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Summary:

For patients on dialysis, hospitalizations remain a major risk factor for mortality and morbidity. 

We use data from a large national database, United States Renal Data System (USRDS), to model 

time-varying effects of hospitalization risk factors as functions of time since initiation of dialysis. 

To account for the three-level hierarchical structure in the data where hospitalizations are nested in 

patients and patients are nested in dialysis facilities, we propose a multilevel mixed effects varying 

coefficient model (MME-VCM) where multilevel (patient- and facility-level) random effects are 

used to model the dependence structure of the data. The proposed MME-VCM also includes 

multilevel covariates, where baseline demographics and comorbidities are among the patient-level 

factors, and staffing composition and facility size are among the facility-level risk factors. To 

address the challenge of high-dimensional integrals due to the hierarchical structure of the random 

effects, we propose a novel two-step approximate EM algorithm based on the fully exponential 

Laplace approximation. Inference for the varying coefficient functions and variance components is 

achieved via derivation of the standard errors using score contributions. The finite sample 

performance of the proposed estimation procedure is studied through simulations.
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1. Introduction

As of 2016, more than 726,000 individuals in the United States (US) were affected by end-

stage renal disease (ESRD). Of those, about 458,000 were on dialysis, a life-sustaining 

treatment (United States Renal Data System, 2018). On average, a dialysis patient is 

hospitalized twice a year, and hospitalizations in this population contribute substantially to 

the cost of patient care. Studying the impact of leading risk factors on the probability of 

hospitalizations, particularly modifiable factors, will contribute to formulation of 

hospitalization risk reduction strategies that can improve patient care.

We analyze data from the United States Renal Data System (USRDS) where the data is 

structured hierarchically: longitudinal hospitalizations are nested within patients and patients 

are nested within dialysis facilities of which there are thousands across the US. Moreover, 

both patient-level (e.g., baseline demographics and comorbidities) and facility-level 

characteristics (e.g., staffing level) are potential risk factors that affect the likelihood of 

hospitalization. Hence, our modeling needs to account for the hierarchical structure in the 

data and quantify the effects of both patient- and facility-level risk factors. In addition, for 

ESRD patients, dialysis is a long-term life-sustaining treatment until death or kidney 

transplantation. Since patients’ needs and clinical characteristics may change as they persist 

on dialysis, our desired model needs to model hospitalization risk over time and characterize 

the effects of multilevel risk factors as functions of time from initiation of dialysis.

Varying coefficient models have been used in the study of time-varying regression effects 

(Cleveland et al., 1991; Hastie and Tibshirani, 1993) and generalized varying coefficient 

models are useful tools in modeling generalized longitudinal outcomes, including binary and 

count data (Cai et al., 2000). Wu and Zhang (2002), Zhang (2004) and Chen and Wang 

(2011) all consider subject-specific random effects in varying coefficient models, which are 

applicable to only a two-level hierarchy where longitudinal outcomes are nested within 

subjects. Most of the existing works are not applicable to data with three or more levels in 

the hierarchy, such as longitudinal measurements nested in subjects and subjects nested in 

dialysis facilities. The few works that consider a three-level hierarchy do not propose 

correlation structures that are scalable to large data applications and do not have complex 

multilevel predictors (You et al., 2015). Li et al. (2018) considers a varying coefficient 

model for multilevel risk factors (VCM-MR) for three-level hierarchical data; however, only 

a single-level random effect at the subject-level is included. They account for within-facility 

correlations through facility-specific varying coefficient functions. Although useful, this 

leads to a large number of varying coefficient functions to be estimated, increasing the 

computational burden. As a novel departure from existing literature, we propose a multilevel 

mixed effects varying coefficient model (MME-VCM) for three-level hierarchical data using 

a two-level random effects structure. The hierarchical dependence is modeled via 

hierarchical random effects (at the patient- and facility-levels). In addition, we include 

multilevel (patient- and facility-level) predictors in the regression model. Inclusion of 

multilevel predictors allows direct comparisons of time-varying effects of multilevel risk 

factors. To address truncation of the longitudinal follow-up by death, we propose a partly 

conditional MME-VCM, modeling time-varying hospitalization risk conditional on the 
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patients being alive. Similar partly conditional varying coefficient models have been 

considered in the analysis of USRDS data (Estes et al. 2014, 2018).

Advances in estimation of multilevel models are limited by the severe challenge of high-

dimensional random effects. For estimation in the MME-VCM, we propose a two-step 

approximate EM algorithm that resolves this computational challenge. Briefly, in the E-step, 

we compute the posterior means and variances of the patient- and facility-level random 

effects. In the M-step, we maximize the approximated global or local expected log-

likelihoods to target the model parameters based on estimates from the E-step. Note that the 

integrals involved in the E-step need to be computed at the highest level of the hierarchy in 

the data, i.e., at the facility-level. More specifically, we need to integrate over the facility-

level random effect as well as all patient-level random effects nested within a particular 

facility. That is, if a facility has Ni patients, we need to integrate over Ni patient-level 

random effects and one facility-level random effect, leading to a (Ni + 1)-dimensional 

integral where traditional numerical integration methods (e.g., Gauss quadrature) are not 

feasible. This is a rather significant challenge hindering the estimation in multilevel models 

in general with high-dimensional random effects. To address this problem, we use the 

Laplace approximation method which has less computational burden than other numerical 

integration methods such as Gauss quadrature or Monte Carlo approaches. Nevertheless, one 

limitation of the standard Laplace method is that the error associated with the approximation 

can get large in sparse longitudinal applications with small number of repeated 

measurements within subjects. Since the USRDS data has subjects with only a few (<5) 

repetitions during the follow-up period, we take advantage of the fact that in the proposed 

EM algorithm the posterior mean and variance of the random effects are in the form of a 

ratio between two integrals, and apply the fully exponential Laplace approximations 

(Tierney et al., 1989; Rizopoulos et al., 2009) which lead to lower order approximation 

errors for computing the integrals with respect to the facility- and patient-level random 

effects. For inference, the standard errors of the proposed multilevel varying coefficient 

functions and the variance components are derived using the inverse of the empirical Fisher 

information matrix computed by score contributions (Tutz and Kauermann, 2003).

Hence, the paper makes novel contributions both in the proposal of MME-VCM, a varying 

coefficient model with multilevel random effects and multilevel predictors, but also in the 

proposal of a computationally efficient EM algorithm based on fully exponential Laplace 

approximations to address the challenge of multilevel random effects. The paper is 

organized as follows. The proposed MME-VCM formulation, estimation and inference for 

analyzing multilevel risk factors on dialysis patients’ hospitalization risk based on USRDS 

data are described in Section 2. Extensive simulations are presented in Section 3. We provide 

the cohort description and data analysis results with interpretations in Section 4, followed by 

a discussion in Section 5.

2. Proposed Multilevel Mixed Effects Varying Coefficient Model

2.1 Model Specification

Consider a cohort of incident dialysis patients followed over time from initiation of dialysis. 

Let i = 1, . . . , I, index dialysis facilities; j = 1, . . . , Ni, index subjects belonging to the ith 
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facility with Ni total subjects; and k = 1, . . . , Nij, index observations on the jth subject 

receiving dialysis at the ith facility, who has Nij total observations. Subjects’ follow-up time 

is grouped into three month intervals where the outcome is the binary indicator of an all-

cause hospitalization in a three month interval. More specifically, the outcome Yijk ≡ Yij(tijk) 

equals one if the jth patient within facility i experiences one or more hospitalizations during 

the kth three month follow-up interval and equals zero otherwise. The index t denotes time 

after initiation of dialysis and tijk is defined as the midpoint of the kth three month interval in 

subject i’s follow-up. The proposed MME-VCM includes both facility-level (γi ∼ N(0, σγ2))

and subject-level (bij ∼ N(0, σb
2)) random effects:

g[E{Y ij(t) ∣ Xij, Zi(j), bij, γi, Sij > t}] ≡ g{pij(t)} = Xij
Tβ(t) + Zi(j)

T θ(t) + bij + γi, (1)

where g is the logit link function, Sij is the death time of subject j in facility i, and Xij = 

(X1ij, . . . , Xrij)т and Zi(j) = {Z1i(j), . . . , Zpi(j)}т denote the vector of r subject-level and p 
facility-level predictors with the varying coefficient functions β(t) = {β1(t), . . . , βr(t)}т and 

θ(t) = {θ1(t), . . . , θp(t)}т, respectively. For our data application, the facility characteristics 

(Zi(j)) are recorded at the end of each calendar year, and for a particular patient, their value 

will be determined by dialysis facility data from the prior calendar year to their initiation of 

dialysis. Hence these covariates are indexed not only by the dialysis facility index i, but also 

by the subject index j. The MME-VCM in (1) is a partly conditional model (Estes et al., 

2014, 2016; Kurland and Heagerty, 2005), conditioning on the patients being alive Sij > t, 
instead of their actual survival time. Motivated by the observation that for USRDS data 

missingness is mainly due to truncation by death, partly conditional target of inference has 

been considered previously by Estes et al. (2014, 2016) in the context of generalized linear 

varying coefficient models.

Multilevel modeling with non-time-varying coefficients has been studied extensively 

(Gelman, 2006) and is considered a tradeoff between complete pooling and no pooling. In 

the complete pooling framework, data from all facilities is analyzed without any facility-

specific regression parameters. On the other hand, no pooling analyzes data within each 

facility separately and may lead to overfitting, especially for small facilities. In the proposed 

MME-VCM, the facility data is pooled through the facility-specific predictors Zi(j), leading 

to stable estimation through partial pooling of information.

2.2 Proposed Estimation and Inference

Estimation in the proposed MME-VCM is hindered by the high dimension of the random 

effects. Integrating the likelihood with respect to the random effects vector ui = (bi1, . . . , 

biNi, γi)т within facility i, is a substantial computational challenge since the dimensionality 

of ui grows with the number of subjects within a facility (Ni in the 100s for USRDS 

applications). We propose an approximate EM algorithm which considers the high-

dimensional random effects missing and iterates between estimation of the expected value of 

the complete likelihood (E-step) and its maximization with respect to the multilevel model 

parameters (M-step). The challenge of the high-dimensional integration in the E-step is 

resolved by the use of the fully exponential Laplace approximations in estimation of the 

moments of the random effects. For estimation of the varying coefficient functions 
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associated with patient- and facility-level predictors in the M-step, a computationally 

feasible local linear smoothing procedure (Hoover et al., 1998; Wu et al., 1998; Fan and 

Zhang, 1999) is utilized which only uses local data available in sliding windows of follow-

up time.

2.2.1 E-step and the Fully Exponential Laplace Approximations.—Let 

LYij{β(t), θ(t)} denote the joint distribution of the outcome (Yij1, . . . , YijNij) of the jth 

subject observed at the time points tij = (tij1, . . . , tijNij), conditional on ui, Xij, Zi(j) and Sij > 

tij, j = 1, 2, . . . , Ni. For mathematical convenience, we assume that the within-subject 

correlation among (Yij1, . . . , YijNij) is explained by two independent sources: the random 

effects ui and the dependency of Yijk, k = 1, . . . , Nij, on the patient’s death time Sij. Using 

the independence between ui and Sij, the complete likelihood within facility i, corresponding 

to the joint distribution of {(Yij1, . . . , YijNij, ui) : j = 1, . . . , Ni} conditional on Xij, Zi(j) and 

Sij > tij, can be given as

Li{ui, β(t), θ(t), σb, σγ} = ∏
j = 1

Ni
LYij{β(t), θ(t)} ×

exp{ − bij2 ∕ (2σb
2)}

2πσb
2 ×

exp{ − γi2 ∕ (2σγ2)}

2πσγ2
,

for normally distributed random effects ui = (bi1, . . . , biNi, γi)т. Hence the total complete 

likelihood is L{u1, …, uI, β(t), θ(t), σb, σγ} = ∏i = 1
I Li{ui, β(t), θ(t), σb, σγ}. In addition, viewing 

the random effects as missing, the incomplete likelihood available for estimation of 

{β(t), θ(t), σb, σγ} is L{β(t), θ(t), σb, σγ} = ∏i = 1
I [∫ Li{ui, β(t), θ(t), σb, σγ}dui].

Assuming that the within-subject correlation introduced by the dependence on death time Sij 

is weak compared to that introduced by the random effect ui, we can approximate the joint 

likelihood LYij{β(t), θ(t)} conditional on ui utilizing the working independence assumption:

LYij{β(t), θ(t)} ≈ ∏
k = 1

Nij exp[{XijTβ(tijk) + Zi(j)
T θ(tijk) + bij + γi}Y ijk]

1 + exp{XijTβ(tijk) + Zi(j)
T θ(tijk) + bij + γi}

.

The working independence assumption will also be used in the M-step of the proposed EM 

algorithm to estimate the partly conditional target. Kurland and Heagerty (2005) point out 

that a standard likelihood-based method or an estimating equation approach without a 

working independence structure will not lead to valid inference for a partly conditional 

target.

The variance components σb and σγ can be estimated via maximizing the incomplete 

likelihood directly, but the closed form solutions for maximizing the incomplete likelihood 

with respect to β(t) and θ(t) are not available. Hence, we propose an approximate EM 

algorithm, where the expectation step targets the approximate conditional expectation of the 

complete likelihood by utilizing a Taylor’s expansion. Then the maximization step optimizes 

the approximate expected likelihood with respect to β(t) and θ(t).
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For the expectation step, the posterior mean and variance of ui, denoted by ui0 and vi0, 

respectively, are

ui0 = ∫ uiLi{ui, β(t), θ(t), σb, σγ}dui
∫ Li{ui, β(t), θ(t), σb, σγ}dui

, vi0

= ∫ (ui − ui0)(ui − ui0)TLi{ui, β(t), θ(t), σb, σγ}dui
∫ Li{ui, β(t), θ(t), σb, σγ}dui

(2)

To evaluate the high-dimensional integrals in (2), we will utilize the fully exponential 

Laplace approximation proposed by Tierney et al. (1989). Since the integrand in (2), namely 

ui, may not always be positive, and the fully exponential Laplace approximation is applied 

only to strictly positive functions, we follow Rizopoulos et al. (2009) in targeting 

E{exp(cтui)}, which is always positive. Here c = (c1, . . . , cNi+1)т denotes a (Ni + 1) × 1 

constant vector. We obtain the required expectations through differentiating the cumulant-

generating function, defined by log[E{exp(cтui)}], via ui0 = ∂log[E{exp(cтui)}]/∂cт∣c=0 and 

vi0 = ∂2log[E{exp(cтui)}]/∂cт∂c∣c=0. The approximations are computed in two steps, where 

in the first step the complete likelihood is maximized via Newton-Raphson to obtain the 

mode of ui. The second step uses the mode to obtain ui0 and vi0 through approximation of 

the cumulant-generating function.

Let ℓi(ui, α) denote the log of Li{ui, β(t), θ(t), σb, σγ} where α denotes the set of model 

parameters {β(t), θ(t), σb, σγ} for notational convenience. Further let 

ui
(c) = argmaxui{ℓi(ui, α) + cTui}. The mode ui = ui

(c) ∣c = 0 is estimated by maximizing the log-

likelihood ℓi(ui, α) with safeguarded Newton-Raphson algorithm according to 

ui
it+1 = ui

it − s(Σi
it)−1J(ui

it), where ‘it’ denotes the iteration number, 

J(ui
it) = − ∂ℓi(ui, α) ∕ ∂uiT ∣ui = ui

it, Σi
it = Σi

(c) ∣(c, ui) = (0, ui
it), 

Σi
(c) = − ∂2{ℓi(ui, α) + cTui} ∕ ∂uiT∂ui = − ∂2ℓi(ui, α) ∕ ∂uiT∂ui and s is the step size along the 

Newton-Raphson updating direction. Using the estimated mode ui, the approximated 

posterior mean and variance of ui are obtained by differentiating the cumulant-generating 

function and evaluating at c = 0,

ui0 = ui − 1
2tr(V), vi0 = Σi

−1 − 1
2tr −VVT + Σi

−1 ∂2Σi
(c)

∂cT∂c
∣(c, ui) − (0, ui) , (3)

where V = Σi
−1{∂Σi

(c) ∕ ∂cT} ∣(c, ui) = (0, ui), Σi = Σi
(c) ∣c = 0 and the values of ui and Σi

−1 in (3) 

are obtained from the last iteration of the Newton-Raphson algorithm for finding the mode 

(i.e. ui
it and (Σi

it)−1). Details of derivatives of ℓi(ui, α) with respect to ui as well as the explicit 

forms of the correction terms tr(V) ∕ 2 and tr{ − VVT + Σi
−1∂2Σi

(c) ∕ ∂cT∂c ∣(c, ui) = (0, ui) } ∕ 2

in (3) are deferred to Web Appendix A.

For approximating the conditional expectation of the complete likelihood in the E-step, let 

α* denote the set of current parameter estimates {β*(t), θ*(t), σb
∗, σγ∗}, and 
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ui0
∗ = (bi10

∗ , …, biNi0
∗ , γi0

∗ )T, vb, ij0
∗ , vγ, i0

∗  and rij0
∗  denote the estimated posterior mean of ui, 

posterior variances of bij and γi, and the posterior covariance of bij and γi based on the 

current parameter estimates, respectively. Because the closed form for 

∑i = 1
I E{ℓi(ui, α) ∣ Y i, α∗, Sij > tij} is not available, we use the second order Taylor series 

expansion to approximate the expected log-likelihood around ui0
∗  by

∑
i = 1

I
ℓi(ui0

∗ , α∗) + ℓi′(ui0
∗ , α∗)E(ui − ui0

∗ ) − 1
2E(ui − ui0

∗ )TΣi
∗(ui − ui0

∗ )

= ∑
i = 1

I
∑
j = 1

Ni
∑

k = 1

Nij
Y ijk{g(p0, ijk

∗ )} + log(q0, ijk
∗ ) −

vb, ij0
∗ + 2rij0

∗ + vγ, i0
∗

2 p0, ijk
∗ q0, ijk

∗

−
(bij0

∗ )2 + vb, ij0
∗

2(σb
∗)2 − 1

2 log{2π(σb
∗)2} −

(γi0
∗ )2 + vγ, i0

∗

2(σγ∗)2 − 1
2 log{2π(σγ∗)2} ,

(4)

where p0, ijk
∗ = g−1{Xij

Tβ∗(tijk) + Zi(j)
T θ∗(tijk) + bij0

∗ + γi0
∗ }, q0, ijk

∗ = 1 − p0, ijk
∗ , 

Σi
∗ = Σi ∣ui = ui0

∗ , α = α∗, ℓ′(ui0
∗ , α∗) = ∂ℓi(ui, α) ∕ ∂uiT ∣ui = ui0

∗ , α = α∗, and E(ui − ui0
∗ ) = 0.

2.2.2 M-step and Estimation of the Standard Errors.—The steps of the proposed 

EM algorithm are as follows:

1. Initialize the estimates for model parameters and denote them by β(0)(t), θ(0)(t), 

σb
(0) and σγ(0).

2. (E-step) In the mth iteration, update posterior means and variances of random 

effects ui using the fully exponential Laplace approximation and current 

parameter estimates β(m−1)(t), θ(m−1)(t), σb
(m − 1) and σγ(m − 1). Let bij0

(m), vb, ij0
(m) , γi0

(m), 

vγ, i0
(m)  and rij0

(m) denote the estimated posterior mean and variance of bij, γi and the 

posterior covariance of bij and γi, respectively.

3. (M-step) Maximize the incomplete log-likelihood with respect to σb and σγ to 

obtain σb
(m) and σγ(m) based on bij0

(m), γi0
(m), vb, ij0

(m)  and vγ, i0
(m)  from step 2.

4. (M-step) At each time point t0, define ϕ(t) = [{β(t)}т, {θ(t)}т]т and expand it by 

ϕ(t) ≈ ϕ0 + ϕ1(t−t0), where β0 = (β01, . . . , β0r)т, β1 = (β11, . . . , β1r)т, θ0 = 

(θ01, . . . θ0p)т, θ1 = (θ11, . . . , θ1p)т, ϕ0 = (β0
T, θ0

T)T and ϕ1 = (β1
T, θ1

T)T. Maximize 

the approximated expected local log-likelihood with respect to (ϕ0, ϕ1) to obtain 

(ϕ0
(m), ϕ1

(m)) and set ϕ(m)(t0) = ϕ0
(m)

5. Iterate between steps 2 and 4 until max
i, j, k

∣ p0, ijk
(m) − p0, ijk

(m − 1) ∣ < ϵ, where ϵ is a 

predefined tolerance level and 
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p0, ijk
(m) = g−1{Xij

Tβ(m)(tijk) + Zi(j)
T θ(m)(tijk) + bij

(m) + γi
(m)}. (For our application, ϵ 

= .001.)

In the first step described above, the initial values for β(t), θ(t), σb and σγ are estimated 

through fitting a non-time-varying multilevel generalized linear model 

g[E{Y ijk ∣ Xij, Zi(j), bij, γi}] = Xij
Tβ + Zi(j)

T θ + bij + γi using the glmer function from R 

package lme4. The σb
(m) and σγ(m) in step 3 are obtained by setting the score functions based 

on incomplete log-likelihood to zero. Let ℓ(α) denote the log of the incomplete likelihood 

L(α) = L{β(t), θ(t), σb, σγ}, where α is used to denote the set of parameters {β(t), θ(t), σb, 

σγ} as before. The score functions with respect to σb and σγ can be given as:

V (σb
2) = ∂ℓ(α)

∂σb
2 = ∑

i = 1

I ∂
∂σb

2 log ∫ Li(ui, α)dui = ∑
i = 1

I ∫ ∑
j = 1

Ni bij2

2σb
4 − 1

2σb
2 Di(ui)dui ≡ ∑

i = 1

I
V i(σb

2)

and

V (σγ2) = ∂ℓ(α)
∂σγ2

= ∑
i = 1

I ∂
∂σγ2

log ∫ Li(ui, α)dui = ∑
i = 1

I ∫ γi2

2σγ4
− 1

2σγ2
Di(ui)dui ≡ ∑

i = 1

I
V i(σγ2),

where Di(ui) = Li(ui, α)/ ∫ Li(ui, α)dui is the posterior density of ui. Setting the score 

functions V (σb
2) and V (σγ2) equal to zero leads to 

σb
(m) = ((∑i = 1

I Ni)−1∑i = 1
I ∑j = 1

Ni [{bij0
(m)}2 + vb, ij0

(m) ])1 ∕ 2 and 

σγ(m) = (I−1∑i = 1
I [{γi0

(m)}2 + vγ, i0
(m) ])1 ∕ 2. For inference, we rely on standard errors obtained 

from the inverse of the appropriate empirical Fisher information matrix for all model 

parameters. For σb
2 and σγ

2, the standard errors are equal to the square root of diagonal 

elements of (∑i = 1
I V iV i

T)−1 where V i = {V i(σb
2), V i(σγ

2)}T.

In step 4, the approximated expected local log-likelihood at t0 can be given as:

∑
i = 1

I
∑
j = 1

Ni
∑

k = 1

Nij
Y ijk[Xij

T{β0 + β1(tijk − t0)} + Zi(j)
T {θ0 + θ1(tijk − t0)} + bij0

(m) + γi0
(m)

]

+ log{q ϕ, ijk
(m) } −

vb, ij0
(m) + 2rij0

(m) + vγ, i0
(m)

2 pϕ, ijk
(m) q ϕ, ijk

(m) −
{bij0

(m)}2 + vb, ij0
(m)

2Nij{σb
(m)}2 − 1

2Nij
log

[2π{σb
(m)}2]

−
{γi0

(m)}2 + vγ, i0
(m)

2(∑j = 1
Ni Nij){σγ(m)}2

− 1
2∑j = 1

Ni Nij
log[2π{σγ(m)}2] Kℎ(tijk − t0),

(5)
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where pϕ, ijk
(m) = g−1[Xij

T{β0 + β1(tijk − t0)} + Zi(j)
T {θ0 + θ1(tijk − t0)} + bij0

(m) + γi0
(m)], 

q ϕ, ijk
(m) = 1 − pϕ, ijk

(m)  and Kh(·) = K(·/h)/h with K(·) denoting the kernel function and h 

denoting the bandwidth. For selection of bandwidth, we use cross-validation methods 

(Hoover et al., 1998; Wu et al., 1998). We use a safeguarded one-step Newton-Raphson 

iteration to maximize the above approximated expected local log-likelihood. The updated 

estimator ϕ(m) = [{ϕ0
(m)}T, {ϕ1

(m)}T]T can be given as ϕ(m) = ϕ(m − 1) + s{Iϕ
(m)(t0)}−1V ϕ

(m)(t0), 

where the score function with respect to ϕ is equal to 

V ϕ
(m)(t0) = ∑i = 1

I V ϕi
(m)(t0) = ∑i = 1

I ∑j = 1
Ni ∑k = 1

Nij aϕ, ijk
(m) Kℎ(tijk − t0){Xij

T, Zi(j)
T , (tijk − t0)Xij

T, (tijk
− t0)Zi(j)

T }T

with aϕ, ijk
(m) = Y ijk − pϕ, ijk

(m) − {vb, ij0
(m) + 2rij0

(m) + vγ, i0
(m) }{pϕ, ijk

(m) (qϕ, ijk
(m) )2 − qϕ, ijk

(m) (pϕ, ijk
(m) )2} ∕ 2, 

pϕ, ijk
(m) = g−1[Xij

T{β0
(m − 1) + β1

(m − 1)(tijk − t0) + Zi(j)
T {θ0

(m − 1) + θ1
(m − 1)(tijk − t0)} + bij0

(m) + γi0
(m)}]

and qϕ, ijk
(m) = 1 − pϕ, ijk

(m) . The explicit expression for Iϕ
(m)(t0) and further discussions on the 

safeguarded Newton-Raphson algorithm are deferred to Web Appendix B. For inference on 

the varying coefficient functions, we propose pointwise standard errors for β(t) and θ(t). At a 

fixed time point t0, the standard errors of β(t0) and θ(t0) can be obtained from the inverse of 

the empirical Fisher information matrix ∑i = 1
I V i(t0)V i(t0)T where Vi(t0) is equal to V ϕi

(m)(t0)

from the last iteration.

Note that standard errors based on information matrices have been reported to potentially 

underestimate their targeted values in the EM algorithm framework due to not taking into 

account the variability in the estimation of the random effects (Kass and Steffey, 1989). We 

study the accuracy of the proposed standard errors in simulation studies outlined in the next 

section and observe that standard errors for only β0(t) are underestimated in the proposed 

MME-VCM, which does not directly affect the inference on the time-varying effects of 

subject- and facility-level risk factors as well as the variance components.

3. Simulation

We conduct simulations to study the finite sample performance of the proposed estimators 

and standard errors based on the proposed EM algorithm. The robustness of the proposed 

estimators under violations of the distribution assumptions of the multilevel random effects 

is also studied. Finally, the effects of ignoring facility-level dependence is considered via a 

direct comparison of the proposed MME-VCM with a multilevel varying coefficient model 

including single-level random effects, denoted by MVCM. We defer details on simulation 

design to Web Appendix C.

3.1 Finite Sample Performance and Robustness to Violation of Distribution Assumptions

Two cases with I = 100 and I = 500 total number of facilities are considered. The bandwidths 

used for estimating the subject- and facility-level varying coefficient functions β(t) and θ(t), 
respectively, are chosen in a preliminary simulation study with 50 Monte Carlo runs using 

10-fold cross-validation and are kept fixed for the main simulation. The bandwidths selected 

for I = 100 and I = 500 are 1.1 and .6 years, respectively. Mean squared error (MSE) and 
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relative mean squared deviation error (MSDE), MSDEf = [∫ {f(t) − f(t)}2dt] ∕ ∫ f2(t)dt (for a 

generic function f(t)) are used to assess the estimation of the time-invariant model 

parameters σb
2 and σγ2 and time-varying coefficient functions, β(t) and θ(t), respectively. 

MSDE is a commonly used measure to assess overall estimation accuracy of functional 

parameters. It can be thought of as a standardized MSE measure for functions, combining 

information on bias and standard deviation. The simulation results presented are based on 

200 Monte Carlo runs.

Figure 1 displays the estimated time-varying coefficient functions of the multilevel risk 

factors β(t) and θ(t) along with their pointwise confidence intervals (± 2 SEs) from the 

simulation runs with the median MSDE based on I = 100 total facilities. The estimates (solid 

curves) track the true functions (dashed curves) which lie within the pointwise confidence 

intervals (± 2 SEs, shaded) for all varying coefficient functions except the y-intercept β0(t). 
As explained before in Section 2.2.2, the standard errors have been reported to potentially 

underestimate their targeted values in an EM framework due to not taking into account the 

variability in the estimation of the random effects (Kass and Steffey, 1989). Note that this 

underestimation is only observed for β0(t) in MME-VCM and does not affect the inference 

on time-varying effects of subject- and facility-level covariates, as well as the variance 

components. The (25th, 50th, 75th) percentiles of the MSDEs for the varying coefficient 

functions and of the MSEs for the variance components σb
2 and σγ2 from both simulation 

cases are summarized in Table 1. The two error measures both get smaller with increasing 

number of facilities, as expected.

The performance of the proposed standard error estimates of the varying coefficient 

functions β(t) and θ(t) and the variance components σb
2 and σγ2 are also studied. The bias, 

sample average (denoted by SE) and sample standard deviation (denoted by SDSE) of the 

estimated standard errors at three time points are given in Table 2. Also given in Table 2 are 

the standard deviations of the estimates β(t) and θ(t) (denoted by SD) which can be regarded 

as the true standard errors. Note that the estimation bias is less than SD, implying that the 

proposed estimator targets the true function. In addition, for subject- and facility-level 

varying coefficient functions and the variance components, although the proposed standard 

error formula slightly overestimates the actual one (similar to the results reported in (Tutz 

and Kauermann, 2003)), the differences between SE and SD are typically smaller than twice 

SDSE, except for β0(t), showing that the proposed standard error formula works reasonably 

well. Also note that reported SE gets closer to SD and the reported bias gets smaller with 

increasing number of facilities, as expected.

In the context of generalized mixed effects models with one-level random effects, it has been 

shown that estimation of the fixed effects parameters, except for the y-intercept, are quite 

robust to misspecification of the random effects distribution (Neuhaus et al., 1992; Heagerty 

and Kurland, 2001; McCulloch and Neuhaus, 2011). To study the impact of misspecification 

of the random effect distributions at the facility- or the subject- or at both the facility- and 

the subject-levels on estimation of MME-VCM, we conduct additional simulation studies, 

where deviations from normality are induced by assuming a gamma distribution for the 
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random effects. Data are generated using the the same setup as described in Web Appendix 

C with the exception that the random effects equal γi = σγ(ai − λ) ∕ λ and 

bij = σb(wij − λ) ∕ λ where ai and wij are generated from gamma distributions with shape 

parameter λ and rate parameter 1. We explore simulation setups with varying values of λ, 

where smaller λ correspond to further deviations from normality. Since the random effects 

are multilevel, we consider four scenarios: (I) the distribution of only the subject-level 

random effects is misspecified, (II) the distribution of only the facility-level random effects 

is misspecified, (III) the distributions of both subject- and facility-level random effects are 

misspecified and (IV) no violations in the random effects distributions. For the first three 

scenarios, three different values of λ are considered: λ = .5, λ = 2 and λ = 4.

Table 3 reports the average bias ∫∣f*(t)−f(t)∣dt, where f*(t) is the mean of the estimated 

functions f(t) targeting a generic function f(t)) for varying coefficient functions associated 

with subject-level covariates (β(t)) and facility-level covariates (θ(t). Also reported is the 

bias for variance components σb
2 and σγ2. The results show that the proposed EM algorithm is 

quite robust to misspecification of the random effects distribution at the facility-level. The 

proposed estimators are also robust to violations at the subject-level with the exception of 

the intercept term β0(t). The bias of the intercept estimator (β0(t)) decreases as deviations 

from normality decrease (corresponding to larger λ values in the gamma distribution), as 

expected. These results are consistent with the results of Neuhaus et al. (1992), Heagerty and 

Kurland (2001), and McCulloch and Neuhaus (2011) on robustness to misspecification of 

the random effects distribution in generalized mixed effects models. In addition, the fact that 

the bias is observed only when the distribution of the subject-level random effects is 

misspecified can be explained by the fact that in the proposed EM algorithm, misspecified 

facility-level random effect affects only one element of the random effects vector ui = 

(bi1, . . . , biNi, γi)т within facility i, when the rest of the subject-level random effects are still 

normal. Hence the deviation of the distribution of the random effects vector from 

multivariate normality is minimal. However, misspecification of the distribution of the 

subject-level random effects, affects almost all the elements of the random effects vector, 

leading to significant deviation from normality.

3.2 Effects of Ignoring Facility-level Dependence

Finally, we conduct simulations to study the effects of ignoring facility-level correlation in 

the data. We compare the proposed MME-VCM with a varying coefficient model with 

multilevel covariates and only subject-level random effects (referred to as MVCM). Data are 

generated using the setup of Web Appendix C under three different variance ratios of the 

random effects: (1) σγ2 ∕ σb
2 = 1, (2) σγ2 ∕ σb

2 = .25 and (3) σγ2 ∕ σb
2 = .07. Results from the third 

case with σγ2 ∕ σb
2 = .07, mimicking the random effects variance ratio from the USRDS data 

application, are deferred to Supporting Information Table S1 and S2. Results show no 

differences in the bias of the estimated multilevel varying coefficient functions between the 

two models, however there are differences observed in the true (SD) and estimated (SE) 

standard errors of the facility-level varying coefficient functions (θ(t)) (Table 4, Table S1). 

Table 4 and Table S1 show the bias, the empirical standard deviations (SD) and the sample 
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average (SE) and sample standard deviation (SDSE) of the estimated standard errors of the 

varying coefficient functions at three time points from both models. Note that the empirical 

standard deviations (which can be regarded as the true standard errors) of the facility-level 

varying coefficient functions θ(t), are smaller in MME-VCM compared to MVCM, implying 

that the MME-VCM is more efficient in estimation of the effects of facility-level risk factors 

than the single-level random effects model. This is also reflected in the MSDE results shown 

in Table 5 and Table S2, with MME-VCM leading to reduced MSDE for facility-level 

varying coefficient functions. In addition, for the facility-level varying coefficient functions, 

the differences between SE and SD are typically larger than twice SDSE in MVCM except 

for σγ2 ∕ σb
2 = .07, indicating that the estimated standard errors do not target the true standard 

errors when the within-facility correlation is ignored. Note that the differences observed in 

standard error estimates only apply to facility-level varying coefficient functions, and are not 

observed for subject-level estimates. Also, the difference between standard error estimation 

of the two models in targeting facility-level varying coefficient functions decreases as the 

variance of the facility-level random effects gets smaller compared to the variance of the 

subject-level random effects, as expected. However, even with facility-level random effects 

variance one fourth or 7% of the subject-level random effects variance, gains from 

accounting for the facility-level correlation via MME-VCM are visible (Table 4, Table S1).

4. Modeling Hospitalization Risk Among Patients on Dialysis

4.1 Description of the USRDS Study Cohort and Patient- and Facility-level Predictors

Our study utilizes the United States Renal Data System (USRDS), a national database that 

collects data on nearly all patients with end-stage renal disease (ESRD) in the US. Patient 

demographics, hospitalizations, as well as comorbidities at initiation of dialysis are all 

included in the USRDS. The cohort in our study includes patients of age 18 years or older 

who initiated dialysis between January 1, 2006 and December 31, 2008. Patients are 

followed up for a maximum period of five years where the last date of follow-up is 

December 31, 2013. The final study cohort includes 102,342 patients and 2,618 facilities 

with an overall three month hospitalization risk of 27.14%. We defer detailed descriptions of 

the study cohort and exclusion rules to Web Appendix D.

Time-varying effects of 27 patient-level and three facility-level covariates on patients’ 

hospitalization risk are studied with the proposed MME-VCM. Patients’ age, gender, body 

mass index (BMI), whether diabetes is the cause of ESRD and 23 additional comorbidities, 

ranging from chronic obstructive pulmonary disease (COPD), septicemia, ulcers, drug and 

alcohol disorders, end-stage liver disease, severe cancer, psychiatric disorders to arthritis are 

included in the patient-level covariates. The facility-level covariates include total number of 

patients, nurse-to-patient ratio, and patient care technician (PCT)-to-patient ratio. For ease of 

interpretation, we transform facility-level covariates nurse-to-patient ratio and PCT-to-

patient ratio into percentages by multiplying the ratios by 100 and truncating percentages 

larger than 100 at 100 (12 facilities in total). In addition, all continuous covariates (age, 

BMI, total number of patients, nurse-to-patient ratio, and PCT-to-patient ratio) are mean-

centered before modeling.
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4.2 Results

The variances of the subject- and facility-level random effects are estimated to be σb
2 = 1.277

and σγ
2 = 0.089 with standard errors 0.011 and 0.005, respectively. Hence, a large portion of 

the total variation is explained at the subject-level, nevertheless, both subject- and facility-

level random effects explain parts of the variation in the multilevel modeling. For selection 

of the bandwidth of the varying coefficient functions corresponding to the multilevel risk 

factors, we utilize a 10-fold cross-validation. The prediction error used for cross-validation 

is ∑i = 1
I {∑j = 1

Ni ∑k = 1
Nij (Y ijk − pijk)2 ∕ ∑j = 1

Ni Nij}, where pijk = g−1{Xij
Tβ(tijk) + Zi(j)

T θ(tijk)}. 

The predictions pijk for facilities left out, are estimated without the subject- and facility-

level random effects where β(t) and θ(t) are estimated using data on all facilities, except for 

facilities in the leave-out group. A bandwidth of 3.25 years in the five year follow-up is 

chosen for estimation of the varying coefficient functions β(t) and θ(t).

Among the 27 patient-level risk factors, 25 are found to have significant effects on patient 

hospitalization risk. The two nonsignificant patient-level risk factors are fibrosis of the lung 

or other chronic lung disorders and respirator dependence. As expected, all of the 

comorbidities (prior to dialysis) that are significant are associated with an increase in 

hospitalization risk. Figure 2 displays the estimated varying coefficient functions for (a) the 

y-intercept and a selection of several patient-level risk factors which are found to be 

significant: (b) gender (female), (c) age, (d) BMI, (e) whether diabetes is the cause of ESRD, 

(f) COPD, (g) septicemia and (h) arthritis. The pointwise confidence intervals (± 2 SEs) are 

shaded in gray. The estimated y-intercept β0(t) is increasing over t, showing that the 

hospitalization risk of a male patient initiating dialysis at mean age 65, with mean BMI of 

29, no comorbidities, not having diabetes as the cause of ESRD, and treated at an average 

facility (with mean size of 93 patients, nurse-to-patient ratio of 7.5% and PCT-to-patient 

ratio of 9.5%), is increasing over time on dialysis, conditional on survival. Females have 

higher estimated hospitalization risk than males, but this difference in hospitalization risk 

gets smaller as patients stay longer on dialysis. Older age at initiation of dialysis is 

associated with higher hospitalization risk except during the first year on dialysis. Diabetes 

as the cause of ESRD is associated with higher hospitalization risk with the effect getting 

stronger in the later years of dialysis treatment (e.g., > 2 years). Higher BMI is associated 

with lower hospitalization risk but the protective effect is getting weaker in later years of 

dialysis. This protective effect of BMI is also found in other studies on adverse events such 

as cardiovascular risk (Kalantar-Zadeh et al., 2003) and mortality (Kalantar-Zadeh et al., 

2005) among patients on dialysis. All three comorbidities displayed (COPD, septicemia and 

arthritis) are associated with higher hospitalization risk, with different time-varying effects 

throughout the course of dialysis. Chronic conditions seem to have longer lasting effects on 

hospitalization, with effects getting stronger over time on dialysis. For example, the 

association between COPD and hospitalization risk gets stronger as patients stay longer on 

dialysis, whereas the association between septicemia and hospitalization risk gets weaker.

To visualize the combined effects of patient-level covariates on hospitalization risk, the 

estimated risk trajectories pij(t) = g−1{Xij
Tβ(t) + Zi(j)

T θ(t)} for three hypothetical subjects are 
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displayed in Figure 3. The three subjects compared are chosen to be female patients who 

initiated dialysis at 65 years of age, with diabetes as the cause of ESRD and having BMI of 

29, receiving dialysis at a typical (‘median’) facility (with 86 patients, 6.8% nurse-to patient 

ratio and 9.4% PCT-to-patient ratio). The three subjects differ in their comorbidities at 

initiation of dialysis, where one of the subjects has no comorbidities (representing a 

‘healthy’ patient), one has only arthritis (‘moderate’) and the last patient has both septicemia 

and a lung disorder (‘severe’). The largest difference in hospitalization risk appears in the 

first year of dialysis, since the effects of septicemia are the largest at initiation of dialysis. 

The differences between the three risk trajectories are found significant within the first two 

years. However, the pointwise confidence intervals (± 2 SEs) start to overlap for later years 

on dialysis. While differences in hospitalization risk are typically not significant for later 

years on dialysis for patients with nonchronic comorbidities (such as septicemia), for 

patients with chronic comorbidities at initiation of dialysis such as COPD, the significant 

increase in hospitalization risk is found to be sustained during all five years of follow-up.

At the facility-level, the time-varying effects of the three risk factors considered are 

displayed in Figure 4: (a) nurse-to-patient ratio (in percent), (b) patient care technician 

(PCT)-to-patient ratio (in percent) and (c) total number of patients. The number of total 

patients (i.e., facility size) is not found to be significantly correlated with hospitalization 

risk. However, both nurse-to-patient and PCT-to-patient ratios are found significant in the 

first year of dialysis, where higher percent of staff are correlated with a lower risk of 

hospitalization. This effect is not found significant in the later years of dialysis. Note also 

that the magnitude of the significant effects on hospitalization in the first year are 

comparable for nurse-to-patient and PCT-to-patient ratios. Nevertheless, the magnitude of 

facility-level effects are small relative to the effects of patient-level factors, as expected.

Time-varying effects of multilevel risk factors on hospitalizations of dialysis patients have 

been studied before by Li et al. (2018) where a varying coefficient model for multilevel risk 

factors (VCM-MR) was proposed for three-level hierarchical data. The MME-VCM and 

VCM-MR consider the same set of patient- and facility-level risk factors in modeling 

hospitalization risk using the USRDS data, where the results from MME-VCM largely agree 

with findings from the VCM-MR. Both models identify the same patient-level demographics 

and comorbidities as having significant effects on hospitalization (with similar time-varying 

trends). Both models find that the large proportion of variation is explained at the subject-

level and that the magnitude of effects of facility-level factors are small relative to the effects 

of patient-level factors. However, the two models differ in their findings on effects of 

facility-level covariates. While the VCM-MR finds all three facility-level risk factors 

significant throughout the first five years of dialysis, MME-VCM does not find facility size 

to have significant effects on hospitalization, and finds that nurse-to-patient and PCT-to-

patient ratios are significant (negatively correlated) for hospitalization risk only in the first 

year of dialysis.

Rigorous studies of dialysis facility-level effects on patients’ hospitalization risk are sparse 

and time-varying effects of these risk factors have not been studied before in literature 

except Li et al. (2018). Nevertheless, Chen et al. (2019) studied the association of dialysis 

facility staffing factors with profiling results with respect to yearly 30-day unplanned 
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hospitalization readmission rates. Both nurse-to-patient and total staff-to-patient ratios have 

been considered and the study found that dialysis facilities with significantly worse 30-day 

readmission rates had lower nurse-to-patient ratios and total staff-to-patient ratios, with only 

the disparities in nurse-to-patient ratio from 2010 reported as significant. Hence the 

association identified between the two facility-level staffing ratios (nurse-to-patient and 

PCT-to-patient ratios) considered in MME-VCM and VCM-MR agree with the previous 

findings of Chen et al. (2019).

The differences found in the time-varying effects of facility-level risk factors are likely due 

to the main difference between the two models, that is while VCM-MR includes only 

patient-level random effects, the proposed MME-VCM includes random effects at both the 

patient- and facility-levels. The VCM-MR models within-facility correlation through 

facility-specific fixed effects instead of random effects, which adds flexibility in modeling 

facility-specific risk trajectories when the main goal centers around inference for facility-

specific time-varying effects. There is extensive discussion on modeling facility effects via 

fixed or random effects in the time-static facility profiling literature where the goal is to 

identify facilities with significantly worse (or better) performance than a reference standard 

(Kalbfleisch and Wolfe, 2013). For profiling purposes, i.e. for identifying facility 

performance deviating from a norm, fixed facility effects have been reported to be more 

effective, where models with facility-level random effects shrink estimates to an overall 

mean leading to more reliable estimation of the facility effects near the center of the 

distribution but not away from the center (He et al., 2013).

For the main goal of the current paper, which is to study effects of multilevel risk factors on 

patient hospitalizations, multilevel random effects in MME-VCM lead to more stable and 

reliable inference, making facility-level effects found in applications to the USRDS data 

using MME-VCM more trustworthy, due to the stabilization through the random effects. 

Moreover, multilevel random effects lead to additional stabilization for estimation of effects 

of small facilities (with a low number of patients), since estimating facility-specific fixed 

effects based on data from a small facility is challenging (Kalbfleisch and Wolfe, 2013). In 

addition, while the inference for MME-VCM is based on the inverse of the empirical 

information matrix, Li et al. (2018) proposes inference for VCM-MR via bootstrap. This 

leads to additional computational savings for inference in MME-VCM, where for 

simulations with 100 facilities, the run times of the estimation and inference procedures 

proposed for MME-VCM and VCM-MR (inference based on 200 bootstrap samples), on a 

DELL XPS 8910 PC (3.4 GHz CPU, 16 GB RAM), are 2.5 minutes and 4 hours and 50 

minutes, respectively.

5. Discussion

We proposed a generalized multilevel mixed effects varying coefficient model (MME-VCM) 

to study time-varying effects of multilevel risk factors for longitudinal data. Due to the three-

level hierarchical structure in the USRDS data where longitudinal measurements are nested 

in patients and patients are nested in dialysis facilities, we model the hierarchical 

dependence via a two-level random effects structure. In addition, both patient- and facility-

level predictors are included in the regression model to characterize their effects on 
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hospitalization risk as functions of time that patients are on dialysis. To handle the high-

dimensional integration resulting from the hierarchical random effects structure, we utilize a 

fully exponential Laplace approximation approach which leads to lower order approximation 

errors than the standard Laplace method without a substantial increase in the computational 

burden. For inference on the multilevel varying coefficient functions and the variance 

components, we derive standard errors based on the inverse of the empirical Fisher 

information matrices. In the USRDS data application, MME-VCM identifies significant 

multilevel risk factors for patient hospitalizations, providing insights into health care 

strategies for the reduction of patient hospitalization risk.

Note that even though the application to the USRDS data considered in Section 4 only 

includes baseline covariates, the proposed estimation and inference procedures for MME-

VCM can easily be extended to accommodate time-varying covariates. Finally, the proposed 

model targets the hospitalization risk of a dynamic cohort of survivors through a partly 

conditional modeling approach, conditional on the patients being alive. The model can be 

extended to include the patients’ death as part of the outcome, leading to time-dynamic joint 

modeling of survival and multilevel longitudinal data. This extension requires further 

research and is identified as a future direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The varying coefficient function estimates (solid) from the runs with the median MSDE 

among 200 Monte Carlo runs for I = 100 facilities. Also plotted are the pointwise confidence 

intervals (± 2 SEs, shaded) and the true varying coefficient functions (dashed).
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Figure 2. 
Estimated patient-level effects β(t) (black) corresponding to (a) the intercept, (b) gender 

(female), (c) age, (d) BMI, (e) whether diabetes is the cause of ESRD, (f) COPD, (g) 

septicemia, and (h) arthritis along with their pointwise confidence intervals (± 2 SEs, 

shaded).
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Figure 3. 
Estimated hospitalization risk trajectories for three patients receiving dialysis at a typical 

(‘median’) facility who are ‘healthy’, ‘moderate’ and ‘severe’ at initiation of dialysis, given 

in solid, dashed and dotted, respectively, along with their pointwise confidence intervals (± 2 

SEs, shaded).
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Figure 4. 
Estimated facility-level effects θ(t) corresponding to (a) nurse-to-patient ratio, (b) patient 

care technician (PCT)-to-patient ratio and (c) total number of patients, along with their 

pointwise confidence intervals (± 2 SEs, shaded).
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Table 1

Percentiles of the mean squared deviation error (MSDE) for the time-varying coefficient estimates of effects of 
subject-level covariates β(t) and effects of facility-level covariates θ(t) based on 200 Monte Carlo runs. 

Percentiles of mean squared error (MSE) are reported for variance components σb
2 and σγ2.

I=100 I=500

MSDE 25% 50% 75% 25% 50% 75%

β0(t) .002 .005 .012 .001 .002 .003

β1(t) .012 .019 .031 .003 .005 .007

β2(t) .012 .018 .032 .003 .005 .008

θ1(t) .014 .024 .043 .004 .007 .011

θ2(t) .015 .026 .046 .004 .007 .012

MSE

σb
2 <.001 <.001 .003 <.001 <.001 <.001

σγ
2 .002 .010 .029 <.001 .002 .006
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Table 2

The bias, true standard errors (SD), sample average (SE) and sample standard deviation (SDSE) of the 

estimated standard errors at three time points (beginning, middle and end of follow-up) for varying coefficient 
functions (VCFs) associated with subject-level covariates β(t) and facility-level covariates θ(t), as well as the 

variance components σb
2 and σγ2.

I = 100 I = 500

t VCFs Bias SD SE SDSE Bias SD SE SDSE

0

β0(t) −.057 .110 .046 .004 −.012 .051 .022 .001

β1(t) .026 .141 .146 .014 .024 .069 .068 .003

β2(t) −.020 .140 .144 .012 −.027 .067 .068 .002

θ1(t) .032 .144 .148 .018 .016 .074 .068 .003

θ2(t) −.029 .138 .148 .017 −.021 .069 .068 .004

2.5

β0(t) −.005 .107 .030 .003 .002 .049 .015 .001

β1(t) .011 .073 .087 .007 −.001 .040 .046 .002

β2(t) −.007 .076 .088 .007 −.004 .040 .046 .002

θ1(t) .083 .087 .093 .011 .039 .045 .046 .002

θ2(t) −.082 .091 .091 .011 −.043 .045 .046 .002

5

β0(t) −.081 .127 .094 .008 −.077 .062 .046 .002

β1(t) −.004 .254 .304 .031 −.007 .124 .147 .006

β2(t) −.012 .265 .304 .032 .007 .140 .148 .007

θ1(t) .014 .258 .303 .039 < .001 .135 .146 .008

θ2(t) −.028 .266 .303 .037 −.017 .135 .147 .008

Variances

σb
2 −.014 .042 .039 .004 −.009 .019 .017 .001

σγ2 −.042 .140 .151 .027 −.017 .063 .068 .005
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Table 3

The average bias for varying coefficient functions associated with subject- (β(t)) and facility-level covariates 

(θ(t)). Also reported, is the bias for variance components σb
2 and σγ2 under misspecified random effects 

distributions based on 200 Monte Carlo runs with I = 100 facilities. Scenarios (I), (II) and (III) correspond to 
misspecified subject-level, facility-level and both subject- and facility-level random effects, respectively. The 
last column shows results under no violation with normally distributed random effects.

Scenario (I) (II) (III) (IV)

λ .5 2 4 .5 2 4 .5 2 4

β0(t) .068 .061 .041 .029 .026 .028 .104 .058 .034 .031

β1(t) .035 .035 .035 .034 .033 .034 .033 .034 .032 .032

β2(t) .034 .036 .032 .033 .031 .033 .034 .039 .036 .032

θ1(t) .058 .062 .065 .033 .062 .065 .061 .054 .064 .064

θ2(t) .060 .054 .070 .072 .062 .069 .056 .062 .071 .051

σb
2 .007 −.100 −.084 .010 .010 .008 −.065 −.120 −.104 .019

σγ
2 .024 .008 .015 .076 .001 .025 .024 −.027 −.004 .034
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Table 4

The bias, true standard errors (SD), sample average (SE) and sample standard deviation (SDSE) of the 

estimated standard errors at three time points (beginning, middle and end of follow-up) for varying coefficient 
functions (VCFs) associated with subject-level covariates β(t) and facility-level covariates θ(t), as well as the 

variance components σb
2 and σγ2. Both results from MVCM and MME-VCM are reported based on 200 Monte 

Carlo runs with I = 100 facilities.

σγ2 = 1 MVCM MME-VCM

t VCFs Bias SD SE SDSE Bias SD SE SDSE

0

β0(t) −.066 .108 .042 .001 −.067 .097 .046 .004

β1(t) .002 .138 .135 .005 .004 .133 .144 .013

β2(t) −.023 .135 .134 .005 −.002 .129 .144 .012

θ1(t) .032 .232 .133 .008 .021 .135 .146 .018

θ2(t) −.001 .235 .134 .008 −.003 .135 .146 .017

2.5

β0(t) −.014 .106 .026 .001 −.013 .094 .030 .003

β1(t) −.004 .092 .084 .003 .002 .079 .086 .007

β2(t) .004 .099 .084 .003 −.001 .083 .087 .008

θ1(t) .097 .206 .084 .005 .084 .095 .091 .011

θ2(t) −.073 .207 .084 .005 −.072 .090 .091 .011

5

β0(t) −.111 .125 .088 .004 −.101 .118 .093 .008

β1(t) −.014 .263 .283 .019 .001 .257 .301 .032

β2(t) −.008 .249 .283 .017 −.002 .238 .304 .029

θ1(t) .014 .319 .280 .019 .002 .257 .303 .037

θ2(t) −.001 .350 .280 .019 .002 .255 .303 .035

Variances

σb
2 .942 .165 .065 .005 −.019 .037 .038 .003

σγ2 −.034 .141 .154 .027

σγ2 = .25

t VCFs Bias SD SE SDSE Bias SD SE SDSE

0

β0(t) −.055 .062 .042 .001 −.042 .060 .046 .004

β1(t) .030 .131 .134 .004 .020 .129 .144 .012

β2(t) −.020 .135 .134 .004 −.014 .133 .143 .012

θ1(t) .024 .156 .133 .007 .045 .138 .145 .015

θ2(t) −.009 .154 .132 .008 −.030 .135 .145 .016

2.5

β0(t) −.007 .054 .025 .001 .003 .052 .029 .002

β1(t) .013 .079 .080 .002 .012 .076 .085 .007

β2(t) −.012 .076 .080 .002 −.015 .071 .085 .006

θ1(t) .075 .134 .080 .004 .091 .095 .088 .010
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θ2(t) −.075 .121 .080 .004 −.089 .088 .089 .010

5

β0(t) −.086 .089 .085 .004 −.078 .088 .092 .009

β1(t) −.026 .243 .274 .016 −.017 .242 .292 .027

β2(t) −.018 .235 .276 .015 −.032 .236 .296 .027

θ1(t) .027 .311 .272 .020 .043 .282 .295 .037

θ2(t) −.017 .283 .270 .020 −.033 .270 .296 .037

Variances

σb
2 .242 .063 .044 .002 −.001 .039 .039 .003

σγ2 .006 .043 .045 .008
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Table 5

Percentiles of the mean squared deviation error (MSDE) for the time-varying coefficient estimates of effects of 
subject-level covariates β(t) and facility-level covariates θ(t) from MVCM and MME-VCM based on 200 

Monte Carlo runs with I = 100 facilities.

σγ2 = 1 MVCM MME-VCM

MSDE 25% 50% 75% 25% 50% 75%

β0(t) .003 .006 .013 .002 .004 .011

β1(t) .014 .022 .032 .012 .018 .029

β2(t) .013 .020 .037 .011 .018 .029

θ1(t) .022 .065 .146 .013 .025 .044

θ2(t) .028 .059 .148 .014 .025 .041

σγ2 = .25

MSDE 25% 50% 75% 25% 50% 75%

β0(t) .001 .002 .004 .001 .002 .004

β1(t) .012 .019 .029 .011 .019 .028

β2(t) .011 .019 .028 .010 .018 .028

θ1(t) .016 .031 .067 .015 .029 .050

θ2(t) .013 .032 .066 .013 .026 .048
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