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Abstract 

We consider a recent model with sub-millimeter sized extra dimensions, where the 
field that determines the size of the extra dimensions (the radion) also acts as an infla
ton. The radion is also a stable modulus, and its coherent oscillations can potentially 
overdose the Universe. It has been suggested that a second round of late inflation 
can solve this problem, however we find that this scenario does not allow for sufficient 
reheating of the Universe. 
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Recently a remarkable proposal has been made by Arkani-Hamed et. al. [1],suggesting 
that the fundamental Planck scale could be at the Te V scale provided that there are compact 
(sub-millimeter sized) extra dimensions that gravitational fields can propagate in. The radius 
of the extra dimensions then acts as a light (mass of order 10-3 eV to order MeV) dynamical 
field that is referred to as the radion [2]. A very attractive scenario [3] was then proposed in 
which the radion field itself can act as an inflaton in the early Universe, i.e. its vacuum energy 
density can dominate the energy density of the Universe and cause the three large spatial 
dimensions to expand exponentially in time. After this inflationary episode the Universe 
is reheated to a temperature of 10 - 100 MeV with radiation being the dominant form of 
energy. The remaining energy density stored in the coherent oscillations of the radion is 
severely constrained so that it does not overdose the Universe. Thus the radion presents 
an example of a cosmological moduli problem, which is referred to as the radion problem in 
Refs. [2, 3]. In Ref. [3] it was proposed that a second round of inflation (a late inflation) 
with 5 to 6 e-foldings could sufficiently damp the radion oscillations. Here we will examine 
this proposal in some detail. We find that this late inflation generically shifts the minimum 
of the potential for the small radius, and that this shift is reliably calculable in these models. 
In order to achieve sufficient damping of the radion, the inflaton mass has to be extremely 
small. Even if such a light inflaton existed, it cannot reheat the Universe enough to allow 
for standard big-bang nucleosynthesis (BBN) to occur at temperatures around 1 MeV. Thus 
we argue that late inflation is an unlikely solution to the radion problem, which remains as 
one of the most severe problems for models with sub-millimeter dimensions. Needless to say, 
this result does not exclude the appealing framework of Ref. [3], but rather reiterates the 
difficulty of the moduli problem. 

First we briefly review the effective Lagrangian approach of [2] to the equations of motion 
for the expanding universe. These equations are obtained by assuming that the metric of 
the 4 + n dimensional spacetime is given by 

gltv = (1 _R(t)2gIJ ) , 
-r(t)2gij 

(1) 

where R(t) is the time dependent scale factor of the large 4 dimensional space-time, r(t) is 
the scale factor of the n extra dimensions, while the gIJ and gij are flat metrics in 3 and 
n dimensions respectively. The 3 large dimensions can be viewed as a "brane" or wall in 
the 4 + n dimensional space-time. The effective Lagrangian for the system is obtained by 
plugging the background metric (1) into the action 

S = - J d4+n x ye:g (M;+2R - £:) , (2) 

where 9 = det g/-LV, R is the curvature scalar, M* is the fundamental scale of the theory 
(M* ~ 1 TeV) , and £: is the Lagrangian density which includes matter fields and cosmo
logical constants both in the bulk and on the wall. By performing the integrals over the 
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spatial coordinates, and integrating by parts to eliminate second time derivatives, an action 
dependent on R, r, and single time derivatives is obtained. The resulting Lagrangian for 
R( t), r( t) is then given by [2] 

Leff = _M::+2 Efrn 6 R + n(n -1) (;) + 6n' ~R ( (R)2 . 2 (·R)) - Veff(r, R). (3) 

Here Veff includes the potential which stabilizes the radius of the extra dimensions to a value 
ro and the potential of the matter fields on the wall which in our case will lead to the late 
inflation under discussion: 

(4) 

Since we are interested in the epoch after the initial inflation, at times when the radion is 
already stabilized close to its actual minimum ro, a good approximation for Vbulk is to take 
it to be quadratic. The mass of the radion has been calculated in Ref. [2] to be 

2 Vb~lk(rO) m - ----~~~---= 
n - n( n + 2)M~+2r~-2 , (5) 

where mn is the radion mass, which was found to be [2] between the n independent lower 
bound of 10-3 eV, and an upper bound of 10-2 eV for n = 2 or an upper bound of 20 MeV 
for n = 6. Thus our approximation for Vbulk is 

(6) 

Introducing dimensionless variables (which we will use from here on) r -+ ror, R -+ roR, 
the equations of motion for the new variables obtained from the effective Lagrangian (3) are: 

o = -(n - 1)rn- 2 (6
TH + 27= + (n _ 2/2) _ 6rn- 1 (H2 + R) + (n + 2)m2(r -1) 
R r R2 R n 

o n 1 T2.. nIT R n R R 
-3nr - ((n-l)-;:-+2r) -12nr - }f-6r (R) +2R 

• (. 2 .. ) 

2 n( n + 2) ( )2 1 (. ') +3mn 2 r - 1 + M2 3Vwall + RVwall , 
, . PI 

(7) 

where the reduced Planck scale is given by M~I - M::+2r~ = (2 x 1018 GeV)2. 
Next we assume that the theory contains an inflaton field which produces a second 

period of inflation (a late inflation) after the initial inflation due to the radion, and explore 
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the consequences. We assume that the vacuum energy of the Universe is dominated for a 
brief time by the vacuum energy of this field, which we parameterize as: 

2 2 ' 
Vwall ~ VI = ). Mpl +... (8) 

where the ellipsis indicates other field dependent terms. This vacuum energy will force the 
scale factor of the large dimensions, R, to grow as 

(9) 

During this inflationary period the oscillations in the radion are rapidly damped. One can 
easily see that the coupling of the radion field to the scale factor of the large dimensions 
introduces a shift in the effective potential experienced by the oscillating radion field. From 
Eq. (7) we can read off the derivative of this potential: 

v, () I () n-l (R2 R) 
eff,bulk r = v/'ulk r - 6nr R2 + R . (10) 

It is this shift in the minimum of the potential [5] that will provide the crucial constraint 
on these late inflation models. The effect of inflation shifting the effective potential of a 
modulus has been known for a long time, and in fact can be viewed as the real origin of the 
moduli problem [5]. However, in generic models the size of the shift of the modulus usually 
depends on unknown physics (for example on higher order Kahler potential couplings in the 
case of ~upersymmetric theories), and thus cannot be reliably estimated. In this example 
however the shift is just given by solving Eq. (7). 

In order to obtain a model that gives the appropriate conditions to form the observed 
Universe, the energy density in the radion oscillations must be very small. If, however, the 
late inflation damps the oscillations around a minimum that is far from the true minimum 
after inflation, then the radion will again begin to oscillate around its true minimum once 
inflation has ended. Thus we find that this shift in the minimum during inflation must be 
quite small; this requires that). be much smaller than m. This can be seen by looking 
for the steady-state inflationary solution, taking r to be a constant r = rI, and R to grow 
exponentially, as in Eq. (9). These forms exactly solve the equations of motion and give the 
minimum during inflation as 

(11) 

The negative sign gives the solution that approaches the true minimum as ). -+ O. For small 
). this can he approximated* as 

rI ~ 1 + ( 2) 2' n+ mn 
------------------------------

*For).» m n , Eq. (11) has no real solutions, and no damping of the moduli oscillations occurs [5]. 
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This result can also be easily obtained from Eq. (10) by setting V:f f = 0 and linearizing in 
).2/m2. 

The energy density stored in the radion field at the end of the second stage of inflation 
is given by Eq. (6) 

(13) 

In order for this energy density to not overdose the Universe today (i.e. to not reintroduce 
the radion problem), it is bounded by 

V 3 9 G -- < - x 10- eV 
T 3 2 ' RH 

(14) 

where TRH is the reheat temperature of the Universe at the end of the late inflationary 
period, and we have set the current Hubble parameter to Ho = 50 km S-l Mpc-1

. This in 
turn implies an upper bound on the shift in r at the end of the late inflation: 

(rr _ 1) < 3 X 10-14 1 (10-
3 ev) (. TRH )3/2 

. In(n + 2) mn 10 MeV 
(15) 

A model independent, and n independent, upper limit is obtained by inserting n = 2 and 
the lower bound ffin > 10-3 e V on the radion mass, which is determined from short-distance 
force experiments [4]. This gives 

T 3/2 
(r - 1) < 10-14 ( RH) 

r 10 MeV 
(16) 

We note that the actual constraint on rr from Eq. (15), for a given mn and n, can be much 
stronger. Next, using Eq. (12), and the upper limit on rr given in Eq. (15), an upper bound 
on the inflationary scale). is: 

). < 4 X 10-16 MeV RH n=2 
( 

T 
)

3/4 (m ) 1/2 . 

10 MeV 10-2 eV ' n = 2 , (17) 

). < 8 X 10-12 MeV RH n=6 
( 

T 
)

3/4 ( m ) 1/2 

10 MeV· 5 MeV ,n = 6. (18) 

Provided that the shift in the minimum of the potential is sufficiently small, then 5 to 6 
e-foldings of inflation are required in order to sufficiently damp the radion oscillations~ The 
number of e-foldings is given by [7] 

! ! 3H2 ~</>). 2 

N = H dt = d</> Vf ~ 2Vf ' (19) 
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where ¢ is the inflaton field, and f:l.¢ is the distance in field space that it travels during the 
course of inflation. This equation simply constrains the inflaton potential to be sufficiently 
flat during inflation. In addition the slow-roll condi'tion requires that IV!'I « 9H2. For 
a natural potential (where there are no fine-tuned cancelations between terms) each term 
in the potential should have sufficiently small derivatives in order for slow-roll inflation to 
occur. These constraints imply a bound on the mass of the inflaton field: 

m[ < A. (20) 

In order to avoid significant cosmological difficulties, the reheat temperature TRH must 
be less than the "normalcy" temperature T* [6] below which the 4D Universe is radiation 
dominated with the bulk essentially empty of energy. Processes such as II -+ bulk graviton 
occurring in the early Universe can dump too much energy into the bulk if the temperature 
is above T*. The over-production of bulk gravitons, for example, can significantly affect the 
expansion rate of the Universe during BBN and also overdose the Univer"se. Furthermore, the 
late decay of Kaluza-Klein gravitons to two photons can produce spikes in the background 
photon spectrum and is a very significant cosmological constraint. Since the late photon 
constraint may be avoided in models where the bulk is populated with many branes, we 
instead use the (weaker) constraint that is obtained from requiring that the energy density 
in the bulk gravitons is less than about a tenth of the energy in radiation during BBN [6]. 
This leads to the constraint: TRH < 3 X 10-6 M* for n = 2, and TRH < 2 X 10~3 M* for 
n = 6. Inserting these upper bounds on TRH into Eq. (17) and Eq. (18) gives an upper 
bound on the mass of the inflaton in terms of M*: 

m[ < 2 x 10-16 MeV ( m n =2 )1/2 ( M* )3/4 n = 2 , (21) 
10-2 eV 1 TeV ' 

m[ < 4 x 10-10 MeV (5m~:~ ) 1/2 C ~;V ) 3/4, n = 6. (22) 

Since the initial round of inflation in this model is thought to reheat the Universe to a 
temperature around 10 - 200 MeV, 5 or 6 e-foldings will result in a Universe too cold for 
the BBN scenario which requires a radiation dominated Universe at temperatures of a few 
MeV. Therefore the Universe must be reheated again after the second inflationary period, 
and the inflaton must therefore decay. 

This can be made more precise. Denote by T1 and Vi the temperature of the radiation 
and the energy density in radion oscillations, respectively, at the onset of the late (second) 
inflationary phase. Then the temperature at the end of inflation, but before reheating, is 
T2 = e-N T1. The energy in radion oscillations at the end of inflation is V = e-3NV1 + VshiJt > 
e-3NVi. Here VshiJt is the energy density due to the shift in the minimum of the potential 
during the late inflation. Then the overdosure constraint implies 

~ x 10-
9 

GeV > T~H > (~~)3 ~~ = (~~)3 ~~. (23) 
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In/" the last equality we have used VjT3 -= constant to express the result in terms of Ti 
and Vi, the values of T and V, respectively, at the end of the reheating following the first 
inflationary phase, rather than their values at the start of the second inflationary phase. If 
there is a moduli problem the~ Vi r-.J Ti4 • In fact this condition holds at the end of the -first 
reheating in the model of Ref. [3]. Assuming that no secondary reheating is required, then 
TRH = T2 < Ti . Inserting this and Vi I"V T/ into Eq. (23) leads to an unacceptable conclusion, 
namely Ti « O(MeV). Alternatively, in the framework of Ref. [3], the temperature of the 
Universe at the end of the first reheating (but before the start of the late inflationary phase) 
is Ti I"V 2 - 200 Me V, for n = 2 to n = 5. Inserting these values of Ti into the above formula, 
Eq. (23), implies that T2 is a tiny fraction of TRH: 

(24) 

Therefore a second reheating of the Universe must occur. 
In order to reheat the Universe, the inflaton must decay to particles that have standard 

model interactions. The only particles that are sufficiently light (given the current exper
imental data) are photons and neutrinos. We will assume that the inflaton is neutral and _ 
decays directly to photons rather than through an additional intermediary that subsequently 
decays to photons. Thus the simplest possibility is that the inflaton decays to two photons 
through a dimension 5 operator, </>FJl>vFJl>V, suppressed by the fundamental scale M* ::::::J 1 
TeV. Given the limit in Eq. (21) and Eq. (22), it not even clear that the decay to massive 
neutrinos is kinematically allowed. If it is allowed, then a direct decay to two neutrinos, by 
gauge-invariance, must also proceed through a dimension 5 operator. In any case, the decay 
rate is comparable to (or smaller than) the two photon decay. A conservative estimate of 
the decay width is then 

(25) 

This leads to a very small reheat temperature [7]: 

(26) 

where g* counts the number of degrees ()f freedom that are in equilibrium at a given tem
perature (g* ~ 10 at MeV temperatures in the Standard Model). Using the upper limit to 
mI, Eq. (21) and Eq. (22), we find a reheat temperature of 

TRH < 8 x 1O-3~ MeV ( M ) 1/8 (m ) 3/4 

1 T;V 10-;=:V ,n = 2 (27) 

TRH < 3 X 10-10 MeV ( M* ) 1/8 ( m n =6 ) 3/4 

1 TeV 5 MeV 
,n =6. (28) 
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The reheat temperatures given by Eqs. (27) and (28) are far too small for successful BBN. 
To summarize we have found that the inflaton necessary to damp the radion must be 

remarkably light, and that such light inflatons cannot successfully reheat the Universe to 
BBN temperatures. Of course our conclusions can be avoided with a sufficient amount 
of fine-tuning. For example if the inflaton potential is extremely fine-tuned (which could 
perhaps arise from some unknown physics), then the bound (20) on the inflaton mass can 
be avoided. One can also imagine adding additional interactions between the radion and the 
inflaton which are fine-tuned to cancel the shift in the minimum of the radion potential (in 
this case the inflaton potential would also have to be fine-tuned so as to remain sufficiently 
flat for inflation to occur). Finally the fundamental scale M* could be made much larger 
than 1 Te V so that the bound on the radion and inflaton masses could be relaxed, but this 
results in a hierarchy between the weak scale and the fundamental scale, and a corresponding 
fine-tuning of the Higgs mass. This is very unappealing, since the absence of a fine-tuned 
Higgs mass is one of the major motivations for the sub-millimeter extra dimension scenario. 
Thus, in the absence of fine-tuning, the moduli problem of sub-millimeter extra dimensions 
remains a difficult problem that requires a more interesting solution than a standard late 
inflation. 
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