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Abstract

Recently, increasing research attention has been directed toward
wireless sensor networks: collections of small, low-power nodes,
physically situated in the environment, that can intelligently de-
liver high-level sensing results to the user. As the community
has moved into more complex design efforts—large-scale, long-
lived systems that truly require self-organization and adaptivity
to the environment—a number of important software design is-
sues have arisen. The data reduction process is critical for meet-
ing energy and channel capacity constraints by preventing raw
sensor time-series from being delivered. However, the lack of
raw data prevents the data reduction process itself from being
evaluated. Simulation is difficult to apply; the network’s phys-
ical situatedness makes it sensitive to subtleties of sensors and
wireless communication channels that are difficult to model. A
second problem that arises is that the traditional layered pro-
tocol stack, designed to emphasize conceptual abstraction and
reusability, has too high of an efficiency cost in this domain where
efficiency is paramount.

In this paper, we describe EmStar, a Linux-based software
framework that addresses these issues. EmStar’s novel execu-
tion environment encompasses pure simulation, true in-situ de-
ployment, and a hybrid mode that combines simulation with real
wireless communication and sensors situated in the environment.
Each of these modes run the same code and use the same config-
uration files, allowing developers to seamlessly iterate between
the convenience of simulation and the reality afforded by physi-
cally situated devices. We also describe a modular programming
model that allows domain knowledge in one module to affect the
modules around it, without sacrificing the advantages of reusabil-
ity and abstraction that strict layering provides. Using several
case studies, we show how EmStar has been applied to building
real sensor network services.
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2003. Under submission to SOSP 2003: the 19th ACM Symposium on Operating
Systems Principles

†Correspondence author: jelson@cs.ucla.edu. EmStar development mailing
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1 Introduction

The recent proliferation of small, low-power hardware platforms
that integrate sensing, computation, and wireless communication
has led to widespread interest in the design of wireless sensor
networks. Such networks are envisioned to be large-scale, dense
deployments in environments where traditional centrally-wired
sensors are impractical. For example, ubiquitous wiring is infea-
sible for microclimate studies [3, 13], groundwater contaminant
monitoring, precision agriculture, and condition-based mainte-
nance of machinery in complex environments.

A primary factor in the design of such sensor network sys-
tems is their finite energy source. As communication is the pri-
mary consumer of energy [14], and the low power budget of
the nodes precludes communication beyond a short distance, re-
search has been focused on maximizing local processing and
minimizing the overhead of collaboration. Emerging designs al-
low users to task the network with a high-level query such as
“notify me when a large region experiences a temperature over
100 degrees” or “report the location where the following bird call
is heard” [8, 12].

The use of local processing, hierarchical collaboration, and
domain knowledge to convert data into increasingly distilled and
high-level representations—or, data reduction—is key to the en-
ergy efficiency of the system. In general, a perfect system will
reduce as much data as possible as early as possible, rather than
incur the energy expense of transmitting raw sensor values fur-
ther along the path to the user. For a system designer, there is
an unfortunate paradox intrinsic to this ideal: the data that must
be discarded to meet the energy and channel capacity constraints
are necessary for the evaluation and debugging of the data reduc-
tion process itself. How can a designer evaluate a system where,
by definition, the information necessary for the evaluation is not
available?

A second paradox arises in the structure of the software it-
self. As in any software system, it is important to promote code
reuse. In sensor networks, the difficulty we described in eval-
uating a system’s correctness makes it especially important to
reuse algorithms that are known to be correct. However, the com-



munication efficiency required has made it difficult to construct
a traditional strictly-layered network stack. For example, rout-
ing is often influenced by higher layers such as data aggregation
[8], user queries [12], and time synchronization [6]. Traditional
abstractions such as TCP’s end-to-end reliable and congestion-
responsive streams, which have served Internet development so
well, do not address the desire in sensor networks to encourage as
much hop-by-hop processing of data as possible (e.g., aggrega-
tion and filtering). How can we create reusable components, be-
yond basic device drivers, when application and domain knowl-
edge seems to seep into every layer?

As sensor network research has moved out of its infancy, its
focus has started to shift away from short-lived, hand-configured
demonstrations and toward the creation of real applications: long-
lived, larger-scale sensor systems that must be robust and truly
adaptive to their environment. This shift has shown the para-
doxes in sensor network software design to be serious stumbling
blocks.

This paper describes EmStar, our new Linux-based software
framework that addresses the difficulties in creating robust soft-
ware in the sensor network domain. Broadly speaking, its con-
tributions fall into two areas. First, EmStar’s execution environ-
ments address the problem of visibility into an in-situ system.
EmStar provides a spectrum of run-time platforms—a pure sim-
ulation, a true distributed deployment, and two hybrid modes
that combine simulation with real wireless communication and
sensors in the environment. Each of these modes run the same
code and use the same configuration files, allowing developers to
seamlessly iterate between the convenience of simulation and the
reality afforded by physically situated devices (Section 2).

Second, EmStar’s programming model aims to promote soft-
ware reusability while being more flexible than a strictly layered
stack. As we will describe in Section 3, EmStar’s modules may
be flexibly interconnected using standardized interfaces; connec-
tions can be a flow of packets, stream data, state updates, or con-
figuration commands. Our model also lets applications’ domain
knowledge affect modules that are common across applications,
without making application-specific changes to those modules.

Section 4 describes several case studies of services developed
using EmStar. Related work is reviewed in Section 5, and in
Section 6 we describe our conclusions and future work.

2 Execution Environments

EmStar provides a diverse set of execution platforms, ranging
from pure simulation to fully distributed in-situ operation. The
same code and configuration files are used on each platform,
making it possible for a developer to move seamlessly among
the available modes. This is central to our approach of easing
the path from concept to deployment and back again. We will
describe each point along this spectrum in detail, but their char-
acter varies chiefly along two axes, as depicted in Figure 1:

• Scale—The number of nodes in the sensor network, and
their geographic extent.

Reality

S
ca

le

Pure Simulation

Data Replay

Portable Array

Deployment

Ceiling Array

Figure 1: The spectrum of EmStar execution environments. Points
along the arc allow high visibility into the system, enabling detailed
analysis and improvement of its behavior. By understanding both the
effects of scale (via simulation) and the effects of the real environment
(via the ceiling and portable arrays), developers are more likely to create
software that works properly when deployed on a large scale in the real
world.

• Reality—The similarity of the platform, and the nature of
its inputs, to a deployment in the application’s intended
target environment.

By definition, the most realistic possible platform is an au-
tonomous wireless sensor network, including both hardware and
software, deployed in its real environment. In contrast, a pure
simulation is not realistic. For example, the behavior of the com-
munication channel and sensor inputs are based on models that
can never capture the full complexity of the real world. The range
of hardware failure modes seen in harsh environments is also dif-
ficult to anticipate, and thus difficult to simulate.

Of course, for a sensor network to be deployed, it must even-
tually deal with reality. Unfortunately, reality imposes signifi-
cant obstacles to understanding the behavior of the network in
detail. Such an understanding is central to the development of
algorithms and software. The most fundamental problem is the
paradox we described in Section 1: the network’s raison d’être is
to filter, reduce, and summarize data in situations where transmit-
ting complete sensor time-series to a central location for analysis
is impossible. However, the discarded time-series are needed to
evaluate whether the state of the environment was accurately re-
flected by the final, high-level sensing result. A simulation makes
such an analysis possible because it offers complete visibility
into a system—allowing the developer to save every sensor in-
put and the state of intermediate computations at every node, if
necessary.

This and other advantages of simulation make it a vital tool,
but it has a critical drawback: its essential lack of reality can lead
developers astray. Real communication channels in complex en-
vironments (e.g., indoors, or in dense foliage) are notoriously
difficult to model accurately [7]. Connectivity is unpredictable
and has been shown to vary significantly on both short and long
timescales. The difference between the real and simulated chan-
nels can make it easy to write software that works only in the
simulator. Software written in the sheltered environment of a de-
terministic channel, or in a simulator that has an overly simplistic
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noise model, often breaks when exposed to the real world for the
first time.

For example, consider software that reliably delivers packets
to the neighbors within a node’s local radio range. In a real chan-
nel, a transient environmental effect might allow the delivery of a
few packets from a far-away, normally unreachable neighbor. A
developer that has never experienced these dynamics may write
software that permanently adds a node to a neighbor-list when-
ever a packet is received. This algorithm may work in a sim-
ulator with a deterministic channel, or with a channel that pro-
duces packet loss on short timescales. In the real channel, a node
will endlessly retransmit packets to a neighbor that will never
acknowledge them.

EmStar is, in part, an attempt to balance the usefulness of
a simulator with the need to write software that works in real-
ity. To this end, we have implemented a spectrum of execution
environments that fall on different points in the Scale/Reality
space shown in Figure 1. EmStar allows developers get the ba-
sics of an algorithm working in a controlled environment (sim-
ulation); then, understand both the effects of scale (via a large
simulation) and the effects of the real environment (via the ceil-
ing and portable arrays). Code that has been debugged using all
the modes has a good chance of working in a real-world deploy-
ment, where it must both be scalable and deal with the effects
of the real environment. While deployed code may not work im-
mediately, an immense amount of real progress can be made in a
much more friendly environment.

In the following sections, we will describe each of EmStar’s
execution environments in more detail.

2.1 True Distributed Deployment

In a real deployment, autonomous and untethered nodes are de-
ployed in a real environment, running a real application. Each
node has a low-power radio and sensors, and runs an EmStar
software stack. The scale of the deployment typically is limited
by the hardware available. In most of our development, the goal
is to reach this state.

For deployment “in the wild,” our current prototype platform
is the Compaq iPAQ 3760, which is a handheld, battery-powered
device normally meant to be used as a personal organizer (PDA).
The iPAQ provides a reasonable balance of cost, availability in
quantity, and functionality. It has a 206MHz Intel StrongARM-
1110 processor, 64MB of RAM, and 32MB of persistent FLASH.
Our iPAQs use the “Familiar” distribution of Linux [1]. Each
iPAQ is attached via a serial port to a Berkeley Mote [9], which
is used as a low-power wireless transceiver and sensor interface.

[ Although large and power-hungry relative to our ultimate
desired target platform, the iPAQ serves as a reasonable stand-
in until a smaller and lower-power equivalent “system-on-chip”
is available. In addition, the Linux-based devices are only one
layer of our tiered architecture—larger, more computationally
endowed nodes are deployed in conjunction with smaller, less
capable but more numerous nodes. The smaller nodes, which
can’t do much buffering or computation, have simple software

Sensors

Time
Synchronization

Sensor Driver

Radio

Radio Driver

Sensor Network Application

Compaq iPAQ or PC104 Hardware

Berkely Mote Sensor/Radio Platform

Figure 2: A block diagram of a simple EmStar software stack. Each
block represents a Linux process. Arrows indicate flows of packets,
state, or other information. Details of the inter-process communication
are described in Section 3.

for feeding data to and being tasked by the larger nodes. They, in
turn, do the more complex aggregation, signal processing, rout-
ing, and so forth. ]

As we will discuss in Section 3, each component of the Em-
Star stack is represented by a process with its own address space.
The collection of processes is managed by emrun, which starts
each process in the proper dependency order based on a config-
uration provided by the user. In a real deployment, the stack
includes device drivers that provide interfaces to real physical
channels, such as the network and sensors. Typically, there are
several layers of common services on top of the physical in-
terfaces, such as sensor calibration, neighbor discovery, routing
and data dissemination protocols, time synchronization, acoustic
ranging, and 3D multilateration. One or more sensor applications
are at the top of the stack (Figure 2).

If a process terminates unexpectedly (e.g., due to a bug), it is
automatically restarted; other modules in the stack can then re-
connect to the failed module without losing their own state. This
provides an important element of robustness in deployed systems
where users are not available to manually recover from errors or
restart failed processes. emrun is also responsible for configur-
ing the verbosity of debug output of each process, and collecting
the output into a temporary in-memory buffer. The buffer can be
queried via the network if a high-level error is observed.

In this configuration, none of the elements of the system are
tethered to an infrastructure, making true distributed deployment
possible. However, as we discussed earlier, this same property
makes the system difficult to control, observe, and debug. In ad-
dition, using real hardware has many logistical hurdles: program-
ming, power, packaging, the coupling of sensors to the environ-
ment, and other hardware vagaries combine to add a lot of noise
to the experimental process when dealing with a large number of
nodes. In the early stages of an application’s development, it is
an obfuscating distraction that prevents developers from focusing
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Figure 3: The structure of emsim in pure simulation mode. For each
node, an instance of emrun is launched, creating a stack such as the one
in Figure 2. However, instead of physical devices, simple radio chan-
nel and sensor input models moderate each node’s interactions with the
physical world. The channel simulator provides interfaces that emulate
the behavior of the real device drivers. This allows the same services and
applications run on top of the simulated device drivers without modifi-
cation.

on the essence of the problem at hand. Parallel work by multiple
developers is also difficult; most labs do not have enough deploy-
able hardware for more than one developer to simultaneously test
a large-scale deployment.

2.2 Pure Simulation

At the other end of the platform spectrum is emsim, a pure sim-
ulation environment. In this mode, multiple copies of emrun are
started, each of which launches a copy of the same stack that is
run in a real deployment. Each instance represents one simulated
node, and is run in its own sandbox. As in reality, the nodes must
interact via the “environment” and are not allowed to share state
directly. Instead of using real radios and sensors, emsim provides
a channel simulator that models the (simplified) behavior of the
environment, based on a simulator configuration that defines as-
pects of the nodes such as their position and radio power. The
channel simulator provides interfaces that match those of the real
device drivers (Figure 3). The same services and applications can
therefore run unchanged using the simulated device drivers.

Because the simulated and real platforms both run the same
user code, read the same configuration files, and provide the same
interfaces to the operating system and physical devices, devel-
opers are forced to think through and implement every detail
of their algorithms early in the development process. Unlike
more traditional simulators, developers are prevented from tak-
ing shortcuts or making unrealistic assumptions that later prevent
the code from running on a real system. (The move to reality
isn’t always completely transparent, however. One group using
EmStar recently developed a float-point signal correlator which
worked fine on the x86-based simulator. When deployed on an
iPAQ, they found it ran very slowly—the StrongARM does not

have hardware floating point support.)
The main advantage of the simulator is that it offers complete

visibility into the system being tested. Nodes running in simula-
tion can easily log “distributed” events in their global temporal
order. Practically infinite space is available for saving sensor “in-
puts,” debugging messages, the intermediate results of computa-
tions, or any other information useful for understanding the sys-
tem’s behavior. As we will describe in Section 3, the EmStar pro-
gramming model also allows interactive inspection of much of
the system’s internal state while the simulation is running. Since
the simulator is a full-fledged desktop workstation, it is easy to
use complex debuggers, visualization tools, memory checkers,
and so forth.

In addition to visibility, simulators offer exceptional control.
Unlike code running on distributed iPAQs, centrally simulated
nodes can be instantly “placed” in any topology, or a random
topology, via a configuration file. Systematic testing of a range
of scenarios is easy, including configurations that might not be
feasible to actually deploy due to cost or other constraints. Fur-
thermore, while the real environment is constantly in flux, a sim-
ulation can be made completely deterministic; this is useful be-
cause many problems are easy to fix once they are consistently
reproducible.

Simulations are also attractive because of their accessibility.
The small, low-power nodes appropriate for real deployments
have not yet been commoditized. It is still prohibitively expen-
sive to give each developer enough real nodes to perform exper-
iments on a significant scale. In contrast, a simulation machine
is (currently) much more accessible than actual sensor network
hardware; it is cheap, ubiquitous, and easy to use. This allows
many developers to work in parallel rather than contending for
limited real hardware. It also opens sensor network development
to a much wider audience—enabling, for example, remote devel-
opment, undergraduate and high school class projects, and tin-
kering by hobbyists. emsim is also useful because it can simu-
late larger numbers of nodes (hundreds) than may be available
in reality—allowing developers to see the effects of scale long
before it is possible to do so in the real world.

Of course, the disadvantage of simulation is that it does not
capture every aspect of the real world that can affect the out-
come. This is an important problem in sensor networks; their
function is often intimately tied to the world in which they are
physically situated. However, early in the development of a new
algorithm, subtle effects of the radio or sensor channels are often
invisible compared to the basic problems encountered when writ-
ing any new software. When code is first written, even a trivial
channel model will reveal fundamental design flaws and proto-
col bugs, sanity-check the offered load against the channel ca-
pacity, and let developers find common software problems such
as memory overruns, broken interfaces, and plain coding errors.
Inexperienced developers tend to spend particularly long dealing
with these sorts of issues. In our experience, using the simulator
makes the process much faster.

Because of the simplicity of our channel models (Figure 4),
algorithms that are sensitive to the subtleties of the channel are
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Figure 4: Two of the emsim channel models. Not shown is the “deterministic circle” model, in which nodes less than 8 meters apart can exchange
packets with 100% reliability, while nodes separated by longer ranges can never exchange packets. While unrealistic, the determinism is helpful for
debugging fledgling applications. left) The “normal noise” model is somewhat more realistic: as nodes are separated by greater distances, the loss
rate gradually increases. It also has a basic model of the mote’s potentiometer (POT) on transmit range. right) “Empirical average” is a statistical
model based on experiments with real motes. We used connectivity data that were collected at various ranges and potentiometer settings as part of
the ASCENT project [4].

not as well served by emsim. For example, our simulator would
be a poor tool for testing a module that tries to deduce the range
between two nodes based on radio signal strength. However,
much of the supporting code surrounding channel-dependent al-
gorithms can be effectively developed and tested in simulation—
such as the network protocols and statistical algorithms required
for a group of nodes to automatically schedule ranging experi-
ments, share their deduced ranges, discard outliers, and synthe-
size what remains into a consistent, shared coordinate system.

Once EmStar code works in emsim, development can con-
tinue by using the modes that incorporate real channels, as we
will describe in the coming sections. Debugging code while deal-
ing with the vagaries of real RF propagation is slower and more
difficult. However, since the code has already been vetted in the
simulator, far less total time is required.

2.3 The Ceiling Array

Roboticist Rodney Brooks has famously observed, “The world
is its own best model.” This guidance is also apt for sensor net-
works which, like robots, are physically situated. The research
community’s past efforts have shown it is very difficult to model
RF propagation for short-range, low-power radios in complex en-
vironments [7]. Indoor models are notorious because reflection,
diffraction, and scattering are caused by both the structure itself
and the objects inside it. Yet, our channel models are simplistic—
instead of trying to predict these effects with great fidelity, the
goal of our simulations is only to be good enough to support basic
software development. In EmStar, realistic channels come from
the ceiling array—a platform that uses the world as its channel
model.

We permanently mounted a uniform array of 54 motes to the
ceiling of our lab. The motes are all wired for power and have a

Time
Synchronization

Sensor Network Application

Time
Synchronization

Sensor Network Application

Simulated Node 1 Simulated Node n

Workstation-Class Simulator Hardware

…

Radio Radio

Radio and Sensor Array Mounted on Ceiling

SensorSensor

Sensor DriverRadio Driver Sensor DriverRadio Driver

Figure 5: The structure of emcee—a hybrid mode that combines sim-
ulation with real channels. As with emsim, multiple instances of emrun
are run, including real device drivers. The drivers are attached to 54
Berkeley motes permanently mounted on the lab ceiling. emcee lets de-
velopers experience real channel characteristics in a mode that is as easy
to use and debug as a pure simulation.

serial-port connection back to a central simulation machine. As
in a real deployment, each mote is programmed to be a wireless
transceiver and sensor interface board. emcee, the ceiling array
control program, is similar in most ways to emsim—all the in-
stances of the node stack are run centrally. However, the channel
simulator module is not used; instead, each simulated node is
mapped to one of the motes on the ceiling. When a node sends a
packet, it is transmitted and received by real motes, through the
real channel (Figure 5).

The usefulness of the ceiling array relative to the simula-
tor stems from the complexity of the real channel. The envi-

5



ronment causes distortion and multipath fading; the effects in-
clude spatially correlated packet loss, asymmetric links, and non-
monotonically degrading connectivity as range increases. Changes
in the environment (e.g., motion of people and objects, electrical
devices turning on and off, cell phone calls) also cause a variety
of time-varying effects.

Figure 6 shows two of the experiments we performed on the
ceiling array channel. For connectivity between a pair of nodes
at fixed locations, the channel exhibits both short- and long-term
time dependencies (left). Independent of the other effects, there
are also spatial dependencies (right) with adjacent nodes demon-
strating correlated losses, and different spatial regions showing
significantly different behavior. While any one of these metrics
may be easily simulated, it is difficult to capture all the vari-
ous dimensions of RF propagation dynamics working together—
especially when many of the dimensions are unknown, and many
are uncharacterized.

The ease-of-use of the ceiling array has been a crucial feature.
Applications that work in emsim can be tested on the ceiling ar-
ray just by typing emcee instead. Because the motes are perma-
nently programmed, powered, wired, and mounted, the ceiling
array shields developers from most of the difficulty in dealing
with large numbers of small devices, while still bringing impor-
tant aspects of reality to bear. The hybrid simulations have many
of the same advantages of emsim: simulated nodes run centrally,
so debugging is facilitated by complete visibility into the sys-
tem and a rich set of debugging and visualization tools. When
the overhead of testing code on a real channel is so low relative
to simulation, developers tend to test their code against the real
channel early and often.

Developers can control the mapping of simulated nodes to
physical motes, so varying topologies can be achieved by using
different subsets of the ceiling motes. Of course, the diversity
of topologies is constrained by the fixed locations of the motes.
This is a limitation relative to the pure simulator, where arbitrary
topologies are possible. In addition, while many simulator ma-
chines are available, there is only one ceiling array; contention
for its use can be a problem. These kinds of constraints naturally
arise when moving from a purely virtual to partially physical sys-
tem.

Another important limitation of the ceiling array is that it rep-
resents one particular channel, and is not representative of all
channels. RF propagation in our lab has interesting and impor-
tant dynamics not seen in the simulator, but not all offices are
the same, and none of them are likely to reflect the behavior of
nodes in a forest or desert. This limitation is the motivation for
our portable array.

2.4 The Portable Array

Software-wise, the portable array is identical to the ceiling array:
it uses emcee to run simulated instances of the stack centrally,
and connects each instance to a mote that is wired to the simula-
tor. However, instead of using a server attached to motes perma-
nently mounted on the ceiling, the portable array uses a laptop

and “loose” battery-powered motes that can be placed anywhere.
The portable array is useful for exposing applications to the

characteristics of the intended deployment environment, while
using a platform that still has most of the conveniences of pure
simulation. Such experience can be invaluable—the communi-
cation channel and sensor responses can differ significantly in
an area of sparse trees vs. an area with dense low brush. The
portable array allows developers to confront these issues before
the system is deployed in an inaccessible area with limited diag-
nostic output.

The disadvantages of the portable array are mostly practical.
Unlike the ceiling array, which is always ready at the touch of a
button, use of the portable array involves a trek to a foreign envi-
ronment with a box full of motes and hundreds of feet of cable.
These logistical concerns are not trivial: research in wireless sen-
sor networks exists because of the desire to observe environments
where a large-scale deployment of wired sensors is infeasible.

The inconvenience of deploying the portable array is the price
paid for an almost completely realistic in-situ deployment that
still has the complete visibility of a simulation. It also prevents
the portable array from growing to a large number of radio and
sensor interfaces. For this reason, the portable array differs from
true deployment in one key area, as we saw in Figure 1: scale.

2.5 Data Replay

The final EmStar platform, Data Replay mode, has not yet been
used externally and is part of our future work. However, we will
describe it briefly to show how it will fit into the spectrum of
other platforms.

In the existing platforms, nodes run with either a channel that
is completely simulated (as with emsim), or a real channel (as
with emcee, or a real deployment using only emrun). Data re-
play mode will add a new dimension: the sensor inputs will be
recorded or taken from other sources such as existing seismic
arrays or vehicle transportation data. Later, these stored sensor
time-series will be played back in real-time to an otherwise simu-
lated set of nodes. Data replay mode is essentially a trace-driven
simulation, where the trace is a time-series of sensor values.

Data Replay mode will be valuable to help develop algo-
rithms that have dependencies on the behavior of sensors, in
cases where the sensors have already been well-characterized.
For example, the seismology community keeps databases of time-
series data from seismometers, annotated with global timestamps
and positions. This kind of data will be used to feed a simulated
seismometer as part of an EmStar simulation, facilitating devel-
opment of algorithms for automatic event detection and localized
collaboration.

3 Programming Model

In the design of EmStar and applications, we have developed an
approach which has been a good fit to the wireless embedded
systems space. We have previously alluded to the requirements
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of these applications, which can be summarized as three general
categories: reactivity, robustness, and modularity.

Reactivity is important to these applications; they must be
able to respond to dynamics in both the system and the environ-
ment. System dynamics include the number of nodes operating
at any given time, how much power or buffer space they have
remaining, and other more specific information about the state
of the system. Environmental dynamics include variations in the
radio environment, as well as variations in the environment that
might affect a sensing application.

Robustness is especially important to these applications be-
cause wireless embedded systems are much more difficult to man-
age centrally. When developing distributed systems where net-
work bandwidth is not a scarce resource, a centralized manage-
ment approach is often the most expedient solution. While cen-
tralized management can be done through a debugging harness
(such as a second, wired network), the characteristics of wireless
networking mean that a deployed system must survive without
it. Therefore, in order to iterate between development and de-
ployment, local mechanisms will be required that keep individual
systems running.

Modularity is critical to the development of any complex
system, and EmStar is no exception. What is somewhat differ-
ent about EmStar is the difficulty of separating the system into
clearly defined layers. For example, many applications do not
use an end-to-end routing layer. Instead, packets often need to be
reprocessed at every hop along the way, for example so that sim-
ilar data can be aggregated or summarized. This does not mean
that there is no utility in having a routing module; rather that this
module will need a richer interface that enables the application
to provide input to the routing decisions. The impact of this kind
of design is that the number and complexity of the inter-module
dependencies grows.

Given these requirements, we will now describe the facilities
we have developed in support of these requirements.

3.1 FUSD–A Framework for User-Space Devices

To support IPC mechanisms for modular and robust design, we
developed FUSD, a Framework for User-Space Devices.1 FUSD
(pronounced fused) is essentially a microknerel core implemented
on top of the monolithic Linux kernel; it allows device-file call-
backs to be proxied into user-space and implemented by user-
space programs instead of kernel code. Such device drivers can
create device files that look and act just like any normal file un-
der /dev; other user-space processes can open a FUSD driver’s
device and execute system calls on the file descriptor, just as with
a normal kernel-implemented device.

Of course, as with almost everything, there are trade-offs.
User-space drivers can be significantly slower and higher-latency
than kernel drivers because they require three times as many trips
through the kernel, and additional memory copies, per user sys-
tem call (see Figure 7). User-space drivers can not receive inter-
rupts, and do not have the full power to modify arbitrary kernel
data structures as kernel drivers do. Despite these limitations, we
have found user-space device drivers to be a powerful program-
ming paradigm with a wide variety of uses, as we will see in the
next section.

FUSD drivers are conceptually similar to kernel drivers: a set
of callback functions called in response to system calls made on
file descriptors by user programs. FUSD’s C library provides a
device creation function, fusd register(), which is similar to the
kernel’s devfs register chrdev() function. fusd register() accepts
the device name and a structure full of pointers. Those point-
ers are callback functions which are called in response to cer-
tain user system calls—for example, when another process tries
to open, close, read from, or write to the driver’s device. The
callback functions are generally written conform to the standard
definitions of POSIX system call behavior. In many ways, the

1FUSD was developed by the authors, in part with support from Sensoria
Corporation.
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user-space FUSD callback functions are identical to their kernel
counterparts.

The proxying of kernel system calls is implemented using
a combination of a kernel module and cooperating user-space
library. The kernel module implements a device, /dev/fusd,
which serves as a control channel between the two. When a pro-
gram calls fusd register(), it uses this channel tell the kernel mod-
ule the name of the device being registered. The kernel module,
in turn, registers that device with the kernel proper using devfs.
devfs and the kernel don’t know anything unusual is happening;
it appears from their point of view that the registered devices are
simply being implemented by the FUSD module.

Later, when the kernel makes a callback due to a system call
(e.g. when the character device file is opened or read), the FUSD
kernel module’s callback blocks the calling process, marshals the
arguments of the callback into a message and sends it to user-
space. Once there, the library half of FUSD unmarshals it and
calls whatever user-space callback the FUSD driver passed to
fusd register(). When that user-space callback returns a value,
the process happens in reverse: the return value and its side-
effects are marshaled by the library and sent to the kernel. The
FUSD kernel module unmarshals this message, matches it with
a corresponding outstanding request, and completes the system
call. The calling process is completely unaware of this trickery;
it simply enters the kernel once, blocks, unblocks, and returns
from the system call—just as it would for any other blocking
call.

One of the primary design goals of FUSD is stability. A
FUSD driver can not corrupt or crash any other part of the sys-
tem, either due to error or malice. Of course, a buggy driver may
corrupt itself (e.g., due to a buffer overrun). However, strict error

checking is implemented at the user-kernel boundary which pre-
vents drivers from corrupting the kernel or any other user-space
process—including other FUSD drivers, and even the processes
using the devices provided by the errant driver.

3.2 IPC in EmStar

Using FUSD, we have built a broad class of inter-process com-
munication mechanisms by varying the semantics of the user-
space drivers’ responses to POSIX system calls. For example,
our audio server can return stream data (audio time-series af-
ter time synchronization and convolution) by implementing a
read() system call that delivers the next chunk of data, just
as in the kernel’s audio device driver. Packet-based IPC is also
easy: the drivers for our radio devices define the semantics of
read() to always return exactly one packet, starting from the
packet boundary, similar to the recvfrom() system call. For re-
mote procedure calls, a client can open a server’s device, write a
command and marshalled argument list, and later read back any
results of the call. Event notification for any of these types of
IPC (e.g., next packet is available, or RPC call has completed) is
implemented using select()—FUSD-based servers can trigger
file descriptors to become readable or writable. This capability
was easily integrated into an event system, GLib, that enables
dynamic registration of events in response to the status of file
descriptors.

FUSD itself allows the construction of devices with arbitrary
semantics. However, in our work on EmStar we have found that a
relatively select set of device semantics accounted for most of our
needs. We have called these device types status devices, packet
devices, and command devices.

Status devices provide a view into the current state of some
aspect of a module, with notification on state change. For exam-
ple, our radio device drivers maintain state variables about the
radio’s configuration, and statistics on the number of packets re-
ceived and transmitted. This information about the current radio
state is exposed through a status device. To access this status in-
formation, a client simply opens the device file and reads from it.
Status devices can return either binary data (e.g., C structures),
which is useful for IPC, or human-readable (ASCII) data, which
is useful for interactive debugging.

In addition to reporting the status, the modules can notify
clients when the status changes. This is an important feature for
building reactive systems, because it allows changes seen by one
module to quickly propagate to others. In the case of radio sta-
tus, clients often want to receive notification of changes to radio
configuration parameters, such as the radio being off or its MTU
changing, so that they can adapt their behavior accordingly.

Whenever a module decides to notify its status-device clients
of a change, the clients’ file descriptors become readable accord-
ing to select(). The client receives the new information on its
next read. The semantics of what constitutes a change requiring
notification, and which clients are notified, is defined by the mod-
ule. For instance, changes to the packet transmission statistics do
not trigger notification, while changes to the MTU do.
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An important feature of status devices is that they do not
guarantee to deliver all “intermediate” states, only the most re-
cent state at the time of the read. That is, if the state changes sev-
eral times but the client fails to read in those intermediate times,
its eventual read will only see the most recent state.

Packet devices provide an interface to a stream of messages
in and out of a module. For example, packet devices are used
by our radio device drivers to deliver packets to modules that use
the radio, and accept packets for transmission from them. Packet
devices implement per-client input and output queues, along with
a standard API to configure and query configuration such as the
maximum queue length. Packet devices also support per-client
packet filtering.

Command devices provide a way to configure a module.
Clients open command devices and write simple configuration
strings that are parsed in a module-specific way. For example,
the radio potentiometer on a Berkeley mote can be changed by
writing POT=55 to its device driver. Of course, commands can
be written programmatically by another module, or interactively
(e.g., using echo) from the command-line. Command devices
are also an easy way for the client to trigger events in the server.

To simplify implementation of servers, most of the server
side details of these three IPC mechanisms are implemented by
libraries. Adding a new status device to provide a new debugging
output only requires a call to a constructor and the definition of a
callback function to generate the status output.

On the client side, the interface is fairly simple – at the low-
est level it is all POSIX calls such as open(), read(), write() and
select(). However, it has been useful to have helper libraries that
make it easy to integrate device clients into the GLib event sys-
tem. These libraries also enable new features supporting robust-
ness. For instance, the client library opens the device, registers
the event, and waits for data to be ready. In the event that the
server crashes, the client will see the file descriptor close unex-
pectedly. In this case, emrun restarts the failed process, as we
described in Section 2.1. The client library will automatically
reopen the device and reread it, transparently to the client ap-
plication. This “crashproofing” feature makes the system much
more resilient to programming errors that might otherwise cause
much of the system to restart, or worse, become non-functional.

3.3 Modularity in EmStar

Reactive systems are often complex, and understanding complex
systems requires modularity. In EmStar we follow the UNIX
doctrine of building a system from the combination of many
small processes. These small processes communicate through
the IPC mechanisms we described above. As we described in
Section 2.1, emrun is responsible for process management, which
includes starting each processes in its correct dependency order,
restarting failed process, collecting log messages, and so forth.

Having many small processes has numerous advantages in
terms of modularity and robustness, but one of the biggest po-
tential problems is transparency into the operation of the system:
what are all those processes doing? In EmStar, the same mech-

anisms that provide IPC also allow interactive inspection of the
system’s state.

As we mentioned earlier, status devices can provide state ei-
ther as binary IPC or as human-readable output. The two modes
are synchronized, and any number of clients can read simultane-
ously and get copies of the same information. This makes it very
easy for a developer to see exactly what information is flowing
along any IPC pathway in the system, using a tool no more com-
plex than cat. We have found this to be a major improvement
in system visibility over other IPC mechanisms. For example,
with socket-based IPC, it is difficult for a user or debug pro-
cess to get a copy of the information flowing from one process
to another, and the information may be in binary format. Beyond
plain cat, more complex debug programs (e.g., EmView, the vi-
sualizer) gather state from many status interfaces and synthesize
it into a more comprehensive display. In addition, using echo,
users can interactively change the configuration of modules via
command devices and observe the resulting behavior.

Another issue that crops up with many interdependent pro-
cesses is the potential for circular dependencies. emrun checks
to ensure the module dependency graph is acyclic. However,
in some cases, this can prevent the correct IPC channels from
forming if the desired flow of information between modules is
inherently cyclical. While this at first appears to be a serious
limitation, there is usually a straightforward solution. Typically
this problem is avoided by more finely decomposing the func-
tionality of the modules, allowing two clients to both configure a
common server and receive notification when the server has been
reconfigured.

To give a concrete example of this idea, recall our example
of a radio with a status device that reports whether the radio is
asleep or awake. Processes that use the radio (e.g., neighbor dis-
covery, or routing algorithms) need to know whether the radio
is awake before sending a message. Suppose now that a par-
ticular application has a module that tries to conserve power by
duty-cycling the radio, using specialized knowledge of the appli-
cation domain. When it commands the radio to turn off, it also
indirectly communicates that information to all the processes us-
ing radio—because the radio status changes. The users of the
radio don’t need an explicit meta-data channel to the application-
specific module. In fact, the radio clients don’t even need to know
that the application module exists.

This example also demonstrates a key facet of our approach
for preserving modularity and code re-use, while still allowing
specialized domain knowledge to affect otherwise generic mod-
ules. In this example, the domain-specific knowledge was en-
capsulated in the power-conserving module (the reasons why the
radio is turned off) while the more generic information (that the
radio is off) was transmitted to clients that could use that infor-
mation.
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4 Case Studies

In this section, we describe several examples of sensor network
services that were developed using EmStar. Each was initially
developed using emsim, allowing new developers to become fa-
miliar with the framework and run sample applications without
the need for real sensor hardware. Later, as the basics were
fleshed out, developers began to iterate between the simulator
and initial experimentation with the ceiling array. Finally, as im-
plementation seemed to be complete, one of the groups set up a
portable array in a nearby wooded area.

While the efficacy and “user-friendliness” of a software de-
velopment environment are difficult to quantify, we feel that these
examples suggest, anecdotally, that EmStar makes the process of
developing software for sensor networks more efficient. In addi-
tion, the visibility into the system that EmStar provides let devel-
opers iterate on their designs based on meaningful feedback—
including quantitative metrics that would not be available in a
pure wireless system. Such an approach made developers more
confident that the software’s inner workings would be correct
once the code was executed in a pure wireless environment. This
was appreciated as an improvement over black-box development
that relies on a high-level “it seems to work” judgment.

4.1 Reliable NeighborCast

Network-wide flooding is commonly used in sensor networks
by query distribution protocols [8, 12]. While flooding is of-
ten thought of as sufficiently reliable due to its inherently high
redundancy, our initial experience with motes in an earlier out-
door deployment showed that even flooded queries tend to get
lost due to spatio-temporal correlation of link interference and
fading conditions. While many link-layer retransmission proto-
cols exist for wireless unicast traffic, reliable broadcasts to a set
of local neighbors are usually not considered. We therefore used
EmStar to develop Reliable NeighborCast, or RNC. This case
study presents an initial implementation of RNC, and our exper-
inces with EmStar.

The algorithm for improving reliability is simple. RNC adds
small sequence numbers to packets. Since it is impractical to ex-
pect a separate acknowledgment from each of the receivers indi-
vidually, we use an asynchronous acknowledgment mechanism.
Each node keeps the sequence numbers of the packets it most
recently received from its neighbors. Periodically, each node
broadcasts this state. When the aggregate acknowledgments are
received by a sender, it can re-send any packets that the receiver
is missing.

We wanted to debug the details of the algorithm in a simula-
tion. emsim prevented us from taking shortcuts, such as implic-
itly sharing global information between physically distributed
nodes or using global time. While the initial implementation re-
quired more time than a less realistic simulation, it allowed us to
eliminate algorithmic bugs and run a sanity check (see Figure 8).
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Figure 8: The top curves display the average delivery rate over a single
hop as a function of a number of acknowledgements per data message.
The bottom curves are plotted against the right Y -axis and show the
average number of retransmissions per data message on the same X-
axis. Results include simulation and ceiling array.

Single-hop RNC

Our simulation consisted of nodes in a 3×3 grid, all within radio
range of each other. All nodes broadcast periodic messages and
recorded statistics about the messages received from other nodes.
As we increased the acknowledgment rate with respect to the
data rate, the reliability increased. Simulation results verified
the correctness of the basic functionality. However, it was still
unclear if persistent retransmissions would increase contention
and cause loss due to collisions on a real channel, thus potentially
altering the results radically.

We then ran the same set of experiments on the ceiling array.
This is when the time invested into a complete implementation
of all the interfaces paid off: we did not have to make any code
changes to repeat the above experiment on real hardware and a
real channel. The results are shown in Figure 8. Even though the
absolute values of the reception ratio were different between the
simulation and the ceiling array, the trends were clearly the same
for both.

As we mentioned earlier, in practice fading and/or interfer-
ence are often correlated in time and space. This encouraged us
to look at the performance of our mechanism over time. We con-
ducted two longer-term experiments in different locations and
compared the results. One experiment was performed on the
lab ceiling array; the other was performed on a lawn outside the
building using a portable array. The results of these experiments
are shown in Figure 9. The graph on the left shows the perfor-
mance on the ceiling array. There was clearly much less variance
in the results. The graph on the right shows that interference was
much less uniform in the outdoor experiment; in particular, two
dips in the delivery rate correspond the cell phone calls received
by the person performing the experiment. The low delivery rate
in the beginning of the experiment is a consequence of small ad-
justments to node locations.
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Figure 9: Single hop delivery rate and retransmissions over time. left) Ceiling array results. right) Portable array results. The outdoor portable
array clearly has more variance in reception and an order of magnitude increase in the number of retransmissions.
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The use of the portable array exposed the undesirable behav-
ior of our simple retransmission scheme in the presence of an
unstable channel. The lack of an adaptive back-off mechanism
resulted in excessive retransmissions in the experiment outdoors.

Flooding with RNC

The above experiments allowed us to verify RNC’s performance
within a single neighborhood. The next step was to verify that
the improvement in the reliability within a neighborhood would
improve the performance of flooding in a multi-hop network.

Figure 10 shows that RNC improved the performance of pure
flooding, especially for longer paths. The Y-axis shows the ratio
of the delivery rate achieved by RNC-assisted flooding to that of
plain flooding; values greater than 1 indicate improvement. The
simulation results agree with the results from our ceiling array.

EmStar made all of these configurations easy. Flooding, RNC,
and the underlying datalink device (whether simulated or real)

all communicate using interchangeable interfaces. This made it
trivial to test different configurations, just by changing how the
modules are interconnected. Our test application could run using
the plain radio; using the flood daemon, which sent packets to the
radio; using RNC, which sent packets to the radio; or, using the
flood daemon, which sent packets to RNC, which sent packets to
the radio. Each stack configuration could be used on the ceiling
array or in the simulator.

4.2 Adaptive Topology Control

Much sensor net research focuses on conserving energy, a vital
resource in this domain. A powered-on, idle radio is a signif-
icant waste of energy; as hardware is optimized, it is expected
to become the dominant source of waste [14]. However, in a
redundantly dense deployment of nodes, a large subset may be
able to power their radios off, while those that remain on still
maintain a usable (e.g., connected) topology. A number of adap-
tive topology schemes have been developed to achieve this goal
[4, 5, 15, 18].

In this case study, we investigate the effectiveness of two
such schemes—ASCENT [4] and CTC [18]. With CTC, each
node measures connectivity within a two-hop radius by sending
heartbeat messages, and chooses a few nodes with large energy
reserves to maintain the topology when the radios of other nodes
are powered off. ASCENT measures connectivity with all one-
hop neighbors by sending heartbeat messages and by gathering
connectivity statistics of all data traffic (even traffic not addressed
to a node). It locally decides to power on or off additional radios
based on the channel dynamics and the degree of connectivity
required by the application.

We implemented ASCENT and CTC using a number of fine-
grained modules, so that other developers could re-use as much
of our work as possible. The first is the LinkStats module, which
adds a monotonically increasing sequence number to each packet
sent by any process on the node. It monitors such packets ar-
riving from other nodes, and maintains detailed packet statistics
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Figure 11: CTC on the ceiling testbed and in small and large-scale sim-
ulations. Though the results differ from the simulator quantitatively, the
trends are the same. We achieved the expected result on a real channel
though most of the development was done in the ease of simulation.

for high precision connectivity measurements without increas-
ing channel use (but, slightly reducing the maximum data pay-
load). The second module is Neighbor Discovery, which sends
and receives heartbeat messages, and maintains a list of active
neighbors. Third, to evaluate both schemes, we created a module
that acts as a simulated battery for each node. It counts pack-
ets sent and received, idle time, and radios powering on and off;
energy is deducted from an initial supply accordingly. It runs in
two modes: either it merely tracks energy usage or it actually
shuts off a node when that node runs out of energy. Finally, we
created the ASCENT and CTC protocol implementations them-
selves, which use information provided by the other modules.
However, by modularizing our implementation, other applica-
tions can (for example) measure their own energy use, or take
advantage of our detailed connectivity statistics, even if they are
not using the ASCENT or CTC algorithms per se.

Because ASCENT and CTC exploit redundant nodes, vary-
ing node density (i.e. the number of nodes within one radio range)
should affect the outcome. For this reason, in our experiments we
vary density and measure by how much both ASCENT and CTC
extend network lifetime. To create different densities, a fixed
number of nodes were randomly distributed in areas of various
sizes. Data traffic was generated at random from any node in the
network, and flooding was used as the routing algorithm.

Our first simulator experiments used 30 nodes and the sim-
ple “deterministic circle” propagation model; this was primarily
for development, and we do not show the results here. After
the code was debugged, we ran CTC simulations using one of
the non-deterministic channel models (emp state, similar to the
emp avg model shown in Figure 4). We did not use the sim-
ulator’s channel contention model. Figure 11 plots the number
of nodes using CTC that still have energy remaining over time,
and clearly shows that network lifetime increases as a function
of density.

Our simulation results seemed reasonable, but they rely on
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Figure 12: ASCENT on the ceiling testbed and in a large-scale simula-
tion. The differences between the simulator and the real experiments are
not significant, in particular when using the collision model in the simu-
lator. The trends as we increase density are the same in both simulation
and real experiments.

the accuracy of the channel model. Because ASCENT and CTC
measure connectivity, it is important to experiment on a chan-
nel that more closely resembles those in the real world. Further,
we had not been using the contention model; packet collisions, a
harsh reality of the real world, thus did not occur in our simula-
tions. For these reasons, we used the ceiling array for our next
experiment. EmStar made it trivial to set up this experiment—the
code did not even need to be re-compiled and utility scripts aided
in adjusting the transmit power of the radios in order to vary node
density. As Figures 11 and 12 show, our results hold when using
a real channel with collisions.

Based on these initial experiments, we are confident that the
simulator’s channel model was not wholly different from reality—
at least, for the purposes of our specific case study, although fur-
ther improvement could be achieved. Satisfied with the simula-
tor’s predictive power, our next step was to see if our results held
at a larger scale. We thus went back to the simulator and ran ex-
periments on a network of 100 nodes, still with varied density.
Figures 11 and 12 show that even at a larger scale, network life-
time is improved at higher densities for both ASCENT and CTC,
respectively.

After performing the ceiling experiments and large scale sim-
ulations, we wanted to verify that the quantitative differences
were in fact due to collisions. We went back to the simulator
and ran experiments with varied density and using the collision
model. Figure 12 shows that the results of the simulation with
collisions are much closer to the results of the ceiling experi-
ments. This result can be explained as follows. During ASCENT
initialization, all the nodes have their radios on and they gather
connectivity information. At high densities, and with flooding as
our routing algorithm, the amount of channel contention is large,
and the packet losses perceived by the nodes are high. Under
these conditions, ASCENT is forced to increase the number of
nodes with the radios on to maintain a usable topology, thus in-
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creasing energy consumption.
Using EmStar, our ASCENT and CTC experiments were sim-

plified because the same code (in fact, the same binary file) could
be tested with the un-modelled quality of a real channel, as well
as with the scale necessary for any useful deployment but only
available in a simulator. It also allowed us to easily go back and
forth between experiments and simulations to analyze the differ-
ent factors that affect our algorithms.

Because both protocols were evaluated using the same tools
(and, in the case of the ceiling array, motes in the same phys-
ical locations), it is possible to draw a meaningful comparison
between them based on our experiments. We can see from the
figures that CTC and ASCENT perform similarly at low densi-
ties using the ceiling array. At simulated large densities with-
out simulated collisions, CTC lifetime improvement grows more
slowly than ASCENT. However, ASCENT is more susceptible to
the effects of collisions, as we explained earlier.

Having EmStar will allow us to further test the algorithms us-
ing different scenarios and metrics. We plan to further evaluate
both algorithms at large densities with collisions, as well as mea-
suring performance of the algorithms using other metrics such as
path quality.

5 Related Work

Many recent simulator and emulator projects have illustrated the
philosophy of running simulations with the same code as is used
on real systems. In many ways, EmStar is similar to the Netbed
project (based on Emulab [17]), which aims to provide a single
system and configuration interface for code running in pure sim-
ulation, in network emulation mode, and distributed across the
Internet. Similarly, ModelNet [16] runs real user code on “edge”
nodes, and simulates Internet core routers. These systems are
meant for Internet development, where the only interaction with
the “environment” is a wired communication channel, and thus
easier to emulate without resorting to physical interfaces. In con-
trast, EmStar’s execution platforms include physically situated
modes because the sensor domain requires it.

TOSSIM [11] is notable because it is used in the sensor net-
work community for testing the same TinyOS code as runs on
motes before the motes are deployed. However, the combination
of TinyOS and TOSSIM has only two modes: pure simulation
and real deployment. EmStar adds intermediate modes such as
the ceiling and portable arrays, which provide a combination of
simulator-like visibility with a real channel.

Pure simulators play a very valuable but different role than
EmStar. For example, ns-2 [2] has been optimized to handle very
large simulations, offers scripting of scenarios far complex than
currently possible in emsim, and has a number of detailed wire-
less channel models that are good enough for evaluating many
protocols. However, ns-2 does not run real code; this is an im-
portant drawback if the goal is to deploy code, or use simulation
to track down a bug observed in code that has already been de-
ployed. In addition, most pure simulators do not provide support

for physical interfaces such as sensors.
Though meant for different domains (sensor networks vs. In-

ternet routers) EmStar is similar to Click [10] in its design phi-
losophy and programming model. Click and EmStar both let de-
velopers create protocol stacks by creating a graph composed of
small modules that have standard interfaces. If Click code is run
in the kernel, it allows interactive inspection and modification of
state using devices in the /proc filesystem. Similarly, EmStar
allows debugging using Status Devices, as we described in Sec-
tion 3.2. In contrast, we use our FUSD microkernel extension to
facilitate this feature for user-space code. In addition, FUSD lets
our interfaces be more expressive: in addition to packets, inter-
faces can be programmed with stream, remote procedure call, or
event-notification semantics.

6 Conclusions and Future Work

The sensor network community has moved out of its infancy and
is now embarking on more serious design efforts—large-scale,
long-lived systems that truly require self-organization and adap-
tivity to the environment. A number of important software design
issues have arisen that are unique to this domain. First, the use of
local processing, hierarchical collaboration, and domain knowl-
edge to convert data into distilled, high-level representations—or,
data reduction—is key to meeting the energy and channel capac-
ity constraints of the system. However, the data that are discarded
are necessary for the evaluation and debugging of the data reduc-
tion process itself. A second problem is that a traditional layered
protocol stack, which is designed to emphasize conceptual ab-
straction and reusability, has too high of an efficiency cost in this
domain where efficiency is paramount.

In this paper, we described EmStar, an environment for devel-
opment of Linux-based wireless sensor network software. Em-
Star provides a modular programming model that allows domain
knowledge in one module to affect the modules around it, with-
out sacrificing the advantages of reusability and abstraction that
strict layering provides. Services may be flexibly interconnected
using standard interfaces; the connections can transmit a flow of
packets, stream data, state updates, or configuration commands.

EmStar code may be run on a diverse set of execution plat-
forms; each run the same code and use the same configuration
files, making it easy for developers to seamlessly iterate among
all the modes. In addition to a true distributed deployment plat-
form, EmStar provides a number of development modes that fa-
cilitate debugging and evaluation:

• Pure simulation—Simple models of the communication
and sensor channels define (for example) the effective range
of each packet and the input of sensors. Simulation of-
fers complete control over and visibility into the system
being tested. For example, systematic testing of scenarios
is possible, and behavior can be made deterministic so as to
make problems more consistently reproducible. Many de-
velopers can work in parallel; simulators are ordinary PCs,
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which (currently) are more ubiquitous than the specialized
hardware used in sensor networks.

• Ceiling array—We permanently mounted an array of low-
power wireless transceivers on the ceiling of our lab, all
wired back to a simulator-class machine. As in pure simu-
lation, ceiling array node instances are run centrally. How-
ever, instead of using a channel model, the simulated nodes
communicate by sending and receiving real packets through
the real channel. This lets developers experience real chan-
nel dynamics without sacrificing the ease of development
afforded by the simulator.

• Portable array—A portable version of the ceiling array
allows radio and sensor interfaces to be taken to the real
environment that will be used for deployment. Logisti-
cal limitations prevent large-scale testing, but this mode is
valuable because it provides high visibility into a system
running in its actual target environment.

EmStar allows developers get the basics of an algorithm work-
ing in a controlled environment (simulation); then, understand
both the effects of scale (via a large simulation) and the effects of
the real environment (via the ceiling and portable arrays). Code
that has been debugged using all the modes has a good chance
of working in a real-world deployment, where it must both be
scalable and deal with the effects of the real environment. While
deployed code may not work immediately, an immense amount
of real progress can be made in a much more friendly environ-
ment.

In the future, there are still a number of important features
we would like to incorporate into EmStar:

Non-realtime simulations—Currently, pure simulations run
in real-time. Faster-than-realtime simulations would be useful to
speed up the process of performing many simulations with vary-
ing configurations. Slower-than-realtime simulations are also use-
ful in support of very large simulations, where the resources of
the simulation machine (CPU speed, memory capacity and band-
width, etc.) are less than to the sum of the resources of the nodes
being simulated.

Parallel simulations—Although emsim can make full use of
multiple processors on an SMP machine, we would like to enable
larger simulations by allowing them to be split across multiple
computers. We hope to apply a partitioning scheme similar to
that described in ModelNet [16].

Data replay mode—As we mentioned in Section 2.5, Data
Replay mode has not yet been widely used, and will complete
our spectrum of execution environments. This mode will be espe-
cially useful for domains in which large databases of time-series
data are already available (e.g., seismology).

Hybrid simulation and reality—Currently, EmStar platforms
require that nodes either be all simulated or all real. We would
like to enable hybrid modes that combine both types of nodes,
allowing the study of scale and real channel characteristics in a
single experiment.

Physically situated sensors in emcee—So far, development
on the ceiling and portable arrays has focused on reacting to char-
acteristics of the real communications channel. We would like to
use these tools to develop algorithms that are reactive to real dy-
namics seen in physically situated sensors, as well.

We anticipate that these improvements will be useful, but ul-
timately our ambition is to implement a fully-fielded system that
has grown up in the EmStar development environment. Two such
systems are in development: a 100-node tiered-architecture mi-
croclimate array, and a 50-node collaborative multi-hop seismic
array. We are working with our partners in the natural sciences
to create a system that is both scientifically useful and advances
the state of the art in sensor system design.

Project URL

Code and documentation for EmStar can be found at the URL:
http://cvs.cens.ucla.edu/emstar

Acknowledgments

EmStar was made possible through the support of the National
Science Foundation Cooperative Agreement #CCR-0120778, and
matching grants from Intel Corporation and Sun Microsystems.
Additional support was provided by the DARPA NEST program
(the “GALORE” project, grant F33615-01-C-1906) and the Uni-
versity of California MICRO program (grant number 01-031).
Sensoria Corporation provided valuable feedback and support.

Many individuals made valuable contributions to EmStar, in-
cluding Simon Han, John Heidemann, Eric Osterweil, Nithya
Ramanathan, Roy Shea, Fabio Silva, Mani Srivastava, Hanbiao
Wang, and the intrepid students of CS213, who braved using Em-
Star while it was still very raw.

References

[1] Familiar Linux. http://www.handhelds.org.

[2] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John
Heidemann, Ahmed Helmy, Polly Huang, Steven
McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu.
Advances in network simulation. IEEE Computer,
33(5):59–67, May 2000.

[3] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis
Girod, Michael Hamilton, and Jerry Zhao. Habitat
monitoring: Application driver for wireless
communications technology. In Proceedings of the
SIGCOMM Workshop on Communications in Latin
America and the Carribean, Costa Rica, April 2001.

[4] Alberto Cerpa and Deborah Estrin. ASCENT: Adaptive
self-configuring sensor networks topologies. In
Proceedings of the Twenty First Annual Joint Conference
of the IEEE Computer and Communications Societies

14



(INFOCOM 2002), New York, NY, USA, June 23–27
2002. IEEE.

[5] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and
Robert Morris. Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless
networks. ACM Wireless Networks, 8(5), September 2002.

[6] Jeremy Elson, Lewis Girod, and Deborah Estrin.
Fine–grained network time synchronization using
reference broadcasts. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI), pages 147–163, Boston, MA,
December 2002.

[7] Homayoun Hashemi. The indoor radio propagation
channel. Proceedings of the IEEE, 81(7):943–68, July
1993.

[8] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat,
Ramesh Govindan, Deborah Estrin, and Deepak Ganesan.
Building efficient wireless sensor networks with low-level
naming. In Proceedings of the Symposium on Operating
Systems Principles, pages 146–159, Chateau Lake Louise,
Banff, Alberta, Canada, October 2001. ACM.

[9] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System architecture
directions for networked sensors. In Proceedings of the
Ninth International Conference on Arhitectural Support
for Programming Languages and Operating Systems
(ASPLOS-IX), pages 93–104, Cambridge, MA, USA,
November 2000. ACM.

[10] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
August 2000.

[11] Phil Levis and Nelson Lee. Simulating tinyos networks.
http://www.cs.berkeley.edu/ pal/research/tossim.html.

[12] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. Tag: a tiny aggregation service
for ad-hoc sensor networks. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI), pages 131–146, Boston, MA,
USA, December 2002.

[13] Alan Mainwaring, Joseph Polastre, Robert Szewczyk,
David Culler, and John Anderson. Wireless sensor
networks for habitat monitoring. In Proceedings of the
First ACM Workshop on Wireless Sensor Networks and
Applications, Atlanta, GA, USA, September 28 2002.

[14] G. Pottie and W. Kaiser. Wireless sensor networks.
Communications of the ACM, 43(5):51–58, May 2000.

[15] C Schurgers, V Tsiatsis, and M Srivastava. STEM:
Topology management for energy efficient sensor
networks. In IEEE Aerospace Conference, pages 78–89,
March, 2002.

[16] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya
Mahadevan, Dejan Kostic, Jeff Chase, and David Becker.
Scalability and accuracy in a large-scale network emulator.
In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI), pages
271–284, Boston, MA, December 2002.

[17] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad
Barb, and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. In
Proc. of the Fifth Symposium on Operating Systems Design
and Implementation, pages 255–270, Boston, MA,
December 2002. USENIX Association.

[18] Ya Xu, Solomon Bien, Yutaka Mori, John Heidemann, and
Deborah Estrin. Topology control protocols to conserve
energy in wireless ad hoc networks. Technical Report 6,
University of California, Los Angeles, Center for
Embedded Networked Computing, January 2003.
submitted for publication.

15




