
UC Davis
UC Davis Previously Published Works

Title
Association of plasma metabolites and diagnostic imaging findings with hepatic lipidosis in 
bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy

Permalink
https://escholarship.org/uc/item/5h46608d

Journal
PLOS ONE, 18(2)

ISSN
1932-6203

Authors
Barboza, Trinita K
Susta, Leonardo
Zur Linden, Alex
et al.

Publication Date
2023

DOI
10.1371/journal.pone.0274060

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5h46608d
https://escholarship.org/uc/item/5h46608d#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

Association of plasma metabolites and

diagnostic imaging findings with hepatic

lipidosis in bearded dragons (Pogona vitticeps)

and effects of gemfibrozil therapy

Trinita K. BarbozaID
1☯¤a*, Leonardo SustaID

2, Alex zur Linden1‡, Sara Gardhouse3¤b‡,

Hugues BeaufrèreID
1☯¤c*

1 Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada,

2 Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada,

3 Health Sciences Center, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada

☯ These authors contributed equally to this work.

¤a Current address: Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts

University, North Grafton, Massachusetts, United States of America

¤b Current address: Department of Clinical Sciences, College of Veterinary Medicine, Kansas State

University, Manhattan, Kansas, United States of America

¤c Current address: Department of Veterinary Medicine and Epidemiology, UC Davis School of Veterinary

Medicine, Davis, California, United States of America

‡ AL and SG also contributed equally to this work.

* hbeaufrere@ucdavis.edu (HB); Trinita.Barboza@tufts.edu (TKB)

Abstract

Objectives

To evaluate the association between plasma metabolites, biochemical analytes, diagnostic

imaging findings, and the histologic diagnosis of hepatic lipidosis in bearded dragons. To

assess the effects of gemfibrozil therapy on hepatic lipid accumulation and associated diag-

nostic tests.

Animals

Fourteen bearded dragons (Pogona vitticeps) with varying severity of hepatic lipid accumu-

lation (with and without hepatic lipidosis) were included.

Procedures

Animals underwent coelomic ultrasound, computed tomography (CT) scans, and coelio-

scopic hepatic biopsies. Clinical pathology tests included lipidologic tests, hepatic biomark-

ers, and mass spectrometry-based metabolomics. Animals were medicated with gemfibrozil

6mg/kg orally once a day for 2 months in a randomized blinded clinical trial prior to repeating

previous diagnostic testing.

Results

Hounsfield units on CT were negatively associated with increased hepatic vacuolation,

while ultrasound and gross evaluation of the liver were not reliable. Beta-hydroxybutyric-
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acid (BHBA) concentrations were significantly associated with hepatic lipidosis. Metabolo-

mics and lipidomics data found BHBA and succinic acid to be potential biomarkers for diag-

nosing hepatic lipidosis in bearded dragons. Succinic acid concentrations were significantly

lower in the gemfibrozil treatment group. There was a tendency for improvement in the bio-

markers and reduced hepatic fat in bearded dragons with hepatic lipidosis when treated with

gemfibrozil, though the improvement was not statistically significant.

Conclusions

These findings provide information on the antemortem assessment of hepatic lipidosis in

bearded dragons and paves the way for further research in diagnosis and treatment of this

disease.

Introduction

Hepatic lipidosis, also known as fatty liver disease or steatosis, is a commonly reported nec-

ropsy finding in pet bearded dragons (Pogona vitticeps) [1]. A prevalence of 27.3% (156/571)

has been reported for moderate to severe hepatic lipid changes in bearded dragons presented

for necropsy at two North American pathology laboratories [1]. The disease process involves a

progressive accumulation of triacylglycerol in the hepatocytes resulting in disruption of micro-

anatomy, which leads to impaired hepatic metabolism and function, as well as dyslipidemia

[2–6]. Hepatic lipidosis is also suspected in clinical cases of bearded dragons that present with

non-specific clinical signs including anorexia, lethargy, and weight loss; ultimately progressing

to liver failure and death [3, 7–9]. Retrospective data has indicated that age (adult) and sex

(female) are risk factors for increased grade and class of hepatic lipid changes [1]. Infectious

disease and neoplasia were found to be strong negative predictors for hepatic lipid accumula-

tion and changes [1].

The pathogenesis of hepatic lipidosis in bearded dragons is poorly understood. In reptiles,

lipogenesis and fat metabolism are limited in the adipose tissue (primarily the coelomic fat

pads) and occurs mainly in the liver, which may increase susceptibility to hepatic triacylgly-

cerol accumulation [10]. Hepatic triacylglycerol accumulation can come from different mecha-

nisms such as increased fatty acid uptake (from food or adipose tissue lipolysis), increased de
novo synthesis (from carbohydrates), decreased fatty acid degradation (from impaired or satu-

rated mitochondrial β-oxidation), or decreased hepatic excretion (to plasma lipoproteins) [11,

12].

Ante-mortem diagnosis of hepatic lipidosis is challenging in bearded dragons as there is no

evidence-based recommendation for the precise definition of hepatic lipidosis. Plasma bio-

chemistry values are largely insensitive to screen for this disorder in reptiles and, as a result

most animals have an advanced stage of the disease by the time they are diagnosed; this can

subsequently result in poor response to treatment [3, 8, 13]. Since blood is a readily accessible

tissue, investigating other commonly used lipid biomarkers such as plasma non-esterified fatty

acids (NEFA), ketones, triglycerides, lipoproteins [5, 14, 15], and other metabolites at a larger

scale through metabolomics/lipidomics [16–20] may help with screening, diagnosing, and

monitoring this disease in a non-invasive manner. In particular, triglycerides would be of

interest as hypertriglyceridemia has been demonstrated in red-footed tortoises (Chelonoidis
carbonaria) with confirmed hepatic lipidosis [5].

Metabolomics is the comprehensive analysis of plasma low molecular weight metabolites,

including lipids, by mass spectrometry or nuclear magnetic resonance spectroscopy [21]. It is
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revolutionizing the way metabolite disorders are understood, investigated, and diagnosed in

mammals and birds [21–24]. Metabolomic profiling of bearded dragon plasma may allow for

the identification of key biomarkers associated with various stages of hepatic lipidosis when

compared to individuals without significant lipid accumulation. This may help in understand-

ing the affected metabolic pathways in hepatic lipidosis, discover the role of specific metabo-

lites in its pathophysiology, and aid in assessing prognosis and monitoring of treatment [21,

22].

Most of the studies published on lipid metabolism alteration in reptiles have focused on

total fatty acid composition of organs and plasma, but not on the lipid molecules or other

important lipid classes such as other fatty acyls, glycerolipids, phosphoglycerolipids, sphingoli-

pids, and sterols [25–27]. These studies have demonstrated that several factors can affect the

plasma and organ proportion and concentration of lipid [25–27]. Diet, season, body size, and

reproductive status can all make interpretation of plasma lipid concentrations difficult as

plasma triglycerides are often elevated during vitellogenesis, follicular stasis, prebrumation,

and hepatic lipidosis [3, 5, 8, 10, 28].

In the absence of reliable blood biomarkers, the diagnosis of hepatic lipidosis heavily relies

on advanced imaging modalities such as computed tomography (CT) and magnetic resonance

imaging (MRI), or liver biopsies with histology [3, 8, 13, 29]. To date, histology is the only vali-

dated diagnostic tool for hepatic lipidosis [3, 29], and our group has recently proposed a grad-

ing system to assess the accumulation of fat and its effects on the hepatic tissue of bearded

dragons [30]. However, due to the invasive nature, morbidity and mortality associated with

sampling, and cost, histology is typically performed at a later stage in the disease in both

human and veterinary medicine and so various imaging modalities continue to be investigated

for earlier, non-invasive diagnosis [3, 31–34].

Computed tomography allows for quantitative measurement of radiodensity [Hounsfield

Units (HU)] based on the x-ray absorption of various tissues [35]. A decrease in attenuation

has been correlated with an increase in hepatic fat content [35]. No study has correlated liver

density values on CT images [in HU] with the degree of histologic hepatic fat in bearded drag-

ons. This information may allow for the non-invasive diagnosis and monitoring of hepatic lipi-

dosis as well as quantification of the degree of lipidosis [36]. Ultrasonography of the liver is

used in the diagnosis of hepatic lipidosis in mammals [37]. However, this modality lacks speci-

ficity and thus has not been proven as a screening tool in human or veterinary medicine [31,

38, 39]. In addition, it only provides a qualitative assessment of hepatic echogenicity and is

prone to operator variability [40]. The liver of healthy bearded dragons can have variable echo-

genicity on ultrasound [41, 42] and the subjectivity of interpretation does not allow a confident

diagnosis, especially when compared to more objective CT and histology findings.

Currently, with husbandry changes and supportive care including nutritional support,

reversal of hepatic lipidosis could take several months to several years [3]. As in other reptile

species, evidence-based therapeutic strategies are lacking for bearded dragons with hepatic

lipidosis, as no studies are available. Medical therapies including L-carnitine, methionine, and

vitamins have not been proven to be efficacious in reptiles in preliminary trials [9, 13, 43, 44].

Though many of these recommendations are made to increase the catabolism of fat, none are

proven to resolve hepatic lipidosis, and discovery of a treatment has the potential to improve

the prognosis of this disease. On top of dietary and husbandry changes, a lipid-lowering drug

may expedite recovery, reduce hepatic fat, reverse associated dyslipidemia, and aid in the treat-

ment of hepatic lipidosis in bearded dragons. Fibrates are peroxisome proliferator receptor-α
agonists that reduce triglyceride levels by increasing fatty acid oxidation in the liver [45–48].

Since triacylglycerols accumulate within hepatocytes in hepatic lipidosis, fibrates such as gem-

fibrozil have been investigated in mammals and birds [11, 45, 49–51]. In a systematic review of
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different fibrates, gemfibrozil was proven to be the most efficacious fibrate in people [46, 52].

The use of fibrates has not previously been studied in reptiles. However, due to the physiologi-

cal similarities in hepatic lipogenesis and folliculogenesis to birds [53], avian studies were con-

sidered to be a good starting point for extrapolation to reptiles.

Despite the common diagnosis of hepatic lipidosis in bearded dragons [1], there is a large

knowledge gap regarding its pathophysiology, diagnostic testing, biomarkers, and treatment.

The objectives of this study were to: better understand the metabolic derangement associated

with hepatic lipidosis in a cohort of bearded dragons with spontaneous disease; to identify

potential novel plasma biomarkers that could be used for non-invasive diagnosis and monitor-

ing of hepatic lipidosis using quantitative (targeted) metabolomics and lipidomics; to validate

CT as a non-invasive diagnostic tool for hepatic lipidosis in bearded dragons; and to assess

gemfibrozil’s efficacy on improving liver density on imaging, blood biomarkers, and hepatic

fat content on histology. Our hypotheses were that metabolomics, lipidomics, and CT would

have significant biomarker differences between bearded dragons with and without spontane-

ous disease and that gemfibrozil would lead to hepatic fat reduction and biomarker improve-

ment in comparison to a control group of bearded dragons.

Materials and methods

An animal use protocol was approved for this research by the University of Guelph- Animal

Care Committee (Animal utilization protocol #4149). The study was carried out in strict accor-

dance with animal care and use guidelines.

Inclusion criteria, animals, exclusion criteria

The inclusion criteria for this study was adult bearded dragons of male or female sex that were

eating and bright (clinically normal). The study population included 14 bearded dragons (6

males, 8 females) between 1–4 years of age. The number of animals included in this study was

based on a sample size estimation using statistical software (G�Power 3.0 [Universität Kiel])

[54] to detect a 10% reduction in hepatic lipid content following gemfibrozil use with a power

of 80% and a standard deviation of 5–10% of hepatic lipid. Five sub-adult (1 year old) bearded

dragons were acquired through a reptile importer (National Reptile Supply, Mississauga, ON,

Canada), and nine adults were acquired from a cohort of relinquished reptiles held in a private

herpetological institution (Reptilia Zoo, Vaughan, ON; Ontario Veterinary College, Guelph,

ON, Canada). All bearded dragons were considered to be in acceptable health for the duration

of the study with good to increased body condition. Any animal with concurrent disease based

on physical examination, biochemistry testing, and histology of the liver was excluded from

the study.

The bearded dragons were individually housed at the University of Guelph–Central Animal

Facility in opaque enclosures that were modified to have ventilation holes and lids half covered

with wire mesh. A basking and UVB light (Sunray 70W, Exoterra), polypropylene hide box,

and two small bowls for food and water were provided in each enclosure. Each enclosure was

lined with newsprint paper sheets (Uline) and were changed when soiled. The temperature

was measured via a digital thermometer and maintained at 25˚C in the room and 41˚C directly

under the basking light. A 12-hour light cycle was set on timers for the basking and room light

with the evening ambient temperature maintained at 25˚C. The bearded dragons were pro-

vided a combination of greens (spring mix), fresh cut vegetables (various squash and carrots),

gut-loaded and pure calcium dusted house crickets (Acheta domesticus) from an in-house col-

ony, and herbivore and insectivore pellets (Mazuri) based on diet recommendations in the lit-

erature [29, 55–57]. Water was always available. The greens and vegetables were dusted with 1/
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8 teaspoon of pure calcium powder (Repti Calcium Without D3, Zoo Med Laboratories; 43%

Ca/kg; 43% Ca/kg) when offered and 1/8 teaspoon of multivitamin once a week [58–60]. On

alternating days, twice a week, the bearded dragons were offered 6–12 adult gut-loaded crick-

ets (depending on size). Three days a week, the bearded dragons’ diet consisted of a combina-

tion of two teaspoons of herbivore and one teaspoon of insectivore reptile pellets which were

soaked with water to encourage consumption [55]. However, the majority of the animals

elected to self-fast when offered pellets alone aside from the year-old bearded dragons.

On a daily basis the bearded dragon food intake, fecal and urate output, and any behavioral

or physical changes were logged (e.g. shedding, hiding) to monitor health of the animals. On a

weekly basis, the bearded dragons were weighed, soaked in warm tap water for 15 minutes,

and had their enclosures sanitized with an accelerated hydrogen peroxide solution. The

bearded dragons were acclimatized for 1 month prior to initiation of the diagnostic study.

Biochemical panel

Biochemical and diagnostic imaging testing was performed on all bearded dragons to further

asses their health, obtain values on lipid metabolism and liver analytes, and screen for pre-

existing hepatic lipidosis. At the end of the acclimation period, the bearded dragons were

fasted for 24 hours and a 0.9 ml to 1.0 ml blood sample was collected from the caudal tail vein

or right jugular vein with minimal to no lymph contamination as noted visually. A 25-ga or

26-ga needle and disposable 1-ml syringe were used, with blood divided into two different hep-

arinized tubes without a serum separator (Microtainer, Becton and Dickinson, Mississauga,

ON, Canada). The tubes were inverted a minimum of 5 times and placed on ice. Once all sam-

ples were collected, the blood was centrifuged for 10 minutes at 1500g.

One heparinized plasma sample was submitted to the laboratory (University of Guelph,

Animal Health Laboratory, Guelph, ON, Canada) for a custom-made biochemistry panel

using a clinical reference laboratory analyzer (Cobas c501, Roche Diagnostics International

AG, Rotkeruz, Switzerland) that included lipids (total cholesterol, triglycerides, high-density

lipoprotein (HDL)-cholesterol, total NEFA, bile acids), liver enzymes (asparate aminotransfer-

ase [AST], alanine aminotransferease [ALT], gamma-glutamyl transferase [GGT], glutamate

dehydrogenase [GLDH]), and metabolites (beta-hydroxybutyric acid (BHBA), glucose).

Targeted metabolomics

The second heparinized plasma tube had approximately 0.2ml plasma for metabolomics stored

into cryopreservation vials and frozen at -80˚C until analysis. Samples were shipped on dry ice

to the analytical laboratory (Analytical Facility for Bioactive Molecules, The Hospital for Sick

Children, Toronto, Canada). Heparinized plasma samples were analyzed for 630 metabolites

using a standardized metabolomics kit (MxP1Quant 500 kit [Biocrates Life Sciences, Inns-

bruck, Austria]). The panel included 1 alkaloid, 1 amine oxide, 20 amino acids, 30 amino acid

related metabolites, 14 bile acids, 9 biogenic amines, total hexoses, 7 carboxylic acids, p-cresol

sulfate, 12 non-esterified fatty acids, 4 hormones, 4 indoles and derivatives, hypoxanthine, xan-

thine, choline, carnitine and 39 acyl-carnitines, 14 lysophosphatidylcholines, 76 phosphatidyl-

cholines, 15 sphingomyelins, 28 ceramides, 8 dihydroceramides, 19 hexosylceramides, 9

dihexosylceramides, 6 trihexosylceramides, 22 cholesteryl esters, 44 diacylglycerols, and 242

triacylglycerols. In addition, the calculated value of total ceramides was obtained by adding all

of the individual ceramide concentrations.

To minimize contamination, solvents used were of liquid chromatography- mass spectrom-

etry grade and glassware was triple-rinsed with pure water (Milli-Q1 water, MilliporeSig-

maTM), isopropanol and methanol. Samples, standards, and controls (10uL) were added to a
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96-well filter plate with internal standard, dried under nitrogen gas, and then extracted with

methanol, as per kit instructions. Extracted samples were analysed by liquid chromatography-

tandem mass spectrometry using the supplied high performance liquid chromatography col-

umn (Agilent 1290 HPLC system, Agilent Technologies: Santa Clara, California, USA) coupled

to a mass spectrometer (Sciex Q-Trap 5500, Sciex, Framingham, MA) both in positive and

negative polarity. Data were acquired and quantified using two different software programs

(Analyst, version 1.6.3, AB Sciex Pte. Ltd, Singapore; MetIDQ, version 9.7.1-DB110-Oxygen

2893, Biocrates Life Sciences, Innsbruck, Austria) [61]. All metabolites were quantified in

umol/L.

Advanced lipoprotein profiling

Approximately 2 months following initial blood collection, the bearded dragons were re-sam-

pled in a similar manner and an additional 0.5 ml of blood was collected and placed in an

EDTA tube. Plasma was separated and frozen at -80˚C until shipping. The samples were then

shipped on dry ice to a laboratory (Skylight Biotech Inc., Liposearch1 panel, Akita, Japan) for

advanced lipoprotein profiling. The technique used gel permeation- high performance liquid

chromatography to separate lipoproteins by size prior to chemical analyses, as previously

described in mammals and birds [24, 62, 63]. Lipoproteins were analyzed for cholesterol con-

centration, triglycerides concentration, and particle numbers across 4 major classes and 20

sub-fractions. The concentration of free glycerol was also measured. Lipoprotein particle sizes

were also obtained for the main classes as calculated from cholesterol plots using a proprietary

algorithm [63]. Non-HDL cholesterol was also calculated as an additional lipoprotein

biomarker.

Imaging (computed tomography and ultrasound)

Following blood collection, the bearded dragons were sedated with 10 mg/kg alfaxalone

(Alfaxan Multidose, 10mg/mL, Jurox Animal Health, ON, Canada) [64] IM (intramuscular)

and 1 mg/kg hydromorphone (Hydromorphone hydrochloride injection, 2mg/mL, SteriMax,

Oakville, ON, Canada) [65] IM in the thoracic limbs. The animals were sedated within approx-

imately 10 minutes following drug administration for coelomic non-contrast enhanced CT

scans and subsequent coelomic ultrasounds. Each bearded dragon was placed in ventral

recumbency for CT image acquisition. The CT was performed using a 16-slice CT scanner

(GE Bright Speed, General Electric Healthcare, Milwaukee, WI). Data was reformatted with

routine bone and soft tissue algorithms. Slice thickness was 0.625 mm, and images were refor-

matted into 1.3 mm slices. The field of view was 25 cm, kVP 120, mA 100. The pitch was

0.938:1, with a 1 sec rotation time. Viewing software (AGFA Enterprise Imaging XERO Viewer

8.1.2, Agfa HealthCare N.V., 2017, Belgium) was used to obtain and analyze images through

multi-planar reconstruction (MPR) to allow for better visualization of the liver. The hepatic

density was measured in HU using a standardized ROI (region of interest) excluding blood

vessels by a single observer. Three circular ROIs were selected from a dorsal MPR view from

the caudoventral margin of the left hepatic lobe in the region of hepatic biopsies with an

approximate area of 0.05+/- 0.001 cm2 for each ROI. The area of ROI was triangulated to the

widest part of the liver using the transverse and sagittal planes.

Following CT imaging, coelomic ultrasound (Philips iU22, Philips Ultrasound, Bothell,

USA) was performed on the pediatric abdomen setting with a gain of 76%, and maximum

depth for each animal. The animals were manually restrained in dorsal recumbency and a C85

transducer was used to acquire images of the left and right liver lobes and coelomic fat pads

when visible by a board certified radiologist (AZ). Images were standardized and recorded for
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blinded evaluation by a single experienced observer (final year radiology resident) for liver

echogenicity (as a score of normal [no-lipid to mild class], hyperechoic but hypoechoic to fat

pads [moderate class], and hyperechoic that is isoechoic to the fat pads [severe class]) with fat

pads used as a reference organ. The images were also measured as mean pixel intensity in a

standardized ROI following 8-bit grey scale conversion using an imaging processing program

(ImageJ 1.53a, National Institutes of Health, USA) [66]. A maximum ROI was chosen in each

image to include as much of the target organ as possible (left and right liver or fat pad) using

free hand selection, excluding large vessels and liver capsule. The mean pixel intensity of each

target organ was calculated and the ratio of liver/fat pad pixel intensity was reported to account

for dragon-to-dragon variability in echogenicity. Following imaging, subcutaneous fluids

(10ml/kg) were given to each bearded dragon prior to returning them to their enclosures for

recovery.

Coelioscopic guided liver biopsy and histology

Following imaging, the bearded dragons were re-sedated with 10 mg/kg alfaxalone and 1 mg/

kg hydromorphone IM, and a coelioscopic guided liver biopsy was performed under isoflurane

(IsoFlo, Abbott Laboratories, North Chicago, IL, USA) general anesthesia with a 2.7mm rigid

endoscope (Karl Storz Endoscopy Canada Ltd., Mississauga, ON, Canada) and biopsy forceps

using a paramedian approach with CO2 insufflation as described in reptiles [67]. All efforts

were made to minimize suffering including minimally invasive biopsies and 3 days of post-

operative analgesia (tramadol, 10 mg/kg PO q24h, compounded product, Ontario Veterinary

College, Guelph, ON, CAN). As all bearded dragons were not sampled on the same day, they

were selected for the procedure in a random sequence by mixing name cards and selecting a

random card. Images of the liver were captured for each bearded dragon, and subsequently

5-French endoscopic biopsy forceps were used for liver sampling. Coelioscopic images were

subjectively graded on an ordinal scale by a blinded observer (SG) based on color, parenchyma

texture, margination, and size. Categories included no-lipid (brown, smooth, sharp margins),

mild (yellow-brown, sharp margins), moderate (yellow, rounded margins), and severe (yellow,

possible capsular fibrosis, rounded margins, large) lipidosis.

Coelioscopic biopsies were fixed in 10% buffered formalin and submitted to Animal Health

Laboratory for processing where they were embedded in paraffin, sectioned onto glass slides,

and stained with hematoxylin and eosin. Additional stains including Periodic acid-Schiff, Mas-

son’s trichome, and Congo Red were utilized to further evaluate cases as needed. The grade

and classification of hepatic lipid changes were determined for each histological sample

according to a scoring system which assessed percent of hepatocellular vacuolation, fibrosis,

and hepatocellular swelling by a blinded pathologist (LS) and an exotic animal veterinarian

(TB), as previously described S1 Table [30]. In addition, the percentage of hepatic lipid was cal-

culated using digital image analysis with an image processing program (ImageJ 1.53a) for each

animal [66]. Due to the physiological process of lipogenesis in the bearded dragon liver [10],

and the histological evaluation of 252 cases [30], authors suspected that all vacuolated hepato-

cytes without cellular swelling were a variation of normal. Therefore, based on the grading sys-

tem where cellular swelling placed cases in the moderate or severe class [30], cases with

moderate to severe hepatic lipid changes were considered most likely to be diagnosed with

hepatic lipidosis.

A male bearded dragon who was eating and defecating well postoperatively was found

deceased 14 days after his coelomic biopsies from septicemia with coelomitis. Evaluation of

the postmortem histology slides indicated the presence of hepatic granulomas, suggesting bac-

terial dissemination / sepsis.
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Bearded dragons (n = 13) had a mean ± sd weight of 303.3 ± 166 g. Animals in the no-lipid-

to-mild class (n = 6) weighed significantly less (p<0.001, t-test) at 150.0 ± 49.8 g compared to

animals in the moderate-to-severe class (n = 7) at 434.7 ± 97.2 g. Those in the no-lipid-to-mild

class were 1 years of age and smaller in size, except for 1 subject who was 3 years of age and full

grown. Bearded dragons in the moderate-to-severe class were between 2–4 years of age and

larger in size.

Gemfibrozil clinical trial

Following a two-month recovery period from liver biopsies, the bearded dragons were ran-

domized, blocking for sex and hepatic lipidosis status (as assessed by histology), using statisti-

cal software (R, version 4.0.3, R foundation for statistical computing, Vienna, Austria) [68],

into 2 treatment groups of 6 individuals: a control group which received the base used to com-

pound the medication (equivalent volume to mg/kg dose) and a treatment group that received

6mg/kg of gemfibrozil (Teva-Gemfibrozil, 600mg tablet, Teva Canada Limited, Toronto, ON,

Canada) orally once a day in the morning. The dose of gemfibrozil was obtained by allometric

scaling based on the known safety of the drug in a wide variety of animals [69]. The clinical

trial was performed over a period of 2 months, with missed weekends for the first month due

to a communication error with staff. Treatment administration was blinded. The gemfibrozil

was compounded from commercial tablets into an oral aqueous suspension at 12mg/ml. One

tablet was dissolved into 25ml of distilled water and then mixed into 25ml of a suspending

vehicle (ORA-Plus, Perrigo, Brooklyn, NY, USA) before each administration. Gemfibrozil has

an aqueous solubility up to 10 mg/ml [70] and it readily solubilized at the proposed concentra-

tion. Bearded dragons were evaluated daily by a blinded observer for side-effects such as

reduced appetite and activity, and their food intake and weight were recorded. Husbandry and

diet were continued as previously described and if the animals were noted to be anorexic or

losing weight, a physical examination was completed and they were syringe fed once every 3

days. Subcutaneous fluids (10 ml/kg) and enemas (3% of body weight; 50:50 water: lubricating

jelly [Muko]) were given on an as needed basis. Bearded dragons would be removed from the

gemfibrozil trial if they stopped eating for more than a week, showed gastrointestinal signs

such as diarrhea, or if they became lethargic. None of the bearded dragons had long term

anorexia during the study.

Following 2 months of treatment, the bearded dragons were fasted for 24 hours prior to

blood collection (1.0 ml from the caudal tail vein) for a hepatic biochemistry panel including

BHBA and a metabolomics panel in a similar manner to pre-treatment sampling. Computed

tomography scans, ultrasound, and coelioscopic guided liver biopsies were also performed in

the same manner as the initial diagnostics. Two male and two female bearded dragons were

humanely euthanized with 1.0 mL of potassium chloride into the caudal tail vein following

final sample collection due to the diagnosis of moderate-to-severe histological changes (hepatic

lipidosis). Death was confirmed by cessation of heart sounds on doppler. Coelioscopic biopsies

were fixed, submitted, stained, and graded as previously outlined. Computed tomography and

ultrasound images were also evaluated as previously described. All data were compared

between the 2 groups as well as with their baseline data.

Statistical analysis

General. For the purpose of the analysis, and the authors definition of hepatic lipidosis,

the histologic classification of lipid changes was simplified to a binary outcome variable with

“no-lipid-to-mild” and “moderate-to-severe” values based on a partially validated histology

grading system [30].
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Diagnostic imaging data were compared between the 2 simplified classes using t-tests or

Mann-Whitney U test if not normally distributed (as determined by Shapiro-Wilk tests and

quantile plots) or with a heterogeneous variance. Diagnostic utility, for classification into the

two simplified histological classes, was assessed using receiver operating characteristic (ROC)

curve analysis with area under the curve (AUC) to determine accuracy (1 being 100% accurate)

and optimal cut-off to maximize sensitivity and specificity.

The association between the amount of fat in the liver biopsy assessed by digital image anal-

ysis and CT liver density, assessed in HU, was investigated using a linear regression analysis.

Assumptions were assessed on residual plots and residual diagnostics.

Agreement between the coelioscopic and ultrasound images of the liver and severity of lipid

changes on histology (reduced to two classes) was evaluated by calculating the percentage of

agreement.

An alpha of 0.05 was used for statistical significance. Statistical software (R, version 4.0.3)

was used for analysis and development of graphs [68].

Biochemistry and metabolomics data. Metabolites quantified by mass spectrometry,

analytes quantified by the clinical analyzer, and lipoprotein analytes on the advanced lipopro-

tein panels were analyzed together with multivariate statistics. The statistical strategy followed

a standard statistical workflow recommended in metabolomics data [71].

Data were first filtered to remove non-informative variables and to increase the statistical

power. Variables with a constant or single value across all samples, variables with more than 2

missing values, and variables with values above or below the quantification limits were

removed. A total of 238/687 (34.6%) of variables were retained for multivariate analysis. Data

were then log transformed and mean centered for variables to be comparable.

Differences in each analyte between simplified classes were then assessed using serial t-tests

with an alpha of 0.05 (p<0.05) and an false discovery rate (FDR) of 0.05 (q<0.05) for signifi-

cance. Clustering was investigated using principal component analysis to detect metabolomic

signatures of the simplified hepatic lipid change classification using an unsupervised tech-

nique. Clustering was further investigated using a supervised classifying multivariate tool for

high-dimensional data: sparse partial least squares–discriminant analysis (sPLS-DA) initially

using the 10 variables per component. Loading plots were inspected to detect important

metabolites for classification. A heatmap with hierarchical clustering was also generated for

data exploration using the 75 most important analytes based on the lowest p-values, as assessed

by t-test on normalized data.

A biomarker analysis was also performed. Raw values were used instead of normalized val-

ues. Univariate ROC curve analyses were performed and diagnostic accuracy of biomarkers to

separate animals in the two simplified histological categories were ranked based on the AUC

(1 being 100% accurate). For selected variables, the optimal cut-off to maximize sensitivity and

specificity were also obtained. Statistical software (R, version 4.0.3) [68] and metabolomic

analysis software (MetaboAnalyst 5.0, Xia Lab, Montreal, QB, Canada) [72] were used for sta-

tistical analysis and development of graphs.

Gemfibrozil trial. For data obtained after 2 months of gemfibrozil therapy, only specific

variables of interest were investigated as directed by prior analysis to increase statistical power.

Advanced lipoprotein profiling was not repeated post-gemfibrozil treatment; the effect of gem-

fibrozil on these variables was thus not investigated. Linear mixed models were performed

with the histopathological grade, time (baseline and at completion of treatment), and treat-

ment (control, gemfibrozil). The interactions were treated as fixed effects and individual

bearded dragons were treated as the random effect in these models. Assumptions of normality

and homoscedasticity were checked on residual plots.
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An alpha of 0.05 was used for significance. Statistical software was used for statistical analy-

sis and development of graphs (R, version 4.0.3) [68].

Results

Histology of hepatic biopsies

Following evaluation of the histology slides, a female bearded dragon was excluded from the

study due to severe hepatic amyloidosis (Congo red stain) and atrophied hepatocytes, without

hepatic lipidosis.

A total of 6 males and 7 females met the final inclusion and exclusion criteria for this study.

Based on the histological grading system, there were 2 cases in the no-lipid class, 4 in the mild

class, 5 in the moderate class, and 2 in the severe class. The scores were aggregated into two

categories and out of 13 bearded dragons, 6 dragons (3 males and 3 females) were in the no-

lipid-to-mild class on histology and 7 dragons (3 males and 4 females) were in the moderate-

to-severe class.

Data for the endoscopic and histologic evaluation, diagnostic imaging, and blood biomark-

ers including targeted metabolomics, lipoprotein analysis, and biochemistry were published in

the public domain in a permanent scientific data repository (Barboza T, 2022, Replication

Data for "Association of plasma metabolites and diagnostic imaging findings with hepatic lipi-

dosis in bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy", https://doi.org/

10.5683/SP3/JG84C7, Scholars Portal Dataverse).

Diagnostic imaging

The hepatic density measured by HU was significantly lower in the moderate-to-severe class

than the no-lipid-to-mild class in these bearded dragons (p = 0.003, Mann-Whitney U test)

(Fig 1). Receiver operating characteristic curve analysis showed an AUC of 0.93 with an opti-

mal cut-off of 21 HU for a sensitivity of 86% and specificity of 100% (Fig 2). The CT HU was

linearly associated with hepatic fat content. With each 10% increase in hepatic fat on digital

image analysis (ImageJ 1.53a) [66], there was a corresponding decrease of mean ± standard

error of the mean of 4 ± 1 in hepatic HU (Fig 3) (R2 = 0.63, p = 0.001).

The diagnostic usefulness of ultrasound was assessed similarly. The hepatic/fat pad echo-

genicity ratio (determined by pixel intensity) was not significantly different between the 2 clas-

ses of histological grading in these bearded dragons (p = 0.063) (Fig 4). The liver had a

tendency to increase in echogenicity when compared to the fat pads, but it was not significant.

The ROC AUC was 0.69.

There was a 71% agreement between coelioscopic image classification based on visual

observation alone and histologic lipid change classification and a 54% agreement between

ultrasound images classification and histologic lipid change classification when using the sim-

plified form.

Biochemistry, lipoprotein profile, and metabolomics

On serial t-tests when adjusting for an FDR of 0.05, the plasma concentration of only 1 metab-

olite was found to be statistically significant. Beta hydroxybutyric acid was significantly lower

in bearded dragons in the moderate-to-severe class (p<0.001, q = 0.037) (Fig 5).

Histologic classes did not cluster well on principal component analysis, but they were well

clustered on sPLS-DA (Fig 6). The sPLS-DA model explained 25.9% of the variance. Using

loading plots for the first component (Fig 6), the most important discriminating variables

between the simplified classes were BHBA and succinic acid. Several other variables also
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significantly contributed to the classification, but in a lesser measure and included mainly lip-

ids, especially related to triacylglycerol metabolism such as chylomicron subtypes, chylomi-

cron particle number, large VLDL(very-low density lipoprotein) (VLDL1), TG

(triacylglycerol) 16:0_36:2, and PC (phosphatidylcholine) 28:1.

The heatmap also suggested different metabolomic and biochemical signatures between

classes (Fig 7). A few metabolites including BHBA, carnitine, lysine and some lipids such as

total cholesterol, non-HDL, short-chain acyl-carnitines, NEFA, and others were found to be in

lower plasma concentrations in the moderate-to-severe class. Conversely, metabolites domi-

nated by lipids (especially triglycerides in C52, lipoprotein particle numbers and many lipo-

protein subtypes) and other metabolites such as succinic acid, free glycerol, lactic acid, and a

hepatic marker ALT, were found to be in higher plasma concentrations in the moderate-to-

severe class. Fig 8 shows side by side boxplots of metabolites of interest shown to be important

in the pathophysiology of hepatic lipidosis in various species [50, 73–86]. These were not statis-

tically significant on serial t-tests.

Regarding biomarker analysis, on univariate ROC curve analysis, BHBA and succinic acid

were found to be the best biomarkers with a similar AUC of 0.98. In this cohort of bearded

Fig 1. Computed tomography images (coronal multiplanar reconstruction views) of bearded dragons livers with different histologic classes based on an

established grading system [30]. A) no-lipid, 48 Hounsfield Units (HU). B) Mild, 7HU. C) Severe, -36HU.

https://doi.org/10.1371/journal.pone.0274060.g001
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dragons, a BHBA lower than 272 umol/L or a succinic acid higher than 13.7 umol/L gave a

sensitivity of 86% and a specificity of 100%.

Gemfibrozil trial

Animals. There were no significant adverse effects such as weight loss, anorexia, or diar-

rhea during the gemfibrozil trial, though many bearded dragons had fluctuations in their

weight throughout the study. One male bearded dragon from the control group was diagnosed

with ulcerative cloacitis near the end of the study period and was humanely euthanized follow-

ing sample collection. This bearded dragon was not excluded from the study as the illness

developed at the end of the treatment period.

Histology of hepatic biopsies. Among the cases that were classified as no-lipid-to-mild

prior to the treatment trial, the control group had two cases that progressed in grade, with one

moving from the mild to moderate class, and one case that improved by a single grade. The

gemfibrozil group had one case progress from no-lipid to mild and another case that remained

unchanged. Among cases that were classified as moderate-to-severe prior to the treatment

Fig 2. Box plot with superimposed dot plot of hepatic computed tomography hounsfield units (HU) across two simplified classes of hepatic lipid changes

(no-lipid to mild and moderate to severe) based on an established grading system in bearded dragons [30] evaluated by a Mann-Whitney U test. The

dotted red line represents a cut-off value of 21 HU to separate the classes of no-lipid to mild and moderate to severe as determined on receiver operating

characteristic curve analysis.

https://doi.org/10.1371/journal.pone.0274060.g002
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trial, the control group had one case progress by a single grade, while the gemfibrozil group

had two cases improve in grade and class, and two cases remained unchanged.

Efficacy. There was a significant effect of gemfibrozil on succinic acid plasma concentra-

tions between treatment groups (p = 0.014). While succinic acid significantly increased over

time in the control group (p = 0.015), it did not with gemfibrozil (p = 0.24) controlling for the

simplified lesion class. There was no effect of treatment on the other tested outcome variables

[BHBA (p = 0.95), triglycerides (p = 0.97), CT HU (p = 0.31), fat percentage on digital image

analysis (p = 0.26)] controlling for the simplified lesion class. While effects other than for suc-

cinic acid were not significant, trends were seen on graphs. Animals had a tendency to prog-

ress in their histological class over time with an associated decrease in BHBA and an increase

in triglycerides in the no-lipid-to-mild class (Fig 9). Gemfibrozil did not seem to prevent the

progression of hepatic lipid accumulation in this class; however, there was a tendency in ani-

mals in the moderate-to-severe class to improve their biomarker profile (increase BHBA,

decrease succinic acid, stabilize triglycerides) and decrease the amount of fat in their liver

(lower fat percentage on digital image analysis and higher CT HU) (Fig 9).

Fig 3. Scatter plot of bearded dragon liver lipid content (%) from histological samples measured by digital analysis as a function of hepatic density

(Hounsfield units) measured on computed tomography and analyzed using linear regression. The blue line represents the regression line and the shading

the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0274060.g003
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Discussion

This report provides strong evidence for the use of CT in the evaluation of hepatic lipid accu-

mulation in bearded dragons and identifies potential non-invasive biomarkers for hepatic lipi-

dosis. It also provides preliminary data for further investigation of the efficacy of gemfibrozil

for the treatment of hepatic lipidosis in this species. CT images were highly accurate (AUC of

0.93 with a HU of 21 or less) in the diagnosis of hepatic lipidosis through the moderate-to-

severe class. Hepatic density, based on HU, was also found to be linearly associated with

hepatic fat, assessed by image analysis of histology slides; with every 10% increase in fat corre-

sponding to an approximate decrease of 4 HU. Ultrasonography and examination of coelio-

scopic images were not found to be sensitive enough to diagnose most cases. Only 1

metabolite, BHBA, was found to be statistically significant in differentiating no-lipid-to-mild

class from the moderate-to-severe class; and was significantly lower in bearded dragons with

hepatic lipidosis. This biomarker performed better (AUC 0.98) than CT in discriminating the

no-lipid-to-mild class from the moderate-to-severe class on fasted bearded dragons, and is an

inexpensive test. Succinic acid, another biomarker for hepatic lipidosis, was also found to be

Fig 4. Box plot with superimposed dot plot of hepatic to fat pad echogenicity ratio on ultrasound across two simplified classes of hepatic lipid changes

(no-lipid to mild and moderate to severe) based on an established grading system in bearded dragons [30] evaluated by a t-test.

https://doi.org/10.1371/journal.pone.0274060.g004
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promising and was an important variable in the sPLS-DA model. Hepatic lipidosis should be a

differential diagnosis in bearded dragons with plasma BHBA lower than 272 umol/L or suc-

cinic acid higher than 13.7 umol/L. Gemfibrozil had a significant effect on succinic acid, by

preventing its elevation in the treatment group, but was not found to be an effective treatment

for hepatic lipidosis at the dose and frequency used, though animals in the moderate-to-severe

class showed improvement in their biomarkers and reduced the amount of fat in their liver.

In this study, bearded dragons in the moderate-to-severe class weighed significantly more

than those in the no-lipid-to-mild class. This weight distribution likely had to do with the age

of the animals, as the majority of the bearded dragons that weighed less were smaller and

approximately one year of age, while the larger bearded dragons that weighed more were

between 2–4 years of age. Since age is a known risk factor for increasing histologic grade and

class in the evaluation of hepatic lipidosis [1], this likely explains the distribution of disease.

Only bearded dragons with spontaneous disease were included in this study and so randomi-

zation could not be performed to account for age and weight as confounder variables.

This study indicates that non-contrast CT accurately predicts the amount of fat in the liver

of bearded dragons as there was only a single case that was misdiagnosed when correlated with

histology. An increased sample size would allow for a more precise determination of the sensi-

tivity of this diagnostic test. It is important to note that CT does not account for fibrosis, and

attenuation should be interpreted in this context as the severity of cases with significant fibro-

sis may be under reported.

Although CT has not been used to extensively study reptile livers, it has been used to deter-

mine the mean liver density in apparently healthy Hermann’s tortoises (Testudo hermanni)
(50–70 HU), juvenile green sea turtles (Chelodina mydas) (60.09 +/- 5.3 HU), red eared sliders

(55.78 +/- 11.66 HU), Blanding’s turtles (Emydoidea blandingii) (97.5 HU +/- 9.6 HU), green

iguanas (Iguana iguana) (77.30 +/- 6.2 HU), and free-ranging boa constrictors (Boa constric-
tor) (61.76 +/- 7.11 HU) [87–92]. In comparison, the mean (+/-SD) HU in this cohort of

bearded dragons in the no-lipid-to-mild class was 44.03 +/- 11.21 HU. This value may be artifi-

cially lowered due to the inclusion of mild cases. Studies correlating histological hepatic fat

Fig 5. Box plot with superimposed dot plot of beta-hydroxybutyric acid (umol/L) across two simplified classes of

hepatic lipid changes (no-lipid to mild and moderate to severe) in bearded dragons based on an established

grading system [30] evaluated by a t-test. The dotted red line represents a cut-off value of 272 umol/L determined on

receiver operating characteristic analysis.

https://doi.org/10.1371/journal.pone.0274060.g005
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content with hepatic density on CT in testudines concluded that liver density values greater

than 55 +/- 11 HU were within normal limits, while values between 15–40 HU were indicative

of hepatic lipidosis with values less than 20 HU, correlating with severe hepatic lipidosis [34].

The cut off for severe hepatic lipidosis in testudines was consistent with the cut off for the

moderate-to-severe class in this study.

Subjective image evaluation, whether ultrasonographic or coelioscopic, was unreliable in

determining the histologic class of the cases. The liver of healthy bearded dragons can have

variable echogenicity on ultrasound, though the majority are hypoechoic to the fat pads and

have a coarse echotexture [41, 42]. In healthy chameleons, the liver was found to be isoechoic

to the adjacent fat bodies [93]. Though hyperechogenicity of the liver has been described for

hepatic lipidosis in reptiles [94], the comparison of liver to fat pad echogenicity using pixel

intensity was not a good classifier between classes. These results did trend in the right direction

with the hepatic echogenicity increasing in comparison to the fat pads in the moderate-to-

severe class and could be statistically significant with a larger sample size. Absolute echogeni-

city of the liver was not evaluated as ultrasonographers generally use a reference organ to

determine echogenicity as this can change based on multiple factors [95].

Fig 6. Score plot of sparse partial least square- discrimination analysis (sPLS-DA) analysis of metabolomics,

lipidomics, and biochemistry data between the 2 first principal components in bearded dragons with 2 simplified

classes of hepatic lipid changes (no-lipid to mild and moderate to severe) in bearded dragons based on an

established grading system [30]. The right panel shows the loadings plot for the first component showing the most

important variables for classification.

https://doi.org/10.1371/journal.pone.0274060.g006
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Plasma biochemistry values are routinely evaluated as non-invasive biomarkers for hepatic

lipidosis in human and veterinary medicine. However, these values are very insensitive to

screen for this disorder and although liver analyte changes in association with hepatic lipidosis

have been discussed in the literature [7, 9, 43, 91, 96–98], these values are generally within nor-

mal limits unless the disease is severe [5, 8, 13, 31, 99, 100]. In addition, reptile liver function

tests have not been validated [5, 8] and pre and post prandial bile acid measurements in red-

eared sliders (Trachemys scripta elegans) and green iguanas have produced inconsistent results

[101, 102]. The results of this study confirmed that hepatocellular enzymes and bile acids did

not significantly change in the moderate-to-severe class that was consistent with hepatic lipi-

dosis, except for a non-significant increase in ALT seen on the heatmap. In bearded dragons,

alterations in hepatic enzymes may not occur as cellular inflammation and necrosis do not

seem to be a common feature of hepatic lipidosis [30]. Other tests available from most

Fig 7. Heatmap showing clustering of metabolites and biochemical analytes between simplified classes of hepatic lipid changes (no-lipid to mild and

moderate to severe) in bearded dragons based on an established grading system [30]. A clustering dendrogram is also present on the left; the different

bearded dragons are on the x-axis and the analytes on the y-axis. Only the 75 most important analytes based on their t-test p-values are displayed. It should be

noted that most of these analytes did not show significant differences between histologic classes on univariate analysis with a false discovery rate of 0.05. Color

coding represents fold changes on normalized plasma concentrations with an increasing depth of orange representing increase in analyte concentration and an

increasing depth of blue representing decrease in analyte concentration.

https://doi.org/10.1371/journal.pone.0274060.g007
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veterinary diagnostic laboratories in relation to lipid metabolism are seldom used in bearded

dragons. These tests include NEFA, ketones including BHBA, and lipoproteins.

Of the analytes evaluated in this study, BHBA was found to be the best biomarker on multi-

variate analysis and the only statistically significant variable. This biomarker had a higher accu-

racy than CT to discriminate the no-lipid-to-mild class from moderate-to-severe class and is a

fairly inexpensive test. Beta-hydroxybutyric acid is the main ketone acid produced by reptiles

and is a by-product of fatty acid oxidation and ketogenesis [10]. Cases in the moderate-to-

severe class generally have some component of microanatomy disruption, or hepatocellular

swelling from triacylglycerol accumulation, and this disruption is suspected to be the inciting

cause of metabolic and clinical disease [30]. The mechanisms of action that can be considered

for reduced BHBA includes disruption of cellular function from triacylglycerol accumulation

resulting in mitochondrial damage or toxicity [103] and impaired fatty acid oxidation and/or

ketogenesis [104]. In humans, impaired ketogenesis is a hallmark of hepatic steatosis and the

Fig 8. Side-by-side box plots with superimposed dot plots of selected plasma variables (cholesterol [mmol/L], non-HDL [mol/L], NEFA [mmol/L], total

ceramides [umol/L], carnitine [umol/L], and cholines [umol/l]) across two simplified classes of hepatic lipid changes (no-lipid to mild and moderate to

severe) in bearded dragons based on an established grading system [30] evaluated by serial t-tests. These variables were not statistically significant after

correcting for false discovery, but interesting trends can be observed.

https://doi.org/10.1371/journal.pone.0274060.g008
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same may be true in bearded dragons [104]. Since BHBA may be affected by fasting, leading to

increased fatty acid oxidation and ketogenesis, it should be performed on a fasted animal to be

comparable to our results.

A biomarker of importance was detected in the metabolomics approach in this study- suc-

cinic acid. Based on the current study, succinic acid discriminates well between hepatic lipido-

sis classes in bearded dragons and was also the only parameter positively and significantly

affected by the gemfibrozil therapy. Succinic acid is a key component of the tricarboxylic acid

Fig 9. Side-by-side box plots with superimposed dot plots of selected variables (CT [HU], BHBA [umol/L], succinic acid [umol/l], triglycerides [mmol/

L]) across two simplified classes of hepatic lipid changes (no-lipid to mild and moderate to severe), based on an established grading system [30], in

bearded dragons with and without (control) gemfibrozil treatment evaluated by t-tests. The red boxplots represent baseline values and the teal represents

values after a 2-month treatment trial with gemfibrozil. The dotted red line on the CT HU side-by-side box plot represents a cut-off value of 21 HU to separate

the classes of no-lipid to mild and moderate to severe as determined on receiver operating characteristic analysis.There was a significant effect of gemfibrozil on

succinic acid. While succinic acid significantly increased over time in the control group, it did not with gemfibrozil treatment. The remainder of the variables

were not statistically significant but did show interesting trends.

https://doi.org/10.1371/journal.pone.0274060.g009
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cycle and is also the end-product of ω-oxidation of fatty acids which occurs in the endoplasmic

reticulum. The tricarboxylic acid cycle has been shown to be altered in people with non-alco-

holic steatosis and succinic acid seems to be the cycle intermediate that is most sensitive to

buildup [105–107]. Mitochondrial damage form triacylglycerol accumulation may result in tri-

carboxylic acid cycle impairment in bearded dragons causing the build-up of succinic acid. In

people, ω-oxidation is considered to be a rescue pathway for fatty acid oxidation when β-oxi-

dation fails [108]. Therefore, it is possible that this pathway was upregulated in bearded drag-

ons with mitochondrial dysfunction, which is plausible if a decrease in β-oxidation was to be

confirmed as the cause for the decrease in BHBA. The decrease in ketogenesis may also be

associated with an upregulation of the tricarboxylic acid cycle (TCA) cycle to metabolize the

acetyl-CoA derived from β-oxidation that would normally serve to produce ketones, thus

resulting in an increase in succinic acid [104]. Elevated levels of succinic acid with reduced lev-

els of BHBA were found to be highly accurate in discriminating the moderate-to-severe class

and should be considered biomarkers of choice for further evaluation in a new cohort of

bearded dragons. Other potential biomarkers were detected on the sPLS-DA model and

included TG 16:0_36:2, and PC 28:1. Various TGs and PCs have also been found as potential

biomarkers in human studies [74, 76, 103].

While other metabolites were not specifically identified on the multivariate analysis as

potential importance, their differential abundance across histologic class in bearded dragons

may still shed some light on potential pathophysiological aspects.

Carnitine is the main transporter of fatty acids into the mitochondria in the form of acylcar-

nitines to undergo fatty acid oxidation [109]. Carnitine deficiency and alteration in the carni-

tine cycle has been suggested as contributing factors to hepatic lipidosis in cats [83, 109, 110].

Carnitine and several short-chained acylcarnitines were found to be in lower plasma concen-

trations in bearded dragons in the moderate-to-severe class. This disruption of the carnitine

cycle may be both a cause (nutritional deficiency) or a consequence of an altered β-oxidation.

Trends were also seen in the glycerophospholipids and their precursors in the moderate-to-

severe class. As the levels of PCs reduced, levels of LysoPCs (lysophosphatidylcholines) the

monoacyl form of PCs, increased. Phosphatidylcholines, abundant phospholipids in mammals

and reptiles [111, 112], play an essential role in the secretion of lipoproteins [113]. These gly-

cerophospholipids have been implicated in the pathogenesis of hepatic lipidosis in mammals

as reduced levels result in impaired VLDL secretion from the liver resulting in hepatic accu-

mulation of triacylgcerols [74, 114, 115]. In addition, low concentrations of PCs are known to

upregulate hepatic lipogenesis, furthering lipid accumulation in these hepatocytes [82, 116].

The accumulation of LysoPCs is possibly due to reduction of their acylation thereby reducing

the amount of PCs available. Increased levels of LysoPCs downregulate genes involved in fatty

acid oxidation and can compromise mitochondrial integrity [117].

The triglycerides with 52 carbons (C52) in the acyl chains (especially TG 16:0_36:2) tended

to be higher in bearded dragons in the moderate-to-severe class. In people, an increase in satu-

rated triglycerides is a marker of hepatic lipidosis and the elevation is thought to occur through

de novo lipogenesis, as the primary products of this process are saturated fatty acids [118]. Pal-

mitic acid, in particular, is a potent mediator of lipotoxicity [119]. These saturated triacylgly-

cerols are known to have a negative effect on mitochondrial metabolism [118, 120]. A similar

process with similar implications could be occurring in the bearded dragons in this study.

However, fatty acid metabolism and regulation is likely different in reptiles and the composi-

tion of fatty acids is temperature dependent with a tendency to have more saturated fatty acids

in the liver as the thermal gradient increases [6, 26, 27, 121]. Serum or plasma triglycerides are

reported to be elevated in reptiles during pre-brumation, vitellogenesis, follicular stasis, and

hepatic lipidosis [3, 5, 8, 28]. Studies on Whiptail lizards (Cnemidophorus tigris) prior to
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brumation demonstrated a different fatty acid profile to the bearded dragons with hepatic lipi-

dosis in this study, as the main hepatic fatty acids were unsaturated fatty acids -oleic and linole-

nic acid [25]. This may be a vital difference between physiological and pathological fat

accumulation in reptiles and further investigation is warranted. Another factor to consider in

evaluation of triglycerides is the process of vitellogenesis in female bearded dragons. Only one

female bearded dragon in the moderate-to-severe class had active follicles during diagnostic

testing and so this pathophysiology was not considered to be significant in this study.

Ceramides are simple sphingolipids that are important for the structural component of the

cell membrane [122]. Plasma elevations in people have been correlated with progression of

hepatic steatosis which has resulted in the development of routine ceramides testing [20, 81].

Ceramides are thought to decrease insulin sensitivity, increase the production of cytokines

involved in inflammation, and increase oxidative stress and mitochondrial dysfunction [123].

Ceramides were not elevated in the more severely affected bearded dragons which may be a

reason why inflammation does not seem to be an obvious component of their hepatic lipidosis

[30].

On various analyses of bearded dragons in the moderate-to-severe class, triglycerides rich

in lipoproteins had a tendency to be higher than the no-lipid-to-mild class. These findings are

likely linked to higher triglyceride levels in the plasma from dyslipidemia and hepatic lipidosis

as demonstrated in mammals and birds [124–127].

Free glycerol increased in bearded dragons in the moderate-to-severe class and was likely

due to reduced gluconeogenesis as suggested in people with non-alcoholic fatty liver disease

[75].

Lastly, though not statistically significant, markers of hepatic damage and dysfunction,

including ALT and lactic acid, had an upwards trend in bearded dragons in the moderate-to-

severe class. These bearded dragons likely had a component of hepatocyte damage and dys-

function with disease progression, though it seems progression would have to be significant

prior to a marked elevation. The excluded bearded dragon with hepatic amyloidosis had

severely elevated ALT activities with other liver parameters being normal. It is noteworthy that

bile acids were not useful to diagnose hepatic lipidosis in bearded dragons, despite being advo-

cated as a sensitive and specific liver parameter on biochemistry profiles [128]. Further investi-

gation into the usefulness of plasma ALT in bearded dragon hepatic diseases is warranted.

The abnormal fatty acid/ketone metabolism occurring in bearded dragons has a different

pathogenesis than what is reported in cats where an acute syndrome occurs secondary to

anorexia, resulting in peripheral lipolysis and a high hepatic influx of NEFA which exceeds the

liver’s maximum rate of fatty-acid β-oxidation [129–131]. Increased hepatic β-oxidation

results in a marked elevation of BHBA, which has been suggested as a feline hepatic lipidosis

biomarker [130, 132]. In bearded dragons, this process does not seem to be related to anorexia.

Instead, it is likely that there is a physiological but progressive accumulation of triacylglycerols

in the liver for various reasons such as preparation for vitellogenesis or brumation [25], or in

response to nutritional factors such as excess carbohydrates and fat. High sugar diets, even if

isocaloric, have been shown to increase the levels of triacylglycerol, acylcarnitine, and downre-

gulate genes involved in fatty acid oxidation in rats [83]. If bearded dragons fail to metabolize

these stored triacylglycerols from lack of reproduction, brumation [133], or activity, a patho-

logical process may begin to occur. Hepatic lipidosis in bearded dragons seems to be associated

with an increase in triglycerides, triglyceride-rich lipoproteins (including chylomicrons and

large VLDLs), free glycerol, and lysoPC. Carnitine, short chain acylcarnitines, PC, NEFA,

BHBA, lysine, total cholesterol and non-HDL trend downwards. Together these changes indi-

cate that there is an alteration of fatty acid metabolism with a decrease in lipolysis markers,

decreased hepatic uptake of dietary lipoproteins, and a decrease in metabolites that transport
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fatty acids to the mitochondria, resulting in a decrease of β-oxidation and/or alteration of ace-

tyl-CoA disposal pathways. Inhibition of this pathway results in a buildup of glycerophospholi-

pids in the plasma and possible upregulation of other pathways such as fatty acid ω-oxidation

and the TCA cycle. As liver function decreases, markers of liver injury such as ALT and lactic

acid tend to increase.

Gemfibrozil, a drug which strongly promotes fatty acid oxidation in the liver, was selected

to help reverse the metabolic state of hepatic lipidosis, ultimately leading to a decrease in

hepatic triacylglycerol concentration [45–48]. This medication has been studied in avian spe-

cies demonstrating significant effects on triacylglycerol concentrations and has been shown to

decrease the average lipoprotein density [10, 50, 134]. Pharmacokinetic data in bearded drag-

ons is lacking and so a dose was extrapolated based on allometric scaling [69]. While safety of

gemfibrozil is unknown in bearded dragons, it is considered to be an extremely safe drug with

a LD50 of 2218 mg/kg in mice and overdoses of more than 100 times the therapeutic dose not

resulting in lasting effects in humans [135].

In the pharmacodynamic study of gemfibrozil’s effect on hepatic lipidosis, there was a sig-

nificant effect of treatment as succinic acid significantly increased in the control group over

time while it did not in the treatment group. Even with this effect, gemfibrozil at the dose used,

did not prevent the progression of hepatic lipid accumulation in bearded dragons in the no-

lipid-to-mild class. However, these results were likely confounded by the fact that this class

contained all the younger animals who likely became mature adults over the 4.5 months

between the initial diagnostics and post-trial diagnostics. This made evaluation of gemfibrozil’s

efficacy difficult as biomarkers were compared to baseline and these bearded dragons had

reduction of BHBA and an increase of triglycerides following sexual maturity.

There was a tendency in animals of the moderate-to-severe class to improve their bio-

marker profile and decrease the amount of fat in the liver in the treatment group while the

matched control group had increased fat in the liver and worsening of some biomarkers

(increased succinic acid and triacylglycerols). The trend of an increase in BHBA and stabiliza-

tion of triglycerides suggests that gemfibrozil may have promoted fatty acid oxidation and

ketogenesis in the liver, which downregulated the disposal of acetyl-CoA through the TCA

cycle or ω-oxidation. This was evident by increased hepatic attenuation and reduced fat per-

centage on digital image analysis suggesting reduction of hepatic triacylglycerol. Histological

evidence of improvement was only seen in half of the gemfibrozil cases. This is likely due to

the fact that more significant changes are required prior to a final score improvement using

the grading scheme. Further studies are required to determine further efficacy with a larger

sample size, better control of variability while matching for age, or a higher dose or treatment

length as reptiles are known to have a slower metabolism [136].

Various limitations were present in this research. A homogenous population was not pres-

ent in this study since 5 smaller bearded dragons were acquired from a breeder. This produced

an uneven age and weight distribution across the two simplified classes which may have added

confounding variables. However, this strategy was elected to obtain animals with and without

spontaneous hepatic lipidosis to perform the clinical trial and it was difficult to obtain adult

bearded dragons in another manner.

Dietary and husbandry recommendations from literature were used to determine the hus-

bandry plan for the bearded dragons in this study. However, many of these recommendations

are not evidence based and lack clarity [137]. The progression of histologic changes in this

study population suggests further evidence-based recommendations on captive husbandry in

bearded dragons is needed. Confounding factors to consider for the population include the

lack of exercise during the study period and lack of brumation. To prevent the spread of infec-

tious diseases, the bearded dragons were not provided communal areas to exercise. In
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addition, the physiological level of fat in the liver is still unknown in bearded dragons and so

this progression of lipid accumulation may be maturation of these bearded dragons from sub-

adult to adult.

The site of hepatic biopsies was not precisely defined though all were taken from the margin

of the left liver lobe. Therefore, a precise correlation between the histology sample and the

attenuation measurements from the ROI could not be completed. Though previous evaluation

of 252 histology slides indicated that the majority of hepatic lipidosis cases are diffuse and pan-

lobular, focal infiltration could have been missed due to the small size of the biopsy samples

[30].

Due to the exploratory nature of the metabolomics and lipidomics, a large number of vari-

ables were analyzed on a small sample size of individuals, which significantly reduced the sta-

tistical power of this study. These results should therefore, be considered more useful for

generating hypotheses to be further tested in prospective observational and experimental stud-

ies using higher sample sizes. Likewise, most of this research had a hypothesis generating focus

rather than a hypothesis driven focus.

Conclusions

In conclusion, this pilot study lays the groundwork for further research on biomarker discov-

ery, pathophysiology of hepatic lipidosis, and pharmacologic intervention of this very common

disease in pet bearded dragons. Based on these findings, the authors considered the moderate-

to-severe class to be consistent with the diagnosis of hepatic lipidosis. Follow up prospective

studies controlling for age, sex, and weight, or experimental models with induced disease, are

required to confirm and validate biomarkers in the diagnosis of hepatic lipidosis as well as

their response to other hepatic disorders. Computed tomography is a reliable and objective

measure of lipid vacuolization, though biopsies are still required for assessment of fibrosis.

However, it can be used in future biomarker studies as a non-invasive confirmatory test for

hepatocyte vacuolization and to monitor the progression or improvement of this disease pro-

cess. Beta-hydroxybutyric acid and succinic acid are both promising biomarkers in the diagno-

sis of hepatic lipidosis, but more data is needed to confirm their usefulness. In clinical practice,

bearded dragons need to be fasted for 24 hours for these biomarkers to be comparable to our

results as metabolite profiles are likely different in a fed state. In addition, these profiles may

alter in anorexic animals who are in a catabolic state or with different environmental parame-

ters such as their thermal gradient. None of the bearded dragons in this study were anorexic.

While gemfibrozil only showed significant efficacy in one biomarker, many of the other bio-

markers were trending in the right direction. Hepatic lipidosis is a difficult disease to treat and

further investigations on this class of drugs are warranted with these encouraging, albeit mod-

est, results. Pharmacokinetic data will also be useful to guide further pharmacological studies

on fibrate therapy in reptiles.

Supporting information

S1 Table. Histological grading system and severity classification for changes associated

with diffuse and panlobular hepatic lipid accumulation in bearded dragons (Pogona vitti-
ceps). Each category is given a score from 0–4 based on the percentage of change in the histo-

logic section of evaluated liver. Subsequently, a cumulative grade is used to determine the

severity classification. Estimations using 400X magnification.

(DOCX)

PLOS ONE Diagnosis of hepatic lipidosis and gemfibrozil clinical trial

PLOS ONE | https://doi.org/10.1371/journal.pone.0274060 February 3, 2023 23 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274060.s001
https://doi.org/10.1371/journal.pone.0274060


Acknowledgments

Exoterra Sunray lamps were provided for free by Hagen Avicultural Research Institute.

We also thank Reptilia, Vaughan and Cheryl Sheridan for acquiring and housing bearded

dragons prior to this research.

Author Contributions

Conceptualization: Trinita K. Barboza, Alex zur Linden, Hugues Beaufrère.

Data curation: Trinita K. Barboza, Hugues Beaufrère.

Formal analysis: Trinita K. Barboza, Hugues Beaufrère.

Funding acquisition: Trinita K. Barboza, Leonardo Susta, Alex zur Linden, Hugues Beaufrère.

Investigation: Trinita K. Barboza, Leonardo Susta, Alex zur Linden, Sara Gardhouse, Hugues

Beaufrère.

Methodology: Hugues Beaufrère.

Project administration: Trinita K. Barboza, Hugues Beaufrère.

Supervision: Trinita K. Barboza, Hugues Beaufrère.

Visualization: Trinita K. Barboza, Hugues Beaufrère.

Writing – original draft: Trinita K. Barboza, Hugues Beaufrère.

Writing – review & editing: Leonardo Susta, Alex zur Linden, Sara Gardhouse, Hugues

Beaufrère.

References
1. Barboza T, Susta L, Reavill D, Beaufrere H. Prevalence and risk factors of hepatic lipid changes in

bearded dragons (Pogona vitticeps). Vet Pathol. 2022; Forthcoming. https://doi.org/10.1177/

03009858221105058 PMID: 35723028

2. Boyer T, Scott P. Nutritional diseases. In: Divers SJ, Stahl SJ, editors. Mader’s reptile and amphibian

medicine and surgery. 3rd ed. St. Louis: Elsevier; 2019. pp. 932–950.

3. Divers S, Cooper J. Reptile hepatic lipidosis. Semin Avian and Exot Pet Med. 2000; 9:153–164.

4. Testudines Dutra G. (Tigre d’agua, Cagado e Jabuti). In: Cubas ZS, Silvia JCR, Catao-Dias JL, edi-

tors. Tratado de animais selvagens. Sao Paulo: Editora Roca; 2014. pp. 219–258.

5. Durta G. Diagnostic value of hepatic enzymes, triglycerides and serum proteins for the detection of

hepatic lipidosis in chelonoidis carbonaria in captivity. J Life Sci. 2014; 8:633–639.

6. Sheridan M. Regulation of lipid metabolism in poikilothermic vertebrates. Comp Biochem Physiol B.

1994; 107:495–508.

7. Hernandez-Divers S. Hepatic lipidosis. In: Divers SJ, Mader DR, editors. Reptile medicine and sur-

gery. 2nd ed. St. Louis: Elsevier; 2006. pp. 806–813.

8. McArthur S. Problem-solving approach to common diseases of terrestrial and semi-aquatic cheloni-

ans. In: McArthur S, Wilkinson R, Meyer J, editors. Medicine and surgery of tortoises and turtles.

Oxford: Blackwell Publishing; 2004. pp. 309–377.

9. Simpson M. Hepatic lipidosis in a black-headed python (Aspidites melanocephalus). Vet Clin North

Am Exot Anim Pract. 2006; 9:589–598. https://doi.org/10.1016/j.cvex.2006.05.013 PMID: 16931379

10. Price E. The physiology of lipid storage and use in reptiles. Biol Rev Camb Philos Soc. 2017; 92:1406–

1426. https://doi.org/10.1111/brv.12288 PMID: 27348513

11. Angulo P. Current best treatment for non-alcoholic fatty liver disease. Expert Opin Pharmacother.

2003; 4:611–623. https://doi.org/10.1517/14656566.4.5.611 PMID: 12739988

12. Kawano Y, Cohen D. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver dis-

ease. J Gastroenterol. 2013; 48:434–441. https://doi.org/10.1007/s00535-013-0758-5 PMID:

23397118

PLOS ONE Diagnosis of hepatic lipidosis and gemfibrozil clinical trial

PLOS ONE | https://doi.org/10.1371/journal.pone.0274060 February 3, 2023 24 / 30

https://doi.org/10.1177/03009858221105058
https://doi.org/10.1177/03009858221105058
http://www.ncbi.nlm.nih.gov/pubmed/35723028
https://doi.org/10.1016/j.cvex.2006.05.013
http://www.ncbi.nlm.nih.gov/pubmed/16931379
https://doi.org/10.1111/brv.12288
http://www.ncbi.nlm.nih.gov/pubmed/27348513
https://doi.org/10.1517/14656566.4.5.611
http://www.ncbi.nlm.nih.gov/pubmed/12739988
https://doi.org/10.1007/s00535-013-0758-5
http://www.ncbi.nlm.nih.gov/pubmed/23397118
https://doi.org/10.1371/journal.pone.0274060


13. Perpinan D, Addante K, Driskell E. Gastrointestinal disturbances in a bearded dragon (Pogona vitti-

ceps). J Herpetol Med Surg. 2010; 20:54–57.

14. Dowla S, Aslibekyan S, Goss A, Fontaine K, Ashraf A. Dyslipidemia is associated with pediatric nonal-

coholic fatty liver disease. J Clin Lipidol. 2018; 12:981–987. https://doi.org/10.1016/j.jacl.2018.03.089

PMID: 29699915

15. Holt H, Wild S, Wood P, Zhang J, Darekar A, Dewbury K, et al. Non-esterified fatty acid concentrations

are independently associated with hepatic steatosis in obese subjects. Diabetologia. 2006; 49:141–

148. https://doi.org/10.1007/s00125-005-0070-x PMID: 16323001

16. Loomba R, Quehenberger O, Armando A, Dennis E. Polyunsaturated fatty acid metabolites as novel

lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J Lipid Res. 2015;

56:185–192. https://doi.org/10.1194/jlr.P055640 PMID: 25404585

17. Montefusco D, Allegood J, Spiegel S, Cowart L. Non-alcoholic fatty liver disease: Insights from sphin-

golipidomics. Biochem Biophys Res Commun. 2018; 504:608–616. https://doi.org/10.1016/j.bbrc.

2018.05.078 PMID: 29778532

18. Puri P, Wiest M, Cheung O, Mirshahi F, Sargeant C, Min H, et al. The plasma lipidomic signature of

nonalcoholic steatohepatitis. Hepatology. 2009; 50:1827–1838. https://doi.org/10.1002/hep.23229

PMID: 19937697
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