
~simulate blood loss due to branehing. This term first
appeare& in Rudinger's review article [9] but no
derivation s given. Hughes and Lubliner [27], in
their’dérivatioh of the one—dimensioan1~theory,'have
shown'ﬁhét_an outflow term may appear in the momentum
balance equation as well as,the’equation of mass
'conservation. The experimentai'data for the aorta
employéd in the extensive numerical sfudy of Rockwell
[17,23,24] indicate the necessity of aétpunting for
outlewfin real physiological circumstaﬁces.

An'interesting development in the application
6f the theory appeared in Rockwell's thesis [17], in
which the theory was used to identifyfthe consitutive
equation (pressure-luminal area relation) for an
assumed’elastic artery.from expérimentally determined

pulse wave data. This procedufe illustrates the




potéﬁtial usefulness of empldying thé;theory, in
Conjﬁnction with wave propagation data, for identifying
the noniinearkmechanical propertiés of arteries - a
problem of considérable physiolbgical«importance.
Howevef; it is well known tﬁatvarterieélbehave in a
nonlinear viscoélastic»fashionband thé‘identification
of-aVCOnstitutive equation repteéentihg this behavior
is cOnsiderably more difficult. The importaﬂ@é of
including such effects in arterial flbw,prbblems has
apparéntly not yet heen assessed. |
| Despite the many references that have already

appéaféd'on the one-dimensional theory, certain
fundamental aspects of the theory are still poorly
'gnderstodd. An eXample of this concerns"shock waves
for which at least four mutually Contradictory
éxpreésions have already been»publishéd governing the
shock'structure. It is to basic analytical”issues
such as this one that the preseht wofk is addressed.

In Chapter II the derivation'bf the theory
is cbnéidered in detail. The results in [27] are
extended to explicitly inclﬁde setond-dérivative
viscosity terms and it is shown 1atertoh;how the
inclusidn of these terms points to a clarification of
the shock structure problem.'vIn addition, a consti-
tutive theory is presented for the mean pressure-
luminal area relation which accounts for nonlinear

elastic and viscoelastic phenomena.




The simplest form of the ohejdimensional
theorykarisesvwhen the fluid velocity-ptofile is
assumed flat ovér,the lumen. The’re$u1ting theory,
termed the flat-profile theory herein, is the subject
 of Chapter IIT. TIn most applications to problems
df arterial flow the second?derivétiVéJviScbsity’term
can bé~eliminated in the one-dimensional‘theory and
the resdlting differential eduationéfare'of the
Qﬁasi{inear hyperbolic type. Basic doncepts ébout 
these systems, such as weak solutions,vare discussed
in Chapter III and. the well-pdsedness of various
initial-Boundary value problems.arisihg in arterialy
flow is considered. [t is shown how two'diStinct
shock stfuctures can be asSociatediwith‘the quasi-
1inear‘hyperboliC‘Fbrm of this fheory;'but'if one
finsisfs that shock solutions arise as limits of viscous
ones, then a unique shock sttﬁéfure iéysingled out.

The velocities of various wave mdtions;are deriﬁed =

i : : :
and the stability of shock profiles is determined in
‘ termé df qualitative properties of the mean pressure-
luminalvarea relation. The local quaiitative growth
and decay characteristics of shockskaré,established
andyéhown to compare favorably with the experiments of
LandoWne [51,52] involving induced impactkwaves.
Simple'identification procedurésbforgthe'mean pressure-
luminal~ar8a relation are discﬁssed”ahd‘it is exhibited

how wave propagation data can, in principle, be used




to determine eertain model constitutive relafions.
Finally, the way in which the sh0ck relations may be
considered approximations for smoothepuiSes is esta-
blished.

| When the fluid velocity profile is assumed
to satisfy the ﬁb-Slip boundary COnditidn on the
luminal surface,a refined one-dimensional theoryearises.
This theory is termed the no-slip'theery:and is stu-
died’ahd compared with ‘the flat-profiie theory in
Chapter IV. Many qualitative aspects_ef’the two
theories are shown to be in substantial agreement.
Terms present in the no-slip theory bﬁt absent in the
flat4profi1e theory (e.g., a term measuring the
,deviatien from a flat prefile in.the.momentum equation)
are stﬁdied”numeritally using Rockwell'e model of the
canine aorta [17]."The shoek‘relatioﬁs'for the no-slip
theorykere determined and found to be inconsistent with
these-for the flat-profile theery. This iS'net SO .-
eurprising in light of the well known'fact that as
vischify tendsvtowards zero, solutions ef the Navier-
Stokes equations do not converge to solutions of the
Euler eduations' when boundarieS\are:present. Since
the no~slip boundary condition is vieWed_es physically
more realistic thaﬁ;the flat—profilefbeendary condi-
tion ;ione'is lead to view the ne-slipishock conditions
as correct. In addition, it is shown that the no-slip

shock'relations imply that momentum is conserved,




whereaé the ‘flat-profile relations dohnof. ‘These
results enable the ambiguous situation in the 1itera-
ture to be cleared up. |

| In.the weak-shock limit bhoth theories agree
through,first-brdér measures of the shoék,amplitude.
However,’an.analysis of some data;¢a1cﬁiatedﬁby
Rockwell [17] indicates that for stronger shocks
différehces may be substantialQ"'

Finally, the growth and decéy,charaCtéristits
of accelefation waves are consideredfihfthe ﬁontéxt
of the no-slip theory;"This enables intefpretations
of the formation mechanism of the’dicrotic-notch and,
as has been pointed out previously [18,20], the ffont
of the éardiac‘pulse. |
g 1n Chapter V, some problems associated with
numerically anaiyzing the theqrykareVCOnsidered.k The
Lax-Wendroff and'Abarbane1~Goldberg aigorithmé are
studied to determine their applicabiiity to blood-flow
problemS; ‘Numerital results indicaté“that,one Can”
captﬁre'the appropriate class of shoék‘relafions, buf
instabilities, which ostensibly emanate from the
boundéry conditions, either make soiutions impossible
or Cén only be made to go away by treating’the boun-
dary conditions in,such a way as to detrimentally
affect the accuracy of the methods. |

It is argued that realistic natural pulse data

is shock-1like within the context of the one-dimensional




theories. The opposite has been_ébnciﬁded by some
authors'because of the smooth fronts produced in nume-
ricalfsimulations,vbut this smoqthinérisfdue to the
dissipation and dispersion inherent in the algorifhms.
This feature of the’one-dimensional'simuiation of

the ngtural pﬁlse is contrary to expefiméﬁtal data,.

An explanatibn of this phenomenon has not‘beenvgiven,
élthough it may be.attributable to featutes 6f the
.physiCal sysfem not yet inclddedvin fﬁé model-(e.g.,

the curvature of the aortic arch).




II. DERIVATION OF THE ONE- DIMENSIONAL EQUATIONS

2.1 Introductlon

This section overlaps considerahly‘the paper

"On the One-Dimensional Theory of Bldod'Flow in the
Larger Vessels' by the author and J. Lub11ner [zT].
The ma1n po1nts of that paper were to show that an out-
flow term may appear in the momentum balance and that
assumptlons of ax1symmetry were unnecessary for deri-
‘v1ng the theory. However, here the approach is sl1ght1y
more general and this add1t10na1 generallty is necessary
for an ‘understanding of some of the work. to follow.

| As was shown in [27], the starting,pointrfor
the development of a rational one-dimensional theory of
flow through a‘distensible, permeableltube,(e.g.,an
artery)'is a corollary of the Reynolds Transport
Theorem. 1In what follows in:this section it is assumed
that all functions are smooth'enoughrso'that'all opera-
tions make'sense | |

2.2 Geometry and Kinematics

Assume the tube is a11gned w1th the z-axis of
a rectangular cartesian coordinate system whose canoni-
cal coordlnate functions are denoted xg,‘xr amd. Xa .
Po1nts in this system are denoted by<9<% 3) . The

1um1na1 area is denoted by S (not necessar11y assumed

circular) and C is the luminal honndary (Fig. 2.1).

The symbols S and C will also denote functions:




| = %.4xe,‘ 2.




10
the luminal area at the point g3 at time € . let
g: RY—~MR ,,C?é,g,%,t) — 80x,4,3,T)
be a smooth’function, and,define'itsd2£§3'§e§£ to be
$-($5aa)/s  RP—R
where:d@L is thev(Lebesgue) measore eorresponding to
S . This always makes senseé since by assumptlon

S>0 '. Denote by <2 the measure assoc1ated w1th

s Let -r be the fluid veloc1ty vector. The

z-component of is denoted by ~u;=gx3°f5 . Let

~

Q:cjgﬂ?i-—e-ﬁ?a ‘be the unit'outward normal vector
to the'tube The tube in general w111 have an arb1trary
degree of time dependent taper, thus r1 does not

- necessarily lie in the plane defined by, S . No"
aSsuhption is made about v on C thus fluid is free
to pass-through the luminal boundary. Let g repre—

sent the component of < in the'direCtion n , i.e.

_—

«x1==if-t3 . If o, denotes the normal velocity of the

lumihel sUrface, then uw", the relatlve normal velocity

of the lumen, is defined by ut, = -+, . Thus

the amount of f1u1d leaving the tube through the luminal

surface is measured by -z, . The material time

derivative (derivative,following the;motioh):is denoted
by a superposed dot, i.e., ? = =§/oc + Frod § .
With these definitions one can obtain the folloWing '

identity:
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gf@g) “’%ESC?’”H_ 1-—-
= w7 ) e
35(%‘; Foir ) (2.2.1)

+ S g e -

C

The detiVation is given essentially ini[Z?], although
there it was assumed divw-o from the start and thus
the term é E dwrda was absent. .The generaliza-
tion makes (2.2.1) applicable to compféSSible as well
as incbmpressible flows. | | .

| The significance of (2.2.1) is as follows.
~Every balance law in mechanics'involﬁes'terms of the
form € + § d#v“ff . Two‘examples,’whicthill be
‘used here, are conservation of mass (%éyagrngﬁs‘dsn$t%)'
and balance of momentum (§ = ¢y = momentum d.ensit%‘ ). |
Most’of the difficulties of derivingybné-dimensional
théories is computing the correct oneFdimensional
~countérpart of % + B diu*1; . Equation (2.2.1) is
the device by which this'computatibn‘can be carried
out." k |

2.3 Oné-DimenSional Equations of Blood Flow

The basic assumptions'are: 

(A) The flow is iﬁéompressible, which may
be stated in the alternative forms ‘é#é> or d@ugg=13.:
,This éssumption can be justifiedfoh thefbasiSFOf the

distensibility of the vessel compared with the bulk
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compre551b111ty of blood [\8]

(B) The fluid is homogeneous»‘ap/ax1==o.

Together with (A) this implies ¢ = cqnstant. These two

assumptiOns and (2.2.1) imply the onefdimensional,

equation of mass conservation for an incompressible,

homogeneous fluid:

oo . _a_a_}SV + \\f___o .  ’('2.3.1)
where -o=-2;  is the mean axial velocitzfand
= = %nur dL is the outflow function. The

derlvatlon of (2.3. 1) involves 51mn1y substltutlng [e

into (2.2.1), noting that G=¢ . o, #‘th; ~ and
dividing through by o . This equatidn,rwithout the
~'outflow term, has been traced back to Fuler [\B] Its

modern dlscovery is due to Lambert [I ] The formal
baddltlon of the out flow term 1s-due to Rudinger [91.
Note that (2 3, 1) holds even if the f1u1d is not homo-
~geneous, i.e., substltute‘ﬁ = any constant functlon
in (2. 2. 1), [27). However,,in,this case the term '

-@A*rcLL can only be identified_as”proportional
to thelmass outflow if ?1C. is coﬁstant. Itiis
’fﬁrther assumed that: k

. (C) Blood in the major veseels behaves like

a Newtonian viscous fluid,

o~

T s el izen (2.3.2)




whefékjf' is the stress tensor, g;  is fhe'pressure,
I - is the identity tensor, . = constant_is the
‘viscdSity and D is the rate of deformation tensor,
~which is the,symﬁetric part of the veldcity gradiénts.
| : Assumptions (A), (B), and (C) imply that
blood'flow in.thefmajor vesseis’obeys the-Névier?
Stokes equations: ¢+ grad p = ?fi*:}*élﬂi' >
 where # is the extrinsic body forcé:vector and &
is the»Laplace bperatpr. The second équation of the
one-dimensional theory is the one-diménsional counter-
partybf,thé NS equation for the -}-direction:

e e b

The first term can beAcomputed from (2;2.1); 'Set
= :90—3 , then & = Sy oy ~ and thus
g+ Bdioy = o8 v 3 (¢ v paly)
| = @Y% +5(9)
= o5,
by mass conservation. Using"fhis in (2.2.1) and

eliminating o vyields

(onda = 2 (50) + 2 [508] - Quuode,  (2.3.4)

13




The last term (modulo the constant Q' ),‘ is the momentum

flux through the luminal surface. Define ¥ = —*Tz .
The viscous term splits into

Ay = A,y oy + B, - (2.3.5)
3} o ,
whére : ,Ag = aQ:?L 1,,%3_; is the two'—dimensibnal

'Lapla‘l.ce' operator. Integrating (2.3.:5);. ovér_; S yields

SAvsdQ = Ddus d.f +% Bit_fi’do.' £ (2.'3.'6)
S C om - s 23* e _ ,

where use has beeh made of the divergeﬁce theorem, and
v /om denotes the directional kdkex‘fivat‘ive of
Uy with respect to m = (m m,_:.oj ,"t‘he unit
outward normal vector to C _1_1_1_ the plane defined by 3
Putting (2.3.3),

(2.3.4) and (2.3.6) together results
~in |

C5v3+a[:r_]+_l_gé_efdo_:
at %— Sa}~
B S @>[vau~ ooy, (Al
om

(2.3.7)




where -)x/g is the klnematlc v1scos1ty. In the
context of a one- -dimensional theory, thlS equatlon is
not very usefulkw1thout additional assumptions on P
.and’xg . Assume that: ‘ |

(D) ('x%},t) pC%,t)>J..Q.

the pressure proflle is flat. Thus_p5~P and'therefore

- $2Pdo = S9p
53 2%

(E) The ve10c1ty proflle 1s expre551b1e as ;

vc«,%}t) $ Xy 3 €) v (3,€) o

where & , called the profile funct1on,ksatisfies the

consistency condition ¢=1 . With (D) and (E),

Eq. (2.3.7) becomes

a < + (o} _—_—
&cs ) *,5@-[(' S Suv* )] +‘ 2 op |

o3
2 gcg[v%% +d:w,;]'d.9. Lo - (2.3.8)
+ ,JS :b-o—) da.
5 33 , '

~where  8 = —g—é(cbl-— |)daozo by (th‘e S.c':hwart‘z
inequality.
Consider two cases for ¢ :
(E})) The veiocit&,profilewisiflat, i.e.,
¢=| & w3 = . This is'the simplest assumption,
,but is clearly 1n violation of the boundary condltlons

on C ., Equation (2.3.8) then 51mp11f1es to

15




$ o+ v S o . O (2.3.9)

o

3

2+ 5 (o p Y % - . gsan

T 23

Eqs.-(2;3.9) and (2,3.10) are the flatfprofile momentum

and velocity forms, respectively, gﬁyfhe momentum
eguatibn. | | .

The second case is logicélly'pfecéded by the
‘assumptioh: E L

(F) Longitudinal.mbtion of the vesSel wall
is negligible.. Then assume: " . |

| | (E,) & satisfies the no-Slip dendary

’,condition,fi.e., by (F) <$qu5 N The,;onsequences’

of (E,) in (2.3.8) are:

2 (5u) + B CIEXSV) + Sep o
ot e o3 :

SO =
(2.3.11)
Sf + oN + v 3. (Sv) R
_ a3
where N = § 2 dg . The derivation of the
: <oom :

 last term is not completely obvious so the details of

16
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the computation are presented here.

The result to be shown is that if vi=o
on C for all %..then

: a;'v - ‘

é a3?c#l 5§3<5‘*)j
Suppose (x4, 5 t):R— R is C* ,€XpTess
everything in polar coordinates,

da. = d:xd.% = rdr de

LR 0%y, 3, T) =={%(T36’%,t)' 

and compute:

o S vy da =38 S
5

T %Cr*}@a‘%>t) rdrde
23 S 23 o o : :

297 ,
+ é% CQ;e,}m) QC®>},6)§_§C€,},'&)¢6
2T F?CS,},t) i

=959 QE%’CP#S,}ﬁtf)rxircual_
oo Oy e




Line 3 follows from Leibniz' theorem_and-line 4‘from

w% tQ =o . Differentiate again
@. S = Bv* (6,3, t)rci\"OLG
2% 5 o & °o%

2T
& Q_‘éa(f-? 6,3, t) R(e, > t)al?(e} t)de

2 RGag't)
S S <5t@(k‘e %5 t)r*drwie
o3 :

Here again use has been made of Leibnii'vtheorem and

the fact that »%ﬁ.( Ga“a ) = D, (% ,IR) =9 ,
follows from 3(R.©.3.t)=o . Changing coordi-
nates back and noting Svu = Swuida yields the

_ . 2 ;
result.

Eq. (2.3.11) is the gg-slipmeméntum form of

the momentum equation.

Remarks{ (A) It is clear from theiderivation that
veésel deformations in thé‘present theory are accounted
for oﬁly.in the form of luminal area changes which
,Corfeéponds to sofcalledkpreSShre wéyes.‘

(B) S§—~ o  as the profile function'cb approaches

the unit constant function in the L°(3) sense, as can

 be séen‘from the definition of & ; "Thus § may be
considered a measure of the deviation:of the assuméd
profile from a flat profile. As an example of the

range of 'S and the values taken by N for specific

flow profiles, take the case of a circular lumen

18
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(C*=4TS) and an axisymmetric flow profile, in

which
. L . |
= E2 (=) ) . (2.3.12)

where R is a positive integer and R is the luminal
radius. Substituting (2.3.12) in the definitionsof 5

and hJ~ yields

S = 1 /C1+RrR) |
y e (2.3.13)
N = -2(k+2)T»

For 3 Pdiseui11e profile (R==2),~S=l/© léﬂd Pd=»—8ﬂ3ﬂ
The viscosity gfx) of blood for normal‘hematocrit of‘
45 to 50% is between 3 and 4 times fhaf of Water.at the
éame temperature; wﬁile the relative viScosity of blasma
~is about 1.8 [28]. Taking ¢ -equal to‘1.06 gm/cm' for
blbod; the kinematic viscosity <9=a)*/§f) ranges between
.012 and .026‘cﬁ /sec at body_feﬁperatufe (37°C). The
former value éorresponds to plaSma andrthe latter to
normal hematoérit (relative viscosityk4). The corres-
ponding range of N is .31 to .66 cm/sec. As the
‘profile f1attens_(i.e.,’ R inéreases);' S‘ detreases
whiie N increases in magnitudé; Experimental results
indicaﬁe that actual flow profiles mé& deviate conside-

rably from a Poiseuille profile, (e.g., see [29]).
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'(C)’,In the construction of onefdimensionéi momentum
balanées for bloodvflow' one Cén;-under'fhe’appropriate
c1rcumstances, avail oneself of the lonp -wave approx1-
matlon;[18] .or the approx:matlon of [15], to deduce
assﬁmption (H) and eliminate the contrlbutlon of the
sécond-derivative'viscous terms. This'Was dqne in [27]
and thus the second-derivative Viscousjtermé do not
‘appear. The contributions of these terms Shoﬁld be
small in many instances. However, in’the présent
formul#tion bf shocks they piay‘an interestihg role.

(Dj ‘The;oneédiﬁénsional equations.of;blood flow are
similaf to the one-dimensional equationsiof gas dynamics.
In blood flow the variable S plays airdle akihrto'.

Qkfih-compressible flow. Thus many df,the ideas of
thisvate well develoned subject éfe appiicable here
.(éee‘fdr example, any of the standard tfeatises‘

[30, 311)’ and supply a background for understanding,
the one- dlmenslonal blood flow theory

(E)'fkyﬂf and p are assumed to be a551qned
functions; Although this is*more generality than ié
envisioﬁed in application, it is assﬁﬁed that + and
- are at most functions 0f’5$npg}ﬁnd <, and
that thc dependence is smooth. The pfoperties of p

are taken up in the next section.




2.4 ~cbnstitutive Theory

The treatment of constitutive theory here is
patterned after the theory of materlals with memory,

as developed by Coleman and his associates in many

publications_(see for exampie [32]). Some basic notions'

okaehach calculus are helpful to understand the theory
(see fer example [33]). The theory is general enough
so that most of the results to follow do not depend
upon.aeﬁarticﬁlar model. However, in:Subsequent sec-
tions it is sometimes cenveﬁient to abandon this
general descr1pt1on in favor of more spec1f1c forms.

Let C denote the space of contlnuous
functiphs from G«n’t‘] into ™R ., Points in C
are called histories. To each history .9<e (@

corresponds the unique decomposition

where

s xCa) i
Ky = '{ L

: o e

- (2.4.2)

=" (ar) = '

o X Ca) o€

x is the instantaneous part of x and

x" 'the past history'of,-x .

Let T be the space of pairs (x5 x")

contructed from members x of . Clearly"ai and
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C are isomorphic. To each functionai F on C
(maps'from C to R ) there corresponds a functional

—

F on C defined by
Fxt ") = F(x). S - (2.4.3)

Let> I be a norm on C which depends only‘ Upon

e
the 1nstantaneous part of each member of C and let
- ‘\\‘_ be anormon C. Whlch depends only on the

past hlstory of members of C . The sum
| Y| KEY | AR S| R | SR (2.4.4)

defines a norm on C and on c . The'completions of
C , C with respect t’o h- -defih,e isdmorphic

~Banach spaces whichAare denoted by B,ré; respectively.

| A functional F on B is' (Fréchet) differ-
entiable at Xe (x5, %x") e B ixf_'f_here‘ exists a

lineaf map 2 such that | - ’

FOcan®, xa ™) = Fxx™) +
; ‘ ; - ‘ i (2.4.5)
>~ (RS hT) + o ini) .

for each he B , as Ihll—-o . The map X 1is the

derivative of F at x and is denoted by DF (x)

In Components,
DFE(x) = (DF &), sz(x)j , (2.4.6)

and DF is called the instantaneous derivative of F

—

and Dz? ‘the past history derivative of F . F is

s
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said to bekdifferentiable if it is differentiable at
" each f"(ok*,x")e B . 1f F is different'iable at x ,
the partial derivatives may be computed‘(via the

- Gateaux definition) from the formulas:

D, FGO)-ht = a F(x*+e hf) ") t

- - : (2.4.7)
DEGO W = & F(xt, x"reh) |

; _ de : €=0

A mechanical model with memofy is one whose constitﬁtive
'funCtiohal FB—R is differentiabie~ah& {1

is finite for "reasonable" past'histories. An example
illustrétes what might be considéred'reasonable;

Certainly ~" = constant should be among'thevclass of

reasonable past histories. Define Hf,ﬂp by
! 4 V&N . : . .
fxll, = C 5 Ixl av ) o (2.4.8)
o C—-oq,‘é] : ;

Wheré  v'visvabso1ute1y continuous with respect to
Lebesgue'measufe such that Hlxlu~<lao _f'for all
conétént ko<€ B . A Candidatéjfor v can be cons-
Atruéted as follows: 1et‘)¢' bé Lebesgue measur¢ on the
/u~—kmeasufab1e subsets of G—aé,ﬁj, . Fix 'Te.an,éj

and define ¥ by
V(A) = o (A LT, t]) (2.4.9)

where A is any s+ -measurable subset of (oo,t]. In
‘this case F would characterize a materialkwith'finite

memory extending back to T . Note that if
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Flxt,xm) = E(x5,=xT) (2.4.10)

for all % and past histories ?xr;5<;,then F can be

represented as a function on the firstkcomponent
F(x®) = FlxS«") . [(2.4.11)

Such functlonals characterlze elastlc behav1or, their
memory belng restricted to the present 1nstant.

On the other hand, if
Fixt,x")= FG&Ex™) (2.4.12)

for all " and instantaneous values ~ ‘and x5 ,
then F can be expressed as a functional on the second
component

F(x") = Fxt="). S (2.4.13)

Such materials represent the absente bf,instantaneous
élastickbehavior; e.g., the Kelvin mddel of linear
viscoelasticity. | ’
In the present work, mafériais are ¢onsidered
in which E depends non-tri?ially upoh,both components.
| The (wall) constitutivé’equation is the case

of interest here. It is assumed to take,the'form:
PC3:t) = B (35,375 3,t) C(2.4.14)

where p(-, S F>t) =E5-—%+ R represents a

material with memory, in which S° and S are notations
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for Sfc},-) and :f(},-) where

5. = SGa) + 5"(5’..)‘5' (2.4.15)

is an element of E) .
It is necessary to compute ap/ag_ , since

it appears in the momentum equation. By the chain rule

e GO = DFCS 3,6) g%:(g,c) .

+ DF (8,55 3,t) _g_%bCa_, ) (2.4.16)

+ D.S'P‘ (St>57‘3 ?f’t) :

By_the above : _ ‘
25°(z€) = 23(3€) . (2.4.17)
23 = 23 ‘ S
Thus in the first'term of Eq. (2.4. 16) ‘the dot just
represents multlpllcat1on whereas in the second it
represents the actlon of the linear map E&j) upon
ggi s The flrst term 15 a measure of 1nstantaneous
: elast1c response, the second d1551pat1ve effects, and
~ the third, axial 1nhomogene;ty. ‘
| ‘A From physical considefatidné it is assumed
that . ” -
D‘ﬁi > o . o (2.4.18)
For typical arterial behavior (see Fig. 2.2)
. .

:D,*;s = DDpF = o e (2.4.19)

‘however, any assumptions made upon Cfﬁ“ will be
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stated as they are used. D;a and [)p) are called

the flTSt and second 1nstantaneous tangent modull,

respectlvelv. In the sequel they w111 often be denoted
simply by P, and B, , respectlvely. |
For a fixed hiStory s", théfonCtion,

ﬁi(-,ff;-g,f:)’ represents the instantanedus response

functlon at Cg t); it is assumed to be a d1ffeomor-
ph1sm over a preassigned domain of . .5 y 1.e., it and
its inverse are smooth and one-to-one. It is also
assumed that B is smooth with respect td slots 2 to
4‘ | | B ; l
| Note that § is assumed to depend explicitly
upon T (4th slot) to 51mu1ate phy51omechan1ca1 changes
produced for example by the adm1n1ster1ng of a drug.

If p.=o is the constant ambient pressure,
1t is assumed that

since otherwise an artery would tend to collapse.
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Figure 2.2.

o Schematic of typical;instantaneous pressure
(p) vs. area (S) curve for an artery.
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IIT. FLAT-PROFILE THEORY

3.1 Introduction '

- The continuity equation

35 + 250 + b =o | | (3.1.1)
>t 23 i

when combined with the flat-profile veloeity form of the

momentum equation,

,5‘__’ + (u— + _.> ")’; + aa—;— . (3-‘1-2)
and the constitutive equation'

p=cP |, (3.1.3)

Comprise the simplest model fbr‘simulating arterial
flow. This system of'equations,vwith V=0 , a Speeific

form given to P (usually P is assumed to represent

only elastic behavior), and often ignored, has

attracted considerable interest in the eng1neer1ng
blood flow 11terature - It is the purpose of the

present,chapter to establish some of the basic proper-

ties of this system.

3.2 Cauchy Problem

In most ﬁroblems of_arterial blood flow, the
effeCtVOf the second-order viscous term iﬁqu. (3.1.2)
iskqeite small and thus this term is omitted (see
Remark (€), p.20). In this case, Eqs.-(s.i.i) - (3.1.3)
constitute a pair of qeasi-linear, hyperbolic, func-

tional-partial differential equations. A system of




this sort can always be put in balance law form?*

2U + 2 F(U) + G(U) = o 3.2.1

ot =~ ‘a%'"(u) ,ET(Q) 9‘ o ),
though not necessarily uniquely. When §=g , Eq. (3;2.1)
is said to be a system of conservation laws. 1In the

present case, Eqs. (3.1.1) - (3.1.3),

e D sd e
and g(g)z C\V)_T:) s
1f thé<potentials. : S
| >
P(3.e) = § Vg, 0)dy

Fl3.t) = (% (3,043

' ére defined, Eqs. (3.1.1) - (3.1.3) can’be put into
conservation law form, i.e., set U =(35,v),
CEW) =(Surd, g F-F), GW)= o.
Systems;such as Eq. (3.2.1) possesé‘discontihuous
solutions, even for Cf°initial data,vthé form of .
which depends upon the way the:sy5t¢m is written. An
exampie, due to Gelfand[34]; is illu#trative'of what
is meanf’by this: |

Consider the single conser#ation law

p A ;
Pl 3 o ) = R 3.2.2
o + 2 (g)=9o ( )

% When there are more than two equations'this is in
general not true; see [35]. :




It can be shown that if - is discontinuous across a
curve 2 = cﬁq(t) , then the jump (o l= o —w*

must satlsfy

A)‘[oj “Iw s

where LL‘=-%&f . Note however that Eq. (3.2.2)

can be written as

e

2.(

\Y

)+ 2 (g=e, B2

which is also a conservation law. The associated jump

condition across a curve 3= 4, (t) is
2 - 3 S
,»;.[*—2{—] -1 (3.2.5)

where au, = % . The s are seen to be the propa-
gat;on velocities of the discohtinuities' In‘general
Ay, ‘=% ., and thus Fqs (3.2.3) and (3.2. 5) deflne
two dlfferent classes of dlscontlnuous solutlons for

_ the conservatlon law, Eq. (3 2 2). In fact, by

| mu1t1p1y1ng Eq. (3 2.2) by hlgher powers of ~tf , an
1nf1n1te number of conservat1on forms can be obtalned
each one with a different class of_d15¢ont1nuous
solutions. The qﬁéstion naturallyfafiées, which:qne
is phy51ca11y relevant’

This questlon is not an abstract one, s;nce

Eqs. (3.1.1) - (3.1.3) can be written as a system of

balance laws in more than one way. The alternative
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formsdinvolve Eq. (3.1.2) and are'illusirated,by the
following example: o

._ Assume forfsimplicity:that ;ﬁ' depends only
updn the instantaneous vaiue'of S ,:i;e{, PrR— R.
Multiply Eq.,(3.1.2) by S , déndtev[jﬁ‘_by P, » and
employ Eq{t(S;l.l)fto'get | 5 ’

5651;)' + a (é-u- -:—:Oéi P5C5 )dS) =+ -U'N*/‘ 5§ ‘(3-2-‘6)
which is in balance law form. Thus Whén ’;5'='):">C.5)

and Yy=0 Eq (3.2.6) is equ1valent to the flat
profile momentum form, Eq. (2.3.9), ‘The jump condition
associated with the velocity form is.

o] = [+ Bl | (3.2.7)

> .
whereas the,jumpkcbndition'assoCiatedeith the momentum

form is

, S
Lol =[5t S SR

(3.2.8)
-_These are clearly different.  This eXamnle is in féct
general, i.e., it does not depend on the 51mp11fy1ng
assumption made for“a . Note that Eqs. (3.2.7) and

(3.2,8) can be put in the alternative forms

o = [S5w*]+ § 5@ | O (3.2.10)
: 5+ : v

where r* —.u-.% is the relative velocity with respect

to a fluid particle.
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In continuum'meohanics this questioh is
easily disposed of since the Balante 1aws are postulated
in integrel form,'thus implying differentialyequations_
where the fields are smooth enough; and also a unique
"set of jump condltlons where the fields experlence
'dlscontlnultles [36] Thus 1t may seem natural to
attempt ‘to use the integral forms of mass conservatlon,
and balance of momentum to resolve the issue. However,
such an approach is not workable for the following
vreasonsf |

| Firet:of all; the three-dimensional balance
laws imply that for a homogeneous, incompressible,
Newtooian fluid no discontinuities in particle velocity
~or pressurekcan exist. - Even in the limiting case y=o
the same conslusions hold. ‘Thus discontinuities as
‘envisioned here do not exist in'the thfee-dimensiona1
'theofy;_ Nevertheless they do arise in the one-dimen-
sional'theory and as such are a prodoctvof the approxi-
matlons employed in its constructlon. A classical
example in elasticity theory, of con51derab1e 51m11a-
rity to the situation here, can be cited. 1In simple
bar theory the so-called bar wave-exists and can
propegete‘as a disoontinuity.; A1thoogH itkdoee not
exist iﬁ the'three?dimensional theory, uhder the
apnroprlate circumstances it represents a close
approxlmatlon to the bulk of the-solutlon. For 1nstance

consider the example of a semi-infinite elastic bar
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5uh1ectcd to a step veloc1ty lnput Thelschematic,
Fig. 3.1, is 1nd1cat1ve of the nature of the approxi-
mation (see [371).

‘Simple bar theory can be obtained as the' :
long-wave annroximation of the three~dimensional theory.
Analonously, in the case of the one dlmen51onal theory
here,vthe long-wave approximation e11m1nates, in par-
ticular, the » /23> term, rendering the system
'hyperbolic éﬁd'capable‘of propagating discoﬁtinuities
that_thé enlarged’theory does’not. Witﬁ.this view,

a discontinuOué solution is simply an‘approximation to
a continuous one. |
A criterion for selecting the appropriate
.form tfor a System of balance 1&Ws is not intrinsic;
in the present, however, there is.a natural criterion
kavaiiable for selecting the‘appropriafe form of the
amomentum balance. Recall thét v ileOSitiye, and
requife that discontinuOUS sqlutidnsfdf Eq.’(3.2.1)
bé obtained from smooth éolutions of Egs. (3.1.1) -
(3.1.3) in the limit »—o * |
An example, also due to Celfand [34], shows
how akdiscont1nu1ty may be formed by this process.
ConSider the case where - and’f are zero. Let
gf—%&ﬂ be a turve in WZ across. Wthh ‘'a solution of
Lq. (3.2. 1) experiences a d15c0nt1nu1ty Let
¥ This raises the question, are all solutions of the
system of Egs. (3.1.1) - (3 1.3) smooth when »>0 ?
In gas dynamics where similar systems are studied this

seems to be commonly believed. ThlS matter is inves-
tigated in Section 3.4.
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€3,€) be a fixed point in R along thlS curve,_
'and let = g}(t) . To study solutlons of Eqgs.
(3.1.3) Z (3.1.3) when v>o in a nelghborhood ofk
(3,€) R define the coordinatee ’§==e3—;1t which
runs perpendicularkto the tengent of‘<é(t)’ et (3,%) >
Fig. 3.2. Assume that the solutlon of Fqs (3.1.1) -
(3.1. 3), to a suff1c1ent degree of accuracy, is of the
form (S)xr)-—(fSCE),erE)), in some nelghborhood
of-(éd?) . Eqs. (3.1.1) and (3.1;2) become

- 23 + 20w = o

> ]

5 E (3.2.11)
— 0 . =) * (5] = v 2
S R YCRLIRRE- 3

The solution of this system satisfies the reiationship

(sce',w,vcg,»)) = (SEMN, D, wEM,I )'_) : (3.2.12)
Suppose ,as & — too,
(5<§ Y) VCQ ﬁ)) - CS w ) cons‘t&hts (3_2‘13).

Then, by Eq. (352.12), as vy—=o this will converge

to the discontinuous solution -

CStiﬁ) forv g >o

(3¢E),vE)) = (5,<) for E<o (3.2.14)

The situation is illustrated schematically in Fig. 3.3
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where ¥ denotes 3-o€

Integrating Eqs. (3.2.11) results in

5 :

—Z (S-S ) +(SYT-5V) =o

‘ , i S g (3.2.15)
— (J_g) + (o +,5+—47{@-'§ )=(ng% s |

whiéh'upon using Eq. (3.2.13)‘énd rearfanging yields
the jump conditions associatéd’With EQS;_(S;I.I) -
(3.1.3). This Suggests théf the velocify form of the
momentum equation i; the balance law form consistent
with the flat-profile assumption. | |

It should be noted that the criterion 6f 
insisting that discontinuous sqlutions of Eqs. (3.1.1)
- (3;1;3) when v =o be obtained'frdm Continuous
~ones in the limit ¥y -—>o is not the‘same as the SO~
called pseudo-viscosity critefion. In:that criterion
"vigcosit?"'terms are added'to a sySfem’of balanCe
laws'making it into a“sécond;order parabolic system.
The class of jump conditions which fééﬁlts when the
f“visCous” terms tend to zero,kdepends entirely on the
form of the terms added. Thué this-téchnique is use-
'1ess to detect which is the phy;icaiiy aﬁpropriéte
clas§ of jump conditions. On the Other hand, if the
- model under study contains'suéh ferms;ab initio, such
as in the case herc for the mdmehtum;eqﬁétion, the
technique of‘vénishing viscosity can be used effec-

tively.
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- With the previous discussién'as motivation,
a definitiqh of a solution to the.CaEChy problem can
now be given. A.dauchy problem for Eqs. (3.1.1) -
(3.1.3) is one in which (5,v) are specified at t=o
for all :}E‘R oA "solutioﬁ" to Egs. (3.1.1) -
(3.1.3) is then sought in the interior .&° of the semi-
infinite strip

B e i deoT)

which satisfies this initial data in some sense. Often
T will be taken to be +co ., 1In this case & is the
upper half-plane € . Let the initial data be given

by measurable functions

S:P—*R,’

=]

v, R—R

’Then’require that |
5(%,'(:) = . 50(3) s

“‘J'C%,t) = %C%) > ’

where = means equality inja~$ense which wiil be made
preciSekin short order. | | |

Some standard notions from distribution
theory are employed [38]. A map o iR”f—_r\R is a

‘test function if it is infinitely differentiable (of

class C™° ) and has compact support. The space of test
functions will be denoted by K . Let K_ be the

subset of K such thdt each & in ¥K_ vanishes
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identically when the second coordinate 1s restrlcted
to T Y i.e. $ is in K_ iff ¢ is in K and
4>(%,Tj=0 for all 3 .
| In the follow1ng development the half -plane
2% will be used ,for which the approprlate space of
test functions is K . Everything can be recast for
the strip 5 by replacing 2€ by & and K by K_
| By a uéak solution of Eqs.'(3 1.1) . (3.1.3)

for the Cauchy problem is meant a palr of maps (S5,v)

such that | ,
=S {52d +Suv2d —d o Dby
Pl o¢C 2% , - TE
‘+C" +P)B_QL + Fdb, + »Uacbz}dgdt | (3.2.16)
+§(5°¢, +od, )| 4y
' R €=0

for all ¢, in K , where (S,,v.) are given initial

data. A strong solution is a weak solutlon such that

S has continuous f1rst derlvatlves throughout pYdl
and v has continuous derlvatlves of order 2 (l,resp.)
.throughout 2¢° when Y»>o (wr=0). In this case the
equatlons are satisfied in the c1a551ca1 sense. Note
“that a hlstory of S up to t—c> must always be
assumed so that P can be computed for t>o

Integration by parts exhibits the way in

which a weak solution satisfies the initial conditions,
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namely

o = ,él,«'::r; %R i@o(%) "‘5(3-,'6)> 43.(3—;6) ’

b RGI-vG ) d, GO ey (217D

for all o, in K
The possibility of Egs. (3.1.1) - (3.1.3)
having weak solutions with finite discontinuities

across a curve “% with tangent defined'by' dﬁf/dx=qL,

the'prqpagation velocity of the diScOntinuity, willy
now he examined. For the present analysis;fit is
assumed that o s F#F *xoo
Let & = {Ceye)) I teR ] ,  the graph of
cﬁ,} Assume that on the complement_of ?\ , (S;u) com-
prises a strong solution. Without ioss of generality,
assume A snlits 2€ into two'régions, eYa8 and 22 .,
 lLet L be the arc—lehgth'parameter for A .
An orientation of A is given’by requiring that the
tangent‘vector'U) A at t=0 point in fhe’posifiVe
t direction. The unit'tangent vechr 'A along A

,is given by A= CL&,‘)/tl+}4})V&

; the unit
: : ; : : ' ik .
outward normal vector with respect to 27 is given by
n_"z C—I,M)/CI+,LLL)‘(1‘ s and n=n = -n"
is the outward unit normal vector to 2& , Fig. 3.4.
v _ o L , .
The operator < 'Caj}’g'a) ~is the gradient

* Thus if x=(x,%.) is smooth in 2€°

operator on IR
and 2€° SO but it and its firstkderivatives experience

finite discontinuities across A , and ¥ is in K ,




2.4
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then by the d1vergence theorem
SaeV-Kx,cb,x,_cb)d%d:t = Sn ([x34> qu]cb)cu_

where the jump operator [ -] is defined by [x1=x=x*

and x*(3.t) is the limit of a sequence in €~

If the weak solution (5,v) and its derivatives
of order <2 have finite dlscontlnultles across
then integrating (3.2.16) by parts yields

L8080 ge by ¢

o
"

%, (2 I + %_(%4—’5)—?—'-9 av;)}dgd.t

+§P{¢.c3,o)( 2(3)-5C3,0) ) +

(3.2.18)
 :GoCgG)-vGed) fag
+ S{4> ([507-ul5] Y ey
+ <t> Lg+P-»3e1-ml] >/C|+ 1)/2
+ a_sz » [o] Jae
Bv v1rtue of the fact that(ﬁ«{)ls a weak solution, the
1nt¢gral involving the initial cond1t1ons vanishes, ‘and

since (5v) is a strong solution on the complement of 2,

S + bt : : e :
the integral over 2 U2€ also vanishes. Thus the
integral over A Vanishes‘identiCally. Since
$,, P, , db. /23  are independent on  and

assuming . is finite, it follows that

o [5] = LSl

—_ ' !
s [1)'] — [~%2.+ F) — %_—‘%’: R (3.2‘.19,




Noté that as v»o in Eqs. (3.2.19) the desired jump
conditions are obtained. | | |
'The following conjectures* éfe made about the
system when »>o . The Cauchy problem E
C5ixf9)C}qO)==C55,xg)C}) can be solved for all
bounded_measurable pairs (S.,xz). The solution (&’<”)
is uniQUe, and as Yy— o ,(fﬁxﬁ) converges boundedly,
: almbsf everywhere in some'interval ’oé=f'é=7; to a
limit (S,0). '
With these conjectures the fcrm of the
definition of a weak solution is motivated. For
example if &, ¢, , 5, are,held fixed’and Yo

in Eq. (3.2.16) the viscous term approaches zero and

S’ — S
¥ .
'\}"- PR '4” 3
C. 9)2' PSRy} vz. P
= R
> — j)")
in oz €t = T . Thus the limiting pair (S;v)is by
definition a weak solution in o<€¢< T when Y=o,

and the definition of a weak solution is consistent

withlthe physiéal idea that the solutibﬁ for the'case
V= ‘should be obtainable as the limit of a family

of solutions each of which corresponds to some Yy > o

The situation will arise when a solution can

* These conjectures emanate from the work of P.D.Lax
[39]. ‘
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be cpnstructed directly for the case ~o=c>'ahd it may
be impdssible to say whether or not it is the»limit of
a viscous solution. Setting v==t>‘ihrEq. (3.2.16)
does not give rise to a unique definitibn of é weak
solutioh. To see this-consider the example of Lax [40]
for a 51ng1e conservatlon law:

" Define a Cauchy problem for the conservatlon

law

\%

oY + %(’{’2) = o, o ©(3.2.20)

by requiring
o L0

GGy e) = (3.2.21)

\ 3 > o
and define the relevant claSS'of'discontinuous solutions
by the jump condition ;

o [] =[%1 . | (3.2.22)
- The form of the definition of a weak solution is easily

seen to be

= ;é {%r §ﬁ2’+-¢r %?g }(i%dr .

(3.2.23)
+ S<$C%»O)<i%.
The fﬁnction (Fig. 3.5)
, o 3,k<kt/2.
o Gyhat) = , - (3.2.24)

| 3>t/
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satisfies Hq. (3.2.23); or equivalently satisfies
Eq. (3.2.20), except-on the line %;:t/h. where
Eq.-(3,2.22) applies and 1is satisfied; and takes on
the initial values, Eq. (3.2.21). However the function

(Fig. 3.6)

i © Q-é,O ',
vy (3,t) = 3/t o<y £t

' ez

which is continuous for all t>o , also satisfies
Eq. (3.2.23) and thus is a weak solution.

~Much effort has heén exerted to develop a
criteriqn for selecting the physically felevant
éolutipn.ﬁ For the above situation all criteria

proposed are equivalent to the condition

S T o (3.2.25)

hold on a line of discontinuity whefe,.as before, L
and -~ are the values of - to the left and right,
_reSpecfivély, of the discoﬁtinﬁity 1ihe; The function
Az aufomatitally satisfies this cdnditionysince it

wi'=1 and

is continuous for t>o. For —w; | wv =0,

a=1/2 which violates (3.2.25). Thus v, is the

* GSee Lax [41] which deals with the shock, entropy
and viscosity criteria. An entropy-rate criterion is
given by Dafermos [42]. Thermodynamic arguments are
considered bv Bland [43] and Courant-Friedrichs [30],
and a shock stability argument is also given by

Bland [43]. ' -
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physically relevant solution.
It is interesting to note that the Cauchy

problem defined by Eqs. (3.2.20), (3;2.22) and

L | l 3<o s
«w (3,0) = : : (3.2.26)
o 3 >0
~has the discontinuous solution (Fig. 3.7)
G Lo < /2 ' 1
W (3,€) = { B ooE (3.2.27)
. o 3 > t/2

which satisfies (3.2.25). Note that da /dt =
defines the characteristic curves for Eq. (3.2.20).
Conditién (3.2.25) for solutions (3.2.24) and (3.2.27)
is depicted in Fig. 3.8. : |

| Consideration of this issué fof,Eqs; (3.1.1)-
(3.1.3) is given in’Sectionsys.S éﬁd 5.9 via examples

and numerical computations.
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|solution (3.2.27)

O Paa > ot

/ Solution (3.2.24)

;(]T_<AL < -«L)-+

" Condition (3.2.25)
knot satisfied

Condition (3.2.25)
satisfied

Figure 3.8




3.3 Mixed Initial-Boundary Value Problem

Most problems of interest involve‘finite
domains. It is the purpose of this section to define
what is‘meant by a week solution to the general mixed
initialeboundary value problem for Eqs,'(3.1.3) -
(3.1.3);

Let the arterial segment be deflned by the
1nterval [eesbl a<b . The ainm 1s;to compute (S.v)
in the interior #° of the rectangle

. # = {G.O)] 3ela0l, telo,TD},

given the initial data (3v) along t=o and some
boundafy data along 3=o and 3=b . Asibefore, T“
willkoften be taken to be +oo and oﬂE>fmay equal
—m:y+oo_; respectively. When§1=—&jand,b=+m;the defi-
nitien must be equivalent to the one’given for the
Cauchy problem. The case a=o,b=_ will be considered
here. The deduction of the formulation for any other
specific case, e.g.,L—oc will be obvieﬁs

The number of boundary data to be spec1f1ed
1is not so obv1ous in that different spec1f1cat10ns
might be expected for the cases v=<;f and »>o .
Consider first the case v=0o , since the'classiCal
approach, using characteristics, gives the. complete‘
answer,: assumlng everything is smooth enough for the
analysis to be valid.

When v=o the equations are hyperbollc and

the development of a solution may be studled by way
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of the characteristic equations. The first stcp then
is to obtain the characteristic equations correspon-
ding fo Egqs. (3.1.1) - (3.1.3),‘ The techniQues used_
for thié are standard and are’contaihed in all works
on first order systems.(e.g.,'Courant-Friedrichs [SO],_
Aris-Aﬁcndson [44], whose notation is employed hefe)

and thus details will be omitted. The characteristic

equations are

Q.%‘_ 0}_@.1:_ = O Y
P14 ' K]
B~ "5 ’
(3.3.1)
L3S + M v + N, 2t = o |
EY =

Y

',Qféé -FP4_QHT4-P4 ot = 0O

where « and = are parameters along the families of

curves satisfying ét each point of &
ANyt %%—== a, ; SNt %i.= ac

In the present case

T e o >
c =C S?%:)vz s
< = B
My = e,
Ni:=(DF oY + Dp - F)oz - )

The cohdition of hyperbolicity is ,SF%3>O which is

guaranteed since S>o , P,>< . This insures that




there exists two families of real characteristics,
namely those defined by o, . It iS'assﬁméd~that

— 2

, Py > |
therefore the characteristic velotitieSyalways satisfy
o >0 ., @<o
as illustrated in Fig. 3.9,
To see how the solution develops, construct

finite difference analogs of Eqs. (3.3.1) for the

triangle ABC:
L, (5= 3 )+M G- )+N Gt D=0,
ofe CSC_ SB) tM**BG“E" %>+N,+5th;fa)=‘?> .

(3.3.2)
%céz Fa 4*’¢¢.Cfc"tA) 5

'%c = 3o + Gg(tc- tg ) f

Eqgs. (3.3.2)14 are solved simultaneously to locate thé
coordinates C%t,tc) . Then from'the set’of iﬁitiai
data, S, and < , which give Csh,ugf)and (Se>va)
Eqs. (3.3.2),, can be used to computé CSE,UE)'; Thus
~the préscription of S and - along

{C3.€) | 3eloll,t=o}
is éeenfto bé necessary to genefate thé‘solution in
the interior of ﬁ?

D What déta can be specified along

{ant)| 3;:0,-66[b{f] } ? Analogous to the

construction of Eq. (3.3.2), difference equations can
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be set up along the A_ characteristic through A

and D :

o = Fra t T A Cto—fA) )

, SUREN I (3.3.3)
L (S5~ O0) + ML, Cop-on) + N«ACtD ~€a)=o0.

‘Since 3, =0 , Eq. (3.3.3), determines T, : Thus

Eq. (3.3.3), is an equation relating 5, and g ,
and so only one of them (or one condition felatihg
bothﬂof them) can be specified at D . .Thus along

: {C%,'t)\ 3=0,te o,T1} | only,.one datum may
be pfescribed. The same argument applieé along

{3,021 3=L, teloT1} . Thus with both data
given along T=o and one datum given'aldng eaéh of
3=0© and 3=L , a solution throughout 72 can unambi-
guouély be constructed. Notice that the.condition

a, > o > o <o,

‘was essential for this argument to work.

The general case is clear. For example,

suppose 0,9 >o (Fig. 3.10); then no characteristic

emanating from the t=o or 3=L boundary can intersect
the boundary 3=o . In this case two data would be
specified along 3 =© and none on-}=L;‘L ‘This case and
the case when both G;,di<;c> are not anticipated in
problems of blood flow.

It is expected that under stéady flow condi-

tions the same number of boundary data are to be
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3.10




specified as for the time dependent case. A short

analysis makes this assertion plausiblé:

Assume ~~ and % are zero, a fixed history

S” has been substituted in P , and conditions are

steady. Then Eqs. (3.1.1) - (3.1.3) can be integrated

Su- = ¢,

(3.3.4)

Lo
P = Gy

id

where c,;c, are constants. ’
| Assuming P is defined.for'éll positive S ,
Egqs. (3.3.4) can always be solved for S~r in terms of
c, and c, , with the obvious consistency condition

c.>o . To see this write Eqs. (3.3.4) as

= (5u) =G 0u, ) =C () | (3.3.5)

.where-asﬁa range over 1 and 2. Then,'by the implicit
function theorem, a unique solution to Eqs.’(S.S;S)
exists if the Jacobian, det COE;(//auJﬁ D) , does not
vanish. This happens as long aqu*;égzz , which has
been éssumed. |

o Therefore, whenever <, and c, can be
unambiguously determined from the boundary data, a
unidue $o1ution exists;’ For example, if the flow,

S , were specified at §=c>,,and,thé’apparent stress,

¥+ P , were specified at 3=L , thenc,c, are

immediately defined by evaluating Fqs. (3.3.4) at
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lﬁ,

'%w-o and 3= L., respectlvely.

Other combinations, 1nV01V1ng 'S and
1nd1v1dually, and the flow and apparent stress, can
be studied similarly. The rule of thumb then 1s one
datum at each end enables the computation of the two

Cg:AJ. Its application must be tempered with

‘reasonableness however since there are some obvious

consistency conditions for steady floﬁ; e.g., oﬁe
could not spécifyﬂthe flow’or the appérent stress
indépendgntly at both ends. In steady flow things can
also be done which cannot be doné in the’time depen-
dent,tase, e.g.,lthe flow and apparent stress can be
specified at either 3;=§>or 3=L andva’solution‘COU1d
be obtained. |
| The characteristic equations were useful in

determining the number of boundary data for the case

v=o. It is natural to try to use this technique

when v>o . Defining

g = 2w L '(3.3.6)

Fags. (3.1.1) - (3.1.3) and (3.3.6) define a first-order

system of three equations with S,«~ and q as unknowns.

The eigenvalues of this system, which define the

characteristic directions, are

=, (multiplicity 2), ( )
3.3.7

1

A
-

& S
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Thus the'cﬁaracteristic grid consists of the lines

T =kconstant,.Eq. (3.3.7), , and the particle paths,
'Eq. (3.3.7), , (Fig. 3.11). The néxt’step is to try
to write the.system as three ordinary differential
equations along the characteristics - tﬁo along

T constant and one along the partlcle paths. The
appr0pr1ate differential operators along these charac-
teristics are 9/93 and ( Y=o/t +u—a/a} ,
respectively. Eq. (3.3.6) 1is alreédy solely in terms
of d/dg and the first two terms of Eq. (3.1.1) can be
grOUpéd to form S , viz., S#<Sq,+ﬂr==o. Thus it
remains to transform Eq. (3.1.2), USing Eqs. (3.1.1)
and (3.3.6), to a form solely in terms of the operator
3/83_, ‘This does not appear to be possible. It is

not surprising, due to the multiplicity of eigenvalues.

" If the system were rendered parabolic by’
adding a_ferm R 275 /o3" to Eq. (3;1;1), where
k>o is a constant, it is reasonable to expect that
‘two data should be specified at each end For the
present case, Eqs. (3.1.1) - (3.1.3), one might gﬁeSs'
then that two data be specified at one end and.one
datum be specified at the othéf An analy51s of the
steady flow equations makes thlS plau51b1e

Assume ~~ and ¥ are zero, a fixed history
5" has been substituted in P , and conditions are

steady. 'Integrating Eqgs. (3.1,1) - (3;1}3) yields
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3-0’ = <, 5
‘Y—z*‘.’a _9. du = Ca | : : 3
I ? - (3.3.8)

where c,,c, are constants. Solving Eq. (3.3.8), for
- and substituting into Eq. (3.3.8), , results in
an ordinary differential equation for S |,

, S em). (339

ds5 = 9¢3,95) = S (c, -
43 LAC) » < LS*

Since 3 is continuous in o®’= o, L] x (©500)
and satisfies a Lipschitz condition in S 1locally in
«J , then through every (3,5) € & there exists a
unique continuous integral curve SC}jhwhich extends to
the boundary of & or becomes unbounded ([45], pp;
15-17),  Assume the former case holdslfor all physically

relevant data. This result can be written as

S = S(Cei,ea,ead (3.3.10)

)
- where x:i is the constant of intégration, and the ér
dependence is implicit; <~ can then be obtained from
Eq. t3.3.8x. Thus if the three Cilmtanfbe computed
from the prescfibed bouﬁdary data, S and —<~ can be
determined frbm Eqs. (3.3.10) and (3.3.8). It is thus
reasonable to assumekthat three boundafy data are
required to determine the <;% . Henéeforth it is

assumed‘this is also true for ﬁhe time dependent case.
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It goes'without saying that better methods are needed
to study this problem. |
Some new spaces of test functions will be

needed’, Let K(a) ={d | e K, Cb'Ca‘\t):'.—_o ‘V’t}

and define K(a,b)=K(a)nK(o). Similarly define
thé épaces ; |
Ko(a) = K@)n Ky
KiGe) kG el e |
Let K'Ca) = {$ | $eK, Dd(a,t) =0 V¢ 1 |
and define K7 (o) =K@ Y~ K+ . As for the Cauchy

problém, take T=+o0 and thus the space K will be
employed Fverything that ensues holds for Txeo if
the K la are replaced by K;r4p; S |
With these, a definition ofié,weak solution
to the general mixed initial—boundary Qalue problem

~can be given. A weak solution gﬁyﬁgs._(S.l.l) - (3.1.3)

for the initial-boundary value problem, is a pair (5,v)

such that

S {Eiadm +~eré¢L 'ﬂf¢ ‘+—Uf%%?

(e Oz + vé‘dD,, Had ‘
G P)ﬁ * Ik ¥ 2w T J azde (3.3.11)

+S(5<b +.u‘cs>)|d%_ o+ 13 S
,wheré
:}-L
B = —S {Qﬁb *‘,Cd)z"' 9\/2 L}\d,t y (3.3.12) 'E

R* 3’ 3=0
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: _’aﬁd Q,T and v: oL} x[oee) —= R  are the
prescribed boundary values of flow, abpafént stress
and ve10city, respectively, and the1xij¢ are chosen
from particular spaces of test functioﬁs so that the
boundary value problem makes sense. In addition,.a

weak solution may be required to SatiSfy boundary data

of the form

S(o,t) = a(o,t)

SC,t) = _alL,t) |
e ey (3.3.13)
(L, t) = ~vL,e)

where o : fo,L} x[o,00) —-> R represents the

- prescribed boundary values of luminal area. Egs.

(3.3(13)i4 are’stipulated, in addifiqn to the‘inclusion,
of the 3“, term in 3 , to cover the case in which
Y=o and velocity boundary data are given. |

-A feﬁ exémples‘will be presented to clarify
what this definition means.

Suppose ?9=c>. In this case two boundary
dafa;kone at each end, must be satisfied. Consider
the following cases | ;

(1) —>Co,€) v(oe),
- (L,€) = v(,€),

l

(D) ©®,€) = v@,0),
: S, t) = (L, ),




(I11) -w(o,t) = ~(ot),
(SU)(L>'6> = Q‘C\-—{e))_

(V) (&+ B )= T@T) >0,
\UCL_)'ﬁ) = \/CL.,f)) '

(V) GoXot) = QG,e),
PO = TA,) vo.

There are eleven other permutations. 'Noté also that
no claimsvcan be made for the wéll—pOSedness of
Various'tombinations, e.g., it would be ridiculous to
expectvaﬁything but a short time result if A=ocand

Q .mkus prescribed with opposite signs at each end.
Physiéalaihsight will rule out most ﬁbad” cases, but
therevmay be others. |

' The term 43 accounts for the natural boundary

conditions, i.e., an integration by parts yields

S {C3v - @4, + (¥ F - » 2w -2)b,
=t | .

23
: : 3=L e (3.3.14)
+9Cv-—v)§__<i_>&}ldi.

The appropriate spaces of test‘functidns'are picked so
that just the prescribed data of the particuiar case
are satisfiéd andﬁnothing is said ahout any other
boundary value. | _

| For the céses (1) - (IV), y=0 , the last

term in Eq. (3.3.12) is absent. Therefore the
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approprlate space of test functlons for case (I) 15

KGDLJ which wipes out Fq. (3.3.12) completely. In

addition, (I) must be taken as part of the definition.

In case (II), KoL) is also the appropriate
space, and here (II) must bhe considered part of the
definition. |

For case (III), the appropriate spaces are
K(o) fpr the &’a and K@©,L) for the ¢Q;» , and
(I1I) must be part of the definition. In this case
» = - S, QLSO ar .

For case (IV), each & must’.be in K@,L),

K(L)is appropriate for the &, o, ahdJ(IV) is part
of the definition; 43 = - é2+TCO,t)<b2_CO,t)d.t,

For case (V), the ¢,’u are in.F(G—)and the

$,a are in K(o); 3= —S [ Qb,e)d, (0, +tCL ), (L f)d,t

The pattern should be clear
When »>o , three boundary data are to be
specified. If - is one of these data it can be
satisfied naturaliy, e.g.,'suppOSe the:follewing
conditions are given: |
5(0,€) = aCore),

(o, ¢) = ~ (o,¢),
o (L,E) = v CL,€) |

Then the appropriate space of test functions is KoL)

for both ¢ and ¢, ;

23

B = & s ¥ {v @) @) —vCL,f)%@(L,f)}dx.
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The first condition must be accounted for as part of

the definition. If instead

(5o Xo,t) = Qlo,e) |
LB 220 ) = T
, >3 g

o
2.
(<™ + B - %%)(\_,e)_—: T, ,

then kcb,, is in KCL_), o, is in K®L)and
W=+ § {R@O B - TA0dL,0)

+ (0, ¢) b, Co,t’)f} dt B

The pattérn is clear and need not be labored fﬁrther.

| | In analyzing the circulatory’system it is
dften ﬁot clear how to specify boundary data. For
example,~1n analyzing the aorta, dlstal boundary
cond;tlons must be specified. Where and what is the
question.

The following techniqde*'can beiused to
circumventbthis issue for a limited class of problems.
Assﬁme~the'f0110wing: o

(A) The system is governed by a pair of
‘hyperbolic balancé laws (e.g.;Eq.‘(S{Z.l)).

(B) Two indebendentboundafy data are.given
at a fixed location, say 3=o0

(C) The bouhdary data are_periodic.

* This approach manlfested itself in a discussion with
C. Peskin.
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In'addition, it will be'assqméd for Simpli-
city thAt the_problem involves smooth solutions so
that the differential equations; rather than the weak
forms,»éan be used. The above aséumptiohé'would hbld
for the natural pulse problem with 3;=¢ taken as the
aortic valve. ' i
CariYing out the differentiation in Eq.(3.2.1)

yields:

U + AWIY + GUU) =9 .
3 + s % | (3.3.15)

For the_preseht case, Eqs. (3.1.1) - (3;1.3),

- S
A = | _ |
s v
and since det A =~ -c” Lo by assumption,
' exists. The eigenvalues of A are the
reciprocals of the eigenvalues of A . Thus the,

equation

(3.3.16)

— A~ >

oU , Ay + A'G =9
o

has ‘the same properties as Eq. (3.3.15), with =3
viewed as the evolutionary parameter; ’A space-time
picture for the case of two periodic data specified at
3f=o‘is given by a semi-infinite cylinder with ¢

running around the circumference and 3 along the
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~axis. Since the eigenvalues of A  are distinct,and
one is positive and one is negative, this spatial

Cauchy problem is well posed.
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3.4 Consequences of the Discontinuity Conditions
Mény'10ca1 and global properties of solutions
to Eqs. (3.1.1) - (3.1.3) can be immgdiately deduced
from:the discontinuity conditions, Eqs.’f3.2.19).
Recall that these apply at a point C},f) on a curve y-
with yt-angent‘ defined by aw = Ay /dt ’where' Gv) arue
assumed?to be sfrong solutions on each side of 4 , in
a neighborhood of (3,¢) . When w = % | a discon-
tinuity in S , defined by Eqs. (3.2.19), is called

a contact discontinuity. All other discontinuities in

S and - are called shocks. In fhe analysis that
follows, it is assumed that S and < are piecewise
smooth but may experience finité disconfinuities
across‘smooth curves.

By the assumptions on P it follows that
L4 R .,-
(DD Dyl =2, (3.4.1)

where i,4,k,& are integers = o , whenever the histories

of S are the same on both sides of ¢ . In this

case
op | = B [2ad
(22 Plsel >
(3.4.2)
OB = 5]1o5 : i :
5B )= m(gR] » et

Also, by the assumptions on ¥ ~- , it follows

that
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(3.4.3)

It is bhest to study the~ca$es v=0 and v>o
separately since they have little in common. First

~recall the discontinuity conditions:

2 [85] = [Sv |
4&;] = E%*ﬂu,s"_gg%j | (3.2.19)
| O-. == \)‘-_‘U‘]7

When v>o , Eq. (3.‘2.19)3 gives immediately

that [v]=o, which when used in Eqs. (3.2.19) , vyields

(r-—2r)L31= o,
5l=»[2uv].
P1- > [3¢]
Now whenever .u#v it follows that [S1= o, thus there
can be.no jumps in (S;v) as long as . #v . One can

proceed further. The fact that the instantaneous

response function is one-to-one gives C5]=;C>¢?l:§]$o
thus - [3v/237]=o from Eq. (3.4.4),. From the

identity

[%%] + A[%%] . (3.4.5)

§§Ik}] =

(3.4.4) .
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where g R™—R  is differentiable on both sides of

4 - 1t follows that [uvl=[ov/23]1 =0 implies

[au/at] . Taking the jump in Eq. (3.1.1)
ylelds B
[as/6¢]l + ~ [25/2637] = o, - (3.4.6)
'where use has been made of Lol=[dv/23]1=0 and

(3. 4 3) Emnloying Eq. (3.4.5) with S substituted
for %_ gives | |
[25/¢] + wl28/031 = o,
which when combined with Bq. (3.4.6) yields
[es/oe]l = [25/231=0 Thus.C\S,v) are C'

To proceed further,take the jump in Eq. (3.1.2):

[3E ]

where C' -ness of - and continuity of ¥ have been:

employed. From Eq. (3.4.2), follows

é§]=ﬁs 2]

thus [3 v/a} Jo= s U51ng dUAT and av/a}
kfor g. in EBq. (3. 4 5) gives then that
r_av/a}ac] [%/3€t*] = o ; thus v s
Cef., To garner the ‘same for S ., differentiate
Eq.-(S.l.l) with reSpe;t to 3 and ¢t , and apply

the jump operator:

[as B [agac] ’

3]~ V8]

(3.4.7)
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Substltute 25/0t and 25/03 succe51ve1y for g in

(3.4.5):
[%,:%5‘1} * “‘[aaat] é’
[%‘%ﬁ] + M[g_%s_z] = O

Combining Eqs. (3.4.7) with Eqs. (3.4,8)'gives

(3.4.8)

=O>

i.e., E> is C* . Apparently this procedure can be
carried on and on., Thus if £, (5,<) are C

In particular, there are no shocks when y>o

When u=-- , Eq. (3.4.4)| isksatisfied
4identica11y and Eq.‘(3.4.4%_ remains as is. Although
the existence of contact discontinuities is sometimes
questidned, it does not seem possible to discount them
via this approach.

When v=o there are no contact discontinuities,

viz., with fol=wc-ar=o , Eq. (3.2.19), is identi-
caliy satisfied and Eq. (352'19)1 becdmesvifﬁj=c>,
which imﬁlies [S1=0. . |
The case of prime intefest is’shocks when
v=o0o . In this case Egs. (3.2.19j reduce to
o [S1 = [5o] 3

S (3.4.9)
s ] = [:§§ + 7]
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In terms of the relative velocities wor®— u-.0% ,

Eqs. (3.4.9) can be put in invariant form, namely

o = LS.l 5
: (3.4.10)
o = [;§;+ Bl

It is of interest to solve these equations for the

relative velocities.
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3.5  Shock Wave Velocities ,

| The quantlty \A—Cskug 5 wh1ch 1s well defined
by Fq (3 4., 10)|, represents the volume flow passing
through the shock Eqs. (3. 4 10) comblne to give

Vvl = [p1 £ o (3.5.1)
- <S>

where thé bracket < > indicateé an arithmetic mean
value across the shock, i.e., <Lﬂs> O/S +!/5 D/2 .

From the deflnltlons it follows that

Vvl = [£Surar]

>}

= [Swr Cuemard] |

| (3.5.2)
= —[S.*] R '
=Tt [5]
- which when combined with Eq. (3.5.1) yields
LT = 1 =21 L 5.3
‘ <W/s> Ts] : (3:9:3)

Employing Eq. (3.4.10) , Eq. (3.5.3) can be written in

the'altefnative forms

B S e
| l |

(3.5.4)

ChLu*)l = _C_é_-/5+ L
U785 T53

The content of Fqs. (3.5.4) is simply that the rela-

tive velocities of a shock depend only upon knowledgé 
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of 57,5 and the instantaneous values of P at S

and 5" . Note that if 3>35" , then 5
2 r = -\ :
(w D >CW ) 5 (3.5.5)
whereas if 37< st ,

 .CJJJ~+')L < J;ff;*fr <iC*Lr“)l L (3.5.6)

3.6 Acéeleration Wave Velocityf
L Any curve with veldcity +x  such that a# o
or sua#.-" and across which S or -o , or any of their
derivétives; experiences a discontinuity is called a
ygxg,‘e.g., a shock is a wave whereas a_contact_discon-
tinuity is not. It has already been shown that when
V> o ;_no waves exist. However, when }hzo waves of
all orders can be shown to exist. A case of particular

interest is acceleration waves, in which [w]=o whereas

[ouv/otT4o . It follows‘fromqus.’(3.4.9) that
[53?=E5]==(3 . From the basic identity, Eq. (3.4.5),
and the*assumption that c>¢}¢xﬂt§3 > ohé deduces that
Lodv/031+ 0o | since [dv/2¢l1#o ., Applying the

jump operator to Eq. (3.1.1) yields
[o5/6¢] +[85/63] = -~S[owv/o3]4o ,  (3.6.1)

by virtue of our previous assumptions on ~}~ . Substi-
tuting S into Eq. (3.4.5) and combining this with

(3.6.1) gives [25/t]l¥o , [05/23]1#0.
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ThuS'in an_acceiefation,wave the jumpkih_Cﬁpr) is zero,
whi1e7the jump inféach,of the‘first,derivatives is
non-zero. |

o Therc,are'several ways of‘defiving the
velo¢ity expression for acceleration waves. The

quickest,“at'this pOint, is to take'thé,limits of

Eqs. (3.5.3) and (3.5.4) as [S]—o. 'Si'nce

.‘[5]—-70 '%g_% Ps 2
M = l/\S )
ET NPAD:

igs. (3.5.3) - (3.5.4) all go to
w? = 5B, (3.6.2)

i.e.,)@r;#c and acceleration waves prqpagate at
charaéteristic velocity. |
| For general quasi-linear hyperbolic systems
this COhélﬁsién can be deduced as folldws:
- Apply the jump operator to Eq. (3.2.1)
~yielding | | -

[%Q] + ACU) [%Q] = g, (3.6.3)

where A = dFL /20U, , and also use the identity,

Eq. (3;4;5), on each entry in U to_dbtain

o] s e [gel-e wmew

ot

Subtractlnq Lq. (3'6 4) from Eq. (3.6. 3) indicates that

‘the ve10c1t1es a4 are the elgenvalues of A .
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namelv the characterlstlc Ve10c1t1es The same
,Hconc1u51on holds for all hlgher order waves.
| | - The expre551on ct= SFg o wh1ch has been
shown to have several 1nterpretat1ons here, corres-.
ponds to -various spec1a1 cases of c13551ca1 blood flow
,'theory (e g., the Bramwell H111 equatlon and the
Moens Korteweg equatlon see McDonald [46])

3.7 Weak Shock Wave Veloc1t1es

It is useful to obtain apppokimateyvelocity-
expreSéidns'for weak shocks in terms'othhe charac-
teriétiéfvelocity‘of the stateginto WHich‘the wave is:.
.propaéafing, ASSuming suitable émoothﬁ@és, [5]. may

be expreSSed:ih terms of Taylor's'formula

[53 = [s1f + LTS + o (ST, (3.7.1)

The fbilowing are used to eliminate S in favor of

" and [S] :
51 oCEBJ) 5

L - st 4+ L
<O/ 2
575* S wEsY ‘
T | <+ | v S (3.7.2)
s'/sT = 1 - [51 + = (C31) .

Substituting Eqs. (3.7.1) - (3.7.2) into Eqs. (3.5.3) -
(3.5.4) yields




717

a” = SRS+ D81 (8%l ¢ RT) +e (LD

GV SR eI (SR - A - eCTSD)
e SR ISICSRL +3RT) re(BsD) (3.7.9)

These approx1matebformulas are con51stent with the
1nequa11t1es (3.5.5) - (3.5.6).

o It is a consequence of a theorem due to
- Lax [47] that shock velocity 1s, to second order in a
measure of shock amplltude (e. g-,[é]), the mean of the

: sound veloc1t1es 1n front and back:

u’:; ji:v“+ Qr" + = (e =) }/Z '%]OCESJL')‘ (3.7.4)
or equivalently,' |

‘uuff%_pJﬁ = « (c™+ ") + C>C[S]%j) (3.7.5)

where == +1 1) if the shock is facing right (left),
"reSpecfiVely. |

3.8 Shock Stabllltz

Not all shocks wh1ch satlsfy the compatl-k
b111ty condltlons are phy51ca11y adm1551b1e In the
folloW1ng it is argued, following Bland [43], that |
dilative shocks are stable whereas constrictive shocke
are not. These deductions are based on'observed pro-
perties of arterial behavior, i.e., properties of the

constitutive functional ﬁ .
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If & is assumed to be positive, then a

dilatiVéjshock is:one in which 3>57 and‘a cqnstrittive
‘§E29£ is one for which 5'>% . It is assumed that
ﬁgszﬁb‘i, which, aS'was stated previously, is experi-
mentailylobserVed to hold for arteries. Con51der the
'dilativé'shock profile deplcted in Flg 3 12. Fof
this: proflle to be stable, small perturbatlons should
ftend to van1sh For example,~con51der the perturba-
,tlons_lndlcated in Fig. 3.13. P01nts g and d are |
acceleratiOn waves. The profile abcd ﬁiil tend’tb,‘
the prof11e -+ if (A) ‘the propagation veloc1ty of the
acceleratlon wave at a is greater than the shock
velocity,*x of bc and (B) the acceleration wave
vélo@ity'at d is less than «L . This iﬁsurés that
the ﬁe?tﬁrhation at the crest catches.up with the
front; thus vanishes, and thé perturbation at the root
18 caught’and ébsorbed into the Shbck. Recall that
accelérétion Waves‘travel at characteriétic veldcity,
‘thus to ‘establish (A) and (B) it is suff1c1ent to show
%J‘+-Cv >an >t ce™ since by virtue of the
smailnéss of the perturbations a~-, d~+, and the shock
EE“:j;YAThe c'a and wr’s are all takeﬁ'to be positive.
In wofds this is equivélent to the condifion that
dilativé shock velocity is supersonic‘With respect to
the étate in front of the wave, and subsonic with
respéctth'the state behind. Sin;e *L=;¢rt+**rt, this

L . SR L= S + +
condition occurs if and only if c >»o and o >c< .



The ;ondition,"p‘sszo ‘implies PBg = [’,5]/[5] =Pt
(see‘Fig. 3.14). Usiﬁg this,f§;>»5+, and Eqs. (3.5.3)-

(3.5;4)~enab1és one to compute

(oY = 205 SR
i 5+ 3D (S +39
> s'a; = et 5
Cor=Dt o 2 (5D [B] = 2(3)F B
TS +59 9] S+ 5D
< Sp = (c*

Thus'(A) and (B) are established. Tﬁevsame procedures
could be carried out for infinitesimé1 shock pertur-
batibﬁs‘as illustrated in Fig. 3.15. From this it
mav be conjectured that the result is 1ndenendent of
the c}ass of perturbations. The stablllty condition
Jaﬁféf'> > otect , which is a condition on the
rightffacing‘characteristics Nyt Eﬁ%.: w+C o, is
illustrated in Fig. 3.16. The analogous condition for
a left-facing dilative shock, involving left-facing
char“zact‘eristics AoiidEps oo , is Ly
(Fig. 3.17). |

Now consider the case of é'cpnstrictive

shock proflle (Flg 3.18) and a nerturbed profile

(Flg 3 19) 1nvolv1ng acceleratlon waves at a and d.
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By arguments‘analogousito the preceding it can be
.shown that since :?i:zz[ﬁij/E5]'2:E§' (switch - and

+ in Fig. 3.14), and

, ’u')_ ) = ——-—————‘CZSS?S%) Ps+ < 5‘+ P.5+ = ,CC+) 3
Curdd = ¢ = o éﬁ°9';*(‘f .
| : C———-—-——-s_+ S"’) PS . Ps-’—-— C. »

that v +< < < o%+c’ and thus points a and d
move, respectively, slower and faster than the shock.

This‘iﬁplies that each perturbation permanently erodes

the front or, equivalently, that the shock is unstable,'

The characteristics picture;isbthe opposite of Figure
3.16; similarly the picture is 6pposité~Fig. 3.17 for
a leffefacing“constrictive shock. Ehplinng infini-
tesimaIIShock perfurbations (Fig.'S.ZO)_&iélds,again
the Samé'conclusion. Thus inrsummary‘it‘is déduced

thatJQE arteries dilative shocks are stable whereas

constrictive shocks are unstable, hente:the latter are

not physically realizable. Thus wave profiles akin to

Fig.yﬁ.lS will not be seen in arteries;
Note that this result is nof'universally
applicable to flow in distensible tubes. It depends

intimately upon the qualitative nature of P . For’
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insténcé, if the matéria1‘curVe was ;bncavew(Fig. 3.21,
e.g., meta1s) to a great enough,degree;'én opposite
conciusion wou1d ho1d..'The weak éthkIVélqcitY
expréssions,tEqs, (3.7.3),.giv§ an indi¢ation of what
type of local inequélityfwould be necessary fof i5

to be concave enough.

3.9 'shock°AdmisSibility Criterion

J This was formerly‘éalled.thé»éﬁtrOpy'condi-
tion by Lax who proposed it [47]. Forﬁa;conservation 
law in one dependent variable it is simpiy a[stétement
that shock velocity 4& is supersonic_With respect to
the stéfe in front and subsonic with respect to the
state in back, e.g.,(3.2.25). For Eqs. (3.1.1) -
(3,1.3j'this condition can take two forms:

L) et
arT e ET A ) o

(II) - &t < & - < gy
v e € e

1f eitﬁef (1) or (II) is satisfied thé.discontinuity
is deemed admissible. Thus the shock_admissibility
criterion is also a condition on the $1opes of charac-
terisfigs (Figs. 3.22 - 3.23), but is somewhat stronger
than-the shock stability argument due to (IL‘ and (II) .
HqWevé;, the same conclusioné‘hold as before if the |
condition lvﬂr.< cf# is invoked. This condition has
already:been'assumed in conjﬁnctibn witH‘the mixed

initiél-boundary value problem and is anticipated in
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practiee thls puarantees (I), and (II)"are satisfied.

3.10 Local 0ua11tat1ve Behav1or of Shock Waves

3. 1035 Preliminarles. ~In thls sectlon‘ the local

‘aualltatlve vrowth and decav characterlstlcs of a
,dllatlve shock wave are con51dered The wave 1s’
assumed to propagate into a qu1escent reglon, i.e.,
one inTwhich the fluid ie'at-rest endktﬁeepreSSure is
consteni. The veseel is assumed‘to'bessesslan arbiéy
trary deqree of static taper. ’It iS‘found that there
ex1st cr1t1ca1 values of taper in terms of Wthh the
1oca1‘behav1or may be expressed.

In the analysis of shocks itfis convenient
to empiov a system of Lagrangian or meterial coordi-
nateé;5 The system to be used is descrlbed as follows
The motion 75 IR —a—ﬁQ i deflned by |

v >CCZt)-—>£CZ) 'f*  (3.10.1)

q1ves the 1ocat10n 3 of a fluid partlcle at t1me t
"wh1ch was located at Z at time o Thue )ée is
a map: ﬂ?w*lR , from the initial configUratioh (time o )'
to the'breeent configuration (time t,):’“The pair (Z,t)
are the Lagrangian coordinates employed here. It is
' clear»that if » is differentiable, then
w(3t) = v (3(Z,0,¢) = X(Z€)
| o ' (3.10.2)
2X (Z,¢)
€

Z = const.

* See Chen [48], Chen and Gurtin [49] and Nunziato and
Walsh [50]. .
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The deformation gradient is,defined.as

F = (3.10.3)

VIRV
IR

Sl €= corel.
1f 76£'kis infertible, then by Eq. (3110 1), functions
of (%“t) may be alternatively represented as functions
of (z t) and v1ce versa._ ThlS is taken to be the case,
in faét it 15 assumed X, 1is a;homepmorphlsm* from

2( 1open.1n R to X (W) . If XQ(ZZ) contains a
shoek at L5(t),‘% is merely continuons.at Y(f)—-yfé¥}n;'k'
In con51der1ng shocks, 7((@() is taken to be an open
.1nterva1 containing ¢(¢t) . On ZLmVYIt) Sl is
assnmed‘differentiable. Thus (3.10.2) and (3.10.3)
~make sense on both sides of the shock.

- No additional notations will be 1ntroduced to‘i
,fac111tate changes of variables and thus dependent
»varlables may be considered to be functlons of either
pa1r, e.g. 1t «h—)Z‘ is wrltten, the‘meanlng is glven
by Eq (3 10.2). | 5 |

The shock wave is assumed to propagate into
a qniescent region {(3,t) |3 >40)]} eharacterlzed by

b

3=z (= w=o  F=1')
op=T = const. , 5G,t)=2G) , (3.10.4)
V= o |

Eq. (3,10.4)3’motivates the definition of a dimension-

. : —— ; :
* One-to-one, continuous and the same for X, : % ()—C




.1ess afea'variab1e<rﬁk3/a,. 'With this‘and (3.10.4),
some new constitntive'relatiens are defined which
adapt themselves’nicely when a distinguished configu-
ratiOn_is available, e.g., the initiél'one.
It'is'assumed that there exists a unique
equiliniium statetindependent of the'history of S ,
i.e .5 1f 9F>C3¢ﬂ =T = constant for a11 t greeter
than some leed value, then there ex1sts a function
‘chgut) ALC}) :_, 1ndependent of S ; such that as
E oo, S(3:8) — AC%) where 5 satlsfles 'T-—
The funCtlon o of course depends upqnufT . Suppese
the;eqnilibrium’state has been reached. The instanta-

neous response function in terms of o for the

equilibrium state is denoted

ﬁCcr [Ee S },t) pCS 5 3,t) (3.10.5)
"ﬂ"—‘— P(O O‘-—\,g_,f)

The tangent modulus is denoted by E=Dp=aDP and

the second order tangent modulus by E=Dp =2 D p

The secant modulus is Ef-—[p]/&r] See Fig. 3.24 for
an 111ustrat10n of these deflnltlons :

| For future use it is necessary to rewrlte
Ed. (3.131) in terms of Lagrangian coord1nates. To do
this;tmultiply Eq. (3.1.1) by F , make use of the |
chain rule Ca/az = F /253 ) and the identity

v 87 = F to get

S +Fd = o . s (3.10.6)
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Integfafing with respect to ¢ , holding Z fixed,

and employing Eqs. (3. 10 4) vyields i
. JA»CZ) _ (SF)(Z,¢) +§(«H-'>(z €)dt’ . (3.10.7)

Recalllng that , is 1nvert1b1e, the materlal

path of the shock Z= WT%) is deflned by
Gy(e) = )(t(YCt))) Lo (3.10.8)

and its intrinsic velocity is U =Y ¢) (assumed
y B

greater_than zero). It follows from;differentiating.
Eq. (3,10.8) that

i

T = UF

*

(3.10.9)
Thus from Eqs. (3.10.4) ;
. | ”ii;gf=uj  i '{&me
Eq; (314.id1 , in the present ndtafidn; becomes
[oF 1= |
thus ffom Lqs. (3.10.4) |
! cETL . (3.10.11)

Using Eqs. (3.5.3) - (3.5.4) and (3.10.4) results in

(3.10.12)

The Lagrangian shbck compatibility condition, dual to
Eq. (3. 4, 5), follows from differentiatlnq 9} R R
on both sides of the shock and subtractlng

S . 1 (3.10.13)
Sl = Lgl + U Log/oZ ] .‘ | |




Substituting %;=2f in the above, noting that IKl=0,

and employing Eqs.f(S,iO.Z) --(3.10.4) results in

. " = Cw1=-ULF1. e (3.10.14)

With the aid of Eqs. (3.10.4), (3.10.11) and (3.10.14),

the shock strength, a , may be expréssed in the

following alternative forms:
A%F0S]/5T =[01/c” =LF1= /U (3.10.15)
The range of interest of Ao , correéponding to:dH? ‘

ative  shocks, is (o1 ). Eqs. (3.10.12) and (3.10.15)

combine?to give
1Uz=<p’—T)AsO~A&J ,_  (3.10.16)

and thus for the usual arterial conditions illustrated
in Fig. 3.14 (Ez2o0, E>E,>E ), Eqs. (3.10.15) -
(3.10.16) imply | v gt |

EA-a)(i-a/2) > V> E/0-0)(-8/2). (3 ."10 .17) )

The speed of sound in this notation is given by ci:GEj

3.10b FEvolution of the Shock. The aim is to derive

an éxpfession governing the evolution Of A . Substi-
tuting %;:F and %#tf in Eq.é(3.10,13),:hoting that
<r = 3w /3¢ + - 2v/23 | making use of Egs. (3.1.2)

_ and_(S.lO.lS) and assuming [fl=o0 results in

+|/2. ‘.
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2Uda + adl + 1 [2p/a3] + U [oF/22]=0  (3.10.18)
4t At s

In turn, expréssions will be obtained fbr [oF/22 1 ,
 [ap/55:] and(1UAdt e
1he results get somewhat messy for the fully

generai~case SO 1n1t1ally the following simplifications

are made§
A4 = o (no outflow),
D 5 = elasti : L
LP ° ( ic), (3.10.19)
E%.ﬁ = O (axial homogeneity),
Ei_ﬁy = o  (no induced changes in the artery).

, . (3.10.7), when différeﬁtiated by Z ,
-operated upon by [- ] , and comblned with Fq (3.10.15),

becomes

where ‘the notation ao-‘/a} = Cao‘/a})_ is used.
An equation for [aF»/agg]. is derived by
d1fferent1at1ng P with respect to -§. , using Eqgs.

(3.10.4), and applying the Jump,operator tofthe~resu1t:
_»_'[ap/a}] = %} ’ap/a} B acr/a} (3.10.21)
S : :

ciU/QLt is obtalned by dlfferentlatlng Eq.

'(3 10. 16) and employing Egs. (3.10.4)\_

EoF/oZ] = Cl——a)s 20 /23 S (3.10.20)
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UdU _ = Lda 0 (3.10.22)

ot 2(1-a)-a/2) & dt

where - :
K= E - U C=-a).




Note that (3.10.17)1implies» A >0 ,:ffom-which it
follows that

-1
= B

VI
0

= da
, a€

VLA
0

(3.10.23)

- Substituting Eqs. (3.10.20) - (3.10.22) into

Eq (3.10.18) and rearranging; resultsffn'the equation

governing the shock strength,

da e o Ala) 'aa-'/agﬁ)' |

Al) = —(2-aA)loaYUe oo 3102
BT+ UTGmaXi-a))

It follows that A< o, thus

v
q

|

VA

(o} - aa
: €

AllY
0

&
o

(3.10.25)

Note that in Eg. (3.10.24) the non-dimensional area

gradient behind the wave front,'ac’y’ag,;‘can be

expreséed as A
‘ a&‘/a} =(25/23 -2 )/» ,.
A = a/oE)/ ey, BI00

from which it follows that

55" S
Q & >3 N,

’;ﬂd
®19
vIEA
\/W\‘ :

(3.10.27)

For obvious reasons the functions aAd/az.,;asj/ag.,

aw’/a'} and A are called the static taper, dynamic

tapef;irelative dynamic taper, and critical taper,

respectively.' From Eq. (3.10.26)1, In| > |20 /22 |

The lécal‘evolution relationship betwéen [m] and the
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shock strength Can be determined by noting that Eq.
(3.10.15) is equlvalent to (o] = A,CL—A) from which .

it follows that

alcl = 1\ oda , (3.10.28)

Tt G- ad" At

~and therefore

- dle] (3.10.29)

At

VIA
0

o & da
A€

VIEN

The physical content of Fqs. (3.10, 23) (3.10.29) is
depicted in Fig. 3.25. The use of a1 as ordinate in
’Fig.,3;25, as opposed to S-» , considéfably simplifies
the diagrams. ‘._ :
Examgle; Take the caseiof an induced dilative  shock
» wavekin the aorta pfopagating'in“akdiféttion away from
~the heart | Assume 1aboratory c1rcumstances that conform
to the analytlcal assumptlons., For example, assume ‘the
aortlc branches have been occluded to prevent outflow
~and that’cardlac activity has been arrested for a,perlod
of time prior to the arrival of the shock; so that the
static conditions (3.10.4) are created;f'The aorta is
taperedkdistally such that o /dZ < o . These
conditions and (3.10.23) - (3.10.29) impiy that

A< Da/IZ < © and if 25/23 < N , then
 <1¢/%Lt S, du/de and?iciéxt éréjall >o
»which';orresponds_to'condition‘(i) in Fig. 3.25,
whereas"‘:if as—/a:} TN, theh dA/dE |, d.U/oLt

and do /dt are all < o , corresponding to condition |
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(11) in Flp 3;25. ’
| Now the simplifying assumptlons (3 10. 19)

will be removed In this case

[oF/0Z]1 = —Ci-a) 35" + (a7, (3.10.30)
Lo 93  "mU :
5p/31 =La‘=E"a“«- “'.a"— 0 (3.10.31
Lter/231 =1 28 g2 +(Dp - 393 ( ).
, +‘,D3[S b) : :
elied milde - obde o UBe e DR DG0R)
UdU = = a
dt 2all—-a/2)(i-a) a%

- (3.10.33)
+CUDP + Dp YV (2al-a/2)) | =

" The amplitude equation is

e Ala) {5%_ } > -(3.10.34)
where 73 , the relative critical taper, is given by
T ;v-{(ﬁ%ﬁ- a¢jf +‘c>§" +
| +CU o8 )/CZUCI A/2>) . (3.10.35)

e LJC! zfqr },/=<

,The~sign of C 1is problem dependent.‘,It would gener-

ally be assumed

CDzP __c_r__)Zo >

°%
N zo |
but D,p , Elﬁf would depend upon particular circum-

stances. For the example of a wave propagating




ci)

a1

Cid)
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'dista11v in tﬁé'éortavit is well kﬁown that D.p>o.
.Nevertheless, the local qualltatlve behav1or is st111
expressed conc1se1y for all p0551b1e fC

| - (A) (3 10.23) no longer holds, 51m11ar type
dedﬁttions must be made from (3.10.33);for each case.

(B) (3.10.25) should be replaced by
>

¢ 2 © & dba Z o . (3.10.36)

a}_ = T <
(C) (3.10.27) and (3.10.29) remain the same.

Example. Let everything be as in thefbrevious example
except_this time take account of the neglected effects

as follows. Assume

v

- 5. 3g )
”“k_ = @ > .
Dsﬁ o (3.10.37)
D4_’FS - o

The lést'condition could be changed to D,p =o without

changlng the argument, but this seems to have little
phy51cal ‘significance. It follows from (3 10.37) and
the preVious assumptions that T<o , Thus the situa-
tions ;fe as illustrated in Fig. 3.26. It can be

' garnéredvfrom Eq. (3.10.33), and the éssumptions, that
| the ﬁropagation Velocities afé, in fact, qualitatively
correct;in Fig. 3;26, since ffoﬁ (3.10.29)

B ILt‘J

A o)
At

ALY
AVY
0

~ Conditions (i) and (ii) this time correspond to the

(3.10.38)
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cases o0 /93 < T and d0/93 > T , respec-
tively. These can be expressed in terms of A via
(3.10,26).

3.11 Comparlson with Experimental Work

Landowne's experlments [51 52] afford an
;opportunltv to check some of the qualltatlve features
of the:present theory Brlefly, Landowne employed a
mechan1ca1 1mpactor to 1nduce (non 1nva51ve1y) waves
in human brach1a1 and radlal arterles. The 1mpactor.
.was appl;ed to the overlying skin of thé brachialkartery:
at theymidhumerus. Recordings of luminal arterial |
presSutekwere taken in the radial arter? at the wrist
and inifhe brachial artery at the anfetubital space
(Fig. 3.27). A typical imbact wave pfessure recording
superpOSed on the natural pulse'iskschematicaily Tepro-
duced in Fig. 3 28 after Landowne, [5|]@ p.596. Landowhe‘s
flndlngs were: | "
| (A) The propagation veloc1ty of 1mpact waves
1ncreased w1th ambient arterial pressure. | 1
| (B) Impact waves riding on‘a;rlsing ambient

pressure did not travel measurably faétér than on a
falllng ambient pressure. 3

(C) The propagation ve10c1ty of impact waves
at diastoiic pressure was greater than the velocity of
cardia¢ bulse waves. Simultaneous meaéurements in five

subjects yielded 16.1 to 11.6 meters/sec., respectively.
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(D)‘ The amplitude: (nressure rlse) of impact
waves. decreased as they propagated dlstally (see Fig.
3.28).

Phenomenon (A) is con51stent w1th e1ther an
acceleratlon wave or shock wave 1nterpretat10n (see

Eqs. (3.5.3) - (3.5.4), (3.6.2) and (3.7.4) - (3.7.5))

along With the basic material assumption (2.4.19).

Phenomenon (B) is also consistent with either an

'acceleration wave or shock wave interbretation as the

slope_ef.ambient data does not appear:ineeither velo-

city'eipressionv(Eqs. (3,5,3) 4 (3.5.4j.and (3.6.2)).
| Pnenomenon (C) 1is conpellingievidence for

interpreting the impact waves as shocks in the context

~ of the present tneorv The argument'goes like this.
All data, except shocks, propagate at characteristic
ve10c1ty. Thus wavelets comprising the natural pulse
travelyat characteristic velocity. Characterlstlc
velodity,depends only upon the ambient state (Eq.(3.6.2))
wherees Shock velocity depends upon theIState behind the
front-(ﬁqs. (3.5.3) - (3.5.4)), The fact that the

velocity of the impact wave is~greaterithan that of the

cardiaefnnlse at‘the same ambient preesnre indicates
that it must be a shock. This interpretatipn is con-
'sistentvwith the'inequality (3.10.17);fer'dilative
shocks. The thickness of the front at-the’brachiel
recording location can be estimated frdm'the velocity

(16.1 meters/sec) and the time duration between the
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front'and_peak (5 msec, p.92,3[5g]);_:g
thickness'w (16.1 m/sec) x-(s;;<;o*,5e¢) = 8.05 cm.

For comparison purposes, a similar calculation for the

cardiacmpulsef(based on Fig. 3, p.596, [51]) gives:
‘thickness ~ (11.6 m/sec) x (.3 sec) = 3.48 m.

Thus the ratio of ffontathickneSS'of impact to cardiac
‘pulse Wave at the brachial récOrdiﬁgflpcation is
approximately 1540. The ampli;udes’aré approximately .
the samé; abbut SO mm Hg. | l e |

k To compare the resultSVOf Séctidn 3.10b with
‘bhenqmeﬁon (D), assume the folloWing: _ ‘fk

i (1) A graph for o is quali;étively the
same'as,Fig. 3.28. _k |
(2) The conditions (3.10.37) apply for the

preséhﬁ.case. |

~ (3) The diastolic ambient conditions do not
~alter the validity of the results basgd’upon the static
,ambientVCOnditiOﬁs,-(3.10.4).  Then, sinée 20 /23> ,
(ii) of:Fig. 3.26 applies and'is cdnsiéfgﬁt with
Fig.;3.28;’intefpreted in terms of (lj._rWith*account
for the preceding assumptions, phenoménon'(D) isicdn?

sistent with a shock interpretation.
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3.12 Ident1f1catlon

‘The theory can only be put to practlcal
numerical use if the materlal propertles, namely B
can be quantltatlvely evaluated. In‘this séction some
51mn1e procedures are presented for 1dent1fy1ng p
via wave nropagatlon experlments, assumlng several
snec1f1c forms for P . The procedures are ad hoc,
i. e., they make no pretense to be optlmal and do not
ava11 themselves of the considerable methodology of
identification theory. For more sophisticated
approdches along these 1ine5'the reader is referred to
the fofthcomioc thesis of E. Llinas.

3. 12a Identlflcatlon of an Elastic Constltutlve Model

via Accelcratlon or Shock Wave Data. The first case
considered is when P models an elastic artery. In
this case B =7pPC0313, ¢) and a very s-impie identi-
flcatlon algorithm can be constructed employlng either
shock or acceleration wave propagatlon'data.

. The first method derives from‘the velocity
express1on for an acceleration wave, fcf== SPs
whlch'may be con51dered an ordlnary different1al
equatiOn for [=] parameterlzed by 3 and t . The
volocity c is assumed to be a functlon‘of S,‘%. and
B , which is ohtained.from'experimental,data.,
oIntegration of cL=;5ﬁg yields the constitutive
equatioﬁ o

: S et
B(33,6) = PCS:3,¢) +5 cEiz,e) as’ | (3.12.1)
‘ SI 'vb. O

o




Most 1ike1y"i§C50y},t) would be chosen as a constant
and 5. : R — R would be the corresponding area
function, |

‘This approach has been used by Rockwell [IT].

He reversed the roles of p and S from that employed

here, i.e., he used 5= 3(p; 3) , <= 3/,5,
which integrateS to o -
; i S dp’ i
L ~ . scPizy _
DSlpyz) = @) ~ ' o (3.12.2)

The éXpression assumed for the velocity was

c = 'CCo—PC\P)CCL-\" ca,%_);:'

The cénstants,ci) L=0,1,2,3 , were choseh to fit data
obtaihed from wave propagation experiménts on dogs
(seg'Seqtion 5.6). The wave he used is the front of
the cardiac pulse3.which may’be reasdﬁabl& considered
an a@éeiération wavé, althoughfhe”did hdt'ﬁake this
intefpfetation. |

A plot of his data, Fig. 3.29;f0r several
statibhs‘indicates, for the most part; gualitative
agreéﬁéﬁt with the properties indicated in Fig. 2.Z.
The only area of disagreement Cﬁgs<:6)  is for
p< 100 mm Hg  in a neighborhood of the aortic
valve, i%_: O cm - |

Another simple way to determihé_'ﬁ' for‘an_
clastic artery is via the shock veloCify;relations

(3.5.3) -7(3.5,4). The simplé case where assumptions
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(3.10;4) are made is illustrative. If in Eq. (3.10.16)
the superScript‘(é5) is suppressed and the equatioh is

solved for P , then

PCW-‘f},t) =T +\JGT>% t)(c'—l) - (3.12.3)
20 % - ey
The values \JCdgfg,t) - are put together from experi-

mental data. Note that this can come directly through
measuréments of U and o , or indi?eétly via measure-
ments o%'LJ and - by using Eq. (3,1b;15) which

_ reducéésto : , ‘ 
| g = l/Cl-—u/U) ; (3.12.4)
Thésé‘techniques, for identifying'the elastic
arter?y‘arc remarkably simple and underlie the 51gn1—
‘flcance of the propagatlon veloc1ty expressions.
However,.it is well known that arterieS'exhibit‘visco-
elastié.behavior. The identification,proﬁlem for
constitutive equations of this form represents a
considerable increase in difficulty. ’Thé‘first step

in performing a viscoelastic identifibétion is pinning

down:the form of the constitutive equation, as there

are maﬁy different ways to manifest dissipative effects.

3.12b ‘AﬁSimple Non-Linear VistogiasticnConstitufive

Mgggl,* Let «K=0o-1 and assume.akqonsfitutivgyequation

of the form: | " L
FC<5x"53,6) = B (<5 3,€) +

. / . (3.12.5)"
e/ T (3D

+\<C0(t')%,,f> Sae, ogc%_,f'—h)d_r- ;
* See Schuler and Walsh [53]. e
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For’simplicity the explicit dependence‘uﬁon ;3, and je
will be supnressed in what follows, i;e.; Eq;'(3.12.5)
willibe written as

/T
p@<(f> =< ) P CE)) + t<@<cf>33,q. o (- r-)dr (3.12.6)

Note;that as T>o approaches zero,'the_seCOnd term,
reprééentinp viscous effects, becomes small and the

constltutlve equatlon approaches the elastlc form.

1f a constant history <(t-r) = os" V"‘E (0,20)

is substltuted 1nto the second term of Fq (3.12.6),

‘a functlon called the 1nstantaneous response functlon

for the history o« , is defined

B (x(0) = P(x@®) + a T K&E).  (3.12.7)

Thus P, is the instantaneous”response
function for the o history. This corresponds to
SC} f—r“) 2(3) ‘V’r‘ e (o, 003 ; -’Alt'hough such
v51tuat10ns do. not occur in practlce, the preced1ng
nOtlQn.lb 1mportant‘51nce the exponent1a1 term causes

the se¢6nd term in Eq. (3.12.6) to remember in essence

only'fhe'”immediate past." Thus a cOnstaﬁt'hiStOIY
for sbmé finite time (which depends on'thekmaghitude
of ﬁf_) is adequate to define instantanéous response
functidns in practical circumstances. As usual, it is
assum’e’vd,.f D, pP.>o and D?' Pa = © fdr..fall o in
the range of physical behavior. In gehéral K is

assumed to be negative, which can be”ihterpreted by
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assuming'a step!funttion for the histqry
<€) = o H(€) 5 (3.12.8)
see Fig. 3.30. The slope of the P -¢urVe at €t=o is
computed assuming the dependence on  t7 in the fourth

slot is absent.

3.12¢< Identification of the V15coelaétic'Model via .

Shock Data.

(A "comguﬁiﬁg Po .

- Suppose the initialvsfate is'giVenvby (3.10.4)
and has been in equilibrium long enougﬁAso that the
integral in Eq. (3.12.6) can be'neglectéd. Then &,
can be tonstructed from shock wave prqpagation data in
exactly'the same way as the elastic fuhction was
constrﬁcted (Eq. .(3.12.3)). In terms of « , and
4suppressing the dépendence on the lastfﬁwo slots, the

counterpart of Eq. (3.12.3) is

R (=<) - T + uw‘{%;}[ o (3.12.9)

 where "9{=o<~ .

(B) Computing TK:

A steady wave is a solution of Egs. (3.1.1) -

(3.1.3) which depends only on the single variable

¥ =3- 2t ; X is called the steady wave velocity

(cf. the analysis in Section 3.2). A steady shock wave
is a steady wave with a shock frbnt, (e.g., see Fig.

3.31). The analysis in Section'S,Z'indicates that
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steady waves satiSfy conditions identical in form to
the shock jump conditions, but have‘a different inter-

pretation; ~These conditions,will.be*Wtitten here as
L) Go)

Cv—kobow) 2. - : Crood & SN oo) o o
(o 7)) + 57 2 T+ 8 (3.12.10)
2 by 2 S
: . &oo) . (*o0)_ (¥o0) Croo)
where a0 = F U = g —

is the relative steady wave veloéity; U is the

intrinsic steady wave velocity, and_the“éuperscripts
(o0 ) ¢orrespohd to & ——»—(ioé), . -Suppose the wave
is asidepictéd in Fig. 3. 1, and the $tat¢~to the

right of the shock front is given by

i

gp = ¢p’ = Pt T,

+ Creo)
B - = e o =0

Also suppose the superscripts on the & —» —oo state '  %

are suppressed :

o) o Cood |
P '.= p‘i) S = S 3 F T P 5
V= -, =0
e Sl ‘ ,(3.12-.12)

%
I
P

{
]
9
I
f
_|.

With these, the following relations can,be computed:




— JJ’_C+°°)- . Croo) g D (400D
de¥.
= U 3
- (=0 ) B Gl =D
LA = A -+

(3.12.13)

and finally
‘ L 2 - L o |
Pu@) = T + £ {U —(U-)+r 1) ] . B.12.18

Thus measurements of U,u~ as functiohs;of a. determine
ﬁi@gj . From ﬁgaj and E;al) ;”T+<Ql) can be

cbmputed via Eq. (3.12.7):
o TK@) = (B - R@)Y ) /o . (3.12.15)

(C) Computing T - |
. Ry assumption, q“vdaes not dépend on  o{
Thu5 it,can Be‘determiﬁed frdm pressure and’area data
as indicated in the followiné éxampléiv;
| Suppose <A at some site %}f is ayStep’,
function with amplitude a. , Fig. 3.32, and suppose

the'pressure data at gf is as sketched in Fig. 3.33.

Use the:history depicted in Fig. 3.33 to integrate the
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second term in Eq. (3.12.6):

op | é/‘  (3.12.16)
' FLGl)-+ aJ<Gl)C\— ), '

T Zo

I

which eﬁables the interpretation of Fig; 3.33 and the
computation of 'V (see Fig. 3;34).

For more complicated proflles the procedure
for computlng is essentlally the qame, namely repre-
sent the data parametrlcally and'perfprm the integra-
tion in_ﬂq..(3;12.6). The reSﬁitingwrelation, akin
tofﬁq.‘(3.12.16), is then used'invconjﬁﬁCtion with
the ﬁréésure data to deduce T és in'Fig.'3.34. Note
thét~this procedure doesn't depend on the wave being
steady, however it is considerably simplér if it is}
Notes. The use of steady shock wavesbprovides a Simple
analyticalftechnique for the identification of a
visCoelastic arterial model. The teéhnique does not
requlre bona fide steady waves, as long as equilibrium
man1fests 1tse1f in the exnerlmental data' a zero
derivative in graphs such as Figs. 3.32]~ 3.34 is
’indicative. ‘ 

The dependence of p on 3_ and ¢t in the
last two slots was suppressed as the notatlon was
becoming cumbersome. To construct the dependence on

2. , data must be measured at different sites and

the analysis of steps (A)-(C)carried out for each site.
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~An interﬁOIation of the results givéé fhe;dependen;e,
The dependence on t , e.g., before and after.fhe
administration of a drug affecting fhe'¢ardiovascula-_
ture, ié deduced simply by performing‘fhe'whole sequence
of expériments at different times.

. The experimental work of LandQQne [51,52]
indicates that shock-like waves can béfinduced in the
Circﬁlatory system.' Thus there"is ste hope that a
proceduie such as the one just describedfméy be uéed

to identify viscoelastic properties.




3.13 Smooth Pulses and the Shock Relations

In this section the way in which the shock
rei@tions approximate the behévior ofvsmooth puises is
studiedL | | ] »

| A smooth pulse is a Cf‘mapping

e §RICR— R
such that Dy &)= Dp&)=o, D‘IP(EJ) o, D%pB.)=0
and Dgp(E)<o , for all %eCE}.',%Q ; see Fig

3.35. The front of 4 1is its graph, o
{&, 9% 1 &E€l%,8.1 1 . The front thickness

= g,;—?. and the 'amglitude‘ [zpj = (& )-40,),

where‘}fﬁFi“ and {FC§L) are the maximum and minimum

of o . respectlvely

Consider an- equatlon of the form

Ui+ ar—:(u) e G*(u)_gau*_"(s.ls.l)
3¢ 33 33> S

‘Let <L§C}¢0,<?G}ﬁ0) .define a rotated orthogonél coor-
dinate.system such that, for -2z fixed, U.(- 72) is
a smooth pulse. To pin down the def1n1t10n of the
coordlnate system, sunpose 72 is tanpent to the right-
facing characterlstlc (setting y=o in (3 13.1))
through the p01nt C%”Z) , where % satlsfles

Ui C§<Z)‘ Va {UL(872) +-LJC§L;?)} see
Fig. 36, A particular system wh1ch satlsfles these

condltlons is given by

§=3-zmt 2= 3+t (3.13.2)
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where JX is the velocity of the right-facing charac-
teristic at (&,%2) . In this coordinate system,
Fg. (3.13.1) becomes:
-x (2. — o YUy + (o + 2 ) F. + G
OB e 3 72 e
(3.13.3)

= » { FUs ¢+ 28U 4+ FUL }
oogr agcy? 2™

Integratlnp w1th respect to g over ['Es.,ga_] ylelds

EL) e [F ] + & { CM,L) - F' ) :
+—€(+} : v {z[%] + & FUs } X (3.13.4)

o>

where the sunerposed bar indicates mean value, e.g.,
U C% UL D)/e , and the jump operator [-] is
defined by [Lil= Ui(§72)~Ui(§.7%). Fa. (3.13.4)
is understood to be evaluated at 72 . The first two
terms on the 1eft;hand sidé of (3.13.4)‘are the smooth
pulse'ahélogs of'fhe shock relatiqns. 5The reméining
terms were neglected in the analysis'of”Section-S.Z,
pp. 33-38, L |

| To see when the shock relations hold fo a
good'apﬁroximation, introduce the 1ength Scales

A= {mOULl/{e @0+ Fud )} i

~ 372 5t 5

ar= {XLusl/Go 31,
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and the coordinate change § = *a/“%;_ .

Eq. (3.13.4) can be written as

117

“With these,

i el (3.13.5)
TG [gg] v e 8L ) /tuay,
‘where-.'be." = E/N, , E, = E/?\":.} : :'a’r_ldﬂky ""’17=>>/@1:.?\.)

are non-dimensional parameters. Thus the shock rela-

tions are seen to hold to OCEa* Ea + YD) for

smooth pulses. Roughly speaking, the parameters

& ,&= and Y  are measures of the tangential

variation of the pulse, lower-order effects and

viscosity, respectively.
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IV. NO-SLIP THEORY

4.1 Ihtroduction

On the basis of the assumptions madekin the
construétion of the flat-profile and-ho—slip théories,
the latter is physically more realistic. In the pre-
sent section some of the features of this theory are
analyzed and compared with the flat-profilé theory.
The only difference in the two theories is in the

momentum equation, which for the no-slip profile is

220w + 2 (I+8)(Sv™) + 3 2p =
ot o3 P 23

Sf + N + » 9*Su
agz

(4.1.1)

Assuming S and <~ are smooth enough, Eq; (3.1.1)
can be used to put (4.1.1) in a form amenable to com-

parison with the flat-profile momentum balance, Eq.

(3.1.2):
Qv+ (v 1 2 (5 =
ov + g@fiﬁf +-€$;) + 4 £ (Sv*)

(4.1.2)

Eq. (4.1.2) is the velocity form of thé~momentum —

equation~for the no-slip theory. There are three terms

in this equation which are not in Eq. (3.1.2), and
one which has changed form.
The N term represents the contribution to

~viscous forces resulting from the slope of the Velocity
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profile at the luminal surface. This term does not
vanish, as does the second-order viscous term, in the
limiting approximations of [7,15] and ['81 . Histori-
cally, a viscous term has been added ad hoc to the
flat-profile theory. The no-slip.theoryvthus
includes this more rationaliy. The significance‘of
this term has been explored numerically by Rockwell [{T7].
His results indicate that for reasonable values of
the viscosity, ,« , the effect of N is small up to,
and including,the bifurcation. However,'beyond the
bifurcation, where the luminal area decreases rapidly
causing an increase in magnitude of t{PJ/S, the effects
of varying s+ are quite noticeable. As M increases
. both the pressure and velocity pulses tend to decrease
in amplifude in the region distal to.thé bifurcation.

| | The inclusion of the'outflow term - in
Eq. (4;1;2) for the no-slip theory was first pointed
out in [27]. Since both it and N multip1y4:/é , its
significance is easy to deduce. It tends to mitigaté'
the éffeét of viscous forces C4—|= Aﬂnﬁﬂb~==<A%mJ%}
Thus for the analyses considered by RbCkwell one would
anticipate changes in the pbst-bifurcation region. This
hypotheéis was verified numerically (see Fig. 4.1). A
detailed'description of the analysis is contained in
Section 5.6.

The & term represents a éorrection to the

axial momentum due to the fact that the velocity
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Figure 4.1 Effect of outflow term in
momentum halance




profile isn't flat. Although experimental work indi-
cates its value is small (say o ${1/3),-its quanti-
tative significance has not been established. To
asseéé its effect,a calculation has béen,made based
upon Rockwell's data (see Fig. 4.2). The details qf
the anaiysis are described in Section 5.6. The results
k‘indicate that there is negligible effeét prior to

2 — O om . However, for =3 > GOcwn the differ-
ences become noticeable. This suggests that the effect
of & "may be important in the smaller vessels.

The second-order viscous term is interesting.

The form it takes indicates that the appropriate
discontinuity conditions, as motivated by the arguments
for the flat-profile theory*, will be different than
the flat profile cénditions. "The appfbpriate weak
form of the equatiohs for the mixed initial-boundary

value problem will then be

o= ({sa + svan - 4
# ot o3 »

S ;
+ Su %,, + (Q+8) 5"+ (3'Bas )%%_

.+®¥+UN4_A}E+v5v§EP$i (4.1.3)
03"

+ Scsodb\ + Sevocbz,)ld-%— + ﬁ)'
: [R : €=0 o

* Cf. pp. 33-38.
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Figure 4.2 Effect of'no—slip.velocity profiles
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where

s o
A’% SSCQ@{%%+J%%)dS

- 5D—15 %%r - SD&ﬁ >

(4.1.4)
}:L

B o= - {Qb + Fd, +v Qb }| ae
fQ+{ , ’ 93 }élo

andf}€=5ﬂé is‘the‘appafent force. Thé term ;S.,is zefo
if Qali viscosity and inhomdgeneity:aré'negiécted.

The discussion of éppropriatevboﬁndafy'data foliows
along the lines of Section 3.3. Notelthough‘that here
the last term of 33 contains Q instead of ~ as
before. Since this is redundant, it might as well be
insisfed that ¢, € Kffb,L) . Thus even when 9>c>;
the specification of v constitutes éh essential boun-
darybcohdition, unlike the case for Eqs. (3.3.11) -
(3.3.12). The argument for writing the momentum balance
in this weak form is that if N is fixed and the full

equations are solved for various values of , then

in fhe limit as Y — o , the class of weak solutions
érrived at is that defined by Eqs. (4.1.3) - (4.1.4)
with » formally set to zero. Note that if & and

N .afe formally set‘td zero, weak solutions obtained
by éatisfying Eqs. (4.1.3) - (4.1.4) do not in general
satisfy Egs. (3.3.11)'- (3.3.12). This can be seen by
looking at the discontinuity conditions for Egqs. (4.1.3)

- (4.1.4)
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@Esj = [Sv] T
L lSul= [a+s)uDl + Ssp
. . 5+

-» [aSv X | |
o3 | (4.1.5)

o = »[5v],

and éomparing them with Egs. (3.2;19); However, when
B;PJ and Y are set to zero,'strong solutions of
.one theory are strong solutions of the other. This
implies that differences will be seen in numerical .
analysis:of the theories, when shock-like pulses are
involved, even when 3,N and v are_sét to zero.
It is interesting that the éssumption of the

flat-profile or the no-slip profile turns out to be
crucial in that two different classes‘dfvweak solutions

result..

4.2 ConSeqpences of the Distontinuity Conditions
The discontinuity conditions fqr the no-slip

theory, Eqs. (4.1.5), are somewhat different than those
for the flat-profile theory, Egqs. (3.2.19). 1In the
following analysis use is made of some of the notions
of Section 3.4. In addition, it ié assumed [S]=0.

A If v>o0 ,Eq. (4.1.5)4 gives (Svl=o, which
redﬁcesqus. (4.1.5),, to | ‘

o L8] = o,

; . o o (4.2.1)
o- = (Sv) [di+s)ul + §+Sps -y [&5%—)—] .
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,If sr#o , L5]=o which implies Lv-l=0 ; thus from

Rq. (4.2.1), [a§§;]=c>. Taking the jump of Eq. (3.1.1)
thus gives [&5/2¢)=0, and from the compatibility
relation FEq. (3.4.5),with %/=5,vone. obtains E35/33]=O.
By expénding [a&r/a%]:o' one gets [ov/o31=0
and using Eq. (3.4.5) with Q= then gives [étr/a§]=¥oq

i }
Therefore (S,v) are C and there are ‘no shock waves

~for »>o . It is no problem to proceed further;
thus if o ,(Sv) are c™ |

. If the assumption i+ © is dvrop{.)ed,k
Eq. (4.2.1), remains as is, Eq. (4.2.1), is satisfied
identically, and little more can be said.

When »=o , Eqs. (4.1.5) .’re.duce to

i [S] = [Sv] |

S - ‘
a8 = L+ Sur] o+ S SE, - , (4.2.2)
st

In terms of the relative velocity .o these become
o = [3.] ,

< .
o = [Sw™] +§3F +5L5U‘2]- (4.2.3)
st . B : :

At first glance it appears that unless &=o , Eq. (4.2.3)
is not properly invariant in that <~ cannot be elimi-
nated in favor of .- . ‘This appearance is only
illusdry however, as a moment's reflection reveals.

The cbndition that wy satisfy the no-slip boundary
condition, and the condition that thé arterial wall

experiences no longitudinal motion imply ~u—3\ = o
D= : -
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(cf.(F) and (E,), p.\6). This selects.out a Spécial
observer, ﬁamely, one sitting on a fixed point (3)
in the artery wall. Thus < takes on an invariant
meaning; it is the mean fluid velocity With respect to
the artery wall. Another one-dimensional'pbserver
translating along af some constant velocity X would
measure mean fluid velocity to be -, but he would
 3150 measure aftery wall velocity as -i& . The .Vf
difference -~ is thus the same for ailyone-dimensional
' Galilean observers, and Eq. (4;2.3)1 is in fact
Galilean invariant. |

| It is of interest to consider the possibility
of a contact discontinuity. In this case ar=0 ;nd |
Eq. (4;1.7)\~is identically satisfied, whereas Eq.

(4.1.7), becomes

o = E;_S?% + %<¥L[35]f
Suppose 5> 3" , then both terms on the right are
greater.thén zero, as S,Ps , 9, ﬂr;.’afe all greater
than zero. If S< S* , then the right hand side is

strictly negative. Thus the only possibility is

[S3=c , and there are no contact discontinuities for

all $zo when »=o

4.3 Shock and Acceleration Wave Velocities

The tounterpart of Eq. (3.5.3) for the

no—slip velocity profile is



S
- +
o aay o= _\ __ SB. +
- 18] §+ s
-+ S(vfyf + o+ U_\—@—_) . (4.3.1)
The counterparts of Hqs; (3.5.4) - (3.5.5) just involve

using LU;4J1+‘= Ef//ﬁf , i.e., Eq. (4.2.3). The
concluéions (3.5.5) - (3.5.6) follow from Eq. (4.2.3),
and thus hold in this case also.

-~ Acceleration wave velocity (,%'characteristic
velocity) can be obtained from Eq. (4;3.1)3by taking

the limit A¢f¥~+$uﬁ 5t—>5, viz.,

2,

Note that the shock velocity expression for

the present case, Eq. (4.3.1), is different than
Eq. (3.5.3) even when &%-— o . This corresponds to
the different classes of discontinuoué solutions
picked out by the two theofies. On the other hand,
as 59— o , the acceleration wave Velocity for thé,_}
no-slip orofile is the'saﬁe as‘for the flat profile.

| When comparingvpredictionskmade by the
no-slip and flat-profile theories, the following
notétions will be used:  ( = )hl, to’iﬁdicate a no-slip

1=

theory quantity, and ( » ) , a flat-profile theory

quantity. Sbme nhysical interpretations of Eq. (4.3.2) |

are immediate:

(A) The velocity'of aécelefation waves

o = SE 4 5Cetrzuw) . (4.3.2)
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propagating into quiescent regions, i.e.,rwhere =0,
is the same for both theories.

(B] Assume u3*u'>'o . Then if experimental
acceleration wave data are used to identify .?5 ,
CE%)F > CE%)N ; that is, the neglect of the 3 term
makes the érfery appear to be’instantaneously.stiffer;
Equality occurs if the data are obtaihed from tests
where the acceleration waves propagate into regioné
where = © . Otherwise Eq. (4.3.2).shqu1d be resor-
ted to for identification purpbses, unléss of course
it can be established §(Hrl+—Af$u;)<<~A9}'.k This‘is
the usual case for the major vessels.
| | (C) | Assuming «<,ur>o , and B ahd 3
have heen obtained exactly by‘some indepéndent means,
then(?xr)ml> CUJ)F ; that ié,’the predicted accelera-
tion wave velocity for the no-slip theory is greater
than that for the flat-profile theory..

The shock velocity expression is more diffi-

cult to decipher. First consider the case where %$=o0.

Assume that S > S% . Then to conclude that
(;L£;*£+)hl>»cu:iuf*)F” -, it is necessary to show
s y

that $ SB > Ipl/<V/s»
s‘ﬁ- . R
First notice that if S;:5+b0th sides are

zero. Thus it suffices to shgw that

N L
=9 SB. > A Cpl .
) é* s S <\35_>
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Comﬁute -
; S
d S
0315 B
sy
S’;S,;

=_25" (SR

- SR 2N R

')
= 2 (3) [B]
Cs+3S9 (51

)

i

(S7+ 5" —ZS) S’ps
(s +35%)

— S
S5 SH

2(sH)”*
(S + H*

5

i

v

-
+ .. —~
s 1)
(R - 59 ¢

( _TF]
<V/S>

CS 5)

5-+5f)

<l/57

; L o . _ -2 F
the. preceding result also implies Gur ) >G> ) and

s

_they hold for &

Thus suppose

small enough.

and S > S

— + '
A ar = O

_ . - e,
Note that since Guw /") = (wr *uf)==f>/5,

Since the inequalities are strict,
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Then for all $=o it can be concluded that
Car™aurt )N > C'UJ'—J-U’-") F N
2.

__2_> .

C oar N> C 5

oY > )T

i.e., the shock velocities predictéd by the no-slip
theory'are greater than those for the flat-profile
theory. In particular, shock velocity predictions

of the two theories are different even if %=o0o .

4.4 Previous Shock Conditions Appearing in the

Literature
Four papers dealing with one-dimensional

shoék'conditlons have come to my attentioﬁ. All have
the same jumn condition for the continuity equation,
namely_ [ Sauod=o. lowever, each nresenﬁs a different
junp condition for the momentum equatibn:
(i) Lambert [1]: [Sw® + Spl=o,
(ii) "Bifd and Bodley [&]: [SuAl+<S)[pl=0,
, - : (4.4.1)
(1i1) ~ Beam [13]: [s.*> 1 + §+5§5 = @,
(iv)  Seymour and Varley [\8]: [J_._'i_)*"-\- pl=o.
In light of the theory presented here, Beam's result
1s seen to correspond to the ﬁo-slipbtheory with
(q. fﬁ.l.l)), and Seymoﬁr and Varley's to the flat-
profile theory (Eq. (3.1.2)). |

- It is of interest to compare these formulas.
As a hééis of comparison)Cuiuf)will bé expanded in

powers of [S1:



(i) ot = [5P1 = (s'pt+ 570 +OCIsD),

(1) wof? = £o2 00 = 9% v Ls_l(sss>s++
o+ [5:1 ("B, +3B) + o(Ts] )
e .’ —_ + . ~ : by P : ~ vt
(_1.1.1):.,*&)-” = Ss+sp$ = vSps +L2S__](Sp3)s
+ [ST (S'Fh +2 B ) +OCC7%)

(1v) + | - Sttt : ~ F
A = avs [[PS-:_J] S P + ESJ‘C.SPS)S
+ E—’a—t[,' (S+Psss + = (Pss - Bs "/5))
+ CDC[5]3)

\ntp first of all that (i) doe es not agree
with'the other forms even to terms of order 1
(acceleration wave velocity). kﬁxaminatiqn of Lambert's
derivation reveals that he uses an erroheousvform of
‘the global momentum balance for the case at hand,
inconsistent even with his (correct) differential
equations.

The derivation of Rird and Rodley seems
nothing more than an assertion. Howéﬁér, their
formula (ii)} represents 4 convenient.aﬁbroximation to
(iii\ as it can he ohtained bv replacing the integral
in (111) bv its trapeu01da1 rule annrox1mat10n

Coherent shock theorleS'stemmlng from weak
forms QF the equations can only he ineh for (iii) and
(iv). ~That these agree up to terms of (DCESjv(i.e.,

weak shocks) justifies the preceding detailed study of
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the.simpler flat-profile theory shock structure. Thefé
is thus a range of shock behavior in which the two formé,
flat and no-slip profile, agree. However, reasons will
now be given why the no-slip theory is to be preferred
when the predictions of the theories differ:

| (A) A simple analySis‘indicates that the
»'shock.conditioﬁs, Eqs. (4.1.5),imply, ﬁndgr appfopriaté
circumétances,”that moméntum i$v¢ohs¢rVed, whereas the
shock COnditions; Eqs. (3.2.19); imply, under»similar
circumstances, mean velocity is conserved. For example,
assume that v\3 F and $ are zerd, P=P (3) and S p
are identical at the fixed locations '%q and'},5}1>3w.
Assume also that a shock wave exists at %AEC%ﬁ,}z)and

integrate the two momentum equations between 3, and 3,

3, : ‘ S
o = d S Sur A3~ o LSul + [SU‘L] + S+5Ps >
o ==-E£.Sz¥r<i§. - vl + LT B
&g 2

thus-éorroborating the assertion. Sincé the fofmér,
conditioh is consistent with the mechénical‘éxiom
undeflying the equation, it 1is prefefred.

A similar analysis for Fq. (3.1.1) shows that

it is consistent with mass conservation:

£ : )
: (4.4.4)
o = (%x S 5d} - J-A.E5]‘ + [Su]

s 3

(B) The conjectures enunciated on p.44 imply




134

that (for a Newfonian;fluid,_p. 12) the shock condi-
-tioﬁs of thé momehtum form are consistent with the
no-slip theory, whereas the shock conditions of thé'f'
velocify form are consistent with the,flat-profile
theory. Since the no-slip profilé ié thsicdlly more
realistic, this also implies that the momentum from
is_préferable to the velocity form. ;

(C) When § = constant # o , the velocity
form of the equations cannot be put in éonservation
.form. This is bécause the térm %% §%§S1J%) does not
derive ffom é ﬁdtential, i.e., does not equal
a@.CS),«J—)/O%' for any d . "l:‘hus if does ‘not seem
ﬁossible to construct a coherent shock'theory for the
velocity form, free of ad hoc assumptions, unless 3= O.

| Based upon these remarks, when there is a
difference in the predictions of the formulas, the
momentum form should be viewed as corrett. (A similar
situatién exists for the shallow-water eduations [54]).

TO'ﬁSéeSS the quantitativegdifferenceskbe—
tween the tw6 fbrms of the shock relétions, the follow-
~ ing has been observed:

| Given a constitutive relation for"P , the
shock relations involve five pietes of data (u,S, S v, J)
1f three are specified, the other twolmay be computed
from the shock relations. To get reasonable magnitudes
on data, the results of Rockwell [17];héve been

employed. In each of the following two examples,
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P, P, " are taken from Rockwell's data and v~

and s+ . are computed from the shock relations, employ-
‘ing the constitutive equation (Eq. (3.12.2)).

The first set of data is for his so-called

standard case and is presented in'Fig,’4.3. As can be
seen from this,nfOr shocks of;fﬁé apPonimate amplitude
of the natural pulse, the effects of the differént

‘ éhoCk,relations'and varying the profile paraméfer b
are relatively small. | |

The next set of data is for the case of aortié:
inéﬂfficiency and is presented in Fig. 4.4. For shocks
of this amplitude the difference hetween the velocity
and;moméntum forms is seen to be considerable. In
additibn, the effect of § is seen-to‘be substantial.
| This is an indication that when computing.

large amplitude shock-like pulses, algorithms faithful

to the momentum form of the equations should be em-

ployed. At the same time, in view of the many simpli-

fications made in Chapter IT, it should be noted that
for strong shock, the realm of applicability of the

theory is bheing severely stretched.

4.5 Shock Stability

_ The same conclusions for the no-slip theory
hold as for the flat-profile theory (Section 3.8) if

it can be verified that
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(A) for a dilative shock
Cort) > (™ )"
Corm Y < Ce™ D)™

(B)' foribonstrictive shock
w+)2. < (C‘{.)Z. ),

Qvu-—)z > (™ )l

?

'wheh v§=¢3'. ansider the four ahaove cases =
in turn:
“(A) Recall that here S > s" and Lu:<*xf+., The

mean-value theorem and monotonicity of § imply

S” ;
- ~ + e
P 7y 4R 2 SR
from which it follows that
: | ) - |
Gt)T = (/8D § sk
o ’ [SJ 5 5+
- ~
g
+~ + +N%
> 9Py = (")
2 — 5;.
om0 = (8Y/3) S SPs
Ls1 o+
5
< A SB.
5]§+ B

(4.5.1)
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(B) Here 5f<.§f and fo_>J¢f+., This time the .

- mean* value theorem and monoton1c1ty of Fg give

o
57 < A SP. < S
S Py < [s] SS+ Ps _ Ps -
Theréfore
R 3 o
Conr¥ ) = (/5D SE.
[s3 § Pe
e
< _IS___] é+ S S,
< S+F~;s+ _ CG'\—)L :
<2 : S
D VA DA
[SJ S"’ .
o
58 s
7 &y ) 5R
>
> 5‘-'[53— = th)l

Since these inequalities are strict it'follows that
(4.5. 1) hold in the general case (S>cﬂ as long as &

is small enough

4.6  Local Qualltatlve Behavior of Shocks

o In this sect1on the 1oca1 qualltatlve beha-
v1or.of shockq 1q determlned for the momentum form
(no 911D thcorv) of the shock relatlons and in the
nrocess it is verified that this behav1or is the same

as that computed previously for the velocity form.




‘ o S 140
This:assertion is establiéhed for the case
$=o . The same pace is taken as'iﬁkSeCtidn 3.10,
i.é.,;the results are first deduced fér the case when
(3.10.19) is in force, then the more génefal situation
is cﬁnsidered. Note that all of (3.10,1) - (3.10.11),
and {3.10.13) - (3.10.15) arevtaken to hold here.
- - With thesé the no-slip.countérpart of Eq.
(3.10.16) is A
| » CISH - AR
U‘:‘L_S¢5m4,.  (4.6.1)
s ) ) v
With'fhe.assumptions (3.10.19) and F=N=o ., Eqs.
(3;16.18),'(3.10;20) and (3.10.21) remaiﬁ intact, but

Fq.  (3.10.22) must be replaced by

- 1 oaA
Vo= rass & 22 (4.6.2)

which follows from differentiating Eq. (4.6.1) and

using Eqs. (3.10.15) and (3.10.19). Note that from
(4.5.1) it foliowskthat | |
T N e
CE = () > o) = (FU)

= UG- a)” :  (4.6.3)

> UG- ad?

and so < >o for the no-slip case also. Thus (3.10.23)

holds, and if A(a) is replaced in Fq. (3.10.24) by

A) =_ =20 -a2=< (4.6.4)
, CE™ + 30-a)*0V*)



'.Eq. (3;10.24) holds as well as (3.10.25).' Conditions
(3.10,2?) and (3.10.29) hpld-and thus the exampie‘onv
pp.93j96.

| The results will now be geheraiized for the
case When (3.10.19) is not in effect and N=# o . The
first change occurs in Eq. (3.10.18):

2.0

+Ag’% +_§I5{%%}+UZ[§_%] =

BN

| (4.6.5)
= - + N .
[pcren] .
Eqs. (3.10.30) - (3.10.32) hold and from the defini-

tions

Eq. (3.10.33) must be modified to account for the

| different velocity expression, Eq. (4.6.1):

Udl = =t AL+
act 2(\=-a)> A adt
(-a) | (4.6.7)
+

4 07 (UBE ~DEYar
Combining Eas. (4.6.5) - (4.6.7) and (3.10.30). -
(3.10,31) results in lq. (3.10.34), where Al) is

defined hy Eq. (4.6.4), and T becomes
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T = —-{(Dp-2€0) + D,p ™~ -+
F2
Ci-a3"
+ﬂjS¢CUDE-+DE)dG‘+

! (4.6.8)

Y".+ VUQ-2X1-2a) A~ - _—_C_‘UA l-a) N }/oi
: = _ S

With these conditions, (3.10.36) holds. " For the

example on pp 98-99 take (3. 10. 37), and

1,2,3
, E%EE > O R
3 | B 4.6.9
BLE = o , o ( )

In addition assume a<1/2. . Then ‘C<O and the.cohdi-

tionS”are as illustrated in Fig. 3.15.

4.7 identification

In this section itkis‘aSSUmed that 8=o0

With this assumption, the identification
procedUre via the acceleration wavé vélocity expres-i
sion (Eqs. (3.12.1) - (3.12.2)) holds for the no-slip
case;‘ The shock wave analysis, of course, requires
modification due to the.different'veiooity expression
Eor the momentum form When the assumptions (3.10.4)
are made, the analog of Eq. (3.12.3) for the momentum

form becomes
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Plo=1,4,¢) = SG‘ECﬁ—\ 3,t)dg”’ (4.7.1)

= L)Qr—lg%qfﬁ) (=) /o
The physical interpretation of the function P for

%.¢ fixed is illustrated in Fig. 4.5, where it is
représented by the shaded area. This can be seen by
performing an integration by parts in Eq. (4.7.1).

One can deduce 6 from PP by playing with Eq. (4.7.1):

- |
8- 153,¢) = T + SE;__;DPCO'LI-)},-&)QO-”_ (4.7.2)
i . : '

However, note that it is P which appears in the
momentum form of the momentum equatlon ‘The analog

of Eqg. (3 12.9) consists 51mnly of Eqs (4.7.1) and

(4.7.2) with o=+

P (<) = « U

| +eX _ . _
. A+l ‘ - (4.7.3)
Po (=) = M & S\G—(Lﬁ) D.EC«’}<:§<c<’+s)

Finally, only the counterpart of Eq. (3.12.14) is

needed:'

Pola) = U= (U-oYCart) |
' (4.7.4)

ot |

) Pq (@) a@+)

Pa o) = 1)

The rest of the analysis proceeds as before.




pCa-1)

A

777 B

P(cr—l)
///////

v
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4.8 Growth and Decay of Acceleration Waves

4.8a - Preliminaries. Acceleration waves have been

defiﬁed in Section 3.6. Expressions fof the propaga-
tion‘Velbcities for the flat-profile and no-slip
theories are given in FEqs. (3.6.2) and (4.3.2), respec-
tivély. The usefulness of these éxpressions for
mdtefial,identification purposes has been indicated in
Section 3.12a. In this se;tion, the evqiufion’of
acceierétion waveskis discussed in the ¢ohtext‘bf the
preseht theories. The analysis is Carriéd out for the
no-siib theory, Eqs. (3.1.1), (3.1.3) and (4.1.1),
from whiéh the flat-profile results céﬁ‘be deduced.

Assume the constitutive equation takes the

form _
=) = - 29 R '
52 = £33 + M ; (4.8.1)
where
€ = E(S,p.a.,¢) )
4.8.2)
H = I--\CS,\:),%,)-(:> ( )

are confinuously differentiable functions of all their
arguments., |

Equation (4.8.1) is the most general quasi-
linear cohstitutive equation of the first-order for a
viscoeiastic material of rate type. This form of the
constitutive equation is preferred, rather than the

functional relationship used previously, since, for
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acceleration wave analysis, it éimplifies derivations
but represents no loss in generality.’_ln-this regard
one cah exhibit a one-to-one relationship between
moduli of the two constitutive models which affect
acceleration wave evolution. A corresﬁondence of this
sort has been shown for one-dimensional acceleration
waves in materials with memory [55]. |

Recall that in an acceleration wave at

=4, _
L3571 = [«] = Cpl = o , ‘ ' ; (4.8.3)
whereas

[ouv/ot] # o , (jaxn/a%;]=# o, .
L2s/2¢]) # o y CosS/230 #o, (4.8.4)
Eap/at] # o S [5P/53£L# o,

 The assﬁmptions on A%, N imply that if Eqs. (4.8.3)

hold then
W1 =0%1 = IN)=0o. (4.8.5)
The amplitude, a, of an'acceieration wave 1is
defined as

« = T[], | . (4.8.6)

Recall (') represents the material time derivative, i.e.,
& = Br/a3¢+0-Bubs Employing (3.1.1) and (4.1.1), the

following jumps may be related to the amplitude a




o531 = [o5/6clfu) = -So fu? ,'
[avybgj = [ovee] ) = — o /ur R

op/og] = [op/otl /) ,
‘ : (4.8.7)
= —pa(l - §(2+ vhuw) v/ ) S
= - a &S/

It therefore suffices to determine a. to compute all
jumps.ih first derivatives.

From relations (4.8.3) and (4Q8.4) it can be
seen that an acceleration wave corresponds to a discon-
tinuity in slope in the <« vs. t | 'S vs. t and
P vs. t pgraphs for a fixed site 3. . With refe-
rence to Fig.b4.6,there apnear to be two distinct fea-
tures of the natural pulse which are_akin to these‘
circumstances. The first is the front of the pulse
which arises from the opening of the aortic valve and
the second is the dicrotic notch or incisura which, it
is now generally agreed, coincides wifh_fhe closure of
the valve.

Applying the jump operator to Eq. (4.8.1)
yieldé |

Lop/ot] = € [aS/ot] |, (4.8.8)

which, when combined with Egs. (4.8.7), determines
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the expression for the relative velocity of an accele-

ration wave, namely
ot = ES/e + 5 (™) (4.8.9)

which is equivalent to Eq; (4.3.2) with the identifi-

—~—

cation & -— (=3

4.,8b Fvolution of the Amplitude. The equatlon gover-

ning the evolution of a.  can be derlved by several
procedures (see for example Coleman et al.[32],
tubliner‘[ﬁé], and Seymour and Varley [18]);
e For quasi-linear hyperbolic systems, perhaps -
the mést general technique goes as follbws:
Recall that from Section 3.6, thé velocities
of acceleration waves are givén by the éigenVa1ues

of A, where

R4 — + o
Fraliy o 53 (4.8.10)
Differentiate Eq. (4.8.10) with respect to ¢ and apply

the jump operator:

(] - Aela3e] -

. oo (4.8.11)

where A = a”F,-./aui Uk
B = ac;;//aL)1
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let g .= dUL/d¢  in Lq. (3.4.5), and combine the
result with Eq. (4.8.10):

T3] + (A —asg) [5’;41-} .

ot C

Agg [?%i%%h] + [ 1 (4.8.12)

Take the inner product of Rq. (4.8.12) with a left

> )

eigenvector, " A, of A\*i , and use Eq. (4.8.10)‘t0
eliminate EIOK /2%

« & (3] Lo D WL'i
, , 4,8.13)
oU, 2V au (
. [ 25 %géq] + Cﬁ_llafk].} |
— By (U |
R [?E‘} |
where C = &J . Applying Eq. (4.8.13) to the

present case, and making use of the relations
(4.8.7), yields the amplitude equation (Bernoulli's
equation):

da = - a + o

€ - = | (4.8.14)
The coefficients ,u(t) and 2(¢) for the general case of
an acceleration wave pronagating into an inhomogeneous |
region are contained in the Appendix, Section 4.8f.
Some of the well known, impnortant properties of solq-
tions of Eq. (4.8.14) and some observations pertaining

specifically to blood flow will be recapitulated here.




The coefficient of the linear_term in Eq.

(4.8.14), .. , is in general é complicated function
of almost all parameters in the theofy and also depends
upon the state immediately in front of the wave. On
the other hand 3 depends ohly upon the“nonlinearities
of the‘governing equations and the noﬁlinear elastic
responsé'qf the vessel. From (4;8.38);kit.can be seen
that it is independent of fluid viscosity, outflow, énd
the viscous pronerties of the wall. The’sign of B
tells a great deal about the nature of ﬁhe solution.

| it is observed for arteries that RB>o at
" typical working pressures. Defining the local critital

acceleration

A=l (4.8.15)

Eq. (4.8.14) can be rewritten as

da = Bala-2ds5 . (4.8.16)
then
d_[o,,‘ < o < : |
i — = o N . 8.
= = < @ = § (4.8.17)

From the results of Rockwell [I7] for the standard case,
and the case of postcardiac arrest, one gets that at
the front s>o and a> X\ > o . Therefore the last

condition of (4.8.17) is the one that applies. Since
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M 1s increasing with distance away'frbm the heart,
Eq. (4.8.7) implies [op/ot] is incfeésing,,which
torrespoﬁds to the results of Rockwe11‘[17]. lEq.(4.8.7)

impliés that ,
& %‘Ef‘]z °© S 1% I8 $ (). (4.8.18)
Sincekpq5}4.for the case of postcérdiéc arrest,
d@U%uJA§5=O and therefore by (4.8.18)<1E51W@€3/8I'>C%
which is consistent with Pockwell s results |
His data also indicate that cL[avfét]/ai:>o
for the standard case which, as he points out, 1is
inconsistent with results quoted by McDonald [46].
From'(4.8.18) this is seen tovcorrespoﬁd to
' @UJIUOtLCgJ/LL)&xt‘ being too small; ‘Many factors
cou1d thange this situation. |

The solution of Eq. (4.8.14) is

t
- §_mcerde
e

a(t) = = = _ . (4.8.19)F
T -\ (@)da
I _ ~
(cf(?) é)/:B(’C‘)e © dT >
Since for the natural pulse a®@)>o | and with ,ﬁs
both >o ,the numerator and denomlnator of (4 8.19)
are each monotonically approaching zero. ‘Therefore if

’ ¢ ‘—-S/L-LC'C‘)d'C
= /C SBtre ® dt> (4.8.20)

* oo may equally weIl be considered a. functlon ot g
by employlng t=¢y C})
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where € is the arrival time of the accéler#tion-wave

at,the_ﬁeriphery of the systémic circulation, the

following conditions exist:

| (A)‘ If a@)X<« then at) remains bounded for te[of)
(B) If a@)>« then there exists a unique finite

time te such that

oo S pcedan |
cac) =1/CS pe) e © ax ),  (4.8.21)

and L o(t)=o0aa € T€_. Thus « is a critical

initial_amﬁlitude which determines whéther.or not a

shock will form for a particﬁlar set of circumstances
(see Fig. 4.7).

Under normal physiological conditions shocks
do not form. An example of a case when one can form:is
aortic:insuffiéiency, where the aortié Vqlve fails to
closé properly and regurgitates (Fig. 4.8). The slope
of the front for the incompetent case is mucﬁ'larger
than under normal conditions. This causes a(o) to

increase to the point where <€_, may be within (0,€) and

a shock-like situation will occur.
| .kIt is interesting to consider the formally
1inearized system,(i.e., PA=0); then-
| S ucerar o
a(€) = adled) e © : o (4.8.22)
From (4.8.22) it can be seen that linearizing
(A) precludes shock‘formation in a finite time

(distance) since a(¢) is bounded for all  t<ioo and
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(B) implies that if us>o, oif)-ideCreases with
'increasihg'_t R whieh contradicts the results of the
non- llnear ana1v51s

It is clear from (4.8.19) that (4.8.22) is

a reasonable approx1mat10n only if Gi¢)<<=x.

4.8c | Résumé of Previous Work. It seeme Barnard
et alt[23] were the first to apply acceleratlon -wave
theory to the one-dimensional theory of blood flow.
They noted in their study, u51ng physiologically
realistic data, that the steepening of the pressure
pulse and flattenlng of the ve10c1ty pulse were consis-
tent thh the one-dimensional theory. They established
the amplitude equation for the case of aﬁ'elastie,
homogeneous vessel (p=B(), with no outflow C&:o)
| and a front propagating into a region:of Steady flow,
i.e., one in which the o(-)/9¢t tefme ini(S.l.l) and
(4.1.1) afe set equal to zero. The solﬁtion of Eq.
(4.8.14) was not obtained in this work.
.d Seymour and Varley [\8] have established
Eq. (4.8.14) for the case of Eqs (3.1.1), (4.1.1) and
(4.8.1) with \Vﬁ=¥'= S =N= O,'where they assumed that
w/a ~1| , € is absent as a dependent variable of
&€ and H , and that the acceleration frontktravels
into a fegion of steady flow. With tﬁeee they are

able'tenwrite

fL= MCL:'_;_\E(L_;l + L—t-\)); (4.8-23)
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where

Lb=-QJACHP+-Fg/8fT gv" (4.8.24)%

is a measure of the tube rate dependence,

: =/ 1 duu : 4.8.25
is a measure of the axial changes in stiffness of the
wall and |

—_ ‘ ! . .
— (L ds :
Le = (5 £  (4.8.26)

is a measure of taper. This is a trémendous simplifi-
‘cation of the s+ for the genefél ;aée-aﬁd,roots out
three effects of interest. The /3 .thét theyvobtéin’
is simplified only to the extent that the térms invol-
ving & are absent. They present the 501ufion to

Fq. (4.8.14) and dis;uss the local critical accelera-
'tion;(4;8.15) and shock formation. They reiterate the

observation of Barnard et al. [®] by noting the rela-

tion (4.8.7), when differentiated with réspect to ef s

yields a result that is qualitatively COnsistent with

physiological observations of the front of the cardiac

pulse, namely

. [op/oe] = g{d__g [aU/atj (4.8.27)

+wU§%EaUJaﬁ]} ;

* See the Appendix for notational definitions.




where
US4 [
_’[@15/@6 1 > o

:éig‘[fﬂb/ d¢ ] > o

A Teov/otl < © o (4.8.28)

A3 o
. A > O

e

Seymour [ZO], in commenting upon Rudinger's
article:rlg]’ discussed specific.cases of the amplitude
| eﬁuatidn and emphasized the critical iﬁitiél accele-
‘ration (4.8.20) for shock formation.
The'local and global properties of Eq.
(4.8;14), discussed by Seymouf and Vérléy [1&] and
Seyhour [20], have been dealt with in generality by

Bailey and Chen [57 58]

4.8d Asymptotic Formulas. Bailey and Chen [58] have

derivéd several asumptotic formulas for4Eq. (4.8.14)
which'are recapitulated for the present case:
- (A) If a(o)>« , then as € 1 €o

a(t) = | :

(4.8.29)

(B) If a®)>« , then shock formation time is

Coo \ on oale) T ==

m ) (4.8.30

The corresponding formula for shock formation distance
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is

éﬁn = anle) e a @) Toeo .

ale) B(o) _ | ©(4.8.31)

Combining (A) and (B),

a(e) ~ l N |
= ® (1 /2Em@>) (e € ’ (4.8.32)

as ¢ T'ﬁﬁ, and - olb)T oo where t.. is given by (4.8.30).
(C) If o(o)<« , then |

€t
Q) ~ ae e | O (4.8.33)

v

at 'tf'tcx or alo)} o . For‘the latterfcase it can
be seen that the linearized solution (4.8.22) becomes
a good approximation. Parts (A) and fB)'govern'the
asympfotic behavior of strong acceleratidn waves
(Ga(o):>‘x D whereas (C) corresponds.fo.weak ories
Cacod< ey . '

v Formula (4.8.31) permits the?estimafion of
whether or nb; a shock will form withih physiologically
meanianul distances. As an example of ifs application
let it be evaluated for the front of the cardlac pulse’
where AIGD)Q: ©o . For 51mp11c1ty, assume d=0 | and

SzszQQ%qé)ln place of (4.8.7). ‘Then'it follows that
oS/op = 1/E@35€) and using (4. 8. '56), (4.8.47) and
(4.8. 48) 01ves |

| | - (4.8.34)
— | = =] :
/3 S e C:3f* SE;Q é?,(\ + Qﬂ:.fé%:) ;




which when substituted in (4.8.31) yields

2 |
o cled o
T al) (1 + ectd %CF_,(:;) D (4.8.33)

This res.ui_t with d(o)z((ap/at)@i))@cbjfrt)m (4.8.7)
was orlginally derlved by Qudinger [\9], who used a
power- serles expansion technique and invoked several

simplifications in the basic equations.

4.8e The Dicrotic Notch. The origin of the dicrotic

notch is the abrupt Closing of the aortic vaive in
diasfdlé. This causes a discontinuity in the slope

of the vslumetric flow vs. time'curvekaﬁdnthus an
acceleration wave commencés)Fig. 4.6. -With this inter?.
pretation, the explanation prevalent in phy51ology

texts (e;g., Steen and Montagu, TSQ]) that the dicrotlc
notch is attributable to backflow may be dismissed.
What‘is essential is that the valve closes‘rapidly

enough to cause' a d1scont1nuous slope in the volumetric

flow vs. time curve. This also’ explains why no dicrotic

| notch‘is-visibls in the case of aorti; ithfficiency,v
Here fhe.valve never closes properly and thé dicrotic
limb of the pulse is initially and pefsistently smooth.
These observations are consistent w1th the numerical
stud1es of Rockwell [17T]. The existence of the dicrotic

wave seems to be another matter.
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4,.8f Appendix. The funttionij.and(s for the general

case of an acceleration wave propagating into an arbi-

trary state are:

=S, @= ew ey, (4.8.36)
Z‘l-'_’__' _C,gt::r + ) - Sf—::..»’ ; - (4.8.37)

= {3 +8%2(E /8 +Ep)

c25C1 - o )T (4.8.38)

-1 A
BV 4 2

Po= o+ Soo, | o (4.8.39)

wi= - {2 S (R R s
_%§ + _JS_G.LS; - S:)-FIQE—(MU;.—JLQ_*) +

a _ _ - .

o) - 0k *_'933 T (4.8.40)

1
M
+;%{25:CES*5&EP) + & + Hy +

'+C_E,H)f?} y
. o . 2 +
O, = - S 24 AL S
2= == d.t(‘ﬁ:—“z) + 2L 5 T T s (4.8.41)
N l Y2 ot " S
‘ 2&&(}2; - }44; + & Y - (i+f£) e

S A ALY

In (4.8.36) --(4.8.41) the following notations

have been used:
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%e;_»;ES/?wL' , | : : (4.8.42)
E’S= D.EJ > Ep = Dz_é s Ee= ‘,D48’. > (4.8.43)
Hs= DH 5y He=DH | .

§'Q_= Cov/2e] | o ' (4.8.44)
Ea = [oN/2e] | | T (4.8.45)

of = gl = 39(3e)
%? T % | 5% % 5= 4" )
. : : ' - (4.8.46)
ca,+. = +(€) = Oc C%,ﬁ)' | |
i ‘ %€ ,a? %=L3’+(’ﬁ> o

where G in (4.8.46) represents 5;u~ or P - Consi-
dérablé simplification in (4.8.36) - (4{8.41) is

engendered for particular circumstances. For instance,

»supposé the flat-profile theory is emplpyed{;'Then
27= | ,S—b—- N = =0 , and the contributions of Eq.

(4.1.1) to the 1Y*and g terms ink(4:8;40) are also

equal to zero and thus:

= -2 L _ (4.8.47)
R S o :

o

(4.8.48)

2

= & {3+ 5(&/E + &)

* Recall wr=c in the flat-profile case.
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W= o e A GER) rae)
‘ + + + . +
4 %g + _IS(MS}_—;) J,%_‘CMU}_%)
+ a1 o+ L {25, CE,+EELD
n L3 % " (4.8.49)

As another example, assume a quiescent state in front

kof the Qave defined by

..u— :‘_‘ L) S
S o= 5G), (4.8.50)
po= <orcalont :
These imply
AL = AT = S
+ + + + + ,
ST T TPy = Ro= o, :
: : (4.8.51)
H = = O N
dé: c S+ = |
= s ™
The lfi,become
Yoomo2, . (4.8.52)

¥, = L{3 + 25 S(Es/e + &p) Y,
8 (4.8.53)




= = [ d l
%o 1§55 ~ &k
"‘%‘-} + _|€ {.E‘e-"‘. Hy + EHp } .‘(4..‘8.04)

Fbr thg”flatFprofile theory the & term_in C4.8.53)
and tﬁe N térm in (4.8.54) are absent.

| | With (4.8.36) - (4.8.41))3n-a¢ce1eration wave
'solutibﬁifor thé general theory_containedvin;Eqs.
,(3.1.1)_énd (4.1;1j:and_(4.8.1) can be cdnstructed.
given any set of circumstances. For mést-prqblems

_of practical.inﬁerest numerous simplifiCafioﬁs can be
ﬁéde{':Various spécial cases have been derived in
Barnard'et al,‘[8]; Seymour and Varley {X%]_and

~ Seymour [20].
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-V NUMERICAL SIMULATION OF THE ONE- DIMENSIONAL THEORIES

5.1 Introduct1on o

When the second-order visCous!terﬁ is omitted
"~ in thehmomentum.baiaﬁces (Eqs.'(S.l.Z)iof'(4,1.1)),

the flat or no-slip profile theories feeult in a hyper-
-bolic'systemvofkbalance 1aw$,vcf. Eq. (3;2.1); First-

,jorder_hyperbolic'Systems are of great interest in many

| physical problems and have‘heen studied:extensively in
vfecent‘yeafs in the finite difference litefature (See
vfor example R1chtmyer and Morton [&0] and Kr61SS and
Ollger [6(]) Desplte th;s, the practlcal problem of
computlng a solution is not a closed iééhe byleny means.
In the nresent chapter, some - numerlcal asnects parti-
Cularly relevant to the one- d1men910nal theory of blood

"~ flow are con51dered.

‘»

5.2 Lax Wendrof{ and Abarbanel Coldberg A[gorlthms

 The Lax-Wendroff (LW) and Abarbanel Goldberg

(AG) algorlthms will be descrlbed 51nce they have been

employed for the analyses herein. The_model equation
is Bq. (3.2.1). | |

| The LW two-step scheme (see Rlchtmyer—Morton
f[60]) is contalned in the f0110w1n9 formulas

Urtw-l/"'-"_:, _:}i_CU +u ) C _Fh)

2,+|/g_ ‘ -}+l
' ' L (5.2.1)
"%(G} - Ga}l) y 7\‘:'_\:_—_‘- y



r‘ »n-g-\ . N n
U, = U, =+ U,
- /e, Y“""/:_L«
J Ui = > CFz‘r*‘/% T Pea)
o nrvhe e O (5.2.2)
% CG .a‘,-\-l/:L, + G?_ |/_—,__ T ‘
R

where the typ1ca1 f1n1te difference notation is adopted,
_ viz.,fLJ;"ls the value of U at the spatial mesh

point~€§, and temporal mesh point rn (see Fig. 5.1);

"+ 1/2, e )

F:?+V¢ = F'CLJ?+V1 -, etc.; and the equations

‘aré to be 1nterpreted in terms of each component of

Eq. (3.2,1). The'predlctor, Eq. (5.2.1), is spatlally
’centered>at.boiht p (see Fig. 5.1),'and the central
différencés énd means result in second-order accuraty
’in,\j 3 the forﬁard difference formula for the time
'derivative results in oﬁly first-order accuracy in R
The corréttor, Eq. (5.2.2), is centered in space and
;time_énd uses only central differencesiand mean Values,
- hence’is of 5econd~ordér;accufacy.in bbth h and k
When_Eﬁég'(S.Z.l) are'1inear.and'§é=§§1,ﬁthe scheme
redﬁces.ﬁo fhe'LaX*Wendroff one-step scheme (see [601)
which is of full second-order acqurécyi For the Cauéhy
probléﬁ the stability limit of the scheme is given by

- the Cdufant-Friedrichs-Levy (CFL) criterion |

N = 1 /s | | (5.2.3)
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wherel = fnemm Clail)  and ;a. are the eigenvalues
of A .; taken over all spatlal mesh p01nts For the
1n1tlal boundary value problem the same stability limit
is achleved if the boundary data are treated in appro-
vnrlate fashion (see Kreiss and Oliger [6\]) An exam-
ple of such a technlque is glven as follows:
| Cons1der the mesh at the left boundary (see
_~Fig.15;2); Initial data will be glven along
Ct= o }e Lo, \_] | , i.e., at mesh pomts 2 3,...;'
and one boundary datum will be given at n01nts A,B,
' To compute the remalnlnq varlable at A, using Eqs
(5. 2. 1) and (b 2.2), one needs both data at point 1.
They can be computed by na551ng an nth degree inter-
_polatory.polynomlal through points 2,3,...,n+2_ , and
computing the extrapolated values at 1. The acouracy
, of the resulting approximation is of order kr+\
,Thus fhe.second-order spatial accuracy of the scheme is
malntalned if a polynom1a1 of degreevzf\ is employed.
The Abarbanel- Goldberg. algorlthm [62J was
concelved to 1mprove upon the Lax- Wendroff algorlthm
‘for shock 11ke phenomena It changes the fundamental
error.term (see [60], p.332) of the LW scheme from a
| dispefSive term, which manifests itself;in the form of
high-frequency oscillations about discontinuities, to
a dissipative term, which results in emoothed shock
kprofiies. The scheme is an iterative one3which uses

the LW one-step scheme for its first iteration. In the
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present work this‘approach has been modified'to use
the LW tmo-Step scheme for the first iteration.
Strictlv'speaking, this results in a reduction in
accuracy of the method to O(R) + C)Cfo) , however,
the saV1nq in storage, 1ncreased computatlonal effi-
c1ency, and the fact that the procedure is still

C)(R.) C)CV)> for the linear problem, is felt to
outweigh the 1oss‘in accuracy "Abarbanel and Goldberg
have recommended only one iteration be used beyond the
basic LW solutlon FOIIOW1np this recommendatlon, the
scheme, as emnloyed here can be wrltten

VIThE = U . e[CUM” cu; ], .20

wherelkJ;f‘ oﬂuil.ClJ;. are given by Eqs. (5.2.2),
and -(:LJ;TH| is given by Eq.'(S.Z.Z)i evaluated osing
Eq. (5.2;1) with _(J;+\ instead-of L%; . © is a
real number which affects the amount of dissipation and
the‘stability 1imit of the algorithm Goldberg [63]

has established the stab111ty crlterlon

N < ‘|' /(,cc&fze‘) for  © € Ue,1/2] | (5.2.5)

. Thus for_this range of © , a largeritime step can
be.empioyed than that indicated by the CFL criterion.
Abarbanel and Goldberg have recommended the value ©=.2 ,

for which time steps may bhe taken 1.58 times as large
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as specified hy (5.2.3). Unless otherwise indicated

this has been done here.

5.3 Consistency-with Weak Forms and Shock Stability

For purposes of shock analysis; it is impor-
tant that one knows under what circumstances a numerical
algorithm is faithful to a particular weak form of the

~equations. One of the reasons for selecting the LW

' algoritﬁm is that it often is faithful to the weak form
.in which the goverﬁing equations are wfiften. This is

kjustﬂa rulévof thumb since1exceptions have béen noted
(e,g;,[eqq).~ The fqllbwing examples’sﬁggest that, for

the equations of blood flow, the LW scheme is consis-

tent. .
o The equations to be analyzed are:
29 OS o= ;
se T %y T ° >
v * Sz' ' | :
S§E*58EF %) =° , (el form , (5.3.1)
%%3 + §3(5"'+"5’7)‘~ ° o, (mom. form) .

This corresponds to the constitutive equation

P = ;QSL/ﬁB -; The Cauchy data are given by

_ 3 3 < O

(3 = { } §> o
- (5.3.2)

PQ;,C}) _ {2_/3 3< ©

o z>e




The exact solutions are plotted at €=1\9 in Fig. 5.3
along withkthe results for the LW two-step algorithm.
Ih theknumefiCal computation’ R=1/25 'aﬁd,tk was
takénitovbe .6, WHiCh corresponds to thé-CFL criterion.
Note‘ﬁhat the_velocity and momentum forms produce
different-exact solutions due to the presence of a
shock wévé.’ In the 1after case the initial'data does
not sétiéfy,the shock felations, thus the;discontinuity
splits intq,a shock and a simple wave."Aside frém the
0vérshoof at the shock frbnt,'the numerical results
af¢ seen to be‘iﬁ closekagreement,witﬁ.fhe exact
solutions. Thus for this example, at 1eaét, the LW
algorithm is faithful tokfhe weak forms of the equa-
'tions. |

The preceding examples iﬁvolvé-é stable
éhock aééordihg to the notions of Sections 3.8, 3.9
and‘4!5. It is ofvinterestkto see what fhe algqrithm‘
does whén unstable initial data are emploYed. |

‘To this end, consider the Cauchy problem:

; _ ! 23< O
Se(z) =1 4 3> (5.3.3)
v (@) %,.<o .
-U:Cgﬁ .== {2/3 3o

The time step R and N\ are the same as for the
preceding problem. The eXact and numerical solutions
are plotted in Fig. 5.4. This time both the velocity

and momentum forms have the same exact solution (a
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simple wave) and the numerical results reflect this.

5.4 Bouhdary»Condition Study

‘In the course of evéluating the algorithms,
an anélysis was pefformed which indicates the diffi-
éultiésVencountered when discontinuities‘impinge upon
boundaries. It is cleér that when such a situation
occurs,;the.technique of using polynomiéljextrapola—
tion fér the point putside'the boundafy_isfno longer
valid, due to the lack of smoothness of the solution.
Iﬁ faét; for problems of this class, fhé higher-order
“the pdiyhomial used, the worse the solution'gets!

| The problem consists df:the'first-order form

of the wave equation

2 -
-
(5.4.1)
Qv = IS,
o€ o3

on o@'= {@.tOlgelo,10],t =0} , with initial and

,boﬁndaty‘datavgiven by

A } 3e (0,10

() = j |

'v(cﬁt) = © } tso (5.4.2)
S0, t) = ©
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The exact solution, up to t=20 , consists of the
three.tbnstant.zones,'as illustrated'in'FigF 5.5. This
pfoblemihas a physical interpretation,inamely, a
1inear'élastickrod, traveling at constaﬁt velocity,
and imﬁacting a rigid wall at t=o0O

| ~Numerical comnutatlons were made for both
the LW and AG algorithms. The data for points outside
the boundary were computed by polvnomlal extrapolatlon,

i e., w1th respect to .Fig. 5.2,

(first-order) S, = 5:
i = o
(secoﬁd;order) Sr':= l&:j- S;
'*)Th - _M;" S (5.4.3)_
| (third—prder) | 7 = 3(s" _ SC) o+ _5:
wﬁ\ =:~31%‘-+.u;
 ]'—. rd n n - ._ e )
(fourt} _.O_T er) Y = 40 ) 6] -5t

and‘ analouously at =10 .

Results are presented in FlQ 5.6 for the
third- order houndary extrapolation Wthh 111ustrate
osc1llatory behavior along the left boundary =0

. The AG algorithm represents a considerable improvement
over LW in this case, however the results along %=o°

are still not very good. For this example the boundary
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osciliations have not been detrimental to_tbekeolution
in the'interior. |
Refining the mesh causes the LW results to

blow up, Fig. 5.7, whereas the AC results are improved
notlceablv along the left boundary

o Lower1np the order of the boundary extrapo-
1at10n stablllzes the ~solution, Fig. 5}8. However, the
1ocationkof‘wave frontsffor»all cases'(LW first and'
second- order, AG, t1ret order) in thls example are
sllghtly off |

A final .example indicates tbat~thevAG algo-

rithm:giVes the epprouriate 1ooation‘f0r"wave'fronts
in a11 cases except first- order boundary extrapolatlon,
Fln. 5.9. The. results are almost 1dent1cal away from
the left boundary, for second through fourth~order
| extrepolation; At fhe left boundary,‘the fourth-order
case exhrbltq rapld osc111at10ns, whereas in the first
through tblrd order cases, the osc1llat10ns are damped
out qulckly. | |
T Based unon the ab0ve‘eXamp1es; second-order
boundary condltlons seem to be the most approprlate

when d1sc0nt1nu1t1es 1mp1nge upon the boundarles

5.5 Comparison of One-Step and Two-Stén'LW Algorithms
| A calculation was performed to see 1E any

dlfferenccs could be noted between the one-step and
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two-step LW algorithms. This amounts to differencing
in non-conservation and cdnservation‘form, respectively.

The equations analyzed are:

93 + S v 4+ W IS = o,

3¢ >3 33 .

- | (5.5.1)
U 4y QU + 8D = o ,
ot 33 3% P

; (i.e,,;3=§>5 ). The two "eqUivaient” systems of
conservation laws are:

(1) (vel. form) 233 . 3Su

(II)} (mom, form).

vSystemsk(I) and (I1) were‘analyzed,'using
~the One.and'two-step kaalgbrithmé, for the initial
‘data;givéh in Fig.'5;10, 'Td'captﬁre tﬁe phéhomena at
t=2 , thé.problem}was solved in the interval
—tﬁﬁ'é 3 £ 34 . - The mesh units were ;elettedv'
as k=1/20 and h=1A0 . This corresponds to the
méximum allowable time step under the CFL criterion,
‘based on the initial data. The results are plotted
ih Fig; 5.11. The usé of the one-stép‘pr two-step
formulas proved negligibly different here. However,
thefresults bf the two systems (I) aﬁd‘(ll), are
considerably different, as is to'beféxpected,ksince

an elementary characteristics analysis indicates that
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‘a shock forms at (3,t) = (11,.8) ,

5.6

For. ‘E> '3" - the

shock relatlons are different for the veloC1ty and
momentum forms, and the solutions evolve dlfferently

(cf. Sectlon 5.3).

RockWell's Model of the Canine Aorta

Rockwell's '"standard case' [IT] consists of

 the following:

S 4+ 25w ,\3( .
EYa o3 Sl
v > S Neo- . (5.6.1)
ge * c%(z ) s -
v where:
5<% t> = 35(p(3.0),3) |
" 403 e -.-.0453' -.‘-’? CEPT}P)‘cC.Pn})‘ : 3-&54
4 e —ORAGen PGCP»Ea)gCPn}’ _}"254
<p3) —(‘77 + \2303 P! +.023)  emm/ase
S S < (p- a)c‘|+Caw5Tr;—) —:a,g. 3_*@"'7 (5.6.2)
' C?r% D) *
: <(p-pY(N) e 2.z 3
N = -8Ta
;u. = . 049 poae
? = . .OG %/W\./ijs
po= 133000 dugras [ (= 100 e Hg

'J;‘ == T0 e
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A = (91") > \OM—vmm H%‘>/<|33O | _MMH%>

p. = 33250 w/m" (.—_ 25 vriem Hg )

The domain & = ‘[C%:t”%re lo,is0] [ tz0}
.boundary data, which are periodic, con51sts of that
given in Table 5.1 for 3=o , and p—-35250 d%ﬂu¢/bwt
at 3;;150fv%¥ . Initial data were set approximately
to the expected steady State values asvgiVen in Fig. 9,
‘ p.33.of_r17];_namely, the values of Table 5;2 wére
1inear1y‘interpdlated, |

- In the pféseﬁt analyses_'ﬁ; wés.inverted,
yielding_ : ;. | |
C eFG3) = a {0/e) -1y
o = (o1 )C\s'ab )/2.03 SR

= 3p,/ - 2 ) , (5.6.3)
{I/CH-ZO p/9T) ?(zggz)@'r)(u—o 3 %) } ‘

and then substituted in Fq. (5.6.1)z
| k The momentum form of Rockwellfs'standard case

consists of'replacing Eqs. (5.6.1) by -

fp = o

+

S

?

dp S

o 3 T Vs (5.6.4)
'+«, %{CHS)% + L CSCpi3)ap }

0710

= o .
HDSERIaF = @ (N-A)
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" Table 5.1, [65]

> t (set) _ Q_(cm /sec)
0 | : | 0
01 8
.03 | 380
04 | 386
.05 | | 372
09 o 210
13 | 109
.155 | -55
.165 _ i  ' 6
18 -6
19 - 0
5 )

Table 5.2 Initial Data for the Standard Case

~ (cm) (cm/sec) _(mﬁHg)
0 ! 0o 80
20 10 80
20 30 . 80
60 40 g7
80 30 74
100 20 55

150 0 2




The integrals were computed using two~uoiutbGaussian
‘ quadtature. Sinoe n -point rules afe eiactvfor poly-
nomials of order 2n-\ and S is weil'hehaVed (see
Fig, 3158), this épproximatioﬁ seemed edequate[

Uhleés'otherwiSe specified'knumefical results
for thlS model were computed u51ng the AG algorlthm
with 6=2. , h=2¢m, and ® computed on . the ba91s
~of the AG crlterlon (5 2.5). : Pressure‘boundary data
unﬂeconverted to area data via the constltutlve equa-
tion, Eq; (5.6.2), . -For. the velocity formtof‘the
equations, the flow boundary data;mawiconverted to
~velocity by dividing by. S | :

It was found that 1n the distal portlon of
the model the right hand side terms of qu. (5.6.1)1
and (5.6.4)1 were cau51ng 1nstab111t;es,and fesulting
in the humerital solution'"blowing'up;"_~This-was
 rectified by Setting these terme to zerovar”%JZ\n“S.
0therw1se the 1n1tlal -boundary value problem was
’exactly Rockwel]'s standard case. :

This model ‘was used to study the effect of
varying” S and also properly 1nc1ud1ng (excludlng,
resp. ) the outflow term in Eq. (5. 6 1), -(;q5 (5 6.4),)
, accordlng to the no- slln forms of the momentum equation
(Eqs. (4.1.1) andk(4.1.2)). ‘These results are dis-
cussed in Section 4.1. |

" In the course of performing these analyses,

it was found that flrst order boundary conditions
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prodﬁéedvreSults in gengral agreemenf with.ROCkweii's;'
' Whereés-second-order boundary conditiéné'prbduced

considérgbly different results (see‘Fig.,S.lzj.

Secohd—order boundary COnditions were*aléo fdund to

be unstable for the momentum form of tﬂe'equations.

The results depicted in Figs. 4.1 and 4.2 were all’

computed USing first-brder boundary conditions. The

results for the momentum form of the equat1ons, Fig. 4.2,
were comnuted w1th the outflow term in. Fq (5.6;4%_
| Omitted,~which is consistent w1th Eq,-(451.1).
| Based upon the’analysis of'Sectionf5.4, the
fact that the only results which look good Were com-
puted u51ng first-order boundary condltlons 1nd1cates
that they may in fact be seriously in error.: The |

maqnltude of the error is indicated in Ilq 5.12.

5.7 Aortic Phenomena and Shock Waves

In this section it is argued that realistic

data (including the natural pulse) is shock;like

 within the context of the one-dimensional,thebry.*
Severél cases are.considered emanating'from Rbckweli's
work 117] The first, a semi-infihite tube problem,
is analyzed in detail since the model used for thls
'problem is simple and amenable to def1n1t1ve 1nterpre-
tatlon,- Consideration is then given to the standard

case and the case of aortic insufficiency.

* Rudinger [19] first called attention to this possibility.




191

2Q0.. -

150.

100.

velocity , cm/sec
50

Q
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—— second-order b.c.'s
——— first-order b.c.'s
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.25 .50

T, sec

Figure 5.12 Effect of boundary conditions
on the standard case




Consider the following example (Rockwell

[\71, case 4, p.53):

( 35 + 25v = o
¢ 2% ’ _
2 o+ (V4L BF) = N o
€ 'ag(i +F) 5 _
) ﬁF-D = —g’- + Cl% % )
N= -&M./ SR
| i (5.7.1)
= 049 potas ; ;
‘:?;—'\.Ob %rrn./c:-m? ‘
c = 300. CJ'YY'L/AJUC/
= 4.63 o™
\ P = I%?)OOO d.udrru.o,/m C.. 100 mm H%)
 The initial data are ) =9o , ABEI=2;
and the boundar? data at 3=o0 corresbond to the data

in Table 5.2 amp11f1ed by a factor of 2 The domain
for thls problem is o = {C};f) | 3=zo,. f"c ¥ and
the characterlstlc velocities are |

‘ gt = o+ c.
Compnted( - ax 3 =0  are less thaﬁ-140 cm / sec,
thus‘the problem is well posed (cf. Section 3.3).
Computétions were performed usihg the AG'algorithm
for the velocity form of the equation; ’k\==19~na , R
computed according to the AG criterion (5.2}5) and

second-order boundary conditions were eﬁployed. The

“results are given in Fig. 5.13, and are in fair

- agreement with Rockwell's computations. 'Despite7the
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‘Figure 5.13 Semi-infinite tube problem
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fact tﬁat*the computed data revealso.sﬁbetﬁiftont
the wave is a shock. The ev1dence for thls consists
of three analyses based upon

(A), acceleration-wave theer§f

(B) characteristics’

(C) numerical data
These analyses will now be given: _

‘.~(A) The asymptotic formula,. Fq (4.8. 35),

can be used to estimate shock formatlon dlstance, oo *
Since < is constant, ac:/ap=0; thus only a.(o) nee'dv
be evaluated to estimate %&mv. Fromythe,g;ci plot of
pressute; Fig. 5.13, and_employing Eqs.;(4,8;7), one

‘has

0.0) =~ Cop/oed foc =~ 9.9)/90, ,

Ap = (@2)(330) dugpras Som®
At = OB e 5
oo ~ ?osé'g_ = B4 cym

; , 0 ,

(B) Since c = constant ahd‘*4=<:}the wave
front.ihitially‘prepagates'at constant #eIOEity,
namely c. A shock will form if characterlstlc wavelets
behind the front travel fast enough to catch the front
The characteristic velocity of the wavelet located at
the pdint L of the velocity pulse at'%%ua (Fig. 5‘13).

is 420, cm/sec. It emanates from R=0 at €=.03 sec.




"An estimate can be given as to where this wavelet
will catch the front by drawing the linearized charac-
teristic_and.seeing_where.it intersects thé_front '

‘(Fig. 5.14). According to this, point i catches the

front at approximately 3= Bde~ . Since the velocity

- peak decays slowly, the approximation by a straight
characteristic through (o;-os) is seen to be |
appropriaté. ; .

| - (C) The numerical data alsqisﬁppdrts the
hypofhésis that fhe front becomes a shock. To set a
_ proper cpntext for this, recall the'ahaIYSis in
Section 5;4,‘ The results qf this anaiysis indicate
that even though the exact solution is discontinuous,
the numerical solutibnkwili beijust afSﬁoothed out
approxiﬁation (e.g., Fig. 5.9). 'Howevér,fthe AG
algorithm does captufe the correct propagation shock
velocity for the‘midpoint'of the front when second-
ordef boundary cqnditidns are employed,~i.é,, with

reference to Fig. 5.15, the point 4 should travel at

the shock velocity if the true solution of the equations

is a shock. A plot of the mid-point ﬁaﬁh‘for,the front
of thé.velocity pulse in Fig. 5;13‘reVeéls-anrapproxi-
mately cohstant vélOcity'df 354 cm/séc,_\8% greater
than’ ck.v ; | -
o There should be little doubt left that the
exact solution of this problem involves a shock front.

Considération will now be given to the cardiac pulse
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and aortic insufficiency.
| ' For the standard case ([I?],epp. 32-35) the
wave speed is given by Eq. (5.6.2), . Diastolic

pressure .at 3=o is 80 mm Hg. Thus for the purposes of

evaiuating Eq..(4.8.35),

(o) = C,C\o,e,ztoo',oj ES '.2.60:. :
oc(@) 3e(@) ~ 106 (260.)(2.03) = .42
- oP 1330.

An eStimate for a(o) can be made from Fig,‘9,'[\7]:

o (©) = v (o) = 480.
i . D E .

With these, Eq. (4.8.35) gives

To make aure this was a valid eStimate; Eq. (4'8 195

was evaluated u51ng Pau551an quadrature, where_fk and
3 were computed from the propertles of the model

and'the data in front of the wave takenvfrom'[!7],

‘Fig. 9, p. 33. The limits of 1ntegrat10n in Eq. (4.8.19)

were converted from t to = via t= «4'G3) and

 two-point Gaussian quadrature'Was_used ever'each 10 em
sub-interval in [0,100]. The denominator in Eq. (4. 8.19)
was computed to go to zero between %—-K3 and 20 e,

-thus corroboratlnq the above estlmate

For conditions such as those 1nd1cated in
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Fig. 48 of (i, (schematlcally reproduced here in

~ Fig. 4, 8) for an 1ncompetent aortic. value, the shock
formatlon distance is reduced further, i. e., Yoo 4 o,
Attempts were made to solve this uroblem u51ng the AG
algorithm, but the results always blew up after a
short time (= .| sec).

Attempts were made to assess the effects'of
including the second-order viscous term in the finite
differeﬂoebequations._ The standard case and semi-
'1nf1n1te tube problem (second -order boundary conditions
and veloC1ty,form)'were run with the term 5

\)\\iz -gr?H -2 % .Ju"'_l)

oL i (5.7.2)

added to the velocities at the end of eaeh time step.
This:is a first-order correction.approximating the‘
effects of the secOnd—order visoous,term,“ IuieaCh

case ho differences, from the case where‘(512j1Was
neglected, were discernable. These analyeee'indicate
that the second-order viscous term ishihdeedfdnsigni—
ficant compared with the amount of diseipation inherent
in thehalgorithm.

o The queStion arises, what is reéponsible for
the front of the cardiac pulse Steepeuihg;into a shock
éo quickly, whereas experimentai data.indicates the
contrary, [46]? It seems it is not the fault of the

data used to construct the aortic model,; since the




asymptot1c formula (4. 8. 35) is 1ndependent of them,
i.e., all one needs for an estimate of thls type is
the signal speed at 3=0 and the approx1mate slope
"of avcardiéc ejection plot (e.g;, Fig. 4;8). 'The term
oc/dp. , even if set to zero, could'éhly increase
the éstimates of e by about 40%. Thus it does not
seem.to be this. Also,wéll dissipativevéffects would
not éfféct the asymptotic formula. 'At present the
énswer to this question caﬁnot be'giveh;_yﬁowever,
omissions in the model may bé‘résponsibié; e.g., the
curvature of the aortic arch or 85/23 terms in the

constitutive equation.
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